
DB2 Server for VM

System Administration
Version 7 Release 2

SC09-2980-01

���

DB2 Server for VM

System Administration
Version 7 Release 2

SC09-2980-01

���

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 515.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

|
|
|

|
|

|
|

Contents

About This Manual ix
Organization of This Manual. ix
Syntax Notation Conventions xi
SQL Reserved Words xv

Summary of Changes xvii
Summary of Changes for DB2 Version 7 Release 2 xvii

Enhancements, New Functions, and New
Capabilities xvii
Reliability, Availability, and Serviceability
Improvements xviii

Chapter 1. Planning for Installation . . . 1
Operating System Overview 1
Virtual Machine Overview 1
Components of the Relational Database Management
System 2
Software Requirements 3
Virtual Storage Requirements 4

Database Machine Size 4
Service Machine Size 4
User Machine Size 5

Hardware Requirements 5
Real Storage Requirements. 5
DASD Space Requirements 5
Tape Requirements 8
Display Terminal Requirements 8

Considerations When Defining a Database Machine
and Generating a Database 9

Considerations When Adding Directory Control
Statements 9
Considerations When Loading IBM-Supplied Files 9
Considerations When Generating a Database . . 9

Considerations When Defining a Service Machine . . 9
Updating the Service Machine VM Directory . . 9
Considerations When Loading IBM-supplied Files 9

Defining User Machines 10
Defining Saved Segments. 10
Setting Up the CMS Communications Directory . . 10
Updating the SNA NETID File 11

Chapter 2. Planning for Database
Generation 13
Database Generation Parameters 13

Defining Database Directory Size 14
Defining the Database Log 16
Establishing Database Capacity Parameters . . . 18
Establishing Initial Dbspace Requirements . . . 19
Determining Initial Dbextent Requirements . . . 21

Choosing an Application Server Name and VM
Resource Identifier 23
Choosing the Application Server Default
CHARNAME and CCSID. 23
Choosing the Application Server Default Character
Subtype 25

Choosing the Default CHARNAME and CCSID for
Application Requesters 26
Preparing for Database Regeneration 27
Database Generation Worksheet 27

Chapter 3. Planning for Database
Migration. 31
Migration Considerations 32

Increasing the HELPTEXT Dbspace 32
Migrating from Version 3 Release 1 32

Considerations for Invalid Indexes. 32
Conversion of Packages 33

Migrating from Version 3 Release 2 33
Choosing an Application Server Default
CHARNAME. 33
Choosing the Default CHARNAME for All
Application Requesters 36
Considerations for Mixed Primary Keys with
Field Procedures. 36

Migrating from Version 3 Release 3 36
Considerations for EXPLAIN Tables 36
Considerations for VSE Guest Sharing 37
Considerations for the VM Data Spaces Support
(VMDSS) 37

Migrating from Version 3 Release 4 37
Considerations for Assembler Even Precision
Packed Decimal 37
Considerations for SQLSTATE Changes for
SQL92 Support 37

Migrating from Version 3 Release 5 37
Considerations for Uncommitted Read 37
Considerations for VMSES/E 37
Considerations for Support of ESA-mode
Processors Only 38
Considerations for the Renaming of the Product 38
Considerations for the Removal of the User
Facility Subset 38

Migrating from Version 5 Release 1 38
Considerations for RDS Above 16M 38
Considerations for TCP/IP 38

Migrating from Version 6 Release 1 38
Migrating from Version 7 Release 1 38
Release Coexistence Considerations 39
Migrating from a VSE to a VM Operating System 39

Moving a Database from a VSE to a VM
Operating System 40
Choosing a VM Resource Identifier 40
Converting Data in the Database 40
Converting Packages 40
Converting Programs 40
VSE Databases Coexisting under VM 40

Migrating from a VM/XA to a VM/ESA
Environment 41

Delaying the Directory and Database Name
Changes 41

© Copyright IBM Corp. 1987, 2001 iii

||
|
||
|
||

||

Setting up the Database Machine Directory Entry 41
Example of a Database Machine Directory with
Multiple Databases 43
Setting Up the User Machine Directory Entry . . 43
Database Naming Considerations 45

Migrating from a VM/SP to a VM/ESA Operating
System 45
Installing Another IBM VM System on Your
Processor 45
Moving a Database 45

Using Archive and Restore to Move a Database 45
Using the SQLDBDEF Utility 46

Moving a VM Application Server from One User ID
to Another. 47
Converting a Service Machine to a Database
Machine 49
Changing the Server Name and Resource Identifier 49

Chapter 4. Planning for Operation of
the Database Manager 53
Starting the Application Server 53

The Database Operator 53
Multiple User Mode Initialization Parameters . . 54
Single User Mode Initialization Parameters . . . 72
Tape Support 74
General File Support 76
Starting the Application Server in Multiple User
Mode 77
Starting the Application Server in Single User
Mode 80
Overriding Initialization Parameters 88
Creating a Parameter File. 88

Running the Database Manager 89
Operating Modes 89

Disconnecting the Database Machine 90
Stopping the Application Server 90

Taking an Archive 91
Verifying the Directory 93
Online Support Considerationsfor VSE Guest
Sharing 93
A Note about Minidisk Passwords. 93
Inter-Machine Communications. 94

Chapter 5. Operating the Online
Support for VSE Guest Sharing 97
Operating VSE Guest Sharing 97
Operator Responsibilities 98

Starting the Application Server 99
Starting the Online Resource Adapter -- The
CIRB Transaction 100
Adding Connections -- The CIRA Transaction 106
Automatic Restart Resynchronization 109
Changing the Default Server -- The CIRC
Transaction 115
Removing Connections -- The CIRR Transaction 116
Displaying Information -- The CIRD Transaction 119
Stopping the Online Support -- The CIRT
Transaction 128
Password Implications on Online Resource
Adapter Termination 132

Chapter 6. Maintaining Database
Security. 135
Communications and System Security 135

Session-Level Security 136
Conversation-Level Security 136
VM Directory Control Statements. 137
User ID Translation 139
Minidisk Protection 139
Connect Userid and Password Resolution . . . 140

CMS Restrictions 140
System and DB2 Server for VM Operator Console
Considerations 141
Access Control to ISQL on a VSE Guest 141

Chapter 7. Managing Database
Storage 143
Storage Concepts 143

How Information is Stored in Dbspaces . . . 144
Adding Dbspaces to the Database 145

Considerations for Adding Dbspaces 148
Example of Adding a Dbspace to a Database 149

Expanding the Database Directory 150
Acquiring Dbspaces for Packages. 153
Managing Storage Pools 155

Design Considerations for Storage Pools . . . 155
Monitoring Storage Pools 157
Maintaining Storage Pools 157
Running the SQLADBEX EXEC 161
Moving Dbextents 168
Moving Log Disks. 170

Chapter 8. Saved Segments 171
Using Saved Segments for Components 171

Example 1 175
Example 2 175
Example 3 176
Example 4 176
Defining Saved Segments 177

. 179

. 184
Running in User Free Storage after Using
Default Saved Segments 189
ARISNLSC MACRO 189

Chapter 9. Making Backups and
Recovering from Failures 191
Understanding Recovery Concepts 191

What is a Logical Unit of Work? 191
What is a Log? 192
What is a Checkpoint? 193
What Happens after a System Failure? 193
What is an Archive? 194
Recovering from DASD Failures that Damage
the Database 195
Recovering from DASD Failures that Damage a
Log. 196
Recovering from DASD Failures that Damage
the Database and Log 196

Establishing DASD Recovery Procedures 196

iv System Administration

||
||
||

||

Choosing a Log Mode 196
Backing Up the History Area 199

Archiving Procedures. 199
Performing Database Archives With Database
Manager Facilities 199
Example of an SQLEND ARCHIVE 200
Performing Database Archives With User
Facilities 203
Performing Log Archives 204
Example of an SQLEND LARCHIVE 205
Labeling Your Archive Tapes 210

Recovery Procedures 211
Restarting Procedures 211
Restoring the Database 212
Restarting from Failure of a Database Restore 215
Restarting from a System Failure While
Archiving 217
Restarting from Failure of a Database
Generation or COLDLOG Operation 218
Relocating the Database Manager. 218
Replacing a Minidisk Using DASD Dump
Restore 218
Replacing a Database Minidisk 219
Replacing a Log Minidisk 221
Recovering to a Secondary System 223

Chapter 10. Special Topics in
Recovery Design 225
Switching Log Modes 225

From LOGMODE=A 225
From LOGMODE=L 225
From LOGMODE=Y or N 226

Using Dual Logging 227
Using the VM DUPLEX Command 227

Reconfiguring and Reformatting the Logs 228
Log Reconfiguration 228
Log Reformatting 229
Running the SQLLOG EXEC 229
Switching Log Data between Logs 231
History Area 232

Nonrecoverable Storage Pools 236
Characteristics of Dbspaces in Nonrecoverable
Storage Pools 237
Data That Can be Placed in Nonrecoverable
Storage Pools 240
Data That Should Not Be Placed in
Nonrecoverable Dbspaces 243
Setting Up Nonrecoverable Storage Pools and
Dbspaces 243
Querying for Nonrecoverable Storage Pools and
Dbspaces 244

Chapter 11. Using the Accounting
Facility 247
Where to Find More about VM Accounting . . . 247
Preparing to Use the Accounting Facility 247
Starting the Accounting Facility 248
Generation of Accounting Records 249
Supplying Accounting Data from DRDA
Applications. 250

Formats of the Accounting Records 251
Initialization Records 252
Operator and Checkpoint Records 252
Termination Records 253
CMS User Records 253
Remote User Records. 254
VSE Guest User Records. 255

Maintaining Accounting Data 256
Considerations for an Accounting Dbspace . . 256
Tables to Hold Accounting Data 257
Loading the Accounting Data 260

Chapter 12. Planning and
Implementing Configurations 263
Configuration Concepts 263

Reasons for Adding a Database Machine . . . 263
Databases in a TSAF Collection or an SNA
Network 265
Adding Service Machines 268
Types of Database Machines 270

Primary Database Machines 272
Why Add a Database Machine? 272
Adding a Primary Database Machine 273
Adding a Secondary Database Machine . . . 278
Adding a Service Machine 280
Defining Additional User Machines 280
Adding a Database 282
VSE Guest Sharing Configuration 299

Chapter 13. Choosing a National
Language and Defining Character
Sets 303
Considerations when changing default
CHARNAME and CCSID 304

Changing from pre-Euro CHARNAME to
Euro-compatible CHARNAME 305

Using Alternative Character Sets 306
Hexadecimal Values of the Sample Character
Sets 306
Specifying an IBM-Supplied Character Set at
Run Time. 313

Using Double-Byte Character Set (DBCS) 314
Identifiers Containing DBCS Characters . . . 315
Constants and Data Containing DBCS
Characters 316

CCSID Conversion 317
Determining CCSID Values 320
Setting the Application Server Default
CHARNAME and CCSIDs 321

Changing the CCSID Attribute of an Existing
Column 323
Changing the Subtype Attribute of an Existing
Column 323

Setting the Application Requester Default
CHARNAME and CCSIDs 323

Setting the Default CHARNAME and CCSIDs
for All Application Requesters 324
Setting the Default CHARNAME and CCSIDs
for an Application Requester 324

Contents v

Setting the Application Server Default Character
Subtype 325
Setting the DBCS Option for the Application Server 326
Setting DBCS Option for Application Requestors 326

Setting the DBCS Option for all Application
Requesters 326
Setting the DBCS Option for an Application
Requester. 327

EUC Conversions 327
Unicode Conversions 327
Examples of Setting Values for an Installation . . 327

Example 1 328
Example 2 329
Identifying Classification and Translation Tables
for a CCSID 330

National Language Support for Messages and
HELP Text 331

CMS HELP Text Files. 333
National Language Messages in a VSE Guest
Sharing Environment 333

Defining Message Repositories as Saved Segments 333

Chapter 14. Creating Installation Exits 337
Supplying Account Numbers for Users 337

How the ARIUXIT Module Works 338
Coding Your Own Accounting Exit 342
Installing Your Version of ARIUXIT 348
Service Considerations for ARIUXIT 350

Defining Your Own Datetime Format 350
Datetime Formats 350
How Datetime Exits Work 351
Coding Your Own Datetime Exit 354
Installing Your Version of ARIUXDT or
ARIUXTM 358
Updating the SYSTEM.SYSOPTIONS Catalog
Table 360

Coding Your Own TRANSPROC Exit 361
. 361

Coding Your Own Cancel Exit. 363
Resource Adapter Cancel Support 364
RMXC (Resource Adapter Cancel Exit Control) 364

Field Procedures 367
Specifying the Field Procedure 368
When Field Procedures are Called 368
General Considerations for Writing Field
Procedures 369
A Warning about Blanks. 369
Maintaining Field Procedures 370
Recovering from Abends in Exits 370
Security with Field Procedures 370
Field Procedures for Cultural Sorts 370
Field Procedure Interface to the Database
Manager 372
Field-Definition (Function Code 8) 375
Field-Encoding (Function Code 0) 377
Field-Decoding (Function Code 4) 379

Chapter 15. Using a DRDA
Environment 391

. 391

Benefits of Using the DRDA Protocol 391
Added Responsibilities in Using the DRDA
Protocol 392
Types of Distributed Access 392

Remote Unit of Work. 392
Distributed Unit of Work 393
Summary of DRDA Support in DB2 Server for
VM. 394

Preparing to Implement DRDA 394
On the Application Requester 394
On the Application Server 394

Installing and Removing the DRDA Code 395
Steps to Install or Remove the DRDA Code . . 395

Using DRDA 398
Using the DBS Utility on non-DB2 Server for VM
Application Servers 398
Using ISQL on non-DB2 Server for VM Application
Servers 399
Two-Phase Commit Processing 400

Using the Two-Phase Commit Protocol 400
Operator Commands 403
CRR Operator Commands 404
Resynchronization 405

Resync When Partner is Not Active 405
Resynchronization Initialization 405
Resynchronization Recovery 408
Displaying Resynchronization Status using the
SHOW CONNECT Command 411
Terminating Resynchronization using the
FORCE Command. 412

Chapter 16. Using TCP/IP with DB2
Server for VM 415
Preparing the Application Server to use TCP/IP 415
Preparing the Application Requester to use TCP/IP 418
Security Considerations for TCP/IP 419

Application Requester 421

Appendix A. Virtual and Real Storage
Requirements 423

Appendix B. Estimating Database
Storage 425
Storage Capacities of IBM DASD Devices 425

Determining Equivalent Minidisk Sizes on
Different Device Types 428

Relationship of Megabytes to 4-Kilobyte Pages . . 429
Estimating Directory Space Requirements 430
Estimating Storage Pool Requirements 430
Estimating SYS0001 Dbspace Requirements . . . 431

SYS0001 Storage Estimating General Formula
Assumptions 432
Derivation of the General Formula for SYS0001
Storage Estimating 435
Formula for SYS0001 Storage Estimating . . . 436
Examples of Using the SYS0001 Storage
Estimating Formula 436
Modifying the SYS0001 Storage Estimating
General Formula 438

Estimating ISQL Dbspace Requirements 440

vi System Administration

||

Estimating Dbspace Sizes for Routines 440
Estimating Dbspace Size for Stored SQL
Statements (Stored Queries) 441

Appendix C. Maximum Values 443
Database Manager Maximum Values 443
Database Maximum Values 444

Appendix D. Updating
SYSTEM.SYSSTRINGS 445

Appendix E. Defining Your Own
Character Set 449
Step 1: Identify All Characters in Your Character
Set 450
Step 2: Classify the Characters. 452
Step 3: Determine Translation Characters 460
Step 4: Update the SYSTEM.SYSCHARSETS
Catalog Table 462
Step 5: Update the SYSTEM.SYSCCSIDS Catalog
Table 462
Step 6: Update the SYSTEM.SYSSTRINGS Catalog
Table 463
Step 7: Update the CCSID-Related CMS Files . . . 464

Appendix F. Macro List 465

Appendix G. Service and Maintenance
Utilities 467
ARISAVES EXEC 467
ARISPDFC EXEC 469

Authorization 469
Syntax. 469
Description 469
Notes: 469

SQLBOOTS EXEC 470
Authorization 470
Syntax. 470
Description 470

SQLDBLD EXEC 470
Authorization 470
Syntax. 470
Description 471

SQLDBDEF EXEC 471
Authorization 472
Syntax. 472
Description 472

SQLGENLD EXEC 475
Authorization 475

Appendix H. DRDA Considerations 477
Omissions from the Standards 477
Extensions to the Standards 477
DB2 Server for VSE & VM Facility Restrictions . . 478

Appendix I. Incompatibilities Between
Releases 479
Definition of an Incompatibility 479
Impact on Existing Applications 479
V2R1 and V1R3.5 Incompatibilities 480
V2R2 and V2R1 Incompatibilities 482

Detailed Notes on V2R2-V2R1 Incompatibilities 484
V3R1 and V2R2 Incompatibilities 485

Detailed Notes on V3R1-V2R2 Incompatibilities 490
V3R2 and V3R1 Incompatibilities 495

Detailed Notes on V3R2-V3R1 Incompatibilities 500
V3R3 and V3R2 Incompatibilities (VM Only) . . . 502

Detailed Notes on V3R3-V3R2 Incompatibilities 508
V3R4 and V3R3 Incompatibilities (VM Only) . . . 509

Detailed Notes on V3R4-V3R3 Incompatibilities 512
V3R5 and V3R4 Incompatibilities 513
V5R1 and V3R5 Incompatibilities 513
V6R1 and V5R1 Incompatibilities 514
V7R1 and V6R1 Incompatibilities 514
V7R2 and V7R1 Incompatibilities 514

Notices 515
Programming Interface Information 517
Trademarks 517

Bibliography. 519

Index 523

Contacting IBM 537
Product information 537

Contents vii

||
||
||
||

||
||
||
||

||

||
||

viii System Administration

About This Manual

This manual describes how to carry out system planning and administration tasks
for DB2 Server for VM that is:
v On a VM/ESA™ operating system (Virtual Machine/Enterprise Systems

Architecture)
v Configured with VSE running as a guest under VM.

Specific VM operating systems are mentioned in the text when a task or DB2
Server for VM facility applies to a subset of the VM operating systems.

The following tasks are described here:
v Installation
v Migration
v Operation
v Management of resources (including security)
v Modification of facilities (including national language support)
v Installation and maintenance of Distributed Relational Database Architecture

(DRDA®) facilities.

The term database manager refers to the DB2 Server for VM database manager,
unless otherwise stated.

Organization of This Manual
v “Summary of Changes” on page xvii lists the changes made to the product since

Version 7 Release 1.
v “Chapter 1. Planning for Installation” on page 1 summarizes the software,

hardware, and storage requirements for installing the database manager.
v “Chapter 2. Planning for Database Generation” on page 13 describes how to set

up your initial database, including specifying parameters to define the logical
and physical limits for its capacity and setting its initial DASD allocations.

v “Chapter 3. Planning for Database Migration” on page 31 explains the planning
you must do before migrating a database from a previous release of the database
manager to the Version 7 Release 2 level. For the actual migration steps, see the
DB2 Server for VM Program Directory .

v “Chapter 4. Planning for Operation of the Database Manager” on page 53
explains how to choose appropriate startup parameters which will determine the
operational characteristics of the application server when it is started by the DB2
Server for VM operator.

Note: Starting, operating, and stopping the application server are also discussed
in the DB2 Server for VSE & VM Operation manual.

v “Chapter 5. Operating the Online Support for VSE Guest Sharing” on page 97
explains how to enable VSE guest users to access the application server on a
VM/ESA operating system, and how to operate the online support for
CICS/VSE® transactions.

Note: These subjects are also discussed in the DB2 Server for VSE & VM
Operation manual.

© Copyright IBM Corp. 1987, 2001 ix

v “Chapter 6. Maintaining Database Security” on page 135 discusses how to control
access to the application server.

v “Chapter 7. Managing Database Storage” on page 143 explains how to manage
the disk storage allocated to the database, including adding (or defining)
dbspaces, defining storage pools, adding dbextents to storage pools, and
managing storage pools.

v “Chapter 8. Saved Segments” on page 171 discusses using, defining and running
saved segments.

v “Chapter 9. Making Backups and Recovering from Failures” on page 191
describes facilities provided for recovery from system failures and DASD
failures; how to back up your database; and how to recover from different types
of failures.

v “Chapter 10. Special Topics in Recovery Design” on page 225 discusses dual
logging and switching log modes.

v “Chapter 11. Using the Accounting Facility” on page 247 describes the DB2
Server for VM accounting facility, which tracks how database resources are
consumed by users.

v “Chapter 12. Planning and Implementing Configurations” on page 263 describes
configuration topics like adding database and user machines, and configuring
for different operating systems.

v “Chapter 13. Choosing a National Language and Defining Character Sets” on
page 303 contains information on national language character set and coded
character set identifier (CCSID) support, as well as how to provide HELP text
and messages in languages supported by the database manager.

v “Chapter 14. Creating Installation Exits” on page 337 describes the types of
installation exits that you can code to customize the database manager:
– Accounting exits, to customize account information
– Date and time exits, to create your own date or time format if the

IBM-supplied formats do not fit your requirements
– TRANSPROC exits, to carry out DBCS conversions
– Cancel exits, to replace the product-supplied cancel function when coding

your own interactive program
– Field Procedures, to change the sorting sequence by encoding and decoding

data if the standard sorting sequence does not meet your requirements.
v “Chapter 15. Using a DRDA Environment” on page 391 discusses using the

database manager in a distributed environment; benefits; how to prepare DB2
Server for VM application requesters and application servers; administrative
responsibilities; and using the database services utility (DBS Utility) and ISQL to
access a non-DB2 Server for VM application server. Considerations for
distributed databases and for choosing the PROTOCOL parameter are also
discussed.

v “Chapter 16. Using TCP/IP with DB2 Server for VM” on page 415 discusses
using TCP/IP to access application servers.

v “Appendix A. Virtual and Real Storage Requirements” on page 423 presents
guidelines for estimating the processor requirements needed for running the
database manager.

v “Appendix B. Estimating Database Storage” on page 425 contains procedures for
estimating the sizes of the database directory, public dbspaces, and the ISQL
dbspace.

v “Appendix C. Maximum Values” on page 443 contains the system and database
maximums for the database manager.

x System Administration

v “Appendix D. Updating SYSTEM.SYSSTRINGS” on page 445 details how to
update this catalog table to support your own CCSID conversion.

v “Appendix E. Defining Your Own Character Set” on page 449 describes how to
create your own character set.

v “Appendix F. Macro List” on page 465 lists the macros identified as
programming interfaces for customers by the database management system.

v “Appendix G. Service and Maintenance Utilities” on page 467 lists and describes
service and maintenance utilities.

v “Appendix H. DRDA Considerations” on page 477 discusses what you should
consider in a distributed environment.

v “Appendix I. Incompatibilities Between Releases” on page 479 describes the
incompatibilities between releases.

A bibliography is provided at the back of the book.

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below.
v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.
The ��─── symbol indicates the beginning of a statement or command.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Diagrams of syntactical units that are not complete statements start with the
�─── symbol and end with the ───� symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

�� SAVE ��

�� SET AUTOCOMMIT OFF ��

�� DROP SYNONYM synonym ��

About This Manual xi

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).
v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.
v All items (parameters and keywords) must be separated by one or more blanks.
v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

This command might appear as:
SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item appears on the main path. For
example:

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

�� SHOW DBSPACE integer ��

�� CREATE
UNIQUE

INDEX ��

�� SHOW LOCK DBSPACE ALL
integer

��

xii System Administration

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

�� BACKWARD
integer
MAX

��

�� ERASE $ name ��

�� VALUES ($

,

constant
host_variable_list
NULL
special_register

) ��

��
ASC

DESC
��

About This Manual xiii

v When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.
In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

��
PCTFREE = 10

PCTFREE = integer
��

�� REVOKE ALL
PRIVILEGES

��

�� fieldproc_block
NOT NULL

UNIQUE
PRIMARY KEY

��

fieldproc_block:

FIELDPROC program_name

$

,

(constant)

xiv System Administration

SQL Reserved Words
The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or
dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE
ADD
ALL
ALTER
AND
ANY
AS
ASC
AVG

BETWEEN
BY

CALL
CHAR
CHARACTER
COLUMN
COMMENT
COMMIT
CONCAT
CONNECT
COUNT
CREATE
CURRENT

DBA
DBSPACE
DELETE
DESC
DISTINCT
DOUBLE
DROP

EXCLUSIVE
EXECUTE
EXISTS
EXPLAIN

FIELDPROC
FOR
FROM

GRANT
GRAPHIC
GROUP

HAVING

IDENTIFIED
IN
INDEX
INSERT
INTO
IS

LIKE
LOCK
LONG

MAX
MIN
MODE

NAMED
NHEADER
NOT
NULL

OF
ON
OPTION
OR
ORDER

PACKAGE
PAGE
PAGES
PCTFREE
PCTINDEX
PRIVATE
PRIVILEGES
PROGRAM
PUBLIC

RESOURCE
REVOKE
ROLLBACK
ROW
RUN

SCHEDULE
SELECT
SET
SHARE
SOME
STATISTICS
STORPOOL
SUM
SYNONYM

TABLE
TO

UNION
UNIQUE
UPDATE
USER

VALUES
VIEW

WHERE
WITH
WORK

About This Manual xv

xvi System Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (|) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2
Server for VM System Administration, or the DB2 Server for VSE System
Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 2
Version 7 Release 2 of the DB2 Server for VSE & VM database management
system is intended to run on the Virtual Machine/Enterprise Systems Architecture
(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA™) Version 2 Release 3
Modification 1 or later environment.

Enhancements, New Functions, and New Capabilities
The following have been added to DB2 Version 7 Release 2:

Security Enhancements
The following enhancements have been made to the CONNECT statement in
DRDA:
v Server and client support for password encryption over TCP/IP and SNA
v CONNECT IDENTIFIED BY enablement for the VM requestor

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Archive Tape Handling Enhancements
Two initialization parameters have been added:
v For VSE & VM, the TAPEMGR parameter allows you to specify that tape

manager functionality is available and will be used.
v For VSE only, the ARCHTAPE parameter allows you to specify that the archive

tape be automatically unloaded from the tape drive at the end of writing each
tape of a log or database archive.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

© Copyright IBM Corp. 1987, 2001 xvii

|

|

|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

|

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

New Database Replication Utility
A new utility has been added in support of database replication:

Redefine Database
Extracts the definition of database objects from a DB2 Server for VSE &
VM database and generates a DBSU job to create the same objects on
another DB2 database.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

SHOW Command Enhancements
The SHOW DBCONFIG command has been changed to show the current version,
release, and modification level of the database, in addition to the version, release,
and modification level at which the database was originally generated.

The SHOW INITPARM command has been changed to show the current version,
release, and modification level of the database.

The SHOW SQLDBGEN command has been added to show the current database
information. The output can be used to create a new SQLDBGEN file (for VM) or
ARISDBG.A source member (for VSE) in order to generate a copy of the database
with the current configuration. This copy can be used, for example, to create a new
test system.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE Messages and Codes

Reliability, Availability, and Serviceability Improvements

TCP/IP Auto-Restart
The database is now able to detect when TCP/IP has gone down, and
automatically restart it. New initialization parameters control enablement of
auto-restart and the maximum number of retry attempts.

For more information, see the following DB2 Server for VSE & VM documentation:
v DB2 Server for VM System Administration

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Operation

v DB2 Server for VM Program Directory

xviii System Administration

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|

|

v DB2 Server for VSE Program Directory

Support for STGPROT=YES Parameter in CICS (VSE only)
Changes have been made to the instructions used in DB2 Server for VSE to allow
the use of STGPROT=YES when starting CICS/TS for VSE/ESA.

See the DB2 Server for VSE Program Directory for additional information.

Migration Considerations
Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM
Versions 5 and above. Migration from SQL/DS Version 2 Release 2 or earlier
releases is not supported. Refer to the DB2 Server for VM System Administration or
DB2 Server for VSE System Administration manual for migration considerations.

Summary of Changes xix

|

|
|
|

|

|
|
|
|
|

xx System Administration

Chapter 1. Planning for Installation

This chapter discusses the tasks that need to be done before you begin to install
the DB2 Server for VM database manager. Details on how to perform installation
can be found in the DB2 Server for VM Program Directory.

Operating System Overview
The database manager runs on a VM/ESA Version 2 Release 3 or later operating
system. If you are running VSE as a guest operating system under VM, VSE users
and applications can access DB2 Server for VM servers. This feature is called VSE
Guest Sharing.

If DRDA code is installed, DB2 Server for VM requesters can use the DRDA
protocol to access servers on other platforms, and requesters on other platforms
can use the DRDA protocol to access a DB2 Server for VM database. For more
information, see “Chapter 15. Using a DRDA Environment” on page 391.

Note that this product does not support mixed levels of CP and CMS.

Virtual Machine Overview
This section provides an overview of the virtual machines required by the database
manager.

You need one or more of the following virtual machines for installation and
subsequent use:
1. MAINT. This machine already exists in your VM system.
2. Installation User ID. You need it to use VMSES/E to install, service, and migrate

the database manager.
3. Database machine. A database machine is a virtual machine in which the

database manager code runs. There can be more than one database machine.
The database machine owns a database. It provides all database management
services for a database. The database machine processes SQL requests from
users, and returns the results to the users.

Note: The word “own”, in this context, describes the association of the
database machine’s user ID as the owner of the minidisks that contain
the database. Users who want to link to and access minidisks owned by
another user must be authorized by the owner or the system
administrator.

The VM database machines can be defined as either a LOCAL resource, which
restricts access to users on the same processor, or a GLOBAL resource, which
allows access to users on other processors. For more information on defining
databases, see “VM Directory Control Statements” on page 137.

4. Service machine. A service machine is required by any processor that does not
have its own database machine, and has users who want to access data in a
relational database, either using private or DRDA protocol.
DRDA Remote Unit of Work (RUOW) support was introduced in SQL/DS
Version 3 Release 3. DRDA Distributed Unit of Work (DUOW) server support

© Copyright IBM Corp. 1987, 2001 1

|
|

is introduced in DB2 Server for VM Version 5 Release 1. For more information
on the DRDA environment, see “Chapter 15. Using a DRDA Environment” on
page 391.
The service machine provides essential support to users by allowing access to a
DB2 Server for VM production minidisk. The production minidisk contains files
required by the users. For example, the SQLINIT EXEC files that enable ISQL
(Interactive Structured Query Language), the DBS utility, and the preprocessors
are located on this minidisk.
For information on installing the service machine and the files that it uses, see
the DB2 Server for VM Program Directory.

5. User machine. A user machine is a virtual machine that has read access to the
database machine production minidisk.

Components of the Relational Database Management System
Figure 1 depicts a typical configuration with one database and two users.

The database is composed of :
v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM
minidisk.

v A directory that identifies data locations in the storage pools. There is only one
directory per database.

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource AdapterData System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

2 System Administration

v A log that contains a record of operations performed on the database. A database
can have either one or two logs.

The database manager is the program that provides access to the data in the
database. It is loaded into the database virtual machine from the production disk.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Software Requirements
The database manager for VM requires an environment provided by IBM Virtual
Machine/Enterprise Systems Architecture (VM/ESA operating system), Version 2
Release 3 or later either by itself, or as the base of any VM package. Depending on
your intended use of the database manager, you may need other licensed program
products, as follows:
v For VSE guest sharing, VSE is required.
v For remote printing by ISQL you need the remote spooling communications

subsystem (RSCS) Version 2 Release 3 or later.
v To develop DB2 Server for VM application programs, you can use one or more

of the following compilers:
– A PL/I compiler
– A COBOL compiler
– A VS Fortran compiler
– A C Compiler
– An Assembler.

v The database manager supports some of the enhancements of VS COBOL II
Release 3. You can take advantage of these enhancements if you have a VS
COBOL II Release 3 (or later) compiler. For information , see the DB2 Server for
VSE & VM Application Programming manual.

v To use double-byte character set (DBCS) characters in application programs, you
need the following compilers:
– VS COBOL II compiler

For VS COBOL II Release 2 and later programs, SQL identifiers, SQL host
variables, and SQL labels with DBCS characters can be used in SQL
statements. The COBOL Kanji preprocessor is not required.

– PL/I compiler
For PL/I Release 2.1 and later programs, SQL identifiers, SQL host variables,
and SQL labels with DBCS characters can be used in SQL statements.

– VS Fortran compiler
VS Fortran Version 2 Release 3 and later programs support DBCS symbolic
names and DBCS characters in character constants.

– C compiler
For C programs, SQL identifiers, SQL host variables, and SQL labels with
DBCS characters can be used in SQL statements.

– Assembler compiler
DBCS variables and constants are not supported in Assembler programs. You
can still use DBCS characters in dynamically defined SQL statements.

Chapter 1. Planning for Installation 3

|
|
|

|

|

|

|

|

v If you want to use REXX, you need RXSQL.
When using RXSQL, you cannot use DBCS characters in cursor names and
statement names.

v To provide remote unit of work access between application requesters and
application servers in an SNA network, you need VTAM* Version 3 Release 2 or
later. If you want to use either partner LU verification or SECURITY=SAME
conversations that are routed through AVS, you must have VTAM Version 3
Release 3 (or later) and RACF* Version 1 Release 9 (or later), or an equivalent
security manager product.
For more information about remote unit of work in a DRDA environment, see
the Distributed Relational Database Connectivity Guide manual.

v To archive the database using user facilities, consider using the DASD Dump
Restore (DDR) utility included with your VM operating system.

Note: All references to above programs apply to equivalent non-IBM products.

Virtual Storage Requirements
All DB2 Server for VM operations are serviced by database machines. A database
machine is a virtual machine in which the system code (the components of the
database manager) runs.

Database Machine Size
The amount of virtual storage required by the database machine depends on
several factors. The dominant ones are the sizes of the buffer pools (used for the
directory and the data), the number of concurrent users to be supported, the
complexity of the SQL requests, and the definition of the database. Refer to the
DB2 Server for VM Program Directory for recommended virtual storage for the
database machine.

If you have coded any date or time exit routines, the size of these routines must be
added to the minimum virtual storage. For more information, see “Defining Your
Own Datetime Format” on page 350. ISQL cannot be run in the database machine.

If you plan to run the database manager in single user mode, add the size of the
application being run, and the resource adapter. See the DB2 Server for VM Program
Directory for more information on virtual storage requirements.For a description of
resource adapter, see “How the ARIUXIT Module Works” on page 338.

The database manager (as a default) runs in the user free storage area. (The entire
user program area is used for user free storage when the database manager is
running.)

For detailed formulas for calculating virtual storage requirements, see
“Appendix A. Virtual and Real Storage Requirements” on page 423.

Service Machine Size
If CMS is defined as a saved segment, a 1-megabyte machine size is recommended;
if not, ensure that you define enough virtual storage for the service machine to run
CMS. For information on saved segments and how they are defined see “Defining
Saved Segments” on page 177.

4 System Administration

|

|
|
|

|
|

The service machine does not perform any processing. Its purpose is to own the
database manager minidisks so that SQL users can access the IBM-supplied
programs, such as ISQL, the DBS utility, and the preprocessors.

User Machine Size
Refer to the DB2 Server for VM Program Directory for the virtual storage
requirements for a user machine

Hardware Requirements
Hardware requirements include real storage, DASD space, tape, and display
terminals.

Real Storage Requirements
The database manager itself does not require any real storage. However, if more
real storage is available, there is less paging, thus improving performance.

The VSE guest sharing facility requires 40 kilobytes of real storage for each
database communication link.

DASD Space Requirements
The DASD space requirements for the virtual machines are discussed below.

Minidisks Required for the Installation User ID Machine
You no longer install and service DB2 Server for VM strictly using the MAINT user
ID. You should use the user ID, 5697F42R. You can change this user ID, however,
by creating a PPF override. See the DB2 Server for VM Program Directory for more
information.

See the DB2 Server for VM Program Directory for the recommended DASD sizes for
the installation user ID machine and initial installation, migration, and service
instructions.

Minidisks Required for a Database Machine
A database machine requires two kinds of minidisks: system minidisks and
database minidisks.

System Minidisks: A database machine must have read/write access to its own
work minidisk (A-disk). In addition, it must be able to access the DB2 Server for
VM production and service minidisks. Collectively, these three minidisks are
referred to as the system minidisks. The system minidisks can be optionally installed
in shared file system (SFS) directories with default names of VMSYS:SQLMACH,
VMSYS:SQLMACH.SQL.PRODUCTION and VMSYS:SQLMACH.SQL.SERVICE.
From now on, any reference to the service or production minidisk can be replaced
by these directories.

The work minidisk is required because the database manager does various
operations that require space temporarily.

The production minidisk contains IBM-supplied EXECs and programs that are
required for day-to-day use of the database manager. The production minidisk
defines an entire DB2 Server for VM environment, and contains all the CMS files
that enable database machines to access databases. It also contains CMS files that
allow users to access a database with a given database machine. The CMS files

Chapter 1. Planning for Installation 5

|
|

determine the default application server and thus the database a user can access.
Users can access other database machines and thus other databases by database
switching.

The DB2 Server for VM LOADLIB resides on the production minidisk. Every
virtual machine must have read access to the production minidisk in order to
access the database manager.

The service minidisk also contains IBM-supplied EXECs and programs, but it
needs to be accessed only during installation, database generation, migration,
maintenance or system administration activities.

Usually, all database machines use the same production and service minidisks.
Thus, they can be defined once for the entire installation. You can define more than
one production minidisk as your installation grows. Multiple production minidisks
are convenient when you have many database machines that often perform
administrative tasks. If you define a second production minidisk, you create a
second DB2 Server for VM environment. This environment has its own users, its
own database machines, and its own databases. It is independent of any other DB2
Server for VM environment that is defined by any other production minidisk.
More specific information is in “Chapter 12. Planning and Implementing
Configurations” on page 263. In planning your initial installation, assume there will
be only one production minidisk and one service minidisk.

Initially, there is only one database machine, SQLMACH. Thus, for installation, you
need to be concerned only with the size of the work minidisk for that initial
database machine. The installation process makes SQLMACH the owner of the
production and service minidisks.

See the DB2 Server for VM Program Directory for the recommended database
machine DASD sizes for the service minidisks and production minidisks.

A service minidisk must contain only IBM-supplied files: it must not contain any
user-created files. The IBM-supplied service minidisk files are documented in the
DB2 Server for VM Program Directory.

The production minidisk may contain user files, but it must contain all the
IBM-supplied files. The IBM-supplied production minidisk files are documented in
the DB2 Server for VM Program Directory. The space allocations shown for the
production minidisk reflect the requirements for the IBM-supplied files plus
approximately 30% free space.

The service minidisk allocation for non-English versions of the HELP text is
described in the program directory supplied with the non-English HELP text
distribution tape. The allocations documented in the DB2 Server for VM Program
Directory include space for the English version of the HELP text.

The service minidisk is referred to as the SQLMACH 193 minidisk, but can be
defined with any valid user ID and virtual address. Similarly, although the
production minidisk is referred to as the SQLMACH 195 minidisk, you can use
any valid user ID and virtual device address. The same virtual machine must own
both the service and production minidisks. When migrating from a previous
release of the database manager, another user ID and virtual device address can be
used for the production minidisk for testing. If you have not used a previous

6 System Administration

release of the database manager, you should use the user ID SQLMACH and the
193 and 195 virtual device addresses as described in the DB2 Server for VM
Program Directory.

Database Minidisks: Minidisk requirements for a database machine vary based
on the number and size of databases defined on it. Each database has a minimum
minidisk storage requirement. A database requires a minimum of three VM
minidisks, but a typical database has several more. The minidisk requirements are
summarized below:
v A directory minidisk to hold internal control information for the database.
v Either one or two log minidisks, to hold recovery information. Only one is

required, but defining two log minidisks on separate volumes is recommended,
to protect against I/O errors on access to the log information.

v Database extents (dbextents) to hold the user data of the database. It is possible
to have only one dbextent, but a typical database has several.

The directory, log and database extents minidisks cannot be in CMS shared file
system directories.

The directory and log minidisks are discussed further in “Chapter 2. Planning for
Database Generation” on page 13. Dbextent minidisks are discussed in greater
detail in “Chapter 7. Managing Database Storage” on page 143.

The Starter Database
The ARISDBG MACRO, which comes with this product, contains IBM-supplied
specifications for generating a starter database. This database consists of one
directory minidisk, one log minidisk, and one data minidisk. You can later add
more dbextents, up to a logical maximum size of about 4.6 gigabytes, using the
information in “Adding Dbextents to a Storage Pool” on page 157.

You should generate the starter database at the time of initial installation and
experiment with it in order to familiarize yourself with the database manager. You
may then keep it as your production database. However, as your needs grow, you
may find it necessary to transfer its contents to another database, which can be a
major undertaking. Thus, once you are familiar with how it works, it is best to
discard the starter database and generate your own database by following the
guidelines in “Chapter 2. Planning for Database Generation” on page 13.

The initial physical size of the starter database is predefined and will be about the
same on all IBM storage devices. See the DB2 Server for VM Program Directory for
the recommended DASD sizes for the starter database.

This starter database must be able to fit in a single dbextent. If you do not have
enough DASD, you will not be able to use the IBM-supplied specifications, and
will have to generate your own database at the time of installation. If you want to
define the equivalent of the starter database on the devices, you must define
multiple dbextents on multiple volumes.

If you are migrating from a previous release of the database manager, you already
have at least one database, so generating the starter database is optional. The
advantage of doing so is that you can use it as a test database to verify your
installation, but the disadvantages are the work involved and the necessary DASD
allocations. Thus to deal with migration needs, the database manager provides
allocations for generating a starter database that is large enough to hold the initial
database components (for example, HELP text, catalog tables, and Fortran

Chapter 1. Planning for Installation 7

packages), but not much else. The DB2 Server for VM Program Directory also shows
the minidisk sizes for a minimum starter database.

Minidisks Required for a Service Machine
The service machine must have read/write access to its own work minidisk
(A-disk). In addition, it must be able to access the production and service
minidisks. For more information see “System Minidisks” on page 5.

If you only have a service machine on a processor and intend to access a database
manager (defined as a global resource) in another processor, the code that is
installed on your local processor is known as the service machine. If you install the
service machine, you do not need a database machine. See the DB2 Server for VM
Program Directory for the recommended DASD sizes for the service machine.

Minidisks Required for a User Machine
During installation, it is recommended that one virtual machine be defined as a
user machine. A user machine also requires a 191 minidisk (A-disk, formatted at
the 1024 byte block size with free space equivalent to at least 3 cylinders of an IBM
3380 storage device). The user machine 191 disk can optionally be installed in a
CMS shared file system directory. See the DB2 Server for VM Program Directory for
the recommended DASD sizes for the user machine. After initial installation, you
will probably want to define many user machines.

Tape Requirements
One tape drive is required for installation. Depending on the DB2 Server for VM
facilities you use, you may need tape drives after installation. Tape processing can
be used for the following activities:
v Database archive and log archive processing (both creating the archive and

restoring the database from the archive) to support recovery from DASD failures
v Unloading and reloading data into the database using the DBS utility
v Holding the output of the trace facility
v Holding the output of the accounting facility

For all of these facilities except archiving, you can use DASD instead of tape.

Also, with the exception of accounting output, the database manager does not
require the continuous use of any tape drive: tape mounts are requested when
needed. If you are using tape drives, you should have at least two to cover all
your needs.

The database manager supports all tape drives that are supported by the operating
system.

Display Terminal Requirements
A variety of display terminals are supported, including the larger screen sizes
offered by some models of the 3278 and 3279 (or equivalent) devices. Since the
database manager relies on CP (control program) and CMS to provide terminal
support for DB2 Server for VSE online applications, the terminal must be one that
is supported by CMS.

You can direct ISQL-printed output to any printer supported by the Remote
Spooling Communications Subsystem (RSCS). Use CP SPOOL and TAG commands
to change the routing of the print output.

8 System Administration

Note: To display and print DBCS characters (for example, Japanese HELP text), a
DBCS terminal and printer (for example, the IBM 5550 terminal) are
required.

Considerations When Defining a Database Machine and Generating a
Database

Read this section before carrying out any activities.

Considerations When Adding Directory Control Statements
VM directory control statements are describe on 137. You add them to your
database machine to:
v Define its virtual storage
v Enable communications between it and the user machines or gateways.
v Provide links to the service, production, and database minidisks. (The database

machine’s PROFILE EXEC must be updated so that these minidisks or CMS
shared file directories can be accessed.)

Considerations When Loading IBM-Supplied Files
Install all the IBM-supplied files into the production and service minidisks. This
loads the full product version to support both a database and your users.

Considerations When Generating a Database
You generate a database by specifying parameters to define its maximums. It is
recommended that the first time you do so, you use the IBM-supplied set of
predefined parameters called the starter database specifications. (See the DB2 Server
for VM Program Directory for instructions on how to generate a starter database.)
Once you are familiar with how the starter database works, you should delete it
and generate your own. Refer to “Chapter 2. Planning for Database Generation” on
page 13.

Considerations When Defining a Service Machine
Read this section if you plan to define a service machine.

Updating the Service Machine VM Directory
Add VM directory control statements for the service virtual machine to:
v Define its virtual storage
v Provide links to the service and production minidisks.

More information is provided in “Chapter 12. Planning and Implementing
Configurations” on page 263.

Considerations When Loading IBM-supplied Files
Since this is a service machine, you should not generate a database. However,
because all the DB2 Server for VM files are already loaded where you installed the
service machine, you can generate a database in the future. For information on
generating a database on a processor that has a service machine, see “Converting a
Service Machine to a Database Machine” on page 49.

Chapter 1. Planning for Installation 9

Defining User Machines
Carry out the following procedure for each user machine that you define:
1. Add VM directory control statements to:

a. Define the virtual storage for the user machine
b. Provide a link to a database machine production minidisk

2. Add (optionally) IUCV statements for communications between the user
machine and a specified database machine or gateway machine.

3. Update the user machine’s PROFILE EXEC so that it can access the production
minidisk.

For information on performing these steps, see “Defining Additional User
Machines” on page 280.

Defining Saved Segments
You can load saved segments any time after installation or migration of the
database manager using VMSES/E, which uses the ARISAVES EXEC.

The instructions for defining saved segments are explained in “Chapter 8. Saved
Segments” on page 171.

Setting Up the CMS Communications Directory
You must define a CMS communications directory when one of the following is
true:
v You access a remote application server through the VTAM product
v The resid and server name are not the same
v You use SECURITY=PGM
v The database name is longer than 8 bytes
v You access a database using TCP/IP.

If you are accessing a database server using DRDA and SECURITY=PGM, you can
optionally specify the PWDENC tag in the COMDIR entry for added security. If
PWDENC=Y, the CONNECT password will be encrypted before it is sent to the
server. The server must support decryption of the password. If PWDENC=N, or it
is not specified, the CONNECT password will not be encrypted and will be sent as
plain text.

The CMS communications directory provides SNA address resolution for the
application servers. If this file does not exist or does not contain an entry, or if you
issue the COMDIR OFF BOTH command, then the following assumptions are
made: that the application server name is the same as the resid, the application
server is within the same TSAF collection as the application requester, and
SECURITY=SAME.

Any type of abend in the user machine (whether it is an application or initiated by
the application requester code) can cause the CMS communications directory in
virtual storage to be unloaded automatically. If there is a user-level directory,
reload it by using the SET COMDIR RELOAD USER command. If there is a
system-level directory, reload it by using the SET COMDIR RELOAD SYSTEM
command.

10 System Administration

|
|
|
|
|
|

Issue the QUERY COMDIR command: if the directory is unusable, this command
returns an UNLOADED indicator. In this case, the communications directory is
reloaded for you.

Note: DB2 Server for VM makes use of the CMS NAMEFIND command when
resolving CMS communications directory nicknames from database names.
The NAMEFIND command should be issued within PROFILE EXEC or
SYSPROF EXEC after the SET COMDIR command to prevent virtual storage
fragmentation.

For more information on the CMS communications directory, see the VM/ESA:
Connectivity Planning, Administration, and Operation manual. If you intend to access
non-DB2 Server for VM application servers, also refer to the Distributed Relational
Database Connectivity Guide manual.

Updating the SNA NETID File
If your host machine is part of an SNA network, you must update the SNA NETID
file to include your NETID (network identifier). The NETID is used in the
generation of the LU 6.2 LUWID (logical unit of work identifier), which is
necessary for distributed processing. With distributed processing, a DB2 Server for
VM application server can receive requests from both DB2 Server for VM and
non-DB2 Server for VM application requesters, and DB2 Server for VM application
requesters can access non-DB2 Server for VM application servers.

You can create or change the SNA NETID file using an editor. The NETID that you
specify should be that of the SNA network of which your host system is a part. It
must be from one to eight characters long, and must begin in column 1 of the SNA
NETID file. Your VTAM administrator can provide the NETID that you should use.
(The default NETID supplied in the SNA NETID file is SNANETID. If you do not
specify a valid NETID, SNANETID will be used.) The new NETID is used in the
next database startup.

If you want to ensure the uniqueness of your NETID, ask your IBM representative
about the IBM SNA Network Registry service.

Chapter 1. Planning for Installation 11

12 System Administration

Chapter 2. Planning for Database Generation

As described in “The Starter Database” on page 7, when you first install the
database manager you should generate an initial database using the IBM-supplied
specifications. This eases installation, and enables you to gain experience with the
system.

However, once you know how to work with this database, you will probably want
to discard it and create several databases that are tailored to your own needs. This
chapter describes the parameters that are set at the time of database generation,
and presents some general design considerations.

If you are migrating from an earlier version of the database manager, then instead
of reading this chapter go to “Chapter 3. Planning for Database Migration” on
page 31.

The database-generation process does not require definition of any data specifics; it
merely establishes the potential capacity of the database. Some of the
capacity-planning decisions require knowledge of the data and application
requirements of your users. For example, to estimate how big the database will
become, you need to know the potential number of tables that will be stored, and
the storage requirements of those tables. To obtain this information, consult with
the person responsible for the data and application requirements for the database.
Also refer to the DB2 Server for VSE & VM Database Administration manual.

Database Generation Parameters
Planning for the generation of a database entails establishing logical and physical
limits for its capacity, and setting its initial DASD allocations.

The parameters that you must establish at this time are summarized in Table 1.
This figure also shows the IBM-provided values used for the starter database.

Note: The parameters that have a Yes entry in the Fixed column must be
established during generation of the database, and cannot be changed for
the lifetime of the database. Also note that some parameters are established
by the VM directory MDISK control statements, whereas others are
established by input to an IBM-supplied EXEC called SQLDBGEN.

Following the figure is a discussion of how to set these parameters, and of the
issues to consider when setting them.

Table 1. Database Parameters Set at Database Generation Time

Parameter Default Minimum Maximum Starter
Database

Fixed Set by

Database directory size None 1 cylinder 1 volume 34 cylinders No MDISK

Log data set (or data sets)
-Size (each)
-Number

None
None

1 cylinder
1

524,287
4Kb pages
2 volumes

8 cylinders
1

No MDISK

Maximum number of storage
pools (MAXPOOLS)

32 1 999 256 Yes SQLDBGEN

© Copyright IBM Corp. 1987, 2001 13

Table 1. Database Parameters Set at Database Generation Time (continued)

Parameter Default Minimum Maximum Starter
Database

Fixed Set by

Maximum number of dbextents
(MAXEXTNT)

64 1 999 256 Yes SQLDBGEN

Maximum number of dbspaces
(MAXDBSPC)

1000 7 32000 10240 Yes SQLDBGEN

Catalog dbspace
(PUBLIC.SYS0001)
Size (4 kilobyte pages)

None 128 8388607 12800 Yes SQLDBGEN

First package dbspace
(PUBLIC.SYS0002)
Size (4 kilobyte pages)

None 128 8388607 2048 Yes SQLDBGEN

HELP text dbspace
(PUBLIC.HELPTEXT)
Size (4 kilobyte pages)

None 2304 8388607 8192 No SQLDBGEN

ISQL dbspace
(PUBLIC.ISQL)
Size (4 kilobyte pages)

None 128 8388607 1024 No SQLDBGEN

SAMPLE dbspace
(PUBLIC.SAMPLE)
Size (4 kilobyte pages)

None 512 8388607 512 No SQLDBGEN

Internal dbspaces
-Size (each)
(4 kilobyte pages)
-Number

None
None

128
2

8388607
31997

1024
80

No SQLDBGEN

Initial dbextents
-Size (each)
-Number

None
None

1 cylinder
1

1 volume
999

77 cylinders
1

No MDISK

Notes:

1. The cylinder specifications listed above for the starter database are for IBM
3380 storage devices. Make the appropriate adjustment for your storage
devices.

2. PUBLIC means that the dbspace is publicly owned.
3. Not all dbspaces generated by the starter database are shown in Table 1. For all

dbspaces generated for the starter database, see Figure 91 on page 291.

Defining Database Directory Size
The DB2 Server for VM directory (called BDISK) contains control information and
page tables for mapping dbspace page references to physical DASD locations. Its
size determines the maximum number of dbextent pages and the number of page
table entries that can be supported by the database being generated.

If necessary, you can later expand the directory to hold more dbspace pages, or
more dbspace and dbextent pages. Refer to “Expanding the Database Directory” on
page 150 for more details.

The directory for the database is defined by adding an MDISK control statement to
the VM directory entries for a database machine. If Data Spaces Support is used,
4096-byte blocks can be used for the directory, but otherwise the database manager
requires the use of 512-byte blocks for its directory. The SQLDBGEN EXEC does

14 System Administration

the actual formatting of the minidisk. The MDISK parameters you supply
determine the number of blocks in the directory minidisk.

Table 2 shows the recommended cylinder (or block) allocations for various DASD
device types, based on assumed maximum database sizes.

Table 2. Recommended Directory Allocations for Various Database Sizes

Directory Space for Various IBM Storage Devices

Maximum
Database
Size 3375 3380 3390 9345

FB-512
BLOCKS

10 megabytes TRK(3) TRK(3) TRK(3) TRK(4) BLK(124)

50 megabytes TRK(7) TRK(6) TRK(6) TRK(7) BLK(310)

100
megabytes

CYL(1) TRK(11) TRK(10) TRK(12) BLK(496)

500
megabytes

CYL(5) CYL(4) CYL(4) CYL(6) BLK(2232)

1 gigabyte CYL(10) CYL(8) CYL(7) CYL(11) BLK(4480)

2 gigabytes CYL(19) CYL(16) CYL(14) CYL(21) BLK(8866)

4 gigabytes CYL(38) CYL(32) CYL(27) CYL(42) BLK(17696)

5 gigabytes CYL(47) CYL(40) CYL(34) CYL(52) BLK(22080)

10 gigabytes CYL(92) CYL(80) CYL(68) CYL(101) BLK(44144)

50 gigabytes CYL(459) CYL(400) CYL(337) CYL(504) BLK(220286)

Note: The values in this table apply when the defaults are used for MAXPOOLs,
MAXDBSPC, and MAXEXTNT. These parameters are described in
“Establishing Database Capacity Parameters” on page 18.

Use Table 2 to choose the initial directory size. Detailed information for generating
its values is contained in “Appendix B. Estimating Database Storage” on page 425.
When estimating the maximum database size, include the sizes of the public,
private, and internal dbspaces.

The directory minidisk for the starter database supports about 4.9 gigabytes of
data. This includes space for internal dbspace definitions so the actual space
supported for public and private dbspaces is about 4.6 gigabytes.

Directory Allocation Considerations

Maximum Database Size: The directory minimum size cannot extend beyond a
single volume; therefore, the maximum database size is limited by the single
volume capacity of the device type used. The absolute maximum size for a
database is either 64 gigabytes or the limit imposed by the device type, whichever
is smaller. For the limits imposed by various devices, see Table 38 on page 426 and
Table 39 on page 427.

Placement of Directory: The directory minidisk will be used extensively by the
database manager for resolution of data addresses. Thus, you should not allocate it
to a volume that will contain either the log minidisks or heavily used data
dbextents. Instead, place it on a separate volume to avoid device contention.

Chapter 2. Planning for Database Generation 15

If DASD is limited on your system and the directory must share a volume with
data dbextents, put it on a volume with a dbextent that contains infrequently
referenced data. For example, sharing a volume with private dbspaces or historical
data is preferable to sharing one with public dbspaces or current, highly active
data.

Defining the Database Log
The database manager requires at least one log minidisk and can support two. It is
recommended that you use two logs.

The log minidisks contain information, recorded during database processing, that
is used to support database recovery facilities. This includes control information
(for example, COMMIT statement and checkpoint records) and the specifics of
database changes (for example, inserts, updates, and deletes).

If you define two log minidisk they must be exactly the same size. Do not define
them on different device types because it is almost impossible (because of
rounding) to get identically sized data sets using space allocation algorithms.

The log history area, which is the final page of the log, is copied to the database
machine’s A-disk as the file ARIHSDS ARCHIVE immediately after a successful
database or log archive. This A-disk file is used during a subsequent restore, if the
log history area is unusable due to a log failure. The A-disk file is also copied to
the file ARIHSDS PRECLDLG when a COLDLOG RECONFIGURE is done to
ensure recoverability.

The size of the log data setis specified by the VM MDISK control statement, as
shown in Figure 88 on page 283. The size you specify will depend on the use of the
database and on the type of recovery capabilities you want. If you underestimate
this size at database generation time, you can redefine it afterwards, as described
in “Log Reconfiguration” on page 228.

Log Size Considerations
The log size depends on the number of changes that you expect will be made to
the database and on whether or not you plan to use archiving facilities. If either
database or log archiving is enabled, the log must be large enough to hold all the
logging done between archives; otherwise it need only be large enough to hold the
logging done in a few hours.

Note: If you are putting dbspaces in nonrecoverable storage pools, keep in mind
that only minimal logging is done for them, so the following log size
considerations would not apply to those dbspaces.

Log Size without Archiving: If you run the database manager without the
archiving facilities (LOGMODE=Y or N), log space is reclaimed as applications
finish and checkpoints of the database are taken. Usually, this occurs every few
seconds or every few minutes. Many uses of the database manager can be
supported by a log size of only one or two cylinders; however, a long-running
application may require more log space.

Typically, the largest demand for log space is online loading or data reorganization.
These processes run longer than most applications and cause a lot of logging to
occur.

A starting estimate for the initial log size is twice the space requirements of your
largest dbspace. If you have one exceptionally large dbspace, you can disregard it

16 System Administration

and use the size of the next largest dbspace. The data in the largest dbspace can be
loaded and reorganized offline with logging inhibited.

Log Size with Archiving: If you are using the archiving facilities (LOGMODE=A
or L), log space is not reclaimed until an archive is taken. That is, log space is not
reused between archives of the log or database. Typically, you would only archive
the database once or twice a week. You may choose to do log archiving more
frequently, depending on database usage.

To estimate the size of the log, consider the amount of logging that will occur
between archives. A useful approach is to estimate the percentage of data that will
be generated, deleted, and changed over one archive period as follows:

logsize estimate = (percentage generated
+ percentage deleted
+ percentage changed x 2)

x database size

For example, assume that in a one-week period the database size grows by 5% but
also shrinks by 4%, and that 6% of the database (rows) are changed. Your estimate
for the log size would be:

logsize estimate = .21 x database size

If your database size were 100 megabytes and you wanted an archive period of
one week, your log size estimate would be:

logsize estimate = 21 megabytes

This is approximately 30 cylinders of an IBM 3390 DASD device.

Logging Generated by Loading: The log requirements for processing the DBS
utility DATALOAD and RELOAD commands in multiple user mode are:
v If the NEW option is used: enough space to hold the log entries for all table

rows to be inserted
v If the PURGE option is used: enough space to hold the log entries for all table

rows to be deleted as well as for all rows to be inserted.

The log space consumption caused by these operations can be avoided by running
the DBS utility in single user mode with LOGMODE=N specified, or by using the
COMMITCOUNT option to force periodic checkpoints in multiple user mode.

Placement of Logs: Like the directory minidisk the log minidisks are frequently
referenced during processing. To avoid device contention, they should reside on
separate volumes from the directory or heavily used dbextents.

Placement of Dual Logs: If two log minidisks are defined, place them on separate
volumes. If they were allocated to the same one, loss of that volume would cause
the loss of both logs, thus defeating the purpose of dual logging.

Placement of Database A-disk: The database machine A-disk should be on a
volume separate from the log minidisks. If it is allocated to the same volume as
either log, loss of that volume would result in loss of both copies of the log history
area (that is, the one on the log itself and the one on the A-disk) thus defeating the
purpose of having two copies of the history area.

Chapter 2. Planning for Database Generation 17

Establishing Database Capacity Parameters
The MAXPOOLS, MAXEXTNT, MAXDBSPC, and CUREXTNT keyword control
statements can be specified as input to database generation. The SQLDBGEN EXEC
calls the program ARISQLDS with STARTUP=C to process these control
statements. The first three of these statements are optional. The last one must be
specified.

The MAXPOOLS, MAXEXTNT, and MAXDBSPC values are fixed when the
database is generated: once defined, they cannot be changed for its lifetime. To
avoid future limitation problems, it is recommended that you set them to the
allowed maximums. This will take about 1 cylinder of DASD on a 3380 device for
the directory, and 280K virtual storage when the database manager is running.

Estimating MAXPOOLS
The MAXPOOLS specification determines the maximum number of storage pools
that can be defined in the database. Storage pools control the location of data on
DASD volumes - that is, what dbspaces are located on what volumes. You can
make a generous estimate for MAXPOOLS, since the value specified results in only
a small directory space allocation for each potential storage pool. You should plan
on having one storage pool for each user group (or billing account), and one for
each major application you expect the database to support.

Estimating MAXEXTNT
The MAXEXTNT controls the maximum number of dbextents that are defined to
support the database being generated. Dbextents determine the physical allocation
of DASD space for a storage pool.

Because a dbextent is a VM minidisk, it cannot span DASD volumes. This means
that you need at least as many dbextents as volumes. You can, of course, define
multiple dbextents on one volume. It also means that if you have a dbspace that
spans multiple volumes, the corresponding storage pool requires multiple
dbextents.

Because you should plan to support multiple dbextents for each storage pool and
you should be prepared to extend most, if not all, of your planned storage pools,
MAXEXTNT should be much larger than MAXPOOLS. Your estimate for it can be
generous because this value results in only a small directory space allocation for
each potential dbextent.

Estimating MAXDBSPC
MAXDBSPC controls the maximum number of dbspaces, including internal
dbspaces, that can be defined for the database. See “Determining the Internal
Dbspace Requirements” on page 20. A dbspace is a logical allocation of database
space for holding one or more tables and their indexes. A dbspace is assigned to a
storage pool when it is defined and draws on the actual DASD space available in
that storage pool on an as-needed basis. Typically, dbspaces are defined to support
private space allocations for individual users and space allocations for specific
applications; thus, the number of dbspaces required generally depends on the
number of users and the number of tables needed for applications. Each user
probably requires from one to five private dbspaces over the lifetime of the
database, and each application requires, at most, one dbspace for each table being
accessed. For performance reasons, one table per dbspace is recommended.

As with the previous two parameters, your estimate for MAXDBSPC can be
generous, because the value you specify will result in only a small allocation of
directory space for each potential dbspace.

18 System Administration

Estimating CUREXTNT
CUREXTNT determines the number of dbextents defined during database
generation. This number should be sufficient to support your initial storage
requirements. You can add more dbextents after database generation.

Establishing Initial Dbspace Requirements

Determining the System Dbspace Requirements
Any public dbspace that has SYS as the first three characters in its name is
reserved for system use only. The system dbspaces established at database
generation time are PUBLIC.SYS0001, PUBLIC.SYS0002, PUBLIC.HELPTEXT,
PUBLIC.ISQL, and PUBLIC.SAMPLE.

This section presents only general concepts related to setting the initial dbspace
sizes. For more information, see “Specifying Initial Dbspaces” on page 294 and
“Appendix B. Estimating Database Storage” on page 425.
v PUBLIC.SYS0001 holds the database catalog tables. The size required for it varies

considerably, depending on factors such as the number of tables, columns,
indexes, views, and users in the database. For guidelines, see “Estimating
SYS0001 Dbspace Requirements” on page 431.

Note: Physical space is not actually consumed until required, so you can afford
to define the SYS0001 dbspace to be very large. Be generous: this dbspace
cannot be dropped or recreated after the database is generated. If you
make it too small and SYS0001 runs out of usable space, you will have to
regenerate the database which can be a considerable task.

v PUBLIC.SYS0002 holds the definitions of views and packages. This dbspace,
which cannot be dropped or recreated after generation, can hold a combination
of 255 views and packages. If you anticipate more views and packages than this,
you can acquire additional dbspaces after database generation, as described in
“Acquiring Dbspaces for Packages” on page 153.

v PUBLIC.HELPTEXT holds the online HELP tables. You will need 2304 pages for
each IBM-supplied HELP text that you install. The starter database uses 8192
pages.

v PUBLIC.ISQL holds several tables; EXAMPLE.ROUTINE, SQLDBA.ROUTINE,
and SQLDBA.STORED QUERIES. An allocation of 1024 pages should be enough
for most uses. If you have many users or expect to make extensive use of the
ISQL stored queries facility, consider increasing this. See “Estimating ISQL
Dbspace Requirements” on page 440.

v PUBLIC.SAMPLE contains copies of the sample tables for ISQL users, to help
them gain experience with using the database manager. Usually, every ISQL user
has a copy of the sample tables. An allocation of 512 pages should be enough for
all your users, but you can increase the size if you have many ISQL users.
Alternatively, you can ask experienced ISQL users to drop their copies after they
no longer need them to free space for new users’ tables.

The ARISDBU MACRO contains SQL statements to acquire the public dbspaces
HELPTEXT, ISQL, and SAMPLE. If you want to increase their size, update the
appropriate ACQUIRE DBSPACE statement in ARISDBU.

Except for PUBLIC.SAMPLE, the sizes that you establish for system dbspaces at
database generation time can limit the logical capacity of your database. Because
physical space is not actually used until required, you should establish large sizes

Chapter 2. Planning for Database Generation 19

for them. The large recommended sizes shown in Figure 2 will support most uses
of the database manager.

Determining the Initial User Dbspace Requirements
When you generate the database, you need only consider the dbspace requirements
for its initial use. To determine the initial user dbspace requirements, either consult
with the database administrator or refer to the DB2 Server for VSE & VM Database
Administration manual. The SQLADBSP EXEC can be used to add more later, up to
the MAXDBSPC value.

For more information, refer to “Chapter 7. Managing Database Storage” on
page 143.

Determining the Internal Dbspace Requirements
The database manager uses internal dbspaces to process commands that require
sort operations and to process views that require materialization. For information
on sorting and materialization, see the DB2 Server for VSE & VM Database
Administration manual.

The internal dbspaces are held until a COMMIT or ROLLBACK statement is
issued; therefore, a single application may hold a number of internal dbspaces at
one time. For example, if each SELECT needs an average of two internal dbspaces,
and a certain program issues five SELECTs before issuing a COMMIT statement,
then that program will hold 10 internal dbspaces. Internal dbspaces that are not in
use take up minimal space (approximately 4 bytes of directory space for each
page).

Allocate at least 30 internal dbspaces; more if your installation has interactive
users. The exact number required depends on the number of logical units of work
(LUWs) that are concurrently active and the amount of sorting and view
materialization required in those LUWs. Because the number of NCUSERS is

System dbspace Recommended Sizes (in Pages)
Default
in pages

SYS0001 (Catalog Tables) 30 + .33 x the number of tables 12,800
+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces

(including package
dbspaces)

+ 10.28 x the number of users
+ 8.10 x the number of package

dbspaces
+ .25 x the number of

character sets
+ .13 x the number of keys

SYS000n (packages) 2,048 for each dbspace 2,048

PUBLIC.HELPTEXT 2,304 x Number of languages installed 8,192

PUBLIC.ISQL The larger of : 1,024 or 1,024
(0.88 x the number of stored queries)

PUBLIC.SAMPLE 512 512

Figure 2. Guidelines for the Sizes of the System Dbspaces

20 System Administration

comparable to the number of concurrently active LUWs, as a guideline, in addition
to the minimum of 30, you may want to provide 10 internal dbspaces for each
NCUSER (see the description of the NCUSERS parameter on “NCUSERS” on
page 62). After the database has been generated, you can always add more internal
dbspaces by using the SQLADBSP EXEC. All internal dbspaces (and their storage
pool assignments) are redefined on each run of this EXEC.

The physical placement of the internal dbspaces affects performance, especially
when you perform a sort operation on a large table. You should place internal
dbspaces in their own storage pool, and use multiple dbextents over multiple
devices. There are several ways of doing this. Suppose you had 300 3380-type
cylinders for internal dbspace dbextents, you could use one of these strategies:
1. Make the first dbextent small (less than 100 cylinders), and each succeeding

dbextent twice the size of the preceding one. For example, have dbextents that
are 20, 40, 80, and 160 cylinders in size.

2. Graduate the sizes of the dbextents. For example, have dbextents that are 10,
20, 30, 40, 50, 60, and 90 cylinders in size. The last dbextent is extra large so
that unusually large sorts can be accommodated.

3. Have several small dbextents and a few big ones. For example, have five
dbextents of 20 cylinders each, and two of 100 cylinders.

The purpose of all these strategies is to spread input/output activity over more
devices as the size of a sort increases. The strategy you adopt determines how
many dbextents a sort requires. With the first strategy, a sort requiring 60 cylinders
uses two dbextents. With the second and third strategies, the same sort requires
three dbextents. Use a strategy that is suitable for your organization.

Sorting is done for ORDER BY, GROUP BY, join, CREATE INDEX, or UNION
operations. The internal dbspaces must be large enough to hold the rows being
sorted. For example, if an ORDER BY operation is requested using all the columns
of an entire table, the internal dbspace must be large enough to hold the whole
table. Less space is required if all the columns are not selected. During index
creation, space is required only for the key columns. To calculate the required size
of an internal dbspace, use the formula (KEYSIZE + 8 bytes) * ROWCOUNT. Make
the internal dbspaces large enough to hold the largest table or query result you
want to be able to sort. The dbspace size estimates are discussed under
“Appendix B. Estimating Database Storage” on page 425.

The number of internal dbspaces required also depends on the planned usage of
the system. Fewer are needed for preplanned application processing than for
dynamic query processing, as query users usually hold dbspaces longer than do
preplanned applications.

Internal dbspaces can also be stored on a virtual disk. Only use virtual disks for
internal dbspaces because information on a virtual disk is lost when the database
is restarted. For more information on virtual disk support, see the DB2 Server for
VSE & VM Performance Tuning Handbook manual.

Determining Initial Dbextent Requirements
Sufficient space must be allocated during database generation to support your
initial dbspace data storage requirements. You must define at least one dbextent for
each storage pool that initially contains dbspaces. The specific amount to allocate
for each storage pool depends on the following considerations:
v System dbspace support

Chapter 2. Planning for Database Generation 21

System dbspaces are heavily used, so they should not share their storage pool
(storage pool 1) with heavily used user dbspaces. Until you gain experience with
your data, do not put user dbspaces in the same storage pool as system
dbspaces.
You should undercommit storage pool support for the SYS0001 and SYS0002
dbspaces. If the catalog tables grow significantly, you can later allocate an
additional dbextent, probably on a separate device, to avoid excessive device
contention on catalog access.
Storage pool support for PUBLIC.HELPTEXT should be large enough to hold
the HELP tables; PUBLIC.ISQL must be large enough to hold your initial needs
for stored queries; and PUBLIC.SAMPLE should be large enough to hold the
number of sample data tables needed.

v End user dbspace support
Dbspaces for use primarily by end users should be supported by one or more
storage pools. Public and private dbspaces can share a storage pool; however,
you may want to manage space allocation differently for these two cases.
A recommended approach to storage pool support for end user data is to define
more dbextent space than is needed to support your initial dbspace definitions.
This approach is called overcommitting, and ensures that end user space
requirements can be accommodated as existing users need more space or more
users are added to the system.
If your installation plans to bill users for DASD storage space, you may want to
consider separate storage pools for different user groups (or account numbers).

Note: You can also use statistics from the SYSTEM.SYSDBSPACES catalog table
to achieve this.

v Dbspace support for applications
Storage pool support of dbspaces for use primarily by application programs
varies, depending on the nature of the data and the storage management
technique. In general, consider using different storage pools for different
applications, and undercommitting storage pool support for application
dbspaces.
The dbspaces for applications should be defined to be larger than is believed
necessary, to avoid later reorganization because of data growth. If you do this,
storage pool requirements are smaller than the dbspace sizes indicate. The initial
storage pool allocations should be large enough to cover initial loading of the
data plus growth over the next planning period (for example, six months or a
year).

v Internal dbspace support
Storage pool support for internal dbspaces should be undercommitted, since you
probably do not need storage to support all internal dbspaces at the maximum
size. As a rough estimate, the storage pool for internal dbspaces should have
enough DASD space available to hold data for three internal dbspaces (at the
internal dbspace size specified at database generation).
Storage space for internal dbspaces is taken from the storage pool assigned at
database generation time. In general, this storage pool should not be used for
system dbspaces or other heavily used dbspaces. Consider using a separate
storage pool just for internal dbspaces.

For more information on storage organization techniques, see “Chapter 7.
Managing Database Storage” on page 143.

22 System Administration

Choosing an Application Server Name and VM Resource Identifier
In planning for database generation, you can choose two names for your database.
The first name is the server name that the users will specify. The second name is
the resid (VM resource identifier) that identifies the application server to VM. The
server name and the resid can be the same if the requirements for both are met. If
the server name is longer than 8 characters, then you must choose a resid. You
must also decide whether the application server can be accessed from other
processors.

Note: When using remote access, it is recommended that the system administrator
ensure that server names are unique within a set of interconnected SNA
networks, and that resids are unique in a TSAF collection or a gateway. (A
gateway is also referred to as an LU.) The resid must also be identified with
a GLOBAL scope. For more information about these requirements, see
“Distributed Processing Administration” on page 139.

The server name must be from 1 to 18 characters. It should start with an alphabetic
character which can be followed by alphabetic characters, numeric characters, or
underscores. The server name should be unique within a set of networks that are
interconnected. The server name is stored in the resid SQLDBN file on the
production minidisk.

The resid must start with an alphanumeric character and be from 1 to 8 characters.
The terms resid and the TPN (transaction program name) are synonymous. The
resid is used to identify the database resource to the VM system, and in
combination with the NETID and LU name (AVS gateway name) provides the
network address of the resource. The resid can also be a 4 byte hex TPN such as
the DRDA default TPN x’07F6C4C2’. However, there is little need to define a
hexadecimal resid for an application server. The use of a character resid is
preferred because it is more readable.

To specify a value for resid that is different from that specified for the server name,
you must create an entry in the RESID NAMES file that is on the accessed
production minidisk of the application server. This file correlates the server name
and the resid. The resid defaults to the server name if:
v The RESID NAMES file does not exist, or
v The database manager does not find a matching entry in the RESID NAMES file.

For ease of administration, it is best to keep the resid identical to the server name.
If the two names are not identical, the VM users accessing the application server
must also access a CMS communication Directory that has an entry defined for this
server and resid (known as the :dbname and :tpn tags respectively) even if both
the user and the application server are in the same TSAF collection.

Choosing the Application Server Default CHARNAME and CCSID
The application server default CHARNAME is set using the CHARNAME
initialization parameter. The database manager uses the CHARNAME value to
determine the classification table and translation table which are used to identify
valid characters and to determine how to fold lowercase characters to uppercase.
For more information on the CHARNAME initialization parameter, see
“CHARNAME” on page 57.

The CHARNAME parameter also specifies the application server default coded
character set identifier (CCSID). For a newly installed database, the application

Chapter 2. Planning for Database Generation 23

server default CHARNAME is INTERNATIONAL, and the application server
default CCSID is 500. For a migrated database, the application server default
CHARNAME is ENGLISH, and the application server default CCSID is 37. The
application server default CCSID is the value of CCSIDMIXED if it is not zero,
otherwise it is the value of CCSIDSBCS. Refer to “CCSID Conversion” on page 317
and “Determining CCSID Values” on page 320 for more information on CCSIDs.

If you use DBCS characters, you need to use a mixed CCSID as the application
server default. A mixed CCSID has both an SBCS component CCSID, and a DBCS
component CCSID. For more information, see Table 21 on page 320.

The application server default CCSID value is used for the following:
v The CCSID that SQL statements are converted to for processing by the relational

data system (RDS) component
v The CCSID of constants (including hexadecimal constants) which are part of the

SQL statement processed by the RDS component

Depending on the application server default subtype value (that is, the CHARSUB
value), the application server default value for CCSIDMIXED or CCSIDSBCS is
used for the following:
v The CCSID of special registers which represent character data (for example,

CURRENT USER and CURRENT DATE)
v The CCSID of the results of the scalar functions CHAR, DIGITS, and HEX
v The CCSID of the character representation of datetime values (for DRDA

protocol, this is always the CCSIDSBCS value)
v The CCSID of character columns created using the CREATE TABLE or ALTER

TABLE statements (when the CCSID or subtype clause is not explicitly specified
and when package defaults are not specified). See the DB2 Server for VSE & VM
Application Programming manual for more details on package defaults.

It is important that you choose the correct default CHARNAME and CCSID for
your installation. The goals of choosing the correct values are to ensure the
integrity of character data representation, and to reduce the performance overhead
associated with CCSID conversion. The application server and application
requester should have the same CCSID value unless there is a specific reason for
them to be different.

When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an associated
performance overhead. Performance degradation also occurs if the CCSID
conversion causes a sargable predicate to become residual. For example, this can
occur on a simple equals predicate like, T1.C1 = T2.C2. For this case, C2 was
created prior to migrating to Version 3 Release 3 and has a CCSID of 37. C1 was
created using Version 3 Release 4 with the application server default CHARNAME
set to INTERNATIONAL (CCSID 500), As a result, since this predicate requires the
CCSID conversion of the data in the columns, it is residual. For more information
on performance, see the DB2 Server for VSE & VM Performance Tuning Handbook.

For example, if your application server is only accessed by local users whose
terminal controllers are generated with code page 37 and character set 697 (CP/CS
37/697) for the US ENGLISH characters, then you should set the application server
default CHARNAME to ENGLISH. This is because CP/CS 37/697 corresponds to
the CCSID of 37 which corresponds to the CHARNAME of ENGLISH.

24 System Administration

To eliminate unnecessary CCSID conversion, choose an application server default
CCSID to be the same as the CCSID of the application requesters which access
your application server most often.

The following is an example of how these two goals can be in conflict.

The situation has these characteristics:
v An application server is accessed by 5 application requesters which are local

(that is, they have the protocol parameter set to SQLDS).
v This application server is also accessed by 100 application requesters which are

remote (that is, they are using the DRDA protocol).
v The local application requesters have controllers which are defined with CP/CS

37/697 (this corresponds to CCSID 37).
v The remote application requesters use CCSID 285.

If the application server default CHARNAME is set to ENGLISH (CCSID 37), this
keeps the data integrity for the local application requesters. However, CCSID
conversion overhead is incurred for all remote application requesters who have
CHARNAME UK-ENGLISH (CCSID 285).

If the application server default CHARNAME is set to UK-ENGLISH (CCSID 285),
this will avoid the CCSID conversion overhead incurred for the remote application
requesters, but will cause data integrity problems for the local application
requesters. Certain characters will not be displayed correctly for local application
requesters. For example, a British pound sign (£) will be displayed as a dollar sign
($).

These are the trade-offs to consider when choosing your application server default
CHARNAME.

For more information on CCSIDs, see the Character Data Representation Architecture
Reference and Registry manual.

Attention: Immediately following an installation, the application server
CHARNAME is set to INTERNATIONAL and the CCSID is 500. Immediately
following a migration, the application server CHARNAME is set to ENGLISH and
the CCSID is 37. If you do not choose your own application server defaults, these
settings may not be correct for your system.

For information on how to change the application server default CHARNAME and
CCSID, see “Setting the Application Server Default CHARNAME and CCSIDs” on
page 321. For information on how to choose the default CCSID for an application
requester, see “Setting the Application Requester Default CHARNAME and
CCSIDs” on page 323. For a summary of the considerations for changing these
values, see “Considerations when changing default CHARNAME and CCSID” on
page 304.

Choosing the Application Server Default Character Subtype
The database manager supports three types of character data:
v SBCS
v Mixed
v Bit.

Chapter 2. Planning for Database Generation 25

Note: Character refers to data types CHAR, VARCHAR and LONG VARCHAR in
this discussion.

Each database has a default character subtype (that is, the CHARSUB value) which
can be either SBCS (single-byte character set) or mixed (mixed single and
double-byte character set). The default character subtype is the value used for the
subtype attribute of any new character column that is created by either the
CREATE TABLE statement or the ALTER TABLE statement. The default subtype is
used if a subtype is not specified as a package default option or a preprocessing
option, and is not specified explicitly using a subtype clause, or implicitly using a
CCSID clause.

The CHARSUB value is also used for determining CCSIDs. For more information
on CCSIDs, see “Choosing the Application Server Default CHARNAME and
CCSID” on page 23, “CCSID Conversion” on page 317, and “Determining CCSID
Values” on page 320. For information on how to change the default character
subtype, see “Setting the Application Server Default Character Subtype” on
page 325.

Choosing the Default CHARNAME and CCSID for Application
Requesters

It is important that the appropriate application requester default CHARNAME and
appropriate application requester default CCSID be chosen. The goals of choosing the
correct values are to ensure the integrity of character data representation, and to
reduce the performance overhead associated with CCSID conversion.

For example, if your terminal controller is generated with code page 37 and
character set 697 (CP/CS 37/697) for US ENGLISH characters, then the application
requester should set the default CHARNAME to ENGLISH. This is because CP/CS
37/697 corresponds to the CCSID of 37 which corresponds to the CHARNAME of
ENGLISH.

The application requester default CCSID is the value of CCSIDMIXED if it is not
zero; otherwise, it is the value of CCSIDSBCS. The application requester default
CCSID is used for the following:
v The CCSID of SQL statements coded at the application requester
v The CCSID of host variables which represent character data
v The CCSID of character values described by an input or output SQLDA (when

the SQLNAME field is not used to override the CCSID value)
v The CCSID of character data returned in a DESCRIBE SQLDA
v The CCSID of message tokens returned in an SQLCA

For more information on setting the default CHARNAME for an application
requester, see “Setting the Default CHARNAME and CCSIDs for an Application
Requester” on page 324. For more information on CCSIDs, see “CCSID
Conversion” on page 317 and “Determining CCSID Values” on page 320.

You can avoid the need for all application requesters to specify the default
CHARNAME by setting it using the SQLGLOB EXEC. For information on setting
the default CHARNAME for all application requesters, see “Setting the Default
CHARNAME and CCSIDs for All Application Requesters” on page 324.

26 System Administration

Preparing for Database Regeneration
If the SYS0001 dbspace ever becomes too small to hold the catalog tables, or if the
contents of the directory minidisk or a dbextent minidisk are damaged or
destroyed and you do not have archives to restore them, the database can no
longer serve your needs and must be regenerated.

The size and complexity of the regeneration task depends on the size and
complexity of the database. This task includes:
v Regenerating the database, including any dbspaces, dbextents, and VM

minidisks that may have been added since the previous generation
v Using the DBS utility to unload and reload all the data in the database,

including the ISQL routines and the ISQL stored queries.
v Repreprocessing all application program packages
v Reestablishing the entire authority scheme
v Recreating all views and indexes.

One way to simplify this task is to keep a record of the various types of
information you would need to reestablish the operating environment that existed
in the previous database. In particular:
v Keep all the ACQUIRE DBSPACE, CREATE TABLE, ALTER TABLE, GRANT,

CREATE INDEX, CREATE VIEW, and CREATE SYNONYM statements for the
database in EXECs that call the DBS utility. These EXECs can be run easily on
the regenerated database.

Note: If these statements are not kept, you can reconstruct them from
information available in the system catalog tables. However, this could
take a long time for a large production database.

v Keep all of the input control statements for any add dbspace or add dbextent
operations. These statements can be used as input to the SQLDBGEN EXEC
when it regenerates the database.

v Keep EXECs used to preprocess each application program so that they can be
run on the regenerated database (as separate jobs).

Database Generation Worksheet
This section provides a worksheet. Table 3 covers the database generation control
statements. Fill it out as you design your database; then refer to it when you define
your minidisks or provide control statements to the SQLDBGEN EXEC.

Table 3. Database Generation Worksheet

Database Name
Server Name ______________________________

RESID ______________________________

Database Scope ______________________________ (LOCAL or GLOBAL)

Chapter 2. Planning for Database Generation 27

Table 3. Database Generation Worksheet (continued)

Minidisk Definitions:
cylr/ cyls/

cuu devtype blkr blks volser mode pr pw

Directory MDISK ____________________________________ R _______
Log Disk 1 MDISK ____________________________________ R _______
Log Disk 2 MDISK ____________________________________ R _______
Dbextent 1 MDISK ____________________________________ R _______
Dbextent 2 MDISK ____________________________________ R _______
Dbextent 3 MDISK ____________________________________ R _______
Dbextent 4 MDISK ____________________________________ R _______

Database Capacity Parameters:

CUREXTNT _____________ (A value from 1 to 999 must be specified.)

MAXPOOLS _____________ (Default is 32. Value can be from 1 to 999.)

MAXEXTNT _____________ (Default is 64. Value can be from 1 to 999.)

MAXDBSPC _____________ (Default is 1 000. Value can be up to 32 000.)

Nonrecoverable Storage Pools:

POOL ________ NOLOG (Storage pool 1 cannot be specified.)

POOL ________ NOLOG

POOL ________ NOLOG

POOL ________ NOLOG

Database Extent (Dbextent) Placement:

Dbextent Storage Pool
Number (Default is 1)
-------- --------------

1 ___

2 ___

3 ___

4 ___

Note: The number of dbextents must equal CUREXTNT, but one is required. The MAXEXTNT value determines the
maximum number of database extents.

28 System Administration

Table 3. Database Generation Worksheet (continued)

Public Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
--------------------------------- ------------- --------------
Catalog Tables ____ 1

Packages ____ ___

HELP Text ____ ___

ISQL 1024 (minimum) ___

Sample Tables 512 (minimum) ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

_________________________________ ____ ___

Note: The public dbspaces for the catalog tables, packages, HELP text, ISQL, and the sample tables are required.
The catalog tables must be in storage pool 1.

Private Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
--------------------------------- ------------- --------------

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

_________________________________ ________ ________

Internal Dbspaces:

Number: _____ Size in 4K Pages: ____ Storage Pool: ____

Note: The MAXDBSPC value determines the maximum total number of public, private, and internal dbspaces
possible.

Chapter 2. Planning for Database Generation 29

30 System Administration

Chapter 3. Planning for Database Migration

If your installation already has a previous release of the database manager
installed, you must consider the effect that migration to the new release will have
on your existing databases and applications.

You can migrate to a DB2 Server for VM Version 7 Release 2 database from:
v Version 7 Release 1
v Version 6 Release 1
v Version 5 Release 1
v Version 3 Release 5
v Version 3 Release 4
v Version 3 Release 3
v Version 3 Release 2
v Version 3 Release 1

Note: If you are on an earlier release, you will have to migrate to Version 3
Release 5 first and then to Version 7 Release 2.

Before migrating:
v Read the discussions on release-to-release incompatibilities in “Appendix I.

Incompatibilities Between Releases” on page 479 for changes that may be
required in application programs.

v Ensure that the requirements discussed in “Chapter 1. Planning for Installation”
on page 1 are met. For information on the actual installation and migration

steps, see the DB2 Server for VM Program Directory .
v It is strongly recommended that you archive your databases before migrating, so

that you can back out of the migration process should it become necessary.
v Consider installing the database manager and generating a starter database to

try out the new functions before migrating your existing databases.

This chapter also contains sections on the following:
v Release coexistence considerations

It can be impractical to migrate all the databases in a local or distributed
environment to the current level at the same time. For information on the level
of coexistence that is possible see “Release Coexistence Considerations” on
page 39.

v Migration from a VSE to a VM operating system
It is possible to move a DB2 Server for VSE database to a VM operating system.
There is no need to convert the data in a database when you move from VSE to
VM; the data is system-independent. You move data from VSE to VM by taking
a database archive of the DB2 Server for VSE database and then restoring the
database archive tape on the VM operating system.
If you have moved a database from VSE to VM, you may have some VSE
application programs that you do not want to convert. These programs can
access the databases on VM using VSE guest sharing. For more information, see
“Migrating from a VSE to a VM Operating System” on page 39.

v System migration from one IBM VM system to another
You can migrate your databases to a new VM operating system in two ways:

© Copyright IBM Corp. 1987, 2001 31

|

|

– Archive them in the original VM operating system, install the database
manager on your new VM operating system, and restore the databases in the
new operating system.

– Install a new VM operating system on the processor you use to access your
databases. You can then access your databases as you did in the original
operating system.

See the information about the operating systems involved, beginning on page
“Migrating from a VM/XA to a VM/ESA Environment” on page 41.

v Converting a service machine to a database machine
For any particular processor, you may need to convert a service machine to a
database machine if a database machine is required on that processor.
“Converting a Service Machine to a Database Machine” on page 49 explains this
process.

Migration Considerations
For users of an earlier version of the database manager, installing Version 7
Release 2 means loading the new code by running one or more IBM supplied
programs, and migrating any existing databases. This section highlights the
considerations that you should be aware of when doing this.

The topics are grouped by the release level of the database that is being migrated.
Start at your release level and read to the end of this chapter. For example, if your
database is Version 3 Release 1, you must review all the topics; if it is Version 3
Release 2, you need only read from that topic to the end of the chapter.

Increasing the HELPTEXT Dbspace
A database that is migrated keeps its existing HELPTEXT dbspace, which may not
be large enough to support the Version 7 Release 2 HELP text. The size required
for this dbspace depends on the number of national languages for which you have
HELP text. It should be:

2,304 pages x number of languages installed.

This dbspace can be increased at any time before you install the current HELP text.
For information, see the DB2 Server for VSE & VM Database Administration manual.

If users are running their applications under the DRDA protocol, some database
manager facilities are not supported. For a list of these restrictions, see
“Appendix H. DRDA Considerations” on page 477.

Migrating from Version 3 Release 1

Considerations for Invalid Indexes
Before you migrate, at least four dbspace blocks must be available in the database
directory to allow for expansion of the invalid entities table. During migration, any
entries in the invalid entities table are migrated to the new format. The new table
format requires additional space in the directory. If there are any entries in the
invalid entities table, it is possible that there may not be enough room in the
directory to allow the table to be modified during migration.

For information about directory space verification, see the DB2 Server for VM
Program Directory .

32 System Administration

Conversion of Packages
After migration, all packages are dynamically repreprocessed on first use. This
conversion can cause a performance degradation over the first few days as the
packages are referenced and repreprocessed.

To help minimize this degradation, the REBIND PACKAGE command is provided
so that all packages can be recreated, if desired, after migration but before
production. For information about this command, see the DB2 Server for VSE &
VM Database Services Utility manual.

You can also convert a package by explicitly repreprocessing the application
program. Before repreprocessing your applications, you should be aware of any
statements that may behave differently with the new release. See 'Release to
Release Incompatibilities' in “Appendix I. Incompatibilities Between Releases” on
page 479.

Migrating from Version 3 Release 2
When migrating from a Version 3 Release 2 database, you may want to update the
SNA NETID file. For information on this task, see “Updating the SNA NETID File”
on page 11.

With Version 3 Release 3, you can specify a server name of up to 18 characters,
and a resid that is correlated with it. For more information on the conventions to
follow when specifying the server name and resid, see “Choosing an Application
Server Name and VM Resource Identifier” on page 23.

Choosing an Application Server Default CHARNAME
After migration, the database manager sets the application server default
CHARNAME to ENGLISH, and sets the application server CCSID values as
follows:
v CCSIDSBCS = 37
v CCSIDMIXED = 0
v CCSIDGRAPHIC = 0.

You can change the value of the default CHARNAME, which in turn determines
the values for the three application server default CCSIDs. These four values are
stored in the VALUE column of the SYSTEM.SYSOPTIONS catalog table. The
corresponding values in the SQLOPTION column for these defaults are
CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC.

The value you choose for the default CHARNAME should accurately reflect the
type of data that will be stored in the database: that is, the type of code page and
character set that describes the data, and whether or not the database manager is
to support DBCS characters or MBCS characters, or both. For more information,
see “Character Set Considerations at Startup” on page 57, “Determining CCSID
Values” on page 320, and “CCSID Conversion” on page 317. For a summary of the
considerations for changing these values, see “Considerations when changing
default CHARNAME and CCSID” on page 304.

Setting Migration CCSID Values
After choosing your default CHARNAME, you must also set your CCSID values
for character and graphic data that existed before the migration to Version 3
Release 3. The CCSID value of character and graphic data stored in tables that
were created before Version 3 Release 3 are specified by the three other rows (with

Chapter 3. Planning for Database Migration 33

SQLOPTION value MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC) in the
SYSTEM.SYSOPTIONS catalog table. The migration CCSID values (MCCSIDSBCS,
MCCSIDMIXED, and MCCSIDGRAPHIC) are used for single byte, mixed, and
graphic data that was created prior to Version 3 Release 4 and therefore does not
have a CCSID associated with it. The database manager sets the migration CCSID
values as follows:
v MCCSIDSBCS = 37
v MCCSIDMIXED = 0
v MCCSIDGRAPHIC = 0.

If the code page and character set used to create the migrated data (that is, the
data that was inserted into the database prior to Version 3 Release 3) is not CP/CS
37/697, these settings are not correct for your installation and must be changed.
You can determine the CCSIDs for migrated data from the code page and character
set that was used to generate the terminal controller where the data was entered.

For an example of how your choice of migration CCSID value affects the
characters displayed, refer to page 322.

To determine if your database contains graphic or mixed data, issue the following
query:

If the query returns a result of zero rows, the database contains neither graphic nor
mixed data; a nonzero result indicates the number of columns in your database
that do contain such data.

Handling SBCS Data: If your database contains only SBCS data (that is, the
above query returns a result of zero) prior to Version 3 Release 3, the migrated
CCSID values for mixed and graphic data (MCCSIDMIXED and
MCCSIDGRAPHIC) must remain 0.

If the MCCSIDSBCS value of 37 is not correct for your installation, this must be
changed to correspond to the code page and character set used to create the
migrated data. For example, if the data was created with CP/CS 273/697
(GERMAN), the CCSID value you should use is 273. For a list of some of the SBCS
CCSIDs and their character set and code page values, see Table 21 on page 320.

The row that you must update for data in tables created before Version 3
Release 3 is:
v SQLOPTION='MCCSIDSBCS'

Change the value in the VALUE column to the appropriate SBCS CCSID (for
example, 273 for GERMAN). The following statements show how to update or
insert the row using this value:

SELECT COUNT(*) FROM SYSTEM.SYSCOLUMNS
WHERE COLTYPE = 'GRAPHIC' OR

COLTYPE = 'VARGRAPH' OR
COLTYPE = 'LONGVARG' OR
SUBTYPE = 'M'

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '273'
WHERE SQLOPTION = 'MCCSIDSBCS'

34 System Administration

Handling Mixed Data: If your database contains graphic or mixed data prior to
Version 3 Release 3, you must update the VALUE column of
SYSTEM.SYSOPTIONS for the row where SQLOPTION='MCCSIDMIXED' with the
appropriate nonzero CCSID value. You must also update the row where
SQLOPTION='MCCSIDSBCS' to the value of the SBCS component of the mixed
CCSID, and the row where SQLOPTION='MCCSIDGRAPHIC' to the value of the
DBCS component of the mixed CCSID. If these CCSIDs do not correspond to the
components of the mixed CCSID, the wrong conversion selection tables are being
used. For a list of some of the mixed CCSIDs and their component SBCS and
DBCS CCSIDs, see Table 21 on page 320.

The rows that you must update for data in tables created before Version 3
Release 3 are:
v SQLOPTION='MCCSIDMIXED'

Change the value in the VALUE column to the appropriate mixed CCSID. If you
used DBCS characters before Version 3 Release 3, specify the appropriate CCSID
value. For example, if you used Kanji characters, specify the value 5035. The
following statements show how to update or insert the row using this value:

v SQLOPTION='MCCSIDSBCS'
Change the value in the VALUE column to the appropriate SBCS CCSID. If you
used DBCS characters before Version 3 Release 3, you must specify the SBCS
component CCSID of the MCCSIDMIXED value. For example, if
MCCSIDMIXED is set to 5035, specify 1027. The following statements show how
to update or insert the row using this value:

v SQLOPTION='MCCSIDGRAPHIC'
Change the value in the VALUE column to the appropriate graphic CCSID. If
you used DBCS characters before Version 3 Release 3, this value must be the
DBCS component CCSID of the MCCSIDMIXED value that you used. For

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDSBCS', '273',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '5035'
WHERE SQLOPTION = 'MCCSIDMIXED'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDMIXED', '5035',
'DEFAULT CCSID FOR MIGRATED MIXED CHARACTER COLUMNS')

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '1027'
WHERE SQLOPTION = 'MCCSIDSBCS'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDSBCS', '1027',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

Chapter 3. Planning for Database Migration 35

example, if you used Kanji characters, specify 4396. The following statements
show how to update or insert the row using this value:

Choosing the Default CHARNAME for All Application
Requesters

After migration, the application requester default CHARNAME is determined from
the SQLGLOB file. By default it is set to INTERNATIONAL, and the application
requester CCSID values are as follows:
v CCSIDSBCS = 37
v CCSIDMIXED = 0
v CCSIDGRAPHIC = 0.

To ensure the integrity of character data representation and to reduce the
performance overhead associated with CCSID conversion, it is important to choose
the appropriate CHARNAME for the code page used by each application requester.
If you need to, you can later change it for all application requesters by using the
global default SQLGLOB EXEC. See “Choosing the Default CHARNAME and
CCSID for Application Requesters” on page 26 and “Setting the Application
Requester Default CHARNAME and CCSIDs” on page 323. For more general
information on CCSIDs, see “CCSID Conversion” on page 317 and “Determining
CCSID Values” on page 320.

Considerations for Mixed Primary Keys with Field Procedures
If you are migrating from Version 3 Release 1 or Version 3 Release 2, the value of
CCSID in SYSTEM.SYSKEYCOLS is NULL. For some primary keys, this value is
not correct. In this case, you should drop and recreate the primary keys, which you
can identify by running the ARISFPKY EXEC after migrating. (For information on
this procedure, see the DB2 Server for VM Program Directory.)

Migrating from Version 3 Release 3

Considerations for EXPLAIN Tables
Several changes and enhancements were made to the EXPLAIN tables in Version 3
Release 4. If you have existing EXPLAIN tables they must either be renamed, or,
dropped and recreated before using the EXPLAIN statement.

An IBM-supplied macro, ARISEXP, recreates the EXPLAIN tables for you.

For additional information on using EXPLAIN tables, see the DB2 Server for VSE &
VM Performance Tuning Handbook manual.

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '4396'
WHERE SQLOPTION = 'MCCSIDGRAPHIC'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDGRAPHIC', '4396',
'DEFAULT CCSID FOR MIGRATED GRAPHIC COLUMNS')

36 System Administration

Considerations for VSE Guest Sharing
VSE batch applications can access an application server on VM that is either
remote or local. If the application server is in a remote network, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure must be replaced by the SET
APPCVM TARGET command. If the application server is local, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure is not needed, and can be
deleted.

Regardless of whether the application server is remote or local, an entry in the
DBNAME directory may also be necessary to map the DBNAME to the resid when
the DBNAME is greater than 8 characters, or when the DBNAME and the resid are
different.

Considerations for the VM Data Spaces Support (VMDSS)
If VMDSS was installed prior to migration, the VMDSS code must be link-edited
with the DB2 Server for VM code before running the migration utilities. See the
DB2 Server for VSE & VM Performance Tuning Handbook manual for more
information.

Migrating from Version 3 Release 4

Considerations for Assembler Even Precision Packed Decimal
Prior to Version 3 Release 5, assembler host variables declared as even precision
packed decimal were converted to odd precision by the preprocessor. As of
Version 3 Release 5, the database manager supports assembler host variables
defined as even precision packed decimal, and they are not converted to odd
precision. In some cases, the lack of conversion may cause a datatype mismatch
between a host variable and a column. To prevent potential performance
degradation, applications affected by this change should be modified so the
datatypes of the host variables exactly match the datatypes of the columns to
which they will be compared.

Considerations for SQLSTATE Changes for SQL92 Support
The SQLSTATEs returned by several conditions were changed to comply with
SQL92. Application programs that have a dependency on the SQLSTATE returned
may be affected by these changes. See DB2 Server for VM Messages and Codes for
information on the changed SQLSTATEs.

Migrating from Version 3 Release 5

Considerations for Uncommitted Read
Prior to Version 5 Release 1, the database manager accepted isolation level
uncommitted read as a preprocessor parameter, but internally the isolation level
was escalated. As of Version 5 Release 1, isolation level uncommitted read is fully
supported. However, this isolation level to take effect, packages that were prepped
with uncommitted read in a previous release must be explicitly repreprocessed
after migration.

Considerations for VMSES/E
As of Version 5 Release 1, installation and service of the database manager code is
done using VMSES/E, which is a component of the VM operating system. Several
administrative and maintenance processes have changed as a result, including:

Chapter 3. Planning for Database Migration 37

v Defining and loading saved segments
v Adding a primary database machine
v Moving an application server to another VM ID
v Installing your own date, time, and accounting exits
v Enabling the DRDA code
v Enabling the DSS code
v Installing NLS support.

Considerations for Support of ESA-mode Processors Only
Any user exits (date, time, or accounting), field procedures, or applications that
run in single user mode that are dependent on running in a 370 mode virtual
machine must be converted to execute in an ESA mode virtual machine. AMODE
24 is still supported, however it cannot be used if the database is started with
SYNCPNT=Y. If the database is started with SYNCPNT=Y (which is possible only
in multiple user mode), exits and field procedures must run with AMODE 31. If
the database is started with SYNCPNT=N, exits, field procedures, and single user
mode applications that require AMODE 24 can be used.

Considerations for the Renaming of the Product
The text of several messages was modified as the result of the renaming of the
product. Applications with dependencies on the text of messages may be affected.

Considerations for the Removal of the User Facility Subset
The User Facility Subset is no longer supported; machines on which the subset was
previously installed must now contain the full product.

Migrating from Version 5 Release 1

Considerations for RDS Above 16M
After migration, the RDS component will be loaded above 16M whenever possible.
As a result,
v If you use AMODE 24, you must use a maximum virtual storage size of 16MB.
v If you use saved segments, it is highly recommended that the RDS and DBSS

segments not be put in the same segment space, as this would force the RDS
segment to be located below 16M. See “Using Saved Segments for Components”
on page 171.

Considerations for TCP/IP
In DB2 Server for VM Version 6 Release 1 and later, the database manager will
attempt to use TCP/IP for communications by default. If you do not want to use
TCP/IP, specify the initialization parameter TCPPORT=0.

Migrating from Version 6 Release 1
There are no issues to consider when migrating from Version 6 Release 1 to
Version 7 Release 1.

Migrating from Version 7 Release 1
There are no issues to consider when migrating from Version 7 Release 1 to
Version 7 Release 2.

38 System Administration

|

|
|

Release Coexistence Considerations
For installations with multiple databases, you should migrate all your databases to
the current level. All users have the same features available to them, and future
database migrations are easier.

Applications at any supported release level can access application servers at any
supported release level. However, if an application requester and application
server are at different release levels, any functions used must be available in both
release levels. That is, you cannot use any new release facilities from ISQL, DBS
Utility, or application programs when the application server is running a different
level of DB2 Server for VSE & VM than the application requester.

All existing applications that accessed a database before the database was migrated
to another release level continue to work after migration.

See “Appendix I. Incompatibilities Between Releases” on page 479 for
incompatibilities that exist between each release and the next release.

Migrating from a VSE to a VM Operating System
This section describes two operating environments on VSE from which you can
migrate a database:
v Standalone VSE system. VSE is the only operating system on the processor. The

database manager runs under VSE.
v VSE runs as a guest operating system under VM. The database manager runs

entirely under VSE.

When you move the database from VSE, you can move it to one of these operating
systems:
v VM operating system with VSE guest sharing. In this situation, VSE is a guest

operating system under a VM operating system, and the database machine is on
VM.

v VM/ESA ESA Feature operating system. The database machine runs under a
VM/ESA operating system with the ESA Feature.

If you do not have a database on VM, you can migrate your database from a VSE
to a VM operating system by archiving the database on VSE, generating a new
database on VM, and then restoring the archived database on VM. For more
information, see “Moving a Database” on page 45.

If you already have a database on VM, you can move the data in your VSE
database to the VM database using the UNLOAD and RELOAD commands. For
more information on the UNLOAD and RELOAD commands, see the DB2 Server
for VSE & VM Database Services Utility manual. If you move the data this way, you
have to unload and reload all dbspaces and packages. When the database is on
VM, you must recreate all views and indexes, and reestablish the authorities and
privileges each user has with GRANT and REVOKE commands for the tables
moved from VSE. This is similar to regenerating a database. For more information,
see “Preparing for Database Regeneration” on page 27.

When migrating from a prior release, you may want to update the SNA NETID
file. For information on this task, see “Updating the SNA NETID File” on page 11.

Chapter 3. Planning for Database Migration 39

Moving a Database from a VSE to a VM Operating System
Before attempting to move a database from a VSE to a VM operating system, you
should understand the database manager on VM as well as on VSE. You must
know how to define and generate a database on VM before you can move a VSE
database to VM.

Choosing a VM Resource Identifier
In a DB2 Server for VM database, you can choose a VM resource identifier (resid)
in addition to the server name. The resid identifies the application server to VM.

For more information on this, see “Choosing an Application Server Name and VM
Resource Identifier” on page 23.

Converting Data in the Database
There is no need to convert the data in a database when you move the database
from a VSE to a VM operating system; the data is system-independent. You must
have the same release level of the database manager installed on both operating
systems, otherwise the database manager at the lower release level must be
migrated first. Once both databases are using the same release level, archive the
database on VSE and restore it on VM.

Converting Packages
Although the database manager itself does not require you to convert user-created
packages when you move from VSE to VM, any program that is moved will have
to be compiled and linked again in the VM environment. If you have revised any
programs, you should repreprocess these programs. Remember to use the
preprocessor KEEP option to retain existing authorizations on the program.

Views are stored as packages. These packages do not need to be recreated.

Converting Programs
The VSE programs moved to the VM operating system must be recompiled and
linked in the VM operating system. Some of the programs can be run in a
CMS/DOS environment without modification. The CMS/DOS environment does
not support all VSE macros and functions; some programs must be recoded.
Programs that do not need to be recoded still have to be preprocessed, compiled,
and link-edited in the VM environment.

The CICS/VSE programs cannot be converted to the CMS environment; they must
be rewritten to be used in CMS.

VSE Databases Coexisting under VM
You might choose to move some VSE databases to VM. In such cases, you can run
the database on VM, with VSE running as a guest under VM. Users and
applications in VSE can also access databases on VM through VSE guest sharing.
For more information on guest sharing, see “VSE Guest Sharing Configuration” on
page 299.

If you have databases on VSE, use the DB2 Server for VSE manuals. See the DB2
Server for VSE & VM Master Index and Glossary manual for a list of these manuals.

40 System Administration

Migrating from a VM/XA to a VM/ESA Environment
You can migrate your VM/XA databases to a VM/ESA operating system in two
ways:
v Archive the databases in the VM/XA operating system, and restore them in the

VM/ESA operating system. See “Moving a Database” on page 45.
v Install a VM/ESA operating system on the processor that you use to access your

databases. See “Installing Another IBM VM System on Your Processor” on
page 45.

You may have to update the SNA NETID file. See “Updating the SNA NETID File”
on page 11.

Delaying the Directory and Database Name Changes
If you have just installed a VM/ESA operating system, and you want to delay the
directory and database naming changes, you can operate your database machines
in non-APPC/VM mode. In this mode, IUCV is used and the remote unit of work
and database switching capabilities are not available.

To indicate that the database machine is to use IUCV communication paths instead
of APPC/VM, set the DBMODE initialization parameter to N when you start the
application server. This connects you to an application server using the database
machine’s VM ID. Otherwise, APPC/VM paths will be used, and you will be
connected to the application server using the resource identifier (resid).

If you have already made the directory changes and database name changes, do
not set DBMODE to N.

Setting up the Database Machine Directory Entry
To use Version 6 Release 1, ensure that you have the necessary VM directory
control statements. An example of these statements is shown in Figure 3.

Note: Only those statements that differ from the ones used in the VM/XA
operating system are explained following the figure. For details of the other
statements, see “Adding a Primary Database Machine” on page 273.

1 ---> USER SQLMACH sqlmachpw xM xM G
ACCOUNT nnnnnnnn

2 ---> OPTION MAXCONN 26
IUCV ALLOW

3 ---> IUCV *IDENT SQLDBA GLOBAL
IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 *
SPOOL 00D 2540 A
SPOOL 00E 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql

Figure 3. Example VM Directory Control Statements for the SQLMACH Machine

Chapter 3. Planning for Database Migration 41

Statement 1: USER SQLMACH sqlmachpw xM xM G

This statement defines the database machine SQLMACH with the VM privilege
class G. Refer to “Virtual Storage Requirements” on page 4 for the recommended
virtual storage size for the database machine.

Statement 2: OPTION MAXCONN 26

The MAXCONN value must be increased by 1 (over that specified for the VM/XA
operating system), because the machine now makes one additional IUCV
connection to *IDENT.

The default value for MAXCONN is 4 in the VM/XA operating system, and 16 in
the VM/ESA operating system.

Statement 3: IUCV *IDENT SQLDBA GLOBAL

In a VM/ESA operating system, the database machine is the resource owner, so it
must be authorized to connect to the VM system service *IDENT. This
authorization is granted by the IUCV entry in the database machine directory. The
name of the database (specified in the DBNAME parameter of the SQLDBINS
EXEC) is used as the resource identifier.

Figure 4 shows the syntax of the IUCV *IDENT statement.

resid
This variable is the resource identifier of an application server that can be
started in this virtual machine. The machine can have multiple resid entries in
its directory. (In Figure 3 on page 41, the resid is SQLDBA.) Usually, the resid is
the server name of the application server. However, if the resid and the server
name are different, they must both be defined in the RESID NAMES file
during database generation.

RESANY
This parameter enables the database machine to identify any resource identifier
as either a LOCAL or GLOBAL resource. Specify it if you want to access more
than one application server (accessed one at a time).

LOCAL
This parameter ensures that only the application requesters that are on the
same processor as the database machine can use this application server

GLOBAL
This parameter identifies an application server as a resource that can be
accessed by all application requesters in a network.

�� IUCV *IDENT

resid

RESANY

LOCAL

GLOBAL

��

Figure 4. IUCV *IDENT Syntax

42 System Administration

|
|

Example of a Database Machine Directory with Multiple
Databases

Figure 5 shows the control statements in the directory of a database machine with
multiple databases. This database machine can manage three application servers on
this processor, but only one at any given time. The three database resids in this
example are SQLRES1, SQLRES2, and SQLRES3. The first two can only be accessed
by users on the local processor, while the third can be accessed by both local and
remote users.

Setting Up the User Machine Directory Entry
In a VM/ESA operating system, the database manager uses advanced-program-to-
program-communications/virtual machine (APPC/VM) in place of IUCV. User
machines connect to a resource, not to the database machine. A change is required
if access to the resource had been controlled by specifying IUCV dbmachid in the
directory entries of the user machines. The IUCV dbmachid must be replaced with
the IUCV resid statement in each virtual machine directory, to allow the user
machine to connect to the application server identified as a resource. Figure 6 on
page 44 shows an example of the VM directory entry for a user machine.

Note: Only those statements that differ from the ones used in the VM/XA
operating system are explained following the figure. For information on user
machine directory entries, see “Defining Additional User Machines” on
page 280. For a complete description of VM directory control statements,
refer to the VM/ESA: Planning and Administration manual.

---> USER SQLMACH sqlmachpw xM xM G
ACCOUNT nnnnnnnn
OPTION MAXCONN 26
IUCV ALLOW

---> IUCV *IDENT SQLRES1 LOCAL
---> IUCV *IDENT SQLRES2 LOCAL
---> IUCV *IDENT SQLRES3 GLOBAL

IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 *
SPOOL 00D 2540 A
SPOOL 00E 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql
MDISK 203 3380 cylr 034 volser R rsql wsql
MDISK 204 3380 cylr 008 volser R rsql wsql
MDISK 205 3380 cylr 077 volser R rsql wsql
MDISK 206 3380 cylr 034 volser R rsql wsql
MDISK 207 3380 cylr 008 volser R rsql wsql
MDISK 208 3380 cylr 077 volser R rsql wsql

Figure 5. Database Machine Directory Entries

Chapter 3. Planning for Database Migration 43

Statement 1: USER SQLMACH sqlmachpw xM xM G

This statement defines the user machine with the VM privilege class G.
Refer to “Virtual Storage Requirements” on page 4 for the recommended
virtual storage size for the user machine.

Statement 2: IUCV resid (used for the VM/ESA operating system)

This statement is only required if the IUCV ALLOW control statement is
not present in the VM directory for the database machine (SQLMACH).
Since the default arrangement is for IUCV ALLOW to be specified in the
VM directory entry for the database, most users omit this statement. If you
later decide to have more control over user machine-to-application server
communications, you can change the IUCV control statements.

Figure 7 shows the syntax of the IUCV statement used for the VM/ESA operating
system.

ANY
This parameter authorizes the user machine to connect to any application
server identified as a resource.

resid
This variable authorizes a user machine to connect only to the application
server identified by resid. If more than one IUCV resid statement is specified in
the machine’s directory, the user machine can communicate with more than
one application server.

gatewayid
This variable authorizes the user machine to connect to the resources in an
SNA network through gatewayid, rather than to a specified virtual machine.

For more information about the VM directory control statements that affect
inter-machine communications, see “VM Directory Control Statements” on
page 137.

1 ---> USER SQLUSER sqluser xM xM G
ACCOUNT nnnnnnnn

2 ---> IUCV resid
IPL CMS PARM AUTOCR
CONSOLE 009 3215
SPOOL 00C 2540 *
SPOOL 00D 2540 A
SPOOL 00E 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 003 volser W
LINK SQLMACH 195 195 RR

Figure 6. Example VM Directory Entries for a User Machine

�� IUCV

ANY
resid
gatewayid

��

Figure 7. IUCV Statement Syntax

44 System Administration

|
|

Database Naming Considerations
You may have to change the names of your databases (server-name), to ensure that
they are unique within a set of interconnected SNA networks, and that their resids
are unique in a TSAF collection or gateway. For more information, see “Distributed
Processing Security” on page 138.

When you migrate a database from a VM/XA to a VM/ESA operating system you
can specify a value for server-name of up to 18 characters, and a value for resid of
up to 8 characters. For more information, see “Choosing an Application Server
Name and VM Resource Identifier” on page 23.

Migrating from a VM/SP to a VM/ESA Operating System
You can migrate your VM/SP databases to a VM/ESA operating system in two
ways:
v Install the VM/ESA operating system on the processor you use to access your

databases. See “Installing Another IBM VM System on Your Processor”.
v Archive the databases in VM/SP, and restore them in the VM/ESA operating

system. See “Moving a Database”.

If you have user exits or single user mode applications that do not support 31-bit
addressing, these applications must be converted before the database manager can
run AMODE(31).

Installing Another IBM VM System on Your Processor
You can access your databases in another IBM VM system by installing that VM
operating system on the processor on which the databases are located. Before
doing so, you should archive your databases.

For information on installing VM/ESA, see the VM/ESA: Installation Guide manual.

Moving a Database
This section provides information about moving a database.

Using Archive and Restore to Move a Database
To move a database to another database manager:
1. Start the source application server.

If you normally use the database manager archiving facility, specify the
LOGMODE=A initialization parameter to archive the database, or
LOGMODE=L to archive the log. If you do not use the archiving facility,
specify LOGMODE=Y.

2. Set the password for authorization ID SQLDBA in the source application server
to SQLDBAPW.

3. Create a database archive tape file by issuing the SQLEND ARCHIVE
DVERIFY operator command. If LOGMODE is set to L, the database manager
also takes a log archive. You cannot use a database archive created by user
facilities when moving your database.
Do not destroy the source database until you are certain that it has been
correctly moved to the target.

4. Install the database manager that you are going to use as the target (if you
have not already done so).

Chapter 3. Planning for Database Migration 45

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

Before proceeding to move the database, it is recommended that you first
install and verify the IBM-supplied starter database on the target database
manager, to ensure that the target database manager has been correctly
installed. For information on how to do this, see the DB2 Server for VM Program
Directory.

5. Define and generate a database on the target system. The new database
directory and dbextents must be defined with sufficient space to contain the old
directory and dbextents.
If you are moving from a VSE to a VM operating system, you must increase the
space allocations used by approximately 16% for count-key-data DASDs that
are 10 cylinders or fewer, and for FBA devices that are 5000 blocks or fewer.
For data sets larger than 10 cylinders or larger than 5000 FBA blocks, increase
the allocation by about 3%. These increases account for VM DASD block I/O. If
you use allocations on VM that are the same size as those you used on VSE,
the VM database will be too small.
You must define exactly the same number of dbextents and logs that existed on
the old database.
For database planning information, see “Chapter 2. Planning for Database
Generation” on page 13. For the database definition and generation procedure,
see the DB2 Server for VM Program Directory and DB2 Server for VSE Program
Directory.

6. Perform coldlog processing against the target database manager, by entering
the command:

SQLLOG DBNAME(server-name)

Respond CONTINUE to message ARI0688D (for single logging) or ARI6129D (for
dual logging). Respond 0 to message ARI0944D to reformat the log.

7. Restore the database archive tape file created in step 3 above to the target
database, by entering the command:

SQLSTART DBNAME(server-name) PARM(STARTUP=R)

Do not specify LOGMODE=A or L when you issue SQLSTART. Message
ARI0253D is displayed, indicating that the restored database archive is not
known to the database manager. (The database manager keeps track of archives
in the log history area.) Reply IGNORE to this message. When the application
server is started and ready for operator commands, shut it down by issuing the
SQLEND command.

8. Install the correct version of the HELP text into the target database.
This text is different on the VSE and VM operating systems, so if you have
moved from one system to the other and had the HELP text installed, replace it
with the target system version.
For information on how to install the HELP text, see the DB2 Server for VM
Program Directory.

Using the SQLDBDEF Utility
The SQLDBDEF utility can be helpful if you are moving your database. This utility
extracts the definition of database objects from a DB2 Server for VSE & VM
database, and generates a DBSU job that can be used to create the same objects on
another DB2 database. The target database can be any DB2 database, for example,
DB2 Server for VSE & VM, DB2 UDB for OS/390, DB2 UDB for Linux, and so on.
When the objects have been created on the target platform, the load utilities of the

46 System Administration

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|
|
|
|
|

target database can be used to load the data. Packages can be unloaded from the
source database and reloaded to the target database so that existing client
applications can continue to be used.

For more information about the SQLDBDEF utility, see “Appendix G. Service and
Maintenance Utilities” on page 467.

Moving a VM Application Server from One User ID to Another
If you are moving a database from one VM user ID to another VM user ID, you
need to do the following:
1. Update the VM directory entries for the new user ID. Use the same statements

as they were used in the origin user ID. See “VM Directory Control
Statements” on page 137 for some example entries of the VM directory control
statements.

VMSES/E Consideration

If the database you are moving is the original database machine (SQLMACH),
which VMSES/E recognizes, you must update the installation user ID’s VM
directory to link to the new production and service minidisks.

End of VMSES/E Consideration

2. Copy all the files from the original service and production minidisks to the
new service and production minidisks.

3. Copy the PROFILE EXEC from the original database user ID’s A-disk to the
new user ID’s A-disk.

4. In the new user ID, access the production minidisk as file mode Q in write
mode.

5. XEDIT the file ARISPIDC MACRO Q. Change the original database user ID to
the new user ID. For example:
Before:
Line 1: PRODUCTION: SQLMACH 195
Line 2: SERVICE: SQLMACH 193...

After:
Line 1: PRODUCTION: NEWMACH 195
Line 2: SERVICE: NEWMACH 193...

6. XEDIT the file resid SQLDBN Q. Change the original database user ID to the
new user ID. For example:
Before:
DBMACHID=SQLMACH,DCSSID=dcssid,DBNAME=dbname

After:
DBMACHID=NEWMACH,DCSSID=dcssid,DBNAME=dbname

7. XEDIT the file resid SQLFDEF Q. Change all the occurrences of the original
database user ID to the new user ID. For example:
Before:

Chapter 3. Planning for Database Migration 47

|
|
|

|
|

/*** FOLLOWING LINES FOR BDISK ***/
If var1='DEF' Then CP LINK SQLMACH 200 200 W...

/*** FOLLOWING LINES FOR LOGDSK1 ***/
If var1='DEF' Then CP LINK SQLMACH 201 201 W...

/*** FOLLOWING LINES FOR LOGDSK2 ***/
If var1='DEF' Then CP LINK SQLMACH 202 202 W...

/*** FOLLOWING LINES FOR DDSK1 ***/
If var1='DEF' Then CP LINK SQLMACH 203 203 W...

/*** FOLLOWING LINES FOR DDSK2 ***/
If var1='DEF' Then CP LINK SQLMACH 204 204 W...

/*** FOLLOWING LINES FOR DDSK20 ***/
If var1='DEF' Then CP LINK SQLMACH 216 216 W...

After:
/*** FOLLOWING LINES FOR BDISK ***/
If var1='DEF' Then CP LINK NEWMACH 200 200 W...

/*** FOLLOWING LINES FOR LOGDSK1 ***/
If var1='DEF' Then CP LINK NEWMACH 201 201 W...

/*** FOLLOWING LINES FOR LOGDSK2 ***/
If var1='DEF' Then CP LINK NEWMACH 202 202 W...

/*** FOLLOWING LINES FOR DDSK1 ***/
If var1='DEF' Then CP LINK NEWMACH 203 203 W...

/*** FOLLOWING LINES FOR DDSK2 ***/
If var1='DEF' Then CP LINK NEWMACH 204 204 W...

/*** FOLLOWING LINES FOR DDSK20 ***/
If var1='DEF' Then CP LINK NEWMACH 216 216 W...

8. If the database server name is going to be different, follow the steps described
in “Changing the Server Name and Resource Identifier” on page 49 to change
the server name and the resource ID.

9. Copy the database minidisks (Directory, log disks and dbextents) to the new
userid. For details on moving the database minidisks, refer to the following
sections in “Chapter 9. Making Backups and Recovering from Failures” on
page 191:
v Replacing a Minidisk Using DASD Dump Restore
v Replacing a Database Minidisk
v Replacing a Log Minidisk

10. VMSES/E considerations: To apply service to the new user ID, you must
create a PPF (Product Parameter File) override to the 5697F42R $PPF file. The
PPF override must reflect the new database user ID and service and

48 System Administration

production minidisk address or SFS directory names. The $PPF file resides on
the VMSES/E Software Inventory disk (MAINT 51D). Therefore, when
servicing DB2 Server for VM, the files are copied to the correct database user
ID. Refer to the VM/ESA: VMSES/E Introduction and Reference for more
information on creating a PPF override.

Converting a Service Machine to a Database Machine
You may need at times to convert a service machine to a database machine if a
database is required on that processor.

To convert this processor to a database machine, all you have to do is generate a
database and make the appropriate VM directory changes.

For more information, see “Adding a Primary Database Machine” on page 273.

Changing the Server Name and Resource Identifier
Situations exist where you may want to change the application server name or the
resource identifier. For example, you may want to change an application server
name from 8 to 18 characters or have it conform to your naming conventions, or
you may want to change a resource identifier name to a registered DRDA TPN.

The first character of the application server name must be an uppercase letter
(A–Z), followed by alphanumeric characters. The name must be from 1 to 18
characters.

The following example shows how to rename an application server with a
character resource identifier. In this example, the DB2 Server for VM production
minidisk is assumed to be the Q-disk, and an application server with a DBNAME
of dbname1 and a RESID of resid1 will be renamed to dbname2 resid2.

Notes:

1. In a DRDA2 environment, the database manager uses the RESID to create its
own log name. Therefore, before changing the server name, ensure that any
DRDA2 in-doubt agents have been resolved. Once the server name has
changed, use the RESET CRR LOGNAMES command to clear old log names.
When the database manager is next started with the initialization parameters
PROTOCOL=AUTO and SYNCPNT=Y and Resynchronization Initialization
occurs, the DB2 Server for VM log status will be COLD.

2. If the RESID NAMES Q file is not on the production minidisk, use XEDIT to
create the file. Create it with one entry that has the following three tags:
:nick
:dbname
:resid

1. Access the Q-disk with write capability.
2. Enter the CMS command:

FILELIST resid1 * Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:
a. resid1 SQLDBGEN
b. resid1 SQLDBN
c. resid1 SQLFDEF

3. Rename the file name of each file:

Chapter 3. Planning for Database Migration 49

RENAME / resid2 SQLDBGEN Q
RENAME / resid2 SQLDBN Q
RENAME / resid2 SQLFDEF Q

4. Edit resid2 SQLDBN Q:
XEDIT resid2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname1

Replace the DBNAME value (DBNAME=dbname1) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2

5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

In this file, you see the :DBNAME and :RESID tags. Replace the resource
identifier resid1 with resid2, and dbname1 with dbname2.
Before:

:nick. :dbname.dbname1 :resid.resid1

After:
:nick. :dbname.dbname2 :resid.resid2

6. If the old server name or resid (for example, TPN) is referenced by any CMS
communication directory entries, you must update those directory entries.

After changing your application server name and resource identifier, ensure that
users enter:

SQLINIT DB(dbname2)

to identify the application server to be accessed.

When you want to start the renamed application server, specify the new server
name when you enter SQLSTART:

SQLSTART DB(dbname2)

The following example shows how to rename an application server, and how to
change a resource identifier to a registered DRDA TPN. In this example, the DB2
Server for VM production minidisk is assumed to be the Q-disk, and an
application server with a DBNAME of dbname1 and a RESID of resid1 will be
renamed to dbname2 07F6C4C2. The RESID 07F6C4C2 represents the default DRDA
TPN X'07F6C4C2'.

Note: If the RESID NAMES Q file is not on the production minidisk, use XEDIT to
create the file. Create it with one entry that has the following three tags:

:nick
:dbname
:resid

1. Access the Q disk with write capability.
2. Enter the CMS command:

FILELIST resid1 * Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:
a. resid1 SQLDBGEN
b. resid1 SQLDBN

50 System Administration

c. resid1 SQLFDEF
3. Rename the file name of each file:

RENAME / 07F6C4C2 SQLDBGEN Q
RENAME / 07F6C4C2 SQLDBN Q
RENAME / 07F6C4C2 SQLFDEF Q

4. Edit 07F6C4C2 SQLDBN Q:
XEDIT 07F6C4C2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname1

Replace the DBNAME value (DBNAME=dbname1) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2

5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

In this file, you will see :DBNAME and :RESID tags. Replace the resource
identifier resid1 with the hexadecimal value X'07F6C4C2' and dbname1 with
dbname2.
Before:

:nick. :dbname.dbname1 :resid.resid1

After:
:nick. :dbname.dbname2 :resid.X'07F6C4C2'

6. Enter a hexadecimal TPN value in the CMS communication directory by using
the SET VERIFY ON HEX 1 72 command, and entering the hexadecimal
digits.

Chapter 3. Planning for Database Migration 51

52 System Administration

Chapter 4. Planning for Operation of the Database Manager

Once the DB2 Server for VM code is installed and your database generated, the
operator can start the application server so that users can access the databases and
submit SQL statements. This chapter explains the planning tasks associated with
starting, running, and stopping the application server. For information on the
actual operator commands, see the DB2 Server for VSE & VM Operation manual.

Starting the Application Server
This section discusses the following topics:
v The database operator
v Multiple user mode initialization parameters
v Single user mode initialization parameters
v Tape support
v General file support
v Starting the application server in multiple user mode
v Running multiple user mode applications
v Starting the application server in single user mode
v Overriding initialization parameters
v Creating a parameter file

The Database Operator
Each database machine has its own operator console called the DB2 Server for VM
operator console. The user who operates this console is referred to as the database
operator.

When more than one database machine is active, there is more than one database
operator console. With VM facilities, a single person can operate many database
machines. For example, one person can operate many database machines by
running the virtual machines disconnected. This common operator can reconnect to
the various machines as needed.

Another way to have one operator is to use the VM Single Console Image Facility
or the Programmable Operator Facility. These facilities allow the VM system
operator to operate all the database machines. To learn more about the single
console image facility and the programmable operator facility, refer to the VM/ESA:
CP Programming Services or the VM/ESA: Planning and Administration manuals.

The database manager can operate in one of two modes: multiple user mode, or
single user mode.

In multiple user mode, one or more users or applications concurrently access the
same database. The database manager runs in a virtual machine while one or more
applications run in other virtual machines. Users specify the database they want to
access by running the SQLINIT EXEC. This EXEC establishes a default database for
each user. For example, a user who first wants to access a database called TEST,
then use ISQL, would enter:

SQLINIT DB(TEST)
ISQL

The initialization parameter SYSMODE=M defines this mode.

© Copyright IBM Corp. 1987, 2001 53

In single user mode, the database manager and only one application program run in
the same virtual machine. The application server is started, the program name is
passed as a parameter to the database manager, the application is run, and the
application server terminates. The initialization parameter SYSMODE=S defines
this mode.

Multiple User Mode Initialization Parameters
Table 4 identifies the initialization parameters that apply when the database
manager is operating in multiple user mode, and lists their defaults. A discussion
of the appropriate settings for these parameters follows.

Table 4. Multiple User Mode Initialization Parameters

Parameter Default Minimum Maximum

Environment Parameters

DBNAME(name) None — —

DCSSID() SQLDBA — —

AMODE() 31 — —

SYSMODE=M M — —

STARTUP=W|R|U W — —

PARMID=name None — —

DBMODE=G|L|N
*IDENT Directory

Entry
— —

PROTOCOL=
SQLDS|AUTO

SQLDS — —

CHARNAME=name INTERNATIONAL — —

ACCOUNT=D|N N — —

SYNCPNT=Y|N
If

PROTOCOL=AUTO,
Y

— —

DSPSTATS=nn 0 0 21

TCPMAXRT=n 158 1 9999

TCPPORT=n ETC SERVICES 0 65535

TCPRETRY=Y|N Y — —

SECALVER=Y|N N — —

SECTYPE=DB2|ESM DB2 — —

Performance Parameters

NCUSERS=n 5 1 251

NPACKAGE=n 10 1 32766

NPACKPCT=n 30 0 100

NPAGBUF=n 10 + NCUSERS x 4 10 40000

NDIRBUF=n NPAGBUF 10 40000

NLRBU=n 1000 10 583333

NLRBS=n
(2 x NCUSERS) +

(NLRBU x
NCUSERS)/2 +10

larger of 50 or (2 x
NCUSERS)

583333

DISPBIAS=n 7 1 10

54 System Administration

||

||||

|

||||

||||

||||

||||

||||

||||

|||||

|
||||

||||

||||

|
|
|
|
||

||||

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

||||

|
|
|
|

|
||

||||

Table 4. Multiple User Mode Initialization Parameters (continued)

Parameter Default Minimum Maximum

NCSCANS=n 30 1 655

LTIMEOUT=n 0 0 99999

PTIMEOUT=n 180 0 99999

PROCMXAB=n 0 0 255

Recovery Parameters

LOGMODE=Y|A|L Y — —

CHKINTVL=n 10 1 99999999

SLOGCUSH=n 90 11 90

ARCHPCT=n 80 10 99

TAPEMGR=N|Y N — —

SOSLEVEL=n 10 1 100

Service Parameters

DUMPTYPE=P|F|N F — —

EXTEND=Y|N N — —

TRACDBSS=nnn... 000... 000... 222...

TRACRDS=nnnnnnn 0000000 0000000 2222222

TRACWUM=n 0 0 2

TRACDRRM=nnnn 0000 0000 2222

TRACDSC=nn 00 00 22

TRACCONV=n 0 0 2

TRACSTG=n 0 0 1

TRACEBUF=n 0 0 99999

Environment Parameters

DBNAME
A database machine can own more than one database. When starting the
application server, specify the name of the database that is to be accessed by the
database machine. Note that DBNAME is not specified in the parameter list of the
SQLSTART command as an initialization parameter. Figure 8 on page 56 shows the
DBNAME parameter specified correctly.

DCSSID
This parameter specifies the name of the bootstrap package to be used. It is not
needed if saved segments are not being used. For more information on saved
segments and specifying the DCSSID parameter, see “Chapter 8. Saved Segments”
on page 171. Figure 8 on page 56 shows the DCSSID parameter specified

correctly. For more information on the use of this parameter, see “Starting the
Application Server in Multiple User Mode” on page 77.

AMODE
This parameter specifies the type of addressing the database manager runs in:
31-bit addressing or 24-bit addressing. Note that AMODE is not specified in the
parameter list of the SQLSTART EXEC as an initialization parameter. Figure 8 on
page 56

Chapter 4. Planning for Operation of the Database Manager 55

|

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

page 56 shows the AMODE parameter specified correctly. For more information on
the use of this parameter, see “Starting the Application Server in Multiple User
Mode” on page 77.

SYSMODE
This parameter is used to specify either single(S) or multiple(M) user mode. Set it
to M to initialize the database manager for multiple user mode operation. This is
the default mode. You will NOT normally specify this parameter as SQL EXECs set
this parameter for you automatically.

STARTUP
This parameter specifies how the database will be started:
v Most of the time let STARTUP default to W (warm start).
v Use STARTUP=R (restore) to restart the application server and restore the

database from an archive tape file.
v Specify STARTUP=U (user restore) if you have archived and restored the

database with user facilities.

For more information, see “Restoring the Database” on page 212.

PARMID
This parameter can be used to specify a CMS file containing the values for the
other initialization parameters. Application program parameters (user parameters)
cannot be included. Specify only the file name for PARMID. The database manager
assumes that the file type is SQLPARM and the file mode is *. The * tells CMS to
search all accessed minidisks (A to Z). Figure 8 shows an example startup that uses
the PARMID parameter.

DBMODE
This parameter identifies the database name as a LOCAL resource (DBMODE=L), a
GLOBAL resource (DBMODE=G), or non-APPC/VM (DBMODE=N) for a
particular session. If the DBMODE parameter is not specified, the resource
authorization specified in the VM directory of the database machine is used.
Consider the following when specifying the DBMODE parameter:
v If you specify DBMODE=L or G to run SQLSTART and the database machine

directory does not contain the control statement IUCV with parameters GLOBAL
or LOCAL, the SQLSTART EXEC fails.

v When DBMODE=G is specified, and the IUCV *IDENT directory entry does not
allow that resource name to be identified as a GLOBAL resource, the application
server ends the startup.

v If DBMODE=L is specified, the application server is identified as a LOCAL
resource even if the IUCV directory entry specifies that the resource is GLOBAL.
Specify this parameter to restrict access to the application server to users on the
local processor.

v If DBMODE=N is specified, no *IDENT directory entries are required, because
the database machine uses IUCV instead of APPC/VM. You should use
DBMODE=N if you have just migrated to a VM/ESA operating system, and you
do not want to make directory changes yet. For more information about
DBMODE=N, see “Delaying the Directory and Database Name Changes” on
page 41.

SQLSTART DBNAME(SQLDBA) DCSSID(MYBOOT) AMODE(31) PARM(PARMID=WARM1,LOGMODE=A)

Figure 8. Starting in Multiple User Mode with a CMS File

56 System Administration

For more information about directory entries, see “VM Directory Control
Statements” on page 137.

PROTOCOL
This parameter specifies the types of protocols that the application server can
handle. It has two options on the SQLSTART EXEC: SQLDS and AUTO.

When PROTOCOL=SQLDS is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM application requesters only. These
application requesters and application server can be in either a local or remote
environment. This option is the default.

When PROTOCOL=AUTO is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM and non-DB2 Server for VM application
requesters. This parameter can only be specified if the DRDA code has been
installed. It is used with the SYNCPNT parameter to control the DRDA
environment. For more information, see the description of the SYNCPNT
parameter and see “Chapter 15. Using a DRDA Environment” on page 391.

On the application server, the PROTOCOL parameter is specified using the
SQLSTART EXEC. On the application requester, the SQLINIT EXEC also has a
PROTOCOL parameter. When a connection is made between the application
requester and the application server, the combination specified by these parameters
determines whether the DRDA protocol or the SQLDS protocol is to be used for
that connection.

You should be aware of the performance impacts of the chosen protocol. For a
detailed explanation on protocols, see the DB2 Server for VSE & VM Performance
Tuning Handbook.

For a list of restrictions when using the DRDA protocol, see “Appendix H. DRDA
Considerations” on page 477. For information on the SQLINIT EXEC, see the DB2
Server for VSE & VM Database Administration manual.

CHARNAME
This section discusses the following:
v Character set considerations at startup
v National language considerations at startup.

Character Set Considerations at Startup: Use the CHARNAME parameter to
specify the CCSIDs to be used as the application server defaults. The default
CCSIDs determine the character sets and code pages to be used to interpret
statements and return results.

The valid CHARNAME values you can specify are ENGLISH (CCSID=37),
INTERNATIONAL (CCSID=500), and all the values that are in the CHARNAME
column of the SYSTEM.SYSCCSIDS catalog table.

The database manager obtains the CCSIDs associated with the CHARNAME by
looking up the row of the SYSTEM.SYSCCSIDS catalog table where the
CHARNAME column matches the CHARNAME parameter. It also obtains the
classification and translation tables associated with the CHARNAME by looking
up the row of the SYSTEM.SYSCHARSETS catalog table where the NAME column
matches the CHARNAME parameter. The classification table is used to identify
valid characters in identifiers. The translation table is used to indicate how to fold
ordinary lowercase identifiers to uppercase.

Chapter 4. Planning for Operation of the Database Manager 57

For CHARNAMEs ENGLISH and INTERNATIONAL, their CCSID values, the
classification table and the translation table are stored internally. The rows in
SYSTEM.SYSCCSIDS and SYSTEM.SYSCHARSETS for these CHARNAMEs are for
reference purposes only and are not used by the database manager.

During startup, if you do not specify the CHARNAME parameter, the application
server uses the same CHARNAME that was used the last time it was started. The
values stored in the rows where SQLOPTION equals CHARNAME, CCSIDSBCS,
CCSIDMIXED, and CCSIDGRAPHIC are for reference purposes only. They reflect
the current values associated with the system. The only way to change the default
values is by starting the application server with a different CHARNAME
parameter. Any updates to the values in the SYSTEM.SYSOPTIONS table are
ignored during startup.

Note: The database manager determines the current default CHARNAME from the
CCSID attribute of the CNAME character column in the
SYSTEM.SYSCOLUMNS catalog table. If this value is null, then 37 is used (a
CCSID of 37 corresponds to a CHARNAME of ENGLISH). The database
manager uses the CCSID value to locate the corresponding row in the
ARISCCS MACRO file to obtain the associated CHARNAME. The value in
the CHARNAME column of this row is the current application server
default CHARNAME.

When you specify a value for the CHARNAME parameter that is different from
the current application server default CHARNAME, you are prompted to choose
whether or not you want to change the application server default CHARNAME. If
you specify YES and have supplied a valid CHARNAME value, the database
manager updates the application server default values for CHARNAME,
CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC. It also modifies the CCSID
attribute of all character columns that are part of the catalog tables to the
application server default CCSID. The CCSID attribute of character columns that
are not part of the catalog tables are not modified. If the value for CCSIDMIXED is
not zero, this value is used as the application server default CCSID. If the value for
CCSIDMIXED is zero, then the application server default CCSID is the value of
CCSIDSBCS.

Note that the tables which have their CCSID modified when the CHARNAME is
changed include:
v All tables created by SYSTEM
v The following tables created by SQLDBA:

– SQLDBA.ROUTINE
– SQLDBA.STORED QUERIES
– SQLDBA.SYSLANGUAGE
– SQLDBA.SYSTEXT2
– SQLDBA.SYSUSERLIST

When a CHARNAME is changed, the following should be considered:
1. The FIPS Flagger package must be reloaded by using the ARISDBMA EXEC.

Failure to do this can cause SQLCODE=-931 (SQLSTATE=58004). This will
render the agent reporting the SQLCODE error unable to preprocess packages
until the application server is started. Once the FIPS Flagger package is
reloaded or repreprocessed, this error will not occur.

2. All views which are dependent on the tables that had their CCSID modified
must be dropped and recreated.
The following query lists all such view packages:

58 System Administration

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'V'
AND VALID = 'N'

This query is useful in that owners of affected views can be notified to drop
and recreate their view before they try and use the view and get an error
(SQLCODE=-835, SQLSTATE=56049, with SQLERRD1 set to -833).

3. All packages which are dependent on the tables that had their CCSID modified
must be dropped and recreated.
The following query lists all such packages:

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'X'
AND VALID = 'N'

This query is useful in that owners of affected packages can be notified to
rebind the packages instead of having them dynamically repreprocessed at run
time. The DBS utility REBIND PACKAGE command can be used to rebind the
packages listed.

4. The ISQL package (SQLDBA.ARIISQL) and DBS utility package
(SQLDBA.ARIDSQL) can be reloaded and recreated using the ARISDBMA
EXEC. If this is not done, the first time these packages are used, they will be
dynamically repreprocessed.

To check if all the above activities have been done, run the following query:
SELECT CREATOR, TNAME, PLABEL

FROM SYSTEM.SYSACCESS
WHERE VALID = 'N'

If there are no rows found, all packages have been either recreated, reloaded,
rebound or dynamically repreprocessed and the VALID column value for the
package in SYSTEM.SYSACCESS has been changed to “Y”.

Note that CCSID conversion of the data in catalog tables does not occur: only the
CCSID attribute of the columns is modified. If you change the application server
default CHARNAME, system objects of the character data type (for example, table
names and column names) stored in the catalog may be displayed differently. The
reason for this is that a code point may represent different characters in different
code pages.

If you want to change the application server default CHARNAME, the default will
not be changed if:
v You specify an invalid value for the CHARNAME parameter
v An error occurs in the verification of the

– New CHARNAME CCSID values
– Classification table
– Translation table.

When the application server is started, it records the application server default
values for CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table. To obtain these values, you can query the
table. For example, to determine the name of the character set that is currently in
use, issue:

Chapter 4. Planning for Operation of the Database Manager 59

SELECT VALUE
FROM SYSTEM.SYSOPTIONS
WHERE SQLOPTION = 'CHARNAME'

For more information about character sets, see “Chapter 13. Choosing a National
Language and Defining Character Sets” on page 303.

National Language Considerations at Startup: You can use the SET LANGUAGE
command from the operator console to choose a national language so that DB2
Server for VM messages can be received in the selected language. For more
information see “National Language Support for Messages and HELP Text” on
page 331.

ACCOUNT
This parameter enables the accounting facility. When ACCOUNT=D is specified,
accounting records are generated and directed to the VM system accounting file. If
the default value of ACCOUNT=N is specified, accounting information is not
generated.

For a complete description of the accounting facility, see “Chapter 11. Using the
Accounting Facility” on page 247.

SYNCPNT
This parameter specifies whether or not a sync point manager (SPM) will be used
to coordinate DRDA2 DUOW two-phase commit and resynchronization activity. It
is only meaningful when PROTOCOL=AUTO.

If Y is specified, the server will use a sync point manager, if possible, to coordinate
two-phase commits and resynchronization activity. If N is specified, the server will
not use an SPM to perform two-phase commits. If N is specified, the database
manager is limited to multi-read, single-write distributed units of work and it can
be the single write site. If Y is specified, but the database manager finds that a
sync point manager is not available, then the server will operate as if N was
specified.

The default is SYNCPNT=Y, if PROTOCOL=AUTO.

DSPSTATS
This two digit parameter specifies what information is displayed and what level of
detail is displayed. If 0 is specified, nothing is displayed. If 1 is specified, the
minimum information is displayed. If 2 is specified, more detail is displayed. The
positional digits correspond to the following informational displays: the first is
checkpoint performance information and the second is counter information to be
displayed at system shutdown.

If the first option is 1, then format 1 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining how often checkpoints occur. If
the first option is 2, then format 2 of message ARI2052I is displayed every time a
checkpoint occurs. This is useful in determining if checkpoint processing is causing
a performance problem.

If the second option is 1, then the “COUNTER *” operator command is issued just
before the application server is shutdown. This is useful for performance tuning. If
the dataspaces feature is being used, “COUNTER POOL *” command is also
issued.

60 System Administration

The SET command changes the value of this parameter without having to stop and
restart the application server. For more information on the SET operator command,
see the DB2 Server for VSE & VM Operation manual.

SECALVER
This parameter determines if the application server will accept users that have
already been verified by another system. If SECALVER=Y, verified users will be
accepted. The requester only needs to send a user ID to be validated. If
SECALVER=N, verified users will not be accepted. The requester must send a user
ID and password to be verified.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

SECTYPE
This parameter determines if the application server will validate a user ID and
password for connect authority using an external security manager or by checking
the DB2 SYSUSERAUTH catalog table. If SECTYPE=ESM an external security
manager will be used to validate the user ID and password. The external security
manager must support the RACROUTE application programming interface. If
SECTYPE=DB2, the user ID and password are validated by checking the
SYSUSERAUTH catalog table.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

TCPMAXRT
This parameter specifies the maximum number of times the application server will
attempt to re-enable TCP/IP support if it was disabled.

For a complete description of TCP/IP support, see “Chapter 16. Using TCP/IP
with DB2 Server for VM” on page 415.

TCPPORT
This parameter specifies the TCP/IP port number that the application server will
use to listen for incoming TCP/IP connect requests.

If this parameter is not specified, TCP/IP support will be initialized and the ETC
SERVICES file on the TCP/IP client disk will be searched to determine the port
number that the application server will use.

If this parameter is specified with a non-zero value, TCP/IP support will be
initialized and the value specified will be used as the port number that the
application server will use.

If this parameter is specified with a value of 0, TCP/IP support will not be
initialized.

For a complete description of TCP/IP support, see “Chapter 16. Using TCP/IP
with DB2 Server for VM” on page 415.

TCPRETRY
This parameter determines if the application server will automatically attempt to
re-enable TCP/IP support if it becomes disabled.

Chapter 4. Planning for Operation of the Database Manager 61

|
|
|

|
|

|
|

|
|
|

For a complete description of TCP/IP support, see “Chapter 16. Using TCP/IP
with DB2 Server for VM” on page 415.

Performance Parameters

NCUSERS
This parameter defines the maximum number of real agents that the database
manager can actively handle at any one time, limiting the number of users that can
be supported by the database manager. The value of NCUSERS is usually less than
the number of connected users anticipated, because not all users will be accessing
data at the same time. This value directly affects the size of the virtual machine
required.

The number of NCUSERS is limited because some static agent storage for each real
agent is obtained below 16 megabytes. See DB2 Server for VM Program Directory.

Figure 9 provides guidelines for setting the NCUSERS parameter. Because these are
only guidelines, you should modify them to concur with the activity on your
system. For additional information, see the DB2 Server for VSE & VM Performance
Tuning Handbook.

If you have application programs that maintain multiple logical units of work in
separate CMS work units, each additional work unit used by an application at one
time must be counted as an additional user.

Each ISQL user can generate a high level of system activity. If you set NCUSERS
so that all ISQL users can be active at the same time (NCUSERS=number of ISQL
users), you minimize the time that any one user must wait for services. However,
if this number is large, it may cause the database manager to be overloaded. To
prevent this, you should also set the MAXCONN parameter of the VM OPTION
directory control statement, which limits the number of users and the number of
DASDs that a given virtual machine can access. For information on this parameter,
see “Inter-Machine Communications” on page 94.

Application developers typically do a considerable amount of other activity (such
as CMS file editing or output scanning). These users require less service from the
database manager, so NCUSERS can be lowered accordingly.

If you are using VSE guest sharing, the NCUSERS of the VM database machine
should be increased by the number required for the VSE guest. The demand for
services from CICS transaction processing can vary widely, depending on the
nature of the transactions.

The demand for services from batch application programs can also vary
considerably. If you have online or interactive activity on the database manager,
consider limiting the amount of concurrent SQL batch processing.

NCUSERS= 1 for each 1-2 users of ISQL (or other query products)
+ 1 for each 1-25 non-ISQL users

(variable on transaction workload)
+ 1 for each 2-5 application program developers

Figure 9. Guidelines for the NCUSERS Parameter

62 System Administration

|
|
|
|
|

||
|
|

|
|

Note: When the application server is started, there may be one or more in-doubt
logical units of work (LUWs). The value of NCUSERS must be large enough
to handle these. When they have been resolved, the DB2 Server for VM
agent structures are used to handle new users. The creation and use of agent
structures for resolving in-doubt LUWs takes precedence over all new user
logical units of work. For more information about in-doubt LUWs, see
“Resolving In-Doubt Transactions” on page 114.

NPACKAGE
This parameter defines the maximum number of packages in an LUW, and
together with the value specified for NCUSERS, determines the size of the package
cache. The size of the package cache limits the number of packages that can be
present in storage simultaneously. (Package cache size =
NPACKAGE x NCUSERS.) The default value of NPACKAGE is 10, and that for
NCUSERS is 5, giving a default package cache of 50, allowing 50 packages to be
present in storage simultaneously.

In general, increasing the size of the package cache improves performance of the
database manager. However, do not increase it to the point where system paging
becomes too great. For more information, see the DB2 Server for VSE & VM
Performance Tuning Handbook.

NPACKPCT
This parameter defines the percentage of the package cache that is used in the
calculation of the package cache threshold. The size of the threshold determines the
number of loaded packages that are kept in storage at the end of an LUW.
(Threshold = NPACKPCT percent of package cache.) If the threshold is exceeded,
the loaded packages are freed and returned to the package cache.

The default values for NPACKPCT and the package cache are 30 and 50
respectively, giving a threshold of 15. In general, increasing the size of the
threshold improves performance. For more information, see the DB2 Server for VSE
& VM Performance Tuning Handbook.

NPAGBUF
This parameter specifies the number of 4096-byte data pages kept in storage
buffers at one time. The number of data buffers you want depends on the number
of active users and the nature of their request. The default for NPAGBUF assumes
an average of four buffer pages for each potentially active user (NCUSERS x 4),
plus ten buffer pages for the buffering of catalog and log information.

In general, increasing NPAGBUF improves the performance of the database
manager. However, increasing it also requires an increase in the size of the
database machine. Also -- and more importantly -- it can cause an increase in the
paging rate of the system. It is more efficient to let the database manager do more
I/O operations than it is to let the system do more paging; database I/O
operations are overlapped whereas system paging operations are not. Therefore do
not increase NPAGBUF to the point where system paging becomes too great.

For more information about NPAGBUF, see the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual.

NDIRBUF
This parameter determines the number of 512-byte directory pages to be kept in
storage. Increasing it reduces the number of I/O operations. Again, bigger is better,
until you either run out of virtual storage or cause too much system paging. Each
directory page addresses 128 data pages.

Chapter 4. Planning for Operation of the Database Manager 63

When you set NPAGBUF and NDIRBUF, you have to choose how to split buffer
space between data pages and directory pages. At least initially, you should set
them to the same value. Issue the COUNTER commands to see the actual I/O
activity; then adjust NPAGBUF and NDIRBUF.

For more information about NDIRBUF, see the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual.

NLRBU and NLRBS
NLRBU specifies the maximum number of lock request blocks allowed for one
active user, while NLRBS specifies the number allowed for all active users.
(Usually, two lock request blocks are used for every lock that a user holds.)

The database manager can perform lock escalations, increasing the granularity of
data being locked from either row or page level to dbspace level. In general, you
only need to change the default values of NLRBU and NLRBS if contention
problems occur. Increasing them reduces the number of lock escalations performed
by the database manager.

When either the NLRBU limit for a user is reached or the NLRBS limit is
approached, lock escalation occurs. This results in fewer locks being required, and
lock request blocks being freed. This in turn reduces the opportunities to share
data. For example, when locking is done at a row level, many users may be
updating the same dbspace at the same time. When it is escalated to the dbspace
level, only one user can update rows in that dbspace. Everyone else must wait
until that person’s update is committed or rolled back.

Escalation can also cause deadlocks. A deadlock occurs when two or more LUWs
are in wait states and dependent on the completion of LUWs that are also in wait
states. For example, suppose two users are updating tables in a dbspace. When the
lock size is escalated to a dbspace level, both users can be locked out, with each
waiting for the other to complete an LUW. The database manager resolves
situations like these by rolling back the newest LUW. For more about locking, see
the DB2 Server for VSE & VM Application Programming manual.

If the default values for NCUSERS (5) and NLRBU (1000) are used, the database
manager defines 2520 lock request blocks, each of which requires 24 bytes; 60480
bytes of virtual storage are required for lock request blocks. With these defaults,
one application could use 1000 lock request blocks and four other applications
could simultaneously use an average of 370 lock request blocks each, before
causing an escalation.

Even though two lock request blocks are needed for each lock, the default values
allow a large number of locks for each application. With the defaults, one
application could use 500 locks while four other applications use an average of 185
locks each.

You should use the NLRBU and NLRBS default values at first, and increase them if
users either are experiencing delays when they access the database manager, or if
they are receiving SQLCODEs of -911, -912, or -915 (rollbacks that occur because of
deadlock, insufficient lock request blocks for the database manager, or insufficient
lock request blocks for a user application, respectively).

Note: These SQLCODEs may also be received during preprocessing, as the locks
are required then as well.

64 System Administration

To test the frequency of lock escalations and of deadlocks, use the COUNTER
operator command. Specify both the ESCALATE and the LOCKLMT counters to
get the number of successful escalations and the number of unsuccessful escalation
attempts respectively. (An escalation can fail if the LUW that reached the lock limit
is rolled back because of a deadlock, or if a sufficient number of lock request
blocks cannot be freed.) For example, suppose the operator issues the command
COUNTER ESCALATE LOCKLMT a few times a day and normally receives results in the
range of 10 to 150 for ESCALATE, and 0 to 5 for LOCKLMT. If, one day, the results
are 428 for ESCALATE and 23 for LOCKLMT, a locking problem would be
indicated.

In addition, the SHOW LOCK MATRIX command can be used to display information
about lock request block usage to determine whether unexpected delays are caused
by locking; to monitor how the database manager is using lock request blocks; and
to determine the lock request blocks required for a single application or for a run
of a preprocessor.

One of the values displayed is called MAX USED BY LUW: the maximum number
of lock request blocks used by any one application during an LUW. (When any
LUW starts to exceed NLRBU and the escalation process occurs, MAX USED BY
LUW is set to zero.) All this information can help you determine the required
values for NLRBU and NLRBS.

To establish the lock request block requirements for running a preprocessor, or for
an application that is causing contention problems:
1. Start the application server in multiple user mode with NCUSERS=1, NLRBU

about five times its current setting, and NLRBS set to the same value as
NLRBU.

2. Start the application and allow it to complete processing.
3. Verify that no escalation occurred by displaying the ESCALATE and LOCKLMT

counters. If no escalation occurred, MAX USED BY LUW will show the number
of lock request blocks required.

4. If an escalation did occur, set NLRBU to a value greater than or equal to MAX
USED BY LUW, then start the application server again, and rerun the
application.

If necessary, reset NLRBS. For example, suppose NLRBU is set to 1100, and two
users will run their applications -- each requiring 1100 lock request blocks -- at the
same time. Also assume that any other application requires about 500 lock request
blocks. If NCUSERS is 5, then set NLRBS to at least 3700 (1100 for each of two
applications and 500 for each of three additional applications).

If an application requires more lock request blocks than you have virtual storage
for, you should consider the following alternatives:
v Use either the SQL ALTER DBSPACE or the SQL LOCK statement to change the

locking level of the dbspace used by the application. The ALTER statement
permanently changes the locking level for all applications, while the LOCK
statement can be inserted into an application, and used to change the locking
level only when that application runs. The LOCK statement is the preferred way
to temporarily modify the locking level, because it involves no update to the
catalog tables.

v Consider changing the application: perhaps it is holding locks longer than
necessary. Additional SQL COMMIT WORK statements in the application may
necessitate fewer locks.

Chapter 4. Planning for Operation of the Database Manager 65

v Consider running the application by itself: either in single user mode, where no
locking is required, or in multiple user mode with a reduced NCUSERS and
with NLRBU and NLRBS set as required.

For more information about locking problems and how to solve them, see the DB2
Server for VSE & VM Diagnosis Guide and Reference manual.

DISPBIAS
This parameter determines how the dispatcher selects the order in which agents
get serviced by the database manager. To set it, you need to understand how the
dispatcher works. Only one agent at a time can be serviced; the other agents wait
in a queue. Within this queue, agents are prioritized according to their estimated
resource consumption: those estimated to consume the least are placed at the top,
while those estimated to consume the most are placed at the bottom.

When the active agent returns to the dispatcher, the next agent at the top of the
queue is dispatched. Every time an agent is dispatched, the database manager
reevaluates the priority of the remaining agents, and requeues them according to
their new priorities.

A pure priority dispatcher can present some problems, however. If many
short-running LUWs are present, the longer-running ones may never get serviced:
they are always at the bottom of the queue. To avoid this problem, fair-share
auditing is used, whereby all the agents in the queue are checked periodically to
see if they are receiving adequate service. When one is found that is not, its
priority is changed and it is moved to the top of the queue.

If fair-share auditing is done frequently, the dispatcher tends to operate more like a
round-robin dispatcher: agents get equal service because those at the bottom of the
queue get bumped to the top more frequently. If it is done infrequently, the
dispatcher tends to operate more like a priority dispatcher: agents get prioritized
service because long-running agents are forced to wait at the bottom of the queue
longer. (Eventually, fair-share auditing causes these agents to get service.)

The DISPBIAS parameter determines how often fair-share auditing is done. When
it is set low (near 1), fair-share auditing is done frequently, and the dispatcher
operates more in round-robin mode. When it is set high (near 10), fair-share
auditing is done infrequently, and the dispatcher operates more in priority mode.

Initially, you should use the DISPBIAS default of 7. If your long-running LUWs are
getting poor service, you may want to use a lower value; if your ISQL users are
often waiting for long-running applications to complete, you may want to use a
higher value. You can use the SET operator command to change the value of
DISPBIAS without having to stop and restart the application server. See the DB2
Server for VSE & VM Operation manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

You may be tempted to set DISPBIAS to 10 to get good response time for ISQL
users. Keep in mind, however, that a long-running LUW can hold a large number
of locks. If other users are waiting for those locks, they must wait until the
application frees them. If the application is waiting at the bottom of the queue,
everyone is waiting. In this situation, you would want to have fair-share auditing

66 System Administration

occur more frequently, so the long-running unit can free the resources it has
locked. The default of seven represents a balance between the interests of
long-running and short-running LUWs.

NCSCANS
This parameter determines the number of internal control scan blocks kept for
accessing tables and indexes. These blocks can vary in size and number depending
on the type of query being performed. This discussion is concerned with
long-running requests that might be queries or database change operations.

Scan control blocks contain positioning information related to a query. The
positioning information can result from a user-defined cursor or by an internal
cursor created by RDS. If an index is involved in the query, the size of the scan
control block depends on the key size for that index. An average scan control block
is assumed to be 50 bytes (32 bytes for control information, and an average key
length of 18 bytes).

The maximum table size to hold the scan control block entries for each agent is 32
kilobytes (32768 bytes). This can contain 655 entries of 50-byte scan control blocks,
which in general, is enough to support 255 user-declared cursors. If, however, the
key lengths for indexes are long, the scan table supports fewer user cursors. For
example, if the key length for a given index associated with a cursor is 255 bytes,
an entry would require 287 (255 + 32) bytes, and the maximum number of cursors
possible using that index would be 114 (32 kilobytes divided by 287). That number
would be reduced if the DB2 Server for VM requests caused internal cursors to be
created. Internal cursors are always smaller than 50 bytes, and cannot use index
keys.

If you have many complex requests, you may have to increase NCSCANS. If it is
not set to a high enough value, users will get SQLCODE -522. For information on
the virtual storage used by NCSCANS, see the DB2 Server for VSE Program
Directory.

LTIMEOUT
This parameter specifies a general lock wait timeout period for any SQL
application, and especially as the way to avoid global deadlocks for DUOW
applications.

The range of the LTIMEOUT value is 0 to 99999 seconds. The value of zero
indicates that no lock timeout should be enforced for agents connected to this
database. This is the default value for a database.

A nonzero lock timeout value will cause any agents waiting for a lock to have their
current transaction rolled back when the lock timeout period has expired. The
agent will notify the application that a lock timeout has occurred with SQLCODE
-911 (SQLSTATE 40001). A reason code will be returned to indicate whether it is a
deadlock or lock timeout situation (reason code 2 for a deadlock situation and
reason code 68 for a lock timeout situation). The lock timeout period begins at the
moment an agent requests a lock on any database resource. The full lock timeout
period is allowed for each lock request.

The lock timeout control parameter should be adjusted in those environments
where lock contention between applications has started to affect the desired
performance and concurrency levels.

Chapter 4. Planning for Operation of the Database Manager 67

If a lock timeout is required for your environment, it is recommended that your
starting value be equivalent to the maximum period of time that you want an
application to wait for a lock.

Note: The LTIMEOUT parameter is changed through the SET operator command.
The timeout value will affect any users currently in LOCK WAIT. If a user
has been in a LOCK WAIT for 100 seconds and the value of LTIMEOUT is
set to a value less than 100, that user will receive a timeout. For more
information on the SET operator command, see the DB2 Server for VSE &
VM Operation manual.

If lock timeout control is activated, you should ensure that all applications
recognize and can handle the -911 SQLCODE that may be received as the result of
a lock timeout initiated rollback.

Note: New units of work that are waiting to begin because a log archive is
running or is scheduled to run are in a lock wait. The SHOW LOCK
WANTLOCK operator command shows these units of work waiting to
acquire an IX lock on the database. Because log archives can potentially take
a significant amount of time to complete, units of work in this particular
type of lock wait are ignored by the lock timeout function.

PROCMXAB
This parameter specifies the number of times a stored procedure is allowed to
terminate abnormally, after which a STOP PROC ACTION REJECT is performed
against the procedure and all subsequent SQL CALL statements for that procedure
are rejected. Note that a timeout that occurs while waiting for a stored procedure
server to be assigned for an SQL CALL statement is not included in this count.

PROCMXAB must be an integer between 0 and 255. The default, 0, means that the
first abend of a stored procedure causes SQL CALLs to that procedure to be
rejected. For production systems, you should accept the default.

PTIMEOUT
This parameter specifies:
v The number of seconds before DB2 Server for VSE & VM ceases to wait for an

SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT
interval expires, the SQL CALL statement fails.

v The number of seconds before DB2 Server for VSE & VM ceases to wait for the
START PSERVER command to complete. If the PTIMEOUT interval expires, a
message is displayed and the START PSERVER command terminates.

The default for PTIMEOUT is 180.

Recovery Parameters

LOGMODE
This parameter determines whether archives will be taken for the database and the
log. Specify LOGMODE=A to maintain an archive of the database, LOGMODE=L
to maintain an archive of the log, and LOGMODE=Y if you want logging but do
not want the log archived.

LOGMODE=A allows you to restore the database and apply the current log.
LOGMODE=L allows you to maintain a database archive as well as log archives.
The database archive followed by the log archives are applied during restore, then
the current log is applied.

68 System Administration

Use LOGMODE=A or L if it is important to protect the database against media
(DASD) failures; otherwise use LOGMODE=Y.

Note: Each sequence of log archives must be preceded by a database archive, so if
you use LOGMODE=L, you must occasionally take a database archive. You
do not need to switch to LOGMODE=A to do so.

For more information on LOGMODE, see “Choosing a Log Mode” on page 196.

CHKINTVL
This parameter determines how often a checkpoint is taken. A checkpoint is an
internal operation in which data and status information is written to permanent
(DASD) storage, and a summary status record is written to the log. A checkpoint
causes two important events:
v Storage pool space is freed.

As updates to data occur, duplicate copies of changed data pages are
maintained. These copies (called shadow pages) are kept in the storage pools of
the pages that were changed. A checkpoint frees the shadow pages, and thereby
frees the storage pool space where they are kept.

v Log space may be freed.
If LOGMODE=Y, a checkpoint typically frees log space by moving the logical
beginning of the log forward to the beginning of the oldest LUW still active at
the time of the checkpoint. If LOGMODE=A or L, log space is only freed when
an archive is taken; not on every checkpoint.

Checkpoints are taken periodically: however, by the time one is taken, there may
be a large amount of data to be committed. If a failure should occur before it is
committed, much processing may need to be redone after the database is restored.

The CHKINTVL parameter lets you take checkpoints at predetermined intervals.
Its value is specified in terms of the number of log pages written between
checkpoints. You can use the SET operator command to change the value of
CHKINTVL without having to stop and restart the application server. See the DB2
Server for VSE & VM Operation manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

By setting it low, you minimize the risk of filling the log or storage pools.
However, because checkpoints are time-consuming operations that suspend SQL
processing until they are completed, they should be taken infrequently. For more
information on setting CHKINTVL, see the DB2 Server for VSE & VM Performance
Tuning Handbook.

SLOGCUSH
This parameter defines the point at which the log cushion is entered and log-full
processing begins. Its value is expressed in terms of the percentage of the log size.
The default of 90 means that when the log is 90% full, log-full processing will be
initiated.

In log-full processing, the oldest active LUWs are rolled back until enough log
space is freed to bring the percentage of the log in use below the SLOGCUSH

Chapter 4. Planning for Operation of the Database Manager 69

level. Ideally, checkpoints and archiving would continually free log space so that
the log would never reach the SLOGCUSH level.

If the log should become 100% full, the database manager would end abnormally,
so you should set SLOGCUSH to a value that allows log-full processing to take
effect (free some log space) before this happens. If the database manager is ending
with log-full conditions, you may want to lower the SLOGCUSH value or increase
the size of your log minidisks.

ARCHPCT
This parameter can be used to define a point at which an archive is automatically
initiated. It is used only when LOGMODE=A or L is specified. Like SLOGCUSH,
its value is expressed in terms of a percentage of the log.

Archives free up log space; however, they take some time to complete. If the
SLOGCUSH value is reached during an online archive operation, all SQL
processing is suspended until the archive is done. For this reason, it is best to
ensure that archives are initiated in time to finish before the log fills to the
SLOGCUSH percentage. This is done by setting the value of ARCHPCT lower than
the value of SLOGCUSH.

When the log becomes full to the ARCHPCT value, a message is issued to the
database machine operator to mount an archive tape and identify the virtual
address (cuu) of the tape drive. The database manager then takes a database or log
archive depending on whether you have LOGMODE set to A (database) or L (log).

If LOGMODE=L, the operator can also direct the log archive to disk. For more
information, see “Log Archiving to Disk” on page 207.

Normally, the operator explicitly archives the database or the log before the
ARCHPCT value is reached, by issuing one of the archive commands. If the
ARCHPCT is reached, meaning that the log is almost full, the action that the
database manager takes depends on the LOGMODE that is in effect. See Table 5 for
a summary of these actions.

Table 5. Summary of Activity When ARCHPCT Level Is Reached

LOGMODE
Parameter

Activity When ARCHPCT is Reached

A An operator message is issued that requests a database archive.

L An operator message is issued that requests a log archive.

Y Because the log cannot be archived, the value for ARCHPCT is ignored.
When the log is full it wraps. If an LUW spans the entire log, a
ROLLBACK WORK is forced for that LUW.

Note: To see how full the log is, you can issue the SHOW LOG command. For a
description of this command, see the DB2 Server for VSE & VM Operation
manual.

TAPEMGR
This parameter indicates whether there is a tape manager available to handle tape
assigns during database and log archives. Y indicates there is a tape manager; N
indicates there is no tape manager.

70 System Administration

|
|
|
|

If TAPEMGR=N, the operator is prompted to enter the virtual device address for
the database archive (with message ARI0299A) and has the option to change the
log archive output medium (with message ARI0246D).

If TAPEMGR=Y, the tape assign is handled by the tape manager and the operator
is not prompted to enter the virtual device number (cuu) of the database archive
output.Log archives are automatically directed to tape and the operator is not
prompted to change the medium of the log archive output. If the operator would
like to direct the log archive to disk, then either the database server must be
started with TAPEMGR= N or the SET TAPEMGR N operator command must be
issued before performing the log archive.

SOSLEVEL
This parameter defines the storage cushion for storage pools. Its value is expressed
as a percentage of space remaining in a storage pool. In multiple user mode
processing (and single user mode processing where LOGMODE is not N), if any
storage pool gets full to the point where only the SOSLEVEL percentage of storage
pool pages is still free, a checkpoint is taken to free any shadow pages in use.

If, following this, only enough pages are freed to bring the number of free pages
just above the SOSLEVEL, frequent checkpointing could occur. For more
information, see the DB2 Server for VSE & VM Diagnosis Guide and Reference
manual. If, however, the number of free storage pool pages is still at or below
SOSLEVEL, message ARI0202I is issued once to inform the user that the number of
free pages left in the storage pool is fewer than the SOSLEVEL. This message is
also issued once in single user mode with LOGMODE=N, but no checkpoint is
taken.

Attention: If message ARI0202I is received, it indicates some action may be
needed to prevent imminent filling of the storage pool.

One possible action is to stop the application server and extend that storage pool
with the SQLADBEX EXEC. However, you can remedy the situation without
stopping the application server if you have set SOSLEVEL high enough to give
you adequate warning. When the message is received, proceed to remove
unneeded data from the storage pool, either by dropping dbspaces or tables, or by
reorganizing the data with a smaller percentage of free space for each page. In
order to do this, you must have adequate warning to schedule the necessary
processing.

Service Parameters

DUMPTYPE
This parameter defines whether or not dumps are to be taken, and the amount of
information to be dumped if they are.

DUMPTYPE=N indicates that a dump is not taken.

DUMPTYPE=F gives you a full dump of the virtual machine, as well as any saved
segments it uses. This occurs on some error conditions and trace points.

DUMPTYPE=P gives you a partial dump of the database machine on certain error
conditions. A dump is not taken when a limit error (message ARI0039E) or
hardware error (message ARI0041E) occurs, or when a user specification error is
detected. (If you specify the DUMP keyword in the TRACE ON command,
DUMPTYPE=P also generates partial dump output to the trace file for a specified

Chapter 4. Planning for Operation of the Database Manager 71

|
|
|

|
|
|
|
|
|
|

trace point in the database manager.) The partial dump provides a dump of control
blocks and other dynamically obtained virtual storage in the database machine.

You can use the SET operator command to change the value of DUMPTYPE
without having to stop and restart the application server. See the DB2 Server for
VSE & VM Operation manual for more information on the SET operator command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

For more information on dumps, see the DB2 Server for VSE & VM Diagnosis Guide
and Reference manual.

EXTEND
This parameter specifies whether or not special recovery commands are processed
at startup. Only set it to Y when you have a DBSS processing error or a severe user
error. For more information on this parameter, see the discussion on starting the
application server to recover from DBSS errors in the DB2 Server for VSE & VM
Diagnosis Guide and Reference manual.

TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC,
TRACCONV, and TRACSTG
These parameters call the trace facilities during startup (as opposed to the TRACE
operator command). Except for TRACWUM and TRACDRRM (which are not
supported in single user mode), they are used primarily for tracing in single user
mode, but can be set in multiple user mode if you want to start tracing as soon as
possible. For information about tracing, refer to the DB2 Server for VSE & VM
Operation manual.

TRACEBUF
This parameter specifies the amount of memory (in kilobytes) to allocate to the
trace buffer. Specifying a nonzero value causes trace output to be stored in a fixed
size buffer in memory. Trace records are stored in wrap-around mode in this buffer,
and when tracing is turned off, the contents of the buffer are written to disk or to
tape (as specified by the ARITRAC FILEDEF statement). The trace buffer is only
created if you specify TRACEBUF with at least one of the startup initialization
parameters TRACRDS, TRACDBSS, TRACDSC, TRACCONV, TRACDRRM,
TRACWUM, or TRACSTG; it is not created if the TRACEBUF default (n=0) is
specified. A suggested size for the trace buffer is 100 kilobytes or more. If you do
not specify TRACEBUF and tracing is requested, trace records are written directly
to disk or tape as the trace points are processed.

Single User Mode Initialization Parameters
Table 6 identifies the initialization parameters that apply when the database
manager is operating in single user mode.

Table 6. Single User Mode Initialization Parameters

Parameter Default Minimum Maximum

DBNAME(name) None — —

DCSSID() SQLDBA — —

AMODE() 31 — —

SYSMODE=S — — —

STARTUP=W|R W — —

72 System Administration

||

||||

||||

||||

||||

||||

||||

Table 6. Single User Mode Initialization Parameters (continued)

PARMID=name None — —

CHARNAME=name INTERNATIONAL — —

ACCOUNT=D|N N — —

PROGNAME=name None — —

DSPSTATS=nn 00 00 21

Performance Parameters

NPACKAGE=n 10 1 32766

NPACKPCT=n 30 0 100

NPAGBUF=n 14 10 40000

NDIRBUF=n NPAGBUF 10 40000

NCSCANS=n 30 1 655

Recovery Parameters

LOGMODE=Y|A|L Y — —

CHKINTVL=n 10 1 99999999

SLOGCUSH=n 90 11 90

ARCHPCT=n 80 10 99

TAPEMGR=N|Y N — —

SOSLEVEL=n 10 1 100

Service Parameters

DUMPTYPE=P|F|N F — —

EXTEND=Y|N N — —

TRACDBSS=nnn... 000... 000... 222...

TRACRDS=nnnnnnn 0000000 0000000 2222222

TRACWUM=n 0 0 2

TRACDRRM=nnnn 0000 0000 2222

TRACDSC=nn 00 00 22

TRACCONV=n 0 0 2

TRACSTG=n 0 0 1

TRACEBUF=n 0 0 99999

Most of the considerations for setting these parameters are the same as those
described under “Multiple User Mode Initialization Parameters” on page 54, with
the following exceptions:
v The value of SYSMODE is S, which specifies that the database manager is

dedicated to a single application.
v The database manager does not generate accounting records when

STARTUP=C|E|L|S|I|M, which are special situations. For more information,
see the DB2 Server for VSE & VM Operation manual.

v The DBMODE parameter does not apply.
v The PROTOCOL parameter does not apply.
v The SYNCPNT parameter does not apply.

Chapter 4. Planning for Operation of the Database Manager 73

|

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

||||

|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

v The PROGNAME parameter is required (except when
STARTUP=C|E|L|S|I|M, which are special cases), to identify the application
program to be run.

v The NCUSERS parameter is not used; it defaults to 1.
v The DISPBIAS parameter does not apply.
v The NLRBS and NLRBU parameters are omitted (there is no locking in single

user mode).
v The LOGMODE parameter can take the value N, which specifies that changes

made by the application program are not to be logged.
If LOGMODE=N, database changes are only committed when a checkpoint is
explicitly taken (with COMMIT WORK statements).
The ARCHPCT parameter cannot be specified if LOGMODE=N.

v The TRACDRRM and TRACWUM parameters do not apply.

Tape Support
The database manager can use tape files for recording archive and trace
information. You can also use tape files with the DATALOAD/DATAUNLOAD
and RELOAD/UNLOAD facilities of the DBS utility. (It is also possible to use tape
files for the DB2 Server for VM preprocessors, but this is unusual.)

For the archive and trace tape files, the IBM-supplied EXECs that starts these
facilities provide default CMS FILEDEF commands for the needed tapes. These
default FILEDEFs are shown under the descriptions of the EXECs that call them.

You can also take log archives to disk. For more information, see “Log Archiving to
Disk” on page 207.

For the DBS utility tape files, you must supply your own CMS FILEDEF
commands. You can also specify LABELDEF commands. You should use the
LABELDEF command for multivolume standard label tapes.

To specify your own FILEDEF and LABELDEF commands, issue them before
invoking the EXEC that calls the facility. When an IBM-supplied EXEC issues a
CMS FILEDEF command for tape files, it uses the NOCHANGE parameter. This
means that any FILEDEF (or LABELDEF) that you supply before running the
EXEC overrides the default.

The database manager uses the CMS simulation of OS QSAM for its tape support.
The database manager also provides additional support, as follows:
v Unlabeled tapes and IBM (EBCDIC) standard labels
v Multivolume tape files (with standard labels only)
v Spanned records for both input and output

The following sections discuss considerations for using tape support.

Unlabeled Tapes
When using unlabeled tape output files, you should be aware of the following:
v The mounted tape must not contain a volume label (VOL1). If it does, tape

OPEN processing fails.
v For output files, if end-of-volume is reached before the tape is closed, CMS ends

abnormally.
v A database or log archive cannot span multiple tapes if they are unlabeled tapes.

Standard labeled tapes must be used for multiple volume tape archives.

74 System Administration

Labeled Tapes
When using standard label tapes, you should ensure that the mounted tape
volume (or volumes) contain volume labels (VOL1) and file labels (HDR1). These
labels must be recorded in the same tape density as specified (or allowed to take
the default) when creating the new file. If you do not ensure that the labels are
recorded in the same density as specified when creating the new file, tape OPEN
processing fails.

You can use the CMS TAPE command to check whether a volume contains a
volume label (and display the label’s contents) with the DVOL1 keyword. (You
must supply the TAPn parameter as appropriate.)

You can also use the CMS TAPE command to create a volume label (VOL1) and
dummy HDR1 label with the WVOL1 keyword. (Once again, you must supply the
TAPn and DEN parameters as appropriate.) The tape volume label must be
recorded in the same density as the file to be created. (The density of the volume
label must match the CMS FILEDEF command DEN parameter value.)

You should specify LABELDEF commands for your tape files so that processes that
use tapes (such as RESTORE) can verify that the correct tape is mounted. This is
particularly advisable when working with multivolume tape files.

Note: If you are processing multivolume tape files, you should use a different
VOLID for each tape volume so that the system can verify that the correct
tape is mounted. To do this, enter VOLID ? with the LABELDEF command.
CMS prompts you for the individual VOLIDs. For more information on the
LABELDEF command, see the VM/ESA: CMS Command Reference manual for
your VM system.

Single-Volume Tape Files
For single-volume tape files, you can use the following CMS FILEDEF command
tape label options:
v SL if the tape has standard labels
v NL if the tape is unlabeled
v BLP if the tape has standard labels, standard user labels, or nonstandard labels

with a tape mark at the end of the labels
v LABOFF if the tape is unlabeled (and has no leading tape mark).

The database manager does not support nonstandard labels or standard user labels
(except with the FILEDEF BLP parameter as described in the preceding list).
Therefore, you must not specify tape label options SUL or NSL in the CMS
FILEDEF command.

Multiple Volume Tape Files
In addition to the FILEDEF command, you should specify a LABELDEF command
for multivolume standard label tapes. This enables CMS to verify that the correct
tape is mounted when a multivolume tape file is being processed.

If you have two tape drives available, you can specify an alternate tape drive in
the FILEDEF command (this is only supported with labelled tapes). This causes
tape drives to be switched automatically when end-of-tape is reached. If you are
using a single tape drive you must mount a new tape when end-of-tape is reached.

Chapter 4. Planning for Operation of the Database Manager 75

The following is an example of FILEDEF and LABELDEF commands for a
database archive:

This LABELDEF statement assumes that the archive requires two tape drives. If it
requires more, you are prompted to enter more VOLIDs during the archive
procedure.

Tape Manager Support
The initialization parameter TAPEMGR indicates whether or not a tape manager is
being used. During a database or log archive, if a tape manager exists and
TAPEMGR = Y, the tape manager handles the tape assign. Otherwise, the operator
is prompted to enter the virtual device address of the archive output

Spanned Records
For spanned-record files, omit the LRECL value from the CMS FILEDEF command.
If specified, it is ignored.

There are no other special considerations for spanned-record input files.

For spanned-record output files:
v If RECFM=VBS is specified and the maximum logical record size is less than the

block size minus 4, the database manager changes the RECFM value to VB (in
the CMS file system).

Note: Files written in RECFM=VB format can be read with the RECFM
specification of either VBS or VB.

v If RECFM is not VBS, the database manager uses (in the CMS file system)
RECFM U and simulates RECFM=VS. (The file is written in RECFM=VS format.)

Note: Files written in RECFM=VS format can be read with the RECFM
specification of either VS or VBS.

Blocking for Archives to Tape and Disk
The block size for database archive file output and log archive file output is always
28 kilobytes.

General File Support
Many of the database manager facilities use SYSIN, SYSPRINT, and SYSPUNCH
files. The IBM-supplied EXECs that call these facilities often contain parameters
that allow you to assign these files to various devices. These EXEC parameters
generate CMS FILEDEF commands for the files internally.

In many instances, however, the EXECs provide for only the most common files. If
you want something that is not an option in an EXEC parameter, you can issue a

TAPE WVOL1 ARCD1 (TAP1
TAPE WVOL2 ARCD2 (TAP2
LABELDEF ARIARCH VOLID ?
DMSLBD441R Enter VOLID information:
ARCD1
DMSLBD441R Enter VOLID information:
ARCD2
DMSLBD441R Enter VOLID information:

FILEDEF ARIARCH TAP1 SL 1 (ALT TAP2

76 System Administration

|
|
|
|
|

FILEDEF command before running the EXEC. For example, to assign SYSIN to
tape for the DBS utility, you must issue a CMS FILEDEF command before running
the DBS utility EXEC (SQLDBSU).

Many of the usual VM assignments for SYSIN, SYSPRINT, and SYSPUNCH are
valid for DB2 Server for VM use. The following list summarizes the valid
assignments:

SYSIN
The SYSIN files can be CMS files, virtual reader files, the virtual machine
terminal, or tape and DASD SAM files supported by CMS OS QSAM. The
files must contain fixed-length 80-byte logical records. Except for the
virtual reader files and for terminal input, the files can be fixed block. A
CMS FILEDEF command for SYSIN can specify RECFM FB and BLKSIZE
nnnn. The nnnn must be some multiple of 80.

SYSPRINT
The SYSPRINT files can be CMS files, virtual printer files, the virtual
machine terminal, or tape SAM files supported by CMS OS QSAM. All
SYSPRINT records are fixed-length, 121-byte logical records. The 1st byte is
an ANSI (ASA) carriage control character.

Except for the virtual printer files and terminal output, the files can be
fixed blocked. A CMS FILEDEF command for a SYSPRINT file can specify
RECFM FBA (or FB) and BLKSIZE nnnn. The nnnn must be some multiple
of 121. If you specify RECFM in the SYSPRINT FILEDEF, you must specify
FA or FBA (unless you want the ANSI carriage control characters printed).
The value FA is the default.

The DBS utility and ISQL support other print file logical record sizes. In
addition, ISQL supports other devices. For more specific information, refer
to the DB2 Server for VSE & VM Database Services Utility and the DB2 Server
for VSE & VM Interactive SQL Guide and Reference manuals.

SYSPUNCH
The SYSPUNCH files (used only by the DB2 Server for VM preprocessors)
can be CMS files, virtual punch files, or tape sequential files supported by
CMS OS QSAM. The database manager punches fixed-length, 80-byte
logical records. Except for virtual punch files, they can be fixed blocked.
The CMS FILEDEF command for a SYSPUNCH file can specify RECFM FB
and BLKSIZE nnnn. The nnnn must be some multiple of 80.

Remember that normal CMS defaults on FILEDEF commands apply. Specifically, if
the file is a CMS file, and you do not specify a file mode, CMS uses A1. If you
specify only a file mode letter, CMS uses a file mode number of 1. If you specify *
for the file mode, CMS searches all accessed minidisks (A to Z) for a file with the
specified file name and file type.

Starting the Application Server in Multiple User Mode
You start the application server in multiple user mode so that one or more
applications can concurrently access the same application server.

To start the application server in multiple user mode:
1. Log on to a database machine
2. IPL CMS
3. Issue the SQLSTART EXEC.

Note: You cannot run the database manager in a CMS batch machine.

Chapter 4. Planning for Operation of the Database Manager 77

Figure 10 shows the format of the SQLSTART EXEC.

The parameters for the SQLSTART EXEC are:

Dbname(server_name)
This parameter must be specified and must precede the PARM parameter. The
server_name variable identifies the application server.

After initial installation and database generation, the only application server
you have is named SQLDBA. If you add more databases, you can specify other
names for DBNAME.

dcssID(id)
Specify this optional parameter only if you have created saved segments for
the DB2 Server for VM code and want to use those saved segments, and you
have generated a bootstrap package other than SQLDBA. If DCSSID is not
specified, the id value from the resid SQLDBN file on the production disk is
used. If DCSSID is specified, but is different from the value in the resid
SQLDBN file, the new value is saved. If no value is available, SQLDBA is used.

If specified, DCSSID must precede the PARM parameter. You can specify ID
instead of DCSSID for the keyword. No other abbreviation is valid. For more
information on starting the application server to use saved segments, refer to
“Chapter 8. Saved Segments” on page 171.

AMODE(nn)
This optional parameter specifies the type of addressing the database manager
runs in. It has two options:

AMODE(31)
When this option is specified, the database manager uses 31-bit
addressing and storage above 16M can be used. This is the
recommended addressing mode.

AMODE(24)
When this option is specified, the database manager uses 24-bit
addressing. In this case, storage above 16M cannot be used and must
NOT be defined (i.e., the virtual machine size must not exceed 16
megabytes), unless the RDS component is executed from a saved
segment defined below 16 megabytes, OR the RDS component is
linkedited with “AMODE ANY RMODE 24”.

The value specified for the AMODE parameter is saved in the resid SQLDBN
file. If AMODE is not specified in the SQLSTART EXEC, the resid SQLDBN file
is checked, and the AMODE value found in the resid SQLDBN file is used. If
this file does not exist or does not contain an AMODE value, AMODE(31) is
used and this value is saved in the resid SQLDBN file. The database manager
continues to use this value until a different value is specified.

When AMODE is specified in the SQLSTART EXEC, this parameter must
precede the PARM parameter. No abbreviation of AMODE is valid.

�� SQLSTART Dbname(server_name)
dcssID(id) AMODE(nn) PARM(parameters)

��

Figure 10. SQLSTART EXEC

78 System Administration

Single user mode applications and user exits will be invoked in the same
addressing mode as the database manager. If you have such applications that
do not support 31-bit addressing, you must do one of the following:
v Convert your application programs so you can exploit 31-bit addressing
v Use the AMODE(24) option of the SQLSTART EXEC.

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide. For more information on single user mode, see
“Starting the Application Server in Single User Mode” on page 80. For more
information on user exits, see “Chapter 14. Creating Installation Exits” on
page 337.

Note that the preprocessors and the DBS utility must run in 24-bit addressing
mode. In single user mode, if the database manager is running AMODE(31),
the AMODE is automatically switched to AMODE(24) before invoking the
preprocessor or DBS utility. The AMODE is then switched back to AMODE(31)
after control is returned to the database manager.

The resource adapter always runs AMODE(31) in XA mode or XC mode
regardless of the mode the database manager is running in.

PARM(parameters)
This optional parameter is used to specify initialization parameters and user
application program parameters. If specified, it must be placed last, after
DBNAME, DCSSID, or AMODE. When specifying initialization parameters,
separate them with a comma or a blank.

Note: For users moving from the database manager on VSE to the database
manager on VM. The same parameters that are supported on VSE are
supported on VM. The exceptions are the DSPLYDEV and DBPSWD
parameters.

The database manager on VM ignores the DSPLYDEV parameter.
Instead, SQLSTART always issues SP CON START HOLD (unless the
database manager is already spooled START), and all output (except
dumps) goes to the console. Dumps go to the virtual printer or reader.
This implementation is different because, on the VSE operating system,
there is only one operator console and one SYSLST for each partition. In
VM, all machines usually have their own console and virtual printer.

The DBPSWD parameter was used in VSE to specify a VSAM password.
This parameter does not apply to the database manager on VM, and is
ignored if specified.

During its processing, SQLSTART issues these CMS FILEDEF commands for the
trace and archive files:

FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM
FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARIARCH, and ARILARC for the trace,
database archive, and log archive files, respectively. Standard label, unlabeled,
single volume, and multivolume tapes are supported. For more information on
tape support, see “Tape Support” on page 74.

Chapter 4. Planning for Operation of the Database Manager 79

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

Do not specify any VOLID parameter on your LABELDEF (or FILEDEF)
commands for log archiving (ddname ARILARC). Because more than one log
archive file can be read or created during one database-manager session, you
should use different VOLIDs for the different files.

You can take log archives to disk rather than tape by changing the FILEDEF of
ARILARC. For more information on directing log archives to disk, see “Log
Archiving to Disk” on page 207.

It is possible to direct the trace output to a memory buffer or to a CMS file rather
than to a tape. This may be convenient if you often use the security audit trace.
For more about directing trace output to a memory buffer or to a CMS file, see the
DB2 Server for VSE & VM Operation manual.

Running Multiple User Mode Application Programs
When the application server is started in multiple user mode, and the user
machine is initialized (with the SQLINIT EXEC), SQL application programs can be
started by normal means (such as the CMS LOAD or START commands).

For more information on running application programs, see the DB2 Server for VSE
& VM Application Programming manual.

Note: If you plan to run your application programs in both multiple user mode
and single user mode, you should follow the protocols discussed in the
section “CALL/RETURN Protocols for Application Programs in Single User
Mode” on page 86.

Starting the Application Server in Single User Mode
An application program running in single user mode runs in the same machine as
the application server, and is under its control. (In this situation, the user machine
and the database machine are actually the same machine.) To run a single user
mode application program, start the application server in single user mode
(SYSMODE=S) and provide the program name as an initialization parameter
(PROGNAME=name). For PROGNAME specify the name you would specify if
running the program in multiple user mode. The program is loaded and control is
passed to it after the application server is started. For single user mode, only the
TEXT files need to be available. If you choose this method, you should put the files
in a TXTLIB, because the database manager does not issue INCLUDE commands.
It is preferable to create a module using the CMS LOAD/GENMOD commands,
especially if the program is to be used frequently.

Your application is invoked in the same addressing mode as the database machine.
If your single user mode application program does not support 31-bit addressing,
you must do one of the following:
v Convert your application programs so you can exploit 31-bit addressing,
v Use the AMODE(24) option of the SQLSTART EXEC. See the RDS restriction

when using AMODE(24), “Starting the Application Server in Multiple User
Mode” on page 77.

80 System Administration

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide.

Attention: The value specified for the AMODE parameter is saved in the resid
SQLDBN file between invocations of the SQLSTART EXEC. If AMODE is not
specified, the resid SQLDBN file is checked, and the last value is used. If you only
want AMODE(24) for single user mode applications, be sure to specify
AMODE(31) when restarting in multiple user mode. When running AMODE(24)
option, you cannot use any storage above 16M.

Some administrative tasks (such as adding dbextents and adding dbspaces) are
performed by running IBM-supplied EXECs in single user mode. These EXECs call
the SQLSTART command with the appropriate parameters.

Figure 11 shows how to run an application program in single user mode. When the
application server is started, it passes control to the application program specified
by the PROGNAME parameter. All other initialization parameters are allowed to
default. You may want to specify some single user mode initialization parameters.
For information on single user mode initialization parameters, see Table 6 on
page 72.

Note: The PROGNAME parameter is not needed when STARTUP=C|E|L|S|I|M
is specified. These startups specify the operation to be performed, so a
program name is not needed. Moreover, the database manager provides
separate EXECs for each of these situations, one of which must be used
instead of SQLSTART. (Each of these EXECs calls SQLSTART at the proper
time.)

During its processing, SQLSTART issues these CMS FILEDEF commands for the
trace, database archive, and log archive files:

FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM
FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARIARCH, and ARILARC for the trace,
database archives, and log archives, respectively. Specify the PERM option on your
FILEDEF commands if the application program is written in a language other than
Assembler. Standard label, unlabeled, single volume, and multivolume tapes are
supported. For more information on tape support, see “Tape Support” on page 74.

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=name)

Figure 11. Starting in Single User Mode

Chapter 4. Planning for Operation of the Database Manager 81

You should not specify VOLID parameters on any LABELDEF or FILEDEF
commands you issue for the log archive files. Because more than one tape file can
be created during a database manager run, you should use different VOLIDs for
the different tape files.

It is possible to direct the trace output to a CMS file rather than to a tape. This
may be convenient if you often use the security audit trace. For more information
about tracing, see the DB2 Server for VSE & VM Operation manual.

In addition to the FILEDEFs for archiving and tracing, SQLSTART issues the
following FILEDEF command for a user LOADLIB:

FILEDEF ARIUSRDD DISK USERLIB LOADLIB * (NOCHANGE

If you want to specify a different LOADLIB, issue your own FILEDEF command
before calling SQLSTART. You must use the ddname ARIUSRDD on the FILEDEF
command to identify a user LOADLIB to the database manager. Note that the file
mode used in the FILEDEF is *. Remember to access the minidisk containing your
LOADLIB ahead of other minidisks that contain USERLIB LOADLIBs.

If you use AMODE(24), the application program must be RMODE 24. If it is not,
and the program is loaded above 16M, the database manager issues message
ARI0021E.

The application program can be a module, or it can reside in a LOADLIB (or,
conceivably, a saved segment). Because the database manager does not know
where the user program is (and there are many ways to load a program in VM),
the database manager tries a sequence of VM commands to load the program. The
following sequence is used:
1. CMS LOADMOD command: for CMS files with a file type MODULE. The

program is loaded into the CMS user program area.
2. CMS NUCXLOAD command: for members of CMS or OS LOADLIBs. The

program is loaded into free storage.
3. CP diagnose FINDSYS/LOADSYS instructions: for saved segments.
4. CMS LOAD command: for TEXT files or TXTLIB members. The program is

loaded into the CMS user program area. Note that CMS INCLUDE commands
are not issued in this situation. Also, a GLOBAL TXTLIB command must be
issued before SQLSTART if the text files are TXTLIB members. More than one
library can be specified on the GLOBAL command.

Because not all of the above VM load functions return the entry point, you should
code your program so the entry point is the same as the load point. Only
LOADMOD and NUCXLOAD return the program’s entry point. When the
database manager finds a program with the name specified in the PROGNAME
initialization parameter and successfully loads the program, the search sequence
ends. Control is passed to the program with a BALR instruction.

For example, suppose you have two programs on your A-disk. One is named
MYPROG MODULE A; the other is named MYPROG TEXT A. If you run
SQLSTART with PROGNAME=MYPROG, the program loaded is MYPROG
MODULE A. The database manager tries the LOADMOD command before the
LOAD command. If you want to load MYPROG TEXT A, you must either rename
it and change the PROGNAME parameter value accordingly, or you must rename
(or erase) MYPROG MODULE A.

82 System Administration

If the database manager does the entire search sequence, and a not found indication
is received from each of the load functions, four messages are issued:
ARI0026E Indicates an error occurred while attempting to load the program.
ARI0039E Indicates a limit error occurred.
ARI0042I Indicates the reason code is 4.
ARI0043I Indicates the return code is 512.

If the database manager receives an insufficient storage indication from any of the
load functions, the same four messages are issued, but the reason code in message
ARI0042I is 8 (not 4).

If the load of the user program fails for a reason other than those discussed above,
the database manager issues message ARI0026E. Following that message is one or
more occurrences of message ARI0047E. Message ARI0047E has the format:
xxxxxxxx- Reason Code=nnn

The type of load is indicated in xxxxxxxx. The xxxxxxxx can be LOADMOD,
NUCXLOAD, SEGMENT LOAD, FETCH, or LOAD. The system return code from
that load is in nnn. This message is followed by either message ARI0039E or
ARI0040E, depending on the type of error. Following that message is ARI0042I
with a reason code of 0 (the reason code is given earlier in message ARI0047E),
and finally by message ARI0043I with a return code of 516.

Note that, for a NUCXLOAD or SEGMENT LOAD, the database manager must do
more than issue those commands.

For NUCXLOAD, the sequence of NUCEXT QUERY, NUCXDROP, NUCXLOAD,
and NUCEXT QUERY may be processed to load the code. Thus, the reason code
displayed in message ARI0047E can be a return code from NUCEXT QUERY or
NUCXDROP. (The return code is not necessarily from a NUCXLOAD.) You should
check the DB2 Server for VM Messages and Codes manual for return codes from
NUCEXT QUERY and NUCXDROP as well as NUCXLOAD.

The database manager follows this process when attempting to load a program
with NUCXLOAD:
1. Issues NUCEXT QUERY to see if a copy of the code already exists in storage

(storage is not properly reset). If so, the CMS NUCXDROP command is issued.
If the NUCXDROP return code is not zero, the return code is displayed as the
ARI0047E reason code.

2. If the NUCEXT QUERY is successful (and NUCXDROP, if performed), the
NUCXLOAD is issued. If the load fails, the nonzero return code becomes the
reason code in message ARI0047E.

3. If the load is successful, another NUCEXT QUERY is issued to obtain the code
load address and the code length. If this fails, a reason code of 253 is displayed
in message ARI0047E.

A similar process is done for code that is to be loaded into a saved segment. The
database manager does a SEGMENT FIND instruction to get the code load address
and length. The SEGMENT LOAD instruction is then issued. Thus, the reason code
displayed in message ARI0047E can be a return code from the SEGMENT FIND
(not necessarily the SEGMENT LOAD) instruction. You should check the DB2
Server for VM Messages and Codes manual for return codes from SEGMENT FIND as
well as SEGMENT LOAD.

Chapter 4. Planning for Operation of the Database Manager 83

The database manager follows this procedure when attempting to load a program
with the SEGMENT LOAD macro:
1. Issues a SEGMENT FIND instruction to get the load address and length of the

code to be loaded.
2. If the SEGMENT FIND condition code is 2, an error occurred. The return code

XXX is displayed as the reason code in message ARI0047E:
ARI0047E SEGMENT LOAD - Reason Code=XXX

3. If the condition code is 1 (saved segment not yet loaded), the database manager
does some checking before attempting to load the code: If it is not, the reason
code 400 is displayed in message ARI0047E.
a. If the above check was successful, the database manager then checks to

ensure that loading the code at the indicated load address does not overlay
other database manager code. If an overlay would result, the database
manager displays a reason code of 500 in message ARI0047E.

b. If both checks are successful, the SEGMENT LOAD instruction is issued.
The code is loaded at the address returned by the SEGMENT FIND
instruction.

4. If the SEGMENT LOAD is issued and the condition code is 2, an error
occurred. The SEGMENT LOAD return code is displayed as the reason code in
message ARI0047E.

5. If the SEGMENT LOAD is issued and the condition code is 1, a code overlay
occurred. A reason code of 500 is displayed in message ARI0047E.

In addition to the loading sequence, you should be aware of the following when
preparing to run a single user mode program:
v If the program resides in an OS LOADLIB, you must ensure that the proper

GLOBAL and FILEDEF commands are issued before starting the application
server.

v The database manager uses CMS OS QSAM for sequential file support. The CMS
OS QSAM support uses the GETMAIN area of the virtual machine. The CMS OS
QSAM support is called before the user’s application program. You should not
issue the CMS STRINIT macro in the application program, as this may release
all GETMAIN storage currently allocated by the database manager. This can
only occur if the setting of the CMS STORECLR option is ’ENDCMD’. When the
STORECLR option is set to ’ENDSVC’ (the CMS default), the STRINIT macro is
ignored.

v If the application does not support 31-bit addressing, you must use AMODE(24).
v When running AMODE(24), single user mode applications (and user exits)

should not switch to AMODE(31) and branch to other applications above 16M
unless: those applications have no interaction or interface with DB2 Server for
VM code, and, AMODE(24) is reset before returning control to the database
manager.

Specifying User Parameters
If you start the application server in single user mode, you can also specify user
parameters to be passed to the application program using the PARM keyword of
the SQLSTART EXEC. The SQLSTART EXEC purges the CMS program and console
stacks. Thus, any program run in single user mode cannot rely on console or
program stack input.

Place a slash (/) between the database manager initialization parameters and the
user parameters, as shown in Figure 12 on page 85.

84 System Administration

Note: Only the first 130 characters of the command line are read by CMS. The
exception to this rule occurs when SQLSTART is called from a user-written
EXEC; then CMS reads the first 256 characters. If you specify many
initialization parameters and user parameters, they will not fit on the
command line. Thus, you must use a CMS file for some of the parameters.
Because user parameters cannot be specified in a CMS file, you should
specify the initialization parameters in the CMS file, and the user parameters
on the command line.

The user parameters are passed to the application program with register 0. Register
0 points to an area called NPLIST, which contains three addresses, which point to:
1. COMVERB, the command name, the name of the application program specified

in the PROGNAME initialization parameter.
2. BEGARGS, the start of the user parameter string.
3. ENDARGS, the byte following the last character of the user parameters.

The user parameter string is untokenized: it has not been separated into individual
user parameters. This pointer scheme is similar to the one that the EXEC 2
interpreter uses when running programs. Figure 13 shows how register 0 points to
the user parameters.

The length of the parameters can be obtained by subtracting the BEGARGS
address from the ENDARGS address. If there are no user parameters, the
ENDARGS address is equal to the BEGARGS address (ENDARGS - BEGARGS =
0.) Both addresses, in this situation, point to the next byte after the name of the
application.

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=PROG1/parm1,parm2)

Figure 12. Starting in Single User Mode and Providing User Parameters

Register 0 points to

DS 0F
DS A(COMVERB)
DS A(BEGARGS)
DS A(ENDARGS)
DS A(0)

NPLIST

EQU *
DC C ' applname '
DC C ' '

COMVERB

EQU *
DC C ' user-parameters '

BEGARGS

ENDARGS EQU *

Points to:

Command name (application name)
Start of user parameter string
End of user parameter string + 1

Command name (PROGNAME)
Delimiter

User parameter string

NPLIST

Figure 13. Passing User Parameters to a User Application Program

Chapter 4. Planning for Operation of the Database Manager 85

User parameters are not displayed along with the initialization parameters. User
parameters cannot be specified in a DB2 Server for VM parameter data set.

CALL/RETURN Protocols for Application Programs in Single
User Mode
In single user mode, an application is called using normal CALL/RETURN
protocols, as follows:
Register 0 Pointer to pointer to user parameters
Register 1 Contains zeros
Register 13 Pointer to DB2 Server for VM save area
Register 14 Return point to the database manager
Register 15 Entry point of the user program.

Note: This same protocol can also be used by programs running in multiple user
mode.

Register 0 was discussed in the previous section. A program written in C, PL/I,
COBOL, or FORTRAN requires an interface routine to process the user parameters.

Upon entry, the application program must store the registers in the DB2 Server for
VM save area, and restore them before returning control to the database manager.
Failure to do so causes unpredictable results.

An abnormal termination exit is set to intercept abnormal termination conditions,
including program checks. If the user program establishes its own abnormal end
exit, the user exit overrides the DB2 Server for VM abnormal end exit.

The abnormal end exit is set (with CMS ABNEXIT) to intercept abnormal end
conditions (including program checks). If the user program establishes an
abnormal end exit (for example, with ABNEXIT, STAE, SPIE), the user program
gets control before the DB2 Server for VM abnormal end exit does. (However,
STAE and SPIE are not supported in 31-bit addressing mode.) When the user
program completes its abnormal end processing, it should return control to the
CMS abnormal end routine. The CMS abnormal end routine then passes control to
the DB2 Server for VM abnormal end routine. The application programmer must
be careful when processing abnormal end conditions. These possibilities must be
considered:
1. The abnormal end condition occurs in your program, and you can determine

that this is the case. You can then circumvent the problem and continue
processing. In this case, reset the abnormal end exit. Otherwise, future
abnormal end conditions cause control to be given to the DB2 Server for VM
abnormal end routine.
If you determine that processing cannot continue, you should reset your
abnormal end exit, clear the abnormal end exit, and return control to the CMS
abnormal end routine. The CMS routine then passes control to the DB2 Server
for VM abnormal end routine.

2. If you cannot determine anything about the abnormal end condition, you
should reset the abnormal end exit, clear the abnormal end exit, and return
control to the CMS abnormal end routine. (You would do so when, for
example, you did not know if your program caused the abnormal end.) The
CMS abnormal end routine then passes control to the DB2 Server for VM
abnormal end routine.

3. Finally, consider the situation when no abnormal end condition occurs, and
your program ends normally (control is returned to the database manager). In
this situation, your abnormal end exit should be cleared prior to returning

86 System Administration

control to CMS. When both DB2 Server for VM processing and user processing
finish, both abnormal end exits must be cleared. Otherwise, future abnormal
end conditions in the virtual machine could cause unpredictable results.

The DB2 Server for VM abnormal end routines sever the IUCV links to the
database minidisks, and close the trace file if tracing was activated. This same
processing is also done when, upon completion, the user program returns control
to the database manager. The database manager does not have to do this
processing (for example, if the program does not return control to the database
manager). If the IUCV links to the database minidisks are not severed, VM severs
the links when you log off the database machine. (This also is true if the database
machine abnormally ends.) If tracing or accounting were active, their output files
may not have had the last buffers written. If the output files were on tape, no tape
mark was written. You can then write tape marks with the CMS TAPE command.

The database manager uses eye-catcher technique for determining when a specific
module is in error. The eye-catcher is displayed in the DB2 Server for VM
mini-dump. A user program can use the same technique in single user mode,
assuming that the DB2 Server for VM abnormal termination exit has not been
overridden by a user abnormal end exit. A suggested coding example in assembler
language is shown in Figure 14.

Notes:

1. The instruction BALR 15,0 can be used just ahead of the USING *,15 instruction
as long as other registers are not used until the DB2 Server for VM registers
have been saved.

2. The techniques shown here work whether the application program is called by
the database manager, or is called as a CMS command. Thus, the same
application program can be run in either single or multiple user mode.

3. The techniques shown here may not always be achievable by a FORTRAN, C,
COBOL, or PL/I program. A program written in one of these languages may

USING *,15
B SKIPEYE BRANCH AROUND EYE-CATCHER
DC AL1(16) LENGTH OF CHARACTER STRING
DC CL8'progname' PROGRAM NAME EYE-CATCHER
DC CL8'&SYSDATE' DATE PROGRAM COMPILED
DS 0H

SKIPEYE EQU *
STM 14,12,12(13) SAVE DB2 Server for VM REGISTERS
BALR 12,0 ESTABLISH BASE REGISTERS
DROP 15
USING *,12
LA 11,MYSAVEAR GET ADDRESSABILITY TO MY SAVE AREA
ST 11,8(13) SAVE ADDRESS OF SAVE AREA IN DB2 Server for VM SAVE AREA
ST 13,MYSAVEAR+4 SAVE ADDRESS OF DB2 Server for VM SAVE AREA IN SAVE AREA
LR 13,11 SET REGISTER 13 TO MY SAVE AREA

v
Body of the Application Program

v
EXIT L 15,RETCOD SET RETURN CODE (OR SET TO ZERO)

L 13,4(13) GET DB2 Server for VM SAVE AREA
L 14,12(13) GET DB2 Server for VM REGISTER 14
LM 0,12,20(13) GET OTHER DB2 Server for VM REGISTERS
BR 14 RETURN TO DATABASE MANAGER

Figure 14. Use of an Eye-catcher by an Application Program

Chapter 4. Planning for Operation of the Database Manager 87

need to be called by a pre-entry routine, to ensure that register 15 contains a
zero (or valid return code) upon return to the database manager.

Overriding Initialization Parameters
When starting the application server, you can change the default parameter values
in either of two ways:
v By specifying the parameters in the PARM field of the SQLSTART EXEC.
v By creating a CMS file that contains DB2 Server for VM parameters and calling

it with the PARMID initialization parameter. See Figure 8 on page 56 for an
example.

You can also combine the two methods. Parameters specified in the CMS file
override the default values. Parameters specified on the SQLSTART EXEC override
both the default values and those specified in the CMS file. A user who has a CMS
file with an incorrect parameter value can override the value in error with a correct
specification on the SQLSTART EXEC.

When all the values of the initialization parameters have been resolved, the final
values (or defaults, if no values have been overridden) are displayed on the DB2
Server for VM operator’s console.

When you specify parameters on the SQLSTART EXEC, separate each parameter
with a comma or blank. For example:

SQLSTART DBNAME(SQLDBA) PARM(DUMPTYPE=F,LOGMODE=A)

SQLSTART DBNAME(SQLDBA) PARM(DUMPTYPE=F LOGMODE=A)

Because CMS reads only the first 130 positions of the CMS command line, you
may choose to set up your initialization parameters in one or more CMS files. Such
an arrangement allows you to specify more user parameters (if any) when running
application programs in single user mode. User parameters (those for the
application program itself), cannot be specified in a CMS file, and must be
specified in the PARM field of the SQLSTART EXEC. If you plan to use user
parameters, refer to “Specifying User Parameters” on page 84.

You can also call the SQLSTART EXEC from within a user-written EXEC.

Creating a Parameter File
You can store various parameters in a CMS file that has a file type of SQLPARM,
and a fixed record length of 80 bytes. To have the database manager use the file,
specify the file name in the PARMID initialization parameter. Each file can start the
application server for a slightly different environment. Figure 15 shows a
parameter file.

The rules for specifying parameters in a CMS file are a little different from the
rules for specifying parameters on the SQLSTART EXEC:
v The parameters must be in uppercase in a parameter file.

LOGMODE=A,NDIRBUF=20,
NPAGBUF=20,
DUMPTYPE=F COMMENT -- FULL VIRTUAL MACHINE DUMP
NCSCANS=20

Figure 15. Example of an Initialization Parameter File

88 System Administration

v Because a blank after a parameter ends the processing of the line, do not put a
blank between parameters. Anything on the line after that blank is ignored. You
can, however, use this arrangement to put comments in the file, as shown in
Figure 15 for the DUMPTYPE parameter.

v A comma at the end of a line is not required, but can be used to make the
statement easier for you to read.

v User parameters (those destined for the application program itself) cannot be
specified in a parameter file. If the database manager detects parameters other
than its own initialization parameters, it issues error messages and stops.

Running the Database Manager
When you use the database manager, you should be aware of the following:
v Saved segments are defined using VMSES/E.
v The resource adapter and the RDS component can be saved above the 16

megabyte line.
For more information, see “Defining Saved Segments” on page 177.

v Operating modes
Your virtual machine can be set to XA/ESA mode or XC mode. If certain
components are defined as saved segments, they must be saved below the 16
megabyte virtual storage line. (The exceptions are the resource adapter and RDS,
which can be saved above the 16 megabyte line.) The AMODE parameter
specifies the type of addressing the database manager runs in. For more
information, see “Starting the Application Server in Multiple User Mode” on
page 77.
A user machine can run in XA/ESA mode or XC mode. It can take advantage of
a resource adapter saved segment saved above the 16 megabyte virtual storage
line.
User application programs can take advantage of 31- or 24-bit addressing, and
reside above or below the 16 megabyte virtual storage line.
For more information on running application programs in either XA/ESA or XC
mode, see the DB2 Server for VSE & VM Application Programming manual.

v The following facilities are available:
– VSE guest sharing
– CMS work unit support
– Database switching
– Remote unit of work
– Distributed unit of work.

Operating Modes
You set the virtual machine operating mode in the machine’s CMS directory, or
with the SET MACHINE command. Users can issue this command for their virtual
machines, and the operator issues it for the database machine. For more
information on this command, see the VM/ESA: CMS Command Reference manual.

Table 7 shows how features can take advantage of the VM/ESA ESA Feature.

Table 7. Summary of Support

AMODE RMODE

24 31 24 ANY

RA/DRRM/CONV X X X X 1

Chapter 4. Planning for Operation of the Database Manager 89

Table 7. Summary of Support (continued)

DSC X X 2 X

RDS/DRRM/WUM/CONV X X X X

DBSS X X 2 X

ISQL X X

DBSU X 3 X

Preprocessors X 3 X

User Applications X X 4 X X 4

Notes:

1. The resource adapter (RA) runs AMODE(31) RMODE(ANY). It does not
depend on the AMODE parameter.

2. This DB2 Server for VM code must reside below the 16 megabyte line.
However, most dynamic storage is allocated above it (if available).

3. In single user mode, if the database manager is running AMODE(31), it
automatically switches to AMODE(24) when the preprocessor or DBSU is
invoked by the database manager. The AMODE is then switched back to
AMODE(31) after returning control to the database manager.

4. For more information, refer to “Starting the Application Server in Multiple User
Mode” on page 77, “Starting the Application Server in Single User Mode” on
page 80, and “Chapter 14. Creating Installation Exits” on page 337.

Disconnecting the Database Machine
You can free up the database machine console in two ways:
v Stop the application server and log off the database machine
v Disconnect from the database machine (and leave the database manager

running).

To log off the database machine, stop the application server by using the SQLEND
command, and then log off. Stopping the application server is explained in
“Stopping the Application Server”. If you want to sign off the database machine,
and leave the database manager running, enter these commands:

You should not leave the operator console unattended. To protect the integrity of
your database, always have the operator sign off the operator console with the
DISCONN command before leaving the console.

Stopping the Application Server
This section discusses the following topics:
v Taking an archive
v Verifying the directory
v Online support considerations for VSE guest sharing
v Minidisk passwords
v Inter-machine communications

#CP SET RUN ON
#CP DISCONN

90 System Administration

In single user mode, the application server stops itself when the task is completed.
In multiple user mode, the operator stops it by issuing the SQLEND operator
command. In both modes, the database files and the trace file (if active) are closed.
The SQLEND command is described in the DB2 Server for VSE & VM Operation
manual.

The SQLEND command can be entered from the operator console of a database
machine. Its format is shown in Figure 16. The ARCHIVE, LARCHIVE, and
UARCHIVE parameters are used to initiate archive activities after the database has
been shut down, and are discussed in the next section. The NORMAL parameter is
used to shut down the database when all work in progress is completed. The
QUICK parameter is used to stop all work in progress and shut down
immediately. The TRCPURGE parameter is used if you want to purge the contents
of the trace buffer at DB2 Server for VM shut down. You can also specify the
DVERIFY parameter to do a directory verification.

Do not issue SHUTDOWN from the VM console as it shuts down VM and causes
the database manager to end abnormally.

Taking an Archive
The SQLEND command can be set up to enable the operator to take a database or
log archive after all DB2 Server for VM activity has stopped. The following
parameters are available for archiving:
v ARCHIVE for a database archive using DB2 Server for VM facilities
v LARCHIVE for a log archive using DB2 Server for VM facilities
v UARCHIVE for a database archive using user facilities.

Attention: User archive facilities are available for the database, but not the log.
Never attempt to use user facilities to archive a log.

The most appropriate time to take an archive is at shutdown, so consider setting
up a procedure for periodic SQLENDs with the ARCHIVE, UARCHIVE, or
LARCHIVE parameters, as needed.

For both database and log archives, online archives are disruptive to users. Taking
archives during SQLEND avoids this disruption. In addition, database archives
taken at SQLEND contain data that is consistent, whereas those started by operator
ARCHIVE commands or triggered by ARCHPCT typically contain uncommitted or
incomplete data, and require information from the log to make the data consistent.
(Consistency is not a problem for log archives regardless of when they are taken,
because the database manager always waits until all LUWs end before taking the
checkpoint on which the log archive is based.)

To determine the best recovery procedures for your installation, see “Recovering
from DASD Failures that Damage the Database” on page 195.

�� SQLEND
NORMAL

ARCHIVE
LARCHIVE
UARCHIVE
QUICK

DVERIFY TRCPURGE
��

Figure 16. SQLEND Operator Command

Chapter 4. Planning for Operation of the Database Manager 91

If the operator specifies ARCHIVE or UARCHIVE when LOGMODE=Y, the
database manager automatically switches the LOGMODE to A. To resume running
with LOGMODE=Y, the operator must do a COLDLOG. See “Switching Log
Modes” on page 225.

Should you decide not to take an archive at shutdown, specify NORMAL or
QUICK. During a normal shutdown, the database manager allows all active LUWs
to finish before ending. During a quick shutdown, the application server ends
immediately: in-progress LUWs receive a negative SQLCODE and are rolled back
the next time the application server is started.

Note: A User Archive will NOT be consistent if it is taken following an SQLEND
QUICK shutdown.

If you are running with LOGMODE=L, and request a database archive, and if there
is data in the log, then the database manager takes a log archive before taking the
database archive. This log archive is written to tape. However, you can direct it to
disk if you change the FILEDEF for the log archive file, or if you direct the log
archive to disk when you archive it. For more information on directing log archives
to disk, see “Log Archiving to Disk” on page 207.

Database archives are written to tape. When running a database archive, the
database manager displays external label information for you to write on the tape
if you are archiving to tape. It then requests that you mount the required volumes.
If you are archiving to disk, you should respond by typing the virtual device
address. Unless you have issued your own CMS FILEDEF command before
starting the application server, the virtual device address for database archives is
181. The virtual device address for log archives (either explicitly requested or
automatically created) is 183. See “Archiving Procedures” on page 199 for more
information.

When the SQLEND command is issued with the NORMAL, ARCHIVE,
LARCHIVE, or UARCHIVE parameters, a shutdown is not initiated until all users
are disconnected from the application server. The database manager displays a
message showing how many agents are still active. (An agent is an internal
representation for a user.) As each agent becomes inactive, another message is
displayed with an updated count.

The initial count displayed in the message includes all active user agents. When
users who are inactive (not allocated to a real agent) disconnect from the database
manager, no message is displayed to indicate a reduction in agents; the message is
issued only when a user disconnects from the database manager while still
allocated a real agent. This results in gaps in the updated count messages.

After issuing an SQLEND command, and before shutdown commences, the
operator can issue a SHOW ACTIVE command to find out who is still using the
database manager. Users who are connected with no active LUW can prevent the
database manager from performing shutdown operations. For example, an ISQL
user can end an LUW and then leave the terminal without exiting from ISQL. To
determine whether inactive users are preventing the shutdown operation, use the
SHOW USERS operator command to determine which users are still active. For more
information on the SHOW commands, see the DB2 Server for VSE & VM Operation
manual.

92 System Administration

If the SQLEND command is issued with the QUICK parameter, all in-progress
work ends and return code 508 is displayed on the console. This command can be
issued at any time, even following an SQLEND issued with another parameter.

Verifying the Directory
The DVERIFY parameter determines whether the database manager checks for
inconsistencies in the directory. It can be specified with the other parameters, but is
ignored if you specify QUICK. It should be specified each time the database is
archived (using either DB2 Server for VM or user facilities); if it is not, any
inconsistency in the directory will be recorded in the database archive, so a
subsequent restore operation using that archive would fail.

Even if you have not requested a database archive, you should periodically verify
the directory (perhaps every few days, depending on the volume of update
activity). Otherwise, inconsistencies may surface later. For example, an
inconsistency can cause an abnormal end during checkpoint processing. Early
detection reduces data loss.

If an error is found in the directory, a message is displayed. If this happens, and
you had specified ARCHIVE, the archive is not taken. If you had specified
UARCHIVE (a database archive using user facilities), then when you are prompted
to take the archive, do not do so. However, if you had specified LARCHIVE, the
log archive is taken; the inconsistency in the directory does not affect the log, so
the log archive is still valid. For information on recovering from directory
verification errors, see the DB2 Server for VSE & VM Diagnosis Guide and Reference
manual.

Online Support Considerationsfor VSE Guest Sharing
If you are supporting an online (CICS) environment, you should stop the online
support before ending the application server, in order to clean up CICS transaction
processing efficiently. To stop the online support, enter the CIRR or CIRT
transaction. For more information on the effect of a shutdown on online
applications, see “Stopping the Online Support -- The CIRT Transaction” on
page 128 and “Removing Connections -- The CIRR Transaction” on page 116.

Note: For DB2 Server for VSE, each link from the Online Support requires a
dedicated agent, whether or not these agents are actually active. SQLEND
NORMAL will not terminate these connections.

A Note about Minidisk Passwords
Many of the IBM-supplied EXECs described in this chapter (and throughout the
manual) access the DB2 Server for VM production and service minidisks. These
EXECs often must write to and read from those minidisks.

Depending on the tasks you are trying to do and the virtual machine you are
using, you can be prompted for the read, write, or multiple access passwords for
the minidisks.

You should always be prepared to supply the passwords for the production and
service minidisks before you run the IBM-supplied EXECs.

Note: DB2 Server for VM users should not know the passwords for the production
and service minidisks, or any other database machine minidisks.

Chapter 4. Planning for Operation of the Database Manager 93

Inter-Machine Communications
Advanced Program-to-Program Communication/Virtual Machine (APPC/VM) is
used by software to communicate between user and database machines, regardless
of their physical locations. The Inter-User Communication Vehicle (IUCV) is
limited to communications between two virtual machines residing on the same
processor.

Internally, the database manager uses NCUSERS to determine the number of agent
structures to create. Each agent structure serves one user at a given time. (That is,
one user who is within an LUW.) Processing time is divided among the agent
structures. You can think of an agent structure as equivalent to a user for whom
the database manager is currently doing work. Thus, NCUSERS controls the
number of concurrent users (agent structures) using the database manager.

As discussed earlier, each agent structure uses virtual storage and produces some
processor overhead. If NCUSERS is set too high for your particular system
configuration, the database manager may become overloaded and perform poorly.
To determine the optimal NCUSERS setting for your installation, use the guidelines
given in “NCUSERS” on page 62.

The optimum number for NCUSERS is usually less than the total number of users
planned for a database. Thus, the number of connected users trying to access a
database machine usually far exceeds the number specified for NCUSERS. For
example, if there are 80 users and only 8 agent structures, all 80 users would be
competing for those structures.

To solve this problem, the number of connected users can exceed the number
specified for NCUSERS. The number of users that can be connected is related to a
value called MAXCONN.

The MAXCONN parameter of the VM OPTION directory control statement
determines the maximum number of IUCV connections allowed for a virtual
machine. For inter-machine communications, the virtual machine is the database
machine. MAXCONN has a default value of 16.

The database manager uses APPC/VM (or IUCV) to access the database minidisks
(including the directory, the logs, and the dbextents) and to communicate with user
machines. Thus, the number of users that can be connected to a database machine
is equal to the value of MAXCONN minus the number of minidisks for the
database currently being accessed. On a VM/ESA operating system, the number of
users that can be connected is decreased by one more because the DB2 Server for
VM machine makes an additional connection to CP system service *IDENT. It is
further reduced by one if the special TCP/IP communications real agent is active.

Usually, MAXCONN is set when a database machine is defined. (For more
information, see “Adding a Primary Database Machine” on page 273.) This initial
setting is based on an estimate of the number of minidisks that make up the
database and the number of users. As these conditions change, MAXCONN should
be readjusted.

Because the number of connected users can exceed the number of real agents, the
database manager uses another mechanism to keep track of users that are not
assigned to real agents. This mechanism is called the pseudo-agent structure.

94 System Administration

The number of pseudo-agents is equal to the value of MAXCONN minus the
number of minidisks for the database currently being accessed. Initially, these
pseudo-agents are placed on an available queue. When an APPC/VM (or IUCV)
CONNECT to the database manager is issued, the user is assigned to a
pseudo-agent, and placed in an in-use queue. When a user issues a statement (for
example, SELECT), the user machine sends a message to the database machine. At
this time, the user’s pseudo-agent is assigned to a real agent, if one is available. If
none is available at the moment, that user’s pseudo-agent is placed in a first-in,
first-out wait queue. When a real agent becomes available, the first pseudo-agent
in the wait queue is assigned to that real agent.

When the user performs any action that results in the end of an LUW (for example
COMMIT or ROLLBACK), that user’s pseudo-agent is deallocated from the real
agent. An exception occurs when there are no waiting pseudo-agents and the user
has sent another message to the database machine. When a pseudo-agent is
deallocated from a real agent, it is placed on an inactive queue until and unless the
user sends another message. At that time the pseudo-agent is placed at the end of
the wait queue, unless a real agent is available. When a pseudo-agent is
deallocated from a real agent, the first waiting pseudo-agent on the wait queue is
allocated to the available real agent.

A pseudo-agent is deallocated from a user when the connection to the database
manager is severed (for example, COMMIT WORK RELEASE or end-of-program).

The database manager does not verify that the users are allocated to real agents;
that is, it does not determine whether the real agent has received a message
recently (is active). A user can tie up a real agent by being inactive. For example, a
user can start an LUW and leave the terminal unattended. In this situation, the
DB2 Server for VM operator can use the FORCE command to end the LUW.

Pseudo-agents that are not attached to real agents have no effect on performance
other than the use of extra virtual storage.

Pseudo-agents can affect shutdown procedures. When the DB2 Server for VM
operator issues any SQLEND command (except SQLEND QUICK), the database
manager does not end (or begin the archive process) until all users (owners of
pseudo-agents) are disconnected. All users can complete their work and disconnect
from the database manager (unless forced off by the VM system operator or by the
DB2 Server for VM operator).

You can determine inactive but connected users by issuing the SHOW USERS
command. The SHOW ACTIVE command is inappropriate because it displays
information about agent structures. It does not tell you whether inactive users are
holding pseudo-agents.

Note: The DB2 Server for VM operator can force (with the FORCE command) only
those users attached to real agents. Only the VM system operator can force
(log off) those users who are waiting for real agents or who have inactive
pseudo-agents. The alternative is for the DB2 Server for VM operator to
issue the SQLEND QUICK command, which immediately stops the application
server and disconnects all users.

In some situations, you may want to limit the number of users who can connect to
the database manager. For example, if your installation has 100 DB2 Server for VM
users, you may want only 50 of them on at a time for performance reasons. Lower
the MAXCONN parameter to decrease the number of users. This places a limit on

Chapter 4. Planning for Operation of the Database Manager 95

the number of connected users. Users who try to access the database manager
when the limit is reached receive a message indicating that they cannot access the
database.

Application Program Use of APPC/VM or IUCV
The database manager’s use of APPC/VM does not preclude users from using
both APPC/VM and SQL statements in the same application program in either
single user mode or multiple user mode.

For more information about how the database manager uses APPC/VM and IUCV,
see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.

96 System Administration

Chapter 5. Operating the Online Support for VSE Guest
Sharing

This chapter explains how to enable VSE guests to access an application server on
a VM operating system, and how to operate the VSE online support.

Operating VSE Guest Sharing
Your VSE online users can access an application server on a VM host operating
system when the VSE operating system is running as a guest in a virtual machine.
Database switching is supported for CICS online applications, which means that
one resource adapter in one CICS region can connect to multiple application
servers. Any CICS transaction in the CICS region can connect to any of the DB2
Server for VM application servers to which the online resource adapter has
established connections. This means that:
1. Different transactions in a CICS region will be able to connect to different DB2

Server for VM application servers
2. Single transactions will be able to connect to different DB2 Server for VM

application servers in different units of work.

The DB2 Server for VM application server can be accessed by specifying the
server_name parameter on the CIRB transaction or on the CIRA transaction. The
DB2 Server for VM application server must be defined in the DBNAME Directory.
The DBNAME Directory provides the mapping of mapped DBNAME to resid. See
for more DBNAME Directory information. The resid is the basic DBNAME, and
must be the same as the one specified in the SET APPCVM command during the
VSE initial program load. If there are multiple DB2 Server for VM servers on the
VM host, there can be more than one SET APPCVM command.

The VM application server being accessed can be either on the same processor or
on another processor in the network. For batch applications and for online users
who want to access an application server on another processor in a SNA network,
you must issue the SET APPCVM command when you start VSE. The command
provides routing information for both batch and online users. Note that SET
APPCVM is required only if VTAM is to be used in the connection. If the server
and requester are in a TSAF collection on the same node, it is not necessary to
issue the SET APPCVM command.

Figure 17 on page 98 shows the syntax of the SET APPCVM command.

© Copyright IBM Corp. 1987, 2001 97

The variables have the following meanings:

resid
The resource identifier of the DB2 Server for VM application server which is
the same as the resid parameter on the IUCV *IDENT entry in the database
machine directory for VM operating systems.

avs_parameter_block
Only specify these parameters if the application server you want to access is in
an SNA network. The names are defined by VTAM statements when the
network is built, and have these meanings:

resid
The resource identifier of the DB2 Server for VM application server. This is
the same as the resid parameter on the IUCV *IDENT entry in the database
machine directory on VM.

gateway_name
This corresponds to an APPL statement at the local system. To the SNA
network, gateway_name is an LU with the same name.

target_LU_name
This corresponds to an APPL statement at the remote system.

mode_name
This corresponds to a mode table entry at the local and remote systems.

The parameters must be specified in the order shown above.

For more information about the AVS parameters, see the VM/ESA: Connectivity
Planning, Administration, and Operation manual. For more information on the IPL
SET APPCVM command in VSE, see VSE/ESA System Control Statements.

Note: The VSE Guest sharing facility requires 40KB of real storage for each
database communication link. For more information on providing real
storage, see VSE/ESA System Control Statements

Operator Responsibilities
VSE guest sharing is monitored from the VM console. All DB2 Server for VM
operator commands can be used. In addition, in-doubt LUWs can be forced from
the VM console.

VSE online support is needed if the VSE guest is using ISQL or a CICS transaction
program. The DB2 Server for VSE online resource adapter must be started so that
the application server can be accessed from the CICS online environment. If this is

�� SET APPCVM TARGET resid

avs_parameter_block

��

avs_parameter_block:

(resid,gateway_name,target_LU_name,mode_name)

Figure 17. SET APPCVM Command

98 System Administration

not done, and a CICS transaction attempts to access the application server, CICS
will end the transaction with CICS/VSE abend code AEY9.

Operation of the online support involves the following:
1. Starting the application server in multiple user mode, either before or after

CICS is started.
2. Starting the DB2 Server for VSE online support by running the CIRB

transaction under CICS. The CIRB transaction accepts a list of server names.
This allows online access to multiple application servers to be established from
one command. After CIRB has successfully completed its processing, the online
resource adapter is ready to handle SQL requests from CICS transaction
programs (such as ISQL).

3. After the online resource adapter is started, the CICS transaction CIRA can be
used to add connections or enable online access to other application servers.
CIRA can be entered multiple times with different server_names. This establishes
the connections or enables online access to the specified application server.
CIRA also accepts a list of server_names so that online access to multiple servers
can be established with one command.

4. The transaction CIRR can be used to remove connections or disable online
access to a particular application server or list of application servers. The online
resource adapter is terminated if the CIRR transaction removes the connection
or disables online access to the last application server.

5. Displaying information about active CICS transactions (including ISQL) that
access an application server by using the CIRD transaction. The CIRD
transaction accepts a server_name parameter to display the transactions
accessing a particular application server. The * keyword can be specified to
display all transactions on all of the application servers (for example, CIRD *).

6. Changing the default application server using the CICS transaction CIRC.
7. Stopping the online support without stopping either CICS or the application

server by issuing the CIRT transaction. The CIRT transaction terminates all
connections or access to all application servers and then terminates the online
resource adapter.

If a local application server becomes unavailable for some reason, only the
connections to that application server are lost. The online resource adapter remains
active and connections or online access to other application servers can still be
used. When the local application server becomes available again, the CIRA
transaction can be used to re-establish connections to it. If there are any in-doubt
LUWs associated with this application server, they will be resolved at this time.

If the default application server becomes unavailable, a new default server is not
established automatically. Users attempting to connect to the default server will
receive a message indicating that the server is not available.

These steps are described in detail below. For more information on starting and
stopping online support for VSE guest sharing, see the DB2 Server for VSE & VM
Operation manual.

Starting the Application Server
Start the application server in multiple user mode from the DB2 Server for VM
console. (Online environment is not supported in single user mode.) Next, load
VSE and use the SET APPCVM command to identify the application server to VSE.
For more information on the APPCVM command, see “Operating VSE Guest

Chapter 5. Operating the Online Support for VSE Guest Sharing 99

Sharing” on page 97. If this is the first time CICS is started, you must grant
SCHEDULE authority to DBDCCICS on the application server.

Starting the Online Resource Adapter -- The CIRB Transaction
To activate the online support, run the CIRB transaction. When it completes, the
resource adapter is enabled. Only when this happens can user transactions be
executed.

CIRB has six parameters:

The parameters are described in the following table:

Table 8. CIRB Transaction Parameters

Parameter Default Description

PASSWORD
(positional parameter
1)

SQLDBAPW This parameter establishes the operator’s authority to activate
online access to a local application server. The password identifies
the CICS subsystem. The user ID of the subsystem is the CICS
APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to
the local application server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See “Password Implications
on Online Resource Adapter Termination” on page 132 for more
details.

NOLINKS (positional
parameter 2)

3 This parameter establishes the number of links (paths) that should
be initialized to a local application server. Specify this parameter as
a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5.)

DEFUID (positional
parameter 3)

CICSUSER This parameter identifies the default user ID used by the online
support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM
specifications for a user ID.

�� CIRB ,
password,

,
nolinks,

,
defuid,

,
rmid,

,
langid,

�

�

$

Default_server

server_name
,

(server_name)
,

��

Figure 18. CIRB Transaction Syntax

100 System Administration

Table 8. CIRB Transaction Parameters (continued)

Parameter Default Description

RMID (positional
parameter 4)

0 This parameter identifies a unique resource adapter. You must
specify it only if your installation has multiple CICS partitions
active in the same VSE/ESA system, and if each CICS partition
allows online access to a server. For the case of a local application
server, recovery requires that the local server know the resource
adapter it is servicing. You must specify this parameter as a decimal
value between 0 and 63.

If the DB2 Server for VSE online support detects that this ID is not
unique in the system, it issues a message. The CIRB transaction
then ends without enabling the resource adapter.

There can be only one DB2 Server for VSE resource adapter enabled
in a single CICS partition. An attempt to enable a second DB2
Server for VSE resource adapter causes the DB2 Server for VSE
online support to issue a message, and the CIRB transaction ends
without enabling the second resource adapter. The first one,
however, remains in effect.

LANGID (positional
parameter 5)

specified at
installation

This parameter defines the language the DB2 Server for VM online
support uses to display error and information messages. The
language you specify on this transaction becomes the default
language for ISQL, CBND, C2BD, DSQG, DSQU, DSQD, and
DSQQ. The ISQL welcome logo always appears in the language
specified on this transaction.

This parameter must take the form of a minimum 1-character,
maximum 5-character language ID. You must use one of the
language IDs in the LANGID column of the
SQLDBA.SYSLANGUAGE table. The language ID must identify a
language you have installed on the DB2 Server for VM server. To
choose another language, use the SET LANGUAGE command in
ISQL. The following IDs can be specified on the CIRB transaction:

AMENG American English

UCENG Uppercase English

FRANC French

GER German

KANJI Kanji (Japanese)

HANZI Simplified Chinese

If this parameter is omitted, the language defaults to the language
chosen as the default at installation.

SERVER-NAME
(positional parameter
6)

Determined from
DBNAME directory or
“SQLDS”.

This parameter enables you to specify the application servers that
you want to access. If the list format specifies multiple servers, the
first one in the list becomes the default server. Only the first
server_name in the list may be omitted.

If this parameter (or the first one in the list) is omitted, the default
server is determined from the DBNAME directory. If the DBNAME
directory does not specify a default server, then SQLDS becomes
the default server name.

The CIRB transaction establishes the default application server. If the server_name
parameter is not specified on the CIRB transaction, then the default server is

Chapter 5. Operating the Online Support for VSE Guest Sharing 101

determined from the DBNAME directory. If a single server_name is specified on
the CIRB transaction then it becomes the default server. If a server_name list is
specified on the CIRB transaction, the first server_name in the list becomes the
default server. If the first server_name in the server_name list is blank then the
default server is determined in the same way as when the server_name is omitted
from the CIRB transaction. For example:
CIRB ,,,,,(,SQLMACH2)

This starts connections to two servers. The first one is the default server and its
name is determined from the DBNAME directory or if it is not specified in the
DBNAME directory it defaults to SQLDS. The second server is SQLMACH2.

Note that the following examples are not allowed. Only the first server_name in
the list can be blank.
CIRB ,,,,,(SQLMACH2,)
CIRB ,,,,,(SQLMACH2,,SQLVM)

The number of server_names that can be specified on the CIRB command is
limited by the size of the input line on the VSE console or a CICS terminal. The
VSE console only allows one line of input. A CICS terminal allows much more
input. If short server_names are used more can fit on the command. Server-names
can be up to 18 characters long. If all of the required server_names cannot fit on
the command, the CIRA transaction must be used to establish connections for the
remaining server_names.

Figure 19 shows an example of using the server_name list on the CIRB transaction.

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

If you try to establish connections to an application server to which connections
already exist, or to which online access is already enabled, the message “ARI0457W
Connections to <server_name> already exist.” is displayed. No action is taken against
that server. If the connections to a local server need to be changed they must first
be removed using CIRR or CIRT and then re-established using CIRA or CIRB. An
example is shown in Figure 20 on page 103.

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach1)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055B2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0457W Connections to SQLMACH1 already exist.
F2-002 ARI0402E Connections to SQLMACH1 could not be established.

Figure 19. Example of CIRB with Duplicate Server Names

102 System Administration

Note that each local server in the list has its connections established with the same
values for password, number of links, RMID, default user ID and language ID that
were specified.

If the CIRB parameters for each server are identical, all of the connections or online
access can be established with one CIRB transaction, as illustrated in Figure 21.

All three local application servers have the same number of connections, the same
default user ID, the same password, the same RMID and the same language ID.

If one or more of the parameters must be different, then all of the connections
cannot be established with one CIRB transaction. You will need the CIRA
transaction to add additional servers.

If you enter a remote server name in the server_name parameter of the CIRB or
CIRA transaction, CIRB or CIRA will not establish any links or sessions to the
remote system where the remote server runs. The following message will not be
displayed by CIRB or CIRA when it is processing a remote server, but will display
for local servers.

ARI0454I Connections to server_name established.
RMCV at XXXXXXXX.

CIRB or CIRA will display the following message instead for every remote server
processed at initialization time:

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach2)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055B2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
2 cirr ,,,sqlmach2
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
2 cira ,5,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A2E0.

Figure 20. Example of Changing Connection Settings

msg f2
AR 015 1I40I READY
2 cirb ,,,,,(sqlmach1,sqlmach2,sqlvm)
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055A2E0.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055D2E0.

Figure 21. Example of CIRB with Server-Name List

Chapter 5. Operating the Online Support for VSE Guest Sharing 103

ARI0467I RMCV for remote server_name established.
RMCV at XXXXXXXX.

Starting the CIRB Transaction
The CICS sequential device support can be used to automatically start the CIRB
transaction when CICS is started. Either a CRLP (a card reader or line printer)
device, or a sequential DASD device must be defined in the CICS DFHTCT, to
allow them to simulate terminals.

If a CRLP device is defined, the CIRB transaction can be run automatically by
including it in the CICS startup jobstream. The CIRB statement should be coded
just as it would if it were entered from a terminal. Include a slash (\) at the end of
the statement to indicate the end of data. Figure 22 shows an example:

If a sequential DASD device has been defined in the CICS DFHTCT, you must
define two sequential DASD data sets: one input and one output. These can be
either sequential access method (SAM) data sets or SAM-managed VSAM data
sets. The input data set must contain the CIRB statement. (A utility such as DITTO
or VSAM IDCAMS can be used to load the CIRB statement to the data set.) The
output data set will contain the messages from the CIRB startup process.
Whichever type of device is used -- CRLP or DASD -- do not include a CSSF
GOODNIGHT statement following the CIRB statement, as this would allow the
statement to be processed in all CICS startup modes (cold, auto, and emer).

The application server must be started before CICS for automatic startup to work.
When the CIRB transaction successfully ends, the following message is displayed
at the VSE console:

ARI0410I Resource Adapter ARI0OLRM is enabled

For more information about CICS sequential device support, see the CICS/VSE
Resource Definition (Macro) manual. For information about the DFHTCT entries
required to define a sequential CRLP or DASD device, see the DB2 Server for VM
Program Directory.

If a failure occurs, you can issue the CIRT transaction with the QUICK mode. This
mode disconnects links to the application server. For more information, see
“Stopping the Online Support -- The CIRT Transaction” on page 128. If the above
action does not solve the problem, CICS must be recycled.

SCHEDULE Authority for VSE Guest Sharing
The VM database must grant SCHEDULE authority to the CICS/VSE application
identifier.

Implicit CONNECT Support
This support allows development of online applications that do not issue an SQL
CONNECT statement. With this support, operators need not enter a user ID and
password as input to the online application, which is useful if your installation
requires terminal users to sign on using the CSSN transaction. For some
transactions accessing the database, the CICS sign-on verification may be sufficient.
It can also be useful if you have just installed the database manager and find it
convenient to have all users identified by one name (for example, CICSUSER).

// EXEC DFHSIP,SIZE=NNNNK
CIRB PASSWORD,3,PRODCICS,0\
/*

Figure 22. Automatically Starting CIRB

104 System Administration

If a CICS transaction has not yet established a user ID for the current or prior unit
of work, and the user has signed on to CICS using the CESN (or CSSN)
transaction, online support will attempt to use the eight-character signon user ID.
The user ID used will be the value returned by the CICS command

EXEC CICS ASSIGN USERID(data-area)

If you start the online support with CIRB, then before the online resource adapter
is able to run the implicit connect support to a local application server, it verifies
that the CICS subsystem has SCHEDULE authority on the local application server.

Grant the necessary SCHEDULE authority as follows:
GRANT SCHEDULE TO CICSTEST IDENTIFIED BY cicspw

where cicspw is the new password. The required password input parameter for
CIRB (and CIRT) is now cicspw.

If the online support can verify that the CICS subsystem has SCHEDULE authority,
it sets the DEFUID into each of the agents allocated for online use. The DEFUID
you specify as an input parameter for CIRB is the user ID used for all online
applications connecting to a local application server that do not issue an SQL
CONNECT statement and do not have a valid CICS signon user ID.

Supporting Multiple User Online Access
The NOLINKS input parameter to CIRB causes the allocation of a fixed number of
links to the local application server. The online support suballocates the links to
CICS transactions when they issue their first SQL request. When a transaction has
a link, it keeps it until the end of the logical unit of work. When the number of
such transactions exceeds NOLINKS, some transactions have to wait for links, and
link contention occurs. Some planning is required to optimize the NOLINKS
parameter. NOLINKS varies as your application mix varies.

Consider these things about the NOLINKS input parameter:
v Initially, allow one link for each one to two ISQL users, and one link for each

four to ten users of preplanned transactions.
v The NOLINKS value must not exceed that of the NCUSERS initialization

parameter, which defines the total number of links to the application server.
v The online support uses the CICS monitoring facility to collect performance

data. For a given NOLINKS and a given period of the day, you can gather
information on the number of link waits, total link wait time, and total time
holding the link. For more information, see the DB2 Server for VSE & VM
Performance Tuning Handbook.

v When a logical unit of work ends, the online support makes the freed link
available to all waiting transactions. The first waiting database transaction that
CICS dispatches gets the link. To define allocation priority for the online links,
consider using the operator, transaction, and terminal priority mechanisms of
CICS. (These are specified with the OPPRTY keyword of DFHSNT, and the
TRMPRTY keyword of DFHTCT respectively.)

v Consider defining one or more transaction classes for the transactions that access
the database manager, and limit access by using the CICS CMXT keyword of
DFHSIT. By correlating CMXT with NOLINKS, you can ensure that storage
resources in the CICS partition are not used until links are available.

Chapter 5. Operating the Online Support for VSE Guest Sharing 105

v Consider a similar technique to control the number of active ISQL users. Rather
than limit the total number of active ISQL users, you can control the number of
active users from a given department or user group. See “Access Control to
ISQL on a VSE Guest” on page 141.

CIRB Impact to System Resources
If the NOLINKS input parameter is n, system resources are used as follows:
v You have n links allocated to the application server, and n application server

agents are used. The agents remain allocated for online applications until CIRT
is entered.

v Additional virtual storage is required in the CICS partition for the online
support. See “Appendix A. Virtual and Real Storage Requirements” on page 423.

v For each concurrent transaction that is attempting to access the application
server, additional virtual storage is required in the CICS partition. See
“Appendix A. Virtual and Real Storage Requirements” on page 423.

Supporting Multiple CICS Partitions
Your installation can have multiple CICS partitions, each with access to the
application server. For recovery purposes, each instance of an active online
resource adapter must have a unique identifier. You can do this with the CIRB
RMID input parameter. You should keep the RMID for a CICS partition consistent,
by relating the RMID to the priority of each CICS, specifying a 0 for the
production CICS, 1 for the test-level CICS, and so on. If your installation has only
one CICS system, the RMID input parameter need not be specified.

Adding Connections -- The CIRA Transaction
The CIRA transaction has four parameters:

The parameters are described in the following table:

�� CIRA ,
password,

,
nolinks,

,
defuid,

$

server_name
,

(server_name)

��

Figure 23. CIRA Transaction Syntax

106 System Administration

Table 9. CIRA Transaction Parameters

Parameter Default Description

PASSWORD
(positional parameter
1)

SQLDBAPW This parameter establishes the operator’s authority to activate
online access to a local application server. The password identifies
the CICS subsystem. The user ID of the subsystem is the CICS
APPLID, which defaults to DBDCCICS. The procedure ARIS080D
uses the following job control to give the password and user ID to
the DB2 Server for VM server:

// EXEC ARISQLDS,SIZE=AUTO,PARM='SYSMODE=S,
LOGMODE=N,PROGNAME=ARIDBS'
CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
GRANT SCHEDULE TO DBDCCICS IDENTIFIED BY CICSPSWD;
COMMIT WORK;

The password chosen (CICSPSWD above) must satisfy DB2 Server
for VSE & VM specifications for a password. This password
establishes which password to use when dropping connections
through the CIRR or CIRT commands. See “Password Implications
on Online Resource Adapter Termination” on page 132 for more
details.

NOLINKS (positional
parameter 2)

3 This parameter establishes the number of links (paths) that should
be initialized to a local application server. Specify this parameter as
a decimal value between 1 and 64. The number must be less than
or equal to the value assigned to the NCUSERS initialization
parameter of the DB2 Server for VSE & VM system. (The NCUSERS
default is 5).

DEFUID (positional
parameter 3)

CICSUSER This parameter identifies the default user ID used by the online
support when it makes an implicit CONNECT to a local application
server. This parameter must satisfy DB2 Server for VSE & VM
specifications for a user ID.

SERVER-NAME
(positional parameter
4)

none This parameter is required and it specifies the additional
application servers (local or remote), that you want to access.

If this parameter is omitted, the message ARI0400E is issued
indicating that an invalid input parameter was entered.

The password, nolinks, defuid and server_name parameters have exactly the same
meanings as on the CIRB command. One exception is that the server_name
parameter is required on CIRA but is optional on CIRB.

The number of server_names that can be specified on the CIRA command is
limited by the size of the input line. As with CIRB, CIRA can be entered on the
VSE console or on a CICS terminal. On the VSE console the input is limited to one
line. On the CICS terminal it can use the full screen. If short server_names are used
more can fit on the command. Server_names can be up to 18 characters long. If all
of the required server_names cannot fit on the command, the CIRA transaction
must be repeated for the remaining server_names. Figure 24 on page 108 shows an
example using the CIRA transaction with a server_name list.

Chapter 5. Operating the Online Support for VSE Guest Sharing 107

The maximum number of application servers to which an online resource adapter
can establish connections or enable online access to is only limited by the amount
of storage available in the partition where the online resource adapter is running.

The CIRA transaction establishes connections or enables online access to the
specified application servers based on the parameters given on the CIRA
transaction. If a server_name list is used then connections or online access will be
established to each application server in the list using the same set of parameters.
For example:

CIRA thispw,4,thisid,(sqlmach2,sqlvm)

The above command will establish four links to the local application server
SQLMACH2 with password “thispw” and default user ID “thisid.” The RMID and
the language ID are inherited from the CIRB transaction. If the online resource
adapter was started with RMID = 0 and language ID = ameng then any
connections started to that same online resource adapter will also have RMID = 0
and language id = ameng. Then CIRA will establish four links to SQLVM with
password “thispw” and default user ID “thisid.” Again the RMID is 0 and the
language ID is ameng. If CIRA is entered before CIRB was run, the message
“ARI0411I Resource Adapter is not enabled.” is displayed.

If one or more of the parameters must be different, then the server_name list
format of the CIRA transaction cannot be used. The CIRA transaction would have
to be executed separately for each application server that required different
parameters. For example, if three links are required to SQLMACH2 and four links
are required to SQLVM but the other parameters are the same for both servers, the
CIRA transaction must be run for each of them.

CIRA thispw,3,thisid,sqlmach2
CIRA thispw,4,thisid,sqlvm

If you try to establish connections or enable online access to an application server
that is already connected a warning message will be displayed. No action is taken
against that server. If the connections to a local application server need to be
changed they must first be removed using CIRR or CIRT and then re-established
using CIRA or CIRB.

Consider the following scenario. An online transaction program needs to access
three different application servers, SQLMACH2, SQLMACH1 and SQLVM.
SQLMACH2 and SQLMACH1 are running in two VSE partitions and SQLVM is

msg f2
AR 015 1I40I READY
2 cirb ,,,,,sqlmach1
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055A2E0.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira ,,,(sqlmach2,sqlvm)
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055D2E0.

Figure 24. Example of CIRA with Server_Name List

108 System Administration

running under VM and is accessed via guest sharing. We want SQLMACH1 to be
the default server, and we want the default settings for all three servers.

To achieve this we could enter the following sequence of commands. Assume that
our CICS region is running in partition 2, SQLMACH2 is running in partition 4
and SQLMACH1 is running in partition 5.
1. Use the CIRB transaction to start the online resource adapter and establish the

default application server, SQLMACH1.
2. Use the CIRA transaction to establish connections to SQLMACH2.
3. Use the CIRA transaction again to establish connections to SQLVM.

This is illustrated in Figure 25.

Since the settings for the connections to SQLMACH2 and SQLVM are identical,
both connections could be established on the same CIRA command, as illustrated
in Figure 24 on page 108.

Automatic Restart Resynchronization
If a system or subsystem failure occurs while an online application is trying to
commit work and two-phase commit is being used, the unit being committed is
called an in-doubt logical unit of work, because the database manager has
prepared it for commit or rollback but the system or subsystem failure occurred
before the commit completed. In-doubt units of work must be resolved the next
time the application server is started.

Note: CICS/VSE and the local application server will use a one-phase commit if at
most one external resource has been updated. In this case it is not possible
to create an in-doubt unit of work. This means that any CICS transaction
that updates only the local application server resources will not generate
in-doubt units of work.

The CICS/VSE restart resynchronization facility, which is started implicitly when
you issue CIRB or CIRA, resolves the in-doubt units of work created by any CICS
transaction that updated a local application server. To enable it, you must update
the CICS/VSE tables to include the resynchronization transaction.

F2-002 DFH1500 - DBDCCICS : CONTROL IS BEING GIVEN TO CICS
msg f2
AR 015 1I40I READY
2 cirb ,,,,,sqlmach1
F2-002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2-002 ARI0450I DB2 Server for VSE online support has an

entry point of 003AA808 RMGL at 00541200.
F2-002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0055D2E0.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira ,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055C2E0.
2 cira ,,,sqlvm
F2-002 ARI0454I Connections to SQLVM established.

RMCV at 0055A2E0.

Figure 25. Example of CIRB and CIRA

Chapter 5. Operating the Online Support for VSE Guest Sharing 109

CIRB and CIRA assume that restart resynchronization is enabled when they are
executed. If, for some reason it has been disabled when CIRB or CIRA is issued, it
will display the message ″ARI0466E CICS restart re-synchronization is not available.
The <tran> transaction is ended.″ and exit. At this point the system programmer
should ensure that it has been properly enabled and retry CIRB or CIRA.

For information about the updates, see the DB2 Server for VSE Program Directory
manual.

The current implementation of the CICS/VSE restart resynchronization facility
allows it to re-synchronize itself with DB2 Server for VSE online resource adapter
only once. After it has been invoked, CICS discards any information about
in-doubt units of work that it did not resolve. This means that there can be
scenarios where it is not possible to automatically resolve in-doubt units of work.

When the CIRB or CIRA transaction is started, a connection is made to the
READY/RECOVERY agent of the local server to get a ’recovery list’. This recovery
list provides information on any in-doubt agents that need to be resolved for this
server. After this has been done for every local server specified in the CIRB or
CIRA command, the CICS/VSE restart resynchronization facility is invoked, which
will resolve the in-doubt units of work for all of those local servers. A subsequent
CIRA to connect to another local server that also has in-doubt units of work will
fail because CICS has discarded the log information. The in-doubt units of work on
that server must be resolved manually using the FORCE n COMMIT or FORCE n
ROLLBACK commands on the server before the CIRA command will work.

For example, suppose that SQLMACH1 and SQLMACH2 are DB2 Server for VM
application servers that run on the same VM system and are accessed via guest
sharing. The password used to access SQLMACH1 is ABC and the password used
to access SQLMACH2 is DEF. All the other parameters needed by the two
databases are the defaults. The connections to SQLMACH1 and SQLMACH2 are
established using the following sequence of commands:

CIRB abc,,,,,sqlmach1

CIRA def,,,sqlmach2

Suppose that CICS transactions accessing these application servers also make
updates to the DB2 Server for VM database as well as some other external
non-CICS resource, so that CICS will use the two-phase commit process. If a
system failure occurs on the VM system while CICS is performing a two-phase
commit to both these databases, then both SQLMACH1 and SQLMACH2 will go
down. When the system is brought back up and SQLMACH1 and SQLMACH2 are
restarted, they will both have in-doubt units of work. If the connections to
SQLMACH1 and SQLMACH2 are restarted the same way as before, only the
in-doubt units of work on SQLMACH1 will be resolved automatically. The
in-doubt units of work on SQLMACH2 will need to be resolved explicitly before
the CIRA command for SQLMACH2 will work.

See Figure 26 on page 111 for an example of this.

110 System Administration

2 cirb abc,,,,,sqlmach1
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira def,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

<System Failure occurs>

F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of DB2 Server for VSE online applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000041 CISQ SQLDBA L080 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:15 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH1.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH1 are disabled.
F2 002 ARI0460W Connections to the default server SQLMACH1

have been disabled.
F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of DB2 Server for VSE online applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000141 CISQ SQLDBA L083 00:00:06 00:01:34
F2 002

Figure 26. Automatic Restart Resynchronization Failure (Part 1 of 2)

Chapter 5. Operating the Online Support for VSE Guest Sharing 111

However if the connections to SQLMACH1 and SQLMACH2 are established with
a single CIRB or CIRA command, the in-doubt units of work on both servers will
be resolved automatically.

See Figure 27 on page 113 for a detailed example of this.

F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH2.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,sqlmach1
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
2 cira def,,,sqlmach2
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.
F2-002
F2 002 ARI0438E Automatic restart resynchronization failed.

A logical unit of work that DB2 for VSE indicated
needed to be resolved was not identified by
the CICS/VSE log as needing resolution.

F2 002 ARI0423A Use the SHOW and FORCE commands to
COMMIT or ROLLBACK the following units of work:

F2 002 ARI0424I User ID = SQLDBA Agent Identifier = 1
Server = SQLMACH2

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 15:33:22 DATE= 08/14/95
F2 002 ARI0455I Connections to SQLMACH2 are disabled.

<From the SQLMACH2 console enter:>
<SHOW ACTIVE>
<FORCE 1 ROLLBACK>

<Now CIRA will work>

2 cira def,,,sqlmach2
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

Figure 26. Automatic Restart Resynchronization Failure (Part 2 of 2)

112 System Administration

2 cirb abc,,,,,(sqlmach1,sqlmach2)
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

<System Failure occurs>

F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000041 CISQ SQLDBA L080 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:15 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH1.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH1 are disabled.
F2 002 ARI0460W Connections to the default server SQLMACH1

have been disabled.
F2 002 ARI2908I XPCCB, IJBXRUSR = 0483061009000000
F2 002 ARI0406E Error in using system communications facility.

Request = 15
Return Code = 4 Reason Code = 7

F2 002 The default server is SQLMACH1.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002

Figure 27. Successful Automatic Restart Resynchronization (Part 1 of 2)

Chapter 5. Operating the Online Support for VSE Guest Sharing 113

Assuming CICS restart resynchronization has been properly enabled as described
in the DB2 Server for VSE Program Directory manual, the conditions where in-doubt
units of work must be resolved explicitly are:
1. CICS log missing. This can be from a CICS log media failure, CICS COLD start

which destroys the log contents, or CICS journal is not active so no log data is
created.

2. CICS RESYNCH has already been issued. The log data is discarded by CICS
after the RESYNCH command has been issued even if it was not used. See
Figure 26 on page 111 for an example of this.

To take full advantage of the automatic restart resynchronization the following
should be true:
1. All local application servers with in-doubt units of work must be started on the

same CIRB or CIRA transaction. This means they must have the same
password, default user ID, language, RMID, and number of links to be started.

2. CICS startup should be START=AUTO which lets CICS determine if the startup
will be START=WARM or START=EMER. Any COLD start will erase the log
data and automatic restart resynchronization will not be possible.

Resolving In-Doubt Transactions
Only under exceptional conditions (such as a CICS log media failure) do you have
to resolve in-doubt LUWs explicitly. To do so, issue the SHOW ACTIVE command to
determine those agents that are in-doubt; then issue the FORCE command to commit
or rollback each one:

FORCE n COMMIT

or

FORCE n ROLLBACK

F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000141 CISQ SQLDBA L083 00:00:06 00:01:34
F2 002
F2 002 TIME= 15:26:45 DATE= 08/14/95
F2 002 ARI0465I Transactions are still active

for server SQLMACH2.
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

30-second interval before attempting the disable.
F2 002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

<SQLMACH1 and SQLMACH2 are restarted>

2 cirb abc,,,,,(sqlmach1,sqlmach2)
F2 002 ARI0410I Resource Adapter ARI0OLRM is enabled.
F2 002 ARI0450I DB2 Server for VSE online support has an

entry point of 0039F008 RMGL at 001DF5B4.
F2 002 ARI0454I Connections to SQLMACH1 established.

RMCV at 0053BF00.
F2-002 ARI0458I The default server is SQLMACH1.
F2 002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055A080.

Figure 27. Successful Automatic Restart Resynchronization (Part 2 of 2)

114 System Administration

where n is the agent identifier of the in-doubt LUW.

The discussion in the DB2 Server for VSE & VM Operation manual states that, in
general, FORCE n COMMIT should be entered. The exception is for applications
that access multiple resources (for example, an application that updates both a DB2
Server for VM database and a VSAM/VSE file.) For such applications, the operator
requires direction from the developer or user of the application.

You could plan for this situation by keeping a list of all transactions that update
multiple resources. The list should contain the CICS transaction identifier for the
application, and the recommended direction (COMMIT or ROLLBACK) from the
developer. (For more information, see the discussion on online application recovery
in the DB2 Server for VSE & VM Database Administration manual.) Because ISQL
does not update multiple resources, the direction for the ISQL transaction should
always be to commit work.

Changing the Default Server -- The CIRC Transaction
The transaction CIRC can be used to dynamically change the default server. The
CIRC transaction has one parameter:

The parameter is described in the following table.

Table 10. CIRC Transaction Parameter

Parameter Default Description

SERVER-NAME
(positional
parameter 1)

none This parameter is required and it specifies the
application server that you want to become the
default.

If this parameter is omitted, the message ARI0400E
is issued indicating that an invalid input parameter
was entered.

The server-name specified must already have connections or online access
established to it, either from the CIRB or CIRA transactions. If connections to the
specified server do not exist or online access to the specified server was not
enabled from the CIRB or CIRA transactions, the message “ARI0456I Connections to
<server-name> do not exist.” is displayed. In this case the CIRA transaction must
first be run to establish the connections, then the CIRC transaction is run to make
it the default server.

For the following example assume that connections exist to SQLMACH1 and
SQLMACH2 and that SQLMACH2 is the current default server.

�� CIRC server_name ��

Figure 28. CIRC Transaction Syntax

Chapter 5. Operating the Online Support for VSE Guest Sharing 115

For this next example assume that connections exist to SQLMACH1 but not to
SQLMACH2.

It is important to note that if the connections to the default server are lost, or
online access to the default application server is disabled, that server is still
identified as the default server. The connections can be lost because the server
went down or because the CIRR transaction was used to terminate the online
access or connection. Users that are trying to connect to the default server in these
cases will receive SQLCODE = -940. If the CIRB or CIRA transaction is used to
establish connections to a local server that is not ready, the message “ARI0418A
Application server <server-name> is not ready. Retry the enable transaction after the
application server starts.” is displayed. If the CIRB or CIRA transaction is used to
establish online access to a remote server that is not ready, an error message will
not be displayed. This is because CIRB or CIRA can not check whether a remote
server is ready or not.

Removing Connections -- The CIRR Transaction
To remove connections or to disable online access to a local or remote application
server, issue the CICS CIRR transaction. The CIRR transaction has four parameters:

msg f2
AR 015 1I40I READY
2 circ sqlmach1
F2-002 ARI0459I The new default server is SQLMACH1.

The previous default server was SQLMACH2.

Figure 29. Example of CIRC

msg f2
AR 015 1I40I READY
2 circ sqlmach2
F2-002 ARI0456I Connections to SQLMACH2 do not exist.
2 cira ,,,sqlmach2
F2-002 ARI0454I Connections to SQLMACH2 established.

RMCV at 0055D2E0.
2 circ sqlmach2
F2-002 ARI0459I The new default server is SQLMACH2. The previous

default server was SQLMACH1.

Figure 30. Example of CIRC

�� CIRR ,
password,

,
mode,

,
interval,

�

�

$

Default_server

server_name
,

(server_name)
,

��

Figure 31. CIRR Transaction Syntax

116 System Administration

The password, mode and interval parameters are the same as on the CIRT
transaction and are described in the following table:

Table 11. CIRR Transaction Parameters

Parameter Default Description

PASSWORD
(positional
parameter 1)

SQLDBAPW This password establishes the operator’s authority to
terminate the online access to the application server.
It must be the same password that was supplied for
the server by the CIRB or CIRA transaction. Refer to
“Password Implications on Online Resource Adapter
Termination” on page 132 for more details.

MODE
(positional
parameter 2)

NORMAL This parameter establishes the shutdown mode:
NORMAL or QUICK. When you specify NORMAL,
the CIRR transaction prevents new online users from
accessing the specified application server. Users who
are already doing work, however, can finish. When
all users complete their work, no online users can
use the specified application server. When you
specify NORMAL for a remote application server,
the shutdown of the access to the remote application
server will complete only when all conversations to
the remote application server have been deallocated.
When you specify QUICK for a local application
server, online access is ended immediately. Online
users cannot finish their work. Their current logical
units of work are rolled back (unless they are
already processing a COMMIT WORK). You can
change from NORMAL to QUICK. However, once
the MODE is QUICK, you cannot change it back to
NORMAL. When you specify QUICK for a remote
server, the QUICK mode is changed to NORMAL.
QUICK mode is not supported for a remote
application server.

Chapter 5. Operating the Online Support for VSE Guest Sharing 117

Table 11. CIRR Transaction Parameters (continued)

Parameter Default Description

INTERVAL
(positional
parameter 3)

30 (seconds) The number of seconds that the CIRR transaction
should delay before freeing the terminal. The value
must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRR transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRR transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRR PASSWORD,NORMAL,, server_name the
terminal is not available until all online DB2 Server
for VM users complete their work.

The value you specify for interval represents an
interval of time measured in seconds. If the CIRR
transaction does not finish immediately, it waits the
amount of time you specify. When this time ends,
the CIRR transaction tries once again to finish
processing. If the CIRR transaction does not finish
successfully, you receive a message telling you to
retry the CIRR transaction later. After issuing the
message, the CIRR transaction ends. The shutdown
mode is still in effect (the specified server is in the
process of shutting down), and the terminal is
available for your use.

SERVER-NAME
(positional
parameter 4)

Determined by
CIRB or CIRC
transaction.

This parameter enables you to specify the
application servers from which you want to remove
access. The default server is removed if this
parameter is omitted, or if the first parameter in the
server_name list is blank. The default server is the
one that was established by the CIRB transaction or
by the CIRC transaction.

If no server_name is specified the default server_name is used. The default
server_name was established by the CIRB or CIRC transaction. The CIRD
transaction may be used to display the default server_name in case the user does
not know what the default server_name is.

The above example assumes that there are connections to more than one server
when the CIRR transaction is entered.

If the password, mode and interval are the same then the server_name list can be
used to remove connections or disable online access from multiple application
servers. Since SQLVM was the last active connection, the online resource adapter

msg f2
AR 015 1I40I READY
2 cirr
F2-002 ARI0455I Connections to SQLMACH1 are disabled.
F2-002 ARI0460W Connections to the default server SQLMACH1 have

been disabled.

Figure 32. Example of CIRR with Defaults

118 System Administration

was terminated. SQLMACH2 and SQLVM are local application servers, while
SQLMACH8 is a remote server.

The CIRR transaction can be used to remove the connections or disable online
access to the application server that were established by the CIRB and CIRA
transactions. If CIRR removes the last active connections to the online resource
adapter and all active APPC conversations known to the online resource adapter
are deallocated, then the online resource adapter is terminated. The CIRB
transaction would have to be used to restart it.

The CIRA and CIRR transactions can be entered repeatedly and in any order to
add and remove links to application servers or to enable and disable online access
to application servers as required.

If CIRR is entered to remove connections or disable online access to a server to
which no connections or online access have been established, the message
“ARI0456I Connections to <server_name> do not exist.” is displayed.

If the password given on the CIRR transaction does not match the password that
was used to start the connections or online access to the named server, then the
connections or online access to that server are not shut down and processing
continues with the next server in the list.

Displaying Information -- The CIRD Transaction
To display status information about active CICS transactions that access a local or a
remote application server, issue the CICS CIRD transaction.

The CIRD transaction does not require a password, and can be issued from any
CICS terminal or the operator console. To use it, you must enable it as well as the
CICS restart resynchronization facility. See the DB2 Server for VSE Program Directory
for more information.

msg f2
AR 015 1I40I READY
2 cirr ,,,(sqlmach2,sqlmach8,sqlvm)
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0455I Online access to SQLMACH8 is disabled.
F2-002 ARI0455I Connections to SQLVM are disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

Figure 33. Example of CIRR with Server-Name List

�� CIRD
Default-server

*

?

server_name

��

Figure 34. CIRD Transaction Syntax

Chapter 5. Operating the Online Support for VSE Guest Sharing 119

The parameter is described in the following table:

Table 12. CIRD Transaction Parameters

Parameter Default Description

SERVER-NAME
(positional
parameter 1)

Determined by
CIRB or CIRC
transaction.

This parameter enables you to specify the
application server whose status is to be displayed, or
* to display the status of all servers and the details
of transactions accessing the servers, or ? to display
a list of the connected servers without the
transaction details.

If this parameter is omitted, the default server_name
is the one that was determined by the CIRB or the
CIRC transaction.

Four categories of CICS transactions access the local application server. The
information that CIRD displays for transactions connected to a local server varies
depending on these four categories:
v Transactions waiting to access the local application server

These transactions have issued an SQL request and are waiting because all links
to the application server are busy. For these transactions, CIRD displays the
elapsed time of the wait.
In general, links to the local application server are busy because other users are
accessing it. The only exception occurs when the DB2 Server for VSE online
support is being started; at that time, all links to the application server could be
busy during the synchronization of the database log and the CICS log. Usually
this requires little time, but a long delay can occur if a very large LUW is being
rolled back.

v Transactions currently accessing the local application server
These transactions have established a link to the local application server and an
LUW. The application server is currently doing processing for that LUW. For
these transactions, CIRD displays the elapsed time of the current SQL statement,
and the elapsed time the link is held. The latter effectively indicates the elapsed
time of the current LUW.

v Transactions holding a link to the local application server but not using it
These transactions have established a link to the local application server and an
LUW, but the application server is not currently processing for that LUW.
Instead, these transactions are doing other work or are waiting for terminal
communications. For these transactions, CIRD displays the elapsed time since
the last application server access ended, and the elapsed time the link is held.
Again, the latter effectively indicates the elapsed time of the current LUW.

v Transactions that previously held a link to the local application server, but no
longer do.
These transactions have previously ended one or more LUWs, but have not yet
started another. For these transactions, CIRD displays the elapsed time since the
last LUW completed.

If you enter CIRD when the DB2 Server for VSE online support is not enabled or
when the CIRD is not operational, an error message is displayed and CIRD ends.
Note that for CIRD to display information about a transaction, the transaction
must have issued an SQL request. CIRD displays the following information (where
applicable) for each of the four categories of local database transactions:
v The CICS task number (TASKNO)

120 System Administration

v The CICS transaction identifier (TRANID)
v The CICS terminal identifier (TERMID)

Not all transactions have a terminal identifier. For example, ISQL has a
two-transaction structure: ISQL and CISQ. The former controls the terminal and
the latter is for access to the application server. Because a CISQ transaction has
no terminal associated with it, instead of displaying TERMID for it, CIRD
displays the terminal identifier in another field called USERDATA (described
below).
If a transaction accesses the application server, but does not have a terminal
associated with it, CIRD does not display TERMID.

v The user identifier (USERID) that the application server establishes for the
transaction
CIRD does not display this identifier unless a user ID has been established,
which is done when an application issues an SQL statement that starts an initial
LUW. The user ID may not be established immediately. (For example, a
transaction can be waiting for a link to the application server.) It remains
established after a transaction ends an LUW, unless the RELEASE option of
COMMIT WORK or ROLLBACK WORK was used.

v User data (USERDATA) for ISQL transactions
The USERDATA field contains the terminal identifier (TERMID) of the terminal
that was used to call ISQL. For most other transactions, USERDATA is blank. It
is possible, however, to code an online application to initialize the USERDATA
field. Such an application would use the DB2 Server for VSE online cancel
support. For more information, see “Coding Your Own Cancel Exit” on page 363.

Note: If you are controlling ISQL access with the DFHSIT CMXT parameter, you
have renamed the ISQL transaction. For these renamed ISQL transactions,
CIRD still displays the terminal identifier of the terminal that was used to
run the transaction. For more information on this parameter, see “Access
Control to ISQL on a VSE Guest” on page 141.

v The elapsed time intervals (as described above)
CIRD uses the following format to display the time:

hh:mm:ss

CIRD then displays the time of day and the date, as follows:
TIME=hh:mm:ss DATE=mm/dd/yy (or dd/mm/yy)

and then ends its processing. (The format of the date depends on how you
specified it on the DATE parameter of the VSE STDOPT JCC/JCS.)

If CIRD determines that no CICS transactions apply to the application server, it
displays only the time and the date, and then ends.

Note: If the DB2 Server for VSE online support ends abnormally (for example, if
the application server partition ends unexpectedly), the CIRD transaction is
called implicitly to display information about transactions that were
accessing the application server at the time of the failure. This information is
displayed on the VSE system console.

For the following examples, assume that SQLMACH1 is the default local server
and that connections have been established for the local application servers
SQLMACH1, SQLMACH2 and SQLVM.

Chapter 5. Operating the Online Support for VSE Guest Sharing 121

Figure 35 shows an example of the information displayed by the CIRD transaction
with no parameters.

Figure 36 on page 123 shows an example of the information displayed by the CIRD
transaction with a server_name specified.

2 cird
F2 002 The default server is SQLMACH1.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000037 INV L209 TERRY 00:00:01 00:00:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000003 CISQ WILLIAM L210 00:07:01 00:10:56
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 ROBERT L210 00:20:04
F2 002
F2 002 TIME=14:28:23 DATE=09/01/95

Figure 35. Example of CIRD with Defaults

122 System Administration

Figure 37 on page 124 shows an example of the information displayed by the CIRD
transaction with the * specified.

2 cird sqlmach2
F2 002 The default server is SQLMACH1.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000037 INV L209 TERRY 00:00:01 00:00:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000003 CISQ WILLIAM L210 00:07:01 00:10:56
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 ROBERT L210 00:20:04
F2 002
F2 002 TIME=14:28:23 DATE=09/03/95

Figure 36. Example of CIRD with Server-Name

Chapter 5. Operating the Online Support for VSE Guest Sharing 123

Figure 38 on page 125 shows an example of the information displayed by the CIRD
transaction with the ? specified.

2 cird *
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions waiting to establish a link to the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA WAIT TIME
F2 002 ------ ------ ------ -------- -------- ---------
F2 002 000033 MKE2 L222 00:01:32
F2 002 000025 INV L224 JIM 00:08:32
F2 002
F2 002 Transactions holding a link and now accessing the application server are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME USED TOTAL LUW
F2 002 FOR CURRENT TIME
F2 002 ACCESS
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000019 CISQ DEPT222 L199 00:01:32 00:03:48
F2 002 000137 INV L209 BOB 00:17:34 01:24:03
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ------ ------ ------ -------- -------- ------------ ---------
F2 002 000013 CISQ LARRY L210 00:03:01 00:11:36
F2 002
F2 002 Transactions which previously accessed the application server (not holding link):
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE
F2 002 LAST ACCESS
F2 002 ------ ------ ------ -------- -------- ------------
F2 002 000003 MKE2 LOUISA L210 01:57:04
F2 002
F2 002 TIME=14:28:23 DATE=09/03/95
F2 002 ---
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2-002 TIME= 14:29:47 DATE= 09/03/95
F2 002 ---
F2 002 DBDCCICS connected to server SQLVM.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME=14:30:23 DATE=09/03/95

Figure 37. Example of CIRD with *

124 System Administration

Some extra information can be derived from the displays. In Figure 38 notice that
SQLMACH1 is mentioned as the default server and on the next message that there
are connections to SQLMACH1 also. It is possible, with the CIRR transaction, to
remove the connections to SQLMACH1. The CIRD command would still show that
the default server is SQLMACH1 but the message indicating there are connections
to SQLMACH1 would not be displayed. In this scenario, users connecting to the
default server would receive SQLCODE = -940 on the CONNECT statement. The
CIRA transaction could be used to establish connections to SQLMACH1 again or
the CIRC transaction could be used to change the default server to one of the other
active servers. Either method allows CONNECT statements to access the default
server.

If CIRR or CIRT has been issued to disconnect a server or to shut down the online
resource adapter but cannot complete because there are still active transactions
against the server, the CIRD transaction will show which transactions and which
servers are affected.

Figure 39 on page 126 shows an example of the information displayed by the CIRD
transaction with the ? parameter specified. The attempt to remove the connections
to SQLMACH2 fails because there are still active transactions. Then the CIRD
transaction is used to determine which transactions are still active. The user is
found and asked to complete his work. When the CIRR command is retried it
completes successfully and the connections to SQLMACH2 are shut down.

2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---

Figure 38. Example of CIRD with ?

Chapter 5. Operating the Online Support for VSE Guest Sharing 125

The CIRD transaction displays the following information (where applicable) for
transactions that relate to a remote application server:

RDBMS
displays the name, class, and release level (version, release, and modification
level) of the application server being accessed.

LU
displays the logical unit name.

TPN
displays the transaction program name. Its character and hexadecimal versions
are both displayed.

2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 There are connections to server SQLMACH2.
F2 002 There are connections to server SQLVM.
F2 002 ---
2 cirr ,,1,sqlmach2
F2 002 ARI0463I The DISABLE transaction CIRR must delay for a

1-second interval before attempting the disable.
F2-002
2 cird ?
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 Connections to SQLMACH2 are being disabled.
F2 002 There are connections to server SQLVM.
F2 002 --
F2-002
2 cird *
F2 002 The default server is SQLMACH1.
F2 002 There are connections to server SQLMACH1.
F2 002 Connections to SQLMACH2 are being disabled.
F2 002 There are connections to server SQLVM.
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH1.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 19:07:43 DATE= 09/20/95
F2-002
F2 002 --
F2 002 DBDCCICS connected to server SQLMACH2.
F2 002 Status of online DB2 Server for VSE applications:
F2 002
F2 002 Transactions holding a link to the application server but not using are:
F2 002
F2 002 TASKNO TRANID TERMID USER ID USERDATA TIME SINCE TOTAL LUW
F2 002 LAST ACCESS TIME
F2 002 ______ ______ ______ ________ ________ ___________ _________
F2 002 0000129 CISQ CICSUSER L77D 00:00:31 00:00:31
F2 002
F2 002 TIME= 19:07:44 DATE= 09/20/95
F2 002 --
F2 002 DBDCCICS connected to server SQLVM.
F2 002 There are no active DB2 Server for VSE transactions.
F2 002
F2 002 TIME= 19:07:45 DATE= 09/20/95
F2-002
2 cirr ,,2,sqlmach2
F2-002 ARI0455I Connections to SQLMACH2 are disabled.

Figure 39. Example of CIRD in a Disable Scenario

126 System Administration

TASKNO
displays the number of the task.

TRANID
displays the transaction id.

TERMID
displays the name of the terminal where the transaction was initiated.

USER ID
displays the connected user id.

STATUS
displays the communication state. COMM indicates that the transaction sent an
SQL statement to the database machine and has been waiting for a reply since
the time shown. APPL indicates that the transaction returned control to the
application at the time shown. VRA indicates that the Online Resource Adapter
is processing your request. WAIT indicates that the transaction is waiting for a
session.

TIME
displays the time when the STATUS displayed had begun. For example, task
number 891 has already returned control to the application at 09:12:42, as
indicated by TIME.

LUWID
displays the logical unit of work identifier, which uniquely identifies an LU6.2
conversation. Its value is netid.luname.instance_number.sequence_number where
netid and luname are up to 8 characters long, instance_number is 12 characters
long, and sequence_number is 4 characters long.

Figure 40 shows an example of the information displayed by the CIRD transaction
with a remote server-name specified.

Figure 41 on page 128 shows an example of the information displayed by the CIRD
transaction with a ? specified, where online access to the remote server RMTSERV1
is allowed. Assume that SQLMACH1 is the default local application server and
RMTSERV1 is a remote application server. Connections have been established for

User: 2 cird sqlmach8
System: F2 0002 The default server is SQLMACH8.

F2 0002 --
F2 0002 Status of online DB2 Server for VSE applications for
F2 0002 RDBMS = SQLMACH8 SQLDS/VM V6.1.0
F2 0002 LU = VMC3
F2 0002 TPN = SQLMACH8
F2 0002 (X'E2D8D3D4C1C3C8F8')
F2 0002
F2 0002 TASKNO TRANID TERMID USER ID STATUS TIME
F2 0002 ______ ______ ______ ________ ______ ___________________
F2 0002 LUWID
F2 0002 ______
F2 0002 0000891 DRT1 D080 SYSA APPL 1998-08-11.09:12:42

F2 0002 CAIBMOML.D08001.E31FE596ADDE.0001

F2 0002
F2 0002 TIME= 09:18:11 DATE= 08/11/98
F2-0002

Figure 40. Example of CIRD with remote server name

Chapter 5. Operating the Online Support for VSE Guest Sharing 127

SQLMACH1 and online access to RMTSERV1 through the online support is
allowed.

Stopping the Online Support -- The CIRT Transaction
While the online support is enabled, it uses CICS resources (storage) and
application server resources (agents). At certain periods of the day, you may want
to free these resources and prevent online access to the application server. You
may, for example, want to allow only batch access to the application server for
purposes of loading a large amount of data. For either of these situations, the
operator can disable the online support by entering the CIRT transaction.

To end DB2 Server for VSE online support, issue the CICS CIRT transaction. The
syntax of the CIRT transaction is as follows:

Table 13. CIRT Transaction Parameters

Parameter Default Description

PASSWORD
(positional
parameter 1)

SQLDBAPW This password establishes the operator’s authority to
terminate the online access to the application server.
It must be the same password that was supplied for
the CIRA or CIRB transaction. Refer to “Password
Implications on Online Resource Adapter
Termination” on page 132 for more details.

User: 2 cird ?
System: F2 002 The default server is SQLMACH1.

F2 002 There are connections to server SQLMACH1.
F2 002 Online access to remote RMTSERV1 is allowed.
F2 002 ---

Figure 41. Example of CIRD with ?

�� CIRT ,
password,

,
mode,

,
interval

��

Figure 42. CIRT Transaction Syntax

128 System Administration

Table 13. CIRT Transaction Parameters (continued)

Parameter Default Description

MODE
(positional
parameter 2)

NORMAL This parameter establishes the shutdown mode:
NORMAL or QUICK. When remote application
servers are accessed by the online support, CIRT
NORMAL will complete only when all conversations
to the remote application servers are deallocated.
When you specify NORMAL, the CIRT transaction
prevents new online users from accessing the
application server. Users who are already doing
work, however, can finish. When all users complete
their work, no online users can use the application
server. When you specify QUICK, online access to
local application servers is ended immediately.
Online users accessing a local application server
cannot finish their work. Their current logical units
of work are rolled back (unless they are already
processing a COMMIT WORK). You can change
from NORMAL to QUICK. However, once the
MODE is QUICK, you cannot change it back to
NORMAL. When remote application servers are
accessed by the online support and you specify
QUICK, online access to the remote application
server is not ended immediately. Online users
accessing a remote server can finish their unit of
work, but cannot start a new logical unit of work.
QUICK mode is not supported for a remote
application server.

INTERVAL
(positional
parameter 3)

30 (seconds) The number of seconds that the CIRT transaction
should delay before freeing the terminal. The value
must be an integer value between 0 and 3600. This
parameter controls the availability of the CICS
terminal (or operator console) once you issue the
CIRT transaction.

The CICS terminal (or VSE operator console) used to
activate the CIRT transaction is unavailable until the
transaction ends. This could be a long time if the
online application is long-running or if a user left
without correctly ending the terminal session. If you
issue CIRT PASSWORD,NORMAL the terminal is
not available until all online DB2 Server for VSE
users complete their work. Even with CIRT
PASSWORD, QUICK there may be some delay
before the CICS terminal allows the CIRT terminal to
complete its cleanup process.

The value you specify here represents an interval of
time measured in seconds. If the CIRT transaction
does not finish immediately, it waits the amount of
time you specify. When this time ends, the CIRT
transaction tries once again to finish processing. If
the CIRT transaction does not finish successfully,
you receive a message telling you to retry the CIRT
transaction later. After issuing the message, the CIRT
transaction ends. The shutdown mode is still in
effect (the specified DB2 Server for VM system is in
the process of shutting down), and the terminal is
available for your use.

Chapter 5. Operating the Online Support for VSE Guest Sharing 129

If links or online access to multiple application servers exist, they will all be
removed. Once all of the links and/or online access have been removed, the online
resource adapter is terminated.

The following examples assume that SQLVM, SQLMACH1 and SQLMACH2 are
local application servers, and SQLMACH8 is a remote application server.

Note that the message ARI0413I Resource Adapter ARI0OLRM is disabled is not
displayed until the last application server connections and APPC conversations
have been severed.

When the online resource adapter is not active, the CIRA and CIRR transactions
are invalid. The online resource adapter needs to be enabled with the CIRB
transaction before the CIRA and CIRR transactions can be used.

Effect of a Shutdown on Online Applications
In the NORMAL mode, CIRT prevents new LUWs from being started. As LUWs
end, the links to the local application server are disconnected and APPC
conversations to the remote application server are deallocated. (The NORMAL
process allows for the normal end of all online LUWs.) After all links are
disconnected and all APPC conversations are deallocated, the CICS storage
resources are freed, and application access to the DB2 Server for VSE online
support is no longer allowed.

In the QUICK mode, links to the local application server are immediately
disconnected. Some online LUWs may be interrupted. The CICS storage resources
are freed, and application access to online support is no longer allowed.

With QUICK, when the links are disconnected, the database manager does a
ROLLBACK WORK for all LUWs that were not committed or at a synchronization
point (that is, those LUWs that were prepared for COMMIT or ROLLBACK).

While the CIRT transaction is ending access in QUICK mode, the CICS transactions
that access the application server can be ended by CICS with an abend code of
AEY9, ASP7, or ASRA. To allow for normal transaction shutdown, then, you
should either use the CIRD transaction to determine which transactions accessing

msg f2
AR 015 1I40I READY
2 cirt
F2-002 ARI0455I Connections to SQLVM are disabled.
F2-002 ARI0455I Connections to SQLMACH2 are disabled.
F2-002 ARI0455I Connections to SQLMACH1 are disabled.
F2-002 ARI0455I Online access to SQLMACH8 is disabled.
F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.

Figure 43. Example of CIRT with Connections to Four Applications Servers

F2-002 ARI0413I Resource Adapter ARI0OLRM is disabled.
2 cira ,,,sqlmach1
F2-002 ARI0411I Resource Adapter is not enabled.
2 cirr ,,,sqlmach1
F2-002 ARI0411I Resource Adapter is not enabled.

Figure 44. Example of CIRA and CIRR after CIRT

130 System Administration

the application server are still active and wait until they are complete, or use the
CIRT transaction with the NORMAL option which allows all active users to finish
their work.

The QUICK mode is not supported when you are ending online access to a remote
server. In this case, the QUICK mode is changed to NORMAL mode.

Terminal Availability During Online Shutdown
The terminal used to activate the CIRT transaction for NORMAL or QUICK is
unavailable until the transaction ends. This could be a long time for a large online
application or for an online application controlled by a CICS terminal operator
who is not at the console. There are two conditions when CIRT may need to wait
(in CICS terms, delay for an interval of time):
v In the NORMAL mode, the process must wait until all LUWs complete

normally.
v In both NORMAL and QUICK modes, after all connections and APPC

conversations to the application server are severed, the process attempts to
disable itself. The attempt can fail if CICS finds some online transaction that is
still active and had access to the application server before CIRT was issued. In
this situation, the CIRT transaction cannot complete its clean-up process until
that transaction ends.

In the situations described above, CIRT will wait for an interval of time before
attempting to complete the cleanup process again. (The default interval of time is
30 seconds. The interval can be specified as an input parameter to CIRT.)

After the delay, the CIRT transaction determines if the condition that caused the
wait has passed. If it has, the process completes, and the online support is
disabled. If not, CIRT exits by returning to CICS (the shutdown mode is still active
and the terminal is free), and message ARI0414I is displayed, prompting the
operator to retry the CIRT transaction later.

The operator can proceed in a number of ways to disable the online support:
v The installation may have a policy that work can continue until 5:30 PM. The

operator routinely issues CIRT SQLDBAPW,NORMAL at 5 PM. Doing this prevents
new work from starting. The operator then waits until 5:30 PM and reissue the
CIRT transaction to proceed with normal transaction shutdown.

v The operator can use the CICS message transaction CMSG to route messages to
selected terminals or users, and CICS CEMT, CIRD or CSMT commands to
determine who or what applications are active, or to end the application. After
such operator intervention is completed, the CIRT transaction is re-entered and
the online support becomes disabled.
This intervention presupposes that the operator has information about those
CICS transactions that access the application server. You may find it useful to
keep a list or use a naming convention for all such transactions.

v If the NORMAL process was attempted and could not finish, the operator can
escalate the shutdown mode (escalate in the sense that the database manager
goes from NORMAL mode, which allows all LUWs to end, to QUICK mode,
which immediately stops all access to the application server). To escalate, the
operator enters CIRT SQLDBAPW,QUICK.

Shutdown Impact to Online Applications
After the online support has been disabled, or before it has been enabled, CICS
abnormally ends any transaction that attempts online access to the application
server by abending the transaction with abend code AEY9. If an attempt is made

Chapter 5. Operating the Online Support for VSE Guest Sharing 131

to execute a transaction while the online support has not been enabled, the
transaction also abends with an abend code AEY9. If an application attempts to
use CICS HLPI to access either a CICS/VSE subsystem or non-CICS/VSE
subsystem that has not been enabled, the CICS terminal operator receives the
CICS/VSE abend code AEY9.

When the shutdown process is active, the following occurs:
v For NORMAL mode, the result depends on the state of the application program.

If it is in work, the process has no effect. If the application program is not in
work, the online support returns an SQLCODE of -937. A later request by such a
program will cause CICS to abnormally end the transaction with the AEY9
abend code.

v For QUICK mode, all initial requests result in the -937 SQLCODE, and a later
request will result in the AEY9 abend code.
Also, for the QUICK mode, the online support cannot participate in the CICS
two-phase syncpoint protocol. (For information on this protocol, review the
discussion on online application recovery in the DB2 Server for VSE & VM
Database Administration manual.) When the online support reports to CICS that it
is disabling, the result is an ASP7 abend. This is the general abend code that the
CICS syncpoint manager uses when a CICS or non-CICS/VSE subsystem cannot
participate in the two-phase syncpoint protocol. Online application programs do
not regain control for clean-up routines when an ASP7 abend occurs. The ISQL
transaction must be ended by the operator with the CICS CSMT or CEMT
command.

Password Implications on Online Resource Adapter
Termination

The password used on the CIRR and CIRT transactions must be the same one that
was used on the CIRA and/or the CIRB transactions. CIRR and CIRT will only
shut down the connections to servers where the password matches. If the
passwords do not match, that server is not shut down.

Consider the following example:
1. The online resource adapter is started with the command:

CIRB pw1,5,,,,(SQLMACH1,SQLMACH2)
2. Connections to two new servers are added with the command:

CIRA ,,,(SQLMACH3,SQLMACH4)
3. Another connection is added to a fifth server with the command:

CIRA pw2,1,,SQLMACH5

It is not possible to end the online resource adapter with one command in this
scenario. The CIRT or CIRR transactions must be run at least three times before the
online resource adapter is completely shutdown because three different passwords
were used to start it up.

The CIRT transaction issued with no parameters would only shut down the
connections to SQLMACH3 and SQLMACH4 because they were the only servers
that were started with the default password.

To shut down SQLMACH5, you would have to enter the following command:

CIRT pw2

132 System Administration

To bring down the remaining servers and stop the online resource adapter you
need to enter:

CIRT pw1 followed by CIRT

The CIRR transaction can also be used, but the server names must be specified.
The following shows the CIRR commands that would be equivalent to the CIRT
commands in this scenario.

CIRT pw1 is equivalent to CIRR pw1,,,(SQLMACH1,SQLMACH2)

CIRT is equivalent to CIRR ,,,(SQLMACH3,SQLMACH4)

CIRT pw2 is equivalent to CIRR pw2,,,SQLMACH5

If the command:

CIRR ,,,(SQLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACH5)

were entered only SQLMACH3 and SQLMACH4 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH1, SQLMACH2 and
SQLMACH5 because the passwords do not match.

Similarly, if the command:

CIRR pw1,,,(SQLMACH1,SQLMACH2,SQLMACH3,SQLMACH4,SQLMACH5)

were entered only SQLMACH1 and SQLMACH2 would be disconnected.

Message ARI0464E will be issued for servers SQLMACH3, SQLMACH4 and
SQLMACH5 because the passwords don’t match.

Chapter 5. Operating the Online Support for VSE Guest Sharing 133

134 System Administration

Chapter 6. Maintaining Database Security

This chapter discusses the methods available for protecting the information in a
database:
v Communications and system security

The security mechanisms to restrict unauthorized access to the database:
– Session-level security

The VTAM product supports a security exchange between two partner logical
units (LUs) that are attempting to establish a session with each other. This
security exchange is called partner LU verification.

– Conversation-level security
The APPC/VM communications allow an application requester to specify one
of the following levels of conversation security when it is trying to connect to
the application server:
- SAME
- PGM

– VM directory control statements
Use these statements to control the ability of an application requester to
communicate with the application server.

– User ID translation
Because the application server cannot differentiate between identical user IDs
from local and remote systems, the ability to translate inbound user IDs to
locally known ones can eliminate duplicate user IDs and avoid potential
security-related problems.

– Minidisk protection
Use the guidelines in this section to protect your database minidisks against
unauthorized access.

v CMS restrictions
Certain CMS file manipulation commands must not be used on database files
because they can render the database useless.

v System and DB2 Server for VM operator console considerations
The integrity and security of your database can be threatened if unauthorized
persons have access to the console. This section discusses how to use the CP
DISCONN command to restrict console access.

v Access control to ISQL on a VSE guest
If VSE guest users use ISQL to access an application server on a VM/ESA
operating system, you may want to limit their access.

Communications and System Security
This section discusses the following topics:
v Security at session and conversation levels
v VM directory control statements that control communications between

application requesters and application servers
v User ID translation
v Protection of database minidisks
v Connect userid and password resolution

© Copyright IBM Corp. 1987, 2001 135

|

Session-Level Security
Session-level security is controlled by the security acceptance (SECACPT) and
VERIFY parameters, which are used when an LU is defined in the VTAM product.
The type of session-level security that is specified determines the type of
conversation-level security that is supported. If SECACPT is set to CONV, only
PGM can be specified at the conversation level; if it is set to ALREADYV, both
PGM and SAME can be specified. In addition, partner LU verification can be
specified when conversation-level security is SAME (that is,
SECACPT=ALREADYV).

Note: You cannot specify SECACPT=ALREADYV if you are using VTAM
Version 3 Release 2.

Partner LU verification is recommended for connections that the VTAM product
routes through an AVS gateway and that specify SECURITY=SAME. These
connections do not provide a user ID and password to be validated at the target
site. (When partner LU verification occurs, the identity of each SNA LU is
confirmed.) For more information on partner LU verification, see the Distributed
Relational Database Connectivity Guide , and the VTAM Resource Definition Reference
manuals.

Notes:

1. In VM, an LU is also known as an AVS gateway.
2. If a connection is routed to an application server through AVS with

SECURITY=SAME, then AVS user ID translation must be used. For more
information, see “User ID Translation” on page 139.

Conversation-Level Security
Conversation-level security can be specified by both DB2 Server for VM and
non-DB2 Server for VM users connecting to a DB2 Server for VM application
server. Non-DB2 Server for VM users are remote users by definition, and are
routed to the server by the VTAM product through an AVS gateway. The DB2
Server for VM users, on the other hand, can access a DB2 Server for VM
application server on the local system, and through an AVS gateway or TSAF
collection. In all situations, the user can specify the level of conversation security.
The type of conversation-level security that is supported depends on the
session-level security that is specified for the underlying system. The DB2 Server
for VM application server accepts a conversation-level security of either SAME or
PGM, and either rejects or accepts the connection on that basis. The default used
by the DB2 Server for VM application requester for the user is SAME.

Connections that specify SECURITY=SAME do not provide any security
identification. Only a user ID is provided, which is validated by the source host by
using CP, RACF, or an equivalent security manager product. Because the user ID is
validated by the source host, it is considered to be already verified by the target
host. The user ID that is sent is always the VM user ID. The value that is specified
for the :userid tag in the CMS communications directory is not used for
SECURITY=SAME connections. No password is sent.

The AGW ADD USERID command must be issued at the target AVS machine to
authorize inbound SECURITY=SAME connections. If this command is not issued,
these connections are rejected; if it has been used to map an inbound user ID at the
target AVS machine, the target host does not validate that user ID. The connection
is accepted, whether or not the mapped user ID exists on the target host. If the
command

136 System Administration

AGW ADD USERID remotelu * =

is issued, then the AVS machine will accept all already verified user IDs coming
from remotelu. However, the command

AGW DELETE USERID remotelu remuser

cannot be used to delete remuser from the AVS user ID table because the table does
not contain an entry for the remotelu/remuser pair. Instead, use

AGW DELETE USERID remotelu *

to delete all mappings corresponding to the remote LU remotelu.

Note: More than one user will be affected when AGW DELETE USERID remotelu * is
issued.

If the command AGW ADD USERID remotelu= is issued, then the command
AGW DELETE USERID remotelu userid is issued, userid is not deleted from the
AVS user ID table. The AVS machine will accept all user IDs coming from remotelu,
including userid. To undo the AGW ADD USERID command, issue the AGW
DELETE USERID command.

If the VTAM product is routing a connection through an AVS gateway, the AVS
translation feature must be used to map an inbound user ID to a user ID that is
locally defined. The mapped user ID is validated by the installed security manager
product such as RACF or CP. A mapping is enabled and disabled with the AGW
ADD USERID and AGW DELETE USERID commands.

Note: The AVS translation feature requires VTAM Version 3 Release 3 or later. You
can only use this feature when SECURITY=SAME.

Connections that are specified as SECURITY=PGM provide a user ID and a
password to be validated by the installed security manager product (for example,
CP, RACF, or an equivalent product). If the validation is successful, the connection
is accepted; otherwise, it is rejected.

For more information about conversation-level security, see the Distributed
Relational Database Connectivity Guide , and the VM/ESA: Connectivity Planning,
Administration, and Operation manuals.

Note: Conversation-level security is supported by APPC/VM but not by IUCV.

VM Directory Control Statements
The VM operating system provides control statements that can be added to the
directory entry of any virtual machine, both to enable functions and to restrict
access on a particular processor.

Access to the database can be controlled by controlling access to the application
server that manages it. Communications between an application requester and an
application server can be enabled selectively with VM control statements that are
added to the directory entries of one or both of the virtual machines. (The
application server virtual machine is also referred to as the database machine.)

You can use either the user machine or the database machine to control access
authority. If you want to allow all virtual machines on the same processor to
connect to the application server, add the IUCV ALLOW control statement to the

Chapter 6. Maintaining Database Security 137

database machine directory entry. If you want to limit access to a particular
application server to a small group of users, add the IUCV resid control statement
to the directory entry of each user machine requiring access, and leave out the
IUCV ALLOW control statement in the database machine directory entry.

Control Statements for VM/ESA Environments
In the VM/ESA operating systems, you can use the control statements IUCV
ALLOW, IUCV ANY, and IUCV *IDENT to control the access that application
requesters have to application servers.

IUCV ALLOW: When this statement is added to the directory entry of the
database machine, all application requesters and communications servers (such as
TSAF and AVS) on the same processor can connect to the application server.

IUCV ANY: When this statement is added to the directory entry of a virtual
machine, the application requester can connect to all application servers and
communications servers (such as TSAF and AVS) that are on the same processor.
To limit access to specific users, use this statement in each user machine requiring
access, instead of specifying IUCV ALLOW in the database machine.

You can further limit access to specific application servers by adding one or more
IUCV resid statements to the directory entry.

Attention: If the VSE guest user machine directory entry contains the IUCV ANY
statement, then anyone who knows the CIRB transaction password has database
administrator (DBA) authority on all application servers.

IUCV *IDENT: All databases are identified as VM resources with either a local or
global scope. A local resource can be accessed only by an application requester
residing on the same processor. A global resource can be accessed by an
application requester that is either local or remote.

The virtual machine where the application server resides (the database machine)
uses the IUCV *IDENT control statement to identify which resources it manages,
and whether the resources are local or global. For example, the statement IUCV
*IDENT SALESDB GLOBAL identifies a global resource (database) named
SALESDB, whereas the statement IUCV *IDENT SALESDB LOCAL identifies the
same database as a local resource.

Distributed Processing Security
The database manager takes full advantage of the TSAF and AVS communications
servers to make the application server accessible to both local and remote users.
The latter can be either DB2 Server for VM or non-DB2 Server for VM users.

Neither AVS nor TSAF depends on the selected protocol (either SQLDS or DRDA),
nor does the selected protocol depend on either AVS or TSAF. The contents of the
data streams that the communications servers facilitate are independent of both
TSAF and AVS.

If you want to use TSAF and AVS to route communications, you must do the
required setup tasks, including the addition of the VM directory control
statements, described above. In addition, you must define your database as a
global resource if you intend to support distributed processing.

For more information about VM directory control statements, see the VM/ESA:
Connectivity Planning, Administration, and Operation manual.

138 System Administration

Distributed Processing Administration
In a distributed environment, the role of the system administrator in authorizing
and activating new user IDs, resource identifiers, and AVS gateway names is very
important. You must enforce the following rules as strictly as possible:
v User IDs must be unique on the processor.
v Resource identifiers must be unique within the scope of an AVS gateway and a

TSAF collection.
v All AVS gateway names must be unique within the host SNA network.
v Database names must be unique within the scope of all the SNA networks

interconnected with the host SNA network.

Note: Resource identifiers and AVS gateway names must not be the same as a user
ID (other than that of the resource manager), and they must not be specified
as ALLOW, ANY, or SYSTEM. Also, an AVS gateway name must not be the
same as any resource identifier.

For more information on VM directory control statements and on setting up TSAF
and AVS virtual machines, the see VM/ESA: Connectivity Planning, Administration,
and Operation manual.

User ID Translation
Each VM user ID is unique on a processor. However, in an environment of SNA
networks and TSAF collections, in which many processors can be interconnected
and user IDs are passed around for validation, the issues of duplication and
ambiguity must be considered.

The application server cannot identify whether a user ID forwarded by the
application requester belongs to a local or a remote user. For example, suppose
that user ID STEVE is on a remote system that can access the application server
through the AVS gateway; and that the same user ID exists locally and has a high
level of authority. The application server cannot differentiate between the local and
the remote users and treats them equally. This situation poses a risk to security,
and must be eliminated.

The security risk is maximized if the VTAM product routes the remote user request
through an AVS gateway, the remote user specifies SECURITY=SAME, and partner
LU verification is not performed. In this situation, you should use AVS to translate
the inbound user ID to one that is registered with the local security manager
product. The translated user ID is validated by the local security manager product,
which can be CP, RACF, or an equivalent product.

The situation described cannot happen if the remote user is using
SECURITY=PGM. This user must obtain a user ID and password from the local
system administrator before being able to specify SECURITY=PGM to access an
application server.

Note: Do not allow remote users to use a user ID that already exists on the local
system and that has been assigned to a local user.

Minidisk Protection
To help prevent unauthorized or malicious access to the database minidisks, do the
following:
1. Code both a read-sharing password and a write-sharing password on the

MDISK control statement for each minidisk.

Chapter 6. Maintaining Database Security 139

2. Specify a read (R) access mode on the MDISK control statement for each
minidisk to prevent more than one application server (or single user mode
user) from accessing the database minidisks at the same time.

3. Carefully control the set of users who know the minidisk passwords, and
ensure that they properly protect these passwords.

Connect Userid and Password Resolution
The execution of an SQL application program requires the Resource Adapter to
establish a connection to the database server. If the connection is implicit (i.e., the
application does not explicitly issue a CONNECT USER IDENTIFIED BY
statement) the userid and password used to establish it may be resolved from
several sources. The following summarizes the different scenarios:
1. If a COMDIR exists and it is active (connections over TCP/IP will always

require a COMDIR, but APPC connections may or may not use a COMDIR):
v If security is PGM, the userid and password are extracted from the COMDIR

to establish the connection.
– If the :userid tag is missing from the COMDIR entry:

DRDA Protocol
An SQL error is returned indicating a missing userid.

SQLDS protocol
The VM logon userid is used by the resource adaptor to establish
the connection.

– If the :password tag is missing from the COMDIR entry:

DRDA and SQLDS protocol
An SQL error is returned indicating the password is missing.

v If security is SAME, the userid used by the Resource Manager to establish
the connection will always be the VM logon ID, regardless of whether the
:userid tag is present in the COMDIR entry. The password is not required in
this case, but if it is present (in the COMDIR) it will be sent to the server for
authentication.

2. If a COMDIR is not active (only valid for APPC connections) the VM userid
and password are used to establish the connection.

CMS Restrictions
The CMS RESERVE command creates a CMS-like file for each database minidisk. If
you were to issue a CMS LISTFILE command for the database minidisks, you
would, in fact, see that a file resides on each minidisk. These files, however, are not
the same as regular CMS files.

140 System Administration

|

|
|
|
|
|

|
|

|
|

|

|
|

|
|
|

|

|
|

|
|
|
|
|

|
|

|

Attention: Never use the following CMS file manipulation commands or macros
on the database files, because they can render the database useless:
v ACCESS (with the ERASE option)
v ERASE
v EXECIO
v FORMAT (the minidisk after the database is created)
v MOVEFILE (to write to the file)
v RESERVE (the minidisk after the database is created)
v READCARD
v DISK LOAD
v RECEIVE (with the REPLACE option)
v FSERASE
v FSWRITE.

System and DB2 Server for VM Operator Console Considerations
The system console should never be left unattended. To protect the integrity of
your database, always have the operator sign off the console before leaving, by
entering:

#CP SET RUN ON
#CP DISCONN

This command enables the operator to sign off without stopping the application
server. To restrict access to the DB2 Server for VM operator console, only give the
password for the application server to people who need to use it, and who can be
trusted not to misuse it or to give it to other.

Access Control to ISQL on a VSE Guest
In VSE, ISQL is made up of two transactions: ISQL and CISQ. The former controls
the CICS terminal, and the latter controls access to the application server. By
creating the second transaction dynamically (instead of hard-coding it as CISQ)
you can put different departments or different groups of users into different CICS
classes. Each group would have different transaction identifiers for both
transactions of ISQL. Because the different groups have different CICS classes, you
can limit the number of active ISQL users in each group.

To implement this, create any transaction ID for the first transaction. Then, instead
of making CISQ the second transaction ID, make it identical to the first one except
for the last character, which should be a 2. For example, if there are five
departments, you could have chosen these transaction IDs:

First Second
Transaction ID Transaction ID Department
-------------- --------------------- ----------
ISQL ISQ2 202
ACCT ACC2 ACCOUNTING
SAL SA2 SALES
IN I2 INVENTORY
P P2 PLANNING

These examples show how the format works for different identifier lengths. Note
that when the first transaction ID is one character (P), the 2 is added (P2). Also
note that the first transaction ID cannot end with a 2.

Next, decide what the maximum number of ISQL users for each department
should be:

Chapter 6. Maintaining Database Security 141

First Second Maximum
Transaction ID Transaction ID Department ISQL Users
-------------- -------------- ---------- ----------
ISQL ISQ2 202 2
ACCT ACC2 ACCOUNTING 3
SAL SA2 SALES 4
IN I2 INVENTORY 3
P P2 PLANNING 2

Next, specify the CICS parameters TRANSID, TCLASS, and CMXT as follows:
v TRANSACTION parameter in the CICS System Definition File

You must code an entry for each transaction ID defined. In the above example
these are: ISQL, ISQ2, ACCT, ACC2, SAL, SA2, IN, I2, P, and P2. The
TRANSACTION must specify the particular transaction ID (for example,
TRANSID=ISQ2 for the ISQ2 transaction), and the program name parameter
should reference the same program as CISQ or ISQL.

v TCLASS parameter and CMXT parameter in the DFHSIT
To fully understand these two parameters, it is best to consider them together.
To implement the above example, you would code them as follows:
DEFINE TRANSACTION(ISQL) GROUP(DB2710) PROGRAM(ARIITRM) *

TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ISQ2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(1)

DEFINE TRANSACTION(ACCT) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(ACC2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASSS(2)

DEFINE TRANSACTION(SAL) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(SA2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(3)

DEFINE TRANSACTION(IN) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(I2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(4)

DEFINE TRANSACTION(P) GROUP(DB2710) PROGRAM(ARIITRM) *
TWASIZE(300) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES)

DEFINE TRANSACTION(P2) GROUP(DB2710) PROGRAM(ARIISQL) *
TWASIZE(0) INDOUBT(BACKOUT) SPURGE(NO) TPURGE(YES) TCLASS(5)

These TCLASS values correspond to the positional values in the CMXT
parameter. These values are arbitrary, but you should set them up so that a
transaction’s TCLASS value corresponds to its CMXT positional parameter. In
the above example, ISQ2 has a TCLASS value of 1. This means that it is in class
1, which corresponds to the first positional value on the CMXT parameter. The
first positional parameter value for CMXT is 2. This means that the maximum
number of transactions that can be active in class 1 (TCLASS=1) is 2. Therefore,
the number of active Department 202 users of the ISQL-ISQ2 transactions is
limited to 2. The same is true for the other TCLASS and CMXT positional
values. (For unspecified CMXT values, the default is 1.)

142 System Administration

Chapter 7. Managing Database Storage

This chapter discusses:
v Database storage concepts
v Adding dbspaces to a database
v Expanding the page tables in the directory
v Acquiring dbspaces for packages
v Managing storage pools.

Storage Concepts
A database contains user data objects (tables and indexes), and supporting
information maintained by the database manager. Specifically, it contains:
v A directory that is a minidisk containing database control information, including

mappings of the dbspaces to their addresses on DASD. The directory relates the
logical database image to the physical storage used.

v Either one or two log minidisks which hold records that describe each change
made to the database. If any changes made to the data must be undone or
redone, logs can be used to restore the data to a consistent state.

v One or more storage pools, which are collections of minidisks. These minidisks
are called database extents. This is where the actual data is stored.

A dbextent is an allocation of actual DASD space. Storage pools are composed of one
or more dbextents. The size of a storage pool can be increased by adding more
dbextents, or reduced by deleting existing ones. Each dbextent is a CMS minidisk.
When dbspaces are assigned to a storage pool and their pages are filled, physical
DASD pages are taken from the dbextents of the storage pool.

Storage pools can be defined so that they are either recoverable or nonrecoverable.
By default, storage pools are recoverable, that is, the database manager does full
recovery for them. For nonrecoverable storage pools, only limited recovery is done.
For more information on nonrecoverable storage pools, refer to “Nonrecoverable
Storage Pools” on page 236.

Directory

Log

Storage pool 1 Storage pool 2

Log

Figure 45. The DB2 Server for VM Database

© Copyright IBM Corp. 1987, 2001 143

A dbspace is a logical allocation of space in the database, divided into 4096-byte
blocks called pages. A dbspace is not a real allocation of DASD space, but only an
allocation of page tables in the directory. These page tables map logical dbspace
pages to DASD locations. The database manager dynamically allocates real DASD
storage space to support dbspace pages on a demand basis so unused pages do not
occupy DASD space.

How Information is Stored in Dbspaces

Tables and their indexes are stored in dbspaces. At the beginning of every dbspace
are one to eight header pages, which contain control information on the tables and
indexes that follow. Next come data pages, which hold the rows of the tables. At

.

I1 I4 I7

Tab 1 I2 Tab 4 I5 I8

Tab 2 I3 Tab 5 I6 Tab 6 I9

Tables (Tab)
and indexes
(I) are stored
in dbspaces

Dbspace A Dbspace B Dbspace C

Each dbspace is
assigned to a
storage pool.

Storage pool 5 Storage pool 7

Storage pools
consist of
one or more
dbextents

Dbextent 5 Dbextent 9 Dbextent 7

Figure 46. Physical Database Concepts

144 System Administration

the end are index pages, which hold the index entries. A page in a dbspace is
defined as a header page, a data page, or a index page, when the dbspace is
acquired. Figure 47 shows how information is stored in a dbspace.
When a table is created, its creator can either assign it to a dbspace explicitly by

specifying a dbspace in the CREATE TABLE statement, or can let the database
manager assign it to a default dbspace. Any indexes created on the table obtain
their storage from the same dbspace as that table.

Figure 46 shows two tables and their indexes in dbspace A, two tables and their
indexes in dbspace B, and one table with three indexes in dbspace C.

The potential capacity of a dbspace is fixed when it is defined with the ADD
DBSPACE command. A dbspace can hold up to 255 tables along with their indexes.

More than one table can be stored in the same dbspace, but a table cannot reside in
multiple dbspaces. If you store multiple tables in a dbspace, be aware that the
database manager may store rows from different tables on the same data pages.
For performance reasons, it is frequently desirable to have only one table per
dbspace. (Index entries from different indexes are never stored on the same page.)

There are three types of dbspaces: private, public, and internal. For private data,
there should be one private dbspace reserved for each user. These are locked at the
dbspace level, so the database manager does not incur unnecessary overhead while
users are accessing their own private data. Any tables that are to be accessed by
multiple users who will be doing UPDATE, INSERT, or DELETE operations should
be placed in public dbspaces, which have page- or row-level locking to support
concurrent access. Internal dbspaces are temporary spaces used only by the
database manager to perform tasks such as sorting.

Adding Dbspaces to the Database
Before tables and indexes can be stored in a dbspace, the dbspace must be added,
and then acquired. Adding a dbspace to a database consists of reserving page tables
in the directory, assigning the dbspace to a storage pool, and specifying it as public
or private. You can add dbspaces to the database using the SQLADBSP EXEC. This
EXEC resides on the service disk (V-disk) and can be run only by a database
machine in single user mode. For this reason, you should add enough dbspaces for
your future needs.

You cannot remove a dbspace after it has been added to the database. After it has
been acquired, you can drop its contents with the DROP DBSPACE operation so
that another user can acquire it.

Figure 48 on page 146 shows the format of the SQLADBSP EXEC.

Header
Pages

Data
Pages (tables)

Index
Pages

Figure 47. Table and Index Storage in a Dbspace

Chapter 7. Managing Database Storage 145

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

dcssID(id)
The DCSSID parameter is optional. You can use DCSSID or ID for the
keyword. For id, you can specify the name of the bootstrap package that
identifies saved segments. If not specified, DCSSID defaults to SQLDBA, which
results in the SQLDBA bootstrap package being used, and the database
manager using the default saved segments. If you do not have default saved
segments, DB2 Server for VM code is loaded into the user free storage area.

PARM(parameters)
The PARM parameter is optional. Use it to specify additional initialization
parameters. Usually, the initialization parameters used by the SQLADBSP
EXEC are sufficient. You can specify other initialization parameters, as
required.

Note: If you have been accessing the database with archiving, you must specify
LOGMODE=A or L, as appropriate.

If you specify the PARM parameter, it must follow the other SQLADBSP
parameters. For a list of the valid initialization parameters, refer to Table 6 on
page 72. That figure lists the parameters that apply in single user mode. Do not
specify the SYSMODE and STARTUP parameters. The SQLADBSP EXEC
automatically supplies SYSMODE=S and STARTUP=S. Also, do not specify the
PROGNAME and DUALLOG parameters. The PROGNAME parameter is not valid
with STARTUP=S, and the DUALLOG parameter does not apply.

You can specify the DUMPTYPE, TRACDBSS, TRACRDS, TRACDSC and
TRACCONV parameters. For more information, see “Multiple User Mode
Initialization Parameters” on page 54. The ADD DBSPACE operation requires that
the database manager be run in single user mode, therefore, the TRACDBSS,
TRACRDS, TRACCONV and TRACDSC initialization parameters are the only
means of doing a trace of the ADD DBSPACE operation. (Operator TRACE
commands can only be entered when the database manager runs in multiple user
mode.)

If you use tracing, consider issuing your own CMS FILEDEF and LABELDEF
commands for the trace file. For more information on the FILEDEF and LABELDEF
commands, see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.
For more general information about tape capabilities, see “Tape Support” on
page 74.

You can use PARMID to specify a CMS file that contains parameter specifications
for the ADD DBSPACE operation.

�� SQLADBSP Dbname(server_name)
dcssID(id) PARM(parameters)

��

Figure 48. SQLADBSP EXEC

146 System Administration

When running, the SQLADBSP EXEC must have information about the dbspaces to
be added to the database. The SQLADBSP EXEC gets this information in either of
these ways:
1. You create a CMS file called resid SQLADBSP on the database machine A-disk

before running the EXEC. The resid is the VM resource ID associated with the
application server. In a VM/ESA operating system, resid and server name may
be different. The RESID NAMES file on the production disk is used to map the
resid to the server name defined during database generation.

2. The SQLADBSP EXEC creates the resid SQLADBSP file for you while it is
running. For an example of this file, see Figure 49. If the file resid SQLADBSP
exists on the A-disk, the SQLADBSP EXEC prompts you whether to use the file
or erase it.

If you choose to have the file created dynamically, the SQLADBSP EXEC prompts
you to enter the number of public, private, and internal dbspaces to be added to
the database. You are then prompted for the number of pages and storage pool
assignments for each.

For more information on using the SQLADBSP EXEC to add dbspaces, see
“Example of Adding a Dbspace to a Database” on page 149.

In either situation, the SQLADBSP EXEC gives you the option of editing the resid
SQLADBSP file with the CMS XEDIT facility. For example, if you wish to decrease
the number of internal dbspaces, you will have to edit the file to change the
number.

Notice that the format for the ADD DBSPACE control statements is the same as the
format for defining them during database generation.

When the resid SQLADBSP file is created and (optionally) edited, the SQLADBSP
EXEC starts the application server in single user mode with the ADD DBSPACE
option. The ADD DBSPACE operation uses the control statements in the resid
SQLADBSP file.

Specify each dbspace to be added as a record in the resid SQLADBSP file that
contains the type (public or private), the size (number of pages), and, optionally,
the storage pool assignment. (The default storage pool number is 1.) The number
you specify for the size should be a multiple of 128, since directory page tables are
allocated in multiples of 128-page table entries. If it is not, the database manager
rounds it up to the next higher multiple of 128. Separate all parameter values by at
least one blank.

On the last dbspace specification record you must specify the internal dbspaces to
be defined. This record contains the keyword INTERNAL, the number of internal
dbspaces to be supported, the size of each (in number of pages), and, optionally,
the storage pool assignments. Internal dbspaces can be assigned to either

PUBLIC 1024 7
PUBLIC 1024 8
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5
PRIVATE 256 5
INTERNAL 50 1024 9

Figure 49. Example of a resid SQLADBSP File

Chapter 7. Managing Database Storage 147

recoverable or nonrecoverable storage pools. However, for performance reasons,
the internal dbspaces should not be assigned to storage pool 1 and preferably
should be stored in their own storage pool.

It is necessary that you respecify the internal dbspace values each time you add a
new public or private dbspace, even if you are not changing these values from
what they were before. The internal dbspace specification overrides the previous
one, including changing the storage pool assignment.

Note: You may sometimes want to change the internal dbspace specifications for
reasons other than adding new user dbspaces. To do this, run the
SQLADBSP EXEC. When you are prompted to enter the number of public
and private dbspaces, respond “0” to these. When you are prompted to
enter the number of internal dbspaces to be added, enter a value. The
number you specify is added to the number of internal dbspaces with which
the database was generated. You are then prompted for the number of pages
and storage pool assignment; enter these. Finally, you are asked if you want
to modify the SQLADBSP file; respond “1” (for yes). You are now given the
opportunity to change the number of internal dbspaces. This allows you, for
example, to decrease the number of internal dbspaces in the database.

For example, suppose your database was generated with 50 internal
dbspaces, you want to add 4 dbspaces, and you want 4096 for the number
of pages. When you run SQLADBSP, you receive a message saying that the
database was generated with 50 internal dbspaces. Then you are asked to
enter the number of internal dbspaces you want to add and the number of
pages for each dbspace. Specify 4 and 4096, respectively. If you check the
SQLADBSP control file, the INTERNAL statement shows that there are 54
internal dbspaces having 4096 pages.

Now, suppose you rerun SQLADBSP. Again, you receive a message saying
that the database was generated with 50 internal dbspaces, and you are
asked to enter the number of internal dbspaces you want to add and the
number of pages for each dbspace. Specify 2 for the number of dbspaces
you are adding and 1024 for the number of pages. If you now check the
SQLADBSP control file, the INTERNAL statement shows that there are 52
internal dbspaces each having 1024 pages.

Considerations for Adding Dbspaces
The ADD DBSPACE operation updates the directory and the catalog tables in the
database. Only the updates to the catalog tables are recorded in the log; updates to
the directory are not. Because of this, you can have a problem if you normally
archive the database, and then try to restore it. Suppose the following events occur:
1. You do a database archive.
2. Later, you add dbspaces.
3. Later, users acquire and use those dbspaces.
4. You do an archive restore using the archive file that you created in step 1 and,

if you use LOGMODE=L, the subsequent log archives.

The directory and the database are not synchronized. The directory has been
restored from a database archive file that does not reflect the ADD DBSPACE
operation. The database is also restored from that file; but its restore includes the

148 System Administration

updates recorded in the log or log archives, which do reflect the ADD DBSPACE
operation. Thus, the directory does not include the new dbspaces but the database
does.

To prevent this problem, archive the database immediately after the ADD
DBSPACE operation, as follows:
1. After you add the dbspaces, warm-start the application server in multiple user

mode (SYSMODE=M) with LOGMODE set to L or A.
2. Immediately take a new database archive, with either the ARCHIVE, SQLEND

ARCHIVE, or SQLEND UARCHIVE command. (If you use SQLEND
UARCHIVE, remember to take the user archive after the application server
ends.)

Following this procedure will ensure that your current database archive reflects the
added dbspaces. (See “Archiving Procedures” on page 199 and “Restoring the
Database” on page 212 for more information on archiving and restoring
procedures.)

If you do log archiving and restore the database using a database archive taken
before the ADD DBSPACE operation, the same problem that was described above
occurs. If you use a back-level database archive and subsequent log archives to
restore the database, the database archive that records the addition of the dbspaces
is skipped: the directory is restored from the back-level database archive and does
not show the addition of the dbspaces, but the subsequent log archives do.

If you used the ADD DBSPACE operation only to reconfigure your internal
dbspaces, restoring a back-level database does not unsynchronize the directory and
database, since information about internal dbspaces is stored in the directory but
their use is not recorded in the database. Thus, if you restore a back-level database,
the number and size of the internal dbspaces return to the back-level values.

The ADD DBSPACE operation is a two-phase process. The first phase updates the
database directory with the information about the new dbspace. The second
updates the SYSTEM.SYSDBSPACES catalog table.

Completion of the first phase is indicated by the message:
ARI0915I DBSPACE ADDED TO DATABASE

If an abnormal end occurs before message ARI0915I is issued, restart the ADD
DBSPACE operation from the beginning by rerunning the SQLADBSP EXEC. If an
abnormal end occurs after message ARI0915I is issued, restart the ADD DBSPACE
operation by doing a start up of the application server as follows:

SQLSTART DB(server-name) PARM(SYSMODE=S,STARTUP=W,PROGNAME=ARISEGB)

Example of Adding a Dbspace to a Database
When you create a new storage pool, you must also assign at least one dbspace to
the new pool to make it usable. Assigning dbspaces requires that you run the
SQLADBSP EXEC. Figure 50 on page 150 shows the procedure to add one public
dbspace to pool number 2 in the database named TEST. Note that the example
indicates the entries you make.

Chapter 7. Managing Database Storage 149

Notes for Figure 50:

�1� The command to begin the ADD DBSPACE operation. Because no
parameters are specified, dcssID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values shown in Table 6 on page 72.

�2� 1 is entered to add one public dbspace.

�3� This entry specifies the size and storage pool location of the public
dbspace.

�4� 0 is entered. No private dbspaces are added.

�5� No additional internal dbspaces will be added, so 0 is entered.

�6� Because nothing needs changing, enter 0 (No).

After �6�, the SQLSTART EXEC is automatically called. When this EXEC ends, the
SQLADBSP EXEC also ends, and the dbspace has been added.

To confirm that a dbspace has been added to the new storage pool, restart the
application server; use either the DBS utility or ISQL to issue this query:

SELECT DBSPACENO, DBSPACENAME, -
POOL FROM SYSTEM.SYSDBSPACES -
ORDER BY DBSPACENO

This query produces a table showing the dbspace numbers, dbspace names, and
the number of the pool each dbspace is assigned to.

Expanding the Database Directory
When a database is initially generated, a calculation is made to determine which
portion of the directory will be set aside for the page map table, and which portion
will be used for the allocation bitmaps. The size of the page map table determines
the maximum number of DBSPACE pages, that is, the maximum logical size of the
database. The size of the allocation bitmap determines the maximum number of
dbextent pages, that is, the maximum physical size of the database. As the
database grows in size with use, it may run short on either logical or physical
space. If it is short on logical space, the ADD DBSPACE operation may fail. If it is
short on physical space, the ADD DBEXTENT operation may fail. You can expand
the directory to correct these situations.

�1� ──> sqladbsp db(test)
ARI0717I Start SQLADBSP EXEC: 01/19/93 21:11:43 EST.
ARI0648A Enter the number of PUBLIC DBSPACES to add to the database.
�2� ──> 1
ARI0649A Enter the number of pages and storage pool assignment

for 1ST PUBLIC DBSPACE.
�3� ──> 512 2
ARI0648A Enter the number of PRIVATE DBSPACES to add to the database.
�4� ──> 0
ARI0603I The database was generated with

80 internal DBSPACES.
ARI0648A Enter the number of internal DBSPACES to add to the database.
�5� ──> 0
ARI0638D Do you want to modify the TEST SQLADBSP file?

Enter 0(No) or 1(Yes).
�6� ──> 0

Figure 50. SQLADBSP Example of Adding a Dbspace

150 System Administration

Prior to SQL/DS Version 3 Release 5, the directory could be expanded to
accommodate more logical pages by expanding the page map table. With SQL/DS
Version 3 Release 5 and later, you can increase the size of the allocation bitmaps
and the page map table concurrently. If it is necessary to expand the directory to
hold more dbextent pages, the only available option would be to expand the
directory for both dbspace and dbextent pages.

Use SQLCDBEX to increase:
v The maximum number of dbspace pages, by expanding the page map table.
v The maximum number of dbspace pages and dbextent pages, by expanding the

page map table and allocation bitmaps concurrently.

The format is:

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

Figure 52 on page 152 is an example of using SQLCDBEX to expand the directory
to hold more dbspace and dbextent pages.

�� SQLCDBEX Dbname(server_name) ��

Figure 51. SQLCDBEX EXEC

Chapter 7. Managing Database Storage 151

sqlcdbex dbname(sqlvm350)
ARI0717I Start SQLCDBEX EXEC: 09/28/95 16:41:50 CET.
ARI0721I Get DB2 Server for VM production minidisk WRITE access: SQLDB350 195.
DASD 0195 LINKED R/W; R/O BY 2 USERS

ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

bdisk
ARI6188A Enter the output block size of the directory.

Enter 512 or 4096,
or a null response to use the original size,
or 111(Quit) to exit.

512
ARI6103A Enter virtual address for new BDISK.

(Enter a null response to end input or
enter QUIT to exit.)

300
DMSACP112S C(300) device error
ARI6148I New disk 300 has not been formatted. Program will continue

to format the disk before copying.
ARI6146D Are you expanding the DB2 Server for VM directory?

Enter 0(No), 1(Yes), or 111(Quit).
1
ARI6118I Formatting in progress. Please wait...
ARI6130I Disk 300 is formatted successfully.
ARI6200D You have requested to expand the directory.

Enter 1 to expand the directory to hold more DBSPACE
pages. Enter 2 to expand the directory to hold more
DBSPACE and DBEXTENT pages. Enter 111 to quit.
Enter 1,2 or 111(Quit).

2
ARI6198D Current maximum DBEXTENT pages: 1662976

New maximum DBEXTENT pages: 2502656
DBEXTENT pages added: 839680
Current maximum DBSPACE pages: 3294592
New maximum DBSPACE pages: 4964352
DBSPACE pages added: 1669760
Current directory size: 27362
Current directory block size: 512
New directory size: 41046
New directory block size: 512
Do you wish to continue with expanding the
directory to allow the directory to hold
additional DBEXTENT and DBSPACE pages ?
Enter 0(No), 1(Yes) or 111(Quit)

1

Figure 52. SQLCDBEX EXEC (Part 1 of 2)

152 System Administration

Acquiring Dbspaces for Packages
The process of adding a dbspace merely reserves pages for it in the directory.
Before it can actually be used, it must be acquired. For details of how to acquire
dbspaces, see the DB2 Server for VSE & VM Database Administration manual.

Packages and view definitions are stored in system dbspaces named SYS0002,
SYS0003, SYSnnnn. Allocation of the initial system dbspace (SYS0002) is
performed during database generation. You should probably acquire an additional
package dbspace after installation, and then more as needs arise. Because unused
dbspaces only require minimal directory space and no data pages, acquiring them
is not costly. Thus, if your installation has many packages and views, it is a good
idea to acquire several dbspaces for packages in advance for later use.

The database manager stores packages and view definitions as tables. A dbspace
can contain up to 255 tables, and can therefore have up to 255 packages and view
definitions.

Although packages and view definitions are stored as tables, information about
them is found not in the SYSTEM.SYSCATALOG catalog table, but in the

ARI6131I Copying in progress. Please wait...
ARI0640I 4000 of

41046 records copied to output disk.
ARI0640I 8000 of

41046 records copied to output disk.
ARI0640I 12000 of

41046 records copied to output disk.
ARI0640I 16000 of

41046 records copied to output disk.
ARI0640I 20000 of

41046 records copied to output disk.
ARI0640I 24000 of

41046 records copied to output disk.
ARI0640I 28000 of

41046 records copied to output disk.
ARI0640I 32000 of

41046 records copied to output disk.
ARI0640I 36000 of

41046 records copied to output disk.
ARI0640I 40000 of

41046 records copied to output disk.
ARI6201I Directory expansion completed successfully.

It is strongly recommended that a database
archive be taken immediately.

ARI6108I Minidisk copied successfully. The SQLVM350 SQLFDEF file
will be updated.

ARI6109I SQLVM350 SQLFDEF file has been updated on the A disk.

ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,
or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

ARI0620I SQLVM350 SQLFDEF file
successfully copied to production disk.

ARI0673I All COPY DBEXTENT processing completed successfully.
ARI0796I End SQLCDBEX EXEC: 09/28/95 17:11:35 CET
ARI0721I Get DB2 Server for VM production minidisk READ access: SQLDB350 195.
Ready; T=90.80/106.77 17:11:40

Figure 52. SQLCDBEX EXEC (Part 2 of 2)

Chapter 7. Managing Database Storage 153

SYSTEM.SYSACCESS catalog table. When a dbspace is acquired for packages, 255
empty tables are preallocated in it. For each table that is created, a row is added to
the SYSTEM.SYSACCESS catalog table that identifies the package table as unused.
Unused package tables can be either available or unavailable. The TNAME value
in SYSACCESS for unused package tables is represented either as
!0x AVAILABLE or ¢0x UNAVAILABLE. (The x is a number from 1 to 5, which
is used internally.) Initially, all package tables in a newly acquired dbspace are
unused and available. As packages are created and views are defined, the TNAME
value is changed to indicate the package or view name.

As mentioned above, you can usually fit 255 packages in a dbspace. However, if
large packages are created, the dbspace pages may fill before all 255 package tables
are used. In this situation, all remaining package tables are unused and unavailable
and their TNAME value is marked in the dbspace as ¢0x UNAVAILABLE. When
the dbspace is full, the FREEPCT column of the SYSTEM.SYSDBSPACES catalog
table is updated. A FREEPCT of 1 means that space is still available, while a
FREEPCT of 0 means that this dbspace is full.

If a package or view is dropped from a dbspace that is not full, the database
manager does not drop the package table from the dbspace. Instead, it deletes all
the rows from the table, and marks the table as available in the
SYSTEM.SYSACCESS catalog table. The table can then be reused.

If a package or view is dropped from a dbspace that has been marked as full
(FREEPCT = 0), FREEPCT is reset to 1. Before these package tables can be reused,
however, their TNAMEs in the SYSTEM.SYSACCESS catalog table must be
changed to indicate that they are available. This is not done immediately, because
if it were, the next time someone tried to create a package, the database manager
would reuse the table from the package or view that was just dropped. It would
try to place the newly created package in a dbspace that is almost full, and it
probably would not fit. Thus, if you have used all the space in your package
dbspaces, you should acquire another dbspace rather than try to free space by
dropping one or two unused packages. The package tables will be marked
available the next time the database manager does preallocation.

Preallocation is done when you acquire a new package dbspace. It is also done
when you try to create a view or a new package, and there are no available
packages. If the database manager cannot find an available package, it looks in all
dbspaces that are not full (FREEPCT=1) for package tables that are marked
unavailable, and marks them as available.

A user with DBA authority can acquire a package dbspace by issuing the following
SQL statement when the database is running in multiple user mode:

ACQUIRE PUBLIC DBSPACE NAMED SYSnnnn (PAGES=xxxx)

where

nnnn is the number of the package dbspace. (SYS0002 is the initial dbspace,
so the next one will be called SYS0003, the next one, SYS0004, and so on.)

xxxx is the number of pages of address space for the dbspace. The usual
value is 2048, but you can set it larger or smaller if your programs have a
large or small number of SQL statements in them, or if you are adding many
views to the database.

154 System Administration

You should specify the PAGES parameter because the default value of 128 is
usually too small. You can specify NHEADER or allow it to default to 8. The
database manager sets PCTFREE to 1, PCTINDEX to 0, and LOCK to PAGE
(page locking). If you try to specify any of these parameters, your settings
will be ignored.

If no package tables are available in any package dbspace during preprocessing,
SQLCODE -945 is returned, and the DBA must acquire another dbspace for
packages.

If sufficient space is not available in the dbspace where the database manager
attempts to create the package, it returns SQLCODE -946. The user’s response
depends on the availability of package tables in other dbspaces. If some are
available, the user can try to preprocess the program again. (The database manager
does not choose the same dbspace again because it sets FREEPCT=0 when the
preprocess fails.) If no package tables are available, another dbspace for packages
must be acquired.

To get information about unused packages (available and unavailable), issue the
following query:

SELECT * FROM SYSTEM.SYSACCESS WHERE TNAME LIKE '%AVAILABLE'

To determine which package dbspaces are full because all the space is taken, issue:
SELECT * FROM SYSTEM.SYSDBSPACES WHERE DBSPACENAME LIKE 'SYS0%'

If the FREEPCT value is 0, there is no free space in the dbspace.

To determine which package dbspaces are full because all 255 tables are occupied,
issue:

SELECT DBSPACENO, COUNT(*) -
FROM SYSTEM.SYSACCESS -
WHERE TNAME NOT LIKE '%AVAILABLE' -
GROUP BY DBSPACENO

Dbspaces with a count of 255 have no available package tables. (For information
on the syntax of the ACQUIRE DBSPACE and SELECT statements, see the DB2
Server for VSE & VM SQL Reference manual.)

Managing Storage Pools
Typically, you set up your database to be supported by multiple storage pools, so
that you can control what data resides on what devices, and can manage physical
DASD allocations differently for different data. The following sections discuss uses
of storage pools and how to define them.

Design Considerations for Storage Pools
A storage pool consists of a large collection of 4-kilobyte DASD pages, called slots,
for storing allocated public and private dbspace pages and shadow pages (old
copies of dbspace pages that have changed since the last checkpoint). Dbspace
pages that are not allocated are not stored. For internal dbspaces, slots are
occupied only by nonempty pages of data for active logical units of work.

The placement of dbspace pages in storage pool slots is determined by the
database manager; however, you control which pool of slots the dbspace pages are

Chapter 7. Managing Database Storage 155

assigned to. This allows you to control device utilization and the use of different
DASD allocation schemes for different data.

Estimating Storage Requirements
You may often choose to undercommit the actual DASD space available for the
dbspaces. Because a dbspace cannot be extended after it is defined, and because it
is really only a logical allocation of space, many dbspaces are defined to be much
larger than needed. As a result, the actual storage pool slots required are fewer
than the dbspace sizes imply. The number of dbextent pages should be defined to
support the expected number of dbspace pages that will actually be used.

The undercommitting approach to managing storage pools is particularly useful if
the tables involved are expected to grow over time. The sizes of the dbspaces are
set based on how large the tables can grow, while the size of the storage pool is
defined based on current storage requirements. As the tables grow, you can extend
the storage pool by adding dbextents to it.

Undercommitting is also useful for supporting internal dbspaces. It is unlikely that
you will ever need all the pages of all of the internal dbspaces at the same time.
The number of internal dbspaces defined is based on the most the database
manager would need at one time, and the size for each is defined based on the
worst possible situation that could occur. (Note that internal dbspaces are all the
same size.)

If you want to guarantee space availability, or have more dynamic dbspace storage
requirements, you should overcommit the DASD space available for dbspaces. For
example, you might want to do so to handle the storage requirements for private
dbspaces. User requests for more or bigger dbspaces can be relatively frequent.
Rather than repeatedly going through an ADD DBEXTENT operation, you could
overcommit the storage pool for private dbspaces and handle the user requests
through the ADD DBSPACE and ACQUIRE DBSPACE operations. (You may still
have to run the ADD DBEXTENT operation, but not as often.) For overcommitting,
allocate sufficient slots to handle all dbspace pages plus the potential shadow
pages.

Controlling Device and Channel Utilization
Storage pools enable you to control device and channel utilization through one of
two basic approaches:
v Separating highly referenced dbspaces

Two highly active dbspaces can be placed on different devices by assigning them
to different storage pools and defining the dbextents of these storage pools on
different devices.

v Spreading a highly referenced dbspace across devices
A single highly active dbspace can be spread across multiple devices by defining
its storage pool as small, multiple dbextents, each of which is a CMS minidisk
defined on a different device.

Controlling Data Location
You can allocate a table and all its indexes to a specific device or CMS minidisk. To
do this, create the table in a dbspace with no other tables, assign the dbspace to its
own storage pool, and define the dbextent (or dbextents) as the CMS minidisk (or
minidisks) on the volume that you want.

156 System Administration

Monitoring Storage Pools
Use the SHOW POOL command to display physical storage information about each
storage pool defined, including:
v The total number of pages in the storage pool
v The number of pages being used
v The percentage of the pages in use
v The number of dbextents defined for that storage pool, in the order in which

they were defined (which is also the order in which they will be searched for a
free page)

v For each dbextent
– The total number of pages
– The number of free pages

v A short-on-storage indicator.

You can issue the SHOW POOL command from either the operator console or from
ISQL. For more information about it, refer to the DB2 Server for VSE & VM
Operation manual. To see information about reusable deleted dbextent numbers,
use the SHOW POOL DELETED command.

Maintaining Storage Pools
To maintain storage pools, you:
v Add storage pools to the database

You add a storage pool to a database by adding a dbextent to a nonexistent
storage pool, using the ADD DBEXTENT process described in “Adding
Dbextents to a Storage Pool”.

v Add storage to existing storage pool
If any of your storage pools are short on storage, you can use the ADD
DBEXTENT process to increase their size.

v Remove storage from storage pools
You can use the DELETE DBEXTENT process to release DASD for other uses.

v Move dbextents to another device
v Move log disks to another device

Adding Dbextents to a Storage Pool
Dbextents can be added to a nonexistent storage pool (which defines a new storage
pool), or to an existing storage pool (which increases the size of the storage pool)
using the following two-step process:
1. Define a minidisk for each dbextent being added.
2. Run the SQLADBEX EXEC from the database machine.

These steps are described in more detail below.

Step 1: Define the Dbextent Minidisks: Before adding a dbextent to the
database, you must define a minidisk for that dbextent. The minidisk definition
allocates the DASD space and establishes the size of the dbextent. You define a
minidisk by adding an MDISK control statement to the VM directory of the
database machine.

Figure 53 on page 158 shows example MDISK control statements for three
minidisks that are to be database dbextents.

Chapter 7. Managing Database Storage 157

Note: Refer to Table 41 on page 427 for minimum space allocation values.

In the example shown in Figure 53, one dbextent minidisk with a virtual device
address of 31A is defined on volume DBDSK7. Two more, on virtual device
addresses 323 and 43A, are defined on volume DBDSK8.

Read access mode (R) is specified with a read (DBX01) and write (AFRT) password
for each minidisk. A user who knows the passwords can access the minidisks
when the database manager is running in single user mode.

Database minidisks must always have a read password, a write password, and
an access mode of R. If the passwords or access mode are overlooked, the
minidisks are susceptible to careless or malicious access. For more information on
the MDISK control statement, see the VM/ESA: Planning and Administration manual.

In the example, the sizes of the dbextent minidisks are specified in cylinders. The
number of storage pool slots represented depends on the device types of DBDSK7
and DBDSK8. Because both are IBM 3380 volumes, the slots represented are:

virtual device 31A -- 7467 slots
virtual device 323 -- 2964 slots
virtual device 43A -- 4446 slots

1 slot = 1 4-kilobyte block

The tables in “Appendix B. Estimating Database Storage” on page 425 show how
many slots are held on each of the different count-key-data (CKD) devices. For
FB-512 devices, the sizes are specified in blocks. One dbextent page equals 8 blocks
of an FB-512 device.

You can move dbextents between device types so long as the dbextent is not larger
than the size of the device. When you define dbextents, you should keep this in
mind. For example, if you defined a dbextent of 600000 blocks on a 9335, you
could not move that dbextent to a 9332 (which is limited to 360032 blocks). If you
defined 3 dbextents, each of 200000 blocks, on a 9335 (for a total of 600000 blocks),
you could move them to three 9332 devices.

Updating the MAXCONN Setting: When adding MDISK control statements for a
database machine, you must increase the MAXCONN value by the number of
dbextents added. The MAXCONN value is a parameter of the VM OPTION control
statement. This value determines the number of VM IUCV or APPC/VM
connections allowed for a virtual machine. The MAXCONN parameter is unique to
each database machine. For more information, see “Setting the MAXCONN Value”
on page 283.

Step 2: Run the SQLADBEX EXEC: The SQLADBEX EXEC updates the database
directory to include the control information for the dbextent. It also adds the
appropriate CP LINK and CMS FILEDEF commands to the database SQLFDEF file.
Multiple dbextents can be defined in one run of the SQLADBEX EXEC. For more
information, see “Running the SQLADBEX EXEC” on page 161.

MDISK 31A 3380 cylr 50 DBDSK7 R DBX01 AFRT
MDISK 323 3380 cylr 20 DBDSK8 R DBX01 AFRT
MDISK 43A 3380 cylr 30 DBDSK8 R DBX01 AFRT

Figure 53. Example MDISK Statements for Adding Dbextents

158 System Administration

Example of Adding a Dbextent to a Database: Figure 54 illustrates the sequence
of commands required to add a dbextent to a database named TEST. It is added to
storage pool 1 at disk address 307. The SQLADBEX EXEC then automatically calls
the SQLSTART EXEC.

Before you run the SQLADBEX EXEC, you should know the disk addresses of the
dbextents and the numbers of the pools to which the dbextents are being assigned.
The SHOW DBEXTENT command indicates pool numbers and the number of
dbextents currently defined.

The example assumes that the new minidisk has already been defined and added
to the VM directory. The minidisk has been formatted and reserved. This step is
optional, but it allows the minidisk to be formatted and reserved without stopping
the application server. Entries you would make are indicated in the example.

Notes for Figure 54:

�1� Command to begin the ADD DBEXTENT operation. Because no
parameters are specified, dcssID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values in Table 6 on page 72.

�2� add is entered to add dbextent

�1� ──> sqladbex db(test)
ARI0717I Start SQLADBEX EXEC: 01/20/93 10:49:52 EST.
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

�2� ──> add
ARI6112A Enter DBEXTENT number to use for the new extent.

The default is 3.
(Enter a null response to use the default value or
enter QUIT to exit.)

�3� ──> 3
ARI0614A Enter virtual address and storage pool number

(default = 1) of DBEXTENT 3.
�4� ──> 307
ARI6110D Disk 307 is already formatted. Continuing will erase

all data on this disk. Do you want to use the disk?
Enter 0(No), 1(Yes), or 111(Quit).

�5� ──> 1
ARI0647D Do you want to do a CMS FORMAT/RESERVE command on disk 307?

Enter 0(No) or 1(Yes).
�6� ──> 0
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

�7� ──>
ARI6114A Do you want to do a database archive (ARCHIVE),

user archive (UARCHIVE), or no archive (NOARCHIVE)
at the end of the run?
(Attention: Database may not be restorable
if you choose NOARCHIVE.)
Enter one of the values or enter a null response
to use the default (ARCHIVE).

�8� ──> archive
ARI6145D Do you want to review the SQLADBEX file?

You will not be able to modify this file.
Enter 0(No) or 1(Yes).

�9� ──> 0

Figure 54. SQLADBEX Example of Adding a Dbextent

Chapter 7. Managing Database Storage 159

�3� 3 is entered to add dbextent number 3.

�4� The first dbextent added is located in storage pool 1 at disk address 307.

�5� Disk 307 is correct so 1 (Yes) is entered.

�6� Disk 307 is already formatted so 0 (No) is entered.

�7� A null response is entered to end input.

�8� archive is entered so an archive will be taken.

�9� The file will not be reviewed, so 0 (No) is entered.

After �9�, the SQLSTART EXEC is automatically called. When this EXEC ends, the
SQLADBEX EXEC also ends, and the dbextent has been added.

Deleting Dbextents from a Storage Pool
Deleting a dbextent does not delete any data in the database. Data in the deleted
dbextent is moved to another dbextent in the same pool before the dbextent is
removed from the database.

To delete dbextents:
1. Run the SQLADBEX EXEC from the database machine.

The SQLADBEX EXEC updates the database directory to remove the control
information for the dbextent. It also deletes the appropriate CP LINK and CMS
FILEDEF commands to the database SQLFDEF file. Multiple dbextents can be
deleted in one run of the SQLADBEX EXEC.
For more information, see “Running the SQLADBEX EXEC” on page 161 and
“Example of Deleting a Dbextent from a Database”.

2. Detach the minidisk for each dbextent being deleted.
3. After an archive has been taken, remove the minidisks of the dbextents being

deleted from the VM directory of the database machine.

You can move a dbextent from one storage pool to another by deleting it and
adding it back to the new pool; however, you cannot delete, add, and then delete
the same dbextent in a single run.

Attention
You must not delete the only dbextent from the storage pool that contains the
internal dbspaces.

Example of Deleting a Dbextent from a Database: Figure 55 on page 161
illustrates the sequence of commands required to delete a dbextent from a database
named TEST. You can use the SHOW POOL command to determine pool numbers
and the number of dbextents currently defined. The SQLADBEX EXEC then
automatically calls the SQLSTART EXEC.

Entries you would make are indicated in the example.

160 System Administration

|
|

Notes for Figure 55:

�1� Command to begin the DELETE DBEXTENT operation. Because no
parameters are specified, dcssID defaults to SQLDBA, POOL defaults to
LOG, and PARM defaults to the values in Table 6 on page 72.

�2� delete is entered to delete dbextents.

�3� Dbextent number 1 is to be deleted.

�4� A null response ends the input.

�5� Entering archive selects a database archive.

�6� 0 (No) is entered to bypass the review.

After �6�, the SQLSTART EXEC is automatically called. When this EXEC ends,
SQLADBEX also ends, and the dbextent has been deleted.

Considerations for the MAXCONN Setting
Deleted dbextents are sometimes counted in determining the MAXCONN setting.
The MAXCONN value is a parameter of the VM OPTION control statement. This
value determines the number of VM IUCV or APPC/VM connections allowed for a
virtual machine. The MAXCONN parameter is unique to each database machine.
For more information, see “Setting the MAXCONN Value” on page 283.

Running the SQLADBEX EXEC
The SQLADBEX EXEC starts the application server in single user mode with
STARTUP=E. It also calls the ADD and DELETE DBEXTENT operations. The
DELETE DBEXTENT operation removes control information in the database
directory for the dbextents being deleted. The ADD DBEXTENT operation
initializes control information in the database directory for the dbextents being
added, and defines new storage pools as being recoverable or nonrecoverable.

�1� ──> sqladbex db(test)
ARI0717I Start SQLADBEX EXEC: 01/20/93 10:46:36 EST.
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

�2� ──> delete
ARI6113A Enter DBEXTENT number to delete.

(Enter QUIT to exit.)
�3� ──> 1
ARI6111A Enter action (ADD or DELETE) to be taken.

(Enter a null response to end input or
enter QUIT to exit.)

�4� ──>
ARI6114A Do you want to do a database archive (ARCHIVE),

user archive (UARCHIVE), or no archive (NOARCHIVE)
at the end of the run?
(Attention: Database may not be restorable
if you choose NOARCHIVE.)
Enter one of the values or enter a null response
to use the default (ARCHIVE).

�5� ──> archive
ARI6145D Do you want to review the SQLADBEX file?

You will not be able to modify this file.
Enter 0(No) or 1(Yes).

�6� ──> 0

Figure 55. SQLADBEX Example of Deleting a Dbextent

Chapter 7. Managing Database Storage 161

The SQLADBEX EXEC resides on the service disk (V-disk) and can only be run
from an application server. Figure 56 shows the format of the SQLADBEX EXEC.

The parameters of SQLADBEX are as follows:

Dbname(server_name)
This parameter is required. You may use any initial substring as an
abbreviation for the keyword. For server_name, specify the name of the
database. (The name of the database is defined when the SQLDBINS EXEC is
started to generate the database.)

dcssID(id)
This parameter is optional. You can use DCSSID or ID for the keyword. For id,
specify the name of the bootstrap package that identifies the saved segment. If
not specified, the SQLDBA bootstrap package is used, and the database
manager uses default saved segments. If you do not have default saved
segments, DB2 Server for VM code is loaded into the user free storage area.

POOL(LOG) or POOL(NOLOG)
This parameter is optional. It is required only if you are defining a
nonrecoverable storage pool with POOL(NOLOG). It is unnecessary if you are
adding dbextents to existing pools because the status of the storage pools has
already been defined.

If you specify POOL(NOLOG) to indicate that you want to define storage
pools that are nonrecoverable, SQLADBEX prompts you for the numbers of
any nonrecoverable storage pools you want to create. When prompted, you can
respond with any value from 2 to the MAXPOOLS value for your database.
The storage pools you select to be nonrecoverable must not already have
dbextents assigned to them, and must not already have been defined in the
SQLADBEX file.

If you omit the POOL parameter or specify POOL(LOG), which is the default,
you are not prompted for the numbers of nonrecoverable storage pools.
Nonrecoverable storage pools are described in “Nonrecoverable Storage Pools”
on page 236.

PARM(parameters)
This parameter is optional. You use it to specify additional initialization
parameters. Usually, the initialization parameters used by the SQLADBEX
EXEC are sufficient. You can specify other initialization parameters as required.

If you specify the PARM parameter, it must follow the other SQLADBEX
parameters. For a list of the valid initialization parameters, refer to Table 6 on
page 72. That figure lists the parameters that apply in single user mode. Do not
specify the SYSMODE and STARTUP parameters. The SQLADBEX EXEC
automatically supplies SYSMODE=S and STARTUP=E. Also, do not specify the
PROGNAME, DUALLOG, and LOGMODE parameters. The SQLADBEX EXEC

�� SQLADBEX Dbname(server_name)
dcssID(id)

POOL(LOG)

POOL(NOLOG) PARM(parameters)
��

Figure 56. SQLADBEX EXEC

162 System Administration

ignores any LOGMODE parameter. The LOGMODE setting is determined by other
parameters specified on the SQLADBEX EXEC. See page 165 for more information
on the LOGMODE setting.

You can specify the DUMPTYPE, TRACDBSS, TRACCONV, TRACDSC and
TRACRDS parameters. For the definition of these parameters see “Multiple User
Mode Initialization Parameters” on page 54. Because the ADD and DELETE
DBEXTENT operations can be run only when the database manager is running in
single user mode, the initialization parameters are the only means of tracing them.
(Operator TRACE commands are only valid when the database manager operates
in multiple user mode).

If you choose to use tracing, you may want to issue your own CMS FILEDEF and
LABELDEF commands for the trace file. These optional FILEDEF and LABELDEF
commands are discussed in the DB2 Server for VSE & VM Diagnosis Guide and
Reference manual. More general information about tape capabilities is in “Tape
Support” on page 74.

You can use PARMID to specify a CMS file that contains parameter specifications
for the ADD or DELETE DBEXTENT operation.

For examples of using the SQLADBEX EXEC, see “Example of Adding a Dbextent
to a Database” on page 159 and “Example of Deleting a Dbextent from a Database”
on page 160.

The SQLADBEX processing has three parts:
1. Updating the resid SQLFDEF file to include CMS FILEDEF and CP LINK

commands for the added dbextents. (Remember that SQLSTART uses resid
SQLFDEF Q to access the database.) Server name and resid may be different.
The RESID NAMES file on the production disk is used to map the resid to the
server name defined during database generation.

2. Updating the database directory.
3. Updating the resid SQLFDEF file to remove the CMS FILEDEF and CP LINK

commands for the deleted dbextents.

Updating the SQLFDEF File for Added Dbextents
When you start the SQLADBEX EXEC, it copies the file resid SQLFDEF from the
production disk to the database machine A-disk. (Any file on the A-disk that has
the name resid SQLFDEF is replaced.)

If you are doing an ADD DBEXTENT operation, the SQLADBEX EXEC prompts
you for the dbextent number, the storage pool number and virtual device address
(cuu). If the minidisk has not been formatted and reserved, SQLADBEX will issue a
CMS FORMAT and RESERVE command for it. If the minidisk is already formatted
and reserved, SQLADBEX prompts you to proceed. Respond YES to the already
formatted message displayed by SQLADBEX. The SQLADBEX EXEC prompts you
to run the commands. You can choose to skip the FORMAT/RESERVE process if
the minidisk has been previously formatted and reserved properly. Respond 1 (Yes)
to run the commands or 0 (No) to skip them.

Attention
Be sure that you are accessing the correct minidisk before you respond 1 to
the FORMAT and RESERVE notification.

Chapter 7. Managing Database Storage 163

The SQLADBEX EXEC then adds the appropriate CMS FILEDEF and CP LINK
commands to the resid SQLFDEF file for the new dbextent.

When all the minidisks have been added SQLADBEX copies the updated resid
SQLFDEF file to the production disk. The SQLFDEF file on the production disk is
replaced.

If the action is delete, SQLADBEX prompts you for the dbextent number and
optionally the storage pool number. The update to the resid SQLFDEF file is
delayed until the update to the directory is done.

Updating the Database Directory
The SQLADBEX EXEC updates the database directory by using the ADD and
DELETE DBEXTENT operations. The ADD and DELETE DBEXTENT operations
require (as input) the specifications for the dbextents to be added and deleted. The
EXEC generates the specifications for you, based on the storage pool numbers you
provided in the previous step.

The SQLADBEX EXEC creates the file resid SQLADBEX on the database machine’s
A-disk. Figure 57 shows the format of a resid SQLADBEX file. Any existing file
with the name resid SQLADBEX is erased from the database machine’s A-disk.

If you specify POOL(NOLOG) when running SQLADBEX, you are prompted for
the numbers of storage pools that you want to define as nonrecoverable. Based on
your responses to the prompts, SQLADBEX creates POOL control statements and
inserts them in the resid SQLADBEX file. These POOL control statements are used
by the ADD DBEXTENT operation to define nonrecoverable storage pools. Do not
supply the numbers of storage pools that have already been defined. After
definition, a storage pool cannot have its recovery status changed. Even if the
storage pool contains no dbextents, once you have defined it as nonrecoverable,
you cannot redefine it as recoverable. To see the storage pools that have been
defined, use the SHOW POOL ALL command. Figure 57 shows a POOL control
statement that defines storage pool 8 as nonrecoverable. A subsequent control
statement, which was also generated because of responses to other prompts,
assigns dbextent number 6 to the storage pool.

As soon as the file is created, you are given the opportunity to review it.

The ARCHIVE control statement must be the last statement if present. The valid
options are ARCHIVE (database archive), UARCHIVE (user archive) or
NOARCHIVE (no archive). If the ARCHIVE control statement is not specified, the
default (ARCHIVE) is used.

Attention
After a dbextent is deleted, the database cannot be restored from an archive
taken prior to the deletion.

POOL 8 NOLOG
DELETE 3 1
DELETE 2 2
ADD 6 8
DELETE 4
ARCHIVE

Figure 57. Format of the resid SQLADBEX File

164 System Administration

Therefore, the user should choose ARCHIVE or UARCHIVE to backup the
database. If NOARCHIVE is chosen, the LOGMODE will be switched to Y. The
LOGMODE parameter is set to A if ARCHIVE or UARCHIVE is chosen.

When the resid SQLADBEX file is complete, the SQLADBEX EXEC starts the ADD
and DELETE DBEXTENT operation.

The optional POOL control statements must precede the statements that define the
dbextents. They are required only for defining new nonrecoverable storage pools
with POOL(NOLOG). They are unnecessary if you are adding dbextents to an
existing pool because a storage pool’s status has already been defined as either
nonrecoverable or recoverable. POOL statements are also not necessary for new
recoverable storage pools, because by default, storage pools are recoverable.

You cannot specify pool number 1 on any POOL control statement.

Attention
Once a storage pool is defined as either nonrecoverable or recoverable, you
must not change it from recoverable to nonrecoverable (or from
nonrecoverable to recoverable).

The records following the POOL control statements contain the dbextent
definitions. Each control statement must contain a control word (ADD or DELETE)
and the specification of one dbextent. The first number in the input record is the
number designator of the dbextent. The second number, if specified, is the number
designator of its storage pool. (For the ADD action, if this number is not specified,
the default is storage pool 1; for the DELETE action, the default is the storage pool
where the dbextent resides.) The numbers must be separated by at least one blank.

When you add a dbextent, its number must either be one more than the number of
dbextents currently defined, or the number of any dbextent that was deleted by the
DELETE DBEXTENT operation. The total amount of space allocated in the
directory as the dbextent control area is fixed for a database, and cannot be
changed without regenerating the database. When a dbextent is deleted, the
control area is not compressed. Therefore, you should reuse deleted dbextent
numbers whenever possible so as to reuse the directory control area. Figure 58
shows the dbextent control area in the directory.

In this example, a new dbextent can take on the numbers 5, 7 or 8, which are
available for reuse, or 11, which is the next sequential number. The value 2+

Extent number:

Belongs to
pool number:

...unused...
1 2 2+ 3 4 5 6 7 8 9 10

1 1 ... 2 2 ... 1 2 4

Where indicates deleted area in directory
...

n

Figure 58. Dbextent Control Area in the Database Directory

Chapter 7. Managing Database Storage 165

indicates that there is empty directory space between dbextents 2 and 3. Because
no dbextent number is associated with this space, you must first delete dbextent 2
or dbextent 3 to reclaim it.

You can determine the number of dbextents currently defined in a database by
using the SHOW POOL operator command. To determine the maximum number of
dbextents or storage pools that can be defined for the database, issue the SHOW
DBCONFIG operator command. For more information, see the DB2 Server for VSE &
VM Operation manual.

You can determine the deleted dbextent numbers that are available to be reused by
using the SHOW POOL DELETED command. There is a maximum size associated with
each deleted dbextent number. The maximum size is determined by the previous
use of the dbextent number. The highest number is an exception; if it is deleted,
the control area it used to occupy will be combined with the rest of the free area
and this number will be treated as if it has never been used.

For example, if dbextent 10 in Figure 58 on page 165 above is deleted, the control
area in the directory will look like Figure 59.

When the SHOW POOL DELETED command is issued, dbextent number 10 will not be
listed.

The storage pool numbers you enter can range from 1 to MAXPOOLS, where
MAXPOOLS is the maximum number of storage pools for the database as specified
during the database generation. You can use the storage pool numbers in any
sequence.

For a dbextent to be deleted, the dbextent number must be one of the dbextents
currently defined to the database. If the storage pool number is specified, it must
be where the dbextent resides.

After the file resid SQLADBEX is created and reviewed, the SQLADBEX EXEC
starts the application server in single user mode with the ADD or DELETE
DBEXTENT operation. When the application server ends, the dbextents are
deleted, or added and ready to be used.

Updating the SQLFDEF File for Deleted Dbextents
The SQLADBEX EXEC removes CMS FILEDEF and CP LINK commands for all
deleted dbextents from the resid SQLFDEF file.

When all the minidisks have been deleted, SQLADBEX copies the updated resid
SQLFDEF file to the production disk. The SQLFDEF file on the production disk is
replaced, and SQLADBEX then erases the resid SQLFDEF file from your A-disk.

Extent number:

Belongs to
pool number:

...unused...

1 2 2+ 3 4 5 6 7 8 9

1 1 ... 2 2 ... 1 2

Figure 59. Dbextent Control Area in the Directory after Dbextent 10 Is Deleted

166 System Administration

Possible Outcomes
Message ARI0620I resid SQLFDEF successfully copied to production disk
indicates the successful completion of the ADD and DELETE DBEXTENT
operation. If the operation does not complete successfully, the action you take
depends on what part of the processing failed:
v If SQLACDBEX fails because of incorrect control statement input, rerun it after

correcting the cause of the error
v If a failure occurs after message ARI0717I Start SQLSTART EXEC:, refer to

Table 14 for the required action depending on which messages you have
received.

Table 14. Recovering from Errors during SQLADBEX
Messages Issued

ARI0922I ARI0650E ARI0620I Action Notes

No Yes No None required; you can rerun
SQLADBEX if you want.

Failed. SQLFDEF file not updated.
Directory not updated.

Yes Yes No You must rerun SQLADBEX with
the same input.

Failed. SQLFDEF file not updated.
Directory updated.

Yes No No You must rerun SQLADBEX and
reply YES to ARI0646D or delete
the dbextents that you tried to
delete.

Failed. SQLFDEF file updated for
added dbextents only. Directory
updated.

No No No You must rerun SQLADBEX and
reply YES to ARI0646D or delete
the dbextents that you tried to
add.

Failed. SQLFDEF file updated for
added dbextents only. Directory
not updated.

Considerations for Adding and Deleting Dbextents
Neither the ADD nor the DELETE DBEXTENT operation is recorded in the log.
Because these operations update the directory, and not the database itself, you can
encounter a problem if you normally archive the database, and then try to restore
it. For an ADD DBEXTENT operation, suppose the following events occur in the
following order:
1. You do a database archive
2. You add dbextents
3. Users use data from those dbextents
4. You do an archive restore using the archive file from number 1 above and, if

you use LOGMODE=L, subsequent log archives.

The directory and the database are not synchronized. The directory was restored
from an archive file that did not reflect the ADD DBEXTENT operation; the
database is also restored from that file however, the use of the changed dbextents
is also restored from updates recorded in the log or log archives. Thus, the
directory does not reflect the changed dbextents, but the database does.

For a DELETE DBEXTENT operation, suppose the following occurs:
1. You do a database archive
2. Later you delete dbextents
3. You attempt to do an archive restore from number 1 above.

The restore operation fails because it attempts to put data on the dbextents that
have been removed.

Chapter 7. Managing Database Storage 167

You can prevent this problem by using the ARCHIVE or UARCHIVE option in the
ADD or DELETE DBEXTENT operation. This will ensure that your current
database archive reflects the changed dbextents.

The same problems occur if you use log archiving and restore the database using a
database archive taken before the ADD or DELETE DBEXTENT operation. That is,
if you use a back-level database archive and subsequent log archives to restore the
database, the database archive that records the changes to the dbextents are
skipped. For ADD DBEXTENT operations, the directory, restored from the
back-level database archive, does not show the changes to the dbextents; the
subsequent log archives, however, do record the use of those dbextents. Restoring
the database from an old database archive and subsequent log archives can thus
put the database out of synchronization with the directory. For DELETE
DBEXTENT operations, the restore fails when it tries to use the removed dbextents.

Moving Dbextents
Sometimes you must relocate the dbextents to another device because of disk
migration or to control device utilization. A dbextent can be moved using the
SQLCDBEX EXEC. The “move” is actually a “copy”. The dbextent is copied from
one device to another. The dbextent remains on the old device until the copy is
successfully committed, then the old device is released by the database manager.
At this point, the dbextent has been moved.

The new device should be the same size as the old device. Moving a dbextent to a
larger device does not expand the size of the dbextent. The extra space available
on the larger device is not available to the dbextent. If you need to increase the
size of your database, you must use the SQLADBEX EXEC. For more information
on this EXEC, see “Adding Dbextents to a Storage Pool” on page 157.

The SQLCDBEX EXEC invokes the application server in single user mode, so
before a dbextent can be moved, the application server must be shut down. The
EXEC is located on the service disk.

Figure 60 shows the format of the SQLCDBEX EXEC.

Dbname(server_name)
The DBNAME parameter is required. Any initial substring for DBNAME can
be used as the keyword (for example, DB or D). For server_name, specify the
name of the application server. (The name of the application server is defined
when the SQLDBINS EXEC is started to generate the database.)

When the EXEC is run, it prompts for all the information it requires to carry out
the operation. The dbextents are copied to the new devices defined and the resid
SQLFDEF file is updated on the A-disk.

The changes to the database are committed when all the copies have been
performed successfully and the user indicates to end the EXEC. If the system
crashes or the user quits from the EXEC, the dbextents remain on the old devices.

�� SQLCDBEX Dbname(server_name) ��

Figure 60. SQLCDBEX EXEC

168 System Administration

The old devices are released by the database manager when the changes are
committed.

The SQLCDBEX EXEC can be used to move the directory.

Example of Moving a Dbextent
Figure 61 illustrates the sequence of commands required to move a dbextent. The
example assumes that the new minidisk has already been defined and added to
the VM directory. The step to format and reserve the minidisk does not need to be
performed if the minidisk has been formatted and reserved before running the
EXEC.

Notes for Figure 61:

�1� Command to start the MOVE DBEXTENT operation.

�2� Dbextent 2 is to be moved.

�3� Disk 204 is the new device address.

�4� Disk 204 is correct so 1 (Yes) is entered.

�5� Disk 204 has been formatted and reserved using CMS FORMAT and
RESERVE prior to the invocation of the EXEC, so 0 (No) is entered. Note
that if you have access to the DFSMS/VM* product, message ARI0647D
will not be displayed.

�6� A null entry ends input.

�1� ──> sqlcdbex db(sqldba)
ARI0717I Start SQLCDBEX EXEC: 01/19/93 18:01:47 EST.
ARI0721I Get DB2 Server for VM production minidisk WRITE access: SQLDBA 195.
ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,

or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

�2� ──> 2
ARI6103A Enter virtual address for new DBEXTENT 2.

(Enter a null response to end input or
enter QUIT to exit.)

�3� ──> 204
ARI6110D Disk 204 is already formatted. Continuing will erase

all data on this disk. Do you want to use the disk?
Enter 0(No), 1(Yes), or 111(Quit).

�4� ──> 1
ARI0647D Do you want to do a CMS FORMAT/RESERVE command on disk 204?

Enter 0(No) or 1(Yes).
�5� ──> 0
ARI6131I Copying in progress. Please wait...
ARI6108I Minidisk copied successfully. The SQLDBA SQLFDEF file

will be updated.
ARI6109I SQLDBA SQLFDEF file has been updated on the A disk.
ARI6102A Enter DBEXTENT number (or LOGDSK1, LOGDSK2,

or BDISK) to copy.
(Enter a null response to end input or
enter QUIT to exit.)

�6� ──>
ARI0620I SQLDBA SQLFDEF file

successfully copied to production disk.
ARI0673I All COPY DBEXTENT processing completed successfully.
ARI0796I End SQLCDBEX EXEC: 01/19/93 18:03:12 EST
ARI0721I Get DB2 Server for VM production minidisk READ access: SQLDBA 195.

Figure 61. SQLCDBEX Example of Moving a Dbextent

Chapter 7. Managing Database Storage 169

Moving Log Disks
Sometimes you must relocate the log disks to another device because of disk
migration or to control device utilization. The SQLCDBEX EXEC can be used to
copy the log disk only if:
1. The target log disk is the identical device type and size as the source log disk
2. The source log disk is not damaged.

If these conditions are met, SQLCDBEX can be used to make an exact copy of the
original log disk, and it is not necessary to reformat or reconfigure the log. If these
conditions are not met, you must do a COLDLOG to reconfigure the new log disk.
For more information about COLDLOG, see “Reconfiguring and Reformatting the
Logs” on page 228.

170 System Administration

Chapter 8. Saved Segments

Saved segments allow users to share code. This sharing can reduce the amount of
user free storage required by the user and the database machines, and reduces the
amount of paging done by the system.

This chapter discusses installing these common areas.

Using Saved Segments for Components
You can define database manager components in saved segments. This can be done
after you have installed the product. Saved segments allow code to be shared
among users. Code that is not in saved segments runs in the user free storage area
of the user machine and database machine.

Code can be loaded into the following saved segments:
v Resource adapter

The resource adapter saved segment may contain the code for the following
components:
– Resource Adapter (RA)
– DRRM
– CONV

The DRRM and CONV components are only applicable if the DRDA code is
installed.

The resource adapter segment can be saved above 16M.
v DBSS

The DBSS saved segment contains the code for the following components:
– DBSS
– DSC

The DBSS segment must be saved below 16M.
v RDS

The RDS saved segment may contain the code for the following components:
– RDS
– WUM
– DRRM
– CONV

The DRRM and WUM components are only applicable if the DRDA code is
installed.

The RDS Segment can be saved above 16M. This includes the WUM, DRRM and
CONV components. If RDS is saved above 16M, the ″AMODE(24)″ initialization
parameter CANNOT be used. If ″AMODE(24)″ is specified with the RDS
Segment defined above 16M (or if RDS is loaded into free storage above 16M),
message ARI0021I is issued and start up fails. If you must use the ″AMODE(24)″
parameter, you must create an alternative bootstrap package which specifies an
RDS segment that is saved below 16M. If RDS is not used in a saved segment,

© Copyright IBM Corp. 1987, 2001 171

and ″AMODE(24)″ is required, you must define the virtual machine storage to
16M or less, to prevent RDS from being loaded above 16M.

v ISQL

The ISQL saved segment contains the ISQL code. It must be saved below 16M.
v National language message repositories

This saved segment contains the code for the message repository. It must be
saved below 16M.

Notes:

1. The DBSS and RDS components must both reside in saved segments or both
reside in the user free storage area.

2. Any segments that are within the database machine’s virtual storage should be
reserved using the SEGMENT RESERVE command. For more information on
the SEGMENT RESERVE command, see the VM/ESA: CMS Command Reference.

Use the VMFSGMAP EXEC, which uses the VM/ESA CP DEFSEG command, to
define each component in a saved segment. After defining the saved segments you
must load them (using the VMFBLD EXEC, which uses the ARISAVES EXEC), and
create a bootstrap package to use them (using the SQLGENLD EXEC). If you
choose to have ARISAVES create the default (SQLDBA) bootstrap package, it is not
necessary to run SQLGENLD.

In any bootstrap package there can be three bootstrap modules that correspond to
the following components:
v Resource adapter
v ISQL
v DBSS and RDS.

The bootstraps identify where the components reside. Only one bootstrap module
is needed for the DBSS and RDS components. Because the DBSS and RDS
components must both reside in saved segments or both reside in user free storage,
only one module is needed to indicate the location of the code. (The DBSS and
RDS code is often referred to as the DB2 Server for VM system code.) For a service
machine, only the bootstrap modules for the resource adapter and ISQL need to be
generated.

Each set of saved segments defined for the database manager usually has three
bootstrap modules. (Typically, only one set of saved segments is defined for the
code at an installation.) The bootstrap modules identify the corresponding saved
segments. The database manager requires bootstrap modules for every saved
segment except national language message repositories. National language message
repository saved segments are identified in the ARISNLSC MACRO.

The bootstrap modules allow the database manager to use the code residing in the
saved segments. The SQLBOOTS EXEC generates the appropriate bootstrap
modules (the SQLDBA bootstrap package) for default saved segments. If you
respond YES when the ARISAVES EXEC prompts you to use the saved segments
you are loading as defaults, ARISAVES calls SQLBOOTS to create the SQLDBA
bootstrap package. This bootstrap package specifies whether the database manager
code runs as a default in saved segments or not. If not, the code runs in the user
free storage area. ISQL and the resource adapter run in the user free storage area of
the user machines, and the system code runs in the user free storage area of the
database machines.Also, the resource adapter runs in the user free area of the
database machine when in single user mode. To create other bootstrap packages,
you use the SQLGENLD EXEC. You name the bootstrap package when you use

172 System Administration

SQLGENLD to create it. For more information on the SQLGENLD EXEC and the
SQLBOOTS EXEC, see “Defining Saved Segments” on page 177.

Even though you have defined one or more saved segments for the database
manager, they are used only in the following situations:
v They are default saved segments, and the database manager has generated the

SQLDBA bootstrap modules for them.
v You have created bootstrap modules for them, and specify that bootstrap

package when you run DB2 Server for VM EXECs.

You indicate you want to use a particular saved segment by specifying the DCSSID
parameter on various IBM-supplied EXECs (for example, the SQLSTART EXEC and
the SQLINIT EXEC). Indicate that you want to use the saved segments by
specifying the name of the corresponding bootstrap package. (Remember, you
name a bootstrap package when you create it using SQLGENLD.) After you use
the DCSSID parameter, the EXEC continues to use that bootstrap package until you
specify another bootstrap package. If you do not specify anything on the DCSSID
parameter, and have never used it, you use the SQLDBA bootstrap package. The
SQLDBA bootstrap package identifies default saved segments, if you have them. If
not, the SQLDBA bootstrap package specifies that the database manager code runs
in the user free storage area.

If you omit the DCSSID parameter after defining additional bootstrap packages,
the default rules are more complex. They are even more complex when you do not
define all bootstrap modules in a bootstrap package. (Consider doing this if, for
example, you want the system code to run in special saved segments, but want
ISQL and the resource adapter to run in default saved segments.) The following
sections describe the default rules.

If you want to keep things simple, define only one set of saved segments and
generate three bootstrap modules. This is what is done for default saved segments.
If you choose to have default saved segments, you define them, and the database
manager creates a bootstrap package for them. If you have default saved segments,
they are used when your users run EXECs without specifying the DCSSID
parameter. This way, you always easily know where the database manager code is
running. For an example of defining saved segments and generating bootstraps,
see “Defining Saved Segments” on page 177.

Even if you have default saved segments, you should still define saved segments
for national language messages that you expect to use. A default saved segment is
not generated for national language messages. For more information, see “Defining
Message Repositories as Saved Segments” on page 333.

You may want to define multiple saved segments for the database manager code.
(For example, you want to run the code at different locations.) The above guideline
still applies: if possible, generate all three bootstraps, and provide the users with
specific instructions for DCSSID parameters.

For a service machine, you only need to generate the bootstrap modules for RA
and ISQL. The DBSS and RDS code cannot run from a service machine.

If you need more details on the way bootstraps work, continue reading. If not, skip
the rest of this section.

The bootstrap module identifies the name of the saved segment to be loaded into
storage at run time. In addition, the bootstrap module for the resource adapter also

Chapter 8. Saved Segments 173

contains the name of the database machine. This name is required to establish the
communication link in multiple user mode. In a VM/ESA operating system, you
do not need to specify the name of the database machine because APPC/VM is
used for communication: only the RESID (resource) is needed. After installation,
there is one bootstrap package made up of the following CMS files:

SQLDBA SQLDBBT Q -- corresponds to the DB2 Server for VM system code
(not generated for a service machine)

SQLDBA SQLISBT Q -- corresponds to the ISQL code
SQLDBA SQLRMBT Q -- corresponds to the resource adapter code

The files are created at installation time and reside on the production minidisk.
Collectively, they form the SQLDBA bootstrap package.

When you run the SQLGENLD EXEC to create a bootstrap package, you are
prompted for the name to be specified in the DCSSID parameter and the name (or
names) of the saved segment (or saved segments). The name to be specified in the
DCSSID parameter is used to identify the bootstrap package. For example, if you
generate a bootstrap package with the name MYBOOT for the system code, ISQL,
and the resource adapter, these files are created on the production minidisk:

MYBOOT SQLDBBT -- DB2 Server for VM system code bootstrap module
MYBOOT SQLISBT -- ISQL bootstrap module
MYBOOT SQLRMBT -- resource adapter bootstrap module

When you run the SQLSTART EXEC, the bootstrap for the system code and
resource adapter are copied to the A-disk of the database machine. (Because you
can run the database manager in single user mode, and it cannot determine the
mode you will use, the resource adapter bootstrap is always copied.) Assume that
you issue the following command, and DBNAME and RESID are the same:

SQLSTART DBNAME(TEST1) DCSSID(MYBOOT) ...

The file TEST1 SQLDBN is either created or updated at this time, with the
following information:

DBMACHID = name of the database machine
DCSSID = MYBOOT
DBNAME = TEST1

When you run the SQLINIT EXEC for the user machine, the bootstraps for ISQL
and the resource adapter are copied to the A-disk of the user machine. Assume
that you issue the following command:

SQLINIT DBNAME(TEST1) DCSSID(MYBOOT)

During processing, the resource adapter bootstrap is recreated with the name of
the database machine. The TEST1 SQLDBN file is read to obtain the name of the
database machine. This means you must have used the SQLSTART EXEC (or the
SQLDBINS EXEC) to create the SQLDBN file for the database machine.

The resid SQLDBN file, containing the default DCSSID, cannot always be accessed;
therefore, the default DCSSID in this file cannot be used. A user machine cannot
access the resid SQLDBN file on a database machine in either of the following
situations:
v The database machine resides on a different processor
v The database machine does not own the production minidisk (Q-disk) to which

the user machine has a link.

You must create a new file (SQLDCSID DEFAULT) on the production (Q) disk that
is linked by these user machines to provide a default DCSSID for them. This file is

174 System Administration

created when the SQLGENLD EXEC is run. The SQLGENLD EXEC generates the
bootstrap package for a particular saved segment. The EXEC prompts you to
specify whether the DCSSID is to be the default for user machines that have a link
to this Q-disk.

The following examples outline the above discussion. The examples assume that
you have default saved segments identified in the SQLDBA bootstrap package.

Example 1
Assume that you have created four saved segments (one for each of the following):
the DBSS code, the RDS code, the ISQL code, and for the resource adapter code.
(Also assume that you used the names SQLSQLDS for the DBSS/DSC, SQLXRDS
for the RDS, SQLISQL for ISQL, and SQLRMGR for the resource adapter as the
names of the saved segments.) You then used SQLGENLD to create the three
bootstrap modules and identified this bootstrap package with the name MYBOOT.
Assume that the name of the database machine is SQLMACH1 and that both
DBNAME and RESID are TEST1. Until you specify the DCSSID parameter on the
SQLSTART EXEC (or unless you provided it when you generated the database
using the SQLDBINS EXEC), the code is loaded as specified by the SQLDBA
bootstrap modules. The SQLDBN file has the following information:

DBMACHID = SQLMACH1
DCSSID = SQLDBA
DBNAME = TEST1

If a user machine that is linked to the database machine Q-disk containing the
TEST1 SQLDBN file runs the SQLINIT EXEC, that EXEC is called to use the
SQLDBA bootstrap modules. Assume that you run the SQLINIT EXEC as follows:

SQLINIT DBNAME(TEST1) DCSSID(MYBOOT)

During processing, the bootstraps for ISQL and the resource adapter use the saved
segments SQLISQL and SQLRMGR. These saved segments are used even though
the database manager is using the default bootstrap modules.

When the SQLSTART EXEC (or SQLDBINS EXEC) has been run with the DCSSID
parameter DCSSID(MYBOOT), the database manager uses the saved segments
SQLSQLDS and SQLXRDS. The user only has to specify the DBNAME parameter
on the SQLINIT EXEC, for example, SQLINIT DBNAME(TEST1), to use the
SQLISQL and SQLRMGR code.

Example 2
Assume you have created a second resource adapter saved segment named
SQLRMGR2 using the bootstrap name RMBOOT2, and the environment has
already been established to use MYBOOT as shown in “Example 1”. Also assume
that DBNAME and RESID are the same, and that you start the application server
as follows:

SQLSTART DBNAME(TEST1)

Notice that the DCSSID is not specified. The SQLSTART EXEC reads the TEST1
SQLDBN file and uses the MYBOOT bootstrap module to load the SQLSQLDS and
SQLXRDS code into saved segments. In this situation, MYBOOT (rather than
SQLDBA) has become the established default bootstrap package for server-name
TEST1. When you run the SQLINIT EXEC specifying DCSSID (RMBOOT2) in a
user machine that has a link to the Q-disk containing the TEST1 SQLDBN file, the
bootstrap package exists for the resource adapter, but not for ISQL. For this
example, run the SQLINIT EXEC as follows:

Chapter 8. Saved Segments 175

SQLINIT DBNAME(TEST1) DCSSID(RMBOOT2)

During processing, the SQLINIT EXEC regenerates a resource adapter bootstrap to
load the saved segment named SQLRMGR2. Because it does not find a bootstrap
identified by RMBOOT2 for ISQL, it reads the TEST1 SQLDBN file, finds the
DCSSID=MYBOOT entry, and uses the bootstrap identified by MYBOOT for ISQL.

Example 3
Assume that you have a second database (TEST2) that is owned by the
SQLMACH2 database machine, and that the database has a bootstrap package
(SQLBOOT2) for the DB2 Server for VM system code only. Also assume that
DBNAME and RESID are the same.

The TEST2 SQLDBN file has the following entries:
DBMACHID = SQLMACH2
DCSSID = SQLBOOT2
DBNAME = TEST2

Suppose that you run the SQLINIT EXEC using the DCSSID of RMBOOT2, as
shown in “Example 2” on page 175:

SQLINIT DBNAME(TEST2) DCSSID(RMBOOT2)

During processing the bootstrap package for the resource adapter exists and is
created on the user’s A-disk to communicate with the SQLMACH2 machine and
server-name TEST2. If the SQLINIT EXEC does not find a bootstrap identified by
RMBOOT2 for ISQL, or one identified by SQLBOOT2 (from TEST2 SQLDBN), or if
the ARISISBT module is not found, it defaults to the SQLDBA ISQL bootstrap
module.

Example 4

Note: This example only applies to systems with multiple databases in which
default saved segments are not used.

Suppose you have users on a processor that does not have a database machine,
and a service machine is defined as the owner of the Q-disk. You want the
resource adapter and ISQL code to run in saved segments. When creating the
bootstrap package (BOOTS), using the SQLGENLD EXEC, answer YES to the
following prompt:

Do you want BOOTS to be the default DCSSID for user machines?

When you answer YES, a new file, SQLDCSID DEFAULT, is created on the
production (Q) disk with the following entry:

DCSSID=BOOTS

If DBNAME and RESID are the same, and the users run the SQLINIT EXEC
without specifying the DCSSID parameter, the DCSSID in the SQLDCSID
DEFAULT file is used as the default. Assume that a user enters the following
command:

SQLINIT DBNAME (TEST2)

During processing, the bootstrap package BOOTS (for the resource adapter and
ISQL) is copied to the user’s A-disk.

176 System Administration

When a user runs the SQLINIT EXEC without specifying DCSSID (BOOTS), and
you have not specified that BOOTS is to be the default DCSSID for user machines,
the SQLDBA bootstrap package is used.

You should specify that the bootstrap package for the resource adapter and ISQL
(BOOTS in this example) is the default DCSSID when you create the bootstrap
package (BOOTS) with the SQLGENLD EXEC. Doing this ensures that user
machines not having a link to the Q-disk that contains the SQLDBN file for the
database machine that they are accessing will have a default DCSSID. These user
machines then do not have to specify the DCSSID parameter.

Defining Saved Segments
Table 15 shows the saved segment usage by virtual machine.

Table 15. Saved Segment Usage by Virtual Machine

Saved Segment User Machine Database
Manager in
Multiple User
Mode

Database
Manager in
Single User
Mode

ISQL X

DBSS X X

RDS X X

RA X X

DB2 Server for VM message repository X

CMS DB2 Server for VM message
repository

X X X

It is possible to overlap saved segments that will not be used in the same machine.
For example, in multiple user mode, the DBSS and RDS components are used only
by the database machine, and ISQL and the resource adapter are used only by the
user machine. Therefore, in multiple user mode, it is possible to overlay DBSS (or
RDS) with ISQL (or the resource adapter).

Note: In single user mode, the resource adapter is used by the database machine,
and must run in the same machine as DBSS and RDS, and therefore cannot
overlap either RDS or DBSS.

Table 16 shows the components that can overlap when they are being run in
multiple user mode only.

Table 16. Shared Segment Relationships in Multiple User Mode

Component Name Used By Default SYSNAME Segments This
Component Can Overlap

Resource adapter End users SQLRMGR SQLXRDS
SQLSQLDS

ISQL End users SQLISQL SQLXRDS
SQLSQLDS

DBSS Database manager SQLSQLDS SQLRMGR
SQLISQL
LANGS001

Chapter 8. Saved Segments 177

Table 16. Shared Segment Relationships in Multiple User Mode (continued)

Component Name Used By Default SYSNAME Segments This
Component Can Overlap

RDS Database manager SQLXRDS SQLRMGR
SQLISQL
LANGS001

DB2 Server for VM
Message Repository

End users
Database manager

LANGS001 SQLXRDS
SQLSQLDS

This section outlines the steps you must follow to put database manager code into
saved segments. It is only a supplement to the information about defining saved
segments in the manuals below. It assumes that you are familiar with saved
segments and the procedures that must be followed to define them. For more
information about saved segments, refer to the VM/ESA: Planning and
Administration manual.

To use saved segments for database manager component load modules, you must
do the following:
1. Log on to the installation user ID, 5697F42R.
2. Run the VMFSGMAP command to add or change DB2 Server for VM segment

definitions.
3. Ensure that the machine’s virtual storage is defined large enough to contain the

segments to be loaded. It must have sufficient storage to contain the saved
segment, loader tables, and CMS control block storage at the end of virtual
storage.

4. Ensure that you have write access to the database machine production disk or
SFS directory.

5. Issue the SET LANGUAGE command to ensure that the language repository is
available.

6. Verify and update the ARISSEGC macro file.
7. Run VMFBLD EXEC, which calls ARISAVES EXEC, to load and save each

segment.
8. Run the IBM-supplied SQLGENLD EXEC to generate a bootstrap package for

the saved segment.
This step does not need to be performed if you are creating or modifying
default saved segments (that is the saved segments used by the SQLDBA
bootstrap package). When you run ARISAVES for default saved segments, the
database manager automatically creates a bootstrap package (SQLDBA) for you.
If you are defining other saved segments, after you run ARISAVES, you must
run SQLGENLD.

9. Reset the virtual storage to its original value or issue the SEGMENT RESERVE
command for any segments that are within the database machine’s virtual
storage.

The following is an example of the process used to define saved segments for the
components. With the VM/ESA operating system,you must define the segments
with VMSES/E VMFSGMAP EXEC, which calls the DEFSEG command.

Step 1. Plan to Define and Build Segments
Before building and loading a DB2 Server for VM segment, you must obtain the
following information:

178 System Administration

v Determine the beginning and ending storage page ranges for each segment you
will be defining. Refer to the DB2 Server for VM Program Directory for the size of
the saved segments for the DB2 component.
The address where a segment can be defined on your system is dependent on
the locations of the other saved segments on your system. See your system
programmer for assistance in determining origin values for the saved segments.
If you are going to save a segment in an address space where an old saved
segment is located, you must first purge the old saved segment. See the
VM/ESA: Planning and Administration manual for more information on defining
and deleting segments with VMSES/E.

v If you need to specify a storage key value other than the default value, 13, for
the saved segment, refer to the VMSES/E Considerations under “ARISAVES
EXEC” on page 467 and continue to the following step. Otherwise, continue with
the following step.

Step 2. Log On to the Installation User ID
Log on to the installation user ID, 5697F42R.

Step 3. Access VMSES/E Code and Software Inventory Minidisks
To link and access the VMSES/E code and Software Inventory minidisks, enter the
following commands. (You need R/W access to the Software Inventory minidisks.)
access 5e5 b
link maint 51d 51d mr
access 51d d

Do these steps for each segment

Step 4. Prepare to Add DB2 Server for VM Segment Definitions
Enter the following command to display the Segment Map panel, which displays
information about the segments defined on your system:
vmfsgmap segbld esasegs segblist

Chapter 8. Saved Segments 179

|
|

Step 5. Add or Change the DB2 Server for VM Segment
Definitions
To add segment definitions, press PF10 to display the Add Segment Definition
panel. To change segment definitions, press PF4 to display the Change Segment
Definition panel.

The following shows an example of the Add Segment Definition panel.

VMFSGMAP - Segment Map More: +
Lines 1 to nn of nn

000-MB 001-MB 002-MB 003-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

M CMS SYS W-W-------------1...............2...............3...............
M GCS SYS W---------------1...............2...............3...............

004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4...............5...............6...............RRRR------------

M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNN6...............7...............
M HLASM DCS 4...............5...............RRRRRRRRRRRRRRRR7...............

008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8...............9...............A...............====------------
CMSBAM MEM 8...............9...............A...............BRRR............
CMSDOS MEM 8...............9...............A...............R...............
CMSVMLIB DCS RRRRRRRRRRRRRRRR9...............A...............B...............
DOSINST DCS 8...............R---------------A...............B...............

00C-MB 00D-MB 00E-MB 00F-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............

M CMS SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

010-MB 011-MB 012-MB 013-MB
F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Cancel
====> _

Figure 62. Segment Map Panel Example

180 System Administration

Step 6. Obtain the DB2 Server for VM Segment Definitions
To obtain the DB2 Server for VM segment definitions, you must fill in the
appropriate fields on the Add Segment Definition panel.

OBJNAME....: segname
segname

Description

SQLRMGR
Resource adapter

SQLISQL
ISQL

SQLSQLDS
DBSS

SQLXRDS
RDS

LANGxxxx
DB2 Server for VM message repository, where xxxx is:
S001 English (mixed case)
S002 English (uppercase)
S003 French
S004 German
D001 Japanese
D003 Chinese_Simplified

PRODID.....: prodid compname
prodid is 5697F42R. (This is the prodid for the base, mixed case English, as
well as all other NLS Languages.)

If you are building the NLS message repository segments, use the base
prodid 5697F42R.

compname is DB2VM or DB2VMSFS. Use DB2VM for building segments
from a minidisk. Use DB2VMSFS for building segments from SFS
directories.

Add Segment Definition
Lines 1 to nn of nn

OBJNAME....: segname
DEFPARMS...:
SPACE......:
TYPE.......: SEG
OBJDESC....:
OBJINFO....:
GT_16MB....: NO
DISKS......:
SEGREQ.....:
PRODID.....: 5697F42R compname
BLDPARMS...: UNKNOWN

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>

Figure 63. Add Segment Definition Panel Example

Chapter 8. Saved Segments 181

Press PF10 to obtain DB2 Server for VM segment information.

Notes:

1. If you are setting initial segment definitions, you will receive message
VMFSMD2038E. This is OK. You will fill in the DEFPARMS field on the next
panel.

2. If the segment is already defined, you will receive the following message:
VMFSMD2044W Segment name segname already defined. Current segment
definition will be replaced.

You can change the name of the segment in the next step if you do not want to
replace the current definition.

Step 7. Update the DB2 Server for VM Segment Definition
Fill in or update the Add Segment Definition panel.

OBJNAME....: segname
If you want to change the name of the segment, replace segname with the
new name.

DEFPARMS...:
Fill in the beginning and ending page ranges you calculated in “Step 1.
Plan to Define and Build Segments” on page 178.

SPACE......: spacename
Specifying spacename allows you to take advantage of segment packing by
putting more than one component in a single segment space. Only
segments that are used together (for example, ISQL and the Resource
Adapter) should be put in a segment space together. This is because the
entire segment space is loaded when one of the segments it contains is
loaded. The DBSS segment must be below 16M, but the RDS segment is

Add Segment Definition More: +
Lines 1 to nn of nn

OBJNAME....: segname
DEFPARMS...: ????-???? SR
SPACE......:
TYPE.......: SEG
OBJDESC....: object_description
OBJINFO....: object_information
GT_16MB....: NO|YES
DISKS......:
SEGREQ.....:
PRODID.....: 5697F42R compname
BLDPARMS...: PPF(5697F42R compnameSEG bldlist_name)

VMFSMD2760I SEGINFO processing completed SUCCESSFULLY

F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>

Figure 64. Add Segment Definition Panel Showing the New Segment Information

182 System Administration

usually defined above 16M. Therefore, they cannot be in the same segment
space. To place them in the same segment space, the RDS segment must be
saved below 16M. It is highly recommended that this NOT be done and
RDS be saved above 16M.

GT_16MB....:
Specify NO unless you are defining segments for the Resource Adapter or
RDS components, which can (and usually should) be defined above 16M.

You can define and use the Resource Adapter and RDS saved segments
above 16MB. To define the component above 16MB, specify the starting
and ending pages above 16MB on the DEFPARMS field. If you define the
component both above and below 16MB, give them different names.

Note: If you define the RDS segment above 16M, you CANNOT start the
server with the “AMODE(24)” initialization parameter.

BLDPARMS...:
If you have your own PPF override, you must change the BLDPARMS
field to reflect this.

Notice that the component name used in this field is DB2VMSEG or
DB2VMSFSSEG. If you have a PPF override to the DB2VM or DB2VMSFS
component name, you will also need to add an override to your PPF for
DB2VMSEG or DB2VMSFSSEG before you build the segment in “Step 14.
Build the DB2 Server for VM Segments” on page 186.

Note: The bldlist_name refers to the buildlist for each component of DB2 Server
for VM that can be placed in a shared segment. A list of each component
and its associated bldlist_name follows:

Table 17. Component and associated bldlist_name

Component bldlist_name

Upper Case American English NLS ARIBLASG

French NLS ARIBLBSG

Japanese NLS ARIBLFSG

German NLS ARIBLHSG

Chinese (Hanzi) NLS ARIBLJSG

Mixed Case American English ARIBLLNG

DBSS component ARIBLDBS

ISQL component ARIBLISQ

Resource Adapter component ARIBLMGR

RDS component ARIBLRDS

Step 8. Display Refreshed Segment Map Panel
Press F5 to display the refreshed Segment Map panel.

Chapter 8. Saved Segments 183

Step 9. Save the New Segment Information
Press F5 to save the changed information and exit from the panel.

End of Do these steps for each segment

Step 10. Verify Virtual Storage
To load the saved segment, the machine must have enough virtual storage to
contain the saved segment, loader tables, and CMS control block tables at the end
of virtual storage.

Step 11. Prepare to Build the DB2 Server for VM Segments
Before building the new DB2 Server for VM segment, following these steps:
1. Clear your virtual machine by entering the following IPL command. This

command bypasses loading the installation saved segment (CMSINST) and
bypasses executing the System Profile EXEC.
ipl cms parm clear nosprof instseg no

Note: ** DO NOT press ENTER at the VM READ!**

2. Bypass the execution of the PROFILE EXEC by entering the following
command:
access (noprof

3. Access the VMSES/E code by entering the following command:
access 5e5 b

4. Link and access the Software Inventory disk by entering the following
commands:
link MAINT 51d 51d mr
access 51d d

5. Access the database machine, SQLMACH, production minidisk or SFS directory
by entering the following command:

VMFSGMAP - Segment Map More: -
Lines nn to nn of nn

000-MB 001-MB 002-MB 003-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

M CMS SYS W-W-------------1...............2...............3...............
M GCS SYS W---------------1...............2...............3...............

004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4...............5...............6...............RRRRRR----------

M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNN6...............7...............

008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8...............9...............------------====================
CMSBAM MEM 8...............9...............A...............RRRR............
CMSDOS MEM 8...............9...............A...............R...............
SQLISQL MEM RRRRRR..........9...............A...............B...............
CMSVMLIB DCS RRRRRRRRRRRRRRRR9...............A..............WB........RRRRRRR
F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Cancel
====>

Figure 65. Segment Map Panel with Added Segments Example

184 System Administration

access vdev k

vdev is the address the database machine production minidisk is linked as by
the installation user ID, or vdev is the name of the database machine production
SFS directory. You need write access to this minidisk or directory.

6. Before running the ARISAVES EXEC to save the segments, activate the user
language files by entering the following CMS command:
set language ameng (add ari user

ARISAVES is called by the VMFBLD command, in “Step 14. Build the DB2
Server for VM Segments” on page 186.

Step 12. Update the ARISSEGC Macro
Before you run the ARISAVES EXEC for each component to be defined in a saved
segment, verify that the ARISSEGC macro contains the proper SYSNAME entry,
origin, and saved segment choice for the component. Use XEDIT to change the
ARISSEGC macro on the database machine, SQLMACH, production minidisk or
SFS directory. (You should not use the VMSES/E local modification procedure.)

If the saved segment you defined is to become the new default, the SYSNAME
value in the ARISSEGC macro should match the name you used to define the
saved segment for the component. If not, edit the ARISSEGC macro and change
the SYSNAME accordingly. The message ARI0365W will be issued if the
SYSNAMEs do not match.

The ARISSEGC MACRO has a record length of 80, and its record format is fixed.
The values in each record must be separated by one or more blanks and are
interpreted in the order shown in the following list:

compid is the component ID as specified in the ARISAVES EXEC. Values of
compid are:
v DBSS
v RDS
v ISQL
v RA

Yes|No indicates whether a saved segment should be used for this
component. Both Y and YES indicate that a saved segment is used
for this component. Both N and NO indicate that a saved segment
is not used for this component.

origin is the hexadecimal load address of the saved segment, as specified
in the DEFPARMS field of the Add Segment Definition panel.

segname is the name of the saved segment as defined in the OBJNAME field
of the Add Segment Definition panel.

ARISAVES EXEC only processes the first occurrence of the value of each compid.
Other records are ignored. You could use them to store other information on saved
segments.

Unless you have changed some values in it, the ARISSEGC MACRO contains the
following information:

Chapter 8. Saved Segments 185

Step 13. Release the Production Minidisk or SFS Directory
Release the database machine, SQLMACH, production minidisk or SFS directory
by entering the following command:
release k

Step 14. Build the DB2 Server for VM Segments
For each segment that is to be built, enter the following command:
vmfbld ppf segbld esasegs segblist segname (serviced
segname Description

SQLRMGR Resource adapter
SQLISQL ISQL
SQLSQLDS DBSS
SQLXRDS RDS
LANGxxxx DB2 Server for VM message repository, where xxxx is:

S001 English (mixed case)
S002 English (uppercase)
S003 French
S004 German
D001 Japanese
D003 Chinese_Simplified

* ARISSEGC MACRO - Saved Segment Control File
*
* 1. Change the values in the columns at the bottom of this file
* by overtyping them. Descriptions of the columns and possible
* values are:
*
* Column Values
* ------ ------
* COMPONENT ID - RA, ISQL, DBSS, RDS.
* SAVED SEG - Y, YES, N, NO. Answer YES to use saved
* segments for this component. Answer
* NO to load this component into user
* free storage.
* ORIGIN - hexadecimal starting location of
* components in save segments.
* - no meaning if component is loaded into
* user free storage.
* - must start from column 35.
* - can be 6 to 8 digits long.
* SYSNAME - As defined in the DEFSEG command.
*
* 2. Enter "FILE" on the command line to continue processing and save
* your changes.
*
* 3. You can include comments in this file. Place them at
* the end of the file and make sure that the first column
* contains an asterisk(*).
*
*COMPONENT SAVED SEG ORIGIN SYSNAME
*
RA NO ?????? SQLRMGR
ISQL NO ?????? SQLISQL
DBSS NO ?????? SQLSQLDS
RDS NO ?????? SQLXRDS
END ARISSEGC MACRO <--- THE REQUIRED LAST ENTRY IN ARISSEGC MACRO

Figure 66. ARISSEGC MACRO

186 System Administration

yourname name specified on the Add Segment Definition panel in “Step 7.
Update the DB2 Server for VM Segment Definition” on page 182.

You will be prompted asking you if you want the saved segments to be the new
default saved segments. If you reply YES, ARISAVES updates the origin values in
the ARISSEGC MACRO and generates bootstrap modules by calling the
SQLBOOTS EXEC.

If you reply NO, you must create a bootstrap package yourself by using the
SQLGENLD EXEC shown in “Step 15. Create a Bootstrap Package”.

Step 15. Create a Bootstrap Package
If you responded YES when prompted by the ARISAVES EXEC to use the saved
segments you that loaded as defaults, you do not have to do this step, as
ARISAVES would have generated a default bootstrap package (SQLDBA) for you.

If you answered NO to the prompt, you must run the SQLGENLD EXEC to create
a bootstrap package for the saved segments you loaded. To run SQLGENLD EXEC,
you must log off of the installation user ID and log on to the database machine
(SQLMACH).

Because SQLGENLD prompts you for certain information about the new bootstrap,
you should determine the contents of the bootstrap package before you run the
SQLGENLD EXEC. For more information, see “Contents of a Bootstrap Package”.

Contents of a Bootstrap Package: A bootstrap package contains modules created
by the SQLGENLD EXEC. SQLGENLD places the modules on the production
minidisk (Q-disk). Note that, even though the DBSS and RDS components are
loaded in different saved segments, there is only one bootstrap module for them.
All of those components are needed to run the DB2 Server for VM system code in
a database machine. Thus, one bootstrap identifies the location of the DBSS and
RDS components.

Not all modules are needed because the database manager uses defaults when a
module of a bootstrap is missing. For more information on the defaults, see “Using
SQLGENLD” on page 188.

Figure 67 summarizes the different bootstrap modules that you can have.

The dcssid (saved segment ID) is the name you give to the bootstrap package with
SQLGENLD. It is the dcssid that you use in the DCSSID parameter of various
IBM-supplied execs (such as, SQLSTART or SQLINIT). When dcssid is specified in a
DCSSID parameter, the bootstrap package production disk entries are copied to the
execution machine’s A-disk as shown in Figure 68.

fn ft fm

Resource adapter --> dcssid SQLRMBT Q
DBSS/RDS------> dcssid SQLDBBT Q
ISQL --------------> dcssid SQLISBT Q

Figure 67. Bootstrap Package Contents

Chapter 8. Saved Segments 187

The resource adapter bootstrap is incomplete when it is copied to the A-disk of the
user machine. It is completed when the user runs the SQLINIT EXEC, which
supplies the missing server name to be accessed.

Use SQLGENLD to generate bootstrap packages for running the database manager
in saved segments. You cannot use this EXEC to generate a bootstrap package for
running the database manager in a default mode. The SQLDBA bootstrap package
identifies the default mode, which can be default saved segments (if you have
defined them) or user free storage.

Using SQLGENLD: When you identify the bootstraps to be contained in the
package you are creating and the location where you want them to load the code,
you can use the SQLGENLD EXEC. To use SQLGENLD, obtain read access to the
service minidisk by entering the following command:
access 193 v

You can run SQLGENLD only from the database machine:
sqlgenld

When it runs, the SQLGENLD EXEC obtains both read and write access to the
production minidisk. Both kinds of access are available to a defined database
machine. You should ensure that no other machine has write access to the
production minidisk when you run SQLGENLD.

If you are running SQLGENLD from a database machine that does not own the
production minidisk, SQLGENLD prompts you for the write password.

The SQLGENLD EXEC prompts you for dcssid. This is the name of the new
bootstrap package. If a bootstrap package with this name already exists,
SQLGENLD replaces the existing bootstraps. The EXEC does not let you replace
the initial SQLDBA bootstrap package. The SQLDBA bootstrap package is used as
a default by many IBM-supplied execs. Do not modify or erase the SQLDBA
bootstrap package.

When you supply dcssid, SQLGENLD prompts if you want to create a resource
adapter bootstrap, a DBSS/RDS bootstrap, and an ISQL bootstrap. For each
bootstrap that you choose to create, you are prompted for the saved segment name
(or, in the case of DBSS/RDS, names). The name is the name you used in the
OBJNAME field of the Add Segment Definition panel.

The database manager prompts if you want this bootstrap package to be the
default DCSSID for user machines that have a link to this production (Q) disk.
Specify this as the default if you have users linking to this Q-disk who will be

Production | | Execution Machine
Q-disk Entry | | A-disk Entry

--------------------- | |---------------------
FN FT FM | COPY/RENAME | FN FT FM

------ ------- -- |-------------| -------- ------ --
dcssid SQLRMBT Q | TO | ARISRMBT MODULE A
dcssid SQLDBBT Q | TO | ARISDBBT MODULE A
dcssid SQLISBT Q | TO | ARISISBT MODULE A

Figure 68. Bootstraps Copied to the Execution Machine A-disk

188 System Administration

accessing a database machine that does not own this production (Q) disk, and if
you do not have saved segments identified by the SQLDBA bootstrap package.
Because the database manager provides a default DCSSID, these users are not
required to specify the DCSSID parameter when they run the SQLINIT EXEC.

Note: The SQLDCSID DEFAULT file cannot be used by a user if the file resid
SQLDBN exists on the production (Q) disk they are linked to. This is
because the default bootstrap package for a database is identified in the resid
SQLDBN file. The SQLDCSID DEFAULT file is used by users that are
accessing an application server other than the one that owns the Q-disk to
which they are linked.

If you say that you want this bootstrap to be the default for users with a link to
this production (Q) disk, a new file SQLDCSID DEFAULT will be created on the
production (Q) disk to contain the default DCSSID. When the bootstraps are
created, SQLGENLD places them on the production minidisk. They are then erased
from the database machine A-disk.

Step 16. Verify the Virtual Storage Size
To run the database machine, you must ensure that its virtual storage is smaller
than the load address of any of the saved segments that you loaded, or that the
SEGMENT RESERVE command has been issued on the database machine for all
segments that reside within the database machine virtual storage. The SEGMENT
RESERVE commands should normally be placed in the Server’s PROFILE EXEC.

Running in User Free Storage after Using Default Saved
Segments

If you are using default saved segments and you want to run a component in user
free storage, follow these steps:
1. Edit the production (Q-disk) copy of the ARISSEGC MACRO. Change the Y or

YES to an N or NO for the components that you want to run in user free
storage.

2. Run the SQLBOOTS EXEC for the components.
3. Ensure that you are using the SQLDBA bootstrap package. On the database

machine, specify DCSSID(SQLDBA) on the SQLSTART command. On the
requester, specify DCSSID(SQLDBA) when you invoke the SQLINIT EXEC.

If you have secondary production disks, you must manually copy the ARISSEGC
MACRO to them. Then, you must run the SQLBOOTS EXEC for each production
disk.For information on the SQLBOOTS EXEC, see “SQLBOOTS EXEC” on
page 470.

ARISNLSC MACRO
The ARISNLSC MACRO indicates the repository used for DB2 Server for VM
messages. It has a record length of 80, and a fixed record format. The MACRO is
shown in Figure 69 on page 190.

Chapter 8. Saved Segments 189

For more information, see “National Language Support for Messages and HELP
Text” on page 331.

Columns:

1

LANGUAGE

42 47 53

LANGKEY LANGID DCSSNAME

Where:

LANGUAGE is the language name.

LANGKEY is the language key.

LANGID is the language identifier

DCSSNAME is the saved segment name.

Figure 69. The ARISNLSC MACRO

190 System Administration

Chapter 9. Making Backups and Recovering from Failures

Database recovery refers to the processing done to correct data when something
goes wrong. This chapter presents a detailed description of basic recovery
concepts, and how to implement them. More advanced recovery topics are
discussed in “Chapter 10. Special Topics in Recovery Design” on page 225.

The problems that can occur fall into four categories:

Application Error
Occurs when an application (for example, an ISQL command or routine, or
the DBS utility) does not end successfully.

User Logic Error
Occurs when the system or application does the requested function, but
the request itself is in error — that is, the user (or application program) did
not specify the correct function. For example, the user may have
accidentally dropped the wrong table or dbspace.

This is the only type of error where detection is not immediate. Therefore,
it presents more of a problem. Errors in the data can go undetected for
quite some time, making recovery processing very complex.

System Failure
Occurs when the application server ends abnormally. Such failures can
occur because of a severe error involving the operating system, or because
of certain error conditions detected by the database manager, such as a
power failure.

DASD Failure and Database Corruption
Occurs when the database manager cannot read data from or write it to
the DASD where it is stored, because the storage medium is unreadable or
damaged. Such an error (also called a media failure) can occur on the log,
the directory, or a data extent (DBEXTENT).

This manual discusses how to recover from system and DASD failures. Recovery
from application and user logic errors is described in the DB2 Server for VSE & VM
Database Administration manual.

There are two aspects to dealing with system and DASD failures:
v Establishing and maintaining regular recovery procedures, to ensure that you

have the information available to correct the data if something goes wrong.
v Correcting the data.

Understanding Recovery Concepts
To effectively protect your data and recover it in the event of failure, you need to
understand the measures built into this product. Protecting against system failures
involves the LUW, the log, and the checkpoint. Protecting against DASD failures
entails two types of archive: the database archive and the log archive.

What is a Logical Unit of Work?
The data in your database is in a consistent state if no changes are left only
partially completed.

© Copyright IBM Corp. 1987, 2001 191

Some data changes cannot be expressed in only one SQL statement. For example,
suppose you have a banking program to transfer money between accounts, and
want to transfer $100 from a SAVINGS to a CHECKING account. The program
makes this transfer in two steps:
1. Add $100 to the balance of the CHECKING account.
2. Subtract $100 from the balance of the SAVINGS account.

If the second step fails (for example, because of a system failure), the data is in an
inconsistent state. That is, a deposit has been made to the CHECKING account, but
no withdrawal has been made from the SAVINGS account.

The logical unit of work (LUW) prevents such inconsistencies. An LUW is a sequence
of SQL statements that the system treats as a single entity. Either all the data
changes made during an LUW are performed, or none is performed. In the
example above, the two updates should be placed within a single LUW.

To group several SQL statements into one LUW, one uses the COMMIT WORK
and ROLLBACK WORK commands.

If no problems or errors occur, the user issues the COMMIT WORK command to
save all the changes made. If a problem occurs in the middle of an LUW, the user
can issue the ROLLBACK WORK command to undo all the changes made since
the last COMMIT WORK command.

An LUW can be as small as one SQL statement, or as large as an entire ISQL
session or application execution. ISQL, by default, treats each command as an
LUW, and issues a COMMIT WORK command after each SQL statement that
modifies the database. Users can change this default by issuing the SET
AUTOCOMMIT OFF command. For more information on the use of the
AUTOCOMMIT, COMMIT, and ROLLBACK commands, refer to the DB2 Server for
VSE & VM SQL Reference manual.

What is a Log?
The log is a file maintained on DASD that records all the changes completed by
each LUW. For each change, the log records the old and new values of the updated
object. If any changes to the database must be undone or redone, you can use the
log to restore the data to its proper state.

In addition to the changes made by each logical unit of work, the log also records
when each logical unit of work started and stopped. (It does not record logical
units of work that only read information from the database).

A database must have at least one log. Optionally, you can define a second log. If
there are two logs, they are exact duplicates: then, if a DASD failure occurs on one
log, the database manager can continue using the other copy. For more
information, see “Using Dual Logging” on page 227.

Larger logs may be needed for tables that are being captured for DataPropagator
because of the increased amount of log data written for UPDATEs to those tables
which specify DATA CAPTURE CHANGES. Tables being captured will log the
entire original row (not just the data that was changed), and the new data that
replaces the old changed data. You should consider increasing the size of the log
dbextent(s) when planning to make extensive use of this function.

192 System Administration

What is a Checkpoint?
Checkpoints are taken periodically. During a checkpoint the database manager
stops servicing users, and takes a “snapshot” of the database that includes updates
from completed LUWs as well as from those that are still in progress, and writes
them to DASD. In addition, a special checkpoint record is written to the log to
synchronize the log with the state of the database.

What Happens after a System Failure?

Restart Recovery with a Log
If your system fails, as long as the current log is available, the database will be
automatically recovered to a consistent state when you restart the application
server. This process, called restart recovery, uses the log to ensure that changes
made by LUWs are either committed (if they had successfully finished) or backed
out (if they had not finished successfully).

The recovery process determines the state of each LUW; both at the time of failure
and at the time of the last checkpoint before the failure. The following scenarios
are shown in Figure 70 on page 194:
v LUW A: if the LUW starts and ends before the checkpoint, all the updates are

safely reflected in the database at the checkpoint.
v LUW B: if the LUW starts before the checkpoint and commits work after the

checkpoint but before the failure, those updates made after the checkpoint must
be redone, using the log. Those updates made prior to the checkpoint are
reflected in the database.

v LUW C: if the LUW starts before the checkpoint but is not completed before the
failure, those updates made prior to the checkpoint must be undone using the
log. The updates made after the checkpoint are not reflected in the database:
thus all the updates must be re-entered.

v LUW D: if the LUW starts after the checkpoint and commits work before the
failure, all its updates must be redone using the log.

v LUW E: if the LUW starts after the checkpoint and is not completed before the
failure, all its updates must be re-entered since none of them are reflected in the
database.

The following diagram illustrates the LUW Recovery process for the five cases
described above:

Chapter 9. Making Backups and Recovering from Failures 193

Restart Recovery Without a Log
If the application server must be restarted without a log (due to the log either
being lost, reformatted, or reconfigured immediately after the failure), the database
cannot be adjusted to complete committed logical units of work or to back out
uncommitted ones. In this situation, to recover the database you will have to
restore a previous database archive, together with any applicable log archives.

If the database manager had been running in single user mode with
LOGMODE=N, the changes made by the application are not logged. However, a
checkpoint would have been taken each time the application issued a COMMIT
WORK (or one was issued for the application), so most changes will have been
effectively committed. Any that were uncommitted at the time of failure will be
discarded when you restart the application server and will need to be re-entered.

What is an Archive?
Archiving facilities enable you to recover your database directory and storage
pools from DASD failures. There are two kinds of archives: database archives and
log archives.

Database Archives
A database archive is a tape copy of the database directory and dbextents. It can be
taken using two types of facilities:
v database manager archiving facilities supplied with this product
v user archiving facilities such as the VMBACKUP management system or the

BACKUP command of the Data Restore Feature.

If database manager facilities are used, the database manager takes a checkpoint
(the begin-archive checkpoint) and writes a copy of the database directory and the
database to tape, as they were at the checkpoint. (A database archive does not
include a copy of the log.) Users continue to receive service while the archive is
being done.

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Time
Checkpoint

occurs
Sys Failure

occurs

LUW A
no action required

LUW B

redo
no action required

undo

LUW C
no action required

LUW D

redo

LUW E
no action required

Figure 70. LUW Recovery Actions

194 System Administration

A user archive can only be done while the application server is shut down. A user
archive generally takes less time than a database manager archive.

You are not restricted to using one kind of archive for a given database; you can
switch between database manager archives and user archives as often as you like.
There are two situations in which the former facility is required:
v When you migrate a database between two different operating systems (for

example, from VSE to VM)
v When a database archive is needed while users are accessing the database. You

can avoid this situation by using log archiving (LOGMODE=L).

Experience helps you determine which method is best for you. When using any
backup method, the performance improvement will be related to how full your
database is. The fewer pages in your database that are allocated, the less time a
database manager archive takes.

In fact, if the percent of allocated pages is low enough, a database manager archive
will outperform a user archive, because the database manager only archives pages
that actually contain data. User facilities archive all pages, so the time taken does
not vary with the number of pages allocated.

Aside from the performance advantage that user archiving facilities may offer
because they exploit particular device characteristics, consider whether your facility
provides other advantages such as archiving multiple dbextents simultaneously.

For a description of how to carry out these archives, see “Performing Database
Archives With Database Manager Facilities” on page 199 and “Performing Database
Archives With User Facilities” on page 203.

Log Archives
A log archive is a copy of the log on tape or disk. Only database manager archive
facilities can be used to archive the log. Log archives can be taken either when the
database manager is running or at shutdown. Because the log is usually much
smaller than the database, this archive takes less time than a full database archive.
For a description of how to carry it out, refer to “Performing Log Archives” on
page 204.

Recovering from DASD Failures that Damage the Database
If a DASD failure occurs on one of your database devices, you can restore the
database by replacing the damaged minidisk with a working minidisk (see
“Replacing a Database Minidisk” on page 219), and then restoring the data from
the archived database and logs (if applicable).

There are two ways to do this. One way is to use the database archive and the
current log. By loading the archive and re-applying the changes in the log, you can
bring the database up-to-date because all changes made to the database since the
archive are recorded in the current log. If the restore set for the database archive
includes the current log, you can recover the damaged storage pools instead of the
entire database using the Data Restore Feature. See the DB2 Server for VSE & VM
Data Restore manual for more information on storage pool level recovery.

Alternatively, if you archived the log, you can use the database archive, the log
archives you created since the last database archive, and your current log, to
recreate the database. You would load the database archive, and reapply the
changes in the log archives and the current log. If the restore set for the database

Chapter 9. Making Backups and Recovering from Failures 195

archive includes the current log, you can recover the damaged storage pools
instead of the entire database using the Data Restore Feature. See the DB2 Server
for VSE & VM Data Restore manual for more information on storage pool level
recovery.

The relationships among the different archives, the current log, and the current
database are shown in Figure 71 on page 198. For more details, see “Restoring the
Database” on page 212.

Recovering from DASD Failures that Damage a Log
If a DASD failure occurs, such as an unresolvable I/O error, on one of the log
devices, there are two possibilities for recovery:
1. If you are single logging, replace the damaged log minidisk (see “Replacing a

Log Minidisk” on page 221), and then follow the procedures in “Log
Reconfiguration” on page 228. Log data from the damaged log is lost.

2. If you are dual logging, replace the damaged log minidisk with a working
minidisk (see “Replacing a Log Minidisk” on page 221), and then start the
application server with the same log mode used before the log minidisk was
damaged. The contents of the good log minidisk is copied to the new log
minidisk.

Recovering from DASD Failures that Damage the Database
and Log

If a DASD failure occurs on both a database device and a log device, you can
restore the database by replacing the damaged database minidisk with a working
minidisk (see “Replacing a Database Minidisk” on page 219), replacing the
damaged log minidisk with a working minidisk (see “Replacing a Log Minidisk”
on page 221), and then restoring the data from the archived database and logs (if

applicable) as described in “Restoring the Database” on page 212.

Establishing DASD Recovery Procedures
As the system administrator, you must establish recovery procedures for your
installation. The procedures you put in place will determine the degree of
protection for your database. Naturally, trade-offs exist; when you allocate system
resources to protect against failures, these resources are unavailable to other users.
However, if a failure occurs, the recovery takes less time.

This section discusses some of the options available. Based on this information,
devise a plan that best suits your requirements.

Choosing a Log Mode
One of the first decisions you must make when designing a recovery strategy is
the type of log mode you want. The log mode is an initialization parameter that you
specify when you start the application server. It has four possible values:

LOGMODE=Y
All changes to the database will be recorded in a log, but no archives of
the log or database will be maintained. This value is the default. Use it if
you do not need to protect your data from DASD failures. The application
server will run faster, since it will not require the extra time to create
archives.

LOGMODE=A
All changes to the database will be recorded in a log, and regular archives

196 System Administration

of the database will be maintained. You can either create these archives
yourself, or have them created automatically when the log reaches a
certain threshold level.

LOGMODE=L
All changes to the database will be recorded in a log, and regular archives
of the log will be maintained. You can either create these log archives
yourself, or have them created automatically when the log reaches a
certain threshold level (to prevent it from becoming too full to be effective).

Log archives do not contain data, but only operations that change the
database. If you use this log mode, you must take an occasional database
archive as well. If a failure occurs, you can use the database archive,
subsequent log archives, and the current log to recover the database.

The log archives must be continuous, recording all processing that
occurred since the last database or log archive. If a gap exists, it will be
impossible to restore the database to its current level. (The processing that
occurred during the gap can never be reapplied to the database because it
was never archived.) Gaps can occur in the sequence of log archives when,
for example, you switch from LOGMODE=L to some other log mode. If
the continuity of the log is broken in this manner, the database manager
will force a database archive before you return to LOGMODE=L
processing.

LOGMODE=N
No changes to the database are recorded. This option, which is only
available in single user mode, is not recommended for normal operation
but can be useful in some situations. For example, it may be more efficient
not to log changes if you are loading a large amount of data into a table by
using the DBS utility in single user mode. If a problem occurs while you
are loading, you do not need the log to recover; you can simply start over.

Once you have decided on a log mode, use it whenever you start the application
server. Do not change it without thought and planning. If you must do so, you
may have to carry out additional procedures. For information, refer to “Switching
Log Modes” on page 225.

Deciding between LOGMODE=A or L
Figure 71 on page 198 illustrates the relationships among the archives, the log, and
the database when the log mode is A or L. You should consider several things
before choosing one mode over the other.

Chapter 9. Making Backups and Recovering from Failures 197

There are two advantages to log archiving (LOGMODE=L):
v It usually takes less time, because only the log is being archived, not the

directory and dbextents. This is especially helpful when the archive is being
done to free log space when the database manager is running.

v If the last database archive is unreadable or unavailable, you can bring the
database back to its current status by using a back-level database manager
archive or user archive, and applying to it the changes that were recorded in all
subsequent logs. More recent database archives are ignored when you restore a
back-level database. Two requirements must be met in order for you to use this
method:
– The log archives must be continuous. That is, you cannot have switched log

modes and done a COLDLOG (with SQLLOG) or a restore since the
back-level archive was created.

Note: You can switch from LOGMODE=L to A and then back again without
breaking the continuity of the log archives, provided that no database
archive was taken while LOGMODE was set to A.

– You have not added dbspaces, added or deleted dbextents, or reconfigured
the logs since the back-level database archive was made. These operations are
recorded in the database directory, so if you have carried any of them out, the
directory will not be synchronized with the database changes.

A disadvantage of archiving the logs is that no logical units of work can be active
during the checkpoint that immediately precedes the archive itself. Concurrent
access is allowed once the checkpoint is complete, but users may experience delays
both before and during the checkpoint.

Another disadvantage is that it takes longer to restore the database. For example,
suppose you have been taking a database archive every Friday evening and a log
archive on Tuesdays and Thursdays, and on a Friday afternoon there is a media
failure on the DASD that contains the database directory. You must restore the
most recent database archive (from the previous Friday), and then restore the log
archives from Tuesday and Thursday as well as the changes recorded in the log

When LOGMODE = A

Series of log archives Current log

Current log

When LOGMODE = L

Last database

archive

Current databaseLast database

archive

Current database

Figure 71. Relationships among the Archives, the Log, and the Database

198 System Administration

that was current at the time of the failure. Because only the changes to the
database are stored in the log, restoring the database is similar, in processing time,
to redoing all the work from the week. If there was heavy activity that week,
restoration can take a long time.

Had you used database archives (LOGMODE=A) as intermediate online archives,
you would only need to restore Thursday’s database archive and reapply the
changes on the current log. The restore time is much shorter. On the other hand,
more time would have been spent doing the intermediate archives. Because media
failures are infrequent, it is usually better to take intermediate log archives instead
of intermediate database archives. Depending on your own experience with media
failures, it may even be worthwhile to lengthen the time between database archives
taken at shutdown.

Backing Up the History Area
The database manager uses the history area of the current log to keep track of
recovery events (for example, database archives and log archives). The database
manager can then determine which log archives belong with which database
archives. The ARIHSDS ARCHIVE file contains the updated history area. If both
the work disk, containing the ARIHSDS ARCHIVE file, and the disk containing the
current log are damaged or are unavailable (offsite disaster recovery scenarios),
you cannot use log archives to restore the database. To be able to apply log
archives, you should create a backup file of the ARIHSDS ARCHIVE file after each
log archive. You can then use this backup file to rebuild the log history area.

Archiving Procedures
This section describes how to create archives to protect your database against
system failure. If a system failure occurs while you are taking an archive, see
“Restarting from a System Failure While Archiving” on page 217.

Performing Database Archives With Database Manager
Facilities

Database archives are tape copies of the directory and dbextents that are carried
out using the database manager archiving facilities:
v By issuing an SQLEND ARCHIVE operator command, which copies the

database to tape only after all LUWs complete. The copy contains all changes
made by completed LUWs because no LUWs are active when the database
archive is made. Log space is freed after the archive completes successfully. No
changes made by incomplete LUWs are in the database archive copy. This
method is preferred.

v By issuing an ARCHIVE operator command, which lets the operator initiate a
database archive at any time without either shutting down the application server
or stopping access to it. The drawback, however, is that if the archive is started
while applications are accessing the database, the archive copy may contain
changes made by incomplete LUWs, and cannot be used for recovery from user
logic errors, unless the log that was current when the database archive was
taken is available. For more information about user logic errors, see the DB2
Server for VSE & VM Database Administration manual.
The ARCHIVE command should be used only when you need to take a database
archive to free log space but cannot afford to shut down the application server.
Thus, you might want to schedule an SQLEND ARCHIVE for every Friday
night, and periodic online archives during the week.

Chapter 9. Making Backups and Recovering from Failures 199

Log space used by completed logical units of work is freed. Log space reflecting
changes that are not completely included in the database archive (as of its
begin-archive checkpoint) cannot be reused until the next database archive that
completely includes the changes.

v By reaching the ARCHPCT value, in which case a database archive is taken
automatically. The ARCHPCT initialization parameter protects the log from
overflowing. (See “ARCHPCT” on page 70.) When you are running the database
manager with only database archiving active (LOGMODE=A), log space that can
be freed by the archive is determined by the begin-archive checkpoint and freed
by the end-archive checkpoint. Log space that has been used since the longest
running active logical unit of work began cannot be reused until the next
database archive is taken. If the log becomes filled to the ARCHPCT value, the
database manager forces an online database archive.
Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is started. When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
another forced online database archive, it can frustrate the user whose
application was almost finished.)
Ideally, your log should be large enough so that the ARCHPCT value is never
reached. If this value were reached at an inconvenient time (say when the
operator is not at the console), database activity could stop. To prevent this from
happening, you should use the ARCHIVE command to do online database
archives when activity on the system is low.
Also, if you do have a database archive taken because ARCHPCT is reached,
remember you cannot use this archive to recover from user logic errors. Like an
online database archive initiated with the ARCHIVE command, it contains
changes from incomplete LUWs, so you still need the log if this archive is the
source for a restore.

Contention During an Archive
When a database archive is taken online, using database manager facilities only,
other work usually continues. If, however, a condition arises during the archive
that requires a checkpoint to be taken, other work must wait until the archive
process completes. Such conditions include:
v A short-on-storage condition for a storage pool
v A full database log
v A COMMIT or ROLLBACK WORK statement issued during an LUW that

updated data in a nonrecoverable storage pool
v An invocation of the DROP DBSPACE statement.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling database archives. See the DB2 Server for VSE &
VM Operation manual for description of operator commands.

Example of an SQLEND ARCHIVE
If you intend to create database archives, specify a value for the LOGMODE
parameter of A or L when you start the application server.

SQLEND ARCHIVE with LOGMODE=A
To use the SQLEND ARCHIVE command when LOGMODE=A:
1. Log on using the user ID and password for the database machine.

200 System Administration

2. Attach and mount a labeled tape at virtual device address 181. Indicate that
you are writing to the tape. See the VM system administrator for the
procedures used at your installation to label, attach, and mount tapes.

3. To identify who is connected to the application server, type the following
command and press ENTER:
SHOW USERS

You see a list of the users connected to the application server. Some of these
users could be accessing data in the database.

4. Notify the current users that you want to stop the application server. Ask them
to complete their work and sign off. If any user does not stop voluntarily,
consider using the FORCE command to disconnect that user. Use this command
with caution, however, as the uncommitted work of the users you disconnect is
rolled back.

5. To start the archive process and stop the application server, type the following
command and press ENTER:
SQLEND ARCHIVE DVERIFY

You should verify the directory whenever you create a database archive by
specifying the DVERIFY parameter for the SQLEND ARCHIVE command. If
you do not verify the directory, inconsistencies in the control information are
recorded in the database archive. A subsequent restoration using that archive
would fail. When you verify the directory, the system displays a message if it
finds an error, and does not create the database archive.

6. While the database manager is creating the database archive, a number of
messages are displayed at your display terminal. Among them is ARI0239I.
Write the information that this message provides on the external label of each
tape reel or cartridge. Include the date, time, and type of archive (database).
See “Labeling Your Archive Tapes” on page 210 for further instructions on how
to use this information. During a restoration, the same information is provided,
so you can easily verify that you are using the proper tape volumes.

7. If the database initialization parameter TAPEMGR has a value of N, the
database manager prompts you for the virtual device address of your tape:
ARI0299A Ready archive output volume. Enter the CUU.

Type the following and press ENTER:
181

Note: If TAPEMGR has a value of Y, indicating a tape manager is in use, the
tape manager handles the tape assign and no prompt is issued.

8. When the tape is full, the system prompts you to mount a second tape. After
you mount the second tape, type the following and press ENTER:
READY

A delay can occur as the database is copied to tape. The system continues to
request that you mount new tapes until the database archive is completed. The
number of tapes you are required to mount depends on the size of your
database.

When the archive is completed and the database is copied, you see the
following message:
ARI0292I ARCHIVE is completed.

Chapter 9. Making Backups and Recovering from Failures 201

|
|

|

|

|

|
|

|

Note: While the archive is being created you can still enter operator
commands.

When the application server stops, you see the messages:
ARI0032I The database manager has terminated.
ARI0043I Database manager return code is 0.

You have finished creating the database archive.

SQLEND ARCHIVE with LOGMODE=L
If you run the application server with LOGMODE=L, the SQLEND ARCHIVE
command ensures that you have an unbroken sequence of log archives by creating
the log archive (if there is information in the log) before the database archive. You
use the SQLEND ARCHIVE command when LOGMODE=L in the same way you
do when LOGMODE=A, except that two tapes are needed for the procedure
shown here — one for the database archive and one for the log archive, if a log
archive is to be taken. It is possible to use a single tape by creating the log archive
on disk. For more detail, see “Log Archiving to Disk” on page 207.

Using the SQLEND ARCHIVE DVERIFY with LOGMODE=L allows you to create
a valid log archive, if there is information in the log, even if the system finds an
error in the directory. However, in this situation, a database archive is not created.

To use the SQLEND ARCHIVE command when LOGMODE=L, do the following:
1. Follow the first six steps for using the SQLEND ARCHIVE command when

LOGMODE=A, beginning on page 200. The database manager first creates a log
archive if there is information in the log. You see the message:
ARI0254I The database manager is initiating a log archive.

When the log archive is complete, the database
manager will process the database archive request.

2. If the database initialization parameter TAPEMGR has a value of N, instruct the
system to create the log archive on tape if a log archive is to be taken. Tape is
the default medium for a log archive.
The following messages prompt you for the output medium:
ARI0252I Medium: tape 183
ARI0246D The above information describes the log archive
about to be done. Enter either:

CONTINUE to proceed using the output medium
indicated, or

CHANGE to change this medium.

If TAPEMGR has a value of Y, this prompt does not appear, as the log archive
is directed to tape and the tape manager handles the tape assign.

3. To use the default medium, type the following and press ENTER:
CONTINUE

If you reply CHANGE, you can direct the log archive to disk. For more details on
the CHANGE option, see “Log Archiving to Disk” on page 207.

4. When the tape is full, the system prompts you to mount another tape. After
you mount a new tape, type the following and press ENTER:
READY

A delay may occur while the database manager archives the log to tape. When
the log is archived, you see the following message:
ARI0292I ARCHIVE is completed.

202 System Administration

|
|
|

|

|
|
|
|
|
|

|
|

Note: While the log archive is being created, you can still enter operator
commands.

5. The system now continues with the database archive. Attach and mount a
second labeled tape at virtual device address 181. Indicate that you are writing
to the tape. Use the procedures set up at your installation to label, attach, and
mount tapes. This tape is used for the database archive.

6. Repeat steps 6, 7, and 8 from the LOGMODE=A example that begins on page
200 to complete the database archive.

Performing Database Archives With User Facilities
User archives are database archives (LOGMODE=A or L) done with user facilities
such as the VMBACKUP Management System (VMBACKUP-MS) or the BACKUP
command of the Data Restore Feature. User archives include the database directory
and all minidisks, but not the logs.

Because database manager archiving facilities are DASD-independent, they do not
take advantage of particular DASD characteristics to improve performance. Some
user facilities exploit these characteristics, and can archive and restore your
database more quickly in some situations.

Note: If you use VMBACKUP-MS to create user archives, you must specify that
the database directory and dbextent minidisks are non-CMS minidisks.

To begin archiving your database with user facilities, stop the application server
and issue:

SQLEND UARCHIVE

After all logical units of work have been finished, the database manager indicates
in the log history that a user archive will be taken, then prompts the operator to
take the archive, and ends. (If LOGMODE=L and the log contains information, it
takes a log archive before ending.) When the application server ends, the operator
should take the user archive. The next time the application server is started, it
displays a message to confirm that the user archive was done.

Note: Confirmation of a successful user archive is required at the next startup. If
the operator specifies a restore (STARTUP=R or U) the next time the
application server is started, the system assumes that the user archive was
not taken. If the system does not prompt the operator to confirm that a user
archive was created, this means that the archive was not recognized
(whether or not it was successful), and it must be repeated.

Note: Do not stop the server with SQLEND QUICK and then take a user archive
because the user archive will not contain consistent data.

Freeing Log Space during a User Archive
Log space is freed after a successful user archive has been confirmed at the next
startup. If you take user archives and it becomes necessary to free log space when
the database manager is running, you must use either the log or database
archiving facilities supplied with this product to free the log space.

For log archives, set LOGMODE=L when starting the application server, and for
database archives, set LOGMODE=A. In both cases, this will ensure that database
archives are automatically taken if the log fills to the ARCHPCT value. Or, if you
prefer to schedule your online archives yourself, periodically issue the LARCHIVE
command for log archives, or the ARCHIVE command for database archives.

Chapter 9. Making Backups and Recovering from Failures 203

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling user archives.

Performing Log Archives
A log archive is a copy on tape or disk of all the active pages of the database log
except for the last one, the log history area. To use log archiving, set LOGMODE to
L. A log archive can only be performed with database manager facilities supplied
with this product.

Log archives can be used with database archives taken with either database
manager facilities or user facilities. Each sequence of log archives must be preceded
by at least one database archive.

The log archive process can be started in the following ways:
v By issuing an SQLEND LARCHIVE operator command, which causes the

database manager to copy the log to tape or disk when all LUWs are complete.
Log space is freed after the archive completes successfully.
For a description of this process refer to “Example of an SQLEND LARCHIVE”
on page 205.

v By issuing an LARCHIVE command when the database manager is running.
This should be done when you need to take an archive to free log space but
cannot afford to shut down the application server. For example, you may
schedule an SQLEND ARCHIVE or SQLEND LARCHIVE for every Friday night,
and schedule periodic online log archives during the week. Log space is freed
after the archive completes successfully.

v By reaching the ARCHPCT value, in which case a log archive is taken
automatically. The ARCHPCT initialization parameter protects the log from
overflowing. See “ARCHPCT” on page 70. When you run the database manager
with log archiving active (LOGMODE=L), log space after the begin-archive
checkpoint cannot be reused until the next log archive is taken. If the log
becomes filled to the ARCHPCT value, the database manager forces an online
log archive. This archive cannot begin until all active logical units of work have
been either committed or backed out.
Set the ARCHPCT value lower than the SLOGCUSH value, which determines
when the log overflow procedure is run and thereby protects the log from
overflowing. (see “SLOGCUSH” on page 69.) When the log is filled to the
percentage indicated in SLOGCUSH, the LUW that was running the longest is
backed out. (Although this procedure allows the log space to be reclaimed by
the online log archive, it can also frustrate the user whose application almost
completed.)
Because a log archive finishes faster than a database archive, it has less
performance impact if it is done when the database manager is running. If log
archives are occurring at inopportune times, however, you may want to
periodically issue LARCHIVE when activity on the database manager is low. Be
sure the log is large enough so the ARCHPCT limit is not reached before your
scheduled log archive.

v By doing an explicit database archive while LOGMODE=L by issuing SQLEND
ARCHIVE, SQLEND UARCHIVE, or ARCHIVE. Before archiving the database,
the database manager does an implicit log archive (if information is in the log).
Note that the database manager never does an implicit database archive.

v By restoring the database. This causes the database manager to do a log archive
(if there is information in the current log) before beginning the database restore.

204 System Administration

Contention During an Archive
When an online log archive is requested, the database manager allows any LUWs
that are active to finish, but prevents any new ones from starting. A message is
displayed that tells how many LUWs are active. When they are complete, the
database manager takes a checkpoint and creates the log archive. During the
checkpoint, access to the database is disabled and any users or applications that try
to start a new LUW will be in a lock wait.

You can monitor the locking contention caused by the online log archive by using
the SHOW operator commands from the database machine console. However, you
cannot issue SHOW commands from ISQL to monitor the lock contention.

In most situations, only a slight delay occurs before the checkpoint is taken, but if
there are long-running LUWs, it can be longer. In a worst-case scenario, a
long-running LUW can delay the log archive checkpoint long enough so that the
SLOGCUSH value is reached, and the database manager must roll back the
longest-running LUW to free log space.

If you find that users are experiencing long delays because the database manager
is trying to take a checkpoint, you can issue the SHOW operator commands to
determine which user is delaying the start of the checkpoint, and then issue the
FORCE command to end that user’s LUW.

During the creation of the log archive, normal access to the database is usually
resumed. If, however, a condition arises during the archive that requires a
checkpoint to be taken, other work must wait until the archive process completes.
Such conditions include:
v A short-on-storage condition for a storage pool
v A full database log
v A COMMIT or ROLLBACK WORK statement issued during an LUW that

updated data in a nonrecoverable storage pool.

Note: You can use the SHOW LOG operator command to monitor available log space
to assist you in scheduling log archives.

Example of an SQLEND LARCHIVE
If you intend to create log archives, specify LOGMODE=L when you start your
application server. You can create your archive on tape, disk, or on a combination
of these media. There are different ways to start the process. The preferred method
is to issue an SQLEND LARCHIVE operator command, which instructs the
application server to copy the log to tape or disk as it shuts down.

Log Archiving to Tape
To use the SQLEND LARCHIVE command to create a log archive on tape:
1. Log on to the database machine.
2. Attach and mount a labeled tape at virtual device address 183. Indicate that

you are writing to the tape. Use the procedures set up at your installation to
label, attach, and mount tapes.

3. Start the application server with LOGMODE=L.
4. Notify the current users that you want to stop the application server. Ask them

to complete their work and sign off. If a user does not stop voluntarily,
consider using the FORCE command to disconnect that user. Use this command
with caution, however, as the uncommitted work of the users you disconnect is
rolled back.

Chapter 9. Making Backups and Recovering from Failures 205

To display a list of the users currently connected to the application server, type
the operator command:

SHOW USERS

5. Archive the log and stop the application server by typing the following
operator command:

SQLEND LARCHIVE

6. You will see the following message:
ARI0239I External labeling of this archive is:

Type: log archive
Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 183

Write the information that this message provides on the external label of each
tape reel or cartridge. Include the date, time, and type of archive (log). See
“Labeling Your Archive Tapes” on page 210 for further instructions on how to
use this information. During a restoration, the same information is provided, so
you can easily verify that you are using the proper tape volumes.

7. If TAPEMGR has a value of N, the following message prompts you to accept or
change the default storage medium (tape is the default medium for a log
archive):
ARI0239I External labeling of this archive is:

Type: log archive
Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 183
ARI0246D The above information describes the log archive
about to be done. Enter either:

CONTINUE to proceed using the output medium
indicated, or

CHANGE to change this medium.

Type CONTINUE and press ENTER. (If you reply CHANGE, you can direct the log
archive to disk. For more details, see Log Archiving to Disk.)

If the tape becomes full, you will be told to mount another. After you mount
the new tape, type READY and press ENTER. You will be asked for more tapes
until the log archive is completed. The number of tapes required depends on
the size of your log.

If TAPEMGR has a value of Y, the log archive is directed to tape and the tape
assign is handled by the tape manager. The operator is not prompted to change
the medium of the log archive.

When the log is completely archived, the following message is displayed:
ARI0292I Archive is completed.

Note: You can still enter operator commands while the archive is being created.

206 System Administration

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|

|

|

Log Archiving to Disk

Caution
Before you create log archives on disk, be aware that disks are exposed to
user errors (erasing a file containing an archive), and the remote possibility of
hardware problems such as head crashes.

To minimize the impact of hardware problems, ensure that all log archive
disk files are physically located on disk volumes that are not used for the
various database extents. You can back up the log archives yourself to achieve
a higher level of recoverability.

The output disk can be either a standard CMS minidisk or a shared file system
(SFS) directory. If it is a CMS minidisk, the database machine must access it in read
or write mode before you start the application server. If it is an SFS directory, the
database machine must access it before you start the application server.

You might experience delays if you use a remote shared file system (SFS) directory.
If these delays are causing problems with archiving the log, use a lower ARCHPCT
value when starting the application server.

The disk must contain enough space to hold the archived log. You must monitor
the space and erase old log archives to free space if need be, as the database
manager does not check that enough space exists. To calculate the size of the CMS
minidisk or shared file system directory needed to contain the log archives, use
this formula:
(log disk size) x (SLOGCUSH %) x (maximum number of log archives on this disk)

Where:

log disk size
is the size of the log disk used in the units you are using (for example,
4-kilobyte blocks)

SLOGCUSH %
is the value used for the SLOGCUSH parameter of the SQLSTART EXEC.
The default for SLOGCUSH is 90%, so you would use the value .9 if you
did not specify SLOGCUSH when you started the application server.

maximum number of log archives on this disk
is the maximum number of log archives you will store on this CMS
minidisk or shared file system (SFS) directory.

To use the SQLEND LARCHIVE command to create a log archive on disk:
1. Log on to the database machine.
2. Start the application server with LOGMODE=L and TAPEMGR = N. If the

application server is already started and TAPEMGR = Y, issue the operator
command SET TAPEMGR N.

3. Notify the current users that you want to stop the application server (refer to
“Log Archiving to Tape” on page 205).

4. Archive the log and stop the application server by typing the operator
command:

SQLEND LARCHIVE

5. You will see the following message:

Chapter 9. Making Backups and Recovering from Failures 207

|

|
|
|

ARI0239I External labeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 183
ARI0246D The above information describes the log archive
about to be done. Enter either:

CONTINUE to proceed using the output medium
indicated, or

CHANGE to change this medium.

Type CHANGE and press ENTER, or type CONTINUE if you want to direct the log
archive to tape. You will see the following message:
ARI0263D To direct the log archive to tape, enter TAPE followed

by the tape address (CUU) to be used.
To direct the log archive to disk, enter DISK followed
by the disk file's file name, file type, and file mode.
If you chose DISK, the default file is:
SQLMACH3 12099201 ??

6. Type the following and press ENTER:
DISK = = fm

where fm is the file mode of the disk to which you want to write the log
archive and the two equal signs give you the default file name and file type
chosen by the system. In this example, the default file name is SQLMACH3, and
the default file type is 12099201. You can change these by supplying your own
values.

7. Type CONTINUE and press ENTER. When the log is completely archived, the
following message is displayed:
ARI0292I Archive is completed.

Note: You can still enter operator commands while the archive is being created.

Changing the Default Medium: You can avoid having to define your disk each
time you issue an SQLEND LARCHIVE, by using a file definition. To change the
default medium to disk and to archive your log:
1. Log on to the database machine.
2. Issue a FILEDEF command for your log archive file, ARILARC, before you start

the application server. For example:
FILEDEF ARILARC DISK fn ft fm (PERM BLKSIZE 28672

where fn, ft, and fm are the file name, file type, and file mode of your choice.
The file name and file type you specify will not be used by the system, since it
uses defaults of its own. You must only specify them so that the command will
have valid syntax. The file mode you specify will be used by the system to
determine on which disk to write the archive.

Note: After a restore operation, the FILEDEF for ARILARC is inoperative. You
must specify it again by either:
v Issuing the FILEDEF command
v Providing a new file mode. When message ARI0246D appears, type

CHANGE to change the defined medium.

The LRECL and RECFM are automatically set by the log archive utility, and
should not be specified on the FILEDEF. You must specify a BLKSIZE in the
FILEDEF command. The BLKSIZE must be a multiple of 4 kilobytes, up to a
maximum of 28. For optimum performance, follow these guidelines:

208 System Administration

v Format the CMS minidisk that contains the log archive with a block size of
4096.

v Use a block size of 28672 (BLKSIZE 28672) for the log archive file.

For more information on the FILEDEF command, see the VM/ESA: CMS
Command Reference manual for your VM system.

3. Start the application server with LOGMODE=L.
4. Notify the current users that you want to stop the application server (refer to

“Log Archiving to Tape” on page 205).
5. Archive the log and stop the application server by typing the operator

command:
SQLEND LARCHIVE

6. You will see the following message:
ARI0239I External labeling of this archive is:

Type: log archive
Timestamp: 12-09-92 15:02:23

ARI0252I Medium: disk SQLMACH3 12099202 A1
ARI0246D The above information describes the log archive

about to be done. Enter either:
CONTINUE to proceed using the output medium

indicated, or
CHANGE to change this medium.

Notice that “Medium” has changed to disk SQLMACH3 12099202 A1.
7. Type CONTINUE and press ENTER. When the log is completely archived, the

following message is displayed:
ARI0292I Archive is completed.

File Names and File Types Used for Log Archives on Disk: When you direct a
log archive to disk, the name of the application server is used as the file name, and
the date of the log archive as the file type. The date has the format mmddyynn,
where the value nn is the number of the log archive taken on that day: for
example, 01 is the first log archive of the day. (Your system may use a different
format.)

You can change the file name and file type of a log archive file when you enter the
file mode. If you do, you should choose a new file name and/or file type to help
you restore the log archive in the right sequence.

Maintaining Log Archive Disk without Stopping the Application Server: When
you direct log archiving to disk, a new file is created for each log archive. If you
have a continuous operation environment and the log archive files are not removed
to other storage facilities, the disk eventually gets full. If a “disk full” error occurs,
you will not be able to use another user ID to perform maintenance on that disk.
You must shut down the application server, and do the maintenance from the
machine side. Thus you should periodically transfer the log archive files to other
disks to ensure that the disk always has enough space to store another log archive.

You can perform this maintenance through another user ID when the database
manager is running, in one of three ways:
1. Use the shared file system.
2. Transfer files from the disk as follows:

a. Record the disk address of the disk for log archiving before startup, and
wait until you see the messages indicating that the log archive is completed.

Chapter 9. Making Backups and Recovering from Failures 209

b. Issue the CP DETACH command from the DB2 Server for VM operator
console as follows:
#CP DETACH daddr

where daddr is the address of the disk used for log archiving. This disk is
now available for maintenance. Link to the disk and transfer the log archive
files to other disks.

c. When maintenance is complete, release and detach the disk used for log
archiving.

d. Issue the following command from the operator console to link the disk
used for log archiving to its original address with write access mode:
#CP LINK id vdev1 vdev2 W

where id is the user ID to which the disk belongs, vdev1 is the disk address
specified in the system directory, and vdev2 is the original disk address
recorded in step 2a on page 209.

If the operator forgets to relink the disk and uses the same file mode for the
next log archive, a message is displayed to indicate that the device used for
log archiving does not exist. The operator should then issue the CP LINK
command.

Do not detach and make any changes to the work disk (A-disk), service
disk (V-disk), production disk (Q-disk), or other database disks. These disks
are crucial for running the database manager. Use a separate disk to store
the files created by the log archive.

3. This method does not require that the disk used for log archiving be detached
from and relinked to the database machine. The link is kept intact, but the user
doing maintenance on the disk between log archives must link to the disk
using multiple write mode, because the database manager has a write link to
the disk. When you complete the maintenance, release and detach the disk.

In methods 2 and 3 above, the database manager ensures that it is the sole writer
of the disk for log archiving at archive time. If this is not the case, it sends a
message to the operator, and suspends the archive until the situation is corrected.
In method 1, the checking is done by the shared file system.

When a medium for log archiving is decided, the database manager establishes the
links, checking that the medium is a disk. If it detects that other machines have the
disk linked in write mode, it displays a list of user IDs with the write link, and the
address to which they are linked. The operator is prompted to detach all the write
links before proceeding to the log archive, or to quit the link checking and change
the medium for the archive. If too many links to the disk exist, including read-only
and read/write links, some of the read-only links may have to be detached.

Labeling Your Archive Tapes
Because there are different types of archives, and each may require multiple tape
volumes, it is a good idea to label the tapes externally in case you have to restore
the database.

When the database manager prompts the operator to mount the tape to record the
archive, it also displays a message that includes the date, time, and type of archive
(database or log). For example:

210 System Administration

ARI0239I External labeling of this archive is:
Type: log archive
Timestamp: 12-09-92 14:41:00

ARI0252I Medium: tape 183

The timestamp and type of archive provide identifying information about this
archive, and should be written on the external label of each tape reel or cartridge.
The label information is provided by the database manager for the first volume of
the archive. If your archive requires more than one tape volume, add your own
sequential identification to each label (for example, Tape1 of 2, Tape2 of 2).

When the database is restored, the database manager checks if there are any log
archives associated with the database archive. If log archives exist, a list of them is
displayed, and the time and date of each is provided. The information on the
external label can be matched against this list to find the correct tapes to use for
the restore.

Recovery Procedures
A system failure is any failure that causes the database manager to end
abnormally. Such failures could occur because of an abnormal end of the VM
system, or because of error conditions in the database machine.

As long as the current log is available, recovery from system failures is automatic.
Even if you are running the database manager in single user mode (SYSMODE=S)
with no logging (LOGMODE=N), it can recover any committed updates by using
the current log. Restart recovery is performed the next time the application server
is started.

If there is a system failure while you are restoring the database, see “Restarting
from Failure of a Database Restore” on page 215.

Restarting Procedures
To perform restart recovery procedures, the operator starts the application server
with STARTUP set to one of the following values:

W Warm starting with the SQLSTART EXEC

R Restoring from a database manager archive with the SQLSTART EXEC

U Restoring from a user archive with the SQLSTART EXEC

S Adding dbspaces with the SQLADBSP EXEC

E Adding or deleting dbextents with the SQLADBEX EXEC

I Reorganizing the catalog indexes with the SQLCIREO EXEC

M Doing a catalog migration with the ARISMEX EXEC.

For all these settings, the log is checked at startup to see whether the last run of
the database manager left any LUWs in progress. If it did, restart recovery
processing starts and the changes made by those LUWs are backed out. Restart
recovery processing also ensures that changes made by completed LUWs are, in
fact, made.

Chapter 9. Making Backups and Recovering from Failures 211

Restart recovery procedures will not be performed if STARTUP is set to either C
(for database generation with the SQLDBGEN or SQLDBINS EXECs) or L (for log
reformatting or reconfiguration, called a COLDLOG operation, with the SQLLOG
EXEC).

For both of these settings, the database manager does not check the log, and the
LUW recovery processing does not occur.

Restoring the Database
If an unresolvable I/O error occurs on any of the devices that contain the directory
or dbextents, the application server ends abnormally. It may be necessary to
replace the damaged database minidisk and restore the database from the most
recent archive tapes. For more information, see “Replacing a Database Minidisk”
on page 219.

If an unresolvable I/O error occurs on a device that contains a log, it is necessary
to replace the damaged minidisk. For more information, see “Replacing a Log
Minidisk” on page 221.

Selecting the Archive Copy to Use
Locate the last successful archive of the database. If the DASD failure occurred
while the most recent archive was being taken, then the last successful database
archive would be the previous archive copy, not the copy interrupted by the
failure.

If you are restoring from the most recent archive and the log minidisk (or at least
one of the log minidisks in the case of dual logging) is not damaged, do not
perform a COLDLOG before restoring. The current log is required for recovery. In
the case of dual logging, where one damaged log has been replaced, restoring the
database copies the good log to the new log.

If you are using a back-level database archive and LOGMODE had not been set to
L when that archive was taken, or if the minidisks of the log have been changed
(regardless of what LOGMODE was set to), you must run a COLDLOG with the
SQLLOG EXEC to reformat the logs before restoring. For more information, see
“Running the SQLLOG EXEC” on page 229.

You may have to redefine the directory and log disks (or both logs in the case of
dual logging) at the same time due to an I/O error. If you are restoring from a
user archive, perform a COLDLOG to reformat the logs before continuing with the
restore. If you are restoring from an archive produced by database manager
facilities, any attempt to perform a COLDLOG would result in a system error.
Instead of performing the COLDLOG after redefining the database minidisks,
restore the database. The restore will fail when the database manager tries to read
the log. After the restore fails, do a COLDLOG to reformat the logs.

If you are restoring the database by using a database archive and subsequent log
archives (LOGMODE=L), locate all the necessary log archives. If you have log
archives on disk, your database machine must have access to the CMS minidisks
or shared file system directories containing the log archives. If the failure occurred
during the archiving of the log, do not use that final log archive tape. The database
manager will automatically take another log archive when it is started for the
restore.

The steps to be followed to restore your database differ, depending on whether the
database had been archived using database manager or user facilities.

212 System Administration

Restoring from a Database Manager Archive
Start the application server, with STARTUP=R and LOGMODE=A or L to restore
the database using an archive created with database manager facilities. The
database manager prompts the operator to mount the database archive tape, and to
specify on which unit (cuu) the tape is mounted. Unless a CMS FILEDEF
command for ddname ARIARCH with a virtual device address other than TAP1
(181) was submitted before running the SQLSTART EXEC, the archive tape should
be mounted on virtual device 181. The tape is then opened, and the database
directory and dbextents are copied.

The virtual device address for log archives is 183 (unless a FILEDEF command was
issued for ddname ARILARC). Disks that contain log archives must be accessed by
the database machine.

Figure 72 shows an example of doing a startup to restore a database that had been
archived using database manager facilities.

Note: In this example, LOGMODE is set to L because the user normally uses log
archiving.

The SQLSTART EXEC issues these FILEDEF commands for the database and log
archive tapes:

FILEDEF ARIARCH TAP1 SL (BLKSIZE 4096 NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (BLKSIZE 4096 NOCHANGE PERM

You can submit your own FILEDEF commands (to override the defaults) before
running SQLSTART. You should also submit LABELDEF commands.

Do not specify a VOLID parameter for log archiving. Multiple log archive files can
be created on a single run of the database manager. You would want these files to
have different VOLIDs.

If you normally run with LOGMODE=A (no log archiving), you would specify
LOGMODE=A at startup.

Restoring from a User Archive
Shut down the application server, and restore the database using the same user
facilities that created the archive.

Do not restore the database logs. If you accidentally restore the logs, the history
area and all the changes to the database recorded in the log, are lost. The database
manager uses the history area to track which log archives go with which database
archives. The history area must be restored from the backup copy. For more
information, see “History Area” on page 232. To recover from accidentally restoring
the log, do a COLDLOG to reconfigure the logs before proceeding. That is, run the
SQLLOG EXEC without specifying the LOG1 or LOG2 parameters. Respond
CONTINUE to message ARI0688D (for single logging) or ARI6129D (for dual logging).
Respond 1 to message ARI0944D to reconfigure the log. When the application
server is started, the log history area containing the restored database archive can
be restored from the version that existed before the COLDLOG. The restored
history area will contain a record of all log archives that apply to the restored
database, although the log that existed just before the restore will be lost.

SQLSTART DB(server-name) PARM(STARTUP=R,LOGMODE=L)

Figure 72. Starting with STARTUP=R to Restore a Database

Chapter 9. Making Backups and Recovering from Failures 213

After restoring the database directory and dbextents, start the application server
with STARTUP=U and LOGMODE=A or L. The operator is asked whether the user
restore completed successfully. If the answer is yes, then if LOGMODE=A, the
changes in the log are applied to the database; if LOGMODE=L, the database
manager takes an archive of the current log, and then restores the log archive tape
files that are associated with the user archives. If the operator responds that the
user restore was not done, the application server ends, and the operator must take
the necessary action to resolve the problem.

When to Use LOGMODE=A
For both database restores (STARTUP=R) and user restores (STARTUP=U), specify
LOGMODE=A when you start the application server to have the database manager
restore the database without using log archive tape files. When the database is
restored, the database manager applies only the changes in the current log to the
database. (This is the reason you need to do a COLDLOG if you are not using the
most recent database archive, or if you accidentally restored the logs during a user
restore: the log does not apply to the older archive.) After completing the restore,
the database manager runs with LOGMODE=A.

The database manager still checks whether there are any log archives associated
with the database archive. If there are, message ARI0247D is displayed prompting
the operator either to keep LOGMODE=A and restore the database without using
the log archives, or to switch to LOGMODE=L and use the log archives during the
restore. If the decision is made to switch to LOGMODE=L, the database manager
runs as if it had been intended to do the restore with LOGMODE=L all along.

When the restore set is complete, the archive that is restored becomes the database
archive for the current restore set. A restore set consists of a database archive and
the log archives associated with it in the history area -- that is, those log archives
that occurred between the database archive and the next restore or COLDLOG or
change of log mode.

When to Use LOGMODE=L
Specify LOGMODE=L if you want the database to be restored using log archives.
The database manager first restores the database archive and then takes a log
archive if information is in the log that was being used when the system failed or
was shut down immediately prior to the restore. It then restores the log archives
that were taken after the database archive you restored. When the restore is
complete, the database manager runs with LOGMODE=L.

Before restoring the database archive and each log archive, the operator is
prompted to continue, stop the application server, or end the restore. Usually, the
operator responds CONTINUE.

If the operator responds STOP SYSTEM, the application server ends. The next time
the application server is warm-started, it will continue restoring the database using
the next log archive. If it is restarted to do a restore instead of a warm start, it
ignores the first restore, which was stopped, and begins a new one. If it is restarted
with STARTUP=C, the application server does the equivalent of an END RESTORE
(see below) and then a COLDLOG. (All subsequent log archives are no longer
usable.)

The STOP SYSTEM response is used primarily for filtered log recovery. This allows
you to stop the application server in the middle of a restore, change the EXTEND
input file commands used for filtered log recovery, and continue the restore. For

214 System Administration

information about filtered log recovery, see the discussion on starting the
application server to recover from a DBSS error in the DB2 Server for VSE & VM
Diagnosis Guide and Reference manual.

The END RESTORE response is used primarily for ending a restore before
processing a log archive tape that is unusable. A secondary use is to end a restore
before processing a log archive that contains a user error.

Attention: If you end a restore, you may lose the ability to use subsequent log
archives on a future restore.

For example, suppose you have taken a database archive and six subsequent log
archives. If you discover a user error that was recorded in the fourth log archive,
restore the database archive and the first three log archives. Enter END RESTORE
to avoid processing the fourth, fifth, and sixth log archives. When you end the
restore, it may be impossible to restore the database again using the fourth, fifth,
and sixth log archives. This would be unfortunate if you had made a mistake and,
in fact, should have restored the fourth log archive as well. Thus, before you
respond END RESTORE, be sure you have processed the correct number of log
archives.

If a situation like the one above occurs, the only way to recover the lost log
archives is to restore a back-level database archive. The log archives associated
with that database archive must include the ones that were lost. That is, the old
database archive must have continuous log archives to the point of the END
RESTORE. If it does not, you cannot recover the lost logs. For more information,
see “How the Database Manager Uses the History Area” on page 232.

After the restore set is complete, the database archive and log archives that were
just restored become the current restore set, unless the restore ended before all log
archives in the restore set were applied. As a final step, the current log is restored
if it directly followed the restored log archives.

Restoring Log Archives from Disk
If you have any log archives on disk, the database machine must have access to
the minidisks containing these log archives when it begins restoring the database.
The database manager issues the FILEDEF commands needed for the log archives
on disk, and also checks the timestamp for each log archive file to ensure it
matches the timestamp in the history area.

Note: After a restore, the FILEDEF for ARILARC is inoperative. You must specify
the FILEDEF again by either:

v Issuing the FILEDEF command.
v Providing a new file mode. To do this, specify CHANGE for message ARI0246D.

When this message appears, you can change the defined medium.

Restarting from Failure of a Database Restore
Three types of errors can cause a failure of a database restore operation:
1. System failures, such as power interruptions, or operator or equipment errors

that can be corrected. For example, the database manager can end because the
wrong tape volume was mounted or a tape drive malfunctioned.
In these error situations, after taking corrective action, you can restart the
restore process as follows:

Chapter 9. Making Backups and Recovering from Failures 215

v If you have received message ARI0260I (displayed at the beginning of log
recovery), warm-start the application server (STARTUP=W and LOGMODE
set to the value used previously). If you are using LOGMODE=L, the
database manager continues with the log archive file it was processing when
the failure occurred. A warm start saves you processing time for reading and
recovering from database and log (if LOGMODE=L) archive files that have
already been successfully processed.

v If you have not received message ARI0260I (or are unsure whether you have
received it), restart the restore process specifying the same STARTUP and
LOGMODE values you used to initiate the database restore process.

2. A log archive error that can be corrected, or a failure during UNDO/REDO
processing.
To deal with a log error that can be bypassed or corrected, refer to the section
on recovering from DBSS errors in the DB2 Server for VSE & VM Diagnosis
Guide and Reference manual, especially the discussions on UNDO and REDO
processing failures during a restore.

3. A database or log archive input file error that cannot be corrected, such as a
damaged archive tape volume. One of the following situations applies:
v You were using log archiving (LOGMODE=L), and the damaged file is a

database archive.
In this situation, you can reset the database to its current state by using a
previous database archive and the subsequent log archives (if there are any).
You can do this only if the following conditions are met:
– The log archives must be continuous. That is, you have not switched log

modes and have not done a COLDLOG (with the SQLLOG EXEC) since
the previous database archive.

Note: You can switch from LOGMODE=L to A and then back to L again
without breaking the continuity of the log archives, as long as you
do not take a database archive while LOGMODE is set to A. For
example, suppose you accidentally start the application server with
LOGMODE=A instead of L. If you immediately shut down the
application server without taking a database archive, the continuity
of the log archives is preserved.

– You must not have added dbspaces, added dbextents, or reconfigured the
log since the back-level database archive was made. If you have, these
changes are not recorded in the log or the log archives, but are recorded in
the database directory; thus, if you use the back-level database archive
and subsequent log archives to restore the database, the directory will not
be synchronized with the database changes, and the restore will fail.

To reset the database using database manager facilities, restart the application
server and restore the back-level database using STARTUP=R with
LOGMODE set to L. In response to the request to mount the archive tape,
mount the tape created by the previous database manager archive. When the
database archive tape is restored, the operator is prompted for the
subsequent log archives.

To reset the database using user facilities, restore the database using the tape
file from the previous user archive. Then start the application server with
STARTUP=U and LOGMODE=L. The operator is prompted for the
subsequent log archives.

v You were using log archiving (LOGMODE=L), and the damaged file is a log
archive.

216 System Administration

In this situation, the most current level of the database that you can restore
to depends on the last undamaged log archive.
To reset the database, restart the application server with STARTUP=W and
LOGMODE set to L. The database manager tries to continue the restore by
requesting the log archive that had caused the failure. (The database
manager determines where it was interrupted.) Instead of responding
CONTINUE, respond END RESTORE to the prompt in message ARI0250D.

v You were not using log archiving. The damaged tape is a database archive
tape.
Run the SQLLOG EXEC without specifying the LOG1 and LOG2 parameters
to reformat the logs. Respond CONTINUE to message ARI0688D (for single
logging) or ARI6129D (for dual logging), then respond 0 to message
ARI0944D to reformat the log minidisk (or minidisks). Then restart the
restore process using a previous database archive tape.

Note: This previous database archive must have been created by an
SQLEND ARCHIVE, SQLEND UARCHIVE, or ARCHIVE command
known to have been issued when no application program was
accessing the database.

In these situations, all changes made to the database since the
database archive was taken are lost. You can reset the database to the
consistent state that existed when that database archive tape file was
created.

v The log history area was invalid and recovery from the ARIHSDS ARCHIVE
failed.
Run the SQLLOG EXEC without specifying the LOG1 and LOG2 parameters
to reconfigure the logs. Respond CONTINUE to message ARI0688D (for single
logging) or ARI6129D (for dual logging), then respond 1 to message
ARI0944D to reconfigure the log minidisk (or minidisks). Then restart the
restore process.
In these situations, all changes made to the database since the database
archive was taken are lost. You can reset the database to the consistent state
that existed when that database archive tape file was created.

Restarting from a System Failure While Archiving
The procedure to recover from a system failure that occurs when the database
manager is taking either a log or database archive is essentially the same as any
other restart. Because it did not finish, however, the archive that was being written
at the time of the failure cannot be used.

Restart the application server with STARTUP=W. If LOGMODE had been set to A
or L, specify the same value; if LOGMODE had been set to Y, specify
LOGMODE=A.

If the archive in-process had been an automatic archive (started by ARCHPCT),
another automatic archive will be initiated immediately when the application
server is started again. If it had been started by an ARCHIVE, LARCHIVE,
SQLEND ARCHIVE, or SQLEND LARCHIVE command, you must reissue the
command when restarting the application server. If it had been an implicit log
archive created by issuing SQLEND UARCHIVE with LOGMODE set to L, reissue
the SQLEND UARCHIVE command after restarting the application server with
LOGMODE=L.

Chapter 9. Making Backups and Recovering from Failures 217

Restarting from Failure of a Database Generation or
COLDLOG Operation

If a system failure occurs during database generation or COLDLOG processing,
restart the operation (by reissuing the SQLDBINS, SQLDBGEN, or SQLLOG EXEC)
after correcting the cause of the failure.

In some cases, storage may need to be reclaimed before continuing processing. For
example, an LUW is processing a DROP TABLE statement, a checkpoint is taken
during this processing, and a COLDLOG operation immediately follows. If a
media failure occurred before the COLDLOG, there is a possibility of rows from
the dropped table still existing. However, the entry in the SYSTEM.SYSDROP
catalog table no longer exists. To reclaim this storage, the dbspace containing this
“dropped” table must be dropped before continuing processing.

Relocating the Database Manager
You can use three ways to move the database manager between system DASD:
v Use DASD Dump Restore (DDR) to move the database manager. With this

method, all minidisks must retain the same size and device type. For more
information, see “Replacing a Minidisk Using DASD Dump Restore”.

v Use the Data Facility Storage Management Subsystem (DFSMS/VM*) to move
the database manager. For more information, see the DFSMS/VM RMS User’s
Guide and Reference.

v Archive the database on the original system and restore it on the new system.
For more information, see “Replacing a Database Minidisk” on page 219.

Replacing a Minidisk Using DASD Dump Restore
You can use the DASD dump restore (DDR) utility to replace minidisks only if
there are no errors on the DASD and you keep the device type, size and virtual
address the same as the original minidisk. To change any of these characteristics or
recover from a DASD error, follow the procedure in “Replacing a Database
Minidisk” on page 219, or “Reconfiguring and Reformatting the Logs” on page 228.

You may want to replace a minidisk either to balance your DASD workload, or to
remove all data from a device. To replace it, do the following:
1. Take an archive of the database.
2. Update the MDISK control statements for the affected minidisks in the VM

directory entry for the database virtual machine. Alter the original minidisks to
different virtual device addresses, and add the new minidisks using the original
virtual device addresses. Write down the original and new addresses as you
will need them later. The new minidisks must be the same size and device type
as the original ones.

3. Log on to the database virtual machine, and IPL (initial program load) CMS.
4. Do the following for each replaced minidisk:

a. Issue the following CP command to make the original minidisk
read-accessible to the virtual machine:

LINK * cuu1 cuu2 R

where:
v the * assumes that the minidisk is defined in the VM directory for this

virtual machine.

218 System Administration

v the cuu1 is the virtual device address as specified with the MDISK
statement.

v the cuu2 is usually the same as cuu1.
v the R indicates that read mode access is required for this minidisk.

b. Issue the following CP command to give the virtual machine write access to
the new minidisk:

LINK * cuu3 cuu4 W

where:
v the * assumes that the minidisk is defined in the VM directory for this

virtual machine.
v the cuu3 is the virtual device address as specified with the MDISK

statement.
v the cuu4 is usually the same as cuu1.
v the W indicates that write mode access is required for this minidisk.

c. Issue the following command to copy the minidisk using the DDR utility:
DDR

The DDR utility prompts you for your instruction statements. Enter the
information that you wrote down from the MDISK statements for the input
and output devices, CONS for the printer and copy the original minidisk to
the new one, as shown below.

SYSPRINT CONS
INPUT cuu2 type
OUTPUT cuu4 type
COPY ALL

where:
v the cuu2 and cuu4 are the second virtual device addresses specified in the

link commands issued earlier.
v the type is the device type as specified with the MDISK statement.

Respond YES to the prompts about the labels on the minidisks.

Attention: Be sure that you are accessing the correct minidisks before you
respond YES to the label prompts.

d. Issue the following command to detach the original minidisk:
DETACH cuu2

where cuu2 is the virtual device address as specified on the LINK command
and INPUT statement.

5. Update the MDISK statements for the affected minidisks in the VM directory
entry for the database machine. Remove the MDISK statements for the original
minidisks.

Replacing a Database Minidisk
This section describes how to replace a database directory (ddname BDISK)
minidisk or dbextent (ddname DDSKn) minidisk. You can replace directory or
dbextent minidisks only if you have been archiving your database.

You may want to replace a database minidisk because:
v The minidisk is damaged because of an unrecoverable DASD error.

Chapter 9. Making Backups and Recovering from Failures 219

You may need to replace the directory or database minidisks, because one or
both were damaged. In this situation, if you are running with dual logging and
only one of the logs is damaged, replace the directory or database minidisks
first by following the steps below. Then replace the log minidisk by following
the procedures in “Log Reconfiguration” on page 228. Finally, restore the
database by following the procedures in “Replacing a Log Minidisk” on
page 221.

v You want to move your minidisks to a different device type.
If you are replacing all the database minidisks (as you might when moving the
database to a different device type), replace the log minidisks first. Follow the
procedures in “Log Reconfiguration” on page 228.

v You want to balance your DASD workload.
Use the instructions below if you are moving the directory or database
minidisks. If you are moving your logs, refer to “Log Reconfiguration” on
page 228.

To replace directory or database minidisks, do the following:
1. Create a database manager archive of the database. For more information, see

“Archiving Procedures” on page 199. The archive is required for the steps
below.

2. Write down the name of the application server and the ddnames of the database
minidisks being replaced. These will be required in the steps below.

3. Update the MDISK control statements for the affected database minidisks in the
VM directory entry for the database virtual machine. Figure 88 on page 283
describes the MDISK control statements for database minidisks. You must not
change the virtual device addresses for the MDISK statements that are updated.
Note the virtual addresses of the minidisks being replaced (for use below). You
must ensure that the minidisks are either same size or larger than the old
minidisks. If you are replacing the minidisk with one on the same device type,
define the same number of cylinders or blocks.
If you are replacing the minidisk with one on a different device type, you
should define the new minidisk to be slightly larger than the old. Because of
rounding that occurs in the space allocation algorithms, it is nearly impossible
to define minidisks on two different device types so that the database manager
considers them to be equal. If you define the new minidisk so that it is close to
the same size as the old one, the restore can fail because of lack of space. When
you do the restore (in a later step), the database manager uses the space it
needs and ignores the rest. It will not use the blocks on the new minidisk that
exceed the number of blocks on the old minidisk. For help in estimating the
equivalent sizes of minidisks on various devices, refer to “Determining
Equivalent Minidisk Sizes on Different Device Types” on page 428.

4. Log on to the database virtual machine and do an IPL of CMS.
5. Use the CMS QUERY DISK command to obtain a disk access letter not

currently in use. (If you have no disk accessed as C, note this for use below).
6. Do the following for each replaced database minidisk:

a. Issue the following CP command to give the virtual machine write access to
the minidisk:

LINK * cuu1 cuu2 W

v The * assumes that the minidisk is defined in the VM directory entry for
this virtual machine.

v The cuu1 and cuu2 should both be the virtual device address as specified
with the MDISK statement (in step 3); that is cuu1=cuu2.

220 System Administration

v The W indicates that write mode access is required for this minidisk.
b. Issue the following CMS command to initialize and label the minidisk:

FORMAT cuu1 access-letter (BLKSIZE size

v The cuu1 is the virtual device address you used on the CP LINK
command above.

v The access-letter is the disk access letter you obtained in step 5 on
page 220.

v The size is 512 if the minidisk is the database directory file. Otherwise,
specify 4096.

v The FORMAT command prompts you whether to erase all files on the
minidisk. Reply YES.
Attention: Be sure that you are accessing the correct minidisk before
you respond YES to the FORMAT prompt.

v The FORMAT command prompts you for the minidisk volume label (disk
label). Enter any valid volume label value. Because FILEDEF ddnames are
limited to 8 characters, and minidisk volume labels are limited to 6
characters, the database manager uses the following conventions for the
minidisk labels:
– BDISK for the database directory minidisk
– DDKn for dbextent minidisks (n is the nth dbextent).

v Issue the following CMS commands to allocate the minidisk as a block
I/O file:

RESERVE filename filetype filemode

– For filename, use the RESID.
– For filetype, use the FILEDEF ddname of the file, where the ddname is

as follows:
- BDISK for the database directory minidisk
- DDSKn for dbextent minidisks (n is the nth dbextent).

– For filemode, use the access-letter that you entered above for the CMS
FORMAT command.

– The RESERVE command prompts you whether to erase all files on the
minidisk. Reply YES. Be sure that you have specified the file mode
letter that matches the CMS FORMAT command.

v Issue the following CMS command to release the minidisk:
RELEASE cuu1

The cuu1 is the virtual device address that you previously specified on
the LINK and FORMAT commands.

7. Restore the database archive taken in substep 1 on page 220. For more
information, see “Restoring the Database” on page 212.

Replacing a Log Minidisk
If you are relocating the log disks to another device because of disk migration or to
control device utilization, and the target log disk is the identical device type and
size as the source log disk and the source log disk is not damaged, you can use the
SQLCDBEX EXEC to move the log disk. See “Moving Log Disks” on page 170 for
more information.

This section describes how to replace a log minidisk (ddname LOG1 or LOG2). You
would replace a log minidisk if:
1. The minidisk is damaged by an unrecoverable DASD error.

Chapter 9. Making Backups and Recovering from Failures 221

2. You want to change the size of your logs.
3. You want to move your minidisks to a different device type.

To replace log minidisks:
1. If you are replacing the only log (for single logging) or both logs (for dual

logging), take a database archive if you are running with LOGMODE=A or L,
because the contents of the log, including the history area, will be lost. If you
are dual logging and you are only replacing one log, the archive is not lost.

2. Update the MDISK control statements for the log minidisks in the VM directory
entry for the database machine. For a description of these statements, see
Figure 88 on page 283.

3. If you are replacing the only log (for single logging) or both logs (for dual
logging), follow the procedures on “Log Reconfiguration” on page 228.

4. If dual logging and you are only replacing one log, do the following for the
replaced log:
a. Use the CMS QUERY DISK command to obtain a disk access letter not

currently in use.
b. Issue the following CP command to give the virtual machine write access to

the minidisk:
LINK * cuu1 cuu2 W

v The * assumes that the minidisk is defined in the VM directory entry for
this virtual machine.

v The cuu1 and cuu2 should both be the virtual device address as specified
with the MDISK statement (in step 3 on page 220); that is cuu1=cuu2.

v The W indicates that write mode access is required for this minidisk.
c. Issue the following CMS command to initialize and label the minidisk

FORMAT cuu1 access-letter (BLKSIZE 4096

v The cuu1 is the virtual device address you used on the CP link command
above.

v The access-letter is the disk access letter you obtained in 4a.
v The FORMAT command prompts you whether to erase all files on the

minidisk. Reply YES.
Attention: Be sure that you are accessing the correct minidisk before
you respond YES to the FORMAT prompt.

v The FORMAT command prompts you for the minidisk volume label (disk
label). Use LDISK1 for the first log minidisk, or LDISK2 for the second
log minidisk.

d. Issue the following CMS command to allocate the minidisk as a block I/O
file:

RESERVE filename filetype filemode

v For filename, use the RESID.
v For filetype, use LOGDSK1 for the first log minidisk or LOGDSK2 for the

second log minidisk.
v For filemode, use the access-letter that you entered above for the CMS

FORMAT command.
v The RESERVE command prompts you whether to erase all files on the

minidisk. Reply YES. Be sure that you have specified the file mode letter
that matches the CMS FORMAT command.

e. Issue the following CMS command to release the minidisk:
RELEASE cuu1

222 System Administration

The cuu1 is the virtual device address that you previously specified on the
LINK and FORMAT commands.

Recovering to a Secondary System
To be able to recover in cases where the original database minidisks are not
available (for example, in an offsite disaster recovery situation), you should make a
copy of the ARIHSDS ARCHIVE file from the application server’s A-disk after
every log archive or database archive. You would then recover to a secondary
system. The secondary system must have the same dbextent configuration and
number of logs as the original system.

If you have been running with LOGMODE=A and need to recover to a secondary
system, do a COLDLOG RECONFIGURE to initialize the log (see “Log
Reconfiguration” on page 228). Then restore the most recent archive on the
secondary system.

If you have been running with LOGMODE=L and need to recover to a secondary
system:
1. Do a COLDLOG RECONFIGURE to initialize the log (see “Log

Reconfiguration” on page 228).
2. Replace both the ARIHSDS ARCHIVE and ARIHSDS PRECLDLG files on the

secondary server’s A-disk with the ARIHSDS ARCHIVE file you copied after
the latest database or log archive of the original system.

3. Restore the most recent archive on the secondary system.

Chapter 9. Making Backups and Recovering from Failures 223

224 System Administration

Chapter 10. Special Topics in Recovery Design

This chapter describes how to switch log modes, how to use dual logging, how to
reconfigure and reformat the logs, and how to use nonrecoverable storage pools.

Switching Log Modes
In general, you should not switch indiscriminately between log modes Y, N, L, and
A: pick one mode and stick to it. However, switching to another mode may at
times be required. (See “Choosing a Log Mode” on page 196 for description of log
modes.)

From LOGMODE=A
To switch to LOGMODE=Y or N:
1. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive (using your
own facilities).

2. Start the application server with STARTUP=L and LOGMODE=Y to perform a
COLDLOG to reformat the log.

3. Run the SQLLOG EXEC, omitting the LOG1 and LOG2 parameters, to reformat
the logs. Respond CONTINUE to message ARI0688D (for single logging) or
ARI6129D (for dual logging). Respond 0 to message ARI0944D to reformat the
log minidisks. For more information, see “Running the SQLLOG EXEC” on
page 229.

4. Start the application server with STARTUP=W and LOGMODE=Y or N.

To switch to LOGMODE=L:
1. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive. In either case,
this database archive serves as the starting point for subsequent log archives.
You do not have to take this database archive under either of the following two
conditions:
v You have already taken one, and have been running with LOGMODE=A

since that archive.
v You have done a restore that finished without interruption, and have done

nothing to break the continuity of the restore set. (For information on how
the continuity of the restore set can be broken, see “History Area” on
page 232.)

In either of these situations, the database archive you took (or restored) is in
the current restore set.

2. Start the application server with STARTUP=W and LOGMODE=L.

From LOGMODE=L
To switch to LOGMODE=Y or N:

© Copyright IBM Corp. 1987, 2001 225

1. Shut down the application server by issuing an SQLEND LARCHIVE operator
command to save the log.

2. Run the SQLLOG EXEC, omitting the LOG1 and LOG2 parameters, to reformat
the logs. Respond CONTINUE to message ARI0688D (for single logging) or
ARI6129D (for dual logging). Respond 0 to message ARI0944D to reformat the
log minidisks. For more information, see “Running the SQLLOG EXEC” on
page 229.

3. Start the application server with STARTUP=W and LOGMODE=Y or N.

To switch to LOGMODE=A:
1. Shut down the application server by issuing an SQLEND LARCHIVE operator

command to save the log.
2. Start the application server with STARTUP=W and LOGMODE=A.

You will be warned that the continuity of the log archives will be broken.

Switching the log mode when you have been using log archiving will interrupt the
continuity of the log archives, unless all you do is switch from LOGMODE=L to A
and then back again without taking a database archive. (This protects you from
losing a sequence of log archives if you accidentally set LOGMODE to A.) If the
continuity is broken and work is done on the database, you will not be able to
restore the database to its current level by using database and log archives taken
prior to the break. Figure 73 shows this situation:

In the above diagram:
v D is the current database status.
v If you use the database archive taken at A and subsequent log archives, you can

restore the database only to point B. All changes between points B and D are
lost.

v If you use the database archive taken at C and subsequent log archives, you can
restore the database to point D.

From LOGMODE=Y or N
To switch to LOGMODE=A:
1. Start the application server with STARTUP=W, LOGMODE=Y, and

SYSMODE=M.
2. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the

Database
Archive

Log
Archive

Log
Archive

Log
Archive

Database
Archive

Log
Archive

Log
Archive

LOGMODE=A,Y,N

A B C D

(LOGMODE=L) (Switch LOGMODE) (Switch back to LOGMODE=L)

Figure 73. Log Archive Continuity

226 System Administration

application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive (using your
own facilities).

3. Start the application server with STARTUP=W and LOGMODE=A.

To switch to LOGMODE=L:
1. Start the application server with STARTUP=W, LOGMODE=Y, and

SYSMODE=M.
2. Issue either an SQLEND ARCHIVE or an SQLEND UARCHIVE command.

With SQLEND ARCHIVE, a database archive is automatically taken, then the
application server shuts down; with SQLEND UARCHIVE, the application
server shuts down immediately, then you take the user archive.
The continuity of the log archives will have been interrupted by any work that
was done while LOGMODE was set to Y or N, so you must take a new
database archive. This database archive will serve as the starting point for
subsequent log archives.

3. Start the application server with STARTUP=W and LOGMODE=L.

Using Dual Logging
The dual logging option (initialization parameter DUALLOG=Y) protects the
database in case of a DASD failure on the log disk. With single logging, any I/O
error on the log minidisk causes the database manager to end. With dual logging,
database updates are recorded in two log minidisks. This reduces the risk of losing
the log, as an unrecoverable error is unlikely to occur on both log minidisks at the
same time. The database manager continues running as long as it can read and
write from one of the log minidisks.

Chapter 2. Planning for Database Generation describes how to generate a database
with either single or dual logging. It also covers various log considerations such as
log size and log placement.

To switch between single and dual logging, use the SQLLOG EXEC. For more
information, see “Reconfiguring and Reformatting the Logs” on page 228.

Using the VM DUPLEX Command
Database availability and performance can be improved by making use of the VM
Dual Copy function. This function allows two devices attached to the same 3990
Model 3 device to operate in duplex mode. This means that all data written to the
primary device is also written to the secondary device. The VM DUPLEX
command performs the duplex control operations.

Duplexing the log provides the same benefits as dual logging, but with better
performance because it is handled by the operating system. You can also duplex
the entire database to provide additional benefits. However, to be effective, all
directory disks and dbextents must be duplexed.

Note: If the DUPLEX command is used, the PACE parameter is important to
ensure continuous database activity during recovery. The PACE parameter
indicates the rate at which synchronization of the two volumes is to take
place.

Chapter 10. Special Topics in Recovery Design 227

For more information on the Dual Copy function, see the IBM 3990 Storage Control
Planning, Installation, and Storage Administration Guide manual. For more
information on the DUPLEX command, see the VM/ESA: CP Command and Utility
Reference manual.

Reconfiguring and Reformatting the Logs
During the life of a database, you may occasionally need to change the physical
configuration of the logs. You can use SQLCDBEX to move the logs. See “Moving
Log Disks” on page 170 for more information. At other times, you will need to
reset the contents of the log logically. This is referred to as log reformatting and is
required, for example, when you switch from LOGMODE=A or L to LOGMODE=Y
or N.

log reconfiguration and reformatting

In this section, the term log reconfiguration means that the history area has
been erased. Log reformatting means that history area has not been erased.
Both erase the current database updates saved in the log.

The operation that performs both log reconfiguration and log reformatting is called
a COLDLOG. To do a COLDLOG, run the IBM-supplied SQLLOG EXEC, For more
information, see “Running the SQLLOG EXEC” on page 229.

Log Reconfiguration
You must reconfigure the logs if you do any of the following.
v Change the size of your logs or switch to a different device type
v Change the location of one log (for single logging) or both logs (for dual

logging). You may be able to use the SQLCDBEX exec to move the log, and if so,
a COLDLOG is not necessary. See “Moving Log Disks” on page 170 for more
information.

v Switch from single logging to dual logging. If your source log disk is
undamaged, and the target disk is the identical type and size, SQLCDBEX can
be used to copy the log and preserve its contents.

To reconfigure the logs:
1. Take a database archive if you are running with LOGMODE=A or L, because

the contents of the log (including the history area) will be erased.
2. Update the MDISK control statements for the log minidisks in the VM directory

entry for the database virtual machine. For a description of these statements,
see Figure 88 on page 283.

3. Start the SQLLOG EXEC. For information, see “Running the SQLLOG EXEC”
on page 229.

If you are using archiving (LOGMODE=A or L), you must create a new database
archive immediately after running the SQLLOG EXEC. This ensures that the
archive copy of the database correctly reflects the size of the logs and whether or
not dual logging is in effect. Since the SQLLOG EXEC changes the LOGMODE to
Y, you cannot set LOGMODE to L or A until you have taken a database archive. To
create the new archive:
1. Start the application server in multiple user mode, and specify LOGMODE=Y,

STARTUP=W, and SYSMODE=M (both are defaults) on the SQLSTART EXEC.

228 System Administration

2. When startup is complete, enter the SQLEND ARCHIVE or SQLEND
UARCHIVE command. If you issue SQLEND UARCHIVE, take a user archive
when the application server is shut down.

3. Start the application server with your normal LOGMODE.

Log Reformatting
You must reformat the logs if you do any of the following:
v When you switch from LOGMODE=A or L to Y or N.
v When you cannot do a warm start because of a logical error in the current log
v When you want to avoid log recovery in restoring a database from a back-level

database archive.
v When you switch from dual logging to single logging.

To reformat the logs:
1. Take an archive if you are running with LOGMODE=A or L, because the

contents of the log will be erased (but not the history area). If you are
switching from LOGMODE=L to Y or N, you can take either a log archive or a
database archive. If you are switching from dual logging to single logging and
you use LOGMODE=L, you can take a log archive. For other log reformatting
situations, take a database archive.

2. Start the SQLLOG EXEC. For information, see “Running the SQLLOG EXEC”.

Running the SQLLOG EXEC
The SQLLOG EXEC begins the COLDLOG operation by starting the application
server (with the SQLSTART EXEC) in single user mode (SYSMODE=S) with
STARTUP=L, LOGMODE=Y, and DUALLOG=Y (if two logs are defined) or
DUALLOG=N (if one log is defined).

This EXEC resides on the service minidisk (V-disk); it can be run only from a
database machine. Its format is:

Dbname(server_name)
The server_name variable identifies the application server.

dcssID(id)
Specify this parameter only if you have created discontiguous saved segments
for the DB2 Server for VM code and want to use them; otherwise omit it. You
can specify ID instead of DCSSID; no other abbreviation is valid. For
information about starting the application server to use a saved segment, see
“Chapter 8. Saved Segments” on page 171.

AMODE(nn)
This parameter is optional. It specifies the type of addressing the database
manager runs in.

�� SQLLOG Dbname(server_name)
dcssID(id) AMODE(nn) LOG1(cuu1)

LOG2(cuu2)

��

Chapter 10. Special Topics in Recovery Design 229

The AMODE(24) option only needs to be specified when user-written exits do
not support 31-bit addressing. In this case, AMODE(24) must be specified
when running the SQLLOG EXEC. For a description of this parameter, see
“AMODE” on page 55.

LOG1(cuu1)
This parameter must be specified if you are reconfiguring the logs and not just
reformatting them. cuu1 is the virtual device address of your first log minidisk
(ddname LOGDSK1).

LOG2(cuu2)
This parameter must be specified if you are reconfiguring the logs (not just
reformatting them) and want dual logging. Omit it if you want only single
logging. cuu2 is the virtual device address of your second log minidisk
(ddname LOGDSK2).

Notes:
1. Specifying LOG2 and omitting LOG1 is an error condition.
2. Specifying LOG1 and omitting LOG2 causes the deletion of any entry in the

database resid SQLFDEF CMS file for a second log minidisk (LOGDSK2), and
causes the application server to be started with DUALLOG=N (single logging).

3. If both LOG1 and LOG2 are omitted, the log minidisk entries in the database
resid SQLFDEF CMS file determine whether the COLDLOG operation is started
with DUALLOG=N or Y.

4. The LOG1 cuu1 value replaces the virtual device address of the first log
minidisk entries in the resid SQLFDEF CMS file.

5. The LOG2 cuu2 value replaces the virtual device address of the second log
minidisk entries in the resid SQLFDEF CMS file if entries are present, or adds
the appropriate entries if none yet exist.

6. Message ARI2010I is issued if an abnormal end occurred the last time the
application server was stopped. In this case, the log or logs are required for a
warm start of the application server.

7. The SQLLOG EXEC prompts you to either reformat or reconfigure the log
minidisks. Reformatting the log erases only the log data. The history data is
saved. Reconfiguring the log erases both the log data and the history data. (For
more information, see “History Area” on page 232.)
Respond CONTINUE to message ARI0688D (for single logging) or ARI6129D (for
dual logging). Respond 0 to message ARI0944D to reformat the log, or 1 to
reconfigure the log.
Respond 1 to message ARI0944D only if:
v You are moving the logs to a new minidisk. Do this even if you are using

dual logging but are only moving one log.
v You are changing the size of the log. (If you use dual logging, you must

increase the size of both logs, as their sizes must always be identical.)
v You are adding a log (switching from single logging to dual logging). In this

situation, respond 1 (YES) to reconfigure both the log that you are adding
and the one that already exists.

Attention: Be sure that you are accessing the correct minidisk before you
respond 1 to message ARI0944D to reconfigure the log minidisk.

8. If the SQLLOG EXEC (or the database manager itself, during the COLDLOG)
ends with an error, rerun it after correcting the error condition.

230 System Administration

For example, suppose you are using database archiving (LOGMODE=A) and dual
logging. Your userid is USER1. Another user of the database, USER2, has
committed a LUW that made many erroneous updates to the database, and you
want to restore the database from a back-level database archive copy. To avoid the
log recovery processing that this would entail, you decide to reformat the logs:
1. Take a database archive in case anything goes wrong:

SQLEND ARCHIVE DVERIFY

2. Reformat the logs of the database (USER1DB):
SQLLOG DB(USER1DB)

3. Respond 0 to message ARI0944D to reformat the log minidisks.

Now suppose that USER2 makes many changes to the database and consistently
causes the database manager to take online archives because the log has been
filled. You decide to increase the size of the logs:
1. Issue an SQLEND ARCHIVE DVERIFY command, knowing that the history

area is going to be erased.
2. Update the MDISK directory entries for the log minidisks, which are defined at

virtual device addresses 502 and 503.
3. Start SQLLOG to reconfigure the logs:

SQLLOG DB(USER1DB) LOG1(502) LOG2(503)

4. Respond 1 to message ARI0944D to reconfigure the log minidisks because the
physical size of the logs has been altered. Reconfiguring the logs allows the
database manager to use the additional space.

Now suppose that USER2 has added so much data to the database that you must
add more dbextents to the database. Unfortunately, your computer center does not
allow use of any more DASD space. You therefore decide to switch to single
logging temporarily and use the freed DASD space for another dbextent. To reduce
the risk of DASD failure on the remaining log, you switch to log archiving and
take frequent log archives:
1. Take a database archive because you are switching to single logging mode:

SQLEND ARCHIVE DVERIFY

2. Delete the MDISK directory entry for the 503 minidisk, but do not change the
entry for the 502 minidisk.

3. Issue the SQLLOG EXEC to change to single logging:
SQLLOG DB(USER1DB) LOG1(502)

4. Respond 0 to message ARI0944D to reformat the log minidisks, so that the
history area is preserved. Even though this is a log reconfiguration, there is no
need to FORMAT and RESERVE the remaining log minidisk, as you have not
increased the size of the remaining log or moved it.

Switching Log Data between Logs
If you are recovering using dual logging, and the primary log does not contain
readable data, the database manager automatically switches to the secondary log. If
the primary log can be read but it is corrupt, follow these steps to recover using
the data on the secondary log:
1. Replace the primary log disk by following the procedures in “Replacing a Log

Minidisk” on page 221. This uses the CMS FORMAT and RESERVE commands
on the minidisk containing the primary log.

2. Warm start the application server.

Chapter 10. Special Topics in Recovery Design 231

This will cause it to compare the two logs, and copy the contents of the
secondary log onto the primary log minidisk.

If this procedure fails to recover the database, you must restore it from the last
database archive, or do a COLDLOG operation to reformat the logs.

History Area

The distinction between a log reconfiguration and log reformatting is the effect
each has on an internally used portion of the log known as the history area. This is
a portion of the log that the database manager uses to keep track of recovery
events such as database archives, log archives, restores, COLDLOGs, and the
switching of log modes. Log reconfiguration causes the history area to be erased;
log reformatting does not.

If the history area is erased, the database manager cannot tell which log archives
belong with which database archives, or if the continuity of log archiving was
broken. In fact, it cannot tell whether you were using log archiving at all, so the
database manager cannot allow you to restore the database using a database
archive and subsequent log archives.

As the final step in a database, user, or log archive, the database manager archives
the newly updated history area into the archive file ARIHSDS ARCHIVE on the
database machine work disk. This copy will be used to restore the history area in
the event that it is corrupted. This reduces the risk of not being able to do a restore
using log archives because of an unrecoverable error in the history area.

Before doing a log reconfiguration, the database manager saves the history area in
file ARIHSDS PRECLDLG on its work disk. If a restore is done immediately after a
log reconfiguration (meaning that the new history area is empty), this old history
area will automatically be restored. This area may also be used for restoring
back-level databases: if the database to be restored is found here, not in the current
history area, you may choose to restore the old area to the current log. If you do
so, associated log archives may be applied because they will now be found in the
log’s history area. Note that, because the old history area is restored to the log, no
records of any archives taken after the COLDLOG reconfiguration will be
available.

You can always restore the database from a back-level or a current database
archive. But if the history area is erased, you lose the ability to restore the database
using any log archive taken prior to this erasure. Also, if the database archive was
taken online (with the ARCHIVE command), the database could be restored to an
inconsistent state. For example, a LUW could have made changes before the
archive was taken, and then be rolled back after the archive finished. When the
database archive is restored, the changes made before the archive was taken are in
the database, but any changes made after the archive will be lost.

Whenever a log minidisk is reconfigured, by you directly or by the SQLLOG
EXEC, the history area is lost. (The SQLLOG EXEC always prompts you with
message ARI0944D before erasing the history area.)

How the Database Manager Uses the History Area
The following description is not intended to be comprehensive; it only provides
general background information about log archive recovery processes using the
history area.

232 System Administration

To display the history area, issue the operator command SHOW LOGHIST. For a
discussion of this command, see the DB2 Server for VSE & VM Operation manual.

Suppose that you take a database archive (using either database manager or user
facilities), followed by four log archives. The history area of the log would contain
one record for each of these events:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4

The records in the history area itself would be in an internal (unreadable) format.
For ease of description, the records of the history area are shown in an externalized
form.

If you now request another database archive, then because the database manager is
running with LOGMODE=L, it first takes another log archive of the current log
(Log Archive 5 in the example below). If you then take three subsequent log
archives the history area would contain the following records:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8

When you take an archive, the database manager generates identification
information based on the processor’s time-of-day clock. When you restore the
database, the database manager reads this information in the database archive tape
file before it looks at the history area.

During a restore, you may be requested to take a log archive of the current log to
save the changes up to the point of the restore. When you restore the database
from the restore set containing this log archive (and actually restore the log
archive), it is erased from the log history’s restore set because it is put back into
the current log.

When the database manager identifies the database archive tape that is being
restored, it writes a record in the history area to indicate that a restore is being
done. Next it looks for the corresponding database archive record in the history
area.

For example, suppose you start the application server with STARTUP=R, and
mount the Database Archive 2 tape file. The database manager looks for the
corresponding record in the history area (by searching in reverse chronological
order, from the most recent to the least recent entries). When it finds it, it
determines the log archives associated with the database archive by reading
forward in the history area until the RESTORE record is reached. Log Archive 9 is
taken before the restore set is determined. This set of records is referred to as the
restore set.

Read back to the Read forward to
Database Archive identify associated

Write a RESTORE record: Record: log records:

Chapter 10. Special Topics in Recovery Design 233

Database Archive 1 Database Archive 1 Database Archive 1
Log Archive 1 Log Archive 1 Log Archive 1
Log Archive 2 Log Archive 2 Log Archive 2
Log Archive 3 Log Archive 3 Log Archive 3
Log Archive 4 Log Archive 4 Log Archive 4
Log Archive 5 Log Archive 5 Log Archive 5
Database Archive 2 Database Archive 2 <--- Database Archive 2 <---
Log Archive 6 Log Archive 6 Log Archive 6 <---
Log Archive 7 Log Archive 7 Log Archive 7 <---
Log Archive 8 Log Archive 8 Log Archive 8 <---
Log Archive 9 Log Archive 9 Log Archive 9 <---
RESTORE RESTORE RESTORE

The database manager copies the restore set records after the RESTORE record:
Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2 <---
Log Archive 6 <--- Restore set
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---
RESTORE
Database Archive 2 <---
Log Archive 6 <--- Restore set copied forward
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---

The database manager then displays the restore set to the console using messages.
If you restore all the log archives associated with the database archive, the history
area remains as shown above, except that Log Archive 9 is erased from the restore
set copied forward when it is restored to the current log. If you respond END
RESTORE to one of the prompts, the database manager deletes the remaining log
archive records from the history area. For example, suppose you respond END
RESTORE after only two of the log archives are processed. The final two log
archives in the history area are deleted:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3
Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8
Log Archive 9
RESTORE
Database Archive 2
Log Archive 6 <--- Only two log archives are restored
Log Archive 7 <---

After the restore is ended, processing continues and two more log archives are
taken. Now the history area looks like this:

Database Archive 1
Log Archive 1
Log Archive 2
Log Archive 3

234 System Administration

Log Archive 4
Log Archive 5
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 8
Log Archive 9
RESTORE
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 10 <--- New log archives
Log Archive 11 <---

If you must again restore the database and use Database Archive 2, the restore set
will contain Log Archives 6, 7, 10, and 11. Because the database manager
determines the restore set by scanning backwards in the history area until it finds a
corresponding database archive record, the original Database Archive 2 record (the
one before the RESTORE) is never reached. Consequently, it is impossible to use
Log Archive 8 or 9 when restoring the database from Database Archive 2.

The only way to restore Log Archive 8 or 9 after you responded END RESTORE is
to restore from a back-level database archive. This archive must have continuous
log archives to the log archive you want to restore.

In our example, to restore the database to its status immediately before the restore,
start the application server to do a restore, and restore Database Archive 1. The
database manager scans backwards to the first occurrence of a Database Archive 1
record. (There is only one occurrence.) When it finds the record, it scans forward in
the history area until it either reaches the end of the history area or until it finds:
v A record that indicates a COLDLOG was taken.
v A record that indicates LOGMODE was switched to N.
v A record that indicates LOGMODE was switched to Y.
v A RESTORE record.
v Two database archive records in a row (no log archive records in between).
v Records that indicate a switch to LOGMODE=A, and a database archive while

using LOGMODE=A. (When the database is archived, the log is reclaimed
without a log archive. This breaks the continuity of the log archives.)

These records indicate a break in the continuity of the log archives. If you restore
Database Archive 1 in our example, the restore set copied forward in the history
area includes Log Archive 9:

Database Archive 1 <---
Log Archive 1 <---
Log Archive 2 <---
Log Archive 3 <--- New
Log Archive 4 <--- Restore
Log Archive 5 <--- Set
Database Archive 2 <---
Log Archive 6 <---
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---
RESTORE <--- Indicates end of restore set
Database Archive 2
Log Archive 6
Log Archive 7
Log Archive 10
Log Archive 11

Chapter 10. Special Topics in Recovery Design 235

RESTORE
Database Archive 1 <---
Log Archive 1 <---
Log Archive 2 <---
Log Archive 3 <---
Log Archive 4 <--- Restore Set Copied Forward
Log Archive 5 <---
Log Archive 6 <---
Log Archive 7 <---
Log Archive 8 <---
Log Archive 9 <---

During the actual restore, only the log archives are applied. Database Archive 2 is
skipped because all the change activity is recorded in the continuous log archives.

When the database is restored, it reverts to the state it was in before the first
restore. The changes recorded in Log Archives 10 and 11 are lost.

The important points to remember from this discussion are:
v You can issue the SHOW LOGHIST command to determine what log archives will

be restored. To determine the restore set, scan backwards in the command
output until the appropriate database archive is reached; then scan forward to
determine what log archives are associated with that database archive. When
you reach a recovery event that breaks the continuity of the log archives, you
have reached the end of the restore set.

v If you responded END RESTORE and later want to restore the subsequent log
archives, you must restore a back-level database archive whose associated log
archives include those that were skipped by the issuing of the END RESTORE
command.

If the database manager cannot find the database archive in the current history
area or in the history area saved by the last COLDLOG reconfiguration (if one
exists), a message is displayed saying the database archive is unknown. You are
given the opportunity to do a COLDLOG (if one has not yet been done) to
reformat the log. The COLDLOG is necessary because, since the database manager
cannot determine a recovery set, none of the log archive records in the history area
applies, and hence the database manager cannot confirm that the current log
applies.

The lack of a database archive record in the history area implies either that the
database archive is very old, or that you have mounted the wrong database
archive tape file. If you are intentionally restoring an old database archive, you
must do a COLDLOG to avoid applying changes recorded in the current log.

Nonrecoverable Storage Pools
You can define storage pools that are not recoverable. Changes made to user data
in nonrecoverable storage pools are not logged, which eliminates much of the
overhead required for recovery operations described earlier in this chapter.
Recovery is the responsibility of the user.

For some applications, the benefit derived from the reduced overhead far
outweighs the effort of having to do your own recovery. The applications that
benefit the most are those that do massive updating of a specific set of tables in the
database. Such applications include:
v User programs that perform massive updates, using SQL INSERT, PUT,

DELETE, and UPDATE statements.

236 System Administration

v DBS utility DATALOAD and RELOAD operations involving thousands or
millions of records.

If normal recovery procedures were in place, these applications would generate
many log records. These not only cause processing overhead, but require a larger
log, because the log must be large enough to hold all the records generated during
the long-running LUW (along with the records of all other concurrent LUWs).
Further, if you use archiving, the increased log activity causes more frequent
archives.

For applications that cause excessive logging or archiving, you have two
alternatives:
1. Run the application in single user mode with LOGMODE=N.
2. Place the tables that the application accesses in dbspaces that are assigned to

nonrecoverable storage pools.

The first of these methods is usually preferable. For example, suppose you have an
application that loads thousands of new records into an existing table. These
records are the names and addresses of subscribers to a new monthly service that
your company is offering. The data for new subscribers is loaded into the tables
once a month. Between runs, users perform updates on the table using ISQL (for
example, changing the address of an existing subscriber).

Now suppose you decide to run the application in single user mode with
LOGMODE=N. The advantage is that after the application runs successfully and
you create a database archive, the ISQL users have the benefit of full database
recovery. The disadvantages are:
1. You must stop the application server to run in single user mode.
2. You must create a log or a database archive before running the application, and

a database archive afterwards.
3. If LOGMODE is L, you lose the potential to restore the database to its current

level by using a back-level database archive and subsequent log archives,
because you have broken the continuity of the log archives.

Consider, though, the alternative of placing the data in a nonrecoverable storage
pool. By doing so, you avoid having to create the archives, and you can run the
application in multiple user mode and so avoid interrupting other users. However,
the data is nonrecoverable. The decision depends on whether your ISQL or DBSU
utility users can work without recovery. If the answer is no, or if you are not
certain you can foresee all possible recovery situations, use LOGMODE=N instead.

Characteristics of Dbspaces in Nonrecoverable Storage Pools
The following discussion provides the basis for you to determine whether it is
feasible to store the data for a given application in a dbspace in a nonrecoverable
storage pool, and what recovery procedures you will need for such data.

There is one situation where nonrecoverable and recoverable dbspaces have the
same characteristics: when the database manager is running in single user mode
with LOGMODE=N. In this situation, for both types of dbspaces, if there is a
failure, all updates that were committed at the time of the failure are in the
database; all those that were not committed are not. This applies to any ISQL or
DBS utility command that updates the database. Note that commitment includes
both an explicit COMMIT command and any implicit commitment (as described
earlier in this chapter).

Chapter 10. Special Topics in Recovery Design 237

In any mode other than LOGMODE=N, the following characteristics apply to
nonrecoverable dbspaces:
v Archiving nonrecoverable dbspaces

When you take a database archive, nonrecoverable dbspaces are archived the
same way as the recoverable ones. Logging is performed differently, however,
because changes to user data in nonrecoverable dbspaces are not logged.

v Locking and concurrency
Same as for recoverable dbspaces.

v Preprocessing
DB2 Server for VM preprocessors never update data in nonrecoverable dbspaces.

v Atomicity of operations
Not supported. For more information, see the discussion on the SQL statements
that affect multiple rows on page 240.

v Committing work
The database manager forces a checkpoint whenever there is an implicit or
explicit COMMIT of a LUW that updated data in a nonrecoverable dbspace, to
ensure that all updates in that LUW are really in the database. The checkpoint
will only occur if data is modified, such as by an INSERT, UPDATE, or DELETE
statement. It will not occur for LUWs that do not update data, or for data
administration operations such as creating or dropping indexes or altering
tables. These operations are logged and are thus recoverable.
Thus, except when restoring from an archive (see below), a user can be sure that
committed updates are in the database, and will survive a system failure or an
application failure. They do not, however, survive a DASD failure unless you
archive the database after the updates are made.

Note: Checkpoints cause significant system overhead and increase response time
for interactive users. Thus, avoid a high frequency of LUWs that update
data in nonrecoverable dbspaces. Also, a checkpoint that occurs during a
database or log archive causes the database manager to end all concurrent
activity until the archive is completed, so users must wait. Plan your
updates to nonrecoverable dbspaces so that they do not coincide with an
archive operation.

v Rolling back work
When an LUW is rolled back (either implicitly or explicitly), the database
manager does not undo successful SQL INSERT, PUT, DELETE, and UPDATE
statements. Instead, it forces a checkpoint (after it rolls back any changes made
to recoverable data during that LUW). This means that the nonrecoverable data
appears just as though the LUW had been committed at the point when the
rollback occurred.
If you want to return the data to the state it was in before the LUW, you must
undo the INSERTs, PUTs, DELETEs, and UPDATEs manually. Until you do,
other users can see the uncommitted updates.
The database manager does a checkpoint to ensure that you know what changes
were made (so that you can undo them). If the checkpoint was not done, and
the database manager failed before the next checkpoint, it would be difficult to
tell what changes (if any) were made to the database. The checkpoint is done to
make it easier for you to undo the changes.
There are two situations where the database manager does not force a
checkpoint for rollbacks of LUWs that update nonrecoverable data:
– When it rolls back LUWs during a warm start after a system failure.

238 System Administration

The database manager uses the log to determine the LUWs that were in
progress at the time of the failure. These LUWs are normally rolled back.
Changes to nonrecoverable data are not rolled back, because they were never
recorded in the log in the first place.
There is no forced checkpoint because when the system fails, all changes
made since the last checkpoint are lost. (They are not in the database.) For
nonrecoverable data, in this situation, there is nothing to record at a
checkpoint. For more information, see the discussion on recovering from
processing failures, below.

– When it rolls back LUWs when applying log changes during an archive
restore.
Here again, the updates are not in the log, so there is nothing to record at a
checkpoint. In fact, all changes to nonrecoverable data made after the archive
are lost. For more information, see the discussion on restoring from an
archive, below.

The following consideration applies only if you have VSE guest sharing:

Usually the EXEC CICS ROLLBACK rolls back updates made to multiple
resources, but the CICS transactions that use the two-phase syncpoint (TPSP)
protocol cannot rely on this when nonrecoverable data is involved. You must
make other provisions for such transactions.

v Recovering from processing failures
Logical units of work that are in-process when a system failure occurs lose the
automatic rollback that normally is done the next time the application server is
started. In this situation, the state of these updates depends on when the last
checkpoint occurred before the failure. Updates that were completed before the
checkpoint occurred are in the database; those done after the checkpoint are not.
You must undo only the updates made by an in-process LUW that occurred
before the last checkpoint. This procedure resets the data to its state before the
LUW that was interrupted by the system failure.
This process applies only to nonrecoverable data. If you are also updating
recoverable data in that same LUW, the normal recovery rules apply for that
data.

v Restoring from an archive
If you are restoring the database from an archive copy, all data updates to
nonrecoverable dbspaces done after that archive was taken are lost. You must
redo all updates since the archive to bring those dbspaces to the current level.
Because row updates (INSERT, PUT, DELETE, UPDATE) are not recorded in the
log, the filtered log recovery ROLLBACK COMMITTED WORK command does
not apply. It does apply, however, for recoverable SQL statements and for the
DBS utility command REORGANIZE INDEX (see below), because they are
logged. For information about filtered log recovery, see the discussion on
starting the application server to recover from a DBSS error in the DB2 Server for
VSE & VM Diagnosis Guide and Reference manual.

v Recoverable statements and commands
The following SQL statements are always recoverable, even if they involve
nonrecoverable dbspaces:
– ACQUIRE DBSPACE
– ALTER DBSPACE
– ALTER TABLE
– CREATE INDEX
– CREATE TABLE

Chapter 10. Special Topics in Recovery Design 239

– DROP DBSPACE
– DROP INDEX
– DROP TABLE

The DBS utility command REORGANIZE INDEX is also recoverable.

The reason these are recoverable is that the database manager does not suppress
logging for them. They are logged to ensure the integrity of the database catalog
tables, which always refer only to objects that exist.

If an LUW fails to commit (implicitly or explicitly) after successfully doing any
of the above statements or the command, the recovery procedures will
automatically undo the statement or command. For example, suppose the
following actions are in a LUW:
1. CREATE TABLE
2. INSERT into that table.

If this LUW fails to be committed, the table, all its rows, and its indexes are
automatically dropped from the database. Because the above statements are
logged, if an LUW is committed after successfully processing the statements,
they can be restored from the archive.

v Partial row updates
Except for long strings, the problem never occurs of a single row being only
partially updated (inserted, deleted, or modified). The database manager always
ensures that either all processing for updating a row is in the database, or that
none is. (You can get partial row updates for long strings because more than one
update is needed internally for each row update you request.)

v SQL statements that affect multiple rows
An SQL statement that causes multiple rows to be inserted, deleted, or updated
can fail between row modifications, due to an error condition or a system
failure. Whatever the cause, because the dbspace is nonrecoverable, some of the
rows are modified in the database, and some are not.

Data That Can be Placed in Nonrecoverable Storage Pools
When you are considering placing application data in a nonrecoverable storage
pool, you must determine whether the user will be able to recover it in a
reasonable and relatively simple manner. If so, then the table is a candidate for a
nonrecoverable storage pool.

Some examples of such data follow, along with descriptions of how to recover it,
based on the rules in the previous section.

Example 1
Some applications use data that is retrieved from a source outside the database,
such as data from another DB2 Server for VM or non-DB2 Server for VM database,
or data from sequential files (including CMS files and virtual reader files). Such
tables are candidates for nonrecoverable storage pools if the following are true:
1. The data, after being loaded into database tables, is used only for read-only

applications.
2. The data from the outside source is the only data in the tables. (That is, the

data was not added to existing tables.)

If the application that loads the data into the database tables fails (does not
COMMIT) for any reason, you can recover in either of the following ways:

240 System Administration

v If the failing LUW included one or more CREATE TABLE statements for the
tables being loaded, rerun the application. Because this statement is recorded in
the log, any failure to commit would cause it to be rolled back. The table and
any rows that were inserted into it would be dropped.

v If the failing LUW did not contain any CREATE TABLE statements, delete all the
rows from the tables; then rerun the application step that loads the data into the
tables.

If, after successfully loading the data, you restore the database from a database
archive that was created before the data was loaded, the rows you loaded no
longer exist in the database. You can recover as follows:
1. Bypass any steps that delete all rows from the tables or that drop and recreate

the tables.
These steps are not necessary because the database manager always records
DROP and CREATE table statements in the log, even for nonrecoverable
dbspaces.

2. Rerun the steps that load the data into the tables.
You must redo the data manipulation statements (in this situation, INSERT and
PUT) because they are not recorded in the log. (The restore defined the tables
in the database, but did not insert any data.)

These recovery rules apply only to data that is imported and loaded once and is
discarded when no longer needed. Each time the data is loaded, it completely
replaces the previous version.

The key point is that the source data must exist so that it can be used to recover
the read-only database version.

Example 2
Data that is retrieved from an outside source and added to existing data can also
be stored in a nonrecoverable dbspace.

The data can be from any of the sources described in Example 1 above. To add it
to an existing table, you could use the DBS utility DATALOAD command or an
application program to perform a mass INSERT operation.

You can recover the data if each batch of added rows has a unique value in a
column that identifies rows of the batch. You would need an application program
that generates a unique batch identifier and places it into each record (or into each
row, if the application loads the rows into a table).

If the application that loads the data fails (does not commit the work) for any
reason, you can recover as follows:
1. Specify the unique values that identify the rows added to the tables.
2. Delete all the rows in tables that have these unique identifier values. These

rows were inserted before the system failed.
3. Rerun the step that loads the added data into the tables.

Note: Although it is tempting to commit work frequently during loading to avoid
potential recovery problems, keep in mind that the commit operations cause
checkpoints, which can adversely affect overall performance.

Chapter 10. Special Topics in Recovery Design 241

If you restore the database using a database archive that was created before one or
more of the load operations, all rows loaded since that archive no longer exist in
the database.

To recover those lost rows, either:
1. Query the tables to determine the last batch of rows inserted that still exist in

the database.
2. Rerun the steps that added all subsequent batches of rows to the tables.

Alternatively:
1. Delete all the rows that were loaded before the database archive was taken of

the tables.
2. Reload all of the rows from the original source.

Both methods of recovery assume that the loaded data still exists somewhere
outside the database, and that each batch of rows has a unique identifier.

Example 3
Read-only data that is created by one or more INSERT via subselect statements can
also be stored in a nonrecoverable dbspace. For recovery to be possible, the data
must be inserted into empty tables.

If the loading of the table fails to be committed, you can recover the data as
follows:
1. If the LUW created the table:

a. Recreate the table. (Because CREATE TABLE statements are always
recoverable, the table is dropped when the LUW fails.)

b. Rerun the INSERT via subselect statements to load the data.
2. If the table already exists:

a. Delete all the rows from the table, since they reflect an incomplete update.
b. Rerun the INSERT via subselect statements to load the data.

If you restore the database from a database archive that was created before the
data was loaded, the data that was loaded is not in the database. The table is not
dropped, however, even if it was created after the archive, because CREATE
TABLE statements are always logged. To restore the data that was eliminated by
the database restore operation:
1. If the table was created (or recreated) after the database archive, rerun the

INSERT via subselect statements.
2. If the table was created before the database archive, some rows may also exist

in the table. It may be impossible to identify the INSERT via subselect
statements that put these rows in the table. Even if you determine the INSERT
responsible for a row, it is difficult to tell if all rows originally inserted by the
statement still exist. (The statement may have been in progress at the time the
database archive was taken.) For this situation:
a. Delete all rows in the table.
b. Rerun the INSERT via subselect statements.

Avoid loading (or otherwise updating) nonrecoverable dbspaces if an online
database archive could occur at the same time, because such archives typically
contain changes made by incomplete LUWs. For recoverable data, this is not a
problem because the log contains the rest of the changes, so when you do a
restore, the archive and the log are used together to reconstruct a consistent copy

242 System Administration

of the database. For nonrecoverable data however, changes are not recorded in the
log, so data can be incomplete or inconsistent because no log records are available
to complete the restoration of the database.

You should also not update nonrecoverable data when an online log archive can
occur, because the database manager waits until all LUWs end before creating the
log archive. Because LUWs that update nonrecoverable data are usually
long-running, the log archive is forced to wait. If the log fills to the SLOGCUSH
point, log overflow processing will be started: this involves rolling back the
longest-running LUW, which is usually the one that is updating nonrecoverable
data. (For a description of the SLOGCUSH parameter, see “SLOGCUSH” on
page 69.)

Data That Should Not Be Placed in Nonrecoverable Dbspaces
Any data that would be difficult or impossible for a user to recover should not be
put in nonrecoverable dbspaces. Some examples are:
v Data that cannot be recreated

This includes data whose source is destroyed after the data is loaded, and data
that is manually entered into tables (with the ISQL INPUT command, for
example).

v Data that is modified by application programs or terminal users after it is loaded
into the database
If the owner of the table keeps an audit trail of the updates made, you can put
this kind of data in a nonrecoverable dbspace, and have the owner use the audit
trail to do recovery. However, this is practical only if the number of updates
made is small.

v Tables that are linked with referential constraints (referential integrity) to tables
in recoverable dbspaces.

v Tables that are managed by DB2 Server for VM components:
– ISQL-stored query tables
– ISQL-stored routine tables
– Other IBM-supplied tables.

v Tables with small amounts of data
Here, recovery is not a problem. Rather, there is just not enough logging done
for the data to justify the added complexity of user recovery. Let the database
manager do the logging and recovery.

v Large tables where small numbers of rows are periodically added
Here again, there is not enough logging to justify user recovery.

Setting Up Nonrecoverable Storage Pools and Dbspaces
If you want the data for a particular application to reside in a nonrecoverable
storage pool, do the following:
1. Determine the dbspace requirements (size, type, and number).
2. Design a recovery scheme to use in case an LUW fails while the nonrecoverable

dbspaces are being updated.
3. Design a recovery scheme to use in case restoring the database from an archive

should be necessary.
4. Allocate the nonrecoverable storage pool. You can do this either during

database generation, or when adding a dbextent. In either situation, use the
POOL control statement (see “Adding Dbextents to a Storage Pool” on
page 157).

Chapter 10. Special Topics in Recovery Design 243

Attention: Once a storage pool is defined, either by adding dbextents to it or
by POOL(NOLOG), you must not change it from recoverable to
nonrecoverable, or the reverse.

5. Define dbspaces in this storage pool, either during database generation or
when adding dbspaces (see “Adding Dbspaces to the Database” on page 145).
On your control statements defining the dbspaces, specify the number of the
storage pool.

6. Acquire the dbspaces you want by using the ACQUIRE DBSPACE statement.
You must specify the number of the storage pool you want with the
STORPOOL parameter; otherwise, the database manager will not select a
dbspace from a nonrecoverable storage pool.

7. Create tables in these dbspaces. To do this, you must specify the dbspace name
in the CREATE TABLE statement; otherwise, the database manager will not
place a table in a nonrecoverable dbspace.

Remember to perform your recovery procedures whenever there is a LUW failure
or when you must restore the database from an archive.

Querying for Nonrecoverable Storage Pools and Dbspaces
To determine whether a storage pool is nonrecoverable, issue the SHOW DBEXTENT
operator command. The POOL NO. column shows the number of the pool. If it is
positive, the storage pool is recoverable; if negative, it is nonrecoverable. For
example, if the number displayed is -32, storage pool 32 is nonrecoverable; if it is
32, this storage pool is recoverable.

To determine what dbspaces are in nonrecoverable storage pools, look at the POOL
column in the SYSTEM.SYSDBSPACES catalog table. If this value is positive, the
pool where the dbspace is assigned is recoverable; if it is negative, the pool is
nonrecoverable. Again, the absolute value of the number is the storage pool
number.

Following are some sample queries you can use to determine the status of
nonrecoverable storage pools and dbspaces:
v To determine which storage pools are nonrecoverable and have dbspaces

assigned to them, issue:
SELECT DISTINCT POOL -

FROM SYSTEM.SYSDBSPACES -
WHERE POOL > 999

Because the data type of the POOL column is DBAHW, you specify POOL > 999
instead of POOL < 0 to retrieve the nonrecoverable (that is, negative) storage
pools. The DBAHW fields do not sort the same way that SMALLINT fields do.
(See the DB2 Server for VSE & VM SQL Reference manual for description of data
types.)

v To determine how many of the public dbspaces allocated to nonrecoverable
storage pool number 7 are not yet acquired, and the number of pages in each of
the dbspaces, issue:

SELECT NPAGES FROM SYSTEM.SYSDBSPACES -
WHERE DBSPACETYPE=1 AND POOL=-7 AND OWNER=' '

The blank OWNER column indicates that the dbspace is not yet acquired.

To find the same information for private dbspaces, change the DBSPACETYPE
value in the statement from 1 to 2.

244 System Administration

v To determine how many storage pools remain to be defined in the database, first
issue the SHOW DBCONFIG command to see the value of the MAXPOOLS
parameter. This value, which was set during database generation, determines the
maximum number of storage pools allowed.
Next, issue SHOW DBEXTENT to determine the number of storage pools that are in
use. Storage pools are in use only if dbextents are assigned to them. The
difference between this number and MAXPOOLS is the number of pools that
remain to be defined. You can define storage pools by adding extents to new
pool numbers until you reach the MAXPOOLS limit.
Alternatively, the SHOW SQLDBGEN operator command will display the
current database definition, including MAXPOOLS and the assignment of
dbextents to storage pools.

v To determine whether a specific table is in a nonrecoverable dbspace, issue:
SELECT DBSPACENO FROM SYSTEM.SYSCATALOG -

WHERE TNAME=table_name AND CREATOR=userid

If the DBSPACENO value is 0, the table is actually a view, and you have to
query the SYSTEM.SYSVIEWS catalog table to obtain the name of the underlying
table. If the DBSPACENO value is not 0, use the value in this SELECT statement:

SELECT POOL FROM SYSTEM.SYSDBSPACES WHERE DBSPACENO=n

If the returned POOL value is negative, the dbspace is nonrecoverable; if it is
positive, the dbspace is recoverable.

Chapter 10. Special Topics in Recovery Design 245

|
|
|

246 System Administration

Chapter 11. Using the Accounting Facility

The accounting facility records how resources are consumed on the database
manager. Resources are consumed both by individual users, and by processes that
cannot be attributed to a single user, such as startup, shutdown, checkpoints, and
archives. This information is collected in fixed-length records, 80 bytes long, that
describe who or what consumed resources.

The records include up to 16 bytes for installation-dependent data, where you can
supply information such as account numbers or project numbers. These 16 bytes
can come from:
v VM or VSE applications using VSE Guest Sharing, provided an accounting exit

has been installed as described in section “Supplying Account Numbers for
Users” on page 337. If VM applications use the DRDA protocol to communicate
with VM servers, accounting data may still be sent.

v Applications on platforms other than VM or VSE that use the DRDA protocol to
connect to DB2 Server for VM servers. In this case, 16 bytes of user supplied data
are recorded into database manager USER accounting records. Examples of such
DRDA requesters are: DB2 for OS/390 and DB2 Connect.

Note: DB2 Server for VM applications can send accounting data to DRDA servers,
from which accounting records may be generated. DB2 for MVS is an
example of such a server. If you already have routines to process other
accounting records, you can modify them to handle the DB2 Server for VM
records. You can also use the database manager itself to store your
accounting data, and use ISQL to easily manipulate the data and generate
reports.

Where to Find More about VM Accounting
The database manager uses VM accounting facilities. If, as you read this chapter,
you need more information, refer to the VM/ESA: Planning and Administration , the
VM/ESA: Installation Guide the VM/ESA: Planning and Administration and the
VM/ESA: System Operation manuals for your IBM VM System Product.

Preparing to Use the Accounting Facility
You must update the VM directory entry of each database machine that is to use
accounting before you can use the accounting facility. For example, suppose the
VM directory entry for a database machine contains:

OPTION MAXCONN 32

Update the statement as follows:
OPTION MAXCONN 32 ACCT

Use your normal procedures for updating the VM directory. When you add the
ACCT operand, the database machine is correctly defined to use the accounting
facility.

Another factor you need to consider is how the number of records that are
generated will affect your current VM system accounting file. Your current
procedures for handling spool-file-full conditions should handle the additional

© Copyright IBM Corp. 1987, 2001 247

accounting records. However, you may want to increase the value of the LIMIT
operand of the CP SYSACNT macro (if you use that operand). You could also
allocate more DASD spool space, or close the file more often. Initially, you should
use your current procedures until you get an idea of how many accounting records
are generated by the DB2 Server for VM activity at your installation.

To make a general initial estimate of how many accounting records can be
generated, start the application server for normal multiple user mode access, and
at the end of the day, issue the DB2 Server for VM operator commands COUNTER
BEGINLUW and COUNTER CHKPOINT. The number of accounting records
generated at your installation is smaller than, but proportional to, these values.
That is, the database manager writes an accounting record for a user on some ends
of logical units of work, and on all checkpoints. Three more accounting records are
written for each run of the database manager: one for initialization, one for
operation, and one for termination. You can ignore these three records when
making your estimate.

For example, assume that your counters show that your installation does 2 000
logical units of work and 200 checkpoints a day. On average, these result in 1 000
accounting records generated for users (and 200 records generated for checkpoints).
For environments with heavy ISQL usage, the number of records generated for
users would probably be lower. Do overestimate the number of accounting records.

If you want to provide account or project numbers on the accounting records, you
must code a program, as the database manager does not provide code to query
users or applications for these numbers. Instead, it provides an exit to an
accounting module you can modify. If you want to supply installation-dependent
information, consider using an accounting exit before using the accounting facility.
For more information, see “Supplying Account Numbers for Users” on page 337.

When you have updated all the database machines and have made provisions for
the VM system accounting file and accounting exits, you can use the accounting
facility.

Starting the Accounting Facility
To start the application server in multiple user mode to collect accounting
information:
1. Log on to a database machine. (The database machine must have the ACCT

operand specified on its OPTION directory control statement.)
2. If you are reconnecting, IPL CMS to get a fresh machine.
3. Start the SQLSTART EXEC with ACCOUNT=D. You can set all other

initialization parameters as you would usually set them. For example:

The file WARM SQLPARM is referenced in the PARMID parameter. The
NLRBU and ACCOUNT parameters are specified on the command itself. The
ACCOUNT parameter is a normal initialization parameter, so you can specify it
in a CMS parameter file.

The database manager then automatically generates accounting records for all
activity involving the database machine.

SQLSTART DB(DB010) ID(BOOT1) PARM(PARMID=WARM,NLRBU=1500,ACCOUNT=D)

248 System Administration

The database manager can also generate accounting records in single user mode
for user programs, the DBS utility, and the preprocessors. Accounting records are
not generated for:
v Log reconfigurations (COLDLOG) with the SQLLOG EXEC. The SQLLOG EXEC

starts the application server with STARTUP=L.
v Database generations with the SQLDBGEN or SQLDBINS EXECs. These EXECs

start the application server with STARTUP=C.
v Adding dbextents with the SQLADBEX EXEC. The SQLADBEX EXEC starts the

application server with STARTUP=E.
v Adding dbspaces with the SQLADBSP EXEC. The SQLADBSP EXEC starts the

application server with STARTUP=S.
v Catalog index reorganizations with the SQLCIREO EXEC. The SQLCIREO EXEC

starts the application server with STARTUP=I.
v Catalog migrations with the ARISMEX EXEC. The ARISMEX EXEC starts the

application server with STARTUP=M.
v PROGNAME=ARISEGB, which is the catalog update phase of an ADD

DBSPACE operation.

If you specify ACCOUNT=D in any of those situations, the database manager
displays a warning message and ignores the ACCOUNT parameter.

To generate accounting records for single user mode programs, specify
ACCOUNT=D as you would for multiple user mode. For the DBS utility and the
preprocessors, you must use the PARMID(filename) parameter to point to a CMS
file that contains the ACCOUNT=D parameter.

Generation of Accounting Records
Accounting records are written when one of the following occurs:
v An IUCV or APPC/VM SEVER occurs:

– When the RELEASE option of an SQL COMMIT or ROLLBACK command is
specified in multiple user mode

– When SQLHX is entered
The SQLHX command causes a rollback, which causes an accounting record
to be written for the work done to that point. If no additional database work
is done, and the application exits, COMMIT WORK or ROLLBACK WORK
processing occurs, and a second accounting record is written. Because no
work is done on the database for the second accounting record, the following
fields may be empty:
- Package name (bytes 53–60 filled with blanks)
- Active time (bytes 61–64 initialized to 0)
- Number of looks (bytes 69–72 initialized to 0).

– When an HX of the user command is done
– When the user ID abends
– When the DB2 Server for VM operator issues an SQL FORCE for the

authorization id
– When the VM operator issues a CP FORCE for the VM user ID

v A user reconnects without explicitly releasing the previous session.
For example, suppose user ID USER1 uses ISQL to implicitly connect to the
database manager, does some work, and then explicitly connects as
authorization ID SQLDBA to do tasks requiring DBA authority. When USER1

Chapter 11. Using the Accounting Facility 249

changes authorization IDs, the database manager writes an accounting record for
authorization ID USER1 and begins a new session for authorization ID SQLDBA,
even though USER1 did not explicitly release the first connection.

v The internal DB2 Server for VM resource threshold is met or exceeded. This is
checked at the end of a logical unit of work.
For example, suppose USER1 uses ISQL with AUTOCOMMIT ON, and never
issues a COMMIT or ROLLBACK WORK RELEASE. The session therefore lasts
until this user reconnects or leaves ISQL. If this user works on ISQL for hours
and processes many logical units of work during this long session, he or she
exceeds the resource threshold a number of times. Every time this happens, an
accounting record is written. Now suppose the database manager abends. The
only accounting information lost is for work that USER1 did after last exceeding
the threshold. If the internal threshold were not used, all accounting information
about USER1’s session would have been lost, which represents a significant
amount of work.

v The connection between the user ID and the database manager is ended by:
– An SQLEND QUICK command
– A DB2 Server for VM FORCE command
– A CP FORCE command.

The database manager does not write an accounting record for every logical unit of
work, because too many records would be generated, resulting in high system
overhead. Because most ISQL users use AUTOCOMMIT ON, practically every SQL
statement issued would cause a new LUW.

If your users are using DRDA protocol, the database manager also generates
accounting records for them in addition to the CMS user record. For a description
of the accounting records, see “Remote User Records” on page 254.

If you have VSE guest sharing, the database manager also generates accounting
records for VSE guest users. These records are similar in format to the accounting
records for DB2 Server for VM users on VM. The VSE guest user records are
generated on the database machine. For a description of the records, see “VSE
Guest User Records” on page 255.

The database manager processes batch/ICCF users on VSE as individual users. All
CICS users are processed as one user, and are identified by the user ID that CICS
uses.

Supplying Accounting Data from DRDA Applications
Remote DRDA application requesters have the opportunity to send accounting
information to DRDA servers using a general purpose unarchitected DRDA
parameter. DB2 for MVS (Version 2 Release 3 or later) and DDCS (Version 2
Release 1) have implemented this approach for sending accounting data. Similar
support was enabled for VM requesters in Version 3 Release 5.

If the database manager determines that a DRDA requester has supplied
accounting data, 16 bytes of user supplied data is recorded into database manager
USER accounting records as “installation-dependent” data. For DB2 for MVS
applications, user supplied data corresponds to the MVS accounting string
associated with the DB2 SQL application’s MVS address space.

For DDCS applications and DB2 CONNECT applications, user supplied data
corresponds to one of the following:

250 System Administration

v The value specified by an application with the sqlesact() API
v The value of the DB2ACCOUNT environment variable
v The value of the DFT_ACCOUNT_STR (default accounting string) configuration

parameter.

If the DRDA protocol is used to connect VM applications to VSE servers (or any
other DRDA server), user supplied data corresponds to data supplied by the
ARIUXIT accounting exit described in the DB2 Server for VM System Administration
manual.

If the database manager determines that a DRDA requester has supplied
accounting data but the requester is not DB2 for MVS, DDCS or DB2 CONNECT
or DB2 for VM, it inserts the string “pppvvrrm UNKNOWN” into USER accounting
records. pppvvrrm is the product id (prdid) of the DRDA requester.

Note: When you are using the DRDA protocol, the installation-dependent data
should conform to the following:
1. The accounting string data is converted to CCSID 500 before being sent

to the DRDA server. To ensure that all characters in the string data can
be represented in CCSID 500, only the characters A-Z, 0-9 and ’_’
(underscore) be used. If characters other than these recommended ones
are used, then those characters may not translate properly when the
DRDA server writes out accounting records.

2. The user-specified portion of the accounting string can be at most 16
bytes. This is true for DB2 Server for VM applications sending
accounting data (which is set up in the ARIUXIT user exit) and for
non-DB2 for VM DRDA requesters sending accounting data to servers.

Formats of the Accounting Records
There are three kinds of accounting records generated for users:

CMS user records
are generated for users on VM who access an application server on VM.

Remote user records
are generated if your users are using DRDA protocol. The database
manager generates accounting records for them, in addition to the CMS
user records.

VSE guest user records
are generated for users on VSE who access an application server on a VM
operating systems.

Accounting records are also generated for system processes that cannot be
attributed to a single user:

An initialization
record is written when the application server is started. This record
describes the resources consumed by the operator and checkpoint agents
during the startup process.

A checkpoint
record is written for the checkpoint agent after a checkpoint occurs. For the
checkpoint that immediately follows an archive, this record reflects the
resources consumed in doing the archive as well as the checkpoint.

Chapter 11. Using the Accounting Facility 251

An operation
record is written during shutdown for the processing that the operator
agent has done during the current session. (This accounting record is
written only for multiple user mode, as operator communications are not
possible in single user mode.)

A termination
record is written that summarizes the resources consumed during the
current session.

Note: Internal resource thresholds are not used for system processes.

Initialization Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “INIT ”

25-40 CHAR (16) Reserved (blanks)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Duration of the startup process (in seconds)

65-68 INTEGER Processor time used by the startup process (in milliseconds)

69-72 INTEGER Number of times the database manager looked at a page buffer during startup
(equivalent to issuing COUNTER LPAGBUFF immediately after startup)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VM accounting records from
other VM accounting records, where x = I for Initialization

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

Operator and Checkpoint Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “SYSTEM ”

25-40 CHAR (16) Reserved (blanks)

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |
SQLDBA SQL/DS INIT 051389182005 19 ISQLC0

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |
SQLDBA SQL/DS SYSTEM 051389182005 0083032819 CSQLC0

252 System Administration

Column Data Type Description

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Binary zero

65-68 INTEGER Processor time used (in milliseconds)

69-72 INTEGER Number of times this agent looked at a page buffer (equivalent to issuing
COUNTER LPAGBUFF for only this agent)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VM accounting records from
other VM accounting records, where x = C for Checkpoint or O for Operator).

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

Termination Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) “SQL/DS ”

17-24 CHAR (8) “TERM ”

25-40 CHAR (16) Reserved (blanks)

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-56 CHAR (4) Blank

57-60 CHAR (4) Blank

61-64 INTEGER Time, in seconds, from startup to shutdown

Note: The following are totals for the entire run of the database manager that are extracted from the data that is
used by the COUNTER command.

65-68 INTEGER DASDIO - Total number of DASD I/Os

69-72 INTEGER LPAGBUFF - Number of times the database manager looked at a page buffer

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VM accounting records from
other VM accounting records, where x = T for Termination

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

CMS User Records

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |
SQLDBA SQL/DS TERM 051389182005 19 TSQLC0

Columns:

1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | | |
SQLDBA JESSICA MYID A1015TEST 051389182005BADDEBTS 19 USQLC0

Chapter 11. Using the Accounting Facility 253

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) VM user ID of the user machine accessing the application server

17-24 CHAR (8) DB2 Server for VM authorization ID that was established, implicitly or explicitly,
using the connect process. Unless the user explicitly changed the connected user
ID, the DB2 Server for VM user ID is the same as the VM user ID.

25-40 CHAR (16) If you have coded your own ARIUXIT exit to generate installation-supplied data,
this data is placed here for CMS applications. If you have not coded such as exit,
this contains character blanks for CMS applications.

For non-VM DRDA applications, up to 16 bytes of user-supplied data is put
here. For more information, see “Supplying Accounting Data from DRDA
Applications” on page 250.

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-60 CHAR (8) The name of the package that was last active for the application

Note: The following are totals for the agent. They show values accumulated for a user.

61-64 INTEGER Active time (that is, time that the user was connected to an agent) in seconds

65-68 INTEGER Processor time used (in milliseconds)

69-72 INTEGER Number of times this agent looked at a page buffer (this value is equivalent to
the LPAGBUFF counter value for an individual user)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VM accounting records from
other VM accounting records, where x = U for User

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

Remote User Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (application server)

9-16 CHAR (8) Access user ID of the application or interactive user (application requester)
accessing the application server

17-24 CHAR (8) DB2 Server for VM authorization ID that was established, implicitly or explicitly,
using the connect process

25-36 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

Columns:
1 9 17 25 37 64 73 75 79
| | | | | | | | |
SQLDBA JESSICA MYID 051389182005nnTORONET.SP6AGATnnnnnnnn 19RSQLC0

254 System Administration

Column Data Type Description

37-63 CHAR(27) LU 6.2 LUWID. This field is composed of the following subfields:

37-37 Length of the entire LUWID: a 1-byte binary integer

38-38 Length of the qualified LUNAME: a 1-byte binary integer

39-n Qualified LUNAME (NETID.LUNAME): a character subfield in which n
depends on the length value in column 38

(n+1)-(n+6)
Instance number: a bit data field

(n+7)-(n+8)
Sequence number: a bit data field

If the LUWID is less than 25 bytes, the remaining columns are padded with
blanks

64-72 Reserved

73-74 CHAR (2) Century number of Date ('19' or '20')

75-78 CHAR (4) The xSQL identifier to separate the DB2 Server for VM accounting records from
other VM accounting records, where x = R for remote user

79-80 CHAR (2) Record identifier (character 'C0') fixed by CP

VSE Guest User Records

Column Data Type Description

1-8 CHAR (8) VM user ID of the database machine (fixed by CP)

9-16 CHAR (8) For batch and VSE/ICCF environments, the jobname of the user partition. For
online environments, the VM user ID of the VSE machine. (The example record
above is for online environments.)

17-24 CHAR (8) DB2 Server for VM connected authorization ID that was established using the
connect process (this can be an explicit or implicit connection)

25-40 CHAR (16) Installation-supplied data. If you are in a batch or VSE/ICCF environment, and
have not coded an accounting exit that supplies information to this field, the
database manager leaves character blanks. In an online environment, if you have
not coded an accounting exit to supply the information, the following is put in
the field:

25-28 CICS transaction ID

29-31 CICS terminal operator ID (if available)

32-35 CICS terminal ID (if available)

36-39 This field contains character blanks, unless you have coded your own
cancel exit. For information on cancel exits in VSE, see the DB2 Server
for VSE & VM Diagnosis Guide and Reference manual.

40 Blank

41-52 CHAR (12) Date and time of the accounting record (MMDDYYHHMMSS)

53-60 CHAR (8) The name of the package that was last active for the application (also referred to
as prepname or program name)

Columns:
1 9 17 25 41 53 57 61 65 69 73 75 79
| | | | | | | | | | | |
SQLDBA VSEMCH1 MYID USER DATA HERE 051389182005DEBTS 19USQLC0

Chapter 11. Using the Accounting Facility 255

Column Data Type Description

Note: The following are totals for the agent. They show values accumulated for a user.

61-64 INTEGER Active time (the time that the user was connected to an agent) in seconds

65-68 INTEGER Processor time used (in milliseconds). In the VSE guest user accounting record
passed to VM/ESA, processor time is recorded in thousandths of a second
(milliseconds).

69-72 INTEGER Number of times this agent looked at a page buffer (equivalent to the
LPAGBUFF counter value for an individual user)

73-74 CHAR (2) Century number of Date (’19’ or ’20’)

75-78 CHAR (4) The xSQL identifier to separate DB2 Server for VM accounting records from
other VM accounting records, where x = U for User.

79-80 CHAR (2) Record identifier (character X'C0') fixed by CP

Maintaining Accounting Data
Accounting data, like any other data, can be loaded into tables and maintained by
any DB2 Server for VM facility. The following sections describe how to set up
dbspaces to hold accounting records and present an example. You will have to
modify the example tables to meet your own installation’s requirements.

Setting up a database for accounting data involves the same activities that would
be done for any data application:
1. Adding and acquiring a dbspace
2. Creating tables for the accounting data
3. Creating views on those tables
4. Creating indexes on those tables.

Considerations for an Accounting Dbspace
Because accounting data is usually read-only, it is most suited for a private
dbspace. When it is in a private dbspace, multiple users are able to read it as long
as the tables are not being loaded. (If they are being loaded, users get an
immediate notification that a load is taking place in the form of a negative
SQLCODE).

Also, because the data is read-only and because its source is a sequential file, it is a
candidate for a nonrecoverable dbspace. For information on the advantages and
disadvantages of this type of storage, see “Nonrecoverable Storage Pools” on
page 236.

The size of the dbspace depends on a number of factors. The key considerations
are:
v The number of accounting records you want to keep online
v The row length of the records
v The index space requirements.

When you have determined these factors, you can estimate the size of the dbspace
needed by using the formulas in “Appendix B. Estimating Database Storage” on
page 425.

To estimate the rate at which your installation generates accounting records, use
the accounting facility for a trial period (a day or a week). Or, you can try to make
an initial estimate using the method shown on page 248.

256 System Administration

Tables to Hold Accounting Data
One approach to organizing accounting records is to place them in four separate
tables:
v One to hold the termination records, which summarize the resources consumed

during an entire session of the database manager.
v One to hold the initialization, operator, and checkpoint records, which describe

the overhead resources consumed by the database manager processes.
v One to hold user records, which describe the resources consumed by individual

users.
v One to hold remote access records, which contain the LUWID. The records also

contain the user ID and datetime value that can be used to match with the
regular user records.

Figure 74 shows the statements you could issue to create these four tables, here
named SQLDETAIL (for termination records), SYSDETAIL (for initialization,
operator and checkpoint records), USERDETAIL (for user records), and
REMDETAIL (for remote user records).

CREATE TABLE SQLDETAIL(SQLNAME CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
RUNTIME INTEGER,
DASDIO INTEGER,
LPAGBUFF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 74. Example of DBS Utility Commands to Create Accounting Tables (Part 1 of 4)

CREATE TABLE SYSDETAIL(SQLNAME CHAR(8),
TYPE CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
RUNTIME INTEGER,
CPUTIME INTEGER,
LPAGBUFF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 74. Example of DBS Utility Commands to Create Accounting Tables (Part 2 of 4)

Chapter 11. Using the Accounting Facility 257

Note: If you have accounting tables defined from an earlier release, you can use
the ALTER TABLE statement to add the CENTURY column to your existing
tables.

The information for all the columns in the tables is loaded directly from the
accounting records. These tables are described in detail below.

SQLDETAIL Table
Each row of the SQLDETAIL table contains selected data from one termination
accounting record, and represents one session of the database manager. The
following information is inserted into the SQLDETAIL columns:

SQLNAME The VM user ID of the database machine

DATE The dates from the termination records

TIME The times from the termination records

RUNTIME The time, in seconds, from startup to shutdown

DASDIO The total number of DASD I/Os for the database manager session

LPAGBUFF The total number of times that the database manager looked at a
page buffer

CENTURY The century numbers of the dates from the termination records.

SYSDETAIL Table
Each row of the SYSDETAIL table contains selected data from one initialization,
operator or checkpoint accounting record. The following information is inserted
into its columns:

SQLNAME The VM user ID of the database machine

CREATE TABLE USERDETAIL(SQLNAME CHAR(8),
CPUSER CHAR(8),
SQLUSER CHAR(8),
USERDATA CHAR(16),
DATE CHAR(6),
TIME CHAR(6),
PNAME CHAR(8),
ATIME INTEGER,
CPUTIME INTEGER,
ULPAGBUF INTEGER,
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 74. Example of DBS Utility Commands to Create Accounting Tables (Part 3 of 4)

CREATE TABLE REMDETAIL(SQLNAME CHAR(8),
CPUSER CHAR(8),
SQLUSER CHAR(8),
DATE CHAR(6),
TIME CHAR(6),
LUWID VARCHAR(27),
CENTURY CHAR(2)) IN SQLDBA.ACCTNG;

Figure 74. Example of DBS Utility Commands to Create Accounting Tables (Part 4 of 4)

258 System Administration

TYPE INIT is inserted if the row describes an initialization record, and
SYSTEM is inserted if the row describes an operator or checkpoint
record

DATE The dates from the operator/checkpoint or initialization records

TIME The times from the operator/checkpoint or initialization records

RUNTIME If the value in TYPE is INIT, this value shows the amount of time
for the initialization process to finish (in seconds); if the value in
TYPE is SYSTEM, this value contains binary zeros

CPUTIME This column contains the processor time used (in milliseconds)

LPAGBUFF The number of times the agent (represented by the accounting
record) looked into a page buffer

CENTURY The century numbers of the dates from the initialization records.

USERDETAIL Table
Each row of the USERDETAIL table contains selected data from one user
accounting record, either from a local or a remote processor. The following
information is inserted into its columns:

SQLNAME The VM user ID of the database machine

CPUSER The VM user ID of the user machine accessing the application
server (for VSE guests in batch and ICCF environments, it contains
the job name of the user partition)

SQLUSER The authorization ID that was established, explicitly or implicitly,
during the connect process

USERDATA The installation-supplied accounting data. If no accounting exit
was coded to supply installation-dependent data, you can omit this
column when defining the table. If you use the VM/ESA operating
system, the first 4 bytes of this column contain the CMS work unit
ID. If you have your own accounting exit, and it uses the first 4
bytes of this column, it will write over the CMS work unit ID. If
you have VSE guest sharing, this column contains the following
information for online environments:
v The CICS transaction ID
v The CICS terminal operator ID (if available)
v The CICS terminal ID (if available)
v Any data you supply through your own cancel exit.

DATE The dates from the user records

TIME The times from the user records

PNAME The name of the package that was last active for the application

ATIME The active time (that is, the time that the user was connected to an
agent) in seconds

CPUTIME The processor time used (in milliseconds)

ULPAGBUF The number of times the agent looked into a page buffer.

CENTURY The century numbers of the dates from the user records.

REMDETAIL Table
Each row of the REMDETAIL table contains selected data from one remote user
accounting record. The columns are described as follows:

Chapter 11. Using the Accounting Facility 259

SQLNAME The VM user ID of the database machine (application server)

CPUSER The VM user ID of the user machine accessing the application
server (for VSE guests in batch and ICFF environments, the job
name of the user partition)

SQLUSER The authorization ID that was established, explicitly or implicitly,
during the connect process

DATE The dates from the remote user records

TIME The times from the remote user records

LUWID The qualified LUNAME, the sequence number, and the instance
number

CENTURY The century numbers of the dates from the remote user records.

Loading the Accounting Data
If you have created the tables described above, you can use the DBS utility to load
the accounting records into the tables, as shown in Figure 75.

The ARIACC1 file contains the accounting records. The file can be the VM system
accounting file. The DBS utility selects the DB2 Server for VM records from the file
by using positions 75-78 to identify the records.

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;
SET ERRORMODE CONTINUE;
DATALOAD TABLE(SQLDETAIL) IF POS(75-78)='TSQL'

SQLNAME 1-8 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
DASDIO 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='ISQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

Figure 75. Example DBS Utility Commands to Load Accounting Tables (Part 1 of 3)

260 System Administration

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='OSQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(SYSDETAIL) IF POS(75-78)='CSQL'
SQLNAME 1-8 CHAR
TYPE 17-24 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
RUNTIME 61-64 FIXED
CPUTIME 65-68 FIXED
LPAGBUFF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

Figure 75. Example DBS Utility Commands to Load Accounting Tables (Part 2 of 3)

DATALOAD TABLE(USERDETAIL) IF POS(75-78)='USQL'
SQLNAME 1-8 CHAR
CPUSER 9-16 CHAR
SQLUSER 17-24 CHAR
USERDATA 25-40 CHAR
DATE 41-46 CHAR
TIME 47-52 CHAR
PNAME 53-60 CHAR
ATIME 61-64 FIXED
CPUTIME 65-68 FIXED
ULPAGBUF 69-72 FIXED
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

DATALOAD TABLE(REMDETAIL) IF POS(75-78)='RSQL'
SQLNAME 1-8 CHAR
CPUSER 9-16 CHAR
SQLUSER 17-24 CHAR
DATE 25-30 CHAR
TIME 31-36 CHAR
LUWID 37-63 CHAR
CENTURY 73-74 CHAR NULL IF POS(73-74) = 0

INFILE(ARIACC1)
COMMIT WORK;
SELECT * FROM SQLDETAIL;
SELECT * FROM SYSDETAIL;
SELECT * FROM USERDETAIL;
SELECT * FROM REMDETAIL;

Figure 75. Example DBS Utility Commands to Load Accounting Tables (Part 3 of 3)

Chapter 11. Using the Accounting Facility 261

262 System Administration

Chapter 12. Planning and Implementing Configurations

Initially, you set up one database machine with one database: then, depending on
your needs, you can add additional databases or database machines. If you use a
VM/ESA operating system and you have VSE running as a guest, you may also
want to set up VSE guest sharing.

The chapter presents the following topics:
v Configuration concepts

This section discusses the reasons for having more than one database machine,
and what this means to the user; database machines in a TSAF collection or in
an SNA network, and what this means to the user; adding service machines, and
considerations for national language support; types of database machines; and
environment considerations.You can also use TCP/IP to connect to other
databases. For more information, refer to “Chapter 16. Using TCP/IP with DB2
Server for VM” on page 415.

v Primary database machines
This section discusses the reason for adding a primary database machine, and
shows examples of adding a primary and a secondary database machine.

v Adding a service machine
v Defining additional user machines
v Adding a database

This section contains an example of adding a database, and describes the options
that you can specify for it and how to change the password of user ID SQLDBA.

v VSE guest sharing
This section presents general information on VSE guest sharing, restrictions on
guest sharing, and examples of guest sharing configurations.

Configuration Concepts
This section discusses the following topics:
v The reasons for adding an additional database machine
v Databases in a TSAF collection or an SNA network
v Adding service machines
v Types of database machines.

Reasons for Adding a Database Machine
Initially, a set-up contains one database machine which is called SQLMACH. As
your installation grows, you can add more database machines. The primary reason
for doing so would be to permit multiple user mode access to more than one
database at the same time, or multiple database operation.

Consider, for example, an installation having one database machine (SQLMACH)
and three databases (SQLDBA, DATA1, and DATA2). A database machine can
access only one database at a time. Thus, as Figure 76 shows, while the database
machine is accessing one database in multiple user mode, the other databases are
inactive.

© Copyright IBM Corp. 1987, 2001 263

|
|
|

Users could access the remaining databases (DATA1 and DATA2) in single user
mode if their machines were set up to do so; however, it is not recommended that
the database manager be used this way.

If you define two more database machines, multiple user access to all three
databases is now possible at the same time. Figure 77 shows a multiple database
configuration. In this case, two more database machines are defined (SQLMFB and
SQLJDS). Each machine “owns” one database (that is, has the MDISK entries in its
directory for the database minidisks), and operates independently of the others.

SQLDS

SQLDBA DATA1 DATA2

MIKE JIM CINDY

MDISK
and

CP-LINK

Figure 76. One Database Machine Accessing One Database

264 System Administration

Implications for Users
Although database machines operate independently of each other, users are not
restricted to a particular one.

Suppose user CINDY in Figure 77 has CONNECT authority on all three databases.
With this configuration, she can move between databases by using the SQLINIT
EXEC or the SQL CONNECT statement.

For example, CINDY could issue SQLINIT DBNAME(SQLDBA) to prepare her
virtual machine for accessing the SQLDBA database, and then use ISQL to access
that database. To access any of the other databases, she could leave ISQL, reissue
the SQLINIT EXEC (specifying another database), and then access that database
using ISQL. She could issue the SQL CONNECT statement to switch databases
without leaving ISQL. (The SQL CONNECT statement is described in the DB2
Server for VSE & VM Database Administration manual.)

Databases in a TSAF Collection or an SNA Network
Processors can be part of either a TSAF collection or an SNA network.You can also
use TCP/IP to connect to other databases. For details on TCP/IP connectivity, refer
to “Chapter 16. Using TCP/IP with DB2 Server for VM” on page 415.

MIKE JIM CINDY MARY BOB EDWARD

SQMACH SQLMFB SQLJDS

MDISK
and

CP LINK

MDISK
and

CP LINK

MDISK
and

CP LINK

SQLDBA DATA1 DATA2

Figure 77. Multiple Users Accessing Multiple Databases

Chapter 12. Planning and Implementing Configurations 265

|
|
|

The TSAF collection is composed of a group of processors with the TSAF virtual
machine component installed, running and connected. A distributed relational
database network is a group of interconnected processors supporting relational
databases that can be accessed locally or remotely through either the SQLDS
protocol or the DRDA protocol. Each processor gains access to the SNA network
through its communications subsystem. On the database manager, the
communications subsystem consists of the CMS communications directory,
APPC/VM, TSAF, AVS, and the VTAM product.

All databases generated on these processor must be identified as either LOCAL or
GLOBAL resources. A LOCAL database can be accessed only by users located on
the same processor as the database. A GLOBAL database can be accessed by users
located on other processors as well, as long as the processor on which the database
resides is physically connected to those processors or is in a TSAF collection.

A DB2 Server for VM application server can receive communications from other
relational database products when the PROTOCOL=AUTO parameter of the
SQLSTART EXEC is specified.

A DB2 Server for VM application requester can communicate with other relational
database products when either DRDA or AUTO is specified for the PROTOCOL
parameter of the SQLINIT EXEC.

If the application requester uses DRDA protocol to communicate with a like
application server, the overhead increases due to the protocol conversion between
the two. The use of DRDA protocol between like machines is usually only for
problem determination or modelling.

In Figure 78, application servers SQLA and SQLB are on two processors connected
in a TSAF collection. One of the processors has access to the SNA network through
AVS. The application requester USER1 is on the other processor. It is assumed that
the application server SQLB supports DRDA protocol.

266 System Administration

Application server SQLA is LOCAL; thus it can be accessed only by application
requesters that are on the same processor, such as USER1. Application server SQLB
is GLOBAL, so it can be accessed by application requesters such as USER1 located
anywhere in the TSAF collection or SNA network. Because application server SQLB
supports the DRDA protocol, it can also be accessed by unlike application
requesters that support the DRDA protocol in the SNA network.

Application requester USER1 can access DB2 Server for VM application servers in
both the TSAF collection and the SNA network, as well as unlike application
servers that support the DRDA protocol in the SNA network.

TSAF Collection

VTAM
product

Application
Requester
USER1

Application
Server
SQLA

TSAF TSAF
Application

Server
SQLB

AVS

CMS CMS CMS CMS GCS

CP CP

SNA Network

VM operating system
and the VTAM product
running a DB2/VM
application server
(SQLC).

VM operating system
in a TSAF collection
with AVS and the
VTAM product
running a DB2/VM
application server
(SQLD).

Non-VM operating system
running a relational
database management
system (DB2E) that
supports DRDA protocol.

Figure 78. Accessing Application Servers in a Network

Chapter 12. Planning and Implementing Configurations 267

Implications for the User
Users do not have to know the location of the application servers: all they need to
know is the server name (server_name). For example, in Figure 78, a user can
establish a default application server for implied connection by entering one of the
following SQLINIT EXEC commands:

SQLINIT DBNAME(SQLA)
SQLINIT DBNAME(SQLB)
SQLINIT DBNAME(SQLC)

The user then can access the default application server through ISQL, the DBS
utility, or an application program, or can issue the SQL CONNECT statement to
switch to another application server. For example, if USER1 accesses the SQLA
application server through ISQL, he or she can later switch to the SQLC
application server, without having to exit ISQL, by entering CONNECT TO SQLC.
For more information on the SQL CONNECT statement, see the DB2 Server for VSE
& VM Database Administration manual.

AVS Session Limit Considerations
When an application requester uses AVS to communicate with a remote application
server, a connection is initiated. If this connection causes the established session
limit to be exceeded, AVS puts the connection in a pending state. This state is
maintained indefinitely until another session becomes available, which happens
when an existing connection is disconnected or terminated. AVS then allocates the
connection on this session, and control is returned to the user application.

Attention: To avoid this situation, it is recommended to plan for peak usage. The
calculated session limit should be increased to allow for some additional
connections.

Adding Service Machines
If users do not have a database machine installed on their processors, they can still
access database machines on other processors if a service machine has been
installed. In a TSAF collection a service machine gives users access to a production
minidisk that contains DB2 Server for VM files, such as SQLINIT EXEC and ISQL
EXEC, necessary for users to access the databases.

Figure 79 shows an example of a user accessing an application server located on
another processor in a TSAF collection.

268 System Administration

In Figure 79, user FRED is accessing a database machine located on another
processor. FRED is located on a processor that does not have a database machine
but does have a service machine installed.

National Language Support for Databases
Most error and informational messages are issued from the user machine, but
messages and output for operator commands (SHOW and COUNTER), and HELP
text are issued from the database machine. Thus if your organization has the
database manager on different processors in a collection, you should support the
same national languages on the database machine as are supported on the user
machines that can access it. For example, if you support French HELP text and
messages on a user machine, and a user accesses a database that does not have
French HELP text and messages, that user will receive error and informational
messages in French, but the HELP text for those messages will be in English.
Figure 80 shows an example of such a set-up.

FRED

SQLSERV

SQLA
(LOCAL)

SUE

SQLDB1

MDISK
and

CP LINK

SQLB
(GLOBAL)

JACK

SQLDB2

MDISK
and

CP LINK

Figure 79. A Processor with a Service Machine Installed

Chapter 12. Planning and Implementing Configurations 269

Types of Database Machines
When a set-up includes multiple databases, the following terms are used:
v A primary database machine is one that owns a production minidisk: for

example, the SQLMACH machine, defined during installation.
v A secondary database machine is one that does not own a production minidisk:

for example, the service machine discussed earlier in this chapter. In place of an
MDISK control statement for the production minidisk, its VM directory contains
the following LINK statement:

LINK SQLMACH 195 195 RR

User
Machine
(English) DB2/VM

Application
Server

User
Machine
(French)

SNA

VM1
VM2

195

195

ISQL HELP
Tables

(English)

Message
Repository

SQLMACH
User
Machine
(French)

VM3

195 Message
Repository

T
S
A
F

Figure 80. National Language Support for Remote Access Users

270 System Administration

which makes the SQLMACH machine’s production minidisk available to this
secondary database machine. For more information, see “Adding a Secondary
Database Machine” on page 278.

v The primary production minidisk is the original production minidisk in your
installation. It is owned by the SQLMACH database machine.

v A secondary production minidisk contains a copy of the product-supplied files
on the original production minidisk. It is owned by a primary database machine
other than the SQLMACH machine.

These definitions are illustrated in Figure 81

Here, the SQLMACH machine owns the primary production minidisk through an
MDISK control statement. The DBMACH1 machine is a secondary database
machine, with a LINK directory control statement to the primary production
minidisk. The DBMACH2 machine is another primary database machine because it
owns a copy of the original production minidisk. This DBMACH2 machine also
has a LINK entry for the SQLMACH machine’s service minidisk. The service
minidisk contains all IBM-supplied files, including those that are necessary for a

Primary
Production
Minidisk

Secondary
Production
Minidisk

ARISPDFC

Primary
Database
Machine

MDISK 195... LINK SQLMACH 195 195 RR MDISK 195...

Secondary
Database
Machine

Primary
Database
Machine

DBMACH1SQLMACH DBMACH2

ARISPDFC

Service
Minidisk

Figure 81. Types of Database Machines

Chapter 12. Planning and Implementing Configurations 271

production minidisk. This link is necessary to prepare the secondary production
minidisk by copying all appropriate IBM-supplied files from the service minidisk
to it. The ARISPDFC EXEC is supplied for use in copying these files. For
information on using this EXEC, see “Appendix G. Service and Maintenance
Utilities” on page 467.

The product-supplied files must be the same on all production minidisks at your
installation. If you apply service to one production minidisk, you must apply the
service to all. (The DB2 Server for VM Program Directory describes how to apply
service.) When you create a secondary production minidisk, you create a new
environment, with its own application server and its own users. You should keep
the environments as independent as possible: that is, users should not be allowed
to communicate with database machines using different production minidisks. (In
the VM/ESA operating system, users can access any production minidisk.)

VM/ESA Operating System Considerations
In VM/ESA operating system, there is no dependency between the database
machine’s production disk and the database being accessed since the connection by
APPC/VM is to a resource identifier rather than a virtual machine. You do not
have to copy the virtual machine name to the bootstrap before the resource adapter
can communicate with the database.

The resource is identified when SQLSTART is issued. For this reason, resource
identifiers must be unique within a TSAF collection or an AVS gateway. The server
name (server_name) does not have to be the same as the resource identifier (resid);
however, it should be unique within the SNA network.

In this environment, a user must have a link to a valid production disk. The user
can then access any of the application servers in the same collection or network.

Primary Database Machines

Why Add a Database Machine?
The descriptions throughout this manual assume there is only one DB2 Server for
VM production minidisk, which is owned by the SQLMACH machine and
supports all activity on a VM system. This minidisk contains the SQLFDEF files
that identify the databases; the SQLDBN files that identify the database machines
and the databases they access; the bootstrap modules that identify where DB2
Server for VM code is to be loaded; and all the code that the database manager
needs to run daily. Because it describes the environment, it changes as your
environment changes. For example, it is updated if you generate a database, if you
add a dbextent to a database, and at times during database machine startup.

In an environment that contains many database machines doing many
administrative tasks, having only one production minidisk can lead to contention
problems: only one machine at a time can write to the production minidisk, so
other machines may have to wait for it to become available. In addition, in
environments that contain extremely sensitive data, having only one production
minidisk can be a security exposure: every DB2 Server for VM user would have
read access to that production minidisk, and could easily determine what
databases exist by scanning the files on it.

Thus, while a single production minidisk is suitable for many installations, it does
not suit others. For these situations, you can define and use multiple production
minidisks.

272 System Administration

Adding a Primary Database Machine
One primary database machine already exists in your installation: the SQLMACH
machine, which you defined during installation. It owns the original (primary)
production minidisk. To define an additional primary database machine, you
define and initialize a secondary production minidisk, which is a copy of the
original. The new primary database machine owns this new production minidisk
through the MDISK statement for this disk in its VM directory entries.

Step 1: Update the VM Directory
Using your local operating procedures, update the VM directory entries for the
new primary database machine. Figure 82 shows an example of these statements.
The name of the database machine here is dbmach2. For a complete description of
VM directory control statements, see the VM/ESA: CP Command and Utility
Reference manual.

Statement 1: USER dbmach2 dbmachpw xM xM G
This statement defines the database machine with the VM privilege class
G. For information on virtual storage requirements for the database
machine see the DB2 Server for VM Program Directory.

If you need to perform tape and DASD file load and unload operations for
the DBS utility or trace facility, privilege class B is recommended. Privilege
class B is needed to attach tapes.

For the virtual machine name and password shown here, replace dbmach2
and dbmachpw with your own machine name and password.

Statement 2: OPTION MAXCONN 26
The MAXCONN value of the VM OPTION control statement determines
the maximum number of APPC/VM connections allowed for a virtual
machine.

Set this value to be the sum of the following:

1
ACCOUNT nnnnnnnn

2 OPTION MAXCONN 26
3 IUCV ALLOW
4 IUCV *IDENT SQLDBA GLOBAL
5 IPL CMS
6 CONSOLE 009 3215 T OPERATOR

SPOOL 00C 2540 READER *
SPOOL 00D 2540 PUNCH A
SPOOL 00E 1403
LINK MAINT 190 190 RR

7 LINK MAINT 19D 19D RR
LINK MAINT 19E 19E RR

8 LINK SQLMACH 193 193 RR
10 MDISK 191 3380 cylr 010 volser W
12 MDISK 195 3380 cylr 024 volser RR readpw writepw multipw
13 MDISK 200 3380 cylr 034 volxxx R readpw writepw
14 MDISK 201 3380 cylr 008 volxxx R readpw writepw
15 MDISK 202 3380 cylr 077 volxxx R readpw writepw

USER dbmach2 dbmachpw xM xM G

Figure 82. Example VM/ESA Directory Control Statements for the Database Machine

Chapter 12. Planning and Implementing Configurations 273

|
|

v The maximum number of user machines that can be sharing access to
the database machine

v The maximum number of database minidisks to be accessed at any
given time (directory, logs, and dbextents)

v 1, if you use a VM/ESA operating system, for the connection to the CP
identify system service *IDENT

v 1, if you can use TCP/IP communications (that is, the TCPPORT
initialization parameter is not zero).
For more information see “Setting the MAXCONN Value” on page 283.

If you plan to use the DB2 Server for VM accounting facility with this
database machine, you should also specify the ACCT operand. See
“Chapter 11. Using the Accounting Facility” on page 247.

Statement 3: IUCV ALLOW
This statement enables any virtual machine to use APPC/VM or IUCV to
initiate communications with the database machine. In order to actually
access information in a database, however, a user machine must either
have been granted CONNECT authority to the database, or all users must
have been granted CONNECT authority (with the ALLUSERS parameter,
which is the default). If either of these conditions is met, the user can
exercise all privileges granted to PUBLIC.

For more information, see “VM Directory Control Statements” on page 137.

Statement 4: IUCV *IDENT resid LOCAL
Specify the server name (as entered in the DBNAME parameter of the
SQLSTART EXEC) and whether the resource is LOCAL or GLOBAL. If
LOCAL is specified, only users on the same processor as the application
server can access it. If GLOBAL is specified, any user in the same
collection as the application server can access it.

In this example, the application server with the resource identifier resid is
specified as a LOCAL resource.

Note: If remote access is being used, it is recommended you ensure that
server names are unique within a set of interconnected SNA
networks, and that resids are unique in a TSAF collection or a
gateway. (A gateway is also referred to as an LU.) The resid must
also be identified with a GLOBAL scope. For more information, see
“Distributed Processing Administration” on page 139.

Statement 5: IPL CMS
Uses the CMS saved segment name (for example, CMS) applicable to your
VM/ESA environment.

Statement 6: CONSOLE 009 3215 T OPERATOR
If the database machine runs in disconnected mode, you should specify an
alternate console. In the statement shown, the console for the OPERATOR
virtual machine is identified as the alternate console. For information on
running the database machine in disconnected mode, see “System and DB2
Server for VM Operator Console Considerations” on page 141.

Statement 7: LINK MAINT 19D 19D RR
This is the LINK statement for the CMS Help facility, which is necessary in
order for users to access the DB2 Server for VM Help panels for CMS.
(Without it, users can still access the HELP text that is stored in a database,
as that HELP text is accessed through ISQL, not CMS.)

274 System Administration

Statement 8: LINK SQLMACH 193 193 RR
This is the LINK control statement for the service minidisk (the SQLMACH
machine’s 193 minidisk). Specify virtual device address 193 and link access
mode RR, as shown. (See Figure 84 on page 278.)

All database machines (primary or secondary) should use the same service
minidisk, to ensure that they have the same level of service.

Statement 9: LINK SQLMACH 195 195 RR
This is the LINK control statement for the production minidisk (the
SQLMACH machine’s 195 minidisk). Specify virtual device address 195
and link access mode RR, as shown. (See Figure 84 on page 278.)

All secondary database machines should share the same minidisk with its
primary database machine.

Statement 10: MDISK 191 3380 cylr 010 volser W
This is the MDISK control statement for a read/write work minidisk
(A-disk) with virtual device address 191 and link access mode W. The
space allocations for various devices are shown in the Installation
Requirements and Considerations chapter in the DB2 Server for VM
Program Directory.

Statement 12: MDISK 195 3380 cylr 020 volser RR readpw writepw multipw
This is the MDISK entry for the secondary DB2 Server for VM production
minidisk to be owned by this machine. Specify virtual device address 195
and link access mode RR. Both a read password (readpw) and write
password (writepw) must be specified. The space allocations for a
production minidisk on various DASD are identified in the Installation
Requirements and Considerations chapter in the DB2 Server for VM
Program Directory.

This secondary production minidisk must be online and available for all
DB2 Server for VM operations. When updates to it are required, the
product-supplied database generation and maintenance EXECs relink it
with access mode M or W.

Specify a multiple-access password (multipw) for this secondary production
minidisk if:
1. You are defining other database machines to access this machine’s

production minidisk.
2. You want one database machine to be able to perform database

generation and maintenance activities while others are accessing this
minidisk in read mode.

If multiple database machines share a production minidisk, and the
database machine that owns the minidisk does not have a multiple-access
password (multipw) specified in its VM directory MDISK control statement,
only the machine that does the database maintenance can access the
production disk with write-access. If database maintenance must be done,
the other machines cannot be performing normal processing using
read-access to the production minidisk.

Statements 13, 14, and 15: MDISK ... vol xxx R readpw writepw
These are the directory MDISK statements for each minidisk of the starter
database. They must have a link access mode R, a read password (readpw),
and a write password (writepw). The same readpw and writepw should be
assigned to all minidisks defined for the database. The minidisk space and
virtual disk address requirements for various DASD devices for databases

Chapter 12. Planning and Implementing Configurations 275

defined using the starter database specifications are identified in the
Installation Requirements and Considerations chapter in the DB2 Server for
VM Program Directory.

Step 2: Prepare the New Database Machine
1. Log on to the database machine.

If this is a new virtual machine, you will receive messages after CMS is loaded,
because you do not yet have a PROFILE EXEC or A-disk for the virtual
machine. Ignore them and continue.

2. If this is a new virtual machine, format the 191 minidisk (A-disk) by entering
the command:

FORMAT 191 A

Respond to the prompts issued during CMS FORMAT command processing.
For a complete description of this command and an explanation of the required
prompt responses, see the VM/ESA: CMS Command Reference manual.

3. Acquire write access to your 195 minidisk by entering the CP command:
LINK dbmach2 195 195 W

where dbmach2 is your database machine ID.
4. Format your secondary production minidisk by entering the CMS command:

FORMAT 195 Q

Respond to the prompts issued during CMS FORMAT command processing.
5. Create or update the database machine’s PROFILE EXEC. The following shows

an example of PROFILE EXEC entries.

Statement 1: CP SET RUN ON
Required if the database machine will be run in disconnected mode.
(Most database machines are run in disconnected mode.)

Statement 2: ACCESS 195 Q
Accesses the secondary production minidisk (virtual device address
195) with file mode Q.

Statements 3, 4, 5, and 6: CP TERMINAL xxxx
Establish the recommended VM TERMINAL line-edit symbols for the
database manager.

Statement 7: CP SET EMSG ON
Sets the EMSG function value ON. This is the recommended setting.

Statement 8: SET LANGUAGE AMENG (ADD ARI USER
Ensures a national language message repository is available if there is
no CMS saved segment for DB2 Server for VM messages.

1 CP SET RUN ON
2 ACCESS 195 Q
3 CP TERMINAL LINEND #
4 CP TERMINAL LINEDEL OFF
5 CP TERMINAL CHARDEL OFF
6 CP TERMINAL ESCAPE
7 CP SET EMSG ON
8 SET LANGUAGE AMENG (ADD ARI USER

c|

Figure 83. PROFILE EXEC Entries for an Additional Primary Database Machine

276 System Administration

6. Run the PROFILE EXEC by entering the command:
PROFILE

7. Access the service minidisk by entering the CMS command:
ACCESS 193 V

8. At this time, you should still have access to your secondary production
minidisk (195 minidisk, file mode Q). To initialize this minidisk, you must copy
the appropriate product-supplied CMS files to it, by running the ARISPDFC
EXEC:

ARISPDFC

For more information on the functions ARISPDFC performs, refer to
“Appendix G. Service and Maintenance Utilities” on page 467.

VMSES/E Consideration

VMSES/E consideration: ARISPDFC copies the ARISQLLD LOADLIB to the
secondary production minidisk. To create a different version of the ARISQLLD
LOADLIB, create a PPF (Product Parameter File) override to the DB2 Server for
VM $PPF file (5697F421 $PPF). Refer to the VM/ESA: VMSES/E Introduction and
Reference for information on creating PPF overrides. In your new PPF override,
you must:
v Reflect a new local modification disk, which has the different versions of the

TEXT files to be included into the ARISQLLD LOADLIB as local
modifications.

v Change the installation user ID and test production address or SFS directory
name to reflect the secondary user ID and production minidisk or SFS
directory.

v Change the PPF build section to bypass all builds except for the one for the
LOADLIB.

End of VMSES/E Consideration

9. Acquire read access to your production minidisk by entering:
LINK dbmach2 195 195 RR
ACCESS 195 Q

where dbmach2 is your database machine ID.

Note: Do not log off yet.

Step 3: Generate a Database
The process of defining an additional primary database machine also generates a
database. In this example, the specifications for the starter database are used. If
you want to generate a different database, review “Chapter 2. Planning for
Database Generation” on page 13.

To generate a starter database, enter:
SQLDBINS DBNAME(name) STARTER(YES) RESID(resid)

where name is the name of the database to be generated.

Note: If DBNAME is not the same as RESID, you must specify the resid option.

The following prompt appears:

Chapter 12. Planning and Implementing Configurations 277

|

ARI6010D Do you want to install English DB2 Server for VM HELP text?
Enter 0(No), 1(Yes), or 111(Quit).

If you need information on how to respond to this prompt, see “Running the
SQLDBINS EXEC” on page 285.

After the database is generated, you can log off the new primary database
machine.

For information on installing HELP text in additional languages, see “National
Language Support for Messages and HELP Text” on page 331.

Adding a Secondary Database Machine
This section describes how to define an additional database machine. Because a
database machine usually owns one or more databases, this section also shows
how to generate a database for the new machine.

Before proceeding, you must know the read and write (or multiple access)
passwords for the DB2 Server for VM production minidisk.

Step 1: Update the VM Directory
Using your local operating procedures, update the VM directory entries for the
new database machine. Figure 84 shows an example. The name of the database
machine is dbmach1. These statements are the same as those for a primary database
machine: for an explanation of them, see “Step 1: Update the VM Directory” on
page 273. For a complete description of these statements, see the VM/ESA: CP
Command and Utility Reference manual.

Use the CMS saved segment name (for example CMS, CMSL) and device types
applicable to your VM operating system.

1 USER
ACCOUNT nnnnnnnn

2 OPTION MAXCONN 25
3 IUCV *IDENT LOCAL
4 IUCV ALLOW
5 IPL CMS PARM AUTOCR
6 CONSOLE 009 3215 T OPERATOR

SPOOL 00C 2540 *
SPOOL 00D 2540 A
SPOOL 00E 1403
LINK MAINT 190 190 RR

7 LINK MAINT 19D 19D RR
LINK MAINT 19E 19E RR

8 LINK SQLMACH 193 193 RR
9 LINK SQLMACH 195 195 RR

10 MDISK 191 3380 cylr 010 volser W
13 MDISK 200 3380 cylr 034 volxxx R readpw writepw
14 MDISK 201 3380 cylr 008 volxxx R readpw writepw
15 MDISK 202 3380 cylr 077 volxxx R readpw writepw

dbmach1 dbmachpw xM xM G

resid

Figure 84. VM Directory Control Statements for a Secondary Database Machine

278 System Administration

Step 2: Prepare the Database Machine
1. Log on to the database machine and IPL CMS.

If this is a new virtual machine, you will receive messages after CMS is loaded
because you do not yet have a PROFILE EXEC or A-disk for the virtual
machine. Ignore them and continue.

2. If this is a new virtual machine, format the 191 minidisk (A-disk) by entering
the command:

FORMAT 191 A

Respond to the prompts issued during CMS FORMAT command processing.
For a complete description of CMS commands and an explanation of the
required prompt responses, see the VM/ESA: CMS Command Reference manual.

3. Create or update the database machine’s PROFILE EXEC. Figure 85 shows an
example. These statements are the same as those for a primary database
machine: for an explanation of them, see Figure 83 on page 276.
Note that the entries are provided in file SQLMACH PROFILE located on the
production disk.

4. Run the PROFILE EXEC by entering the command:
PROFILE

Note: Do not log off yet.

Step 3: Generate a Database
To generate a database, you must first establish access to the service minidisk.
Enter the following command:

ACCESS 193 V

In this example, you will generate a database using the starter database
specifications. Before proceeding, review the minidisk requirements shown in DB2
Server for VM Program Directory. If you choose to generate your own database,
review “Chapter 2. Planning for Database Generation” on page 13.

To generate a starter database enter:
SQLDBINS DBNAME(name) STARTER(YES) RESID(name)

where name is the name of the database to be generated.

Note: If DBNAME is not the same as RESID, you must specify the resid option.

The following prompt appears:
ARI6010D Do you want to install English SQL/DS HELP text?

Enter 0(No), 1(Yes), or 111(Quit).

1 CP SET RUN ON
2 ACCESS 195 Q
3 CP TERMINAL LINEND #
4 CP TERMINAL LINEDEL OFF
5 CP TERMINAL CHARDEL OFF
6 CP TERMINAL ESCAPE
7 CP SET EMSG ON
8 SET LANGUAGE AMENG (ADD ARI USER

c|

Figure 85. PROFILE EXEC Entries for an Additional Database Machine

Chapter 12. Planning and Implementing Configurations 279

If you need information on how to respond to this prompt, see “Running the
SQLDBINS EXEC” on page 285.

After the database is generated, you can log off the new database machine.

For information on installing HELP text in additional languages, see “National
Language Support for Messages and HELP Text” on page 331.

Adding a Service Machine
Use VMSES/E to install the database manager code on that processor, but do not
run the database installation utilities. See “Chapter 1. Planning for Installation” on
page 1 and the DB2 Server for VM Program Directory.

Defining Additional User Machines
To define additional user machines you can either update existing virtual machines
or define new ones. In either situation, you must update the VM directory. The
new user machine may also require a CMS communications directory. For more
information, see “Setting Up the CMS Communications Directory” on page 10.

You can update the VM directory using your installation’s current operating
procedures. For a complete description of VM directory control statements, see the
VM/ESA: CP Command and Utility Reference manual for your IBM VM system.

Figure 86 shows an example of the VM directory entries for a user machine.

Use the CMS saved segment name (for example, CMS, CMSL) and device types
applicable to your VM environment.

Statement 1: USER sqluser userpw xM xM G
This statement defines the user machine with the VM privilege class G. For
information on virtual storage requirements for the user machine, see the
DB2 Server for VM Program Directory.

Privilege class B is optional. It is only required by a user machine that
needs to attach real devices, such as tape drives.

Statement 2: ACCOUNT nnnnnnnn
This statement supplies an account number for the user machine.

Statement 3: IUCV resid
This statement is optional. It enables the user machine to connect to the

1 USER sqluser userpw xM xM G
2 ACCOUNT nnnnnnnn
3 IUCV resid

IPL CMS PARM AUTOCR
CONSOLE 009 3215
SPOOL 00C 2540 *
SPOOL 00D 2540 A
SPOOL 00E 1403
LINK MAINT 190 190 RR

4 LINK MAINT 19D 19D RR
5 MDISK 191 3380 cylr 010 volser W
6 LINK SQLMACH 195 195 RR

Figure 86. VM Directory Entries for a User Machine

280 System Administration

|
|
|

specified database (resid). If you want a user machine to communicate with
more than one database, specify more than one IUCV resid statement.

Alternatively, user machines can communicate with databases without the
need of the IUCV resid statement if both the following are true:
v The database is located on the same processor, or is defined as a

GLOBAL resource on another processor (within the same collection).
v The database machine that owns the database has the IUCV ALLOW

statement defined in its VM directory.

For more information on the VM directory control statements that affect
inter-machine communications, see “VM Directory Control Statements” on
page 137.

Statement 4: LINK MAINT 19D 19D RR
This is the LINK statement for the CMS Help facility, which is necessary in
order for users to access the DB2 Server for VM Help panels for CMS.
(Without it, users can still access the HELP text that is stored in a database,
as that HELP text is accessed through ISQL, not CMS.)

Statement 5: MDISK 191 3380 cylr 003 volser W
This is the MDISK control statement for a read/write work disk (A-disk)
with virtual device address 191 and link access mode W specified. The 191
minidisk space allocations for various DASD devices are shown in the
Installation Requirements and Considerations chapter in the DB2 Server for
VM Program Directory.

Statement 6: LINK SQLMACH 195 195 RR
This is the LINK control statement for a production minidisk with virtual
device address 195 and link access mode RR specified; it establishes the
virtual machine as a user machine. (All user machines must contain this
statement.)

Initialize the user machine.
1. Log on to the user machine.

If this is a new virtual machine, you will receive messages after CMS is loaded,
because you do not yet have a PROFILE EXEC or A-disk for the virtual
machine. Ignore them and continue.

2. If this is a new virtual machine, format the 191 minidisk (A-disk) by entering
the command:

FORMAT 191 A

Respond to the prompts issued during CMS FORMAT command processing.
For a complete description of the FORMAT command and an explanation of
the required prompt responses, see the VM/ESA: CMS Command Reference
manual.

3. Create or update the user machine’s PROFILE EXEC. Figure 87 shows an
example.
Note that the entries are provided in the file SQLUSER PROFILE located on the
production disk.

4. Log off the user machine.

Chapter 12. Planning and Implementing Configurations 281

Statement 1: ACCESS 195 Q
Accesses the production minidisk (virtual device address 195) with file
mode Q.

Statement 2: CP SET EMSG ON
Sets the VM EMSG function value ON. This is the recommended setting.

Statement 3: SET LANGUAGE AMENG (ADD ARI USER
Ensures a national language message repository is available if there is no
CMS saved segment for DB2 Server for VM messages.

With the user machine defined this way, users can issue the SQLINIT EXEC to
communicate with a database machine, and set up a default database for the user.
If you have users who typically access the same database all the time, who do not
use the database manager frequently, or who are inexperienced in data processing,
you may want to issue the SQLINIT EXEC while doing the above steps to set up
their machines for accessing the appropriate database.

Adding a Database
You can add an additional database to any of the database machines that you have
defined. Before doing so, review “Chapter 2. Planning for Database Generation” on
page 13.

Database generation consists of a series of steps that define and format minidisks,
initialize the database, preprocess the DBS utility package, and run the DBS utility
to complete the basic generation process. After the database is defined, other DB2
Server for VM facilities are installed in it. Most of these subtasks are done by
issuing a single IBM-supplied EXEC called SQLDBINS, which calls other
IBM-supplied EXECs.

These steps are discussed in detail below.

Step 1: Defining the Database Minidisks
The first step is to add MDISK control statements to the VM directory of a
database machine to give that machine ownership of the database you are about to
generate.

Initially, the only database machine on a VM system is SQLMACH, but you can
define additional machines as described in “Adding a Primary Database Machine”
on page 273. Each database machine can have more than one database (although it

can only access one at a time), and can access databases that it does not own. For
convenience, the owner should be the machine that will be the primary user or
controller.

The specific MDISKs required depend on the requirements for your database.
However, you must define VM minidisks for:
v A directory (sometimes referred to as a BDISK)
v Either one or two database logs (one log is mandatory and two logs are required

to support dual logging)

1 ACCESS 195 Q
2 CP SET EMSG ON
3 SET LANGUAGE AMENG (ADD ARI USER

Figure 87. PROFILE EXEC Entries for a User Machine

282 System Administration

v At least one database dbextent.

Figure 88 shows an example of the MDISK control statements needed to define
minidisks for a database that has two logs and two dbextents. For detailed
information on the MDISK control statement, see the VM/ESA: CP Command and
Utility Reference manual.

Notes:

1. The first statement defines a minidisk for the database directory, and gives it a
virtual device address of 300.

2. The next statement defines the first log minidisk for the database, and gives it
a virtual device address of 324.

3. The next two statements define two dbextent minidisks, one for each storage
pool to be used initially, and give them virtual device addresses of 32A and
32B.

4. The last statement defines the optional second log minidisk and gives it a
virtual device address of 32D.

5. Keep a record of these virtual device addresses since you will later need to
supply them to the EXEC that generates the database.

6. For minimum space allocation values, see Table 41 on page 427.
7. This example assumes a count-key-data device. Thus, you must supply a

cylinder relocation factor (cylr). For an FB-512 device, specify the appropriate
block relocation factor (blkr) and number of blocks (blks).

8. The volume serial number represented by XXXXXX contains the directory,
one log, and one dbextent. The volume serial number represented by YYYYYY
contains one log and one dbextent. Set these volume serial numbers as
appropriate for your DASD volumes.

9. All the MDISK control statements must have an access mode of R.
10. For DBPSW and XLMT, specify your own read and write passwords and give

them an access mode of R.
11. Do not add LINK control statements to the VM directory for database

minidisks. Database machines will be linked to these minidisks when the
database manager is started.

The database manager does not place any restrictions on the virtual device
addresses you can use for its minidisks, unless you are using the starter database
specifications, in which case the minidisks will occupy virtual device addresses
200, 201, and 202.

Setting the MAXCONN Value: When adding MDISK control statements for a
database machine, you should also review the current setting for MAXCONN,
which is a parameter of the VM OPTION control statement. The MAXCONN
determines the number of APPC/VM connections allowed for a virtual machine,
and is unique to each database machine. Set it to be the sum of:

MDISK 300 3380 cylr 6 XXXXXX R DBPSW XLMT
MDISK 324 3380 cylr 32 XXXXXX R DBPSW XLMT
MDISK 32A 3380 cylr 523 YYYYYY R DBPSW XLMT
MDISK 32B 3380 cylr 516 XXXXXX R DBPSW XLMT
MDISK 32D 3380 cylr 32 YYYYYY R DBPSW XLMT

Figure 88. Defining VM Minidisks for a Database

Chapter 12. Planning and Implementing Configurations 283

1. The maximum number of user machines that can share access to the database
machine at the same time
Each user machine that communicates with the database machine requires an
APPC/VM or IUCV connection.

2. The maximum number of database minidisks -- the directory, the log or logs,
and the dbextents -- to be accessed at any given time.
The database manager uses DASD block I/O, which in turn uses IUCV, to
access its database minidisks. Set the MAXCONN value to allow for the
maximum number of minidisks that are attached to the database machine.
Because the database manager records the highest dbextent number for the
database, you may have to count deleted dbextents when calculating the
MAXCONN value. For example:
v If you initially have 10 dbextents and you delete dbextent number 2, you still

count 10 dbextents.
v If you initially have 10 dbextents, delete dbextent number 2, and then add

another dbextent number 2 to replace the deleted one, count 10 dbextents.
v If you initially have 10 dbextents, delete dbextent number 3, and then add

dbextent number 11, count 11 dbextents.
3. The value of MAXCONN must be increased by 1 to allow for the connection to

the CP identify system service *IDENT.
4. The value of MAXCONN must be increased by 1 if you are using TCP/IP

communications with the server (that is, if you have set the TCPPORT
initialization parameter to a non-zero value).

For example, suppose there are 50 virtual machines (users) allocated for the
installation, including the database machine SQLMACH. Of the 49 user machines,
25 are communicating with SQLMACH. In addition, assume that SQLMACH owns
three databases: one with 10 minidisks, one with 3 minidisks, and one with 15
minidisks. For the SQLMACH machine, MAXCONN should be set to 40, that is, 25
(for maximum number of connected machines) + 15 (for the largest number of
database minidisks). Note that this second number is not the sum of the minidisks
in all three databases, because the database machine can only run one database at
a time. If SQLMACH were to access the database having 3 minidisks, 37 user
machines could connect. This (in most cases) is better than setting MAXCONN to
28 (to accommodate the small database and 25 users), because then if the largest
database is accessed, only 13 user machines would be able to connect.

Naturally, you may have to adjust MAXCONN as real conditions (number of
minidisks and number of users) change.

The MAXCONN parameter also applies to single user mode; however, here it is
only concerned with the number of minidisks because no other user machines are
communicating with the database machine.

Step 2: Generating a Database
To generate a database:
1. Log on to the database virtual machine that owns the minidisks
2. Get read access to the service minidisk (ACCESS 193 V)
3. Run the SQLDBINS EXEC

This third step is described in detail below.

284 System Administration

Running the SQLDBINS EXEC: The SQLDBINS EXEC resides on the service
minidisk, where it is placed during the installation process. Figure 89 shows its
format.

DBNAME
The DBNAME parameter must be specified. For server_name, specify a name
for the database. If the IUCV *IDENT directory entry of the database machine
specifies a resource name, then the server_name specified when SQLDBINS is
invoked must match the resource name. If the IUCV *IDENT directory entry
specifies RESANY, then any valid dbname can be specified. The database name
you use must match the name defined in the IUCV *IDENT directory entry of
the database machine. Because the production minidisk defines a complete
environment, the name must be unique among all those database names
already existing on the production minidisk. Also, the name must not be
greater than 18 characters.

STARTER
If you want to generate a database using the starter database specifications,
specify STARTER(YES). The starter database will be defined on virtual device
addresses 200, 201, and 202, and you will not be able to change these
addresses. (Thus, you can generate only one starter database for each database
machine.) STARTER(NO) is the default. For more information on the starter
database specifications, see “Chapter 2. Planning for Database Generation” on
page 13.

RESID
If server_name is greater than 8 characters, you must also specify a resid of up
to 8 characters; if server_name is 8 characters or fewer, resid defaults to
server_name, unless you specify another resid.

For resid, specify a VM resource identifier for the database that is unique on
the production minidisk being accessed.

AMODE
The AMODE(24) option only needs to be specified when user-written exits do
not support 31-bit addressing. In this case, AMODE(24) must be specified
when running the SQLDBINS EXEC. For a description of this parameter, see
“AMODE” on page 55. For more information on virtual machine operating
modes, see “Running the Database Manager” on page 89.

DIRBLK
Specifies whether the SQLDBGEN EXEC will generate the new directory in 512
or 4KB blocks. The default is 512. This parameter is only effective if you
answer YES to message ARI0647D, which asks whether you want to format the
directory disk. DIRBLK(4096) is only valid if you have installed the Data
Spaces Support code.

�� SQLDBINS Dbname(server_name)
STARTER(NO)

STARTER(YES) RESID(resid) AMODE(nn)
�

�
DIRBLK(512)

DIRBLK(4096)
��

Figure 89. SQLDBINS EXEC

Chapter 12. Planning and Implementing Configurations 285

The SQLDBINS EXEC installs a database complete with DBS utility support, ISQL
support, and English HELP text. If you do not use these facilities, you should leave
the support in the database anyway.

If, for any reason, SQLDBINS ends before its processing is complete (for example,
system failure or user interrupt), rerun it.

The SQLDBINS EXEC does much of its work by calling other IBM-supplied
EXECs, most of which run without your intervention. One of these is the
SQLDBGEN EXEC, which does the actual database generation. Thus, before
issuing SQLDBINS, you must prepare the proper input for SQLDBGEN as follows.
(If you are using the starter database specifications, you do not have to prepare
any input.)

Preparing Input for the SQLDBGEN EXEC: The SQLDBGEN EXEC resides on
the service minidisk, where it is placed during the installation process. Figure 90
shows its format.

When the SQLDBGEN EXEC is called by the SQLDBINS EXEC, some of these
parameters are omitted, while others take on the value that is specified on
SQLDBINS. You only need to complete all of them if you are calling the
SQLDBGEN EXEC directly, which you might do if you are moving databases from
a VSE to a VM system, or doing problem diagnosis. For more information on
moving a database from a VSE system to a VM system, see “Migrating from a VSE
to a VM Operating System” on page 39.

DBNAME
The DBNAME parameter must be specified; you can use either DBNAME or
any valid initial substring (that is, you can use D, DB, DBN, DBNA, or
DBNAM). For server_name, specify a name for the application server. The name
must be unique among all other database names defined for the production
minidisk being accessed, and not more than 18 characters in length. If it is
more than 8 characters, you must also specify RESID.

When SQLDBINS calls SQLDBGEN, the DBNAME specified on SQLDBINS is
passed to SQLDBGEN.

DCSSID
This parameter is optional. You should specify this parameter only if you have
created saved segments for the DB2 Server for VM code and want to use those
saved segments. DCSSID specifies where the code is to be loaded in this
virtual machine. You can specify ID instead of DCSSID for the keyword: no
other abbreviation is valid. For more information on loading DB2 Server for
VM code into different areas of storage, refer to “Defining Saved Segments” on
page 177.

�� SQLDBGEN Dbname(server_name)
dcssID(id) AMODE(nn)

STARTER(NO)

STARTER(YES)
�

�
POOL(LOG)

POOL(NOLOG) RESID(resid) PARM(parameters)

DIRBLK(512)

DIRBLK(4096)
��

Figure 90. SQLDBGEN EXEC

286 System Administration

The SQLDBINS EXEC operates on the assumption that no saved segment has
yet been defined; thus, when calling SQLDBGEN, it omits the DCSSID
parameter.

AMODE
This parameter is optional and specifies the addressing mode the database
manager uses. For a description of this parameter, see “AMODE” on page 55.

The AMODE, if any, specified on SQLDBINS, is passed to SQLDBGEN.

STARTER
The SQLDBINS EXEC uses the STARTER parameter. Omit it when running
SQLDBGEN directly. STARTER(NO) is the default.

POOL
This parameter is optional. Specify POOL(LOG) to indicate that you want to
define storage pools for which the database manager does full recovery.
Specify POOL(NOLOG) to indicate that you want to have the opportunity to
define storage pools that are nonrecoverable. For more information, see
“Nonrecoverable Storage Pools” on page 236.

If you specify POOL(NOLOG), SQLDBGEN prompts you for the numbers of
any nonrecoverable storage pools you want to create. If you omit the POOL
parameter or specify POOL(LOG), you will not receive any prompts.

The SQLDBINS EXEC always omits this parameter when calling SQLDBGEN.

RESID
You must specify RESID if DBNAME is greater than 8 characters. However, if
DBNAME is less than 8 characters, RESID does not need to be specified
because in this case, DBNAME and RESID may be the same.

For RESID, specify a VM resource identifier for the database. This identifier
must be unique on the production minidisk being accessed.

The RESID, if any, specified on SQLDBINS, is passed to SQLDBGEN.

PARM
Normally, you should omit this parameter: only use it to specify additional
parameters for problem determination - for example, DUMPTYPE or
TRACRDS. It can only be specified when invoking SQLDBGEN directly, and
must always be last. For detailed information on how to use the PARM
parameter, see Chapter 4. Planning for Operation of the Database Manager.

Note: The SQLDBGEN EXEC automatically specifies SYSMODE=S,
STARTUP=C, and DUALLOG (Y or N, as appropriate) when it calls
SQLSTART, so do not specify those parameters for PARM. Also, do not
specify the PROGNAME initialization parameter as it is not valid when
STARTUP=C.

DIRBLK
Specifies whether the SQLDBGEN EXEC will generate the new directory in 512
or 4KB blocks. The default is 512. This parameter is only effective if you
answer YES to message ARI0647D, which asks whether you want to format the
directory disk. DIRBLK(4096) is only valid if you have installed the Data
Spaces Support code.

The SQLDBGEN EXEC does three major tasks:
1. Formats and reserves the database minidisks.
2. Creates a file called resid SQLFDEF that contains the CMS FILEDEF and CP

LINK commands for the minidisks.

Chapter 12. Planning and Implementing Configurations 287

3. Starts the database manager in single user mode with the coldstart option
(STARTUP=C) to format the database components, generate the catalog tables,
and create a CMS file called resid SQLDBN.

These three operations are discussed below.

Format and Reserve the Database Minidisks: For each minidisk in the database,
SQLDBGEN issues a CMS FORMAT and a CMS RESERVE command. It prompts
you for the virtual device address (cuu) of each minidisk, which you should have
recorded when you specified the MDISK statements in “Step 1: Defining the
Database Minidisks” on page 282. Because the FORMAT and RESERVE commands
will erase the current contents of the minidisk, you will be asked to confirm that
you really want to have them run: respond YES.

Attention: Be sure you are accessing the correct minidisk before you do so.

The directory is formatted with a block size of 512 bytes. All other minidisks are
formatted with a block size of 4096 bytes.

Note: When using CHANGE TO PERFF, the directory could be formatted with a
block size of 4096 bytes.

The RESERVE command creates CMS-like database files on the minidisks. These
files are not the same as regular CMS files.

Note: Never use CMS file manipulation commands (such as COPY or RENAME)
against the database files, as these commands may render the database
useless. Instead, use DB2 Server for VM facilities. For a list of commands
that you should not use, see “CMS Restrictions” on page 140.

Create SQLFDEF: Each database must have one (and only one) SQLFDEF CMS
file. The SQLDBGEN EXEC creates this file and places entries in it after it issues
FORMAT and RESERVE for each minidisk. All SQLFDEF files reside on the
production minidisk (Q-disk).

Note: The SQLDBGEN EXEC accesses the production minidisk in write access
mode M, which allows a database machine to get write access to the
production minidisk while someone else has read access. If another database
machine already has write access, both SQLDBGEN and SQLDBINS end,
and you must restart SQLDBINS when no other machine has write access.

The CMS file name of the SQLFDEF file is taken from the DBNAME parameter
you specified when you ran SQLDBINS. For example, if you specified SQLDBINS
DB(DBNAME01), a file called DBNAME01 SQLFDEF is created on the production
minidisk. You can determine whether a database exists by issuing the CMS STATE
command for the SQLFDEF file. For example, to determine whether there is a
database called PROD34, issue:

STATE PROD34 SQLFDEF Q

Before creating the SQLFDEF file and before formatting the database minidisks,
SQLDBGEN issues a STATE command similar to the one above to determine
whether the database specified in the DBNAME parameter (of SQLDBINS) already
exists. If it does, SQLDBGEN gives you the choice of either using the existing file
or replacing it. If you choose to use it, you are given a choice of whether to have
SQLDBGEN issue FORMAT and RESERVE commands for the minidisks.

288 System Administration

The SQLFDEF file contains CP LINK and CMS FILEDEF commands for the
database minidisks. When the SQLSTART EXEC is called to start the database
manager, it uses the SQLFDEF file as the vehicle by which it accesses the database.
Specifically, it copies the SQLFDEF file from the production minidisk to the
database machine’s A-disk, and changes the file name and file type to ARISFDEF
EXEC (any existing CMS file with this name); then calls ARISFDEF EXEC to access
the minidisks of a particular database.

The minidisk read and write passwords do not appear in the LINK commands in
SQLFDEF: the only place they appear is in the VM directory entry for the database
machine that owns the database. This prevents users who do not know the
passwords from accessing the database minidisks. For more information on using
the SQLFDEF file to maintain security, and for information on how to protect the
minidisks, see “Chapter 6. Maintaining Database Security” on page 135.

The FILEDEF commands in SQLFDEF associate the virtual device addresses of the
database minidisks with the ddnames used by the DB2 Server for VM program.
The database manager uses the following stylized ddnames for its directory, log,
and dbextent minidisks:
v Directory minidisk: BDISK
v Log minidisk (or minidisks): LOGDSK1 (and, optionally LOGDSK2)
v Dbextent minidisk (or minidisks): DDSK1 (through DDSKn).

Because the FILEDEFs for the program are generated for you, these ddnames are
not usually a concern. Many people refer to the minidisks by their ddnames, so it
is good to keep the ddnames in mind. The ddnames can also appear in messages
to identify a minidisk.

Do a Coldstart: After FORMAT and RESERVE are issued for the minidisks and
SQLFDEF is created, the VM mechanisms for using the database minidisks are in
place. Next, the database components must be formatted and the catalog tables
created. The SQLDBGEN EXEC does these tasks by doing a coldstart: that is,
starting the database manager in single user mode with STARTUP=C. To do this, it
calls another IBM-supplied EXEC: SQLSTART. As part of its processing, the
SQLSTART EXEC either creates or updates a CMS file named resid SQLDBN. The
resid is the name that identifies the database to the VM system.

The SQLDBN file is created on the production minidisk. It contains four pieces of
information:
1. The name of the database machine that called SQLSTART.
2. The name of the database being accessed (the server name specified in the

DBNAME parameter).
3. The dcssid optionally specified in the DCSSID parameter. The default DCSSID is

SQLDBA.
4. The AMODE in which the database manager will run.

The SQLDBN file is used to establish communications between users and database
machines. Its uses are discussed in Chapter 4. Planning for Operation of the
Database Manager; at this point, all you need to know is that it exists, and that
you should not erase it after database generation. Like the SQLFDEF file, this file
exists on the production minidisk for the life of the database.

Of more concern at this point is the coldstart processing, which requires you to
provide input about the remaining database parameters in the form of database
generation control statements. To help you provide this input, the SQLDBGEN

Chapter 12. Planning and Implementing Configurations 289

EXEC first searches for a file named resid SQLDBGEN on the production disk. If
this file exists, it means that a database with the resource identifier resid has
already been generated, so you are prompted to either use this file or replace it. If
you choose to use it, SQLDBGEN copies the file to the database machine’s A-disk
by issuing a CMS COPYFILE command similar to this one:

COPYFILE resid SQLDBGEN Q resid SQLDBGEN A (REP

Any existing file with the name resid SQLDBGEN will be replaced.

If you choose not to use this file, or if it cannot be found, SQLDBGEN copies a file
named ARISDBG MACRO from the service minidisk to the database machine’s
A-disk, by issuing a CMS COPYFILE command similar to this one:

COPYFILE ARISDBG MACRO V resid SQLDBGEN A (REP

Any existing resid SQLDBGEN file on your A-disk will be replaced.

The ARISDBG MACRO contains the control statements that are used in generating
the starter database. Usually the file that is copied is ARISDBG MACRO, not the
production minidisk resid SQLDBGEN file. (That is, usually you generate a new
database rather than replace an existing one.)

Figure 91 shows the ARISDBG MACRO.

290 System Administration

If you specify POOL(NOLOG) when using SQLDBGEN, you are prompted for the
numbers of storage pools that you want to be nonrecoverable.

Remember that the SQLDBINS EXEC calls the SQLDBGEN EXEC without the
POOL parameter. Hence, during a normal database generation, you will not be
prompted for information on nonrecoverable storage pools. If you want to define
such storage pools during database generation, enter the POOL keyword control
statements when you are given the opportunity to edit the resid SQLDBGEN file.

The SQLDBGEN EXEC generates additional database generation control statements
based on the numbers you provide. The control statement generated is the POOL
keyword control statement. (The POOL keyword control statement, along with all
the other database generation keyword control statements, is described later in this
section.)

After the SQLDBGEN EXEC has generated the POOL keyword control statements
(if any), it asks if you want to modify the file. (It does this regardless of what you
have specified for its POOL parameter.) If you answer yes, SQLDBGEN starts
XEDIT.

number of dbextents currently being defined
maximum number of storage pools
maximum number of dbextents
maximum number of dbspaces

dbextent 1 is assigned to storage pool 1

Defines dbspaces by DB2/VM

Defines three public dbspaces for users

Defines 9 public dbspaces for QMF* product

Defines 5 private dbspaces for users

Defines 80 internal dbspaces

*

CUREXTNT=1
MAXPOOLS=256
MAXEXTNT=256
MAXDBSPC=10240
END
1 1
END
PUBLIC 12800 1
PUBLIC 2048 1
PUBLIC 8192 1
PUBLIC 1024 1
PUBLIC 512 1
PUBLIC 1024 1
PUBLIC 1024 1
PUBLIC 1024 1
PUBLIC 5120 1
PUBLIC 256 1
PUBLIC 256 1
PUBLIC 128 1
PUBLIC 128 1
PUBLIC 128 1
PUBLIC 128 1
PUBLIC 128 1
PUBLIC 128 1
PRIVATE 128 1
PRIVATE 128 1
PRIVATE 128 1
PRIVATE 128 1
INTERNAL 80 1024 1
END

If you install the Query Management Facility (QMF) product,
these dbspaces aid you when you install the QMF product.

Figure 91. Database Generation Control statements for a Starter Database

Chapter 12. Planning and Implementing Configurations 291

You should modify the CMS file as appropriate and FILE it. (Note that the
comments on the right of the keyword control statements are not in the actual file.)
The SQLDBGEN EXEC then copies the resid SQLDBGEN file to the production
minidisk (this provides a record of the control statements used to generate a given
database), and then does a coldstart of the database manager. The database
manager uses the completed file to format the database components and to create
the catalog tables. The SQLDBGEN EXEC then ends.

Figure 92 shows how you might modify the CMS file for a database. The control
statements shown work with the minidisk definitions in Figure 88 on page 283.
Table 1 on page 13 summarizes all database generation parameters.

The three control statements are divided into sets of input records, called keyword
control statements, and are separated by END delimiter control statements. If you
specify more than one keyword control statement on a single input record,
separate the statements by a blank. The END delimiter control statement cannot be
combined with the other keyword control statements. The keyword control
statements must be coded in columns 1-72.

The details of specifying these database generation control statements are described
below.

Specifying Database Maximum Values: These keyword control statements define
the number of dbextents to be initialized during the database generation process
(CUREXTNT), and establish certain maximum values for the database
(MAXPOOLS, MAXEXTNT, and MAXDBSPC).

The format for specifying these values is :

CUREXTNT=2
MAXEXTNT=200
MAXDBSPC=1000
END
POOL 2 NOLOG
1 1
2 2
END
PUBLIC 12800 1
PUBLIC 2048 1
PUBLIC 8192 1
PUBLIC 1024 1
PUBLIC 512 1
PUBLIC 512 1
PUBLIC 512 2
PUBLIC 512 2
PRIVATE 128 1
PRIVATE 128 1
PRIVATE 512 1
PRIVATE 128 2
PRIVATE 128 2
PRIVATE 512 2
INTERNAL 80 1024 1
END

Figure 92. Example Database Generation Control Statements

292 System Administration

CUREXTNT
CUREXTNT specifies the number of dbextents being defined in the database
generation. You must specify CUREXTNT; there is no default value. Its value
can be from 1 to 999, and it must match the number of dbextent definition
keyword control statements. In the example shown in Figure 92 on page 292,
CUREXTNT=2, indicating that two dbextents are being defined.

MAXPOOLS
MAXPOOLS specifies the maximum number of storage pools that can ever be
defined for the database. Its value can range from 1 to 999. The default is 32.
In the example in Figure 92, MAXPOOLS is allowed to default to 32.

MAXEXTNT
MAXEXTNT specifies the maximum number of dbextents that can ever be
defined for the database. Its value can range between 1 and 999. The default is
64. In the example in Figure 92, MAXEXTNT is set to 200.

MAXDBSPC
MAXDBSPC specifies the maximum number of dbspaces that can ever be
defined for the database. Its value can range from the number of dbspaces
specified during database generation to 32 000. The default is 1 000. In the
example in Figure 92, MAXDBSPC is explicitly set to 1 000.

Each keyword control statement can be specified on its own input record or
multiple statements can be specified on one input record.

Specifying Initial Storage Pools and Dbextents: These keyword control
statements identify the initial set of nonrecoverable storage pools and define the
initial set of dbextents. The format for specifying these values is :

POOL
Include the POOL keyword control statement only for those storage pools you
want to define as nonrecoverable: if you omit it, it will be defined as
recoverable. You can specify as many nonrecoverable storage pools as you
want up to the MAXPOOLS value. All POOL keyword control statements must
precede the dbextent keyword control statements as shown. For more
information, see “Nonrecoverable Storage Pools” on page 236.

pool_number
For pool_number, specify the number of the storage pool. You cannot specify 1:
storage pool 1 is the default storage pool for dbspaces, so it cannot be defined
as nonrecoverable.

�� CUREXTNT=nnn
MAXPOOLS=nnn MAXEXTNT=nnn MAXDBSPC=nnn

END ��

�� $

LOG
POOL pool_number

NOLOG

$ extent_number
pool_number

END ��

Chapter 12. Planning and Implementing Configurations 293

LOG
The LOG option, which indicates that the storage pool is to be recoverable, is
the default. Specify the NOLOG option if the storage pool is to be
nonrecoverable.

extent_number/pool_number
The dbextent definition keyword control statements follow the POOL
statements. They define an initial set of dbextents (by number), and the storage
pool assignment for each. Any dbextent defined here must have a
corresponding MDISK control statement for a VM minidisk. You must specify
at least one dbextent for each storage pool that is referenced by the initial
dbspace definitions.

The first number in the pair is the extent number. You must define the dbextents in
consecutive (numeric) order by extent number. Note that the extent numbers are
decimal (unlike virtual device addresses, which are hexadecimal). The consecutive
numbering is needed because the database manager requires the use of stylized
ddnames in the CMS FILEDEF commands used to access the database. The
SQLDBGEN EXEC creates these stylized ddnames in SQLFDEF for you. Both the
SQLDBGEN EXEC and the database manager operate on the assumption that you
are numbering the dbextents in consecutive (numeric) order. The stylized ddname
format is DDSKn, where n is the extent number used in the dbextent keyword
control statement.

The second number, which must be separated from the first by at least one blank,
is the storage pool number. This is also a decimal value (as opposed to
hexadecimal). If you do not specify the storage pool number, it defaults to 1.

Note: You cannot assign a dbspace to a storage pool until a dbextent has been
assigned there.

Each extent number/storage pool number pair must be entered on a separate input
record. You can put comments on the dbextent keyword control statements by
specifying the storage pool number and separating the comment from the number
by at least one blank. A comment must be contained in the one input record for
the dbextent: it cannot be continued on the next input record, which is interpreted
as the next dbextent definition.

In the example in Figure 92, dbextent number 1 is assigned to storage pool number
1, and dbextent number 2 is assigned to storage pool number 2. The SQLDBGEN
EXEC generates CMS FILEDEF commands in SQLFDEF of the following form:

FILEDEF DDSK1 DISK 32A...
FILEDEF DDSK2 DISK 32B...

Specifying Initial Dbspaces: These keyword control statements define the initial
set of dbspaces, including public dbspaces that the database manager requires
(system dbspaces), any user public and private dbspaces you need initially, and the
internal dbspace allocations for the database.

The format for specifying these values is :

294 System Administration

The number of pages value is the number of logical pages in the dbspace, rounded
up to the next higher multiple of 128. The storage_pool_number must correspond to
a pool that already has a dbextent, as defined by the dbextent keyword control
statements.

You must define six public dbspaces for system use: the catalog, package, HELP
text, ISQL tables, temporary install use, and the sample data tables dbspaces. In the
example in Figure 92 on page 292 all are assigned to storage pool 1, but you can
assign them elsewhere. The catalog and package dbspaces must always be
assigned to a recoverable storage pool. In the example in Figure 92 on page 292, the
first five dbspace keyword control statements specify:
v 12 800 pages for the catalog dbspace (SYS0001)
v 2 048 pages for the package dbspace (SYS0002)
v 8 192 pages for the HELPTEXT dbspace
v 1 024 pages for the ISQL dbspace
v 512 pages for the sample dbspace.

The remainder of the public and private dbspaces shown in Figure 92 are user
dbspaces of various sizes and storage pool assignments. After database generation
finishes, the temporary installation dbspace is available as a user public dbspace.
Thus, at the end of any database generation, there is at least one public dbspace of
1 024 pages available.

You must also define a number of internal dbspaces, for internal sorting and index
creation. The general format for specifying the initial internal dbspace keyword
control statement is:

This statement specifies the number (number_of_dbspaces) of equal size
(number_of_pages) temporary dbspaces that you want. The storage_pool_number must
correspond to a pool that already has a dbextent, as defined by the dbextent
keyword control statements. The storage pool to which you assign the internal
dbspaces can be either recoverable or nonrecoverable: if you do not specify the
storage pool number, it defaults to 1. You must not delete all dbextents from this
storage pool.

This internal dbspace keyword control statement must be the last dbspace
definition input record before the END delimiter control statement. Separate the
values in this statement by at least one blank.

In the example in Figure 92 on page 292, 80 internal dbspaces of 1 024 pages each
are defined and assigned to storage pool 1.

�� PUBLIC

PRIVATE

number_of_pages
1

storage_pool_number
��

�� INTERNAL number_of_dbspaces number_of_pages
1

storage_pool_number
��

Chapter 12. Planning and Implementing Configurations 295

Note: Because the catalog and package dbspaces are assigned to storage pool 1,
performance is improved if internal dbspaces are assigned to some other
recoverable storage pool. To keep the example simple, however, the internal
dbspaces are assigned to storage pool 1.

You can change the specification of internal dbspaces on any ADD DBSPACE
operation. For more information, see “Adding Dbspaces to the Database” on
page 145.

Generally speaking, your input records for initial dbspace definitions would follow
the pattern shown in Figure 93.

The first two dbspaces are public dbspaces (SYSTEM.SYS0001 and
SYSTEM.SYS0002) that are both defined and acquired by the generation process for
the catalog tables. You are advised to change either of these keyword control
statements only if you want to define and allocate a larger dbspace for the catalog
tables or for packages, respectively. You do this by increasing the number of pages
specified in the control statement.

There must also be keyword control statements for the three dbspaces that are
acquired by the MACRO ARISDBU during SQLDBINS EXEC. These dbspaces are
needed for the HELPTEXT, ISQL, and sample dbspaces; the default sizes are 8192,
1024, and 512 pages respectively.

Note: The sample tables are loaded into the dbspace PUBLIC.SAMPLE by the
IBM-supplied DBS control file ARISAMDB MACRO V, which uses the user
ID SQLDBA.

Other IBM-supplied EXECs call sample application programs, which
manipulate the data in the sample tables. One sample program (and an
EXEC to run it) is provided for each programming language that is
supported by the database manager. Details of these programs are given in
the DB2 Server for VSE & VM Application Programming manual.

If any of the above six database generation control statements are omitted,
database generation may fail.

PUBLIC nnnn n this adds and acquires SYS001
PUBLIC nnnn n this adds and acquires SYS002
PUBLIC nnnn n this adds a dbspace for PUBLIC.HELPTEXT
PUBLIC nnnn n this adds a dbspace for PUBLIC.ISQL
PUBLIC nnnn n this adds a dbspace for PUBLIC. SAMPLE
PUBLIC nnnn n

. . .

. . . these add your initial set of

. . . public dbspaces

. . .
PRIVATE nnn n

. . .

. . . these add your initial set of

. . . private dbspaces

. . .
INTERNAL nn n this is your initial
END specification of internal dbspaces

Figure 93. Input Records for Initial Dbspace Definition

296 System Administration

You can put comments on the dbspace keyword control statements if you specify
the storage pool number and separate the comment from the storage pool number
by at least one blank.

Loading the English version of the HELP text: The SQLDBINS EXEC issues the
following prompt:

ARI6010D Do you want to install English DB2 Server for VM HELP text?
Enter 0(No), 1(Yes), or 111(Quit)

1. If you respond 1 (Yes), the database manager does the following steps:
a. Creates HELP text tables
b. Creates indexes for all tables
c. Loads data into all HELP text tables

2. If you respond 0 (No), steps a and b are completed, but the tables are not
loaded.

3. If you respond 111 (Quit), you immediately exit from the SQLDBINS EXEC,
and the database is not generated. You can restart the SQLDBINS EXEC.

For information on installing HELP text in additional languages, see “National
Language Support for Messages and HELP Text” on page 331.

Step 3: Optionally Changing the Application Server Default
CHARNAME
The application server default CHARNAME value on a newly installed database
manager is INTERNATIONAL (CCSID=500); on a migrated database manager, the
default is ENGLISH (CCSID=37). To change the application server default
CHARNAME (and with it the application server default CCSID, classification
tables, and translation tables), specify the new CHARNAME as an SQLSTART
EXEC parameter. For more information, see “Character Set Considerations at
Startup” on page 57.

For information on creating a new CHARNAME, CCSID, and character set, see
“National Language Support for Messages and HELP Text” on page 331.

Step 4: Optionally Changing the Application Server Default
Character Subtype
If you use mixed data (data that contains both DBCS and SBCS characters), you
may want to change the application server default character subtype to mixed. The
application server default character subtype is the value used for new columns
when the character subtype is not explicitly defined by the CREATE TABLE or
ALTER TABLE statements, or supplied as a package option. The character subtype
value is also used to determine whether the results of the CHAR, DIGITS, and
HEX scalar functions and the character representation of date, time, or timestamp
values, or special registers should be interpreted either as mixed data or as SBCS
data.

The application server default character subtype is initially set to SBCS. To change
it, subtype, see “Setting the Application Server Default Character Subtype” on
page 325.

Step 5: Optionally Setting the DBCS Option to YES
If you are using a double-byte character set (DBCS), you should enable the DBCS
option, which allows the database manager to correctly interpret SQL statements
that contain DBCS strings. As a default, the DBCS option is not enabled. For
information see “Using Double-Byte Character Set (DBCS)” on page 314.

Chapter 12. Planning and Implementing Configurations 297

Step 6: Changing the Password of User ID SQLDBA
One final task you should perform is to change the password of user ID SQLDBA
in your new database. User ID SQLDBA is defined in all databases to have DBA
authority. The password for this user ID is set to SQLDBAPW during database
generation. Because this default password is common knowledge (it is in many
product manuals), you should change it immediately after database generation. To
do so, use ISQL, an application program, or the DBS utility to connect to the
database as SQLDBA:

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW

Then change the password to one of your own choosing:
GRANT CONNECT TO SQLDBA IDENTIFIED BY newpw

Summary of Database Generation Process
Figure 94 summarizes the database generation process. It shows the major EXECs
that are called, and key files that are created on the production minidisk.

When you generate a database, be aware that:
v SQLFDEF files contain CP LINK and CMS FILEDEF commands, which are used

when the database manager is started to access a database.
v SQLDBGEN files contain database generation control statements, which are used

during database generation, and remain on the production minidisk to provide a
record of the original database specifications.

v SQLDBN files identify the database, the database machine that last accessed the
database, the addressing mode (AMODE) in which the database manager is

1. Run SQLDBGEN to do
the actual database
generation

SQLDBINS

SQLDBGEN

1. Format and Reserve
database minidisks

2. Create SQLFDEF
3. Call SQLSTART

to do coldstart
using resid SQLDBGEN
as input.

SQLSTART

1. Create or update
resid SQLDBN

2. Format database
and create
catalog.

2. Install optional database
components.

Figure 94. Summary of Database Generation Process

298 System Administration

running, and the DCSSID. They are used to aid in establishing communications
between user machines and database machines.

v Optional activities are to change:
– The application server default CHARNAME
– The application server default character subtype
– The DBCS option.
– The password of SQLDBA (recommended).

VSE Guest Sharing Configuration
If you have VSE/ESA running as a guest under your VM operating system, VSE
applications and users can access DB2 Server for VM databases through VSE guest
sharing. The database accessed must be on the same VM system as the one that
supports the VSE guest, or on another VM system in the same TSAF collection or
SNA network. VM users and applications are not affected by VSE guest sharing.

The VSE guest sharing machine communicates with the database manager running
under a VM/ESA operating system by using VSE APPCVM protocol, which is
translated into the APPC/VM communication protocol. The following features are
available to the VSE guest:
v Users and applications can access the database concurrently with VM users and

applications.
v Multiple VSE guest machines can be supported by one database machine.
v If the VSE guest has its own database partition, it can access the database

manager either on VSE or on VM. It cannot access an application server on VSE
and VM in multiple user mode at the same time.
While VSE guest users are accessing an application server on VM, a batch
application can also access an application server on VSE in single user mode. To
do this, do not issue the SET APPCVM command for the batch application when
you IPL VSE. Online users can access the database on VM by identifying it with
the DBNAME parameter of the CIRB transaction. The batch application
automatically accesses the application server on VSE.

v If the VM system is in a TSAF collection or an SNA network, VSE guest users
and applications can access application servers on other processors in the
collection or network.

The application server is identified to the VSE subsystem by an entry in the
DBNAME directory and by the SET APPCVM command, which is issued when
you IPL VSE. Batch/ICCF users access the application server identified by this
command. Online users can access another application server by specifying it with
the DBNAME parameter of the CIRB transaction. For more information on the SET
APPCVM command and the CIRB transaction, see “Operating VSE Guest Sharing”
on page 97 and “Chapter 5. Operating the Online Support for VSE Guest Sharing”
on page 97.

The user ID supplied by the CIRB transaction identifies CICS to the database
machine. The user ID is the CICS APPLID, and defaults to DBDCCICS, unless you
supply a different APPLID in the DFHSIT macro. For more information on CICS,
see “Implicit CONNECT Support” on page 104.

Users who know the password for the CIRB transaction can have DBA authority in
databases accessed by CIRB. The DB2 Server for VM user ID for CICS is set up by
CIRB. Anyone accessing a database under that user ID has DBA authority.

Chapter 12. Planning and Implementing Configurations 299

The authority of users who know the CIRB transaction password can be limited
using VM directory control statements. For more information on directory control
statements, see “VM Directory Control Statements” on page 137.

VSE Guest Sharing Restrictions
VSE guests who access the database manager on the VM/ESA operating system
are subject to the following restrictions:
v Guest users and applications cannot access the database manager on VM in

single user mode.
v A record exists in the DBNAME directory, and the APPLID and DBNAME are

identical.
v The APPLID (and DBNAME) does not begin with the characters “SYSARI”.

Examples of VSE Guest Sharing Configurations
The following figures show examples of VSE guest sharing configurations.

Figure 95 shows an example where both the VSE guests and the application server
they access are on the same processor.

Figure 96 shows an example where the VSE guest and the application server it
accesses are on different processors. Communication is handled by TSAF.

ISQL
CMS

Database
Manager

DBS utility

Preprocessors

CICS/ICCF

SQL
Trans-
action

VSE/AF

APPC

CMSVSE/AFCMS

CP APPC

Database
(logs,
directories,
data)

Batch

Batch

CICS

ISQL
CICS

Figure 95. VSE Guest Sharing on One Processor

300 System Administration

Figure 97 shows an example where the VSE guest and the database it accesses are
on different processors. Communication is handled by the VTAM product and AVS
over an SNA network.

Database
Manager

Processor A

VSE/AF

APPC/VM

CMS

APPC/VM

Batch

Batch

CICS

TSAF

DB2/VM
Database on

a VM/ESA
Operating

System

Processor B

TSAF

Figure 96. VSE Guest Sharing with TSAF

Chapter 12. Planning and Implementing Configurations 301

Database
Manager

CMS

APPC/VM

DB2/VM
Database on

a VM/ESA
Operating

System

Processor A

AVS

Processor B

VSE/AF

APPC/VM

Batch

Batch

CICS

VTAM
Product

VTAM
Product

AVS

Figure 97. VSE Guest Sharing with VTAM Product and AVS

302 System Administration

Chapter 13. Choosing a National Language and Defining
Character Sets

A national language (as opposed to a programming language) is a language used
in or by a nation. The database manager can work with data in national languages
represented by a single-byte character set (SBCS) or by a double-byte character set
(DBCS). The database manager will also support MBCS data from other platforms,
which will be converted to SBCS and DBCS data. The following are some of the
single-byte character sets that are shipped with the database manager:
v French
v English
v Spanish
v Italian
v German.

Examples of double-byte character sets that are shipped with the database manager
include:
v Japanese
v Chinese.

If you want a complete list of the character sets that are available, review the
SYSTEM.SYSCHARSETS catalog table.

This chapter describes the facilities that the database manager provides for national
languages:
v CHARNAME specification

This facility allows you to specify character sets and CCSIDs other than the
installation or migration default. The application server default CHARNAME for
a new installation is INTERNATIONAL (CCSID=500). The application server
default CHARNAME for a migrated system is ENGLISH (CCSID=37). The
application requester default CHARNAME is always INTERNATIONAL
(CCSID=500). The database manager can use alternative character sets for
identifying character usage and for folding lowercase characters to uppercase.
This facility provides for the proper interpretation and use of national language
characters not included in the default character set, for example, characters with
umlauts, accents, and tildes.
This facility also provides for the proper interpretation of data from application
requesters or application servers which use different character sets and code
pages. Character conversion is performed on data when the CCSID of the
application requester and the CCSID of the application server are different. The
application server default CCSID is determined from the application server
default CHARNAME.
It is very important that the application server and application requester have
the same CCSID value unless there is a specific reason for them to be different.
When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an
associated performance overhead, and causes performance degradation. CCSID
conversion of data also affects the sargability of predicates. For more information
on performance, see the DB2 Server for VSE & VM Performance Tuning Handbook
manual.

v DBCS option

© Copyright IBM Corp. 1987, 2001 303

This option, when it is set to YES, allows the database manager to correctly
interpret the shift-out (X'0E') and shift-in (X'0F') characters that delimit EBCDIC
DBCS strings. The DBCS option is set on both the application server and the
application requester.

v Multiple language messages
The database manager provides multiple language message support to allow
users to select the language in which error and informational messages appear
(the language must already be installed). The operator can select the language
for operator messages.
If an ISQL user selects a national language that is different from the national
language set by the operator on the application server, when the ISQL user
issues an operator command the output is in the language set by the operator.
For example, the operator sets the application server national language for
operator messages to ENGLISH. The ISQL users set the application requester to
KANJI. When the user issues an operator command, the result is in ENGLISH.

v Multiple language HELP text.
The database manager provides multiple language HELP text support. ISQL
users can interactively retrieve help information on messages and codes and
command reference information. The help facility allows ISQL users to retrieve
help in the language of their choice (provided that the language version of the
HELP text is installed). Information on DB2 Server for VM HELP text is
contained in this chapter, and in the DB2 Server for VSE & VM Database
Administration manual.

The database manager also provides graphic data types for use with strings of
DBCS characters, as well as a mixed subtype for character data that contains both
DBCS and SBCS characters. For more information about using graphic and mixed
data, refer to the DB2 Server for VSE & VM SQL Reference manual.

Considerations when changing default CHARNAME and CCSID
If you are not using the default CHARNAME or CCSID during installation or
migration, ensure you consider the following activities:
1. Choosing default CHARNAME and CCSID for the application server
v Installation - see “Choosing the Application Server Default CHARNAME and

CCSID” on page 23.
v Migration - see “Choosing an Application Server Default CHARNAME” on

page 33.

Note: Refer to “CCSID Conversion” on page 317 and “Determining CCSID
Values” on page 320 for more information on CCSIDs.

2. Choosing default CHARNAME and CCSID for application requesters
v Installation - see “Choosing the Default CHARNAME and CCSID for

Application Requesters” on page 26.
v Migration - see “Choosing the Default CHARNAME for All Application

Requesters” on page 36.
3. Setting migration CCSID values
v Installation - defaults are adequate.
v Migration - see “Setting Migration CCSID Values” on page 33.

4. Optionally, choosing application server default character subtype
v Installation and migration - see “Choosing the Application Server Default

Character Subtype” on page 25.

304 System Administration

5. Optionally, setting the DBCS option for the application server
v Installation and migration - see “Setting the DBCS Option for the Application

Server” on page 326.
6. Optionally, setting the DBCS option for the application requester
v Installation and migration - see “Setting DBCS Option for Application

Requestors” on page 326.

Note: To understand the effect of DBCS options, refer to “Using Double-Byte
Character Set (DBCS)” on page 314.

Changing from pre-Euro CHARNAME to Euro-compatible
CHARNAME

DB2 Server for VSE & VM supports several code pages that are identical to
existing code pages except that they include the Euro currency symbol rather than
the International currency symbol (¤). If you choose to use a CHARNAME that
corresponds to a CCSID for a code page that includes the Euro currency symbol, it
is recommended that your existing character data that is currently tagged with a
non-Euro CCSID be re-tagged with the corresponding Euro-compatible CCSID.
These steps should only be used when changing your CCSID to the corresponding
Euro-compatible CCSID as described in the following table:

Table 18. Non-Euro and Corresponding Euro-compatible CHARNAMEs and CCSIDs

From CCSID From CHARNAME To CCSID To CHARNAME

37 English 1140 E-English

277 Danish-Norweigan 1142 EDanish-Norweigan

278 Finnish-Swedish 1143 EFinnish-Swedish

284 Spanish 1145 E-Spanish

285 UK-English 1146 E-UK-English

297 French 1147 E-French

500 International 1148 E-International

273 German 1141 E-German

280 Italian 1144 E-Italian

Step 1: This step will locate character data that currently represents the
International currency symbol (¤). The Euro-compatible code pages have replaced
the International currency symbol with the Euro symbol. If your database does not
contain character data that represents the International currency symbol, you can
skip this step. If your data does contain character data that represents the
International currency symbol, you must decide how to handle this. You can either
skip this step, in which case character data that currently represents the
International currency symbol will be interpreted as the Euro symbol once the
CCSID is changed, or, you can change the character data that currently represents
the International currency symbol to some other value. The following SELECT
statement will locate columns that are tagged with the non-Euro compatible
CCSID.
SELECT CNAME,TNAME,CREATOR FROM SYSTEM.SYSCOLUMNS WHERE CCSID=current_ccsid

For each column found, run the following SELECT statement:
SELECT * FROM creater.tname WHERE cname LIKE'%cur_symbol%'

Chapter 13. Choosing a National Language and Defining Character Sets 305

Note: If your keyboard cannot generate the International currency symbol, replace
cur_symbol with the hex value X'9F'. In order to do this, you will have to use
an editor that allows hexadecimal characters to be entered.

This command will show you all the rows for column cname that include the
International currency symbol. You can now decide the appropriate value to
change the International currency symbol to for each row.

Step 2: Re-tag existing character data with the new Euro-compatible CCSID. This
step makes use of three files (SQLCCSID SQLPARM, SQLCCSID EXEC, and
SQLCCSID SYSIN) that are supplied by the DB2 Server for VSE & VM. Use these
files as follows:
1. Shut down the database server.
2. Modify SQLCCSID SQLPARM if necessary. If you use any initialization

parameters that must be specified when the database manager is started in
single user mode, add them to the SQLCCSID SQLPARM file. Do not delete
any lines currently in this file.

3. Use the instructions provided in the SQLCCSID MACRO file to make the
necessary changes to that file.

4. Review the SQLCCSID EXEC and, if necessary, use the instructions provided in
the EXEC to modify it.

5. Run the SQLCCSID EXEC. This EXEC starts the database manager in single
user mode to change the CCSIDs.

6. Start the database server using your normal procedures.

Using Alternative Character Sets
When the database manager folds keywords and identifiers from lowercase to
uppercase, or folds user-supplied data using the default TRANSLATE scalar
function, it bases the folding on the default character set specified on the
SQLSTART initialization parameter. For information on setting the default
character set, refer to “Choosing an Application Server Default CHARNAME” on
page 33.

Some characters in other national languages must be delimited by double
quotation marks (") before they can be accepted in identifiers. The double
quotation marks indicate that special characters are within the identifier. No
characters within delimited identifiers are folded from lowercase to uppercase. To
get proper folding of these characters and to allow them as part of an unquoted
identifier, you can specify your own character set, which includes both
classification and folding tables. Specify the CHARNAME parameter at startup to
have the database manager use your character set as the default. You can then use
characters such as o-umlaut or n-tilde in identifiers without the use of double
quotation marks.

For information on how to define your own character set, see “Appendix E.
Defining Your Own Character Set” on page 449.

Hexadecimal Values of the Sample Character Sets
You will probably be able to use one of the IBM-supplied sample character sets
without modification. This section shows the hexadecimal value that is used to
represent each valid character. If your devices use those hexadecimal values for the
indicated characters, you can use the IBM-supplied samples.

306 System Administration

The ENGLISH character set is shown in Figure 98 on page 308. Only those
characters that are identifiable by the database manager are shown. Any
hexadecimal code that does not have a character assigned to it is unusable for DB2
Server for VM keywords or unquoted identifiers. Such characters are usable in
quoted identifiers and in constants and, of course, can be stored in the database.

For example, many display devices using an English character set assign a cent
sign (¢) to X'4A'. In Figure 98 on page 308, however, no character is shown for the
value X'4A' meaning that X'4A' is unusable for DB2 Server for VM keywords or
unquoted identifiers. If you want to put a cent sign in an identifier, you must use a
delimited identifier.

Another example is the tilde (˜). In most ENGLISH character sets, the tilde is
represented by X'A1'. The matrix shows no entry for X'A1'. So, regardless of what
X'A1' represents in your character set, you must use a delimited identifier.

These rules apply to the matrices for the other character sets as well. An important
point to remember is that the absence of a character in one of the matrices does
not prevent you from using that character set. The characters are not undefined to
the database manager; they merely have limited use (as described above). Often,
this limited use is exactly how you want the hexadecimal code to be handled.
Independent of this qualification, you should almost always be able to find a
CCSID that you can use at your installation. When you decide on a CCSID, try to
avoid using a non-standard CCSID to prevent possible problems in the future
(such as the inability to connect to other application servers because they do not
support your CCSID). If you require a CCSID that is not supplied in the catalog
tables, check the Character Data Representation Architecture Level 1, Registry manual
for other predefined registered CCSIDs.

Chapter 13. Choosing a National Language and Defining Character Sets 307

The sample FRENCH character set is shown in Figure 99 on page 309. Translation
from lowercase to uppercase is done as follows:

X'6A' is translated to X'E4'
X'7C' X'C1'
X'C0' X'C5'
X'D0' X'C5'
X'E0' X'C3'

These characters can be used in unquoted identifiers.

When evaluating the character set for use in your installation, remember that
hexadecimal values that do not have characters assigned to them in Figure 99 on
page 309 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

,

%

>

?

:

#

@

’

=

”

Bits
0,1

2,3

Hex 0

$

*

)

;

SP

Figure 98. ENGLISH Character Set (CCSID=37)

308 System Administration

The sample GERMAN character set is shown in Figure 100 on page 310. Translation
from lowercase to uppercase is done as follows:

X'4A' is translated to X'4A'
X'5A' X'5A'
X'6A' X'E0'
X'A1' X'A1'
X'C0' X'4A'
X'D0' X'5A'
X'E0' X'E0'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 100
on page 310 can be used in quoted identifiers.

Some translation from lowercase to uppercase does not cause a change in the
hexadecimal value. For more information, see “Step 3: Determine Translation
Characters” on page 460.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

é

A

B

C

D

E

F

G

H

I

è

J

K

L

M

N

O

P

Q

R

ç

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Bits
0,1

2,3

Hex 0
Bits
4567

Hex 1

& –

/

.

<

(

+

!

ù

,

%

>

?

:

£

à

’

=

”

$

*

)

;

SP

|

Figure 99. FRENCH Character Set (CCSID=297)

Chapter 13. Choosing a National Language and Defining Character Sets 309

The sample ITALIAN character set is shown in Figure 101 on page 311. Translation
from lowercase to uppercase is done as follows:

X'5A' is translated to X'C5'
X'6A' X'D6'
X'79' X'E4'
X'A1' X'C9'
X'C0' X'C1'
X'D0' X'C5'
X'E0' X'C3'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 101
on page 311 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

ß

s

t

u

v

w

x

y

z

ä

A

B

C

D

E

F

G

H

I

ü

J

K

L

M

N

O

P

Q

R

Ö

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Ä

.

<

(

+

!

ö

,

%

>

?

Bits
0,1

2,3

Hex 0

Ü

$

*

)

;

SP

:

#

§

’

=

”

|

Figure 100. GERMAN Character Set (CCSID=273)

310 System Administration

The sample KATAKANA character set is shown in Figure 102 on page 312.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 102
on page 312 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

à

A

B

C

D

E

F

G

H

I

è

J

K

L

M

N

O

P

Q

R

ç

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

!

ò

,

%

>

?

Bits
0,1

2,3

Hex 0

é

$

*

)

;

SP

|

ù

:

£

à

’

=

”

Figure 101. ITALIAN Character Set (CCSID=280)

Chapter 13. Choosing a National Language and Defining Character Sets 311

The sample SPANISH character set is shown in Figure 103 on page 313. Translation
from lowercase to uppercase is done as follows:

X'6A' is translated to X'7B'

These characters can be used in unquoted identifiers.

When evaluating the sample character set for use in your installation, remember
that hexadecimal values that do not have characters assigned to them in Figure 103
on page 313 can be used in quoted identifiers.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

First
Hex
Char.
Bits
0,1

2,3

Hex 0

& –

/ A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

*

)

;

SP

,

%

>

?

:

#

@

’

=

” ˚

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q r s

t

u

v

w

x

y

z

Figure 102. JAPANESE (Katakana) Character Set (CCSID=290, the SBCS Component of CCSID 5026)

312 System Administration

Specifying an IBM-Supplied Character Set at Run Time
If the hexadecimal codes in one of the sample character sets matched those used
by your devices, you can specify the character set at run time. To use a character
set, specify the CHARNAME parameter when starting the application server. The
CHARNAME parameter is valid in both single and multiple user mode. For
information on how to specify the CHARNAME parameter, see “Setting the
Application Server Default CHARNAME and CCSIDs” on page 321. Examples of
IBM-supplied sample character sets are:
v ARABIC
v CYRILLIC
v DANISH-NORWEGIAN
v E-INTERNATIONAL
v ENGLISH
v ESTONIAN
v FINNISH-SWEDISH
v FRENCH
v GERMAN
v GREEK
v GREEK-423
v HEBREW

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

.

<

(

+

|

,

%

>

?

:

Ñ

@

’

=

”

Bits
0,1

2,3

Hex 0

*

)

;

SP

Pts

Figure 103. SPANISH Character Set (CCSID=284)

Chapter 13. Choosing a National Language and Defining Character Sets 313

v ICELANDIC
v INTERNATIONAL
v ITALIAN
v JAPANESE-ENGLISH
v KATAKANA
v KOREAN
v LAO
v S-CHINESE
v SPANISH
v T-CHINESE
v THAI
v UK-ENGLISH
v UKRAINIAN
v VIETNAMESE
v 290
v 833
v 836
v 870
v 930
v 939
v 1027
v 1112
v 28709.

Figure 104 shows an example of starting the application server. The CHARNAME
parameter indicates that the database manager is to use the FRENCH sample
character set, and the default CCSID of 297.

The default character sets ENGLISH (CCSID=37) and INTERNATIONAL
(CCSID=500) are hardcoded into this product. For example, if you specify
ENGLISH for the CHARNAME parameter, the database manager uses the
ENGLISH character set that is coded internally. The internally coded character set
is used even if a row exists in SYSTEM.SYSCHARSETS that has ENGLISH or
INTERNATIONAL in its NAME column. (Neither the sample ENGLISH character
set nor the sample INTERNATIONAL character set is used, although you can load
either into SYSTEM.SYSCHARSETS. They are provided to make the definition of
your own character sets easier.)

If you specify the name of a character set that is not defined in
SYSTEM.SYSCHARSETS, the database manager displays an error message and
uses the character set that was specified previously. If the character set is defined
incorrectly in SYSTEM.SYSCHARSETS, an error message is displayed, and the
database manager uses the character set that was previously specified.

Using Double-Byte Character Set (DBCS)
The double-byte character set (DBCS) option supports the use of DBCS characters
in identifiers, constants and data. Identifiers can be either:
v Host identifiers (such as host variables), or
v SQL identifiers (such as dbspaces, tables or columns).

SQLSTART DB(SQLDBA) ID(MYBOOT) PARM(PARMID=WARM1,CHARNAME=FRENCH)

Figure 104. Starting the Application Server to Use the FRENCH Character Set

314 System Administration

Constants and data containing DBCS characters can be either:
v Graphic data, or
v Character data with a mixed subtype (that is, character data containing DBCS

characters).

Setting the DBCS option also ensures that:
v A shift-out character is paired with a shift-in character on output,
v When mixed character data is truncated, truncation does not occur between the

two bytes of a DBCS character.

If your installation uses a double-byte character set, you should consider setting
the DBCS option to YES. The DBCS option can be set for the application server, the
application requester, or both. For the application server, the DBCS option is set in
the SYSTEM.SYSOPTIONS catalog table. For the application requester, the DBCS
option is set by the DBCS parameter of the SQLINIT EXEC.

For information on enabling the DBCS option, see “Setting the DBCS Option for
the Application Server” on page 326, and “Setting DBCS Option for Application
Requestors” on page 326.

When the DBCS option is set to YES, the shift-out (X'0E') and shift-in (X'0F')
delimiters are recognized in both identifiers in SQL statements and mixed data
character string constants. The recognition of the delimiters provides the following
benefits:
v On the application server

– SQL identifiers can contain DBCS characters.
v On the application requester

– Host identifiers can contain DBCS characters.
– The DBS utility processing ensures the pairings of shift-out and shift-in

characters.
– ISQL allows the input, print, and display of DBCS characters and mixed data.

However, setting the DBCS option induces overhead for checking the proper
pairing of shift-out and shift-in characters.

Identifiers Containing DBCS Characters
Identifiers can be either host identifiers or SQL identifiers.

To use host identifiers that contain DBCS characters, the VSE application requester
must have the DBCS option set to YES. (For more information on the SQLINIT
EXEC, see the DB2 Server for VSE & VM Database Administration manual.)

To use ordinary SQL identifiers that contain DBCS characters, the application
server must have the DBCS option in the SYSTEM.SYSOPTIONS catalog table set
to YES, and must also support DBCS characters and mixed data. The application
server supports DBCS characters and mixed data when a mixed CHARNAME is
specified as an initialization parameter. A mixed CHARNAME has a non-zero
value for the CCSIDMIXED row in the SYSTEM.SYSOPTIONS catalog table. For
more information, see “Choosing the Application Server Default CHARNAME and
CCSID” on page 23.

Chapter 13. Choosing a National Language and Defining Character Sets 315

If the DBCS option is set to YES for the application server, you can use DBCS
characters in ordinary SQL identifiers. The identifier can be DBCS characters, or
can contain a DBCS substring.

Identifiers are recorded in the catalog tables. When the database manager stores
identifiers that contain DBCS characters, it also stores the shift-out and shift-in
delimiters. The delimiters are stored because all columns of the catalog tables that
contain identifiers have a data type of either CHAR or VARCHAR.

The number of bytes required to represent a string of DBCS characters is equal to:
2 x the number of DBCS characters + 2

For more information on how identifiers are used in application programs, see the
DB2 Server for VSE & VM Application Programming manual.

Constants and Data Containing DBCS Characters
Constants and data containing DBCS characters can be either graphic data or
character data with a mixed subtype.

To use graphic and mixed constants or data, the application server and the
application requester must support mixed data. This support is provided by
specifying a mixed CHARNAME on the SQLSTART EXEC for the application
server, and on the SQLINIT EXEC for the application requester. The application
server supports graphic and mixed data when the default CHARNAME is a mixed
CHARNAME. A mixed CHARNAME has a non-zero value for the CCSIDMIXED
row in the SYSTEM.SYSOPTIONS catalog table. For more information, see
“Choosing the Application Server Default CHARNAME and CCSID” on page 23.
The application requester supports graphic and mixed data when a mixed
CHARNAME is specified for the SQLINIT EXEC. (For more information, see the
DB2 Server for VSE & VM Database Administration manual.) Using a mixed
CHARNAME provides the following benefits:
v On the application server

– Character string constants can contain mixed data consisting of DBCS and
SBCS characters.

– When character string constants containing DBCS characters are used in SQL
statements, the data is correctly interpreted as having a mixed subtype and a
mixed CCSID.

v On the application requester
– Character string constants can contain mixed data consisting of DBCS, SBCS,

and on some platforms, MBCS characters. (The MBCS characters will be
stored as SBCS or DBCS characters by the database manager.)

If the DBCS value for the application server is set to YES in the
SYSTEM.SYSOPTIONS catalog table, the SQLINIT DBCS option for the application
requester does not have to be YES for mixed data to be recognized. Mixed data is
still recognized and tagged with the appropriate mixed CCSID if the SQLINIT
CHARNAME is a mixed CHARNAME, and the character string constant is a valid
mixed string.

The implied data type of all string character constants is VARCHAR. When the
DBCS option is set to YES:
v Constants with only SBCS characters have a subtype of SBCS.
v Constants with a combination of SBCS and DBCS characters have a subtype of

mixed. For example:

316 System Administration

'abc<XXYYZZ>'

v Constants containing only DBCS are also of the character data type with a
subtype of mixed. They are not considered to be graphic constants. For example:

'<XXYYZZ>'

When the DBCS option for the application server is set to NO, all character
constants have a subtype of SBCS.

CCSID Conversion
Internally, character data is stored as hexadecimal values called code points. When
a device interprets or displays a code point as a character, it uses a code page,
which is a set of assignments of characters to code points. If two terminals use
different code pages, they can display the same code point as a different character.
For example, in code page 37, the code point X'4F' represents a vertical bar (|), but
in code page 500, the code point X'4F' represents an exclamation mark (!).

As of Version 3 Release 3, the database manager supports Coded Character Set
Identifiers (CCSIDs). The CCSID attribute specifies which code page to use both to
map code points to characters, and to map characters to code points. The CCSID
and the code points are used together to determine the character that the code
point represents.

Note: The default CCSID is implicitly set by the default CHARNAME.

For example, suppose a DB2 Server for VM application requester has the default
CHARNAME set to ENGLISH (CCSIDSBCS=37), the DB2 Server for VM
application server has the default CHARNAME set to INTERNATIONAL
(CCSIDSBCS=500) and the PROTOCOL parameter on both the application
requester and the application server is not SQLDS. In this case, if the user inserts
an exclamation mark into a character column, the application requester sends X'5A'
(the code point that represents an exclamation mark in the code page used with
CCSID 37). The application server converts X'5A' to X'4F' (because X'4F' represents
an exclamation mark in the code page used with CCSID 500), then stores X'4F' in
the column.

If another application requester using a different CCSID retrieves the character,
X'4F' is converted to the code point that represents an exclamation mark in the
code page specified by the application requester CCSID. The character is
interpreted and displayed correctly, and the hexadecimal value that is stored in the
database is not changed.

For more information on how to decide the default CCSID values you should use,
see “Determining CCSID Values” on page 320.

The sections that follow discuss the following topics:
v How to determine the CCSID values
v How to set the application server default CHARNAME and CCSID values
v How to set the application requester default CHARNAME and CCSID values
v How to set the application server default character subtype
v How to set the DBCS option for application requesters and application server.
v EUC Conversion.

Chapter 13. Choosing a National Language and Defining Character Sets 317

For examples that show the interactions among the different values, see “Examples
of Setting Values for an Installation” on page 327.

If an application requester and an application server do not use the same default
CCSID, CCSID conversion is done during communications between the two.

Note: For an application requester using an ASCII representation of the data,
CCSID conversion always occurs.

Table 19. CCSID Conversion between the Application Server and Application Requester

Application Requester Application Server

DB2/VM Non-DB2/VM
(incl.

DB2/VSE)SQLDS AUTO

DB2/VM SQLDS NO NO Not Allowed

AUTO NO YES YES

DRDA Not Allowed YES YES

Non-DB2/VM Not Allowed YES Not
Applicable

Note: In the figure:
v “NO” indicates that the application requester CCSIDs are not recognized

and CCSID conversion is not done between the application server CCSIDs
and the application requester CCSIDs.

v “YES” indicates that the application requester CCSIDs are recognized by
the application server, and CCSID conversion is active between the
application server CCSIDs and the application requester CCSIDs.

v “Not Allowed” indicates that this combination of PROTOCOL parameters
is not supported.

v “non-DB2/VM” is a non-DB2/VM application server or application
requester that supports the DRDA protocol. In the case of application
servers, it also includes DB2/VSE. (DB2/VSE cannot function as an
application requester.)

Table 20 and Table 21 on page 320 show CHARNAMEs and the corresponding
CCSIDs that can be used as system defaults. Table 20 shows the SBCS
CHARNAME CCSIDs, and Table 21 on page 320 shows the mixed CHARNAME
CCSIDs, with the component SBCS and DBCS CCSIDs for each mixed CCSID.

Table 20. SBCS CCSIDs

CCSID Character Set Code Page CHARNAME Description

37 697 37 ENGLISH Country/region extended code pages
(CECP): USA, Canada (S/370* system),
Netherlands, Portugal, Brazil, Australia,
New Zealand

273 697 273 GERMAN CECP: Austria, Germany

277 697 277 DANISH-NORWEGIAN CECP: Denmark, Norway

278 697 278 FINNISH-SWEDISH CECP: Finland, Sweden

280 697 280 ITALIAN CECP: Italy

284 697 284 SPANISH CECP: Spain, Latin America (Spanish)

318 System Administration

Table 20. SBCS CCSIDs (continued)

CCSID Character Set Code Page CHARNAME Description

285 697 285 UK-ENGLISH CECP: United Kingdom

290 1172 290 290 Japanese Katakana, extended host single
byte

297 697 297 FRENCH CECP: France

420 235 420 ARABIC Arabic (all presentation shapes)

423 218 423 GREEK-423 Greek (Coexistence)

424 941 424 HEBREW Hebrew

500 697 500 INTERNATIONAL CECP: Belgium, Canada (AS/400*
system), Switzerland, International Latin-1

833 1173 833 833 Korean, extended host single byte

836 1174 836 836 Simplified Chinese, extended host single
byte

838 1176 838 THAI Thai, extended host single byte

870 959 870 870 ROECE (Regional Office for East &
Central Europe) Latin-2 Multilingual

871 697 871 ICELANDIC CECP: Iceland

875 925 875 GREEK Greek

1025 1150 1025 CYRILLIC Cyrillic Multilingual Turkish Latin 5

1027 1172 1027 1027 Japanese Latin, extended host single byte

1112 1305 1112 1112 Latvian/Lithuanian

1122 1307 1122 ESTONIAN Estonian

1123 1326 1123 UKRAINIAN Cyrillic Ukrainian EBCIDIC

1130 1336 1130 VIETNAMESE EBCIDIC Vietnamese

1132 1341 1133 LAO EBCIDIC Lao

1137 1137 1137 HINDI Hindi

1142 697 1142 EDANISH-
NORWEIGAN

Danish and Norwegian Euro CECP

1143 697 1143 EFINNISH-SWEDISH Finnish and Swedish Euro CECP

1145 697 1145 E-SPANISH Spanish Euro CECP

1148 697 500 E-INTERNATIONAL International Euro CECP

1140 697 37 E-ENGLISH English Euro CECP

1141 697 273 E-GERMAN German Euro CECP

1144 697 280 E-ITALIAN Italian Euro CECP

1146 697 285 E-UK-ENGLISH UK English Euro CECP

1147 697 297 E-FRENCH French Euro CECP

28709 1175 37 28709 Traditional Chinese, extended host single
byte

Chapter 13. Choosing a National Language and Defining Character Sets 319

Table 21. Mixed CCSIDs

Mixed Component
CCSIDs

Character
Set

Code Page CHARNAME Description

930 290 (SBCS) 300
(DBCS)

1172 1001 290 300 930 Japanese (Katakana)-Kanji
mixed host (including 4370
user-defined characters)
extended single byte

933 833 (SBCS) 834
(DBCS)

1173 934 833 834 KOREAN Korean host mixed (including
1880 user-defined characters)
extended single byte

935 836 (SBCS)
837(DBCS)

1174 937 836 837 S-CHINESE Simplified Chinese host mixed
(1880 user-defined characters)
extended single byte

937 28709 (SBCS) 835
(DBCS)

1175 935 37 835 T-CHINESE Traditional Chinese host mixed
(6204 user-defined characters)
extended single byte

939 1027 (SBCS) 300
(DBCS)

1172 1001 1027 300 939 Japanese (Latin)-Kanji mixed
host (including 4370
user-defined-characters)
extended single byte

1364 833 (SBCS) 834
(DBCS)

65535
65535

833 834 KOREAN-1364 Korean host mixed extended
including 11,172 full hangul

1388 836 (SBCS) 837
(DBCS)

65535
65535

846 837 S-CHINESE-GBK S-Ch DBCS-Host Data GBK
mixed, all GBK character set
and other growing chars

5026 290 (SBCS) 4396
(DBCS)

1172 370 290 300 KATAKANA Japanese (Katakana)-Kanji
mixed host (including 1880
user-defined characters)
extended single byte

5035 1027 (SBCS) 4396
(DBCS)

1172 370 1027 300 JAPANESE-
ENGLISH

Japanese (Latin)-Kanji mixed
host , (including 1880
user-defined characters)
extended single byte

For more information about CCSIDs, see the Character Data Representation
Architecture Level 1, Registry, and the Character Data Representation Architecture
Reference and Registry manuals.

For information on the types of DBCS conversion that can be done between
CCSIDs, see “Coding Your Own TRANSPROC Exit” on page 361.

Determining CCSID Values
When displaying characters on your terminal display, the default CCSID values for
an application requester must be compatible with the code page that was used to
generate its terminal controller. If the defaults are incompatible, characters will not
be displayed or interpreted as expected, and the results of queries or inserts of
either character or graphic data will be unreliable. Table 20 on page 318 and
Table 21 show the code pages that are compatible with each CCSID, and the
CHARNAME value that you should specify. For example, if the controller was
generated with code page 37, you should specify ENGLISH for the CHARNAME
parameter. This value sets the value of CCSIDSBCS to 37, and the values of
CCSIDMIXED and CCSIDGRAPHIC to 0. You can use the SQLGLOB EXEC to set

320 System Administration

default values for all application requesters. For more information, see “Setting the
Default CHARNAME and CCSIDs for All Application Requesters” on page 324.
The system-wide defaults may not be suitable for all application requesters: some
may have a controller generated to use a code page incompatible with the
system-wide default CHARNAME. In this situation, you should set the
CHARNAME parameter for individual application requesters. For more
information on this topic, see “Setting the Application Requester Default
CHARNAME and CCSIDs” on page 323.

The default CCSID values for the application server can be set to any value you
want, but keep in mind that you may want to set the default CCSIDs for the
application server to values that can be used as defaults by the majority of the
application requesters. This can reduce the amount of CCSID conversion that will
be necessary.

In particular, the CHARNAME INTERNATIONAL (CCSID=500) warrants special
attention. This CHARNAME is composed of a code page that supports all the
characters that are supported by the Latin-1 countries / regions, including
Australia, Austria, Belgium, Brazil, Denmark, Canada, the Faroe Islands, Finland,
France, Germany, Hong Kong, Iceland, Italy, Japan, the Netherlands, New Zealand,
Norway, Portugal, Spain, Latin America, Sweden, Switzerland, the United
Kingdom, and the United States. If all application requesters and application
servers in these countries / regions use this CCSID, then single-byte CCSID
conversion will not be necessary for accessing data from different sites. This may
provide savings because of lower CPU usage.

Often, it may not be appropriate to use CCSID 500 at every site. For example, you
may have to use existing equipment (such as terminal controllers that use other
character sets and code pages), or you may have a large quantity of data that is
stored using a CCSID other than 500. However, if you plan to frequently access
data from other countries / regions, you should consider migrating your data and
hardware to CCSID 500, both for performance reasons, and for the ease of data
management.

Setting the Application Server Default CHARNAME and CCSIDs
The different uses of the default system CCSIDs are shown in “Choosing the
Application Server Default CHARNAME and CCSID” on page 23. Data in columns
which were migrated from a release earlier than Version 3 Release 3 have a CCSID
which is obtained from rows in the SYSTEM.SYSOPTIONS catalog table. These
rows are: MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC. For more
information on the SYSTEM.SYSOPTIONS catalog table, see the DB2 Server for VSE
& VM SQL Reference manual. To change either the application server default
CCSIDs or the CCSIDs that are used for data in migrated columns, you must have
DBA authority.

The only way to change the application server default CCSID is to change the
application server default CHARNAME. This is done by specifying the
CHARNAME parameter of the SQLSTART EXEC the next time the application
server is started. This also updates the following columns of the
SYSTEM.SYSOPTIONS catalog table: CCSIDSBCS, CCSIDMIXED and
CCSIDGRAPHIC. For more information, see “Character Set Considerations at
Startup” on page 57.

You may have to use different default CCSIDs for columns that were created
before the migration than for columns created after the migration. For example,

Chapter 13. Choosing a National Language and Defining Character Sets 321

suppose that you are migrating your database and want to use the
INTERNATIONAL character set (CCSID=500) for character columns that were
created after the migration. Character columns that existed before migration were
created with the ENGLISH character set (CCSID=37). To ensure that the data in
existing character columns is displayed and interpreted correctly, (that is, as was
done before the migration), you require an MCCSIDSBCS value of 37, and a
CCSIDSBCS value of 500.

Be very careful when using different default CCSIDs. This should only be done
when there is a specific reason for them to be different. When the application
server and application requester have different CCSID values, character conversion
cannot be avoided. This conversion has an associated performance overhead, and
causes performance degradation. CCSID conversion of data also affects the
sargability of predicates. For more information on performance, see the DB2 Server
for VSE & VM Performance Tuning Handbook.

Note: Use caution when you change the application server default CCSIDs. For
more information, see “Determining CCSID Values” on page 320.

For many characters, the corresponding hexadecimal value in the International
code page is the same as in the English code page. However, this is not true of all
characters. For example, in the English code page the hexadecimal value
corresponding to the exclamation mark (!) is '5A', but in the International code
page the value is '4F'. Table 22 lists the differences between the International
code page and the English code page.

Table 22. Differences between International Code Page and English Code Page

Character CCSID=37 CCSID=500

^ X'B0' X'5F'

¢ X'4A' X'B0'

! X'5A' X'4F'

[X'BA' X'4A'

] X'BB' X'5A'

| X'4F' X'BB'

¬ X'5F' X'BA'

For more information on code page details, see the Character Data Representation
Architecture Level 1, Registry manual.

Columns must be tagged with the CCSID that corresponds to the code page with
which they were created or the results of queries on these columns will be
unreliable. For example, suppose that the following column was created with the
English character set before migration:

CHARDATA

ABCDEFGH

kjp!
¬ds!

If MCCSIDSBCS is 37 (corresponding to English), and CCSIDSBCS is 500
(corresponding to International), performing a SELECT operation on this column
after the migration gives the results shown above. However, if MCCSIDSBCS is

322 System Administration

incorrectly set to 500 (corresponding to the International character set), performing
a SELECT operation on the column produces the following result:

CHARDATA

ABCDEFGH

kjp]
|ds]

In this example, to ensure reliable results, MCCSIDSBCS must be 37, regardless of
the value of CCSIDSBCS.

Changing the CCSID Attribute of an Existing Column
If you want to change the CCSID attribute of an existing column, use the DBS
utility. For example, to change the default CCSID for data in columns that were
created previous to the migration to Version 3 Release 3, use the DBS utility to do
the following:
1. Unload the data from the existing table.
2. Drop the table.
3. Recreate the table, specifying the new CCSID attribute for the column or

columns that you want to change, or use the default if it is appropriate.
4. Reload the data.

Note: You must use the DBSU ″DATALOAD/DATAUNLOAD″ commands, NOT
the ″UNLOAD/RELOAD″ commands.

Changing the Subtype Attribute of an Existing Column
The subtype attribute is only used when the CCSID attribute is null. If you have
migrated from a release previous to Version 3 Release 3, existing character
columns will have a CCSID value of null. For these columns, the subtype value is
used to indicate their CCSID value. The CCSID value is either the value for
MCCSIDSBCS (for a subtype of “S”) or the value for MCCSIDMIXED (for a
subtype of “M”).

In some cases, columns with a null CCSID could have a subtype of “S” and
contain mixed data. This can occur if the column was created without specifying
the FOR MIXED DATA clause. In this case, the subtype must be changed to “M” in
order for the correct CCSID to be used for this column. Otherwise, conversion
errors can occur (for example, SQLCODE -330, SQLSTATE 22517).

To change the subtype, DBA authority is required to update the
SYSTEM.SYSCOLUMNS table. Change the value in the SUBTYPE column from “S”
to “M” for the required character column.

Setting the Application Requester Default CHARNAME and CCSIDs
The application requester default CHARNAME can be set to either for all
application requesters, or it can be set for an individual application requester. For
more information, see either “Setting the Default CHARNAME and CCSIDs for All
Application Requesters” on page 324 or “Setting the Default CHARNAME and
CCSIDs for an Application Requester” on page 324.

For a discussion of how your choice of default CHARNAME and CCSID affects
the performance of your system and the characters displayed, refer to
“Determining CCSID Values” on page 320.

Chapter 13. Choosing a National Language and Defining Character Sets 323

If you want to check the CHARNAME value, use SQLINIT QRY from an
application requester. The value displayed is obtained from the file LASTING
GLOBALV. The SQLINIT EXEC uses the following hierarchy to set the
CHARNAME value in LASTING GLOBALV to:
1. The value supplied as a parameter to the SQLINIT EXEC (see “Setting the

Default CHARNAME and CCSIDs for an Application Requester”).
2. The current value of CHARNAME in LASTING GLOBALV.
3. The value in the file SQLGLOB DEFAULT Q set by the SQLGLOB EXEC (see

“Setting the Default CHARNAME and CCSIDs for All Application
Requesters”).

4. The default value coded in the SQLINIT EXEC.

Note: If the PROTOCOL parameter is SQLDS for either the application server or
the application requester, the application server ignores the CHARNAME
value set for the application requester. In this case, the application server
assumes that the application requester default CHARNAME is the same
value as the application server default CHARNAME.

The only exception to this is the folding performed by the application
requester. On the application requester, folding is performed based on the
default CHARNAME, regardless of the PROTOCOL parameter specified.
However, if the application server CHARNAME and the application
requester CHARNAME are not the same, unexpected results can occur.

Setting the Default CHARNAME and CCSIDs for All Application
Requesters

When you run the SQLGLOB EXEC on a database machine, the EXEC sets the
application requester default initialization values, including the default for
CHARNAME, for all application requesters that are linked to the production
minidisk. You must have write access to the production minidisk to run the
SQLGLOB EXEC.

To specify an SBCS CHARNAME as the default for the application requesters, run
the SQLGLOB EXEC and specify an SBCS CHARNAME parameter value. For
example:

SQLGLOB CHARNAME (ENGLISH)

To specify a mixed CHARNAME as the default for the application requesters, run
the SQLGLOB EXEC and specify a mixed CHARNAME parameter value. For
example:

SQLGLOB CHARNAME (KOREAN)

Attention: The SQLGLOB EXEC defaults do not apply to application requesters
that have already run the SQLINIT EXEC (and thereby have values in their
LASTING GLOBALV file).

For more information about the SQLGLOB EXEC, see the DB2 Server for VSE &
VM Database Administration manual.

Setting the Default CHARNAME and CCSIDs for an Application
Requester

To use a CHARNAME different from that specified by the SQLGLOB EXEC, run
the SQLINIT EXEC on the application requester and specify the CHARNAME

324 System Administration

parameter. The value specified for CHARNAME will override the database-wide
default established by running the SQLGLOB EXEC.

To use an SBCS CHARNAME as the default, run the SQLINIT EXEC on the
application requester and specify an SBCS parameter value. For example:

SQLINIT CHARNAME (ENGLISH)

If you specify ENGLISH, the value for CCSIDSBCS is set to 37, and the value for
both CCSIDGRAPHIC and CCSIDMIXED is set to 0.

To use a mixed CHARNAME as the default, run the SQLINIT EXEC on the
application requester and specify a mixed parameter value. For example:

SQLINIT CHARNAME (KOREAN)

If you specify KOREAN, the value for CCSIDMIXED is set to 933, the value for
CCSIDSBCS is set to 833, and the value for CCSIDGRAPHIC is set to 834.

Note: When running in single user mode, the application server acts as an
application requester. Because of this, you must run the SQLINIT EXEC also
at the application server.

For more information about the SQLINIT EXEC, see the DB2 Server for VSE & VM
Database Administration manual.

Setting the Application Server Default Character Subtype
To set the application server default character subtype, you must update a row in
the SYSTEM.SYSOPTIONS catalog table. You must have DBA authority to do so.
The CHARSUB option specifies the default subtype for a column when SUBTYPE
clause or the CCSID is not specified explicitly (for example, on a CREATE TABLE
or ALTER TABLE statement).

Note: The character subtype is defined for the application server only. It is not
defined for the application requester. The CREATE PACKAGE CHARSUB
option or the preprocessor CHARSUB option defines the default subtype for
a package. For more information on this option, see the DB2 Server for VSE
& VM Application Programming or the DB2 Server for VSE & VM SQL
Reference manuals.

The initial setting of the application server default character subtype is SBCS. To
set it to mixed, issue:

UPDATE SYSTEM.SYSOPTIONS
SET VALUE = 'MIXED'
WHERE SQLOPTION = 'CHARSUB'

To reset the application server default character subtype to SBCS, issue:
UPDATE SYSTEM.SYSOPTIONS

SET VALUE = 'SBCS'
WHERE SQLOPTION = 'CHARSUB'

In both situations, the new setting does not become effective immediately. The new
setting is not in effect until the next time the application server is started.

If anything other than 'MIXED' or 'SBCS' is specified for the application server
default character subtype in the SYSOPTIONS table, SBCS is assumed and an error
message is issued when the application server is started.

Chapter 13. Choosing a National Language and Defining Character Sets 325

The application server default character subtype can only be mixed when the
application server default CHARNAME is mixed. The application server default
character subtype is forced to be SBCS when the application server default
CHARNAME is an SBCS CHARNAME.

Setting the DBCS Option for the Application Server
The DBCS option for the application server is set by updating a field in the
SYSTEM.SYSOPTIONS catalog table. You must have DBA authority to update the
catalog table.

The initial setting of the DBCS option is NO. To set the DBCS option to YES, issue:
UPDATE SYSTEM.SYSOPTIONS

SET VALUE = 'YES'
WHERE SQLOPTION = 'DBCS'

To reset the DBCS option to NO, issue:
UPDATE SYSTEM.SYSOPTIONS

SET VALUE = 'NO'
WHERE SQLOPTION = 'DBCS'

In both situations, the new setting does not become effective immediately. The new
setting is not in effect until the next time the application server is started.

If you specify anything other than YES or NO for the DBCS option, NO is
assumed and an error message is issued during startup.

For more information, see “Using Double-Byte Character Set (DBCS)” on page 314.

Setting DBCS Option for Application Requestors
The DBCS option can be set either for all application requesters, or it can be set by
an individual application requester. For more information see either “Setting the
DBCS Option for all Application Requesters”, or “Setting the DBCS Option for an
Application Requester” on page 327.

If you want to check the DBCS option, use SQLINIT QRY from an application
requester.

Setting the DBCS Option for all Application Requesters
When you run the SQLGLOB EXEC on a database machine, the EXEC sets the
DBCS option for all application requesters that are linked to the production
minidisk. You must have write access to the production minidisk to run the
SQLGLOB EXEC.

To specify that the DBCS option is set to YES as the default for the application
requesters, run the SQLGLOB EXEC as follows:

SQLGLOB DBCS (YES)

To specify that the DBCS option is set to NO as the default for the application
requesters, run the SQLGLOB EXEC as follows:

SQLGLOB DBCS (NO)

326 System Administration

The SQLGLOB EXEC defaults do not apply to application requesters that have
already run the SQLINIT EXEC (and thereby have values in their LASTING
GLOBALV file).

For more information, see “Using Double-Byte Character Set (DBCS)” on page 314.
For more information about the SQLGLOB EXEC, see the DB2 Server for VSE &
VM Database Administration manual.

Setting the DBCS Option for an Application Requester
To use a DBCS option different from that specified by SQLGLOB, run the SQLINIT
EXEC on the application requester and specify the DBCS parameter. The value
specified for the DBCS option will override the database-wide default established
by the SQLGLOB EXEC.

To set the DBCS option to YES, run the SQLINIT EXEC as follows:
SQLINIT DBCS (YES)

To set the DBCS option to NO, run the SQLINIT EXEC as follows:
SQLINIT DBCS (NO)

For more information about the SQLINIT EXEC, see the DB2 Server for VSE & VM
Database Administration manual.

EUC Conversions
Extended UNIX Code (EUC) allows for a form of ASCII mixed data. It is an
encoding scheme supported by UNIX in far eastern countries / regions which
allows for MBCS characters. Each EUC codepage is made up of three character
sets, or planes, denoted by G0, G1, and G2 or four character sets, denoted by G0,
G1, G2 and G3. The group in which the data belongs is determined by the range of
its first and second bytes. G0 is comprised of single-byte characters and is the
ASCII invariant coded character set. G1 characters are double-byte characters
within another range. G2 and G3 characters are triple-byte characters,
distinguished by the first byte and the range of the last three bytes.

EUC conversion is supported by the database manager. EUC characters are
converted to SBCS or DBCS characters, or both.

Unicode Conversions
Unicode data cannot be stored in a DB2 Server for VSE & VM database. However,
Unicode data can be received, converted to certain host code pages, and then
stored. To determine which Unicode conversions are supported, refer to the system
catalog SYSTEM.SYSSTRINGS. Each row in SYSTEM.SYSSTRINGS represents a
supported CCSID conversion, where INCCSID is the input CCSID and OUTCCSID
is the CCSID to which it can be converted.

Examples of Setting Values for an Installation
This section discusses two examples of using the application server default
CHARNAME JAPANESE-ENGLISH (CCSID=5035). The first example shows how
to specify this CHARNAME and enable mixed string manipulation. The second
example shows how to specify this CHARNAME without enabling mixed string

Chapter 13. Choosing a National Language and Defining Character Sets 327

|

|
|
|
|
|
|

manipulation and how to prevent the verification of character strings that contain
mixed data. (Mixed string manipulation is the ability to specify mixed SQL
identifiers, such as columns.)

Example 1
Suppose that you want to use the mixed JAPANESE-ENGLISH CCSID, 5035, as
your application server default CCSID, and you also want to have the ability to do
mixed string manipulation. To do this, set up your environment as follows:
1. Ensure that your terminal controllers are generated to use the correct code

pages.
The CCSID you want to use is 5035. You must define the controller to use the
character set 1172 for the SBCS character set, and code page 1027 for the SBCS
code page. For the DBCS characters, specify the character set 370 and the code
page 300.

2. Install the database manager.
The application server default CCSID for a newly installed database manager is
500 (CHARNAME=INTERNATIONAL). After installation, the
SYSTEM.SYSOPTIONS catalog table contains the following information:

CHARNAME=INTERNATIONAL (the name of 500)
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
DBCS=NO
CHARSUB=SBCS
.............

3. Change the value of the application server default CHARNAME to
JAPANESE-ENGLISH
Start the application server by using the SQLSTART EXEC. Specify
CHARNAME=JAPANESE-ENGLISH. Message ARI0159D is displayed that
informs you that the new CHARNAME (JAPANESE-ENGLISH) is different
from the current default (INTERNATIONAL). You are prompted to enter either
1 (YES) to change the default, 0 (NO) to leave the default unchanged, or 111
(QUIT) to shut down the application server. Type 1 (for YES) and press ENTER.
After the application server is started, the SYSTEM.SYSOPTIONS catalog table
should contain the following information:

CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035
CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=NO
CHARSUB=SBCS
.................

4. To enable mixed string manipulation, change the value for DBCS in
SYSTEM.SYSOPTIONS from NO to YES. You can use either ISQL or the DBS
utility.

5. Because most of the character columns will contain mixed data, you should
also change the value for CHARSUB from SBCS to MIXED.

6. To cause the DBCS and CHARSUB values in SYSTEM.SYSOPTIONS to be used
as the new application server defaults, you must stop the application server,
and then restart it.
The changes are now complete. The SYSTEM.SYSOPTIONS catalog table
contains the following information:

CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035

328 System Administration

CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=YES
CHARSUB=MIXED
.................

7. To set these values for all the application requesters, run the SQLGLOB EXEC.
Issue the following command:

SQLGLOB CHARNAME(JAPANESE-ENGLISH) DBCS(YES)...

Note that CHARSUB is only applicable to the application server.

Example 2
Suppose that you want to use the mixed JAPANESE-ENGLISH CCSID, 5035, as
your application server default CCSID. Because you must be able to both store
DBCS characters, and retrieve DBCS characters from graphic columns (GRAPHIC,
VARGRAPHIC, or LONG VARGRAPHIC), you cannot specify an ENGLISH
single-byte CCSID such as 37 or 1027. Also suppose that you do not want the
ability to do mixed string manipulation, and you want to prevent the database
manager from verifying character strings for mixed data. In addition, you also
want character columns that are created without the explicit specification of a
CCSID or a subtype to default to the SBCS subtype and CCSID. To do this, set up
your environment as follows:
1. Ensure that your terminal controllers are generated to use the correct code

pages.
The CCSID you want to use is 5035. You must define the controller to use the
character set 1172 for the SBCS character set, and code page 1027 for the SBCS
code page. For the DBCS characters, specify the character set 370 and the code
page 300.

2. Install the database manager.
The application server default CCSID for a newly installed database manager is
500 (CHARNAME=INTERNATIONAL). After installation, the
SYSTEM.SYSOPTIONS catalog table contains the following information:

CHARNAME=INTERNATIONAL (the name of 500)
CCSIDSBCS=500
CCSIDMIXED=0
CCSIDGRAPHIC=0
DBCS=NO
CHARSUB=SBCS
.............

3. Change the value of the application server default CHARNAME to
JAPANESE-ENGLISH.
Start the application server by using the SQLSTART EXEC. Specify
CHARNAME=JAPANESE-ENGLISH. Message ARI0159D is displayed that
informs you that the new CHARNAME (JAPANESE-ENGLISH) is different
from the current default (INTERNATIONAL). You are prompted to enter either
1 (YES) to change the default, 0 (NO) to leave the default unchanged, or 111
(QUIT) to shut down the application server. Type 1 (for YES) and press ENTER.
After the application server is started, the SYSTEM.SYSOPTIONS catalog table
should contain the following information:

CHARNAME=JAPANESE-ENGLISH
CCSIDSBCS=1027 (the single-byte portion of 5035)
CCSIDMIXED=5035
CCSIDGRAPHIC=4396 (the double-byte portion of 5035)
DBCS=NO
CHARSUB=SBCS
.................

Chapter 13. Choosing a National Language and Defining Character Sets 329

4. Because you do not want to enable mixed string manipulation, and you do not
want the database manager to verify character strings for mixed data, leave the
DBCS option set to NO (even though the database manager uses a mixed
CCSID). This still allows you to:
v Issue CREATE TABLE or ALTER TABLE statements to either add or create

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC columns. The CCSID
for these columns will be taken from value for CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table.

v Insert into graphic columns from graphic host variables.
v Select graphic columns into graphic host variables.
v Use graphic constants in SQL statements.

5. Because most character columns will contain SBCS data, leave the value for
CHARSUB as SBCS. When you need to either create or add a mixed character
column, you can specify the FOR MIXED DATA clause or the CCSID clause
explicitly for the CREATE TABLE or the ALTER TABLE statement.

6. To set these values for all the application requesters, run the SQLGLOB EXEC.
Issue the following command:

SQLGLOB CHARNAME(JAPANESE-ENGLISH) DBCS(YES)...

For an application requester to be able to use graphic data, the application
requester must use a mixed CCSID as the default. One exception exists. If
SQLINIT PROTOCOL(SQLDS) is issued from an application requester (or if the
application server was started with SQLSTART PROTOCOL(SQLDS)), the
application server responds to the application requester with the expectation
that the application requester is using the same mixed CCSID as the application
server is using. If the user specified a different value for the SQLINIT
CHARNAME parameter, the application server ignores this value. (However,
folding performed by the application requester is still based on the application
requester default CHARNAME, regardless of the PROTOCOL parameter
specified. In this case, if the application server CHARNAME and the
application requester CHARNAME are not the same, unexpected results can
occur. See “Setting the Application Requester Default CHARNAME and
CCSIDs” on page 323 for more information.)

In this step, the DBCS option is set to YES. Because DBCS strings can be
truncated when displayed by ISQL, setting the DBCS option to YES ensures
that truncation is done properly. If truncation is not a consideration, you can set
the DBCS option to NO.

Identifying Classification and Translation Tables for a CCSID
To identify either the classification table or the translation table that is used for
folding characters to uppercase for a specific CCSID, do the following:
1. Review the CHARNAME column of the SYSTEM.SYSCCSIDS catalog table for

the CHARNAME value of the CCSID.
2. Review the NAME column of the SYSTEM.SYSCHARSETS catalog table for the

value that matches the CHARNAME of the CCSID. That row contains both the
classification table and the translation table for the CCSID.

330 System Administration

National Language Support for Messages and HELP Text
The database manager can provide DB2 Server for VM messages and HELP text in
several national languages. Messages and HELP text come with the product tape.
For more information on HELP text, see the DB2 Server for VSE & VM Database
Administration manual.

When the national language feature tape has been installed, national language
support works this way:
v ISQL users can receive messages in the language they select.
v Users of DB2 Server for VM EXECs receive messages in the language that is the

current language setting in CMS.
v Users of the DBS utility and the preprocessors receive messages in the language

that is the current language setting in CMS.
v ISQL users can receive HELP text for commands and messages in the language

they select.
v The DB2 Server for VM operator can receive messages on the operator console

in the language selected.

The national language tape provided contains the following languages:
v Mixed American English
v Uppercase American English
v French
v German
v Japanese
v Simplified Chinese.

When the database manager is installed, you specify a default national language.
This is a second-level default. The first-level default is the current CMS language
setting. If that language is unavailable in the database manager, the second-level
default is used. When one or more additional national languages have been
installed, users can change the language from the default in the following ways:
v ISQL users can choose the language for messages and HELP text using the SET

LANGUAGE command. For ISQL users to receive HELP text in the language
they choose, the messages and the HELP text for that language must be
installed. To support a national language, you must install the messages for that
language. Installing the HELP text is optional.
If the language is installed on the database manager and in CMS, the user can
issue SET LANGUAGE for that language in CMS. If the language is installed on
the database manager but is not supported in CMS, the user cannot issue SET
LANGUAGE for that language in CMS. When ISQL is being started, the user
will receive messages in the current language setting in CMS (if the current
language setting in CMS is unavailable in the database manager, the DB2 Server
for VM default language is used). After ISQL has been started, the user can
change the language for messages and HELP text.
The following paragraph only applies if you have VSE guest sharing:
The VSE online users can also choose the language they receive messages in by
specifying the LANGID parameter on the CIRB transaction. For an explanation
of the CIRB transaction, see “Starting the Online Resource Adapter -- The CIRB
Transaction” on page 100.

v Users of the DBS utility, DB2 Server for VM EXECs, and the preprocessors can
only receive messages in national languages supported by the operating system.
They select a language by issuing SET LANGUAGE in CMS. If the current CMS

Chapter 13. Choosing a National Language and Defining Character Sets 331

language setting is not installed on the database manager, the default national
language is used if it is supported by the operating system.

v DBS utility users and preprocessor users on a VSE guest receive messages in the
language specified when the database manager was installed. If a user wants to
receive messages in another language, the user should specify the library
containing the desired language in the LIBDEF statement of the job control.

v The operator can choose the language for operator messages using the SET
LANGUAGE command from the operator console. This language is also used to
display the output of the SHOW, RESET, and COUNTER commands.

National languages are identified to the database manager by a language name,
and a LANGID (language identifier). These values are in the
SQLDBA.SYSLANGUAGE table. If you have English and French installed on the
database manager, the SQLDBA.SYSLANGUAGE table can look like the example
in Figure 105.

For the LANGUAGE and REMARKS columns, you can choose values appropriate
for your organization. For the LANGKEY and LANGID columns, you should keep
the values supplied by the database manager.

The language keys (LANGKEY) and language identifiers (LANGID) used by the
database manager are shown in Table 23.

Table 23. Language Keys and Language Identifiers

LANGUAGE LANGKEY LANGID

ENGLISH (mixed case) S001 AMENG

ENGLISH (uppercase) S002 UCENG

FRENCH S003 FRANC

GERMAN S004 GER

JAPANESE D001 KANJI

CHINESE_SIMPLIFIED D003 HANZI

You should not use the language keys and language identifiers (LANGID) shown
above for other purposes. In addition, the language keys S007-S500 and D003-D500
are reserved for IBM use.

The language key is used to internally identify HELP text for a language. The
LANGID can be used to choose a language for messages and HELP text. You can
also specify the name of the language, as it is stored in the LANGUAGE column of
the SQLDBA.SYSLANGUAGE table.

In ISQL, and on the operator console, you can specify a language or a LANGID on
the SET LANGUAGE command. The syntax of the SET LANGUAGE command is
shown in Figure 106 on page 333.

LANGUAGE LANGKEY REMARKS LANGID
-------------- ------- --------------------------------------- --------
ENGLISH S001 ENGLISH VERSION OF HELP TEXT AMENG
FRANCAIS S003 TEXTE D'AIDE FRANCAIS FRANC

Figure 105. Sample SQLDBA.SYSLANGUAGE Table

332 System Administration

The language or LANGID you specify must match a value in the SYSLANGUAGE
table, and must be installed. If your installation uses a double-byte character set,
you should consider setting the DBCS option to YES. For information on the DBCS
option, see “Using Double-Byte Character Set (DBCS)” on page 314.

When using the LANGID parameter on the CIRB transaction, (if you have VSE
guest sharing), or in CMS, you can specify only the LANGID. The LANGIDs used
by the database manager are consistent with CMS LANGIDs. When a national
language is not supported by CMS, but it is supported by the database manager,
the database manager uses its own LANGID for the language. In ISQL, on the
operator console, or when using the CIRB transaction (for guest sharing), you can
use any LANGID shown in Table 23 on page 332 if the language is installed on the
database manager.

Note: Not all LANGIDs are supported in all operating systems.

CMS HELP Text Files
When you install the database manager, you are prompted for a location in which
to install the CMS HELP text files. If you specify the production minidisk address
(195), CMS HELP text in languages other than American English will be
unavailable. If you install messages in more than one national language, you need
a separate minidisk for each national language. Ensure that the minidisk (or
minidisks) used cannot be accessed by other user IDs, including the database
machine.

When installing the CMS Help files, you must use the disk known by the VM
system for that language. The address of this disk is identified by the LANGMERG
control file. For additional information on the LANGMERG control file, see the
VM/ESA: CMS Command Reference manual.

National Language Messages in a VSE Guest Sharing
Environment

If you have VSE guest sharing, you should install all languages on the VSE guest
that you want to support on VSE. Users who use the DBS utility and the
preprocessors from the VSE guest should specify the library containing the desired
language in the LIBDEF statement of the job control.

Defining Message Repositories as Saved Segments
The DB2 Server for VM messages for each national language you have installed are
stored in message repositories. There are two message repositories for each
language. One (ARIMxxxx where xxxx represents the LANGKEY) is for messages
that are issued while the database is running. The other (ARIUME) is installed
according to the CMS-specified rules for NLS (national language support) support
for CMS applications, and uses the CMS facility to issue NLS messages from
EXECs. The ARIUME message repository is used during initialization or

�� SET LANGuage language

langid

��

Figure 106. The SET LANGUAGE Command

Chapter 13. Choosing a National Language and Defining Character Sets 333

termination of services (that is by the database manager itself, ISQL, DBS utility,
and preprocessors among other things) since the message services cannot be used
at that time.

For each language that is frequently used, you can have ARIMxxxx and ARIUME
as follows:
v ARIMxxxx

The ARIMxxxx repository (where xxxx represents the LANGKEY) is the
repository for DB2 Server for VM messages, and is used by modules that reside
in the user machine. (The ARIMxxxx repository is also used by the modules in
the database machine. However, the database machine will always load
ARIMxxxx into free storage). The saved segment is identified to the database
manager by the ARISNLSC MACRO. Defining ARIMxxxx as a saved segment is
described in “Defining Saved Segments” on page 177. To refresh this segment
after service, you have to run ARISDBMA.

v ARIUME
The DB2 Server for VM EXEC repository (ARIUME) is accessed by the database
and user machines, and uses the CMS facility to issue NLS messages from
EXECs. It is installed according to the rules specified by CMS for NLS support
for CMS applications, and is added to the segment that contains the CMS
message repository. The CMS message repository for the default language can be
defined as a nucleus extension to which the ARIUME message repository can be
added. For a language other than the default you must first define the segment
for that language. For more information, see the VM/ESA: Installation Guide. The
name of this segment will be NLXY, where X is the langlev specified in
DMSNGP ASSEMBLE LANGLEV parameter, and Y is the LANGID as specified
in Table 23 on page 332. For example, if you use the default LANGLEV=S, and
are installing American English (AMENG), then the segment name would be
NLSAMENG.
To add DB2 Server for VM messages to the nucleus extension containing the
CMS messages (for the default language) or to the saved segment containing
CMS messages (for non-default languages), perform the following steps:
1. Define an NLSlangid segment, if one had not been defined yet, using the

instructions in the “Installing and Customizing National Language” chapter
in the VM/ESA: Installation Guide.

2. Make sure that the ARIUME repository is placed on a file mode accessible by
the machine (for example, file mode A).

3. Update the LANGMERG control file.
You need to have a LANGMERG control file for the national language you
are saving as a saved segment. See the LANGMERG command in the
VM/ESA: CMS Command Reference manual. The line added for the database
manager should look as follows:

MESSAGE ARIUME TXTlangid *

If this file does not exist in the system, create this file and add the above line
into the file. The langid stands for the language identifier of the national
language you are defining the saved segment for.

If the language is AMENG and the SQL message repository is named
ARIUME TEXT, this line should look as follows:

MESSAGE ARIUME TEXT *

4. Issue the LANGMERG command.
The syntax of the command is:

334 System Administration

LANGMERG langid ARI (CTL fn

The langid stands for the language identifier of the national language, and fn
is the file name of the control file created or updated in step 3 on page 334.

For example, if the language is AMENG and the control file is DMSNLS
LANGMCTL, the command should look as follows:

LANGMERG AMENG ARI (CTL DMSNLS

This will create a file ARINLS TXTAMENG on your A disk.
5. Update the LANGGEN control file.

You have to add a line to the LANGGEN control file for the language
identifier for the national language you are saving as a saved segment. See
the LANGGEN command in the VM/ESA: CMS Command Reference manual.
The line should look as follows:

ARINLS TXTlangid A

The langid stands for the language identifier of the national language.

If the LANGGEN control file does not exist in the system, create one and
add the CMS message repository file in front of the SQL message repository
file. The lines should look as follows:

DMSMES TEXT *
ARINLS TXTlangid A

DMSMES TEXT is the name of the English CMS message repository file. Use
the correct message repository file name for the national language chosen
(see Step 4 on page 334).

6. Issue the LANGGEN command.
The syntax of the command is:

LANGGEN langid (CTL fn

The langid stands for the language identifier of the national language, and fn
is the file name of the control file created or updated in step 3 on page 334.

For example, if the language is AMENG and the control file is DMSNLS
LANGGCTL, the command should look as follows:

LANGGEN AMENG (CTL DMSNLS

LANGEN will invoke SAVESEG or SAVESYS to save the NLS language
segment.

7. Build and load the segment using the instructions in the “Installing and
Customizing National Language” chapter in the VM/ESA: Installation Guide.

8. Issue the SET LANGUAGE command from each machine that you want to
be able to access the saved segment.
For example:

SET LANGUAGE AMENG (ADD ARI SYSTEM

This command can be added to the PROFILE EXEC, or issued as a CMS
command before running or accessing the database manager.

After applying service to module ARIUME, you will need to repeat step 6 and step
7.

Chapter 13. Choosing a National Language and Defining Character Sets 335

For complete instructions on how to set up an application message repository, see
the national language information supplied with VM/ESA.

336 System Administration

Chapter 14. Creating Installation Exits

This chapter discusses installation exits that:
v Supply account numbers for product users
v Define your own datetime format
v Coding your own TRANSPROC exit
v Perform your own cancel exit
v Encode and decode data (Field Procedures).

Supplying Account Numbers for Users
There is no rigid format for entering account or project numbers into accounting
records, because their definition and use vary at each installation. (Some
installations do not use account numbers at all.) Thus, you must devise your own
scheme.

To do this, you replace a module named ARIUXIT with your own version of that
module.

Note: The ARIUXIT accounting exit is not called in a DRDA protocol environment.

The resource adapter calls ARIUXIT when a user tries to connect to a DB2 Server
for VM application server either implicitly or explicitly. The database manager
branches to ARIUXIT even before attempting to verify the user.

The database manager allows ARIUXIT to access a control block. In this control
block, ARIUXIT can provide up to 16 bytes of data.

Before calling ARIUXIT, the database manager initializes the 16-byte area. For
batch/ICCF applications, the database manager initializes the area to character
blanks.

The ARIUXIT module does not use the control block (except for the return code
area); it only sets a no-operation return code and branches back to the database
manager, as shown in the following figure.

© Copyright IBM Corp. 1987, 2001 337

Because of this, the database manager places blanks in the installation-dependent
field of the user’s accounting records. Whatever data is in the 16-byte area is
placed on the accounting records of the user who was trying to connect at the time
that ARIUXIT was called.

Your version of ARIUXIT should determine the user’s accounting information for
your installation, verify it, and pass it to database manager which puts it in the
user’s accounting records. You can supply department names as well as account or
project numbers. You can, in fact, supply whatever you like so long as it fits in 16
bytes and meets your own installation’s requirements. The database manager does
no error-checking on the data.

The database manager always branches to ARIUXIT in a non-DRDA protocol
environment, regardless of whether the connect attempt is from a program, the
DBS utility, the preprocessors, or ISQL. You cannot disable branching. If you want
to be able to bypass your accounting routine, you have to code the routine so that
you can turn it on and off.

How the ARIUXIT Module Works
The resource adapter is the component of the database manager that calls
ARIUXIT. In multiple user mode, the resource adapter is in the user machine; in
single user mode, it is in the database machine. The ARIUXIT module is called in
both modes.

The resource adapter calls ARIUXIT in AMODE(31).

User attempts to connect
to the application server

Branch to
ARIUXIT

ARIUXIT
- Provide a

no-operation
return code

- Return

Continue processing
with normal connect

Figure 107. The Database Manager Branching to ARIUXIT

338 System Administration

When the resource adapter detects any attempt to connect to an application server,
it builds a parameter list for ARIUXIT, sets registers for a proper linkage, and calls
ARIUXIT. It always calls ARIUXIT, even if the accounting facility is not enabled.
The registers are set as follows:

Register 1 The address of the start of the parameter list for
ARIUXIT. The parameter list itself is named
ARIUEXI. The pointer to the parameter list points
to the beginning of ARIUEXI, which is described
below. The first field in ARIUEXI is an eye-catcher
value.

Register 13 Points to a standard register save area.

Register 14 Contains the return address.

Register 15 Contains the entry point of the installation exit
routine.

You must code ARIUXIT to save the DB2 Server for VM registers in the area
pointed to by Register 13. If ARIUXIT does not save and restore the registers, the
results will be unpredictable.

The resource adapter also builds the parameter list named ARIUEXI. Table 24
shows what is in ARIUEXI.

Table 24. ARIUEXI Parameter List

Length Description

2 words
1 word

Eye-catcher: 'ARIUEXI '
Length of ARIUEXI parameter list

1 word
1 word

Pointer to Exit Number
Pointer to length of Exit Number

1 word
1 word

Pointer to Exit Global Area
Pointer to length of Exit Global Area

1 word
1 word

Pointer to Exit Local User Area
Pointer to length of Exit Local User Area

1 word
1 word

Pointer to Exit Unique Area
Pointer to length of Exit Unique Area

2 words Reserved

1 word
1 word

Pointer to Environment Dependent Area
Pointer to length of Environment Dependent Area

1 word
1 word

Pointer to Exit Return Code Area
Pointer to length of Exit Return Code Area

Each area that ARIUEXI points to is described below.

Eye-catcher and Length of List
The resource adapter sets the eye-catcher field to 'ARIUEXI ' and the
following full word to the length of the entire list. (This length includes the
length of the eye-catcher field.)

Exit Number
The exit number is always a full word. The exit number for the accounting
exit is 1. The resource adapter sets the pointer to the exit number with an

Chapter 14. Creating Installation Exits 339

address to a full word area containing a binary 1. The resource adapter sets
the pointer to the length of the exit number with the address of a full word
area containing a binary 4.

Exit Global Area
This area does not apply to the accounting exit. The resource adapter sets
both the pointer to the global area and the pointer to the length of the
global area to binary zeros.

Exit Local User Area
The local user area is 16 bytes long. It is a read/write area that lasts for the
life of the user program. For CMS applications, the area exists until the end
of the CMS command.

For each user, the resource adapter obtains the 16-byte storage area and
sets it to binary zeros. The pointer to the local user area is unique for each
user. On subsequent calls by the user, the resource adapter returns the
same pointer; it never resets the area.

The pointer to the length of the local user area always points to a full word
that contains a binary 16.

Exit Unique Area
In this area, you provide the installation-dependent accounting
information. This area is also 16 bytes long. The resource adapter initializes
the field to character blanks. In the VM/ESA operating system, the first
four bytes of this area contain the CMS work unit ID. The accounting exit
writes over these first four bytes unless you modify it.

The pointer to the length of the area points to a full word that contains
binary 16.

Reserved Area
This area is 8 bytes long and reserved. The resource adapter initializes it to
binary zeros.

Environment-Dependent Area
This area is 40 bytes long. It contains information about the environment
where the user is running.

Note: Some fields apply only to VSE uses of the database manager. For
VM, those fields are set to binary zeros or character blanks.

The resource adapter initializes the environment-dependent area as follows:

Byte 1 Character S for single user mode, or M for multiple user mode.

Byte 2 Character V for VM.

Byte 3 Character blank for VM.

Byte 4 Character I for implicit connect, or E for explicit connect.

Bytes 5—8
Binary zeros.

Bytes 9—12
Binary zeros.

Bytes 13—20
Database name.

340 System Administration

Bytes 21—28
CONNECT user ID for all explicit connections. Blanks for implicit
connections.

Bytes 29—36
Character blanks.

Bytes 37—40
Binary zeros (reserved).

For implicit connections, you can use the CP DIAGNOSE
instruction X'00' to obtain the VM user ID. (The VM user ID is
used as the DB2 Server for VM user ID for implicit connections.)

Exit Return Code Area
The resource adapter initializes this full word area (and the pointer to it),
and sets it to -1. A return code of -1 means that you do not want this exit.
The length field for this area is a full word containing a binary 4. The
resource adapter also ORs a X'80' to the high order byte of the pointer to
the length field of the return code area. The X'80' indicates the end of the
parameter list.

When you code your version of ARIUXIT, you can specify these return codes
before branching back to the database manager:

-1 Means that you do not want this exit (the default). This indicates to the
database manager that the exit is a no-op.

0 The function that the exit called to do a task completed successfully.

Other Any return code other than 0 or -1 causes an -815 SQLCODE to be
returned to the user. (SQLERRD1 contains the return code from the exit.)
You can reject a user’s attempt to connect because the user has incorrect
accounting information.

Figure 108 on page 342 summarizes the ARIUEXI parameter list and the areas
pointed to by the list.

Chapter 14. Creating Installation Exits 341

Coding Your Own Accounting Exit
Exit routines must always be coded in Assembler language. Your version of
ARIUXIT (and any of the modules it calls) must not use any DB2 Server for VM
function.

Figure 109 on page 343 shows the ARIUXIT module that is included with the
database manager. This sample exit routine is on the service disk. Its file name and
file type are ARIUXIT MACRO. Note that the Exit Return Code Area is set to -1,

Character

'ARIUEXI'

Binary 68

Pointer

Pointer

Binary 0

Binary 0

Pointer

Pointer

Pointer

Pointer

Binary

Zeros

Pointer

Pointer

Pointer

Pointer

0

8

12

16

20

24

28

32

36

40

44

52

54

58

62

Exit Number:

Binary 1

Exit Unique Area:

See text

Length of Exit Unique Area:

Binary 16

Environment Dependent Area:

See text

Register 1 Pointer

Length of
Exit Number:

Binary 4

Length of Local User Area:

Binary 16

Length of Environment Dependent Area:

Binary 40

Length of Return Code Area:

Binary 4

Return Code Area:

Binary -1

Local User Area:

Binary 0s

/ /

/ /

Figure 108. Summary of ARIUEXI Parameter List and Associated Areas

342 System Administration

which means that you are not interested.

TITLE 'ARIUXIT'

* ARIUXIT USER EXIT ROUTER ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *
* *

SPACE 5
ARIUXIT CSECT ,
ARIUXIT AMODE ANY
ARIUXIT RMODE 24

DS 0H
USING *,R15 GET ADDRESSABILITY
B PROLOG
DC CL8'ARIUXIT ' EYECATCHER

*
PROLOG EQU *

STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
DROP R15
BALR R12,0 R12 IS BASE REGISTER

*
PSTART EQU *

USING PSTART,R12 GET ADDRESSABILITY FOR ROUTINE
ST R13,UXSAVE+4 STORE BACKWARD POINTER
LA R9,UXSAVE ADDRESS OF SAVE AREA
ST R9,UXSAVE+8 STORE FORWARD POINTER
LR R13,R9 R13 POINTS TO NEW SAVE AREA
L R1,0(,R1) GET POINTER TO PLIST
USING PLIST,R1 GET ADDRESSABILITY TO PLIST DSECT

*
* Insert your own code here
* (and change the return code as appropriate).
*

Figure 109. IBM-Supplied Version of ARIUXIT (Part 1 of 3)

Chapter 14. Creating Installation Exits 343

L R2,PLRETCD GET PTR TO EXIT RETURN CODE AREA
L R3,NEG1RC LOAD NOOP RET CODE (NEGATIVE ONE)

*
ST R3,0(,R2) STORE RET CODE INTO EXIT RC AREA

*
L R13,UXSAVE+4 GET BACKWARD POINTER
LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
BR R14 RETURN TO CALLER

*
END EQU *

EJECT

*
* DECLARES FOR ARIUXIT ROUTER
*

SPACE 5
UXSAVE DC 18F'0' SAVE AREA FOR CALLER'S REGISTERS
NEG1RC DC F'-1' NEGATIVE ONE RETURN CODE (NO-OP)

SPACE 2
R0 EQU 0 REGISTERS EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

Figure 109. IBM-Supplied Version of ARIUXIT (Part 2 of 3)

344 System Administration

Figure 110 shows a simple example of a user version of ARIUXIT. In this example,
the string HERE IS USERDATA is moved into the exit unique area, and the exit
return code area is set to 0.

*
* DSECT FOR ARIUEXI PARAMETER LIST INTERFACE TO ARIUXIT ROUTER
*

SPACE 5
DS 0D

PLIST DSECT
PLICTCH DS CL8 EYECATCHER
PLILENG DS F LENGTH OF PLIST (INCLUDING EYECATCHER)
PLEXNUM DS F PTR TO EXIT NUMBER
PLLXNUM DS F PTR TO LENGTH OF EXIT NUMBER
PLGLOBA DS F PTR TO EXIT GLOBAL AREA
PLLGLOB DS F PTR TO LENGTH OF EXIT GLOBAL AREA
PLUSERF DS F PTR TO EXIT LOCAL USER AREA
PLLUSER DS F PTR TO LENGTH OF EXIT LOCAL USER AREA
PLEUNIQ DS F PTR TO EXIT UNIQUE AREA
PLLUNIQ DS F PTR TO LENGTH OF EXIT UNIQUE AREA

DS CL8 RESERVED
PLEDEPA DS F PTR TO ENVIRONMENT DEPENDENT AREA
PLLDEPA DS F PTR TO LENGTH OF ENVIRONMENT DEP AREA
PLRETCD DS F PTR TO EXIT RETURN CODE AREA
PLLRETC DS F PTR TO LENGTH OF EXIT RETURN CODE AREA
*

END

Figure 109. IBM-Supplied Version of ARIUXIT (Part 3 of 3)

Chapter 14. Creating Installation Exits 345

TITLE 'ARIUXIT'

* ARIUXIT USER EXIT ROUTER ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *
* *

SPACE 5
ARIUXIT CSECT ,
ARIUXIT AMODE ANY
ARIUXIT RMODE 24

DS 0H
USING *,R15 GET ADDRESSABILITY
B PROLOG
DC CL8'ARIUXIT ' EYECATCHER

*
PROLOG EQU *

STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
DROP R15
BALR R12,0 R12 IS BASE REGISTER

*
PSTART EQU *

USING PSTART,R12 GET ADDRESSABILITY FOR ROUTINE
ST R13,UXSAVE+4 STORE BACKWARD POINTER
LA R9,UXSAVE ADDRESS OF SAVE AREA
ST R9,UXSAVE+8 STORE FORWARD POINTER
LR R13,R9 R13 POINTS TO NEW SAVE AREA
L R1,0(,R1) GET POINTER TO PLIST
USING PLIST,R1 GET ADDRESSABILITY TO PLIST DSECT

Figure 110. Sample User Version of ARIUXIT (Part 1 of 3)

346 System Administration

*
* Here you would place code that gets and verifies your
* user-dependent data. The following code shows moving the data
* into the Exit Unique Area.
*
* Make sure you check the Exit Number word. If the Exit Number value
* is not a binary 1, you should set the Exit Return Code word to binary
* -1 (NEG1RC) and return to the database manager.
*

L R2,PLEUNIQ GET PTR TO EXIT UNIQUE AREA
MVC 0(16,R2),USERDATA MOVE 16 BYTES OF USER DATA
L R2,PLRETCD GET PTR TO EXIT RETURN CODE AREA
L R3,ZEROS SET ZERO RETURN CODE
ST R3,0(,R2) STORE RET CODE INTO EXIT RC AREA

*
EXIT EQU * RETURN TO THE DATABASE MANAGER

L R13,UXSAVE+4 GET BACKWARD POINTER
LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
BR R14 RETURN TO CALLER

*
END EQU *

EJECT

*
* DECLARES FOR ARIUXIT
*

SPACE 5
UXSAVE DC 18F'0' SAVE AREA FOR CALLER'S REGISTERS
ZEROS DC F'0' ZERO RETURN CODE
NEG1RC DC F'-1' NEGATIVE RETURN CODE (NO-OP)
USERDATA DC CL16'HERE IS USERDATA'

SPACE 2
R0 EQU 0 REGISTERS EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT

Figure 110. Sample User Version of ARIUXIT (Part 2 of 3)

Chapter 14. Creating Installation Exits 347

After the program is coded, assemble it as you would any other program.

Installing Your Version of ARIUXIT
During customization of DB2 Server for VM, you may have to modify TEXT files
that are serviced as full part replacement (for example, for user exits, such as
ARIUXIT). The source is shipped as a MACRO file.

Use the following steps to create and build the affected objects with the new parts.
These steps use the VMSES/E local modification procedure.

Step 1. Stop the Application Server
Stop the application server using your normal operating procedures.

Step 2. Log on to the Installation or Service User ID
Log on to the installation or service user ID, 5697F42R.

Step 3. Establish the Minidisk or SFS Directory Order
Establish the access order.
vmfsetup 5697F42R {DB2VM|DB2VMSFS}

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

If you have your own PPF override, then substitute that name for the 5697F42R
name shown in this command and any following commands.

Step 4. Copy the MACRO Source Code (First Time Only)
Copy the MACRO source code to the local modification disk as ASSEMBLE. This
only needs to be done the first time you apply local modifications to this part;
otherwise, you will delete your version of the ASSEMBLE file.

*
* DSECT FOR ARIUEXI PARAMETER LIST INTERFACE TO ARIUXIT
*

SPACE 5
DS 0D

PLIST DSECT
PLICTCH DS CL8 EYE-CATCHER
PLILENG DS F LENGTH OF PLIST (INCLUDING EYE-CATCHER)
PLEXNUM DS F PTR TO EXIT NUMBER
PLLXNUM DS F PTR TO LENGTH OF EXIT NUMBER
PLGLOBA DS F PTR TO EXIT GLOBAL AREA
PLLGLOB DS F PTR TO LENGTH OF EXIT GLOBAL AREA
PLUSERF DS F PTR TO EXIT LOCAL USER AREA
PLLUSER DS F PTR TO LENGTH OF EXIT LOCAL USER AREA
PLEUNIQ DS F PTR TO EXIT UNIQUE AREA
PLLUNIQ DS F PTR TO LENGTH OF EXIT UNIQUE AREA

DS CL8 RESERVED
PLEDEPA DS F PTR TO ENVIRONMENT DEPENDENT AREA
PLLDEPA DS F PTR TO LENGTH OF ENVIRONMENT DEP AREA
PLRETCD DS F PTR TO EXIT RETURN CODE AREA
PLLRETC DS F PTR TO LENGTH OF EXIT RETURN CODE AREA
*

END

Figure 110. Sample User Version of ARIUXIT (Part 3 of 3)

348 System Administration

vmfrepl ariuxit macro 5697F42R {DB2VM|DB2VMSFS}
(filetype assemble outmode localsam

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

Step 5. Edit the ASSEMBLE File
Edit ARIUXIT ASSEMBLE file on the local modification disk (2C2) and make your
changes.

Step 6. Update the Local Version Vector Table
Update the local version vector table for the assembled TEXT file.
vmfrepl ariuxit text 5697F42R {DB2VM|DB2VMSFS}

(logmod modid nocopy

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

modid is the new local modification identifier for the part (for example, L0001).

Step 7. Assemble the File
Use the VMFHLASM command to assemble ARIUXIT.
vmfhlasm ariuxit 5697F42R {DB2VM|DB2VMSFS}

(nockgen $select outmode localsam

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

Notes:

1. Other options are available for the assemble commands. Consult the VM/ESA:
VMSES/E Introduction and Reference for additional information.

2. We recommend that you use the VMFHLASM command supplied by
VMSES/E. Also available are the VMFHASM and VMFASM commands.

3. If the assemble function is successful, the ARIUXIT TXTLnnnn file is placed on
the LOCALSAM 2C2(E) disk.

Step 8. Build your New Local Modification
Build your new local modification on the test build disks.
vmfbld ppf 5697F42R {DB2VM|DB2VMSFS} (status
vmfbld ppf 5697F42R {DB2VM|DB2VMSFS} (serviced

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

After you issue the VMFBLD command with the STATUS option, use the
VMFVIEW BUILD command to view the $VMFBLD $MSGLOG file to see which
objects will be built.

Step 9. Place the New Local Modification into Production
Use ARISINST to place the new local modification into production.
arisinst c 5697F42R {DB2VM|DB2VMSFS}

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

The C function of ARISINST copies the test service and production build disks to
the SQLMACH production service and production build disks.

Chapter 14. Creating Installation Exits 349

Step 10. Restart the Application Server
Restart the application server in multiple user mode with the required PROTOCOL
parameter.

Service Considerations for ARIUXIT
The dummy version of ARIUXIT is not serviceable; other portions of the DSC
component, however, are serviceable. If service is applied to any portion of DSC, it
is link-edited again. If you have coded your own version of ARIUXIT and
completed the previous steps, your version of ARIUXIT will be included in the
DSC component.

Defining Your Own Datetime Format
The database manager supports many datetime formats. This section describes the
datetime formats and how you can add your own by coding your own exit.

Datetime Formats
The database manager supports DATE, TIME, and TIMESTAMP data types and
operations. You can enter a date or a time using many different formats.

Dates can be entered in any of the formats shown in Table 25.

Table 25. Date Formats

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1993-12-31

IBM USA standard USA mm/dd/yyyy 12/31/1993

IBM European standard EUR dd.mm.yyyy 31.12.1993

Japanese Industrial Standard
Christian Era

JIS yyyy-mm-dd 1993-12-31

Site-defined LOCAL Any site-defined
form

—

Times can be entered in any of the formats shown in Table 26.

Table 26. Time Formats

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm[.ss] 13.30.05

IBM USA standard USA hh:mm AM or PM 1:30 PM

IBM European standard EUR hh.mm[.ss] 13.30.05

Japanese Industrial Standard
Christian Era

JIS hh:mm[:ss] 13:30:05

Site-defined LOCAL Any site-defined
form

—

To define the LOCAL format, you have to code your own date or time exit. For
information about coding your own datetime exit, see “Coding Your Own
Datetime Exit” on page 354.

350 System Administration

Default Output Format
When the database manager is installed, the default date and time formats are both
ISO. To change them, you must change the entry in the SYSTEM.SYSOPTIONS
table. You must have DBA authority to do this.

For example, to specify that the date output format is USA, enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE='USA' WHERE SQLOPTION='DATE'

Similarly, to specify that the time output format is JIS, you enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE='JIS' WHERE SQLOPTION='TIME'

Alternatively, you can update the SYSTEM.SYSOPTIONS table by modifying the
IBM-supplied ARISDTM MACRO to specify your datetime defaults, then start the
DBS utility, specifying the ARISDTM MACRO file as the control file. To modify the
ARISDTM MACRO, use the VMSES/E full part replacement local modification
procedure. For details, see the appendix in the DB2 Server for VM Program Directory
describing local modifications.

How Datetime Exits Work
Two datetime installation replaceable exits are provided to allow you to convert
datetime values in any installation-defined format into ISO format, or from ISO
format into any installation-defined format. These exits which are link-edited into
the exit router component ARIXSXR, are called ARIUXDT and ARIUXTM for date
and time, respectively.

When the database manager is installed, ARIXSXR is loaded and addressability to
the exits is set.

The entries in the SYSTEM.SYSOPTIONS catalog table are used by the database
manager to determine the default datetime format for output.

If SYSTEM.SYSOPTIONS indicates that local datetime exits are present, the exits
are called during SQL statement processing when conversion between internal and
external forms is required.

The product-supplied exits return a -1 return code, meaning the exits have not
been replaced by the user exits. If a user program issues an SQL statement that
calls the exits, SQLCODE -185 is returned. Therefore, if the user is to replace the
exits, the -1 return code must not be used.

When Date and Time Exits are Called (Exit Points)
If a program has been preprocessed with the LOCAL format, or if the installation
default is LOCAL, then the datetime exits are called before any interpretation of
the datetime data values. Otherwise, the database manager attempts to interpret
the datetime data values first. In this situation, it calls the local exit only if it does
not recognize the datetime value.

The datetime exits are called at the following times:
v When you convert the external form to an internal form:

– When datetime data is entered by INSERT or UPDATE statements, or by the
DATALOAD commands of the DBS utility, or by the INPUT command of
ISQL.

Chapter 14. Creating Installation Exits 351

– When a constant or host variable is compared with a DATE or TIME column.
The constant can be converted during preprocessing time.

– When the DATE or TIME scalar functions are used with a string
representation of a date or time.

The exit should then convert the installation-defined format into ISO format. The
ISO format is then validated and converted into an internal format to be entered
into the column or used in comparisons. If the column is a key column for an
index, the index entry is made in an internal format.

v When you convert the internal form to an external form:
– When data is retrieved from the column by SELECT or FETCH statements, or

by the DATAUNLOAD commands in the DBS utility, and the default format
is local.

– When the CHAR scalar function is used with the LOCAL format specification.

At this point, the exit should convert the value from ISO format into
installation-defined format; then the database manager returns the converted
value. In this situation, the exit is called after any edit routine or sort.

The exits are called in the AMODE that the database manager is running in. If the
exits do not support 31-bit addressing, the database manager must be started with
the AMODE(24) parameter. If the database manager is running in AMODE(24), the
load module for the exit must be generated with RMODE 24.

When the exits are called, the registers are set as follows:

Register 0 Undefined.

Register 1 Points to a pointer to the parameter list for
ARIUXDT (or ARIUXTM). The format of the
parameter list is discussed below. The first field in
it is an eye-catcher value.

Register 2—12 Undefined.

Register 13 Points to a standard register save area.

Register 14 Contains the return address.

Register 15 Contains the entry point of the user installation
routine.

Registers 2—13 must be saved and restored by the exit. If this is not done, the
results will be unpredictable.

Table 27 shows what is in the parameter list used by the date and time exits (see
Register 1).

Table 27. Parameter List Used by Date and Time Exits

Length Description

2 words
1 word

Eye-catcher: ARIUXDT or ARIUXTM
Length of parameter list

1 word
1 word

Pointer to Function Number
Pointer to length of Function Number

1 word
1 word

Pointer to Exit Global Area
Pointer to length of Exit Global Area

352 System Administration

Table 27. Parameter List Used by Date and Time Exits (continued)

Length Description

1 word
1 word

Pointer to ISO Datetime Area
Pointer to length of ISO Datetime Area

1 word
1 word

Pointer to LOCAL Datetime Area
Pointer to length of LOCAL Datetime Area

1 word
1 word

Pointer to User Work Area
Pointer to length of User Work Area

1 word
1 word

Pointer to Environment Dependent Area
Pointer to length of Environment Dependent Area

1 word
1 word

Pointer to Exit Return Code Area
Pointer to length of Exit Return Code Area

Each area in the parameter list is described below.
v The Eye-catcher and Length of list is initialized by the database manager.
v The Function Number is a full word number describing the function to be

performed, as follows:

Number Function

00000004
00000008

DATE Functions:
Convert DATE from LOCAL format to ISO format.
Convert DATE from ISO format to Installation format.

00000004
00000008

TIME Functions:
Convert TIME from LOCAL format to ISO format.
Convert TIME from ISO format to Installation format.

v The EXIT Global Area is not used. Both values are set to zero.
v The length of the ISO Date and Time Areas are 10 bytes and 8 bytes,

respectively.
v The length of the LOCAL Date and Time Areas are as defined in the

SYSTEM.SYSOPTIONS catalog table. The pointer to the length of the area points
to a fullword that contains the value in this table.

v The User Work Area is a 512-byte area.
v The Environment Dependent Area is a 40-byte area. For the datetime exits, only

byte 2 is used. It contains D for VSE, and V for VM.
v The Exit Return Code Area is a full word to be set by the exit to the return code.

The possible return codes are:

-1 The exit supplied by the database manager has not been replaced by a
user exit. The database manager then sets SQLCODE to -185.

0 The function has been performed.

4 Invalid date or time value. The database manager then sets SQLCODE to
-181.

8 Date or time value not in valid format. The database manager then sets
SQLCODE to -180.

Other Error in exit. The function number of the exit will be stored in
SQLERRD5, and the return code in SQLERRD1. The database manager
then sets SQLCODE to -816.

Chapter 14. Creating Installation Exits 353

The exit name, function code and return code are set up as message
tokens in SQLERRM; they are used when the message associated with
SQLCODE -816 is displayed, for example, by the DBS utility and ISQL.

If a program has been preprocessed with the LOCAL format, or if the
installation default is LOCAL, then the database manager evaluates the
output of the datetime exit if the return code is either 0 or 8. Otherwise,
the output is evaluated only if the return code is 0.

Coding Your Own Datetime Exit
User-coded exits must conform to the following:
v The installation replaceable exits must be coded in Assembler language.
v The exits must be reentrant; they must save registers at entry and restore them

before exit.
v The exits (and any of the modules they call) must not use any DB2 Server for

VM facilities.
v The exits must not use the return code -1.
v When formatting ISO datetime to LOCAL datetime, the user is responsible for

formatting the full buffer (the number of bytes equal to the length of the local
datetime as defined in the SYSTEM.SYSOPTIONS catalog table).

Figure 111 on page 355 shows the IBM-supplied ARIUXDT module, which is on the
service disk. Its file name and file type are ARIUXDT MACRO. You need to
modify this source code to support your local date format requirements.

354 System Administration

TITLE ' ARIUXDT'

* ARIUXDT USER DATE CONVERSION ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *

ARIUXDT CSECT ,
ARIUXDT AMODE 31
ARIUXDT RMODE 24

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'ARIUXDT'
DROP R15 DROP R15 AND USE OWN ADDRESSABIL-

* ITY
PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA

LR R12,R15 SAVE BASE REGISTER
PSTART EQU ARIUXDT START OF PROGRAM

USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO THE PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS
L R2,FNPTR POINT TO FUNCTION TYPE

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE
SR R15,R15 INITIALIZE RETURN CODE TO ZERO

* HERE YOU WOULD PLACE CODE THAT GETS AND VERIFIES YOUR
* INPUT DATE AND CONVERTS IT TO EITHER TO LOCAL FORMAT OR ISO FORMAT
* A RETURN CODE OF -1 MEANS AN EXIT IS NOT PROVIDED
* A RETURN CODE OF 0 MEANS CONVERSION WAS SUCCESSFUL
* A RETURN CODE OF 4 MEANS THAT THE DATE VALUE WAS OUT OF RANGE
* A RETURN CODE OF 8 MEANS THAT THE DATE WAS INVALID

BCTR R15,R0 EXIT NOT PROVIDED
B RETURN CONVERSION COMPLETE

Figure 111. IBM-Supplied Version of ARIUXDT (Part 1 of 2)

Chapter 14. Creating Installation Exits 355

Figure 112 on page 357 shows the IBM-supplied ARIUXTM module. This module is
on the service disk. Its file name and file type are ARIUXTM MACRO. You can
modify this source code to support your local time format requirements.

* RETURN TO CALLER

RETURN DS 0H RETURN POINT

L R2,RETPTR LOAD RETCODE PTR
ST R15,0(R2) STORE EXIT RETURN CODE
L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
EYECATCH DS CL8 EYECATCHER
PLEN DS F LENGTH OF PARAMETER LIST
FNPTR DS AL4 POINTER TO FUNCTION TYPE
FNLENP DS AL4 LENGTH OF FUNCTION TYPE
GLBPTR DS AL4 POINTER TO GLOBAL EXIT AREA
GLBLENP DS AL4 LENGTH OF GLOBAL EXIT AREA
ISOPTR DS AL4 POINTER TO ISO DATETIME AREA
ISOLENP DS AL4 LENGTH OF ISO DATETIME AREA
LOCPTR DS AL4 POINTER TO LOCAL DATETIME AREA
LOCLENP DS AL4 LENGTH OF LOCAL DATETIME AREA
WORKPTR DS AL4 POINTER TO USER WORK AREA
WORKLENP DS AL4 LENGTH OF USER WORK AREA
ENVPTR DS AL4 POINTER TO ENVIR. DEPENDANT AREA
ENVLENP DS AL4 LENGTH OF ENVIR. DEPENDANT AREA
RETPTR DS AL4 POINTER TO RETURN CODE AREA
RETLENP DS AL4 LENGTH OF RETURN CODE AREA

EJECT
ARIUXDT CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ARIUXDT

Figure 111. IBM-Supplied Version of ARIUXDT (Part 2 of 2)

356 System Administration

TITLE ' ARIUXTM'

* ARIUXTM USER TIME CONVERSION ROUTINE *
* REGISTER ASSUMPTIONS: *
* R1 -> PARMLIST *
* R13 -> SAVE AREA *
* R14 -> RETURN ADDRESS *
* R15 -> ENTRY POINT *
* *
* ALTHOUGH PROVIDED IN A GENERAL INTERFACE LIBRARY, ARIUXIT IS NOT TO *
* BE USED AS A GENERAL PROGRAMMING INTERFACE. REFER TO PRODUCT *
* DOCUMENTATION TO DETERMINE INTENDED USAGE. *

ARIUXTM CSECT ,
ARIUXTM AMODE 31
ARIUXTM RMODE ANY

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'ARIUXTM'
DROP R15 DROP R15 AND USE OWN ADDRESSABIL-

* ITY
PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA

LR R12,R15 SAVE BASE REGISTER
PSTART EQU ARIUXTM START OF PROGRAM

USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS
L R2,FNPTR POINT TO FUNCTION TYPE

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE
SR R15,R15 INITIALIZE RETURN CODE TO ZERO

* HERE YOU WOULD PLACE CODE THAT GETS AND VERIFIES YOUR
* INPUT TIME AND CONVERTS IT TO EITHER TO LOCAL FORMAT OR ISO FORMAT
* A RETURN CODE OF -1 MEANS AN EXIT IS NOT PROVIDED
* A RETURN CODE OF 0 MEANS CONVERSION WAS SUCCESSFUL
* A RETURN CODE OF 4 MEANS THAT THE TIME VALUE WAS OUT OF RANGE
* A RETURN CODE OF 8 MEANS THAT THE TIME WAS INVALID

BCTR R15,R0 EXIT NOT PROVIDED
B RETURN CONVERSION COMPLETE

Figure 112. IBM-Supplied Version of ARIUXTM (Part 1 of 2)

Chapter 14. Creating Installation Exits 357

After the program is coded, assemble it as you would any other program.

Installing Your Version of ARIUXDT or ARIUXTM

During customization of DB2 Server for VM, you may have to modify TEXT files
that are serviced as full part replacement (for example, for user exits, such as
ARIUXDT and ARIUXTM). The source is shipped as a MACRO file.

Use the following steps to create and build the affected objects with the new parts.
These steps use the VMSES/E local modification procedure.

* RETURN TO CALLER

RETURN DS 0H RETURN POINT

L R2,RETPTR LOAD RETCODE PTR
ST R15,0(R2) STORE EXIT RETURN CODE
L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
EYECATCH DS CL8 EYECATCHER
PLEN DS F LENGTH OF PARAMETER LIST
FNPTR DS AL4 POINTER TO FUNCTION TYPE
FNLENP DS AL4 LENGTH OF FUNCTION TYPE
GLBPTR DS AL4 POINTER TO GLOBAL EXIT AREA
GLBLENP DS AL4 LENGTH OF GLOBAL EXIT AREA
ISOPTR DS AL4 POINTER TO ISO DATETIME AREA
ISOLENP DS AL4 LENGTH OF ISO DATETIME AREA
LOCPTR DS AL4 POINTER TO LOCAL DATETIME AREA
LOCLENP DS AL4 LENGTH OF LOCAL DATETIME AREA
WORKPTR DS AL4 POINTER TO USER WORK AREA
WORLENP DS AL4 LENGTH OF USER WORK AREA
ENVPTR DS AL4 POINTER TO ENVIR. DEPENDANT AREA
ENVLENP DS AL4 LENGTH OF ENVIR. DEPENDANT AREA
RETPTR DS AL4 POINTER TO RETURN CODE AREA
RETLENP DS AL4 LENGTH OF RETURN CODE AREA

EJECT
ARIUXTM CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END ARIUXTM

Figure 112. IBM-Supplied Version of ARIUXTM (Part 2 of 2)

358 System Administration

Step 1. Stop the Application Server
Stop the application server using your normal operating procedures.

Step 2. Log on to the Installation or Service User ID
Log on to the installation or service user ID, 5697F42R.

Step 3. Establish the Minidisk or SFS Directory Order
Establish the access order.
vmfsetup 5697F42R {DB2VM|DB2VMSFS}

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

If you have your own PPF override, then substitute that name for the 5697F42R
name shown in this command and any following commands.

Step 4. Copy the MACRO Source Code (First Time Only)
Copy the MACRO source code to the local modification disk as ASSEMBLE. This
only needs to be done the first time you apply local modifications to this part;
otherwise, you will delete your version of the ASSEMBLE file.
vmfrepl {ariuxdt|ariuxtm} macro 5697F42R {DB2VM|DB2VMSFS}

(filetype assemble outmode localsam

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

Step 5. Edit the ASSEMBLE File
Edit the ARIUXDT ASSEMBLE or the ARIUXTM ASSEMBLE file on the local
modification disk (2C2) and make your changes.

Step 6. Update the Local Version Vector Table
Update the local version vector table for the assembled TEXT file.
vmfrepl {ariuxdt|ariuxtm} text 5697F42R {DB2VM|DB2VMSFS}

(logmod modid nocopy

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

modid is the new local modification identifier for the part (for example, L0001).

Step 7. Assemble the File
Use the VMFHLASM command to assemble ARIUXDT or ARIUXTM.
vmfhlasm {ariuxdt|ariuxtm} 5697F42R {DB2VM|DB2VMSFS}

(nockgen $select outmode localsam

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

Notes:

1. Other options are available for the assemble commands. Consult the VM/ESA:
VMSES/E Introduction and Reference for additional information.

2. We recommend that you use the VMFHLASM command supplied by
VMSES/E. Also available are the VMFHASM and VMFASM commands.

3. If the assemble function is successful, the ARIUXDT TXTLnnnn file or the
ARIUXTM TXTLnnnn file is placed on the LOCALSAM 2C2(E) disk.

Chapter 14. Creating Installation Exits 359

Step 8. Build your New Local Modification
Build your new local modification on the test build disks.
vmfbld ppf 5697F42R {DB2VM|DB2VMSFS} (status
vmfbld ppf 5697F42R {DB2VM|DB2VMSFS} (serviced

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

After you issue the VMFBLD command with the STATUS option, you can use the
VMFVIEW BUILD command to view the $VMFBLD $MSGLOG file to see which
objects will be built.

Step 9. Place the New Local Modification into Production
Use ARISINST to place the new local modiciation into production.
arisinst c 5697F42R {DB2VM|DB2VMSFS}

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

The C function of ARISINST copies the test service and production build disks to
the database machine (SQLMACH) production service and production build disks.

Step 10. Restart the Application Server
Restart the applicaton server in multiple user mode with the required PROTOCOL
parameter.

Updating the SYSTEM.SYSOPTIONS Catalog Table
You need to update the SYSTEM.SYSOPTIONS catalog table to specify the length
of your local datetime format.

If you installed a local date or time format, you can update the local date or time
length by using the database manager. For example, if the length of your local date
format is 10 bytes, enter:

UPDATE SYSTEM.SYSOPTIONS -
SET VALUE = '10' -
WHERE SQLOPTION = 'LDATELEN'

The local date length specified must be greater than 9 and less than 255.

If the length of your local time format is 8 bytes, enter:
UPDATE SYSTEM.SYSOPTIONS -

SET VALUE = '8' -
WHERE SQLOPTION = 'LTIMELEN'

The local time length specified must be greater than 7 and less than 255.

The changes will be in effect the next time the application server is started.

You can also update the SYSTEM.SYSOPTIONS table by modifying the
IBM-supplied ARISDTM MACRO to specify your datetime defaults, then call the
DBS utility, specifying the ARISDTM MACRO file as the control file. To modify the
ARISDTM MACRO, use the VMSES/E full part replacement local modification
procedure. For details on local modifications, see the appendix in the DB2 Server
for VM Program Directory.

360 System Administration

Coding Your Own TRANSPROC Exit

General-Use Programming Interface

The TRANSPROC exit is a General-Use programming interface. General-Use
programming interface is defined in “Programming Interface Information” on
page 517.

The TRANSPROC exit is used for DBCS conversion. The database manager
converts DBCS characters from one DBCS CCSID to another by using the value
specified in the TRANSPROC column of the SYSTEM.SYSSTRINGS catalog table.
This conversion can be performed when the CCSID of the source and the target are
both mixed or are both graphic; that is, the TRANSTYPE column of
SYSTEM.SYSSTRINGS has a value of 'PM', 'MM', or 'GG'.

The TRANSPROC exit is also used
v for EUC conversion, to convert MBCS data to mixed data. In EUC conversions,

the TRANSTYPE column is either 'PM', or 'GG'.
v to convert Unicode data to CCSIDs that are supported on the database manager.

For Unicode to host conversions, the TRANSTYPE column is one of 'US', 'UM'
'UG', or 'UI'.

If you have created your own DBCS CCSIDs, you must create your own
conversion routine. To do so:
1. Compile, link-edit and GENMOD your routine to create a MODULE file, and

store the module on the production disk.
2. Insert the name of the phase in the TRANSPROC column of the row for which

you want either mixed-to-mixed or graphic-to-graphic conversion. (For
example, you could create and run a DBSU job to perform this task.)

3. Stop the application server.
4. Run ARISPROD WRITE to be sure you have write access to the production

disk.
5. Run the ARISDBMA EXEC with component CCSID. Copy the three CMS files

over to the production minidisk, changing their file type from “FLATFILE” to
“MACRO”. See the DB2 Server for VM Program Directory for information on the
ARISDBMA EXEC.

6. Restart the application server.
7. All users must reaccess the production minidisk.

The interface between the database manager and a DBCS conversion routine
supplied by a user must conform to the following:
v Register conventions:

– Register 0 is undefined.
– Register 1 contains the address of the control block that contains the

parameters.
– Registers 2—12 are undefined.
– Register 13 contains the address of a standard register save area.
– Register 14 contains the return address.
– Register 15 contains the address of the user routine.

Chapter 14. Creating Installation Exits 361

Registers 2 to 13 must be saved and restored by the routine. If this is not done,
the results are unpredictable.

v Parameter list, which is in the following form:
– Address of the data to be converted (4 bytes)
– Address of the target for the converted data (4 bytes)
– Size of the source data (2 bytes)
– Size of the target area (2 bytes)
– Return code of the routine (4 bytes).

The TRANSPROC is called in the AMODE that the database manager is running
in. If the TRANSPROC does not support 31-bit addressing, the database manager
must be started with the AMODE(24) parameter. If the database manager is
running in AMODE(24), the load module for the TRANSPROC must be generated
with RMODE 24.

The database manager ensures that the size of the target area is at least as large as
that of the source data, and that the size of the source data is always an even
number. The routine supplied by the user should only convert the source data and
put it in the target area. The database manager should do all other operations,
such as padding the target area after data conversion is complete. You should also
ensure that the routine supplies a nonzero return code if the conversion fails. The
routine that you code should not have the same name as any of the defaults
supplied by the database manager for the TRANSPROC column. Figure 113 shows
the shell for a TRANSPROC routine.

TITLE 'DBCSCONV' ***
* DBCSCONV USER DBCS CONVERSION ROUTINE
* REGISTER ASSUMPTIONS:
* R1 -> PARMLIST
* R13 -> SAVE AREA
* R14 -> RETURN ADDRESS
* R15 -> ENTRY POINT
*
* THIS ROUTINE SHOWS THE INTERFACE TO DB2 Server for VM

DBCSCONV CSECT ,
DBCSCONV AMODE 31 DBCSCONV RMODE ANY

USING *,R15 ESTABLISH TEMP ADDRESSABILITY
B PROLOG BRANCH TO START OF PROGRAM
DC C'DBCSCONV'
DROP R15 DROP R15 AND USE OWN ADDRESSABILITY

PROLOG STM R14,R12,12(R13) SAVE REGS IN CALLER'S AREA
LR R12,R15 SAVE BASE REGISTER

PSTART EQU DBCSCONV START OF PROGRAM
USING PSTART,R12 SET UP BASE REGISTER
L R1,0(R1) POINT TO PARAMETER LIST
USING PARMLIST,R1 ADDRESSABILITY FOR INPUT PARMS

Figure 113. TRANSPROC Shell (Part 1 of 2)

362 System Administration

End of General-Use Programming Interface

Coding Your Own Cancel Exit
In multiple user mode, the resource adapter provides a cancel function that gets
control when the terminal operator issues the SQLHX command. The SQLHX
command causes an immediate IUCV or APPC/VM sever to be done. The cancel
function causes the database manager to do a ROLLBACK WORK on the current
in-progress command or logical unit of work. If an explicit SQL CONNECT was
done before the SQLHX command was issued, the IUCV or APPC/VM SEVER
done on behalf of the SQLHX command causes the user ID to revert to the virtual
machine user ID and the default application server. This is the user ID that is used
for the VM implicit CONNECT support. To reestablish the desired user ID, the
explicit SQL CONNECT must be reissued. An installation exit can be established
that will be given control before the rollback. This installation exit can, at that time,
override the SQLHX request, or choose to let the rollback processing continue. If a

* M A I N L I N E

MAINLINE DS 0H START OF CODE

SPACE

* HERE YOU PLACE THE CODE THAT CONVERTS THE INPUT DBCS STRING AND
* PLACES THE CONVERTED STRING IN THE TARGET AREA.
* A NONZERO RETURN CODE INDICATES AN ERROR.

RETURN DS 0H RETURN POINT

L R14,12(,R13) RESTORE R14
LM R0,R12,20(R13) RESTORE REST OF CALLER'S REGS
BR R14 RETURN TO CALLER
EJECT

PARMLIST DSECT , INPUT PARAMETER LIST
INPTR DS F POINTER TO INPUT STRING
OUTPTR DS F POINTER TO TARGET AREA
INLEN DS H LENGTH OF INPUT STRING
OUTLEN DS H SIZE OF TARGET AREA
RC DS F RETURN CODE

EJECT
DBCSCONV CSECT ,
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END DBCSCONV

Figure 113. TRANSPROC Shell (Part 2 of 2)

Chapter 14. Creating Installation Exits 363

user enters SQLHX, is using CMS work units, and has more than one logical unit
of work that is uncommitted, only the active logical unit of work is rolled back.
The suspended CMS work units maintain their current status and position.

When coding your own interactive program to process SQL statements, you can
replace the values supplied by the database manager cancel function with your
own.

Resource Adapter Cancel Support
The resource adapter provides interactive applications the ability to discontinue
processing of an SQL request. If a user issues an SQL statement and wants to
cancel processing on that statement, he or she can accomplish this by typing
SQLHX on the terminal. The SQLHX command causes an immediate IUCV or
APPC/VM SEVER to be done. This SEVER causes the running logical unit of work
to be rolled back.

If an explicit SQL CONNECT was done before the SQLHX command was issued,
the IUCV or APPC/VM SEVER done on behalf of the SQLHX command causes the
user ID to revert to the virtual machine user ID and the default application server.
This is the user ID that is used for the VM implicit CONNECT support. To
reestablish the desired user ID, the explicit SQL CONNECT must be reissued.

For more information on application usage and modification of resource adapter
support, see “RMXC (Resource Adapter Cancel Exit Control)”.

RMXC (Resource Adapter Cancel Exit Control)
This control block controls the resource adapter cancel support. It is used by the
immediate command exit supplied with the resource adapter as well as by the
resource adapter cancel support. An A within the field description indicates that
the field is set by the application. An R indicates that the resource adapter sets the
field. The resource adapter allocates storage for the RMXC, while the ARIRCAN
macro provides application addressability to the RMXC.

General-Use Programming Interface

Macro ARIRCAN is a General-Use programming interface. General-Use
programming interface is defined in “Programming Interface Information” on
page 517.

364 System Administration

The resource adapter provides a cancel support for applications by using the VM
immediate command extension support. During startup in the multiple user mode
environment, the resource adapter establishes an immediate command of SQLHX.
When this command is entered, if the resource adapter is waiting for a reply from
the virtual machine, the SQL statement that is currently being processed is
canceled, and the resource adapter returns to the application with a SQLCODE of
-914.

If the SQLHX command is entered and the resource adapter is not waiting for a
reply from the database manager, the next SQL statement that is issued is canceled
with a return code of -914.

Cancel support is intended for interactive applications such as ISQL, where the
terminal operator knows what is being canceled. Applications that perform
preplanned SQL queries in a batch type environment can be adversely affected by
the arbitrary issuing of the SQLHX command. Also, applications can require that
cancel support called by a command other than SQLHX.

Dec(HEX) RMAR

0(0) RMXCEYEC - 'RMXC' (eyecatcher)

8(8) RMXCLENF - RMXC length Reserved

16(10) RMXCAPPL - For application use RMXCCXIT - Optional pointer to an
application cancel exit routine
(binary zero if no exit defined)

24(18) RMXCCONT Reserved
(1)

32(20) Reserved RMXCXC - Exit code (2)

40(28) Reserved - binary zeros

48(30) RMXCECBP Cancel ECP RMXCPC - Post mask, DB2/VM cancel

56(38) RMXCPHC - Post mask, stop Reserved - binary zeros
processing

72(48)

(1) Application cancel exit stop indicator:
'Y' to continue cancel
'N' to stop cancel

(2) Exit codes are:
RMXCWLNK: 0 - Resource adapter link wait
RMXCWSQL: 4 - Resource adapter SQL wait
RMXCWSC: 8 - Resource adapter wait for SQL COMMIT WORK
RMXCWSRB: 12 - Resource adapter wait for SQL ROLLBACK WORK
RMXCWNO: -1 - Resource adapter not waiting
RMXCCAN: -2 - Resource adapter not waiting and cancel

has been requested

/
/

/
/

Figure 114. Resource Adapter Cancel Exit Control (RMXC)

Chapter 14. Creating Installation Exits 365

To provide flexibility in the resource adapter cancel support, a BAL macro is
provided to allow applications to modify the basic cancel support in the following
ways:
v Create additional immediate command names with which to call the cancel

support command exit.
v Remove the SQLHX immediate command exit, which effectively discontinues

the resource adapter cancel support unless the application provides its own
cancel exit.

The format of the ARIRCAN macro is:
{ ARIRCAN CMDNAME=pointer-address }
{ ARIRCAN TYPE=USER }

* SAMPLE CANCEL EXIT

.

.

.
CANSAMP DS 0H

LA R3,NEWNAME LOAD ADDR OF CANCEL ALIAS
ARIRCAN CMDNAME=(R3) -
ARIRCAN TYPE=USER

GIVE NEW NAME TO SQL
.
.
.

NEWNAME DC CL8'CANCEL' CANCEL ALIAS NAME

The CMDNAME=pointer-address is the address to an 8-byte field containing an
alternate command name to be used to call the resource adapter immediate
command exit. The command name SQLHX remains in effect while the additional
command functions as an alias to call the immediate command exit.

The TYPE=USER specifies that the user handles any cancel exit function. It causes
the resource adapter to remove the immediate command exit established at startup.

Output from this macro with the CMDNAME or TYPE operands is an RDIIN, type
166. For the CMDNAME operand, the command name pointer is placed in the
RDIVPARM field. A call is also made to ARIPRDI. When the call is made, the
resource adapter either establishes an additional immediate command name or
removes the SQLHX immediate exit, depending on the parameters specified in the
ARIRCAN macro.

On successful return to the application, register 15 points to the RMXC control
block. The following are required for the ARIRCAN macro:
v The call must be from a module that has completed the assembler preprocessing.

This provides for SQLDSECT and SQLCA addressability.
v As for EXEC SQL, register 13 must point to a standard 72-byte save area, and

registers 1, 14, and 15 are modified as a result of the call generated by the
macro.

End of General-Use Programming Interface

The CANCEL function is supported by two parts of the resource adapter:
v The immediate command process (modules ARIRCL1C and ARIRCL2C).

366 System Administration

v The mainline resource adapter process that gets notified (posted) by the
immediate command process when a cancel is being requested.

The resource adapter invokes user exits in AMODE(31).

When the resource adapter calls ARICCOM to send a message across the path to
the database manager, a CMS WAITECB macro is issued for two event control
blocks (ECBs). One ECB is posted when the communication is complete. The other
is posted by the immediate command process if it is called by the SQLHX
command (or any other user-defined command). If the cancel ECB is posted, the
resource adapter mainline (ARIRVRM) ends processing of the SQL statement by
calling ARICCOM to do a CMS IUCV SEVER. This SEVER causes the database
manager to rollback the processing that was taking place for the SQL statement.
The resource adapter then returns to the application with a -914 SQLCODE.

The resource adapter provides for a user exit to be called from the mainline cancel
process. If the RMXCCXIT field contains a nonzero value, it is assumed that a user
exit routine exists. The resource adapter branches to this exit before issuing the
IUCV SEVER to cause the cancel. At this point the user exit can discontinue the
cancel request by setting the RMXCCONT field to N.

Register contents on entry to the user exit are:

Register 1 Pointer to RMXC control block

Register 13 Pointer to 72-byte save area

Register 14 Return address

Register 15 Entry point of user exit.

It is assumed that registers are restored upon return from the exit.

Field Procedures

General-Use Programming Interface

A field procedure is a General-Use programming interface. Macro ARIBFPPB is a
General-Use programming interface. General-Use programming interface is defined
in “Programming Interface Information” on page 517.

A field procedure is a user-written exit routine that transforms values in a single
short-string column. When values in the column are changed, or new values are
inserted, the field procedure is run to encode each value, which is then stored.
When values are retrieved from the column, the field procedure is run to decode
each value back to the original string value. A field procedure can be used to alter
the sorting sequence of values entered in a column. For example, telephone
directories sometimes require that names such as McCabe and MacCabe appear
next to each other. This cannot be achieved with the standard EBCDIC sorting
sequence. Languages that do not use the Roman alphabet have similar
requirements. However, if a column is provided with a suitable field procedure,
you can obtain the desired ordering with the ORDER BY clause.

Any indexes defined on a column that uses a field procedure are built with
encoded values.

Chapter 14. Creating Installation Exits 367

The transformation that a field procedure performs on a value is called
field-encoding. The same routine is used to undo the transformation when values
are retrieved; that operation is called field-decoding.

The field procedure is called when a table is created or altered, to define the data
type and attributes of an encoded value to the database manager. That operation is
called field-definition. The data type of the encoded value can be CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC. If the datatype is VARCHAR the length
must be 254 or less. If the database is VARGRAPHIC, the length must be 127 or
less. For the applicable data types, see the description for the FPVDTYPE field in
Table 29 on page 374. The length, precision, or scale of the encoded value must be
compatible with its data type. Values in columns with a field procedure are
described to the database manager in the following catalog tables:
v SYSTEM.SYSCOLUMNS
v SYSTEM.SYSFIELDS
v SYSTEM.SYSFPARMS
v SYSTEM.SYSKEYCOLS.

For more information about catalog tables, see the DB2 Server for VSE & VM SQL
Reference manual.

Specifying the Field Procedure
To name a field procedure for a column, use the FIELDPROC clause of the
CREATE TABLE or ALTER TABLE statement, followed by the name of the
procedure and, optionally, a list of parameters. You can use a field procedure only
with a short string column. You cannot add a field procedure to an existing
column of a table. You can, however, use the ALTER TABLE statement to add to an
existing table a new column that uses a field procedure. (To do so, you would have
to unload the data, recreate the table, and load the data back into the table.)

The optional parameter list that follows the procedure name is a list of constants,
enclosed in parentheses, called the literal list. The literal list is incorporated into a
data structure called the field procedure parameter value list (FPPVL). That structure is
passed to the field procedure during the field-definition operation. At that time,
the procedure can modify it or return it unchanged. The output form of the FPPVL
is called the modified FPPVL; it is stored in the DB2 Server for VM catalog as part
of the field description. The modified FPPVL is passed again to the field procedure
when the procedure is called for field-encoding or field-decoding.

When Field Procedures are Called
A field procedure specified for a column is called in three situations:
v For field-definition, when the CREATE TABLE or ALTER TABLE statement that

names the procedure is run. When called, the procedure is expected to:
– Determine whether the data type and attributes of the column are valid
– Verify the literal list, and change it if required
– Provide the field description of the column
– Define the amount of working storage needed by the field-encoding and

field-decoding processes.
v For field-encoding, when a column value is to be field-encoded. That occurs for

any value that is:
– Inserted in the column by an SQL INSERT or PUT statement, or loaded by

the DBS utility DATALOAD or RELOAD commands
– Changed by an SQL UPDATE statement

368 System Administration

– Compared to a column with a field procedure, unless the comparison
operator is LIKE. The value being encoded is a host variable or constant.

v For field-decoding, when a stored value is to be field-decoded back into its
original string value. This occurs for any value that is:
– Retrieved by an SQL SELECT or FETCH statement, or by the DBS utility

DATAUNLOAD or UNLOAD commands
– Compared to another value with the LIKE comparison operator. The value

being decoded is from the column that uses the field procedure.

In this situation the field procedure is called after any DB2 Server for VM sort.

A field procedure is never called to process a null value.

General Considerations for Writing Field Procedures
Your field procedure must adhere to the following rules:
v It must be written in Assembler.
v Its name must not start with ARI, to avoid conflict with the DB2 Server for VM

modules.
v It must not call any SVC services or VM services.
v It must store registers in an area pointed to by R13, and restore them before

returning.
v It must be serially reusable.
v It must not contain any SQL statements.
v It must reside on a database minidisk and be accessible when the database

manager is running.
v The field procedure is called in the AMODE that the database manager is

running in. If it does not support 31-bit addressing, the database manager must
be started with the AMODE(24) parameter. If the database manager is running
in AMODE(24), the load module for the field procedure must be generated with
RMODE 24.

Attention: A field procedure should always transform one input data value into
one output data value, unless the parameters are different. This means that the
same field procedure with the same parameters must implement a one to one data
conversion, in both directions. The field-decoding function must be the exact
inverse of the field-encoding function. For example, if a routine encodes
ALABAMA to 01, it must decode 01 to ALABAMA. A violation of this rule can
lead to unpredictable results and possible data corruption.

A Warning about Blanks
When the database manager compares the values of two strings with different
lengths, it temporarily pads the shorter string with blanks (in either single-byte or
double-byte characters, as appropriate) up to the length of the longer string. If the
shorter string is the value of a column with a field procedure, the padding is done
to the encoded value, but the pad character is not encoded. Hence, if the
procedure changes blanks to some other character, encoded blanks at the end of
the longer string are not equal to padded blanks at the end of the shorter string.
That situation can lead to errors; for example, some strings that should be equal
may not be recognized as such. You should not encode blanks with a field
procedure.

Chapter 14. Creating Installation Exits 369

Maintaining Field Procedures
Field procedures should reside as modules with the relocatable information saved
(RLD option on the CMS LOAD command) on any server machine minidisk or SFS
directory which is accessed when the database manager is running. Field
procedures are loaded by the VM NUCXLOAD command. The maximum number
of active field procedures on one installation is 16. If this limit is exceeded, an
attempt to load a field procedure results in an SQLCODE -682 with reason code 4.

Recovering from Abends in Exits
If a field procedure ends abnormally, a message (ARI0022E) to remove the field
procedure from the installation is issued to the operator, the database manager
takes a SNAP dump, and processing continues.

Security with Field Procedures
Since exit routines run as extensions of the database manager and have all its
privileges, they can impact its security and integrity. All field procedures must be
tested and appropriate security measures taken before they are installed on a
system.

Field Procedures for Cultural Sorts
By default, string data is sorted based on the S/390 collating sequence. However,
the collating sequence required for certain alphabets is different from the default
S/390 collating sequence. Users expect that sorted data will match the order that is
culturally correct for them and that searches on data will return the result that is
correct for the sorting sequence of their language. They are at ease with only one
sort order, the one used in their dictionaries, telephone directories, book indices,
and so on.

A way to accommodate special sorting requirements is to use Field Procedures.
Field Procedures can be used to encode data being inserted into a column. The
encoding effectively alters the collating sequence for the data in the column,
enabling the special sorting requirements to be met by the S/390 collating
sequence.

Two field procedures are provided. The procedures are found on the database
machine’s service disk.

The field procedures provided are:
v FP870L2 for Slovenia, Poland and Romania
v FP102CY for Russia, Bulgaria, Serbia and Montenegro

The field procedures are written in Assembler. The field procedure must be
assembled and the corresponding module must be generated and placed on a disk
that is accessible to the database manager when it is running. Note that in VM, the
MACLIB FLDPROC (which is provided with DB2 Server for VM) must be
specified on the GLOBAL MACLIB statement in order to assemble the field
procedure and generate the module.

Once the module for the field procedure has been generated and made accessible
to the database manager, it can be used by specifying its name in the FIELDPROC
clause of the CREATE TABLE or ALTER TABLE statement.

370 System Administration

Field Procedure Considerations with Data Capture for VM
If Data Propagator Capture for VM is being used on tables which have columns
with field procedures, “1-way” field procedures must be defined on the Data
Propagator Change Data (CD) tables to properly propagate this data. The following
example using the FP102CY sample program illustrates what is required.

The sample field procedure FP102CY uses the following encoding table to modify
data when it is inserted into a column:
* EnCode Table for Cyrillic
* 0 1 2 3 4 5 6 7 8 9 A B C D E F
CPLAE DC X'000102030405060708090A0B0C0D0E0F' 0

DC X'101112131415161718191A1B1C1D1E1F' 1
DC X'202122232425262728292A2B2C2D2E2F' 2
DC X'303132333435363738393A3B3C3D3E3F' 3
DC X'4064AFADB5B3BBBFC1C5524A60505F47' 4
DC X'5BCBD1DFD0E3EDF45CB053585951454C' 5
DC X'4349AEB6B4BCC0C2C6CC63445E416248' 6
DC X'D2E0DE42E4EEFBA3A54B465D574E614F' 7
DC X'E96F71737577797B7D7FABB1E5A9E7BD' 8
DC X'C381838587898B8D8F91C7C9CDCFD3D5' 9
DC X'FD4D939597999B9D9FA1D7D9DBE1B7A7' A
DC X'F7F5B9EFF9F1EBF3FCA4A6EAACB2E6AA' B
DC X'5470727476787A7C7E80E8BEC4C8CACE' C
DC X'55828486888A8C8E9092D0D4D6FED8DA' D
DC X'5A569496989A9C9EA0A2DCE2B8A8F8F6' E
DC X'65666768696A6B6C6D6EBAF0FAF2ECFF' F

* 0 1 2 3 4 5 6 7 8 9 A B C D E F
*

Assume Table T1 is created with column C1 with field procedure FP102CY defined
on it. When the value ’50’X is inserted into column C1, the database will invoke
the encoding procedure of FP102CY which will encode the value ’50’X to ’5B’X.
The log record written to the database log for this Insert operation will indicate
that the value ’5B’X was inserted into column C1. When Capture processes this log
record, it will insert a record into the Change Data (CD) table indicating that the
value ’5B’X was inserted. When DataPropagator Apply is ready to propagate data
for this table, Apply will insert the value ’5B’X into the target table. The data in the
target table does not match the data in the source table.

The recommended method to correct this situation is to define “1-way” field
procedures based on the original field procedure. The only change required is to
modify the encoding procedure of FP102CY so that the data is not modified when
it is inserted. The decoding procedure will decode data in the same way as the
original field procedure. For example, FP102CY1, will be exactly the same except,
the encoding table will be changed to:
* EnCode Table for Cyrillic
* 0 1 2 3 4 5 6 7 8 9 A B C D E F
CPLAE DC X'000102030405060708090A0B0C0D0E0F' 0

DC X'101112131415161718191A1B1C1D1E1F' 1
DC X'202122232425262728292A2B2C2D2E2F' 2
DC X'303132333435363738393A3B3C3D3E3F' 3
DC X'404142434445464748494A4B4C4D4E4F' 4
DC X'505152535455555758595A5B5C5D5E5F' 5
DC X'606162636465666768696A6B6C6D6E6F' 6
DC X'707172737475767778797A7B7C7D7E7F' 7
DC X'808182838485868788898A8B8C8D8E8F' 8
DC X'909192939495969798999A9B9C9D9E9F' 9
DC X'A0A1A2A3A4A5A6A7A8A9AAABACADAEAF' A
DC X'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF' B
DC X'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF' C
DC X'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF' D

Chapter 14. Creating Installation Exits 371

DC X'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF' E
DC X'F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF' F

* 0 1 2 3 4 5 6 7 8 9 A B C D E F
*

When T1 is defined to as a subscription source table for DataPropagator, the
generated SQL statements must be modified before being used to define the CD
table. The generated SQL statements should be modified to add the FP102CY1 field
procedure to any columns based on columns that have FP102CY defined on them.
The modified SQL statements should then be run to create the CD table.

Now that FP102CY1 is being used on the CD table the value ’50’X will be
propagated correctly. As before, a log record with the value ’5B’X will be processed
by Capture. When Capture inserts this value into the CD table, FP102CY1 will be
called to encode this value. The encoding procedure of FP102CY1 will be called,
and ’5B’X will be encoded to the value ’5B’X. When Apply reads this value to
propagate it, the decoding procedure of FP102CY1 will decode ’5B’X to the value
’50’X, and the value ’50’X will be inserted into the target table.

If the target table requires the cultural sort on this column, the target table columns
should also be defined with field procedure FP102CY.

Field Procedure Interface to the Database Manager
This section describes certain control blocks that are used to communicate to a
field procedure, under the following headings:
v “The Field Procedure Parameter List (FPPL)”
v “The Work Area” on page 373
v “The Field Procedure Information Block (FPIB)” on page 373
v “Value Descriptors” on page 374
v “The Field Procedure Parameter Value List (FPPVL)” on page 375.

The Field Procedure Parameter List (FPPL)
The FPPL is pointed to by register 1 on entry to a field procedure. It, in turn,
contains the addresses of five other areas, shown in Figure 115 on page 373. The
FPPL and the areas to which it points are all described by the mapping macro
ARIBFPPB, which is provided in FLDPROC MACLIB.

372 System Administration

The Work Area
The work area is an area of storage used by a field procedure as working storage.
A new area is provided each time the procedure is called.

The size of the area you need depends on the way you have programmed your
field-encoding and field-decoding operations. For the field-definition operation, the
database manager passes your routine a value of 512 bytes for the length of the
work area (FPBWKLN in FPIB). If, for example, the longest work area you need for
field-encoding or field-decoding is 1024 bytes, your field-definition operation must
change the length to 1024. Thereafter, whenever your field procedure is called for
either encoding or decoding, the database manager makes an area of 1024 bytes
available to it.

If 512 bytes is sufficient for your operations, your field-definition operation need
not change the value supplied by the database manager. If you need less than 512
bytes, your field-definition can return a smaller value. However, your
field-definition itself must not use more than 512 bytes.

The Field Procedure Information Block (FPIB)
The FPIB communicates general information to a field procedure. For example, it
tells what operation is to be done, allows the field procedure to signal errors, and

Figure 115. Field Procedure Parameter List

Chapter 14. Creating Installation Exits 373

gives the size of the work area. Its format is shown in Table 28.

Table 28. Format of FPIB, Defined in Copy Macro ARIBFPPB

Name 'Hex'
Offset

Data Type Description

FPBFCODE 0 Signed halfword
integer

Function code.
Code Means
0 Field-encoding
4 Field-decoding
8 Field-definition

FPBWKLN 2 Signed halfword
integer

Length of work area; the maximum is
32767 bytes.

4 Signed halfword
integer

Reserved.

FPBRTNC 6 Character, 2 bytes Return code set by field procedure.

FPBRSNC 8 Character, 4 bytes Reason code set by field procedure.

FPBTOKP 12 Address Address of a 40-byte area, within the
work area or within the field
procedure’s static area, containing an
error message.

Value Descriptors
Value descriptors describe the data type and other attributes of a value. They are
used with field procedures in these ways:
v During field definition, they describe each constant in the field procedure

parameter value list (FPPVL). The set of these value descriptors is part of the
FPPVL control block.

v During field encoding and field decoding, the decoded (column) value and the
encoded (field) value are described by the column value descriptor (CVD) and
the field value descriptor (FVD).

The CVD contains a description of a column value and, if appropriate, the value
itself. During field encoding, the CVD describes the value to be encoded; during
field decoding, it describes the decoded value to be supplied by the field
procedure; and during field definition, it describes the column as defined in the
CREATE TABLE or ALTER TABLE statement.

The FVD contains a description of a field value and, if appropriate, the value itself.
During field-encoding, the FVD describes the encoded value to be supplied by the
field procedure; during field-decoding, it describes the value to be decoded.
Field-definition must put into the FVD a description of the encoded value.

The format of value descriptors is shown in Table 29.

Table 29. Format of Value Descriptors

Name 'Hex'
Offset

Data Type Description

FPVDTYPE 0 Signed halfword
integer

Data type of the value:
Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

374 System Administration

Table 29. Format of Value Descriptors (continued)

Name 'Hex'
Offset

Data Type Description

FPVDVLEN 2 Signed halfword
integer

For a varying-length string value, its
maximum length.

FPVDVALE 4 None The value. If the value is a
varying-length string, the first half
word is the value’s actual length in
bytes. This field is not present in a
CVD, or in an FVD used as input to
the field-definition operation.

The Field Procedure Parameter Value List (FPPVL)
The FPPVL communicates the literal list, supplied in the CREATE TABLE or
ALTER TABLE statement, to the field procedure during field definition. At that
time the field procedure can reformat the FPPVL. The reformatted FPPVL is stored
in SYSTEM.SYSFPARMS and communicated to the field procedure during field
encoding and field decoding as the modified FPPVL.

Its format is shown in Table 30.

Table 30. Format of FPPVL, Defined in Copy Macro ARIBFPPB

Name 'Hex'
Offset

Data Type Description

FPPVLEN 0 Signed halfword
integer

Length in bytes of the area containing
FPPVCNT and FPPVVDS. At least 254
for field-definition.

FPPVCNT 2 Signed halfword
integer

Number of value descriptors that
follow, equal to the number of
parameters in the FIELDPROC clause.
Zero if no parameters were listed.

FPPVVDS 4 Structure For each parameter in the FIELDPROC
clause, there is:
v A signed fullword integer giving the

length of the following value
descriptor.

v A value descriptor.

Field-Definition (Function Code 8)
The input provided to the field-definition operation, and the output required, are
as follows:

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 373.

2-12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

Chapter 14. Creating Installation Exits 375

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area consists of 512 contiguous uninitialized bytes.

The FPIB has the following information:

Field Contains

FPBFCODE 8, the function code.

FPBWKLN 512, the length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE One of these codes for the data type of the column
value:

Code Means
16 CHAR
20 VARCHAR
24 GRAPHIC
28 VARGRAPHIC

FPVDVLEN The length attribute of the column.

The FPVDVALE field is omitted.

The FVD provided is 4 bytes long.

The FPPVL has the following information:

Field Contains

FPPVLEN The length, in bytes, of the area containing the
parameter value list. The minimum value is 254,
even if there are no parameters.

FPPVCNT The number of value descriptors that follow; zero
if there are no parameters.

FPPVVDS A contiguous set of value descriptors, one for each
parameter in the parameter value list, each
preceded by a 4-byte length field.

On EXIT
The registers must have the following information:

Register Contains

2-12 The values they contained on entry.

15 The integer zero if the column described in the
CVD is valid for the field procedure; otherwise the
value must not be zero.

Fields listed below must be set as shown; all other fields must remain as on entry.

The FPIB must have the following information:

Field Contains

376 System Administration

FPBWKLN The length, in bytes, of the work area to be
provided to the field-encoding and field-decoding
operations; 0 if no work area is required.

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and
FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into the
tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

The FVD must have the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value. Any of the data types listed in Table 29 on
page 374 is valid.

FPVDVLEN The length of the field value.

Field FPVDVALE must not be set; the length of the FVD is 4 bytes only.

The FPPVL can be redefined to suit the field procedure, and returned as the
modified FPPVL, subject to the following restrictions:
v The field procedure must not increase the length of the FPPVL.
v The FPPVLEN must contain the actual length of the modified FPPVL, or 0 if no

parameter list is returned.

The modified FPPVL is recorded in the SYSTEM.SYSFPARMS catalog table and is
passed again to the field procedure during field-encoding and field-decoding. The
modified FPPVL need not have the format of a field procedure parameter list, and
it need not describe constants by value descriptors.

Field-Encoding (Function Code 0)
The input provided to the field-encoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 373.

2-12 Unknown values that must be restored on exit.

Chapter 14. Creating Installation Exits 377

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains

FPBFCODE 0, the function code.

FPBWKLN The length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column
value, as shown in Table 29 on page 374.

FPVDVLEN The length of the column value.

FPVDVALE The column value; if the value is a variable-length
string, the first halfword contains its length.

The FVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value.

FPVDVLEN The length of the field value.

FPVDVALE An area of unpredictable content that is as long as
the field value.

The modified FPPVL produced by the field procedure during field-definition is
provided if it exists.

On EXIT
The registers must have the following information:

Register Contains

2-12 The values they contained on entry.

15 The integer zero if the encoding is successful;
otherwise the value must not be zero.

The FVD must contain the encoded (field) value in field FPVDVALE. If the value is
a varying-length string, the first halfword must contain its length.

The FPIB may have the following information:

Field Contains

378 System Administration

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and
FPBRSNC, and the error message pointed to by FPBTOKPT, are also placed into
the tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry.

Field-Decoding (Function Code 4)
The input provided to the field-decoding operation, and the output required, are as
follows:

On ENTRY
The registers have the following information:

Register Contains

1 Address of the field procedure parameter list
(FPPL). For a schematic diagram, see Figure 115 on
page 373.

2-12 Unknown values that must be restored on exit.

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The contents of all other registers, and of fields not listed below, are unpredictable.

The work area is contiguous, uninitialized, and of the length specified by the field
procedure during field-definition.

The FPIB has the following information:

Field Contains
FPBFCODE 4, the function code.
FPBWKLN The length of the work area.

The CVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the column
value, as shown in Table 29 on page 374.

FPVDVLEN The length of the column value.

Chapter 14. Creating Installation Exits 379

FPVDVALE An area of unpredictable content that is as long as
the column value.

The FVD has the following information:

Field Contains

FPVDTYPE The numeric code for the data type of the field
value.

FPVDVLEN The length of the field value.

FPVDVALE The field value; if the value is a varying-length
string, the first halfword contains its length.

The modified FPPVL, produced by the field procedure during field-definition, is
provided if it exists.

On EXIT
The registers must have the following information:

Register Contains

2-12 The values they contained on entry.

15 The integer zero if the decoding is successful;
otherwise the value must not be zero.

The CVD must contain the decoded (column) value in field FPVDVALE. If the
value is a varying-length string, the first halfword must contain its length.

The FPIB may have the following information:

Field Contains

FPBRTNC An optional 2-byte character return code, defined
by the field procedure; blanks if no return code is
given.

FPBRSNC An optional 4-byte character reason code, defined
by the field procedure; blanks if no reason code is
given.

FPBTOKP Optionally, the address of a 40-byte error message
residing in the work area or in the field
procedure’s static area; zeros if no message is
given.

Errors signalled by a field procedure result in an SQL return code of -681, which is
set in the SQL communication area (SQLCA). The contents of FPBRTNC and
FPBRSNC, and the error message pointed to by FPBTOKP, are also placed into the
tokens, in SQLCA, as field SQLERRMT. The meaning of the error message is
determined by the field procedure.

All other fields must remain as on entry.

A Sample Exit
Figure 116 on page 381 shows an example of a field procedure.

380 System Administration

FLCTFLC TITLE 'DB2 Server for VM FIELD PROCEDURE EXAMPLE'
FLCTFLC START 0
FLCTFLC AMODE 31
FLCTFLC RMODE ANY
**
* DB2 Server for VM FIELD PROCEDURE TO CONVERT *
* FIXED LENGTH CHARACTER TO FIXED *
* LENGTH CHARACTER USING A LOOKUP TABLE *
**

SPACE 3
PRINT GEN
USING FLCTFLC,R3 BASE REGISTER
USING FPIB,R9 COMMON INFORMATION BLOCK
USING FPVD,R10 VALUE DESCRIPTOR
USING FPPL,R11 PARAMETER LIST
USING WA,R12 WORK AREA
USING FPPVL,R8 PARAMETER VALUE LIST
USING TBLHDRD,R7 TABLE HEADER
SPACE 3

* SET UP MAIN LINE RETURN R14 *

SPACE 3
SAVE (14,12),,FLCTFLC
LR R3,R15 LOAD BASE REGISTER
LR R11,R1 PARAMETER LIST POINTER
L R12,FPPWORK WORK AREA ADDRESS
ST R13,SAVE13
L R9,FPPFPIB COMMON INFORMATION BLOCK
MVC FPBRTNC,=AL2(FPBRC0) RETURN CODE = 0
LH R2,FPBFCODE
L R15,FDLFC(R2) SELECT APPROPRIATE ROUTINE
LA R14,RET1
BR R15

RET1 DS 0H
PACK WADW,FPBRTNC SET RETURN CODE R15
CLI FPBRTNC+L'FPBRTNC-1,C' '
BNE NOTBL
PACK WADW,FPBRTNC(L'FPBRTNC-1)

NOTBL DS 0H
CVB R15,WADW
L R13,SAVE13
RETURN (14,12),T,RC=(15)
LTORG

FDLFC DC A(ENCODE,DECODE,DEFINE)
SPACE 3

Figure 116. Field Procedure Example (Part 1 of 9)

Chapter 14. Creating Installation Exits 381

**
* ENCODING ROUTINE RETURN R14 *
**

SPACE 3
ENCODE DS 0H

MVC FUNCT,=C'ENCD'
LA R5,B1
B CHKINP CHECK INPUT DESCRIPTION

B1 DS 0H
LA R5,B2
B CHKOUT CHECK OUTPUT DESCRIPTION

B2 DS 0H
SPACE 3

**
* LOOKUP ROUTINE FOR ENCODING *
**

SPACE 3
L R10,FPPCVD INPUT VALUE
L R6,TABADDR TOP OF LOOKUP TABLE
LA R5,B3
B SETLUP SET UP LOOKUP VARIABLES

B3 DS 0H
SPACE 3

* SET UP LOOP VARIABLES *

SPACE 3
SR R4,R4 CLEAR R4
IC R4,ILEN LENGTH FOR COMPARE
SH R4,=H'1' -1

ITOP DS 0H
EX R4,CLCINST
BE IHIT
A R6,INCRLEN INCREMENT TO NEXT ENTRY
BCT R13,ITOP
LA R13,ER5
B ERROR4

IHIT DS 0H
L R10,FPPFVD
SPACE 3

Figure 116. Field Procedure Example (Part 2 of 9)

382 System Administration

* SET UP MOVE INSTRUCTION *

SPACE 3
SR R13,R13 CLEAR R13
IC R13,OLEN OUTPUT LENGTH
SH R13,=H'1' -1
SR R5,R5 CLEAR R5
IC R5,ILEN INPUT LENGTH
AR R6,R5 POINT TO OUTPUT VALUE IN TABLE
EX R13,MVCINST
BR R14
SPACE 3

* MOVE AND COMPARE INSTRUCTION FOR EXECUTION INSTRUCTION *

SPACE 3
DS 0H

CLCINST CLC 0(1,R6),FPVDVALE
MVCINST MVC FPVDVALE,0(R6)

SPACE 3

* DECODING ROUTINE *

SPACE 3
DECODE DS 0H

MVC FUNCT,=C'DECD'
LA R5,BB1
B CHKINP CHECK INPUT DESCRIPTION

BB1 DS 0H
LA R5,BB2
B CHKOUT CHECK OUTPUT DESCRIPTION

BB2 DS 0H
SPACE 3

* LOOKUP ROUTINE FOR DECODING *

SPACE 3
L R10,FPPFVD OUTPUT VALUE
L R6,TABADDR TOP OF LOOKUP TABLE
LA R5,BB3
B SETLUP SET LOOKUP VARIABLES

BB3 DS 0H
SPACE 3

Figure 116. Field Procedure Example (Part 3 of 9)

Chapter 14. Creating Installation Exits 383

* SET UP LOOP VARIABLES *

SPACE 3
SR R4,R4 CLEAR R4
IC R4,OLEN LENGTH FOR COMPARE
SH R4,=H'1' -1
SR R5,R5 CLEAR R5
IC R5,ILEN INPUT LENGTH
AR R6,R5 POINT TO OUTPUT VALUE IN TABLE

OTOP DS 0H
EX R4,CLCINST
BE OHIT
A R6,INCRLEN POINT TO NEXT ENTRY
BCT R13,OTOP
LA R13,ER8
B ERROR4

OHIT DS 0H
L R10,FPPCVD
SPACE 3

**
* SET UP MOVE INSTRUCTION *
**

SPACE 3
SR R13,R13 CLEAR R13
IC R13,ILEN INPUT LENGTH
SR R6,R13 POINT TO INPUT VALUE IN TABLE
SH R13,=H'1' -1
EX R13,MVCINST
BR R14
SPACE 3

* DEFINE ROUTINE RETURN R14 *

SPACE 3
DEFINE DS 0H

MVC FUNCT,=C'DEFN'
LA R5,BBB1
B CHKINP

BBB1 DS 0H
SPACE 3

**
* UPDATE WORK AREA LENGTH IN FPIB *
**

MVC FPBWKLN,=Y(WAEND-WA)
SPACE 3

Figure 116. Field Procedure Example (Part 4 of 9)

384 System Administration

**
* SET UP FIELD VALUE DESCRIPTOR *
**

SPACE 3
L R10,FPPFVD OUTPUT DESCRIPTOR
MVC FPVDTYPE,=Y(FPVDTCHR) FIXED CHARACTER
MVI FPVDVLEN,X'00'
AH R10,=H'3'
MVC 0(1,R10),OLEN
BR R14
SPACE 3

**
* CHECK INPUT ROUTINE RETURN R5 *
**

SPACE 3
CHKINP DS 0H

L R8,FPPPVL
L R10,FPPCVD INPUT DESCRIPTOR
CLC =Y(FPVDTCHR),FPVDTYPE FIXED CHARACTER ?
BNE CHKINPE1
CLC FPPVCNT,=H'1' ONLY ONE PARAMETER ?
BNE CHKINPE2 NO, ERROR
LA R7,TBLHDR POINT TO TABLE HEADER TABLE

LOOP1 DS 0H
CLC CODE,FPPVVDS+8 IS VALUE IN TABLE
BNE CPEND NO, INCREMENT
B CINCL YES, A HIT

CPEND DS 0H
AH R7,=H'8' EACH TABLE ENTRY 8 BYTES
CLI CODE,X'FF' END OF TABLE?
BNE LOOP1 NO
LA R13,ER3
B ERROR8 YES, ERROR

CINCL DS 0H
CLC ILEN,FPVDVLEN+1 CHECK INPUT LENGTH
BER R5
LA R13,ER4
B ERROR4

CHKINPE1 DS 0H
LA R13,ER1
B ERROR4

CHKINPE2 DS 0H
LA R13,ER2

Figure 116. Field Procedure Example (Part 5 of 9)

Chapter 14. Creating Installation Exits 385

ERROR8 DS 0H
MVC FPBRTNC,=AL2(FPBRC8)
B ERROR

ERROR4 DS 0H
MVC FPBRTNC,=AL2(FPBRC4)

ERROR DS 0H
MVC FPBRSNC,FUNCT
ST R13,FPBTOKP
BR R14
SPACE 3

* CHECK OUTPUT DESCRIPTOR RETURN R5 *

SPACE 3
CHKOUT DS 0H

L R10,FPPFVD FIELD DESCRIPTOR
CLC =Y(FPVDTCHR),FPVDTYPE FIXED CHARACTER ?
BNE CHKOUTE1
CLC OLEN,FPVDVLEN+1 CHECK OUTPUT LENGTH
BER R5
LA R13,ER6
B ERROR4

CHKOUTE1 DS 0H
LA R13,ER7
B ERROR4
SPACE 3

* SET UP LOOKUP VARIABLE ROUTINE RETURN R5 *

SPACE 3
SETLUP DS 0H

SR R4,R4 CLEAR R4
IC R4,ILEN INPUT LENGTH
ST R4,INCRLEN SAVE INPUT LENGTH
SR R4,R4 CLEAR R4
IC R4,OLEN OUTPUT LENGTH
A R4,INCRLEN ADD INPUT LENGTH
ST R4,INCRLEN STORE TABLE ENTRY LENGTH
SR R13,R13 CLEAR R13
IC R13,NENTR NUMBER OF ENTRIES
BR R5
SPACE 3

Figure 116. Field Procedure Example (Part 6 of 9)

386 System Administration

**
* ERROR MESSAGES *
**
ER1 DC CL40'INVALID COLUMN TYPE'
ER2 DC CL40'INVALID NUMBER OF PARAMETERS'
ER3 DC CL40'INVALID PARAMETER VALUE'
ER4 DC CL40'INVALID COLUMN LENGTH'
ER5 DC CL40'INVALID INPUT VALUE TO ENCODE'
ER6 DC CL40'INVALID FIELD LENGTH'
ER7 DC CL40'INVALID FIELD TYPE'
ER8 DC CL40'INVALID FIELD VALUE TO DECODE'

SPACE 3
**
* TABLE HEADER TABLE *
**
TBLHDR DS 0F
**
* FIRST TABLE CODE = 'A' *
**

DC C'A' CODE
DC X'01' INPUT LENGTH
DC X'01' OUTPUT LENGTH
DC X'03' NUMBER OF ENTRIES
DC A(TABA) ADDRESS OF LOOKUP TABLE

**
* SECOND TABLE CODE = 'B' *
**

DC C'B' CODE
DC X'04' INPUT LENGTH
DC X'01' OUTPUT LENGTH
DC X'22' NUMBER OF ENTRIES
DC A(TABB) ADDRESS OF LOOKUP TABLE

* PUT ADDITIONAL TABLE HEADER ENTRIES HERE *

SPACE 3

* END OF TABLE HEADERS *

DC X'FF'
SPACE 3

TABA DS 0H
DC C'H' HIGH
DC C'7'
DC C'M' MEDIUM
DC C'5'
DC C'L' LOW
DC C'3'
SPACE 3

Figure 116. Field Procedure Example (Part 7 of 9)

Chapter 14. Creating Installation Exits 387

TABB DS 0H
DC C'AAA '
DC X'F0' 240
DC C'AA+ '
DC X'E6' 230
DC C'AA '
DC X'DC' 220
DC C'AA- '
DC X'D2' 210
DC C'A+ '
DC X'C8' 200
DC C'A1 '
DC X'BE' 190
DC C'A '
DC X'B4' 180
DC C'A- '
DC X'AA' 170
DC C'BBB+'
DC X'A0' 160
DC C'BBB '
DC X'96' 150
DC C'BBB-'
DC X'8C' 140
DC C'BB+ '
DC X'82' 130
DC C'BB '
DC X'78' 120
DC C'BB- '
DC X'6E' 110
DC C'B+ '
DC X'64' 100
DC C'B '
DC X'5A' 90
DC C'B- '
DC X'50' 80
DC C'CCC '
DC X'46' 70
DC C'CC '
DC X'3C' 60
DC C'C '
DC X'32' 50
DC C'D '
DC X'28' 40
DC C'NR '
DC X'1E'
SPACE 3

Figure 116. Field Procedure Example (Part 8 of 9)

388 System Administration

End of General-Use Programming Interface

**
* TABLE HEADER TABLE DSECT *
**
TBLHDRD DSECT
CODE DS CL1
ILEN DS CL1
OLEN DS CL1
NENTR DS CL1
TABADDR DS A

SPACE 3

* WORK AREA *

SPACE 3
WA DSECT
SAVE13 DS F
INCRLEN DS F
FUNCT DS CL4
WADW DS D
WAEND DS 0H

SPACE 3
ARIBFPPB

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

Figure 116. Field Procedure Example (Part 9 of 9)

Chapter 14. Creating Installation Exits 389

390 System Administration

Chapter 15. Using a DRDA Environment

The Distributed Relational Database Architecture (DRDA) environment provides
the architecture for access to data that is distributed across different operating
systems. The application requester and the application server do not have to be
running with the same database manager.

This chapter discusses:
v Benefits and added responsibilities of a DRDA environment
v Types of distributed access
v Preparing to implement DRDA
v Installing and removing the DRDA code
v Using DRDA
v Creating the DBS Utility on non-DB2 Server for VM application servers
v Using ISQL on non-DB2 Server for VM application servers
v Two phase commit processing

Not all extended features are supported by the DRDA protocol. Refer to
“Appendix H. DRDA Considerations” on page 477 for more details.

For detailed information on Distributed Relational Database Architecture, see the
manuals in the Distributed Relational Database Architecture Library listed in the
Bibliography.

Benefits of Using the DRDA Protocol
The DRDA option does the following:
v Makes DB2 Server for VM data accessible to users equipped with the DRDA

application requester function. Users on platforms such as OS/2, AIX, OS/400,
OS/390, or Microsoft Windows™ can run applications that utilize DRDA remote
unit of work or DRDA distributed unit of work processing to access data
residing in DB2 Server for VM application servers.

v Enables DB2 Server for VM users to use remote unit of work access to work
with data on non-DB2 Server for VM application servers. This allows access to
data that would otherwise remain unavailable.

To support this access, application programs can contain SQL statements that are
specific to the target system, and both the DBS Utility and ISQL can be run on
non-DB2 Server for VM application servers. The SQL statements in these
application programs can be static, dynamic, and extended dynamic, even if the
target system does not support extended dynamic statements. In addition, portable
packages can be loaded on non-DB2 Server for VM application servers.

The DRDA option provides the following additional functions:
v To determine the status of connections in an environment that may have local

and remote systems, you can use either the SHOW CONNECT operator
command or the SQLQRY CMS immediate command.

v To aid in the diagnosis of errors, first failure data capture is automatically
performed. IBM service can use the captured data for diagnosis, decreasing the
probability of having to rerun applications to acquire data for diagnosis.

© Copyright IBM Corp. 1987, 2001 391

v Another aid in the diagnosis of errors is the LUWID support. The LUWID is a
unique identifier associated with each application requester connection. It is
composed of four parts: network id, LU name, LUW instance number, and LUW
sequence number. This provides additional information that may be required in
problem diagnosis.

Added Responsibilities in Using the DRDA Protocol
Use of the DRDA protocol requires assuming extra responsibilities that are usually
not required in a non-distributed environment.

Because the communications between database managers can be in different time
zones or countries, some allowance must be made for scheduling and
communication problems (particularly when different languages are involved).

The operation of applications may be similar, but the different platforms will
require modifications. These modifications may require that as system
administrator you become familiar with the terminology used on non-DB2 Server
for VM database managers. In situations such as adding users, assigning resources,
ascertaining the authorization schemes available, and performing diagnosis, the
different terminology of the different database managers can lead to
misunderstandings. Similarly, because communications software is involved, you
may have to become familiar with communication terminology that may not be
required in a non-distributed environment.

Applications that run in a DRDA environment also require attention. In some
instances, they may have to be recoded to compensate for system-to-system
processing differences. As an example, consider the differences between collating
sequences on different database managers. Quite apart from the differences
between the ASCII and EBCDIC collating sequences, differences can occur between
EBCDIC collating sequences on two different database managers: the same
character can appear in a different sequence because of the way in which a system
processes information. If an application is not recoded to correct for this variability,
the results generated by that application can be misleading.

Types of Distributed Access
Two types of access to data in distributed relational database systems are currently
available. They are remote unit of work, which is also known as DRDA1, and
distributed unit of work, which is also known as DRDA2.

Remote Unit of Work
Remote unit of work (RUOW) allows a user or an application to read or update
data at one remote location per unit of work. With remote unit of work, you can
have many SQL statements within a unit of work. You can access one database
management system with each SQL statement, and you can access one database
management system within a unit of work.

Consider a banking example. Using remote unit of work, you can transfer funds
from a savings account table to a checking account table, if both tables are at the
same remote location. Figure 117 on page 393 shows how the application first
requests an update to the savings account table (1) and then requests an update to
the checking account table (2).

392 System Administration

If both requests are processed successfully, the application can direct the database
management system to commit both updates (3). If either request is not processed
successfully, the application can issue a ROLLBACK, leaving both tables as they
were before the transaction began. This ensures that requests are neither lost nor
duplicated.

Distributed Unit of Work
Distributed unit of work lets a user or application program read or update data at
multiple locations within a single unit of work. With distributed unit of work, you
can:
v Have many SQL statements within a unit of work
v Access one database management system with each SQL statement
v Access many database management systems within a unit of work.

Using the banking example (see Figure 118), imagine that the savings account table
and the checking account table are on two different computer systems. Distributed
unit of work processing permits an application to debit the savings account (1),
credit the checking account (2), and either commit or roll back the operations in
both computer systems (3), treating all of the changes as a single transaction, or
unit of work.

Commit and rollback are coordinated at all locations so that if a failure occurs
anywhere in the system, data integrity is preserved. If there was a failure in the
middle of the banking transaction just described, and commit or rollback was not
coordinated, the savings account could be debited money and the checking account
might not be credited the money. This costly error is avoided by the coordination
of commit and rollback, or two-phase commit processing. For more information on
two-phase commit processing, see “Two-Phase Commit Processing” on page 400.

Savings

Funds
Transfer

1. Subtract from
Savings

2. Add to
Checking

3. Commit or
Roll back

RDBMS

Savings/Checking System

Checking

Figure 117. Remote unit of work

Savings

Checking

RDBMS

Funds
Transfer

1. Subtract from
Savings

2. Add to
Checking

3. Commit or
Roll back

RDBMS

Figure 118. Distributed unit of work

Chapter 15. Using a DRDA Environment 393

Summary of DRDA Support in DB2 Server for VM
Table 31 summarizes the level of DRDA support available for the DB2 Server for
VM application server (AS) and application requester (AR):

Table 31. DRDA Support in DB2 Server for VM

VM or VSE AS VM AR VSE Batch AR VSE Online AR

RUOW over SNA yes yes no yes

RUOW over TCP/IP yes yes yes yes

DUOW over SNA yes no no no

DUOW over TCP/IP no no no no

Preparing to Implement DRDA
You can use the application requester, the application server, or both in a
distributed environment. This section provides a checklist of the required tasks for
implementing DRDA over SNA. For information on implementing DRDA over
TCP/IP, refer to “Chapter 16. Using TCP/IP with DB2 Server for VM” on page 415.
For detailed information on DRDA, see the Distributed Relational Database
Connectivity Guide.

On the Application Requester
v Increase the virtual storage (see the DB2 Server for VM Program Directory)
v Provide the following network information:

– Define the local system
– Define the remote systems
– Supply information to the VTAM product and to AVS
– Select RU sizes and pacing
– Review the existing network definitions to ensure that the distributed

database system does not adversely affect the existing network
– Update the CMS communications directory

v Provide the following security controls:
– Supply information to the VTAM product for the level of security required

v Specify the PROTOCOL parameter of the SQLINIT EXEC
v Preprocess the applications to be used
v Compile the applications.

On the Application Server
v Increase the virtual storage (see DB2 Server for VM Program Directory)
v If you use saved segments, redefine the saved segments for the DB2 Server for

VM components, since the size of the Resource Adapter and RDS components
will increase

v If the application server is to be used for distributed unit of work activity, install
a CRR recover server. For more information, see the VM/ESA: Installation Guide
and the VM/ESA: CMS File Pool Planning, Administration, and Operation manuals.

v Provide the following network information:
– Define the application server to the VTAM product and to AVS
– Review the existing network definitions to ensure that the distributed

database system will not adversely affect the existing network

394 System Administration

v Provide the following security controls:
– Either use come-from checking so that the application server accepts user IDs

from specific locations only (and translates a user ID to a different user ID
when necessary), or ensure that all user IDs are unique within the SNA
network

– Ensure that the application server provides a security manager product to
support the required security features

v Specify the PROTOCOL parameter of the SQLSTART EXEC.

Installing and Removing the DRDA Code
Installing the DRDA code is an optional customization step that follows either
installation or migration. You install it:
v Immediately after installing or migrating the base code
v At a later date, whenever it is required
v On either the application server or the application requester, or both

You can remove the DRDA code if it is no longer required.

When the DRDA code is installed on the application server, access from DB2
Server for VM and non-DB2 Server for VM application requesters is allowed.

Do not install the DRDA code unless it is specifically required, as the additional
code required for distributed communications requires a significant amount of
storage. For details on virtual storage requirements, see “Appendix A. Virtual and
Real Storage Requirements” on page 423.

Steps to Install or Remove the DRDA Code
To install (or remove) the DRDA code, perform the following steps on the database
machine and installation user ID:
1. Log on to the database machine (SQLMACH).
2. Stop the application server using your normal operating procedures.
3. Ensure that the database machine production disk and service disk are linked

in write mode. If not, enter:
LINK machid 195 195 W
LINK machid 193 193 W

4. Access the production disk with file mode Q and the service disk with file
mode V.

ACCESS 195 Q
ACCESS 193 V

If you are using SFS directories instead of minidisks, access them with file
modes Q and V.

5. Run the ARISDBMA EXEC to identify whether you want application server or
application requester DRDA code installed on your production disk. Its syntax
is:

Chapter 15. Using a DRDA Environment 395

Specify any of the following combinations of parameters:

ARAS=Y Install the DRDA code for both the application server and
application requester (this is the default).

ARAS=N Remove the DRDA code from both the application server and
application requester.

AR=Y Install the DRDA code for the application requester.

AR=N Remove the DRDA code from the application requester.

AS=Y Install the DRDA code for the application server.

AS=N Remove the DRDA code from the application server.

For example, to identify that you want to install the DRDA code on the
application server and remove it from the application requester, type:

ARISDBMA DRDA(AS=Y)
ARISDBMA DRDA(AR=N)

6. Log off the database machine.
7. Log on to the DB2 Server for VM installation user ID, 5697F42R

You should have read access to the VMSES/E code (MAINT 5E5 disk) and
read/write access to the Software Inventory disk (MAINT 51D) or SFS
directory.

8. Establish the access order.
vmfsetup 5697F42R {DB2VM|DB2VMSFS}

5697F42R is the PPF that was shipped with the product. If you have your own
PPF override, substitute that name for 5697F42R shown in this command. You
also need to substitute your PPF name in the VMSES/E commands in any
subsequent steps.

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared File
System directories.

9. Rebuild DB2 Server for VM ARISQLLD LOADLIB.
a. Rebuild the ARISQLLD LOADLIB.

vmfbld ppf 5697F42R {DB2VM | DB2VMSFS} ARIBLLLD (all
vmfview build

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared
File System directories.

ARIBLLLD is the name of the VMSES/E build list used to build the
ARISQLLD LOADLIB.

Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before you continue. Use the PF2 key, ALL, to review all of
the messages.

�� ARISDBMA DRDA(ARAS = Y)
AR N
AS

��

396 System Administration

Notes:

1) The following message is normal if you are NOT running DB2 Server
for VM with the CHANGE TO PERFF:
VMFLLB2074I Part xxxxxxx TXT in object ARISQLDS

in build list ARIBLLLD
EXEC will be ignored

2) The following message is normal if you are NOT running DB2 Server
for VM with the DRDA application server support:
VMFLLB2074I Part xxxxxxx TXT in object ARIXRDS

in build list ARIBLLLD
EXEC will be ignored

3) The following message is normal if you are NOT running DB2 Server
for VM with the DRDA application requester support:
VMFLLB2074I Part xxxxxxx TXT in object ARIRVMRM

in build list ARIBLLLD
EXEC will be ignored

b. Build the related files.
vmfbld ppf 5697F42R {DB2VM | DB2VMSFS} (serviced
vmfview build

Use DB2VM for installing on minidisks or DB2VMSFS for installing in Shared
File System directories.

Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before you continue.

10. Link and access the database machine user ID production and service disks or
SFS directories.
link SQLMACH 195 295 MR
acc 295 l
link SQLMACH 193 293 MR
acc 293 m

You will be prompted for the password to the disks.

Substitute your minidisk addresses, if different. Substitute in the appropriate
SFS directory names. You also need to substitute your minidisk address and
SFS directory names in the VMSES/E commands in any subsequent steps.

11. Copy the new ARISQLLD LOADLIB to SQLMACH’s production and service
disk or directory.
a. If installing on minidisks, enter the following commands:

access 195 i
vmfcopy arisqlld L* i = = l (prodid 5697F42R%DB2VM olddate replace
access 193 j
vmfcopy arisqlld L* j = = m (prodid 5697F42R%DB2VM olddate replace

The VMFCOPY command updates the VMSES PARTCAT file on the
production disk (195) and the service disk (193).

b. If installing using Shared File System, enter the following commands:
access 5697F42R.sql.production i
access SQLMACH.sql.production l
vmfcopy arisqlld L* i = = l (prodid 5697F42R%DB2VM olddate replace
access 5697F42R.sql.service j
access SQLMACH.sql.service m
vmfcopy arisqlld L* j = = m (prodid 5697F42R%DB2VM olddate replace

The VMFCOPY command updates the VMSES PARTCAT file.

Chapter 15. Using a DRDA Environment 397

12. If you previously stored any DB2 Server for VM components in saved
segments, you should re-save them (refer to “Step 11. Prepare to Build the
DB2 Server for VM Segments” on page 184 through “Step 15. Create a
Bootstrap Package” on page 187 in “Chapter 8. Saved Segments” on page 171).
In “Step 14. Build the DB2 Server for VM Segments” on page 186 on the
VMFBLD command, use the “(add” option rather than the “(serviced” option.
The sizes of the resource adapter and RDS increase with the DRDA code
installed. If you need to increase the size of any of the saved segments, you
must run VMFSGMAP to redefine the segment (see “Step 4. Prepare to Add
DB2 Server for VM Segment Definitions” on page 179).

13. Log off the installation user ID.
14. You must define a CMS communications directory to access a remote

application server through the VTAM product. For more information, see
“Setting Up the CMS Communications Directory” on page 10.

15. Log on the database machine and restart the application server in multiple
user mode with the required PROTOCOL parameter.

Using DRDA
The DRDA code is invoked based on the setting of the PROTOCOL parameter. On
the application server this parameter is on the SQLSTART EXEC; on the
application requester, it is on the SQLINIT EXEC. When the application server is
started with PROTOCOL=AUTO, access from DB2 Server for VM and non-DB2
Server for VM application requesters is allowed. When the application requester
specifies PROTOCOL(AUTO) or PROTOCOL(DRDA), connections to DB2 Server
for VM and non-DB2 Server for VM application servers are allowed.

When the application server is started with PROTOCOL=AUTO and SYNCPNT=Y,
distributed unit of work support is enabled. This means that the application server
can participate in multiple-site read multiple-site update logical units of work. This
requires DB2 Server for VM to interface with VMCRR. If SYNCPNT=N is specified,
then the DB2 Server for VM server does not interface with VMCRR and the server
is restricted to multiple-site read single-site update units of work. When
SYNCPNT=N, the DB2 Server for VM server may be one of the multiple sites
where data is only read, or it may be the single site where data is updated.

Note: If SYNCPNT=Y is specified but a CRR Recovery server has not been
installed, distributed unit of work is not possible. Error messages are issued
and DB2 Server for VM runs as if the SYNCPNT startup parameter had
been set to N.

Using the DBS Utility on non-DB2 Server for VM Application Servers
For a user to be able to use the DBS utility on a non-DB2 Server for VM DRDA
target application server, you must first preprocess the DBS utility package on the
target application server and then create the table SQLDBA.DBSOPTIONS on that
application server. This is done by the DB2 Server for VM application requester.
You must then obtain the necessary program bind and table creation privileges for
your authorization-id on the target application server.

Note: If the target application server does not support the ERROR option when
preprocessing, you must create the DB2 Server for VSE & VM system
catalog tables on the target application server for the preprocessing to work.
The database managers that do not support the ERROR option (such as the
common server database managers) generally supply a command file that

398 System Administration

creates the necessary table definitions. The command file to create the tables
for the DBS Utility is typically called SQLDBSU.CMD or SQLDBSU.BAT.

To create the DBS Utility package, do the following from a DB2 Server for VM
application requester:
1. To establish the non-DB2 Server for VM application server as the default

application server, run the SQLINIT EXEC and specify the name of the
non-DB2 Server for VM application server for the DBNAME parameter.

2. Link to the database machine’s service disk:
LINK machid 193 193 RR

3. Access the service disk:
ACC 193 V

4. To preprocess the DBS utility, enter:
SQLPREP ASM PP (PREP=SQLDBA.ARIDSQL,BLOCK,ISOL(CS),NOPR,ERROR,NOPU,

CTOKEN(NO)) IN (ARIDSQLP MACRO V)

Omit the ERROR option on the SQLPREP statement if the target application
server does not support it.

5. If you ran a command file to create the table definitions necessary for
preprocessing, the DBSOPTIONS table should have been created for you. If this
table does not exists, enter the following DBS Utility commands:

SET ERRORMODE CONTINUE;

CREATE TABLE SQLDBA.DBSOPTIONS
(SQLOPTION VARCHAR (18) NOT NULL,
VALUE VARCHAR (18) NOT NULL);

CREATE UNIQUE INDEX SQLDBA.DBSINDEX
ON SQLDBA.DBSOPTIONS (SQLOPTION,VALUE);

INSERT INTO SQLDBA.DBSOPTIONS
VALUES ('RELEASE','7.1.0');

COMMIT WORK;

You must now obtain the necessary program bind and table creation privileges for
your authorization-id on the target application server.

Using ISQL on non-DB2 Server for VM Application Servers
For a user to be able to make ISQL requests against a non-DB2 Server for VM
application server, you must load the ISQL package on that application server.

Before you can load ISQL on a non-DB2 Server for VM application server, you
must first preprocess the DBS utility on the non-DB2 Server for VM application
server. When the DBS utility is preprocessed on the non-DB2 Server for VM
application server, ensure that you have the necessary program bind and table
creation privileges for your authorization-id on the target application server.

If the target application server does not support the ERROR option, run the
ISQL.CMD or ISQL.BAT file. This file is supplied by the target server.

Do the following from a DB2 Server for VM application requester to load ISQL:
1. Run the SQLINIT EXEC to establish the non-DB2 Server for VM application

server as the default application server.
2. To link to the database machine’s service disk, enter:

Chapter 15. Using a DRDA Environment 399

LINK machid 193 193 RR

3. To access the service disk, enter:
ACC 193 V

4. Issue the following CMS command:
FILEDEF ARIISQLM DISK ARIISQLM MACRO V

5. Issue the following DBS utility command to reload ISQL:
RELOAD PACKAGE (SQLDBA.ARIISQL) REPLACE KEEP INFILE (ARIISQLM);

6. Create the table SQLDBA.ROUTINE, and any other userid.ROUTINE tables that
you want.
For the CREATE TABLE statement that you use to create SQLDBA.ROUTINE,
see the DB2 Server for VSE & VM Interactive SQL Guide and Reference manual.

Two-Phase Commit Processing
Distributed unit of work is a coordinated approach involving two phases. This
coordination is done by a sync point manager. DB2 Server for VM uses VMCRR as
its sync point manager. A sync point manager maintains consistency in changes
which are made to protected resources. The primary functions of a sync point
manager include, but are not limited to, the following:
1. Keeping track of and logging LUW state information
2. Keeping track of and logging all local protected resource manager (PRM)

names that are involved with a logical unit of work
3. Coordinating the COMMIT and ROLLBACK of all local PRMs
4. Initiating resynchronization protocols for any logical unit of work that may be

in the in-doubt state because of a system or communications failure.

A sync point manager is required wherever resources may be updated. This
requires that sync point managers at each distributed location communicate with
one another using architected protocols. These protocols are fully discussed in the
SNA LU 6.2 Reference: Peer Protocols manual.

For a full explanation of what two-phase commit is, see the following manuals:
v IBM Systems Network Architecture, Format and Protocol Reference Reference Manual:

Architecture Logic for LU Type 6.2
v IBM Systems Network Architecture, Logical Unit 6.2 Reference: Peer Protocols
v IBM Distributed Relational Database Architecture Reference
v Distributed Data Management (DDM) General Information.

Using the Two-Phase Commit Protocol
An example of a two-phase commit protocol sequence is shown in Figure 119 on
page 401. SNA LU 6.2 functions provide so many capabilities that it is impossible
to show all the possible sequences. Notes describing key points in the sequence
follow the sequence diagram.

The following assumptions have been made for the example:
v A conversation has been successfully established between the Source Server and

the target communications manager (TCM) using a protected conversation.
v No error situation occurs.

For example:

400 System Administration

v The ″Source Server″ could be DDCS Multi-User Gateway V2.3.1. In this case, the
″SYNCPNTMGR″ would be function included with DDCS. Also, the ″SNA LU
6.2″ function could be provided by Communications Server for OS/2 Version 4.

v The ″Target Server″ would be DB2 Server for VSE. The ″TCM″ is the
communication function of DB2 Server for VM. The ″SYNCPNTMGR″ would be
VM/CRR. The ″Other Protected Managers″ would be the database manager
function of DB2 Server for VM.

Figure Notes:

Figure 119. Successful Two-Phase Commit

Chapter 15. Using a DRDA Environment 401

(1) The Target Communications Manager (TCM) issues a
RECEIVE_AND_WAIT APPC verb to receive the next SQL Request from
the Source Server.

(2) The source application program requests the SYNCPNTMGR to commit
the logical unit of work (LUW). The source SYNCPNTMGR notifies the
SNA LU 6.2 communications facilities to prepare to commit and notifies
the source database (and other protected resource managers registered with
the SYNCPNTMGR) to prepare to commit. The source communications
facility sends the SNA LU 6.2 prepare message to the target system. The
local protected resource managers respond to the source SYNCPNTMGR
with the ″Request Commit″ message.

(3) On the target system, the RECEIVE_AND_WAIT verb is completed and the
WHAT_RECEIVED parameter is set to TAKE_SYNCPT.

The TCM issues a SYNCPT verb to the target SYNCPNTMGR which
begins the commit processing. The SYNCPNTMGR prepares the protected
resources to commit.

(4) The SYNCPNTMGR sends the SNA LU 6.2 request commit message to the
source system.

(5) The source SYNCPNTMGR collects the request commit messages from the
SNA LU 6.2 communications facilities and the other protected resource
managers. The source SYNCPNTMGR then commits the logical unit of
work by requesting that all of the resources commit. This causes an SNA
LU 6.2 committed message to be sent to the target system.

(6) The target SYNCPNTMGR requests that the local resources commit the
logical unit of work and causes an SNA LU 6.2 forget message to be sent
to the source system. In addition, the target SYNCPNTMGR posts a
positive response to the TCM for the SYNCPT verb issued in note (3).

(7) When the source SYNCPNTMGR receives the ″FO″ responses from the
protected resource managers, a positive response to the commit is given to
the application program.

In the VM environment, DB2 Server for VM uses VM/ESA Coordinated Resource
Recovery (VMCRR) as its sync point manager. VMCRR uses the Callable Services
Library (CSL) routines to customize the sync point manager function. The
environment can be shown as follows:

402 System Administration

This diagram shows how a workstation application might use DDCS for OS2
V2.3.1 to execute a distributed unit of work between 2 DB2 Server for VM servers
on different VM/ESA systems. Notice that DDCS registers itself with its own sync
point manager. DDCS then establishes protected conversations with DB2 Server for
VM servers 1 and 2. Each DB2 Server for VM server uses the CRR Recovery server
installed on its VM system to perform any sync point logging and
resynchronization activity. Notice also that each DB2 Server for VM server registers
itself with the CRR Recovery server on its system.

CAE DB2 Client Application Enabler

DDCS Distributed Database Connection Services (V2.3.1)

CS/2 Communication Server for OS/2 (V4)

OS/2 OS/2 Warp

PC Protected Conversation

Operator Commands
The following DB2 Server for VM operator commands can be used to manage
in-doubt LUWs:

SHOW ACTIVE
Displays the status of active agent structures1

SHOW CONNECT
Displays the status of all users or selected users connected to the
application server.

FORCE COMMIT
Heuristically forces an in-doubt LUW to COMMIT

FORCE ROLLBACK
Heuristically forces an LUW to ROLLBACK

1. An agent is the internal database manager representation of an active user

CM/2

OS/2

VTAM1

AVS1

GCS1

VTAM2

AVS2

GCS2

DB2 for VM
Server

1

CMS

VM1

VM2

PC

PC

DB2 for VM
Server

2

CMS

CRR
Recovery
Server 1

CMS

CRR
Recovery
Server 2

CMS

DB2
Application

DB2 CAE

DRDA Sync
Point Mgr

DDCS
V2.3.1

Figure 120. DB2 Server for VM Distributed Unit of Work Environment.

Chapter 15. Using a DRDA Environment 403

SHOW INDOUBT
Displays the status of all DRDA2 distributed units of work that are:
v currently in-doubt
v were heuristically committed or rolled back but RESYNC has not yet

been performed nor has RESET INDOUBT been performed
v RESYNC failed for some in-doubt unit of work, because the status of the

LUW was the opposite of what RESYNC required. (for example,
RESYNC required that the unit of work be COMMITTED, but it had
been heuristically ROLLED BACK). At the same time, RESET INDOUBT
has not been performed.

RESET INDOUBT
Causes a heuristically committed or rolled back unit of work to be
forgotten by the database, (that is, causes a forget log record to be written.)

CRR Operator Commands
In addition to the DB2 Server for VM operator commands, the following VM/ESA
CRR operator command may be used to manage activity at the CRR operator
console:

CRR ERASE LU
Erases specified LU name and TPN entries from the CRR log name table

CRR ERASE LUWID
Erases CRR log records for a specified LUWID instance, which prevents
any further CRR recovery server activity on this LUWID instance

CRR QUERY LOG
Displays the status of the CRR log minidisks

CRR QUERY LOGTABLE
Displays LU names and TPNs in the CRR log name table

CRR QUERY LU
Displays status of logical units of work known to this CRR recovery server
and associated with the specified LU name

CRR QUERY LUWID
Displays status of sync point processing and resynchronization processing
for an LUWID instance known to this CRR recovery server

CRR RESUME
Restarts the automatic periodic retry of resynchronization for a specified
LUWID that was suspended by the CRR SUSPEND command and also
bypasses the timed wait interval

CRR RESYNC
Provides a heuristic response for an unavailable protected resource or
protected conversation so resynchronization can continue

CRR SUSPEND
Stops the automatic periodic retry of resynchronization for a specified
LUWID until the CRR operator enters the CRR RESUME command

These CRR commands are discussed in the VM/ESA CMS File Pool Planning,
Administration, and Operation manual.

404 System Administration

Resynchronization
Resynchronization occurs if two-phase commit processing is interrupted by a
resource failure. A resource failure may be caused by a node failure, a session
failure, a program failure or other problems by a protected resource manager. The
resource failure may be between a sync point manager and local resource
managers or sync point manager and remote resource managers.

Resynchronization is conducted independently for each failed protected resource
for which it is required. Resynchronization has the following purposes:
v To place distributed resources in consistent states, if possible; if not possible, to

notify the operator at the LU that detected the damage and at the LU of the root
of the sync point tree. The LU for DB2 Server for VM is AVS.

v To unlock locked resources in order to free them for other uses
v To update the log showing that no more sync point work is needed for that

protected resource, for that LUW.

Resync When Partner is Not Active
After an LU failure, it is possible that the partner that is responsible for resync is
unable to establish the resync conversation because the failed LU has not been
restarted. The responsible LU retries the resync at implementation-defined
intervals.

In order to reduce the delay for resynchronization after an LU is restarted, the
partner LU may signal to the resync initiator that it is available by sending an
Exchange Log Names GDS variable that is not accompanied by a Compare States
GDS variable.2 Once the responsible LU has received this signal that the failed LU
is active, it can initiate resync, sending the Exchange Log Names and Compare
States GDS variables.

Sending the Exchange Log Names GDS variable as a signal of LU availability need
be done only once, no matter how many protected conversations require
resynchronization between the two LUs. Also, if the LU that becomes available is
responsible for initiating resync for some conversations, it need not send another
Exchange Log Names GDS variable as a signal that the LU is available, since the
partner SPM can infer that a partner is available from the other resyncs the partner
SPM initiates.

Resynchronization Initialization
To notify the CRR recovery server of its readiness to accept resynchronization
communications, a DB2 Server for VM server performs Resynchronization
Initialization with the CRR recovery server when it starts up3 in multiple user
mode. This involves sending an exchange log names request to the CRR recovery
server before the first sync point is processed. The CRR recovery server sends an
exchange log names reply. Then DB2 Server for VM and the recovery server save
each other’s log name, LU name and TPN to use in later validations. The current
values for these can be determined using the database manager’s SHOW CRR
LOGNAMES command. For more information, see the DB2 Server for VSE & VM
Operation manual.

2. The partner can tell that a Compare States GDS variable is not present because SPM’s RECEIVE_AND_WAIT verb will complete
with a WHAT_RECEIVED of SEND rather than DATA_COMPLETE.

3. Note - this is only done when the database is initializing. Once database initialization has completed, resynchronization
initialization is not performed again until the database is brought down and then restarted.

Chapter 15. Using a DRDA Environment 405

As part of the exchange log names request, DB2 Server for VM sends a log name.
The DB2 Server for VM log name is the concatenation of the following information
(with blank characters stripped off):
v SNA NETID
v The database manager’s VM node ID
v The database manager’s RESID.

The database manager also sends a log status in the exchange log names request.
Log status can have one of the following values:

warm When the database manager starts up, it invokes the DMSGETRS CSL
routine to determine the current TPN of the CRR recovery server. If the
TPN value returned by the DMSGETRS routine matches the TPN value in
the database manager’s log, the log status is warm.

cold When the database manager starts up, if it determines that the current
TPN value of the CRR recovery server does NOT match the value of the
CRR recovery server’s TPN as stored in the database manager’s log, the
log status is cold.

The database manager also send a TPN value in the exchange log names request.
The TPN value is the RESID for the database manager.

The CRR recovery server receives the exchange log names request, processes it,
and returns an Exchange Log Names reply back to the database manager. This
reply also contains a log status, which can have one of the following values:

warm The CRR recovery server compares the TPN value that DB2 Server for VM
sent in the exchange log names request with the TPN value stored in the
CRR recover server’s log. If the values match, then the log status is warm.

cold If the TPN values sent by DB2 Server for VM in the exchange log names
request does not match the TPN value stored in the CRR recovery server’s
log, the log status is cold.

The database manager receives the exchange log names reply from the CRR
recovery server. The resulting action for DB2 Server for VM is described in the
following table:

Table 32. Actions by DB2 Server for VM on Exchange Log Names reply.. When DB2 Server for VM receives an
Exchange Log Names reply from the VMCRR recovery server, the database manager needs to do certain actions.
This table summarizes these required actions.

CRR Recovery
Server’s Log
Status

Reply from
CRR

DB2 Server for
VM’s log
status

DB2 Server for VM’s action

COLD or
WARM

NORMAL COLD The database manager saves or updates the recovery server’s
locally known LU name, fully qualified LU name, TPN, and log
name in its log and sends an explicit APPC confirmation to the
recovery server.

406 System Administration

Table 32. Actions by DB2 Server for VM on Exchange Log Names reply. (continued). When DB2 Server for VM
receives an Exchange Log Names reply from the VMCRR recovery server, the database manager needs to do
certain actions. This table summarizes these required actions.

CRR Recovery
Server’s Log
Status

Reply from
CRR

DB2 Server for
VM’s log
status

DB2 Server for VM’s action

COLD NORMAL WARM The database manager checks the work unit records in its log
that relate to the recovery server.

v If no DRDA2 in-doubt logical units of work are found, DB2
Server for VM updates the recovery server’s log name saved
in the log and sends an explicit APPC confirmation to the
recovery server.

v If DRDA2 in-doubt logical units of work are found, DB2
Server for VM issues the following messages (the first one
being equivalent to CMS message 3373E) on its operator
console and does a deallocate (abend):

ARI0177E CRR recovery server at TPN tpn has
provided a new log name resulting from a cold
start. Some LUWID(s) cannot be automatically
resolved by resynchronization.

ARI0176I The SYNCPNT parameter has been reset to N.

The database manager’s participation in sync points must be
delayed until the error condition is resolved. The DB2 Server
for VM operator should contact the recovery server operator
to determine the reason for the status mismatch. The
operator might have to manually force some units of work
using the FORCE operator command.

WARM NORMAL WARM The database manager compares the recovery server’s log name
sent in the reply with the name in DB2 Server for VM’s log:

v If the names match, DB2 Server for VM sends an explicit
APPC confirmation to the recovery server.

v If the log names do not match, DB2 Server for VM issues the
following messages (the first one being equivalent to CMS
message 3372E) on its operator console and does a deallocate
(abend):

ARI0178E An Exchange Log Name's Reply sent by CRR
recovery server at TPN tpn contained a
log name which does not match the current
{database manager|CRR recovery server}
log name.

Log name in Reply: log name
Current Log name: log name

ARI0176I The SYNCPNT parameter has been reset to N.

The database manager’s participation in sync points must be
delayed until the error condition is resolved. The DB2 Server
for VM operator should contact the recovery server operator
to determine the reason for the log name mismatch. The
database may have been restored from an archive which
resulted in the log name mismatch, or the recovery server
might be using the wrong log, and should be restarted with
the correct log. If the correct log cannot be supplied, both
partners must be coldstarted. Note that the “RESET CRR
LOGNAMES” operator command may be used to reset the
CRR recovery server’s luname, tpn and log name and force
an DB2 Server for VM log status of cold.

Chapter 15. Using a DRDA Environment 407

Table 32. Actions by DB2 Server for VM on Exchange Log Names reply. (continued). When DB2 Server for VM
receives an Exchange Log Names reply from the VMCRR recovery server, the database manager needs to do
certain actions. This table summarizes these required actions.

CRR Recovery
Server’s Log
Status

Reply from
CRR

DB2 Server for
VM’s log
status

DB2 Server for VM’s action

WARM ABNORMAL COLD or
WARM

The database manager issues the following messages (the first
one being equivalent to CMS message 3371E) on its operator
console and does a deallocate (abend):

ARI0179E An Exchange Log Name's Reply sent by CRR
recovery server at TPN tpn
contained an error status.

ARI0176I The SYNCPNT parameter has been reset to N.

The SYNCPOINT parameter value is set to N because the
database manager’s participation in sync points must be
delayed until the error condition is resolved. The DB2 Server
for VM operator should contact the recovery server operator to
determine the reason for the error.

If the problem is a log name mismatch, one of the partners
might be using the wrong log, and should be restarted with the
correct log. If the correct log cannot be supplied, both partners
must be coldstarted. Note that the “RESET CRR LOGNAMES”
operator command may be used to reset the CRR recovery
server’s luname, tpn and log name and force an DB2 Server for
VM log status of cold.

Resynchronization Recovery
The CRR recovery server initiates the resynchronization recovery function to ensure
consistent completion of the sync point by all registered resources for which data
was logged. Using information stored in its log, the CRR recovery server
determines which resources managers (for example, DB2 Server for VM) should be
included in the recovery and allocates APPC conversations with them.

To allocate an APPC conversation with DB2 Server for VM, the CRR recovery
server uses information that DB2 Server for VM provided when it registered with
the SPM (using the CSL routine DMSREG).

The resynchronization recovery transaction between the CRR recovery server and
the database manager consists of two functions:
v Exchanging log names

The CRR recovery server initiates this exchange with DB2 Server for VM to
ensure that the data they saved from resynchronization initialization are still
valid.

v Comparing states

The CRR recovery server initiates this exchange with DB2 Server for VM to
compare the state of the CRR logical unit of work with the state of the database
manager’s logical unit of work.

During resynchronization recovery, DB2 Server for VM receives the Exchange Log
Names and Compare states requests. First, the database manager processes the
Exchange Log Names request as described in the following figure.

408 System Administration

Table 33. Actions by DB2 Server for VM on Exchange Log Names request.. When the database manager receives
an Exchange log Names request from the VMCRR recovery server, it needs to do certain actions in order to
formulate a reply. This table summarizes these required actions.

CRR Recovery
Server’s Log
Status

DB2 Server for
VM’s log status

DB2 Server for VM’s actions

WARM COLD The database manager holds the recovery server’s log name from the request but
does not update its own log or process the compare states request. It then sends
an Exchange Log Names reply to the recovery server indicating cold log status
and normal completion of the request. DB2 Server for VM waits for indication of
a deallocate (abend server, then does a deallocate (normal).

Note that if the RESET CRR LOGNAMES command is issued, then the log status
at the database will be COLD.

WARM WARM The database manager compares the recovery server’s log name in the request
with the name that is saved in its log. DB2 Server for VM also validates its own
log name specified in the request.

v If the log names match, DB2 Server for VM formulates (but does not send) an
Exchange Log Names reply indicating normal completion of the request. It
then processes the compare states request. After DB2 Server for VM completes
the Compare states processing, it sends both replies in the same buffer.

v If the log names do not match, DB2 Server for VM issues the following
message (equivalent to CMS message 3372E) on its operator console and sends
an Exchange Log Names reply to the recovery server indicating abnormal
completion of the request:

ARI0178E An Exchange Log Name's Request sent by CRR
recovery server at TPN tpn contained
a log name which does not match the current
{database manager|CRR recovery server}
log name.

Log name in Request: log name
Current Log name: log name

The database manager does not process the compare states request. It waits
for indication of a deallocate (abend) by the recovery server, then does a
deallocate (normal).

The DB2 Server for VM operator should contact the recovery server operator
to determine the reason for the log name mismatch. A couple of possible
reasons are:
– The database manager’s NETID, LUNAME or TPN may have changed,

which resulted in a different log name.
– An archive from another DB2 Server for VM database may have been

restored in this database.

If this is the case then the database must be coldstarted. Note that the “RESET
CRR LOGNAMES” operator command may be used to reset the CRR recovery
server’s luname, tpn and log name and force a DB2 Server for VM log status
of cold. If the recovery server is using the wrong log and cannot locate the
correct log, DB2 Server for VM might have to manually force some units of
work from its log.

Note:

The database manager will determine its log status by comparing the CRR Recovery Server’s LUNAME and TPN
passed in the request with that which was recorded in its log. If there is any mismatch then the log status is
deemed to be COLD.

Chapter 15. Using a DRDA Environment 409

If the log name exchange was satisfactory, the database manager then processes the
Compare States request as shown in Table 34.

Table 34. Actions by DB2 Server for VM on Compare States request. When the database manager receives a
compare states request from the VMCRR recovery server, it needs to do certain actions depending on the state of
the LUW at DB2 Server for VM and at the recovery server. This table summarizes these required actions.

LUW state at
DB2 Server
for VM

LUWID state sent by CRR recovery server

Backout Committed

LUWID Not
found

Send normal completion reply indicating Backout
state. DB2 Server for VM notifies operator with
message:

ARI0183E The Sync Point Manager has asked
to ROLLBACK
this LUW but the database manager
has no memory of it.

Send normal completion reply indicating Backout
state. DB2 Server for VM notifies operator with
message:

ARI0183E The Sync Point Manager has asked
to COMMIT
this LUW but the database manager
has no memory of it.

Indoubt
(Prepared)

Drive backout of resource and send normal
completion reply indicating Backout state.

DB2 Server for VM indicates backout to the
operator with the message:

ARI0230I FORCE ROLLBACK with disable
scheduled for agent user id
because of resynchronization
recovery.

Drive commit of resource and send normal
completion reply indicating Committed state.

DB2 Server for VM indicates committed to the
operator with the message:

ARI0230I FORCE COMMIT with disable
scheduled for agent user id
because of resynchronization
recovery.

Heuristic
Backout

Send normal completion reply indicating
Heuristic Backout State

Send normal completion reply indicating
Heuristic Backout State. DB2 Server for VM
notifies operator with message:

ARI0184A The Sync Point Manager has asked
to COMMIT this
LUW but the FORCE command was
previously used to ROLLBACK it.

In this case, the LUW will still appear when the
SHOW INDOUBT command is executed. The
LUW must be cleared using the RESET
INDOUBT command. In addition, manual
intervention is necessary to ensure that the LUW
is in a consistent state at all sites where the LUW
has been distributed. This may require
intervention at this database manager, or possibly
at another database manager. Manual
intervention could mean manually fixing the data
or possibly restoring an archive.

410 System Administration

Table 34. Actions by DB2 Server for VM on Compare States request (continued). When the database manager
receives a compare states request from the VMCRR recovery server, it needs to do certain actions depending on the
state of the LUW at DB2 Server for VM and at the recovery server. This table summarizes these required actions.

LUW state at
DB2 Server
for VM

LUWID state sent by CRR recovery server

Backout Committed

Heuristic
Committed

Send normal completion reply indicating
Heuristic Committed state. DB2 Server for VM
notifies operator with message:

ARI0184A The Sync Point Manager has asked
to ROLLBACK this
LUW but the FORCE command was
previously used to COMMIT it.

In this case, the LUW will still appear when the
SHOW INDOUBT command is executed. The
LUW must be cleared using the RESET
INDOUBT command. In addition, manual
intervention is necessary to ensure that the LUW
is in a consistent state at all sites where the LUW
has been distributed. This may require
intervention at this database manager, or possibly
at another database manager. Manual
intervention could mean manually fixing the data
or possibly restoring an archive.

Send normal completion reply indicating
Heuristic Committed state.

Note:

1. The state Syncpoint Pending is not possible at DB2 Server for VM servers. The server completes any sync point
actions such as prepare to commit, commit or rollback before the CRR Recovery Server performs any sync point
logging.

2. The state Backout (Reset) is not possible at DB2 Server for VM servers. The servers complete rollback processing
before the CRR Recovery Server performs any sync point logging for backout.

3. The state committed is not possible at DB2 Server for VM servers. The servers complete commit processing
before the CRR Recovery Server performs any sync point logging for committed.

4. The state LUWID not found is possible if (for example) an older DB2 Server for VM archive without an
in-doubt LUW is CRR log name, TPN and LUNAME recorded by the restored database matches the current
CRR log name, TPN and LUNAME.

Displaying Resynchronization Status using the SHOW
CONNECT Command

When DB2 Server for VM is performing resynchronization initialization with the CRR
recovery server, its status may be seen by the SHOW CONNECT command. The
following message is displayed:

Recovery Agent is processing Resynchronization Initialization

If the database manager is in a communications wait, waiting for the CRR recovery
server to reply to its exchange log names request, the following message is
displayed:

Recovery Agent is processing Resynchronization Initialization
and is in a communications wait with the CRR Recovery Server

When the CRR recovery server is performing resynchronization recovery with DB2
Server for VM its status may be seen by the SHOW CONNECT command. The
following message is displayed:

Recovery Agent is processing Resynchronization Recovery

Chapter 15. Using a DRDA Environment 411

If the database manager is in a communications wait, waiting for the CRR recovery
server to acknowledge its exchange log names and compare states replies,
following message is displayed:

Recovery Agent is processing Resynchronization Recovery
and is in a communications wait with the CRR Recovery Server

If the database manager is committing or rolling back the logical unit of work
requested by the CRR recovery server, the following message is displayed:

Recovery Agent is processing Resynchronization Recovery
and is waiting for a <commit|rollback> to complete.

This information is available in tokenized format.4

Terminating Resynchronization using the FORCE Command
During resynchronization initialization or resynchronization recovery, the database
manager could wait indefinitely for a response from the CRR recovery server. If
this is the case, the following command may be used to terminate resynchronization
initialization processing:
If “FORCE RINIT” is entered, resynchronization initialization processing is

terminated and the SYNCPNT parameter is changed from Y to N. If “FORCE
RREC” is entered, resynchronization recovery is terminated and deallocate (abend) is
performed to terminate the conversation with the CRR recovery server.

Notes:

1. The operator must issue the SHOW ACTIVE, SHOW CONNECT or SHOW
SYSTEM command prior to the FORCE RINIT/RREC command. Otherwise, the
following message is issued:
ARI0225E System operator must issue SHOW ACTIVE, SHOW CONNECT or

SHOW SYSTEM command prior to FORCE command.

and FORCE processing terminates.
2. If the database is not performing resynchronization initialization when the FORCE

RINIT command is entered, then the following message is displayed:
ARI2040E FORCE RINIT may only be entered when Resychronization Initialization is active.

and FORCE processing terminates.
3. If the database is not performing resynchronization recovery when the FORCE

RREC command is entered, then the following message is displayed:
ARI2040E FORCE RREC may only be entered when Resychronization Recovery is active.

and FORCE processing terminates.
4. If the FORCE RINIT command was already issued, the following message is

displayed:
ARI2041E FORCE RINIT is already scheduled.

4. For more information about tokenized format, see “Appendix A” of the Diagnosis Guide and Reference for IBM VM Systems manual.

�� FORCE RINIT
RREC

��

412 System Administration

and FORCE processing terminates. (Note that the scheduled FORCE command
remains!)

5. If the FORCE RREC command was already issued, the following message is
displayed:
ARI2041E FORCE RREC is already scheduled.

and FORCE processing terminates. (Note that the scheduled FORCE command
remains!)

6. If extra parameters are entered after “FORCE RINIT/RREC”, then the following
message is displayed:
ARI0229E Too many FORCE command input parameters

and FORCE processing terminates.

Chapter 15. Using a DRDA Environment 413

414 System Administration

Chapter 16. Using TCP/IP with DB2 Server for VM

Application requesters are able to use TCP/IP to access the DB2 Server for VM
application server. DB2 Server for VM application requesters can use private
protocol or DRDA remote unit of work protocol over TCP/IP to access the DB2
Server for VM application server. DB2 Server for VM application requesters can
use DRDA remote unit of work protocol over TCP/IP to access other DB2 family
servers that have TCP/IP support. Other application requesters can use DRDA
remote unit of work protocol over TCP/IP to access the DB2 Server for VM
application server.

Preparing the Application Server to use TCP/IP
The following must be done to allow the application server to use TCP/IP.
1. TCP/IP for VM must be installed and configured.
2. The TCP/IP client data disk must be accessed. This disk is often defined as

TCPMAINT 592. This disk contains the TCPIP DATA file and the ETC
SERVICES file which are necessary for successful TCP/IP support initialization.

3. The ARICTCP MODULE must be created and stored on the production disk.
The instructions for creating the ARICTCP MODULE are found in the DB2
Server for VM program directory.

4. A C runtime library must be available. The SCEERUN LOADLIB provided with
VM/ESA Version 2 Release 2.0 or later is sufficient. The C runtime library
provided with LE for VM is also acceptable.

5. Optionally, the ETC SERVICES file must be updated with the RESID of the
application server and the port number it should use.

TCP/IP support is invoked at system initialization time. If TCP/IP for VM is
available, the server will make use of it. The application server must be able to
determine what port number to listen on for connections. This can be
accomplished in a number of ways.
1. The ETC SERVICES file on the TCP/IP maintenance disk has a port number

associated with the RESID of the application server.
2. The new initialization parameter, TCPPORT, can be used to specify the port

number to listen on.
3. The well know port number for ddm-rdb, 446, is used. This name must be

defined in the ETC SERVICES file.

Each method has advantages and disadvantages.

The first method of using the ETC SERVICES file is the preferred method. This file
is maintained by the TCP/IP administrator and resides on the TCP/IP client data
disk. Since many application servers can run on the same VM system, it must be
ensured that they do not use the same TCP/IP port since only one server can use a
port. Identifying the port numbers in this file makes it easier to ensure that
different servers are using different ports. The name used must be the application
server’s RESID. This can be determined by issuing the SHOW INITPARM
command on the application server.

The entry in the ETC SERVICES file consists of a service name, port number,
protocol and an optional comment. Valid protocols in the ETC SERVICES. file are

© Copyright IBM Corp. 1987, 2001 415

tcp and udp. The only protocol DB2 Server for VM will recognize is tcp. It cannot
understand udp. It must be noted that the searches done on the ETC SERVICES
file are case sensitive. When the RESID is used as the search criteria it will be
entirely in upper case and must be defined entirely in upper case. Similarly, the
protocol is also part of the search criteria and is specified entirely in lower case
and must be defined in lower case for the search to be successful.

The following is an example of entries for 2 DB2 Server for VM application
servers.
SQLPROD 6100/tcp # Production database machine
SQLTEST 6200/tcp # Test database machine

The second method of port identification is the new initialization parameter,
TCPPORT. The advantage of this is that the ETC SERVICES file does not need to
be updated. This is helpful when initially testing TCP/IP support or when TCP/IP
support needs to be enabled, but the ETC SERVICES file cannot be updated. The
disadvantage is that it is possible that another application may be using the same
port.

The third method is the least desirable. If there is no entry for the RESID in the
ETC SERVICES file or TCPPORT was not specified, there is a well known port
assignment for relational databases. It is called ddm-rdb and the port number is
446. This name must be defined in the ETC SERVICES file. The file that is shipped
with TCP/IP for VM has this definition. This has the advantage of doing no extra
configuration to TCP/IP for VM and to the application server. The disadvantage is
that only one application server on that VM system can use that definition.

We will take advantage of all three of the methods. The actions can be broken
down into three scenarios.
1. If the TCPPORT parameter is not specified when the application server is

started, the application server will search the ETC SERVICES file for a service
name whose name matches the application server’s RESID. If a port number is
found it will use it. If a port number is not found, it will use ddm-rdb to do a
look up in the ETC SERVICES file for the well known port number. If a port
number is found it will use it. If a port number is not found, then TCP/IP
support on the application server will not be used. If an error is returned from
any of the TCP/IP functions used to do the look up, it will be assumed that
TCP/IP is not available and TCP/IP support on the application server will not
be available.

2. If the TCPPORT parameter is specified when the application server is started,
the application server will use this parameter while performing TCP/IP
support initialization. No look up in the ETC SERVICES file is done. If the port
cannot be used, no attempt is made to find another port. If an error is returned
from a TCP/IP function, it will be assumed that TCP/IP is not available and
TCP/IP support on the application server will not be available.

3. If the TCPPORT parameter is specified with a value of 0, TCP/IP support is
not initialized at all. If you do not have TCP/IP support on your system or do
not want to enable TCP/IP support for an application server, the TCPPORT=0
parameter should be used.

After the TCP/IP support for the application server is initiated, a TCP/IP agent is
created to handle all TCP/IP related functions. If any TCP/IP function failure is
detected by the TCP/IP agent, the TCP/IP support for the application server will
be disabled. It is possible to restart the TCP/IP support for the application server
without recycling the application server. This can be done by using the START

416 System Administration

|
|
|
|
|

TCPIP operator command. For a detailed description of this command, refer to the
DB2 Server for VSE & VM Operation manual. The restart will also be done
automatically by the database manager if the TCPRETRY parameter is set to Y.

To have the database manager re-enable TCP/IP support automatically, the
database manager must have the TCPRETRY initialization parameter set to Y. This
can be done by specifying the initialization parameter TCPRETRY=Y when the
database manager is initialized or by using the operator command SET TCPRETRY
Y. The default value for this parameter is Y. The current setting of the parameters
can be checked with the SHOW INITPARM operator command.

If TCP/IP support fails and automatic restart is enabled, the database manager will
use the following strategy to restart TCP/IP support.
1. The database manager will try to re-enable TCP/IP support every 30 seconds

up to 10 times. The maximum recovery time is 5 minutes.
2. If TCP/IP is still disabled, the database manager will try to re-enable TCP/IP

support every 60 seconds up to 5 times. The maximum recovery time is now
up to 10 minutes.

3. If TCP/IP is still disabled, the database manager will try to re-enable TCP/IP
support every 10 minutes. It will do this until the number of attempts is greater
than the TCPMAXRT value or until TCP/IP support is re-enabled or the
operator disables the retry attempts.

To disable automatic retry, issue the operator command SET TCPRETRY N. If
automatic retry is not desired at all, specify the initialization parameter
TCPRETRY=N when the database manager is initialized. If TCPRETRY is set back
to Y after being set to N, the number of attempts and the retry interval are reset to
their original values. The number of attempts is set to 0 and the first retry interval
is set to 30 seconds. If TCP/IP support is disabled when this occurs, then an
automatic retry will be attempted immediately.

If the maximum number of retry attempts is reached and TCP/IP support has not
been successfully re-enabled, the database manager will disable the automatic
restart support by setting the value of TCPRETRY to N. The maximum number of
retry attempts is controlled by the TCPMAXRT parameter. This parameter can be
specified at database initialization and it can be modified online by the SET
command. The default value is set to 158. This results in 24 hours of retry
attempts. The maximum value is 9,999 which results in 69 days of retry attempts.
The following formulas are useful for determining a suitable value for
TCPMAXRT. These formulas are only valid for values of TCPMAXRT that are
greater than or equal to 15 or time values greater than or equal to 10 minutes.

Given a value for TCPMAXRT, how long will retry be attempted?

minutes = 10 + ((TCPMAXRT − 15) * 10)

Given a time limit in minutes, what should TCPMAXRT be set to?

TCPMAXRT = 15 + ((minutes − 10) / 10)

Using the first formula, we can see that a value of 158 for TCPMAXRT would take
10 + (158−15)*10 or 1440 minutes. 1440 minutes is equivalent to 24 hours. To
enable the retry for 2 days we use the second formula. 2 days is 2 * 24 * 60 or 2880
minutes. 15 + ((2880-10)/10) = 15 + (2870/10) = 15 + 287 = 302. Setting
TCPMAXRT to 302 will result in retry being attempted for 2 days.

Chapter 16. Using TCP/IP with DB2 Server for VM 417

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

Preparing the Application Requester to use TCP/IP
The following must be done to allow an application requester to use TCP/IP.
1. TCP/IP for VM must be installed and configured.
2. The TCP/IP client data disk must be accessed. This disk is often defined as

TCPMAINT 592. This disk contains the TCPIP DATA file and the ETC
SERVICES file which are necessary for successful TCP/IP support initialization.

3. The ARICTCP MODULE must be created and stored on the production disk.
The instructions for creating the ARICTCP MODULE are found in the DB2
Server for VM program directory.

4. A C runtime library must be available. The SCEERUN LOADLIB provided with
VM/ESA Version 2 Release 2.0 or later is sufficient. The C runtime library
provided with LE for VM is also acceptable.

5. Optionally, the ETC SERVICES file must be updated with the RESID of the
application server and the port number it should use.

6. The CMS communications directory, COMDIR, must be updated for TCP/IP.
7. The CEEPIPI MODULE may have to be rebuilt, to prevent the user exit

CBEEXIT from clearing the SYSIN filedef when the LE environment is
terminated. If this is not done, file not open or file not found errors will be
received from programs that access a database using TCP/IP and have defined
a SYSIN filedef for input. SQLPREP and SQLDBSU are two such programs.
Instructions for modifying the CEEPIPI MODULE are found in the DB2 Server
for VM program directory.

To indicate that TCP/IP is to be used to establish a connection from the application
requester, the communications directory, COMDIR, is used. If the COMDIR entry
for the database that is the target of the SQL CONNECT statement has host and
service entries defined, then TCP/IP will be used to establish the connection. If a
DB2 Server for VM application requester wants to access a remote database using
TCP/IP, an entry in the communications directory, COMDIR, must be set up.

The COMDIR must be set up to provide the host and service names the requester
will use on the connection. A TCP/IP COMDIR entry will look like the following:
:nick.TCPVM1 :service.SQLTEST

:host.TORVMLB6
:security.PGM
:userid.USERID
:password.PASSWORD
:dbname.SQLTEST

:nick.TCPVM2 :service.6100
:host.9.21.31.109
:security.PGM
:userid.USERID
:password.PASSWORD
:dbname.SQLPROD

The tpn tag is replaced with the service tag and the luname tag is replaced with
the host tag. The modename tag is not needed because it is an SNA network
parameter. An IP address can be specified instead of a host name on the host tag
and a port number can be specified on the service tag instead of a service name.
This will bypass host name and service name lookup calls.

When the COMDIR search is done on the dbname, if the service and host tags are
present, then TCP/IP will be used. If the tpn and luname tags are present, then

418 System Administration

SNA will be used. If both are present an error, SQLCODE = -841, SQLERRM =
X’0015’, will be issued. If the modename tag appears with the host and service
tags, it will be ignored.

The security, userid and password tags will be used for both SNA and TCP/IP
protocols. If TCP/IP communications is being used, the user cannot use APPCPASS
directory statements for specifying the userid and password. APPCPASS is only
used by SNA LU 6.2 communications.

The nick tag is still not used. The search of the COMDIR is based on the dbname
tag and the first matching entry is used.

Since the COMDIR search is not performed until the user issues an SQL
CONNECT statement, either implicitly or explicitly, any errors related to COMDIR
setup problems must be reflected in an SQLCA returned to the application
requester after the CONNECT statement. This will be reflected as SQLCODE = -841,
A communications directory error has occurred. Reason Code=X'n'. The reason
code will indicate the nature of the error.

Security Considerations for TCP/IP
Conversation security is part of SNA communications and prevents a physical
connection if the security check fails. TCP/IP communications has no security
checking. It is up to the server to determine if it will accept or reject a connection
from a client. The physical connection must initially be accepted and security
information must be transmitted and checked. If the security check fails, the server
must close the connection.

If DRDA protocol is being used, the ACCSEC and SECCHK DDM data streams
have been added to the DRDA architecture to handle this. They determine the
security mechanism that will be used to validate the user and they provide the
userid and password information. The security mechanism, userid and password
are taken from the COMDIR entry. If the userid and password are not supplied in
the COMDIR, or the user wished to connect with a different userid and password,
they must be supplied in an explicit CONNECT statement.

If SQLDS protocol is being used, an explicit connect request is sent to the
application server. The userid and password are taken from the COMDIR entry if
available. Otherwise, the userid and password must be supplied in an explicit
CONNECT statement.

The risk with TCP/IP communications is that it allows an unencrypted password
to be transmitted over the network. Two options exist to avoid this problem (three
if DRDA is being used). The first is to allow a user be already verified. The second
is to use an external security manager that will provide an encrypted password
that can be safely transmitted on the network. If DRDA is being used, the
password specified in the COMDIR entry, or the CONNECT statement, can be
encrypted. This is accomplished by specifying the PWDENC tag with a value of Y
in the COMDIR entry. Note that the target database server must be able to decrypt
the password encrypted by the requester. Password encryption/decryption requires
the ARICSEC MODULE to be present. For information about creating the
ARICSEC MODULE refer to the DB2 Server for VM Program Directory.

If a user is already verified, only a userid must be transmitted. The target
application server must be configured to accept already verified users. DB2 Server
for VM provides the SECALVER initialization parameter. If SECALVER=Y, the DB2

Chapter 16. Using TCP/IP with DB2 Server for VM 419

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|

Server for VM applications server will accept a TCP/IP connected user and only
validate the userid. If SECALVER=N and a connection request comes in with only
a userid, the connection will be rejected with a missing password error.

A DB2 Server for VM application requester would configure the security tag in the
COMDIR to SAME and only specify a userid tag or the userid only in an explicit
CONNECT statement. The password would be omitted in the COMDIR or
CONNECT statement. If a password is included, it is used and verified even if
security SAME was specified.

If the application requester can generate an encrypted password, the target
application server must be able to verify it. DB2 for OS/390 can use RACF
PassTickets for this purpose. If a DB2 for OS/390 application requester want to
connect to a DB2 Server for VM application server using TCP/IP and is using
PassTickets, the DB2 Server for VM application server must be able to verify the
userid and the PassTicket. The DB2 Server for VM initialization parameter,
SECTYPE=ESM, is used for this purpose. Specifying this parameter will establish a
connection to an external security manager. This external security manager must
support the RACROUTE interface. RACROUTE and PassTickets are supported by
RACF V1R10 for VM (5740-XXH) or later. The DB2 Server for VM application
server would pass the userid and PassTicket to the ESM to be verified. The ESM
could also be used to verify users and unencrypted passwords, but its real value is
in the use of PassTickets.

The default value for SECTYPE is DB2. If this is used, then userid and password
verification is done by checking the values in the SYSUSERAUTH catalog table.

The SECALVER and SECTYPE parameters are only used if the incoming connect
request is via TCP/IP from any type of requester or if the incoming connect
request is from a DB2 Server for VSE DRDA application requester via SNA. DB2
Server for VSE does not support any connections via TCP/IP.

If only a userid is sent on the connect request, the DB2 Server for VM application
server checks the value of the SECALVER parameter. If the value is N, the
connection is rejected. SECALVER = N means the user is not already verified. A
userid and password are required for verification. If the value is Y and only a
userid is sent, the connection is accepted. SECALVER = Y means the user is
already verified. Only a userid is required for verification. In this case the userid is
verified based on the SECTYPE value. If SECTYPE = DB2, the
SYSTEM.SYSUSERAUTH table is checked if the user has connect authority. The
password column is not checked. If SECTYPE = ESM, the userid is passed to the
ESM via RACROUTE. The password is not checked.

If a userid and password are sent on the connect request, the DB2 Server for VM
server ignores the value of SECALVER and only checks the value of SECTYPE. The
userid and password are both required for verification. The verification is based on
the SECTYPE value. If SECTYPE = DB2, the SYSTEM.SYSUSERAUTH table is
checked if the user with that password has connect authority. If SECTYPE = ESM,
the userid and password is passed to the ESM via RACROUTE. The userid and
password are both checked. In this case the password can be a PassTicket. The way
the ESM was set up determines if it is expecting a password or PassTicket from
this userid.

If SECTYPE = ESM is specified, a check is performed during initialization to
ensure that the external security manager is available and that it supports the
RACROUTE interface. On VM, the command RPIUCMS INIT is issued. The

420 System Administration

|
|
|
|

expected response is RPICMS016I USER/RACF VM communication path
established. If this response is not received, an error message, ARI4108E Unable to
initialize the external security manager is returned. The value of SECTYPE is
switched to DB2 and processing continues.

Application Requester
The application requester must provide a userid and password to successfully
connect to an application server. On VM, applications can specify the userid and
password in the following ways:
1. The “CONNECT userid IDENTIFIED BY password” statement
2. Utilizing a CMS Communications directory (COMDIR)
3. Using APPCPASS CP directory statements in conjunction with a COMDIR

In private flows and in DRDA flows over SNA, all methods may be used. In
DRDA flows over TCP/IP, only the first two methods can be used.

In the VM application requester if the connection to be established is DRDA via
TCP/IP, security handshaking datastreams are sent. If the connection is to be
established via SNA or private flow via TCP/IP, no security handshaking
datastreams are sent. This is determined by the values in the COMDIR and the
value of the PROTOCOL parameter of SQLINIT.

Table 35. DRDA Connections via TCP/IP

SQLINIT PROTOCOL Connection Protocol Security Handshaking
Done?

SQLDS SNA No

SQLDS TCP/IP No

AUTO SNA No

AUTO TCP/IP Yes

DRDA SNA No

DRDA TCP/IP Yes

SECTYPE = ESM allows the user to use an external security manager to
authenticate TCP/IP connections to the database manager. If the external security
manager supports PassTickets, they can be used instead of a password to avoid
having an unencrypted password sent on a TCP/IP network.

If SECTYPE = ESM is going to be used, two major set up steps of the external
security manager must be completed.
1. Enable the application server to access the external security manager
2. Add the user connect authorizations that were formerly in the

SYSTEM.SYSUSERAUTH catalog table to the external security manager.

If SECTYPE = ESM is going to be used, the external security manager must be set
up to allow the application server to access it. Refer to the External Security Interface
(RACROUTE) Macro Reference for MVS and VM manual for details. See the section
titled ″Authorization to Issue RACROUTE Requests″.

The instructions given here only describe the minimum steps required. Refer to the
above manual for any detailed instructions.

Chapter 16. Using TCP/IP with DB2 Server for VM 421

|
|

1. Identify the RACF service machine to which RACROUTE requests will be sent.
This is done via the RACF SERVMACH file which is typically installed on the
CMS Y-disk.

2. In this case, the RACROUTE issuer is the VM machine for the DB2 Server for
VM server. Update the RACROUTE issuer’s CP directory entry by adding an
IUCV card which specifies the RACF service machine with which the
RACROUTE issuer will be communicating. For example,
IUCV RACFVM PRIORITY MSGLIMIT 255

3. RACF-authorize a connection to the RACF service machine
v Log on with a user ID having the system-SPECIAL attribute
v Create a profile named ICHCONN in the FACILITY class:

RDEFINE FACILITY ICHCONN UACC(NONE)

v Give appropriate access authority to appropriate service machines:
PERMIT ICHCONN CLASS(FACILITY) ID(userid | groupid)

ACCESS(appropriate-access)

Appropriate-access should be UPDATE or higher. To execute the RACROUTE
REQUEST=VERIFY command on VM, the caller must have at least UPDATE
authority to the ICHCONN profile in the FACILITY class.

v Activate the FACILITY class (if this class is not already active):
SETROPTS CLASSACT(FACILITY)

4. Follow the procedures described in ″Issuing RACROUTE Requests on CMS″ or
″Issuing RACROUTE Requests on GCS″ to set up the environment to issue
RACROUTE requests on CMS or GCS, respectively.

The RPIUCMS module referred to in the procedures is available in the RACF
product, not the VM operating system. If you install another external security
product on VM, that external security product should provide an equivalent
RPIUCMS function as described in Appendix C, ″RACROUTE Interface to an
External-Security-Manager Product (Non-RACF) on VM.″ in the External Security
Interface (RACROUTE) Macro Reference for MVS and VM manual.

If PassTickets will be used instead of passwords, a Secured Signon application
profile must be defined for the application in the PTKTDATA class. In addition,
RACF must be at Version 1 Release 10 or later.

The user must generate a PassTicket before issuing the SQL CONNECT statement.
The PassTicket is then used in the SQL CONNECT statement instead of the
password. See the RACF Macros and Interfaces manual for details on how a
PassTicket is generated.

If SECTYPE = DB2 is to be used, the users must be defined in the
SYSTEM.SYSUSERAUTH catalog. This is done by a user with DBA authority using
the SQL GRANT CONNECT command. See the DB2 Server for VSE & VM SQL
Reference manual for details.

422 System Administration

Appendix A. Virtual and Real Storage Requirements

(The information in this Appendix has been moved to the DB2 Server for VM
Program Directory.)

© Copyright IBM Corp. 1987, 2001 423

|
|

424 System Administration

Appendix B. Estimating Database Storage

This appendix describes procedures for estimating the size of the directory, the
SYS0001 dbspace and ISQL dbspace.

For information on estimating the size of user dbspaces, see the DB2 Server for VSE
& VM Database Administration manual.

Storage Capacities of IBM DASD Devices
The effective storage capacities of IBM DASD devices vary, depending on how the
devices are being used. The database manager uses VM DASD block I/O services
for managing DASD space for the directory minidisk, the log (or logs), and the
storage pool minidisks (dbextents). The log and dbextent minidisks are managed
with 4 kilobyte blocks. The directory minidisk uses 512-byte blocks.

The following figure indicates how many 512 and 4 096 byte blocks can be
allocated on a CMS minidisk. The first number is the number of usable blocks, and
the number in parentheses is the total number of blocks. The difference between
the two numbers is the blocks that CMS allocates for its file management.

Table 36. Number of Usable Blocks on Types of CMS Minidisks

Device

Cylinders
or Blocks
for Each
Volume

4 096-byte
Blocks

for Each
Cylinder

4 096-byte
Blocks

for Each
Volume

Ratio of
512-byte to

4096-byte

512-byte
Blocks

for Each
Volume

3375 959 96 91,960
(92,064)

40/8 456,462
(460,320)

3380 J 885 150 132,602
(132,750)

46/10 605,531
(610,650)

3380 E 1,770 150 265,214
(265,500)

46/10 1,211,076
(1,221,300)

3380 K 2,655 150 397,827
(398,250)

46/10 1,816,621
(1,831,950)

3390-1 1,113 180 200,122
(200,340)

735/180 811,205
(818,055)

3390-2 2,226 180 400,254
(400,680)

735/180 1,622,418
(1,636,110)

3390-3 3,339 180 600,387
(601,020)

735/180 2,433,631
(2,454,165)

3390-9 10,017 180 1,801,177
(1,803,060)

735/180 7,300,915
(7,362,495)

3370-1 558,000 N/A 69,667
(69,750)

8/1 553,321
(558,000)

3370-2 712,752 N/A 88,993
(89,094)

8/1 706,780
(712,752)

9332-400 360,036 N/A 44,948
(45,004)

8/1 357,018
(360,036)

9332-600 554,800 N/A 69,268
(69,350)

8/1 550,149
(554,800)

© Copyright IBM Corp. 1987, 2001 425

Table 36. Number of Usable Blocks on Types of CMS Minidisks (continued)

Device

Cylinders
or Blocks
for Each
Volume

4 096-byte
Blocks

for Each
Cylinder

4 096-byte
Blocks

for Each
Volume

Ratio of
512-byte to

4096-byte

512-byte
Blocks

for Each
Volume

9335 804,714 N/A 100,433
(100,588)

8/1 797,974
(804,714)

9336-010 920,115 N/A 114,885
(115,014)

8/1 912,411
(920,115)

9336-020 1,672,881 N/A 208,883
(209,110)

8/1 1,658,881
(1,672,881)

9336-025 1,672,881 N/A 208,883
(209,110)

8/1 1,658,881
(1,672,881)

9345-1 1,440 150 215,767
(216,000)

123/30 878,183
(885,600)

9345-2 2,156 150 323,056
(323,400)

123/30 1,314,843
(1,325,940)

0671 574,560 N/A 71,735
(71,820)

8/1 569,743
(574,560)

Table 37 and Table 38 show the capacities of IBM devices for storing log and
dbspace pages (dbextent space). Table 39 and Table 40 show the capacities for
storing directory information.

Table 37. Log and Dbextent Storage Capacities of IBM Count-Key-Data DASDs

DASD Type Number of
Cylinders

Tracks for Each
Cylinder

Megabytes for
Each Cylinder

Megabytes for
Each Volume

3375 959 12 0.3749 359

3380 J 885 15 0.5858 518

3380 E 1,770 15 0.5858 1,036

3380 K 2,655 15 0.5858 1,555

3390-1 1,113 15 0.7031 782

3390-2 2,226 15 0.7031 1,565

3390-3 3,339 15 0.7031 2,347

3390-9 10,017 15 0.7031 7,041

9345-1 1,440 15 0.5858 843

9345-2 2,156 15 0.5858 1,262

Table 38. Log and Dbextent Storage Capacities of IBM FB-512 DASDs

DASD Type Megabytes for Each Volume 4 Kilobyte Pages for Each
Volume

3370-1 272.4 69,750

3370-2 348.0 89,094

9332-400 175.7 45,004

9332-600 270.8 69,350

9335 392.9 100,589

9336-010 449.2 115,014

426 System Administration

Table 38. Log and Dbextent Storage Capacities of IBM FB-512 DASDs (continued)

DASD Type Megabytes for Each Volume 4 Kilobyte Pages for Each
Volume

9336-020 816.8 209,110

9336-025 816.8 209,110

0671 280.5 71,820

Table 39. Directory Storage Capacities of IBM Count-Key-Data DASDs

DASD Type Number of
Cylinders per

Volume

Tracks for Each
Cylinder

Megabytes for
Each Cylinder

Megabytes for
Each Volume

3375 959 12 0.2343 224

3380 J 885 15 0.3295 291

3380 E 1,770 15 0.3295 583

3380 K 2,665 15 0.3295 874

3390-1 1,113 15 0.3645 405

3390-2 2,226 15 0.3645 811

3390-3 3,339 15 0.3645 1,217

3390-9 10,017 15 0.3645 3,651

9345-1 1,140 15 0.3002 432.28

9345-2 2,156 15 0.3002 647.23

Table 40. Directory Storage Capacities of IBM FB-512 DASDs

DASD Type Megabytes for Each Volume 512-Byte Blocks for Each Volume

3370-1 272.4 558,000

3370-2 348.8 712,752

9332-400 175.7 360,036

9332-600 270.8 554,800

9335 392.9 804,714

9336-010 449.1 920,115

9336-020 816.8 1,672,881

9336-025 816.8 1,672,881

0671 280.5 574,560

These capacity charts are referenced in later calculations for determining data set
allocations of the directory, log, and dbextent minidisks.

Table 41 shows the minimum space allocations for a log or dbextent minidisk.

Table 41. Minimum Space Allocations for Log and Dbextent Minidisks

DASD Type Minimum Space Allocation

3375 1 cylinder

3380 1 cylinder

3390 1 cylinder

Appendix B. Estimating Database Storage 427

Table 41. Minimum Space Allocations for Log and Dbextent Minidisks (continued)

DASD Type Minimum Space Allocation

9345 1 cylinder

FBA 528 Blocks

Determining Equivalent Minidisk Sizes on Different Device
Types

This section shows an example of how to determine approximately equal minidisk
sizes on different devices. The example uses the numbers shown in Table 36 on
page 425. Depending on the block size of the minidisk you are moving to, use the
512-byte column, or the 4096-byte column.

The example assumes these things:
v You have 7 cylinders on a 3375 DASD
v You are moving to a 3380 DASD
v You are moving your directory minidisk.

The directory minidisk uses 512-byte blocks.

To determine how many cylinders you need on the new device, you must first find
out how many blocks you have for each volume on your current device and the
new device. Then, you use these numbers to find out how many cylinders you will
need on the new device. To do this, you solve the equation in “Determining the
Number of Blocks or Cylinders on Your Current Device”.

If you are moving from an FB-512 device to a count-key-data device, you already
know how many blocks you have on your current device. You only have to solve
the new device side of the equation in “Determining the Number of Blocks or
Cylinders on Your Current Device” to find out how many cylinders you need on
the new device. (If you use 4 096-byte blocks, divide the number of blocks on your
FB-512 device by 8 before you do the equation.)

If you are moving from a count-key-data device to an FB-512 device, you only
need to know how many blocks you will need on the new device. You only have
to solve the current device side of the equation in “Determining the Number of
Blocks or Cylinders on Your Current Device” to find out how many blocks you
need on the new device. (If you use 4 096-byte blocks, multiply the number you
solve for in the equation by 8 to find out how many blocks you need on the
FB-512.)

Determining the Number of Blocks or Cylinders on Your Current
Device
The example uses this equation:

a * b x * d
c = e

In the equation, you solve for x to find the number of blocks or cylinders required
on your new device. The other letters are variables, which are determined by the
values in Table 36 on page 425. The letters stand for the following attributes:

a The number of cylinders on your current device

b The number of blocks for each volume on your current device.

c The number of cylinders for each volume on your current device.

428 System Administration

d The number of blocks for each volume on your new device.

e The number of cylinders for each volume on your new device.

x The unknown in this equation, which stands for the number of blocks or
cylinders on your new device.

With 7 cylinders on a 3375, and a block size of 512 bytes to be moved to 3380, you
would use the 512-byte column of Table 36, giving:

7 * 456462 x * 605531
959 = 885

By following these steps, you can solve for x:
1. 7 * 456462 * 885

x = 959 * 605531

2. x = approx. 4.87

To ensure that you allow enough space on the new device, increase x by 5% and
round up to the next whole number. In this example, you would need 6 cylinders
on the new device type.

Relationship of Megabytes to 4-Kilobyte Pages
In the database generation process, all dbspace and dbextent DASD space
definitions are expressed in terms of 4-kilobyte pages: that is, each page represents
4096 bytes of storage space. Storage space is used not only for data, but also for
indexes and free space initially reserved to facilitate the insertion of new data after
the database is in operation.

Space needs are often expressed in terms of megabytes (1,048,576 bytes). Table 42
shows the number of 4-kilobyte pages needed to support a range of megabytes.
The dbspace definitions are made in multiples of 128 pages. An alternative to
using Table 42 is to use the formula:

Number of 4-kilobyte pages = 256 x number of megabytes

Table 42. Megabytes of Data on 4-Kilobyte Pages

Megabytes 4-Kilobyte Pages

0.0 - 0.5 128

0.5 - 1.0 256

1.0 - 1.5 384

1.5 - 2.0 512

2.0 - 2.5 640

2.5 - 3.0 768

3.0 - 3.5 896

3.5 - 4.0 1,024

4.0 - 4.5 1,152

4.5 - 5.0 1,280

5.0 - 5.5 1,408

5.5 - 6.0 1,536

6.0 - 6.5 1,664

Appendix B. Estimating Database Storage 429

Table 42. Megabytes of Data on 4-Kilobyte Pages (continued)

Megabytes 4-Kilobyte Pages

6.5 - 7.0 1,792

7.0 - 7.5 1,920

7.5 - 8.0 2,048

8.0 - 8.5 2,176

8.5 - 9.0 2,304

9.0 - 9.5 2,432

9.5 - 10.0 2,560

50.0 12,800

100.0 25,600

500.0 128,000

Estimating Directory Space Requirements
The required size of the database directory depends on the maximums you
established on the MAXPOOLS, MAXEXTNT, and MAXDBSPC parameters during
database generation. The directory must be large enough to hold page table entries
for the maximum size of the database. Figure 121 shows a formula for calculating
the recommended size of a directory minidisk.

To estimate the value for the maximum database size, determine how many
dbspaces (public, private, and internal) your database will need, and the number
of pages needed by each dbspace; then multiply the total number of pages by 4096
to get the number of bytes. (You may want to overestimate this value to allow for
creating unplanned dbspaces, and for increasing the number and size of internal
dbspaces.) Finally, multiply this number by 0.0021, to determine how many bytes
are needed in the directory to support these dbspaces. The result of this calculation
includes the space needed for shadow paging.

Once you have the directory size, you can use the charts shown in the section
“Storage Capacities of IBM DASD Devices” on page 425 to determine the minidisk
size specifications, in cylinders or blocks, of the device to be used.

Note: Although you do not have to specify the maximum database size during
database generation, the size specified for the directory minidisk effectively
establishes the limit.

Estimating Storage Pool Requirements
For estimating storage pool sizes, you need to estimate:

Directory size = 7 558 + 16 x MAXDBSPC value
(in bytes) + 16 x MAXEXTNT value

+ 4 x MAXPOOLS value
+ 0.0021 x Maximum database size

Figure 121. Formula for Calculating Directory Size (in Bytes)

430 System Administration

v The size of used portions of dbspaces. This includes tables, indexes, and free
space on used dbspace pages.

v Shadow paging requirements. This is an estimate of the number of dbspace
pages that can change between checkpoints.

To estimate the number of pages required for a storage pool use the following
formula:
Pool pages = 8 x Number of dbspaces

+ 1.5 x Data pages for all dbspaces in the pool
+ Data pages for the largest table in the pool

This calculation covers header pages and pages required for table rows and
indexes on those tables. If you have increased your dbspace data pages value to
accommodate future growth of tables, you can decrease the pool pages
correspondingly.

The addition of the factor of data pages for the largest table in the pool should
accommodate storage pool demands for shadow paging. This allows for UNLOAD
and RELOAD of the largest table in the storage pool.

Estimating SYS0001 Dbspace Requirements
The PUBLIC.SYS0001 dbspace is reserved for the catalog tables during database
generation, and cannot be redefined. You establish its size (and storage pool) when
you generate the database. The size should be large enough to hold all of your
database catalog information for the life of the database.

Note: Physical space is not actually consumed until it is required. Consequently,
you can define the SYS0001 dbspace to be very large without penalty. Be
generous. The penalty for defining the SYS0001 dbspace too small is that,
when it has no more usable space, you must completely regenerate the
database. This can be a considerable task for a production database. For
more information, see “Preparing for Database Regeneration” on page 27.

The formula shown in Figure 2 on page 20 should provide ample storage space for
most uses of the database manager. The formula was derived based on a set of
assumptions that may not be valid for your database. Review the assumptions and
modify the general formula if the assumptions do not accurately represent your
planned usage of the database manager.

The following sections describe:
v SYS0001 storage estimating general formula assumptions

You should review these assumptions to determine whether they apply for your
planned usage of the database manager. If they do not, you should modify the
assumptions (and the resulting formula) to more accurately represent your
planned usage.

v Derivation of the general formula for SYS0001 storage estimating
v Formula for SYS0001 storage estimating

This formula is described in “Formula for SYS0001 Storage Estimating” on
page 436.

v Examples of using the SYS0001 storage estimating formula
These examples show how to use the SYS0001 storage estimating formula based
on three example situations.

v Modifying the SYS0001 storage estimating general formula

Appendix B. Estimating Database Storage 431

This section provides the formulas used to derive the general formula. You can
modify the general formula if you want to change some of the assumptions
made in deriving the general formula.

SYS0001 Storage Estimating General Formula Assumptions
The general formula for SYS0001 storage estimating was derived based on:
v Average row lengths for catalog rows
v The number of rows required for each object type in the formula.

Average Row Lengths for Catalog Table Rows
Table 43 shows the length of the fixed portions of catalog rows, the maximum
stored row length for each catalog table, and an average row length for each of the
catalog tables. The average row length is the length assumed in developing the
general formula for estimating catalog storage space requirements.

Table 43. Stored Lengths of Catalog Rows

Catalog Table Minimum
Length

Maximum
Length

Estimated
Average
Length

SYSACCESS 46 90 52

SYSCATALOG 64 385 170

SYSCCSIDS 39 39 39

SYSCHARSETS 393 411 400

SYSCOLAUTH 46 82 72

SYSCOLSTATS 27 123 59

SYSCOLUMNS 54 398 156

SYSDBSPACES 40 58 46

SYSDROP 13 13 13

SYSINDEXES 62 232 131

SYSKEYCOLS 55 91 67

SYSKEYS 77 113 89

SYSOPTIONS 11 301 100

SYSPARMS 82 82 82

SYSPROGAUTH 46 54 49

SYSPSERVERS 11 281 60

SYSROUTINES 58 581 170

SYSSTRINGS 286 286 286

SYSSYNONYMS 26 62 36

SYSTABAUTH 57 101 84

SYSUSAGE 36 72 51

SYSUSERAUTH 35 35 35

SYSVIEWS 20 293 200

In Table 43, the minimum and maximum row lengths for each catalog table are
determined using the description of the catalog tables in the DB2 Server for VSE &
VM Database Administration manual. The length of a row depends on the data type
of each column in the catalog table. The minimum length for each column is found

432 System Administration

using these values for each data type.

Table 44. Minimum Column Length

Data Type Value

DBAINT 4

DBAHW 2

INTEGER 4

SMALLINT 2

CHAR(n) n

TIMESTAMP 10

VARCHAR(n) 1

Note: The data types DBAINT and DBAHW are used internally by the database
manager. Externally, they look like the data types INTEGER and
SMALLINT.

For CHAR columns, the length is the column length (n). The column lengths are
added. For each column that can contain nulls, 1 is added to this figure. The value
8 is then added to this total for catalog table overhead. The resulting number is the
minimum row length for the catalog table.

The maximum length for each column is found using these values:

Table 45. Maximum Column
Length

Data Type Value

DBAINT 4

DBAHW 2

INTEGER 4

SMALLINT 2

CHAR(n) n

TIMESTAMP 10

VARCHAR(n) n + 1

For CHAR columns, the length is the column length (n). For VARCHAR columns,
the length is the maximum column length plus one (n + 1). For each column that
can contain nulls, 1 is added to this figure. The value 8 is then added to this total
for catalog table overhead. The resulting number is the maximum row length for
the catalog table.

The average length for each column is calculated this way for most catalog tables:
(maximum length - minimum length)

3 + minimum length

This produces a number one third of the way between the minimum and
maximum lengths. In some situations, higher values are used because those
columns are typically longer. An example is the SYSTEM.SYSVIEWS catalog table,
where the VIEWTEXT column contains the command used to create the view.
Because these commands are usually over 100 bytes long, a number one third of

Appendix B. Estimating Database Storage 433

the way between the minimum and maximum lengths of the column would be too
low. In this situation, the number 200 is chosen arbitrarily.

If you make your own estimates of catalog table row lengths (using the chart
provided in Table 50 on page 439), you should choose values for the average row
lengths that are accurate for your database. Otherwise, you could underestimate
the size of the SYS0001 dbspace. In particular, you should not underestimate the
average length of rows in the SYSTEM.SYSCOLUMNS catalog table. If you use the
REMARKS or CLABEL columns of this catalog table, your average row length
could be far greater than the number (156) given in Table 43 on page 432. Because
the SYSTEM.SYSCOLUMNS table can become quite large (it has a row for every
column in every table in the database), its size is a major factor in the size of the
SYS0001 dbspace.

Assumptions on the Number of Catalog Table Rows
The average number of rows for each catalog table was determined based on the
assumptions in Table 46. These assumptions were used in generating the general
formula for SYS0001.

Table 46. Assumptions of Catalog Bytes/Pages for Each Object

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

Table 1 SYSCATALOG
1 SYSTABAUTH
2 SYSINDEXES

169
84
262

515 0.13

View 1 SYSCATALOG
1 SYSVIEWS
2 SYSTABAUTH
2 SYSUSAGE

169
200
168
102

639 0.16

Column 1 SYSCOLUMNS 156 156 0.04

Package 1 SYSPROGAUTH
15 SYSUSAGE

49
765

814 0.20

Dbspace
(including
package
dbspaces)

1 SYSDBSPACES 46 46 0.01

User 1 SYSUSERAUTH
50 SYSTABAUTH
50 SYSSYNONYMS
150 SYSCOLAUTH

35
4,200
1,800
10,800

16,835 4.11

Package
dbspaces

255 SYSACCESS 13,260 13,260 3.24

Character Set 1 SYSCHARSETS 400 400 0.10

Keys 1 SYSKEYS
2 SYSKEYCOLS

89
134

223 0.05

Other 15 SYSOPTIONS 1200 1200 0.30

When a table is created, one entry is made in the SYSTEM.SYSCATALOG table and
one in the SYSTEM.SYSTABAUTH table. This formula assumes an average of two
indexes for each table. For each index created, one entry is made in
SYSTEM.SYSINDEXES.

434 System Administration

When a view is created, one entry is made in SYSTEM.SYSCATALOG. In addition,
as many as 32 entries are made in SYSTEM.SYSVIEWS. With the assumption that
the average view definition is less than 254 bytes, only one row is required. One
entry is also made in the SYSTEM.SYSTABAUTH and SYSTEM.SYSUSAGE tables
for each table on which the view is defined. The general formula assumes that, on
average, a view is defined on two tables.

One entry is made in SYSTEM.SYSCOLUMNS for every table and view column.

When a package is created, one entry is made in SYSTEM.SYSPROGAUTH. In
addition, entries are made in SYSTEM.SYSUSAGE for every table, view, index, and
dbspace used by the package. (A package uses a dbspace if it uses a table in the
dbspace.)

The general formula assumes 15 such entries in SYSTEM.SYSUSAGE.

One entry is made in SYSTEM.SYSDBSPACES for each dbspace added to the
database, including package dbspaces.

One entry is placed in SYSTEM.SYSUSERAUTH for each user of the database.
Each user is assumed to have access to an average of 50 tables (and views)
belonging to other users. This explains the 50 entries in SYSTEM.SYSTABAUTH
and SYSTEM.SYSSYNONYMS. Specific column update authorization is assumed to
average about 3 columns for each table (or view) that is shared (3 for each of the
50 tables or views). This yields an estimate of 150 entries in
SYSTEM.SYSCOLAUTH for each user.

For each package dbspace added, one entry is made in SYSTEM.SYSDBSPACES,
which was accounted for earlier, and 255 entries are made in SYSTEM.SYSACCESS.
The 255 entries are made because all 255 packages are preallocated in the dbspace,
even though they can all be empty.

For each character set you define, you must load one row into
SYSTEM.SYSCHARSETS.

For each key, one row is added to SYSTEM.SYSKEYS, and two rows are added to
SYSTEM.SYSKEYCOLS (assuming that each key is made up of two columns).

Finally, three rows exist in SYSTEM.SYSOPTIONS for every database.

Derivation of the General Formula for SYS0001 Storage
Estimating

The assumptions in the preceding section provide a means of estimating the data
pages required in SYS0001. Assuming the PCTFREE value for the SYS0001 dbspace
is 0, the SYS0001 data pages are:
SYS0001 data pages = .13 x the number of tables

+ .16 x the number of views
+ .04 x the number of columns
+ .20 x the number of packages
+ .01 x the number of dbspaces

(including package dbspaces)
+ 4.11 x the number of users
+ 3.24 x the number of package dbspaces
+ .10 x the number of character sets
+ .05 x the number of keys
+ .30 (for the SYSTEM.SYSOPTIONS table)

Appendix B. Estimating Database Storage 435

To get the total number of SYS0001 dbspace pages, you must add the header pages
and the index pages. SYS0001 has eight header pages. The initial set of catalog
entries generated by the database generation process fills 4 pages. The PCTINDX
value for SYS0001 is 60. Thus, to get the total number of pages you must add 12
and divide by 0.4:
SYS0001 pages = (12 + SYS0001 data pages) / 0.40

The SYS0001 data pages is your estimate for the number of data pages for your
catalog entries.

Formula for SYS0001 Storage Estimating
When the adjustments described in “Derivation of the General Formula for
SYS0001 Storage Estimating” on page 435 are made, the formula for the total
number of SYS0001 dbspace pages becomes:
SYS0001 pages = 30 + .33 x the number of tables

+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces

(including package dbspaces)
+ 10.28 x the number of users
+ 8.10 x the number of package dbspaces
+ .25 x the number of character sets
+ .13 x the number of keys

(+ .74 (for the SYSTEM.SYSOPTIONS table))

This number should be rounded up to the next higher multiple of 128. Because the
number of pages needed for the SYSTEM.SYSOPTIONS catalog table is so small,
the number is omitted from the general formula and any further calculations.

Examples of Using the SYS0001 Storage Estimating Formula
The following examples illustrate the use of the general formula for estimating the
required dbspace size for SYS0001.

For a Test Database
Table 47 illustrates the estimate for a small set of catalog tables that can be used in
generating a test database.

436 System Administration

Table 47. Example of Estimating the Catalog Dbspace for a Test Database

Example Number of Objects Number of Pages Calculation Number of
Pages

Reserved 30 30

50 tables .33 X 50 17

100 views .40 X 100 40

1500 columns .10 X 1 500 150

25 packages .50 X 25 13

50 dbspaces .03 X 50 2

15 users 10.28 X 15 154

1 package dbspace 8.10 X 1 8

2 character sets .25 X 2 1

20 keys .13 X 20 3

Total number of SYS0001 pages = 418

Rounded to the next higher multiple of 128 is: 512

For an Application Development Database
Table 48 illustrates the estimate for a medium sized set of catalog tables that might
be used in generating a test database to support development of multiple
application systems. The number of package dbspaces needed was determined by
adding the number of views to the number of packages and dividing the sum by
255. The maximum number of packages that can be defined in a package dbspace
is 255. This number could be reduced if the packages are large. The maximum 255
packages may not fit in the allocated pages for the dbspace.

Table 48. Example of Estimating the Catalog Dbspace for an Application Development
Database

Example Number of Objects Number of Pages
Calculation

Number of Pages

Reserved 30 30

500 tables .33 X 500 165

1000 views .40 X 1000 400

15,000 columns .10 X 15,000 1,500

50 packages .50 X 50 25

500 dbspaces .03 X 500 15

25 users 10.28 X 25 257

5 package dbspaces 8.10 X 5 40

6 character sets .25 X 6 2

200 keys .13 X 200 26

Total number of SYS0001 pages = 2461

Rounded to the next higher multiple of 128 is: 2560

For a Production Database
Table 49 on page 438 illustrates the estimate for a large sized set of catalog tables
that could be used to support a production database.

Appendix B. Estimating Database Storage 437

Table 49. Example of Estimating the Catalog Dbspace for a Production Database

Example Number of Objects Number of Pages
Calculation

Number of Pages

Reserved 30 30

3000 tables .33 X 3000 990

5000 views .40 X 5000 2000

75,000 columns .10 X 75,000 7500

250 packages .50 X 250 125

500 dbspaces .03 X 500 15

50 users 10.28 X 50 514

21 package dbspaces 8.10 X 21 170

6 character sets .25 X 6 2

1,200 keys .13 X 1 200 156

Total number of SYS0001 pages = 11,502

Rounded to the next higher multiple of 128 is: 11,520

Modifying the SYS0001 Storage Estimating General Formula
Table 50 on page 439 and Table 51 on page 439 assist you if you want to modify any
of the assumptions used in deriving the general formula. If you have generated the
starter database, you should compare the data in the catalog tables against the
assumptions made here. You can do so by issuing UPDATE STATISTICS for each
of the catalog tables after you have used the starter database. Queries against
SYSTEM.SYSCATALOG give you the statistics for comparison.

438 System Administration

Table 50. Your Estimated Stored Lengths of Catalog Rows

Catalog Table Minimum
Length

Maximum
Length

Estimated
Average
Length

SYSACCESS 46 64

SYSCATALOG 64 384

SYSCCSIDS 39 39 39

SYSCHARSETS 393 411

SYSCOLAUTH 46 82

SYSCOLSTATS 27 123

SYSCOLUMNS 56 400

SYSDBSPACES 40 58

SYSDROP 13 13 13

SYSINDEXES 62 232

SYSKEYCOLS 55 91

SYSKEYS 77 113

SYSOPTIONS 13 303

SYSPARMS 82 82

SYSPROGAUTH 46 54

SYSPSERVERS 11 281

SYSROUTINES 58 581

SYSSTRINGS 286 286 286

SYSSYNONYMS 26 62

SYSTABAUTH 57 101

SYSUSAGE 36 72

SYSUSERAUTH 35 35 35

SYSVIEWS 20 292

Table 51. Your Assumptions of Catalog Bytes or Pages for Each Object

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

Table 1 SYSCATALOG
1 SYSTABAUTH
__ SYSINDEXES

View 1 SYSCATALOG
1 SYSVIEWS
__ SYSTABAUTH
__ SYSUSAGE

Column 1 SYSCOLUMNS ___

Package 1 SYSPROGAUTH
___ SYSUSAGE

Dbspace
(including
package
dbspaces)

1 SYSDBSPACES ___

Appendix B. Estimating Database Storage 439

Table 51. Your Assumptions of Catalog Bytes or Pages for Each Object (continued)

Object Catalog Entries Bytes Bytes for Each
Object

Pages for Each
Object

User 1 SYSUSERAUTH
___ SYSTABAUTH
___ SYSSYNONYMS
____ SYSCOLAUTH

35

Package
dbspaces

255 SYSACCESS ___

Character
Set

1 SYSCHARSETS ___

Keys 1 SYSKEYS
___ SYSKEYCOLS

Other 3 SYSOPTIONS ___

Estimating ISQL Dbspace Requirements
An allocation of 1 024 pages should be sufficient for most ISQL users. If you have
many users or expect to make extensive use of the ISQL stored queries facility,
consider increasing this allocation.

The recommended size (in pages) for the PUBLIC.ISQL dbspace is 1024 or .88 x the
number of stored queries, whichever is larger.

Estimating Dbspace Sizes for Routines
The size of ROUTINE tables can vary greatly from user to user and from
installation to installation. You can place the ROUTINE tables for all users in the
same public dbspace, or you can place the ROUTINE table for each user in that
user’s private dbspace.

The following formulas are condensed versions of size estimation formulas in the
DB2 Server for VSE & VM Database Administration manual. They simplify the work
required to estimate the size of the dbspace needed to hold routines. The following
assumptions have been used in the formulas:
v The PCTFREE value is 15.
v The PCTINDEX value is 33.
v ALLOWANCE was not included in the formula.

The following formula can be used to calculate the average row length for the
routines:
AVGROWLEN = 23 + average command line length

+ average remark length

Note: The average command line length is not the same as the average command
length. A command can be entered on multiple command lines. A command
line in a routine has a maximum length of 254 characters. A command has a
maximum length of 2048 characters. Be sure to use the command line length
in your estimate.

The following formula can be used to calculate the number of dbspace pages
required for your ROUTINE tables:

440 System Administration

number average average
of x number of x number

users routines of lines

Dbspace pages = (2074 / AVGROWLEN) (from previous formula)

Examples:

Table 52. Example of Estimating the Number of Dbspace Pages for a Routine

Number of
Users

Number of
Routines For
Each User

Number of
Lines For Each
Routine

Row Length Dbspace Pages

1 20 20 80 16

20 20 20 80 309

50 60 35 75 3797

Estimating Dbspace Size for Stored SQL Statements (Stored
Queries)

The following assumptions are used in the formula for calculating the size of the
dbspace required for stored SQL statements:
v The PCTFREE value is 15.
v The PCTINDEX value is 33.
v ALLOWANCE is not included in the formula.
v One page was included for one routine named PROFILE. It can contain up to 25

lines with an average row length of 80.

The following formula can be used to calculate the number of dbspace pages
needed for stored SQL statements:

Dbspace pages = 1 + (.037 x number of statements) +

((Truncate [(avglen + 250) / 250 x 250)] x number of statements

2667

When calculating the average length of your stored queries, you must include the
FORMAT information for all SELECT statements. The length of the FORMAT
information can be calculated by the following formula:
Format length = 504 + (number of columns x 44)

or

2048, whichever is smaller

The following examples show the number of dbspace pages required for each user
for the two types of stored SQL statements. The two types are:
v SQL SELECT statements (true stored queries)
v Other SQL statements.

The examples in Table 53 on page 442 and Table 54 on page 442 show the number
of dbspace pages required for one user for 10 stored SQL statements. If a user has
some of each type of stored SQL statement, you must add the values from each
table as needed.

Appendix B. Estimating Database Storage 441

Table 53. Examples — Dbspace Pages for Each User for Stored SELECT Statements

Number of
Selects

Number of
Columns

Length of
Select

Format
Length

Adjusted
Length1

Dbspace
Pages for
Each User

10 10 70 944 1250 5.88

10 20 70 1384 1500 5.99

10 10 400 944 1500 5.99

10 20 400 1384 2000 7.87

10 40 400 2048 2500 9.38

10 46 2048 2048 4250 16.30

1 The adjusted length is the stored data length of the stored SQL statements. For
more information on adjusted lengths columns, see the DB2 Server for VSE & VM
Database Administration manual.

Table 54. Examples — Dbspace Pages for Each User for Stored SQL Statements Other
than SELECTs

Number of Commands Average Length Adjusted Length1 Pages for Each User

10 70 250 1.31

10 400 500 2.25

10 999 1 000 4.12

10 1 499 1500 6.00

10 2 048 2 250 8.81

1The adjusted length is the stored data length of the stored SQL statements. For
more information on adjusted lengths columns, see the DB2 Server for VSE & VM
Database Administration manual.

442 System Administration

Appendix C. Maximum Values

Database Manager Maximum Values
Table 55. Database Manager Maximum Values

Restricted Parameter Maximum

Databases for each system 1

Number of communications links

Initialization parameters:
DISPBIAS
NCUSERS 2

NPACKAGE 2

NPACKPCT
NPAGBUF 2 3

NDIRBUF 2 4

NLRBU 2

NLRBS 2

NCSCANS 2

CHKINTVL 2

SLOGCUSH
ARCHPCT
SOSLEVEL

unlimited
65535

10
252
32766
100
400000
400000
583333
583333
655
99999999
90
99
100

Notes for Table 55:
1. A database machine can access only one database at a time. Many database

machines can operate concurrently.
2. This is the absolute maximum value. The practical maximum value is less,

depending on the values specified for other parameters and system resources
(such as the amount of storage available). The maximum number of NCUSERS
is limited because the program stack storage for each real agent is obtained
below 16 megabytes.

3. These are 4 K pages.
4. These are 512-byte pages.

© Copyright IBM Corp. 1987, 2001 443

Database Maximum Values
Table 56. Database Maximum Values

Restricted Parameter Maximum

Number of storage pools
Number of dbextents 1

Number of dbspaces

Number of bytes per database 2

Number of pages per database 2

Number of bytes per dbspace 3

Number of pages per dbspace 3

Size of the directory
Size of a log 5

Size of a dbextent
Size of a storage pool 2

999
999
32000

64 gigabytes 4

16,777,088

32 gigabytes 4

8,388,480

1 volume
524,287 4KB pages
1 volume
64 gigabytes 4

Notes for Table 56:
1. The database extents are not limited to 26 minidisks because VM block I/O is

used.
2. This is the absolute maximum size of the database. The practical maximum is

lower.
3. This is the absolute maximum size of a dbspace. The practical maximum is

lower.
4. A gigabyte is 230 bytes (1,073,741,824).
5. This is the absolute maximum size allowed, but it is much larger than the

database can use. See Table 2 on page 15 for more appropriate estimates.

444 System Administration

Appendix D. Updating SYSTEM.SYSSTRINGS

The SYSTEM.SYSSTRINGS catalog table contains information on all the CCSID
conversions that this product supports. For each CCSID conversion performed,
there must be a corresponding row in this table.

To insert a row, follow these steps:
1. Determine the source and target CCSIDs
2. Determine the conversion type

The conversion type is based on the encoding scheme (EBCDIC or ASCII) of
the CCSIDs and whether they are for tagging SBCS, mixed, or graphic data.
Note that in any conversion that this product supports, the target CCSID is
always EBCDIC. The following are conversion types recognized:
v "SS" (EBCDIC/ASCII SBCS to EBCDIC SBCS)
v "SM" (EBCDIC/ASCII SBCS to EBCDIC mixed)
v "MS" (EBCDIC mixed to EBCDIC SBCS)
v "MM" (EBCDIC mixed to EBCDIC mixed)
v "PS" (ASCII mixed to EBCDIC SBCS)
v "PM" (ASCII mixed to EBCDIC mixed)
v "GG" (EBCDIC/ASCII graphic to EBCDIC graphic)

3. Determine the error byte
The error byte is only used for SBCS conversions, and therefore applies to all
conversion types except for "GG". Be careful what you set it to: if a character in
the source gets converted to the error byte, the conversion is terminated and an
error occurs. CCSID conversions either have a NULL error byte, or are set as
follows for the detection of DBCS characters in the source when they are not
allowed:
v X'0E' used for

– "SM" conversions where the source CCSID is EBCDIC
– "MS" conversions

v X'3E' used for
– "SS" conversions where the source CCSID is ASCII
– "SM" conversions where the source CCSID is ASCII
– "PS" conversions

CDRA SBCS conversion tables are modified for use in this type of conversion,
so that all DBCS first bytes get mapped to X'3E' instead of the original X'3F'.

For more information, see step 7, “Customize the SBCS Conversion Table”.
4. Determine the substitution byte

As with the error byte, the substitution byte is not applicable in "GG" type
conversions. Whenever a character in the source gets converted to the
substitution byte, warning flags are set in the SQLCA. This byte is set based on
whether a given conversion table is created using the enforced subset match
criterion. (For more on this subject, refer to the Character Data Representation
Architecture Level 1, Registry manual.) If it is, then this byte is set to X'3F', which
is the CDRA-defined SUB character for conversions with EBCDIC target
CCSIDs.

5. Determine the TRANSPROC

© Copyright IBM Corp. 1987, 2001 445

This field only applies in the cases of "MM", "PM", and "GG" type conversions.
It contains the name of the DBCS conversion table that is shipped with this
product for use in the conversion. If it contains a value other than any of the
DBCS conversion table names that the database manager recognizes, then the
value is treated as the name of a user-defined DBCS conversion exit. (For
information on creating a user-defined TRANSPROC exit, see “Coding Your
Own TRANSPROC Exit” on page 361.)

6. Create the SBCS conversion table
An SBCS conversion table may be required except in the case of the "GG"
conversion type, where it is not applicable. For a conversion type where SBCS
conversion applies, it is possible to specify a NULL SBCS conversion table. For
example, you can have a mixed-to-mixed conversion where the SBCS CCSIDs
of the source and target mixed CCSIDs are the same, in which case you do not
need to perform conversion on the SBCS portion(s) of the mixed source data.
If you require a non-NULL SBCS conversion table, check the catalog table
SYSTEM.SYSSTRINGS to see whether it is already supported. If it is not
currently supported, then you have to create the conversion table based on the
conversion mapping that you define.
A user-created SBCS conversion table should be in the same format as those
supplied by CDRA: that is, a 256-byte string where the byte at offset n (starting
at offset 0) corresponds to what codepoint n in the source CCSID is converted
to. You also have to customize the conversion table for use if its source CCSID
is ASCII SBCS or ASCII mixed.

7. Customize the SBCS conversion table
If your SBCS conversion table is to be used for a conversion with an ASCII
SBCS or ASCII mixed source CCSID, you will have to modify it for the proper
detection of DBCS first bytes. This requires that you determine the ranges of
valid DBCS first byte codepoints for the ASCII SBCS source CCSID; then set the
contents of the SBCS conversion table at the offsets that correspond to the
DBCS first byte codepoints to:
a. Error byte

This is required for the following conversions, where DBCS characters are
not allowed in the ASCII source:
1) "SS" conversions where the source CCSID is ASCII
2) "SM" conversions where the source CCSID is ASCII
3) "PS" conversions

In the case of the CDRA-supplied SBCS conversion tables that are shipped
for use in the types of conversion mentioned above, the values contained at
the DBCS first byte offsets in the conversion tables have been changed from
the original X'3F' to X'3E'. This is also the error byte for these conversions.
X'3F' remains the substitution byte for these conversions.

You should also set the DBCS first byte offsets in your conversion table to a
unique character, which will also be your error byte.

b. X'00'
This is required for "PM" conversions, where DBCS characters in the ASCII
source are allowed and are converted. The database manager considers a
byte a DBCS first byte if it gets converted to X'00' using the
ASCII-to-EBCDIC SBCS conversion table, and if it is not X'00' itself to begin
with.
In the case of the CDRA-supplied SBCS conversion tables that are shipped
for use in "PM" conversions, the values contained at the DBCS first byte

446 System Administration

offsets in the conversion tables used to be X'3F', and have been changed to
X'00'. You must therefore also set the characters at the DBCS first byte
offsets in the conversion table to X'00', in order for DBCS characters to be
recognized in the mixed source.

8. Insert the row into SYSTEM.SYSSTRINGS
You can create a DBSU job to insert the row into SYSTEM.SYSSTRINGS. For
examples, review the ARITPOP MACRO which is supplied with the DB2 Server
for VM code. This macro inserts a row into SYSTEM.SYSSTRINGS for every
supported conversion between CCSIDs that are supplied with the database
manager.

Appendix D. Updating SYSTEM.SYSSTRINGS 447

448 System Administration

Appendix E. Defining Your Own Character Set

If you cannot use one of the IBM-supplied sample character sets, you can create
your own. (You may be able to use one of the character sets in the Character Data
Representation Architecture Level 1, Registry manual. The CCSIDs in this manual are
registered, and already defined.) To create a character set:
1. Identify all characters in your set and their hexadecimal values. For more

information, see “Step 1: Identify All Characters in Your Character Set” on
page 450.

2. Classify each character.
The database manager has 12 character classifications that it uses to identify
how the character can be used in SQL statements. You must classify those
characters in your set that differ from the ENGLISH character set table. For
more information, see “Step 2: Classify the Characters” on page 452.

3. Determine the hexadecimal values to which lowercase characters are to be
translated. For example, suppose X'6A' is used for lowercase n-tilde, and X'7B'
is used for uppercase N-tilde. The database manager does not automatically
know that X'6A' should be converted to X'7B'. You must define that
relationship. For more information, see “Step 3: Determine Translation
Characters” on page 460.

4. Update the SYSTEM.SYSCHARSETS catalog table.
Having defined character classifications and translations, you must implement
them on the database manager. You can code an INSERT command for the DBS
utility to process. During this process, you must also choose a name for the
character set (for example, PORTUGUESE). For more information, see “Step 4:
Update the SYSTEM.SYSCHARSETS Catalog Table” on page 462.

5. Update the SYSTEM.SYSCCSIDS catalog table.
When the new character set is implemented, you must add a row to the
SYSTEM.SYSCCSIDS catalog table to identify the CCSID values to be associated
with the new character set. For more information, see “Step 5: Update the
SYSTEM.SYSCCSIDS Catalog Table” on page 462.

6. Update the SYSTEM.SYSSTRINGS catalog table.
After you specify the CCSID values, you must indicate the conversion table
information to allow conversions to and from the new CCSID. For more
information, see “Step 6: Update the SYSTEM.SYSSTRINGS Catalog Table” on
page 463.

7. Update the CCSID-Related CMS Files
You must now use the CCSID option of the ARISDBMA EXEC to load the CMS
files to be able to use the new character set. This EXEC copies the information
in SYSTEM.SYSCHARSETS, SYSTEM.SYSCCSIDS and SYSTEM.SYSSTRINGS to
three CMS files. See the DB2 Server for VM Program Directory for more
information on the ARISDBMA EXEC.

When your character set is loaded into the SYSTEM.SYSCHARSETS catalog table,
and the SYSTEM.SYSCCSIDS and SYSTEM.SYSSTRINGS catalog tables have been
updated, you can specify the character set by using the CHARNAME initialization
parameter.

Each step in defining a character set is discussed below. As an example, a character
set (PORTUGUESE) for Brazilian Portuguese is defined.

© Copyright IBM Corp. 1987, 2001 449

Step 1: Identify All Characters in Your Character Set
Identify all characters in your character set, and write a matrix like the one shown
in the previous figures. For example, Figure 122 shows an example of a character
set that might be used to represent Brazilian Portuguese.

Figure 123 on page 451 is provided for you to record your own character set.

00 01 10 11

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

0 1 2 3 4 5 6 7 8 9 A B C D E F
Bits
4567

Hex 1

& –

/ a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

é

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

É

.

<

(

+

!

ç

,

%

>

?

ã

:

Õ

Ã

’

=

”

Bits
0,1

2,3

Hex 0

$

Ç

*

)

;

SP

|

Figure 122. PORTUGUESE Character Set

450 System Administration

At this time, you should note the hexadecimal values in your character set that
have representations different from those in the ENGLISH character set in
Figure 98 on page 308. Recording the differences makes character classification
easier. These are the hexadecimal values that have different representations in the
PORTUGUESE example:

X'4A' X'5F' X'7C'
X'4F' X'6A' X'C0'
X'5A' X'79' X'D0'
X'5B' X'7B'

Figure 123. Your SBCS Character Set

Appendix E. Defining Your Own Character Set 451

Step 2: Classify the Characters
When interpreting commands, the database manager must identify which
characters are valid, and which are not. To do this, the database manager uses an
internal character classification table.

In the table, each of the 256 possible SBCS hexadecimal values are assigned a
classification. The database manager uses these classifications to tell whether a
character is, for example, a delimiter or a numeric. There are 12 classes. Each
hexadecimal value is assigned one of these classes. The only hexadecimal values
that you are able to reclassify are those that, in the ENGLISH character set, are
classified as 3 or 0. Values classified as 0 can be reclassified as 3, and values
classified as 3 can be reclassified as 0. No other reclassifications are allowed. The
only exception to this rule occurs with certain class 6 characters. See the class 6
description below for details. See Table 57 on page 456 for the ENGLISH character
set class. Other character classes are shown only for reference:

Class Meaning

0 Unusable for keywords or unquoted identifiers

Any hexadecimal value assigned to this class cannot be used in keywords
or unquoted identifiers.

1 Blank

The hexadecimal value assigned to this class is a blank. A blank, in the
SQL language, is a delimiter between keywords. The database manager
uses X'40' for blanks.

2 Apostrophe

The hexadecimal value assigned to this class is an apostrophe ('). An
apostrophe, in the SQL language, is the delimiter for character constants.
The database manager uses X'7D' for an apostrophe.

3 Characters other than numerics, uppercase English alphabetics, and
underscores that are usable for unquoted identifiers

Numeric, uppercase English alphabetics, and underscores all belong to
other classes. In the default ENGLISH character set, the lowercase
alphabetics along with $, #, and .* are assigned to this class. In the sample
character sets, characters such as n-tilde and o-umlaut are assigned this
class.

4 Numerics

Any hexadecimal value assigned to this class is a numeric. The SQL
language defines the X'F0' to X'F9' to represent the numbers 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9. You must not assign class 4 to any other hexadecimal values,
nor can you reassign hexadecimal values X'F0' to X'F9' to some other class.

5 Period

Any hexadecimal value assigned to this class is a period. A period, in the
SQL language, is the delimiter between a qualifier (such as an owner) and
a data object (such as a table). The database manager uses X'4B' for a
period.

6 Special characters

Hexadecimal values assigned to this class have special meanings in the
SQL language, just as numerics do. You must not assign class 6 to any

452 System Administration

hexadecimal values other than those listed below. Nor can you reassign the
hexadecimal values shown to some other class. The only exceptions are the
ones which have a different hexadecimal value depending on the
application server default CCSID used. For those hexadecimal values listed
which map to a character used in the SQL language for your application
server default CCSID, do not reassign these values. For those hexadecimal
values listed which do not map to a character used in the SQL language
for your application server default CCSID, you can assign them to class 0
or class 3.

For example, X'5A' maps to the exclamation mark (!) for CCSID 37. For
CCSID 500, X'5A' maps to the right square bracket (]). For CCSID 37, the
hexadecimal value should be class 6. For CCSID 500, the hexadecimal
value could be either class 0 or class 3. In the SQL language the following
hex values have these meanings:

X'4C' <

X'4D' (

X'4E' +

X'4F' | (for CCSIDs 37, 284, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'4F' ! (for CCSIDs 273, 277, 278, 280, 297, 500, 870, 871, 875)

X'50' &

X'5A' ! (for CCSIDs 37, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'5C' *

X'5D')

X'5E' ;

X'5F' ¬ (for CCSIDs 37, 284, 285, 290, 420, 424, 833, 836, 838, 1027, 28709)

X'5F' | (for CCSIDs 273, 277, 278, 280, 297, 500, 870, 875)

X'60' -

X'61' /

X'69' | (for CCSID 838)

X'6A' | (for CCSIDs 870, 878)

X'6B' ,

X'6C' %

X'6E' >

X'6F' ?

X'7A' :

X'7E' =

X'B0' | (for CCSIDs 37, 290, 424, 833, 836, 1027, 28709)

X'BA' ¬ (for CCSIDs 273, 277, 278, 280, 297, 50 0, 871)

X'BA' | (for CCSIDs 284, 285)

X'BB' | (for CCSIDs 273, 277, 278, 280, 297, 500, 871)

X'BB' ! (for CCSID 284)

Appendix E. Defining Your Own Character Set 453

X'EC' | (for CCSID 871)

X'EF' ¬ (for CCSID 875)

7 Quotation Mark

Any hexadecimal value assigned to this class is a double quotation mark
("). A double quotation mark, in the SQL language, is the delimiter for
quoted identifiers. The database manager uses X'7F' for a double quotation
mark.

8 Shift-out character

You should not assign any hexadecimal value to this class. When the DBCS
option is YES, the database manager assigns this class to X'0E'.

9 Shift-in character

You should not assign any hexadecimal value to this class. When the DBCS
option is YES, the database manager assigns this class to X'0F'.

A English Uppercase Alphabetics

This class is restricted to all English uppercase alphabetics (hexadecimal
values X'C1' to X'C9', X'D1' to X'D9', and X'E2' to X'E9'). English uppercase
alphabetics can be used in unquoted identifiers and keywords. (This is true
no matter what SBCS character set is specified.)

B Underscore

Any hexadecimal value assigned to this class is an underscore. An
underscore, in the SQL language, can be used in an unquoted identifier
except as a starting character. The database manager uses X'6D' for an
underscore.

When you have defined a character set, you must classify each hexadecimal value
that has a different representation in your character set than it does in the
ENGLISH character set.

The database manager always sets the first 64 hexadecimal values (X'00' to X'3F') to
class 0. You can set only the remaining 192 hexadecimal values. Therefore, if any
character in your set has a hexadecimal value within X'00' to X'3F', you can use
that hexadecimal value only in quoted identifiers.

The only hexadecimal values that the database manager reclassifies in the first 64
are X'0E' and X'0F'. Those hexadecimal values are permanently defined to the
database manager as the DBCS shift-out and shift-in characters. When the DBCS
option is YES, the database manager reclassifies X'0E' to class 8 and X'0F' to class 9.
For more information, see “Using Double-Byte Character Set (DBCS)” on page 314.

Not all SBCS character sets can be classified for use with the database manager,
because it reserves certain hexadecimal values. For example, all hexadecimal values
that (in the ENGLISH character set) represent uppercase English letters are
reserved. The database manager reserves hexadecimal values so it can correctly
interpret SQL statements.

Use Table 57 on page 456 to classify your character set. The first column gives the
hexadecimal value. The next two columns identify the ENGLISH classification and
conversion values for each of those hexadecimal values. (Translation values are

454 System Administration

discussed in the next step.) The fourth and fifth columns show the classification
and conversion values for the PORTUGUESE example. The remaining two columns
are for your own character set.

Note: All hexadecimal values are reserved except those that are classified as 0 or 3
in the ENGLISH character set.

Any hexadecimal value that is classified in the ENGLISH character set as 0 or 3
can be reclassified as 3 or 0. Keep in mind that all hexadecimal values that are
classified as 0 cannot be used in keywords and unquoted identifiers. Therefore,
you would not want to classify as 0 any letter that is within your language’s
alphabet. You would not be able to use those letters in unquoted identifiers.

The English alphabet consists of the following letters: A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z. Most likely, the hexadecimal values
for letters in your language that are not in the English alphabet are classified as 0
in the ENGLISH character set. You would typically change the classification to 3.

If you must reclassify a hexadecimal value, but the hexadecimal value is reserved,
then it is not possible to completely classify the character set. In that situation, it
may not be to your advantage to specify an alternative character set. For example,
if a character in your alphabet has a hexadecimal value that is assigned class 6 in
the ENGLISH character set, you cannot reclassify that hexadecimal value (the only
exceptions are the hexadecimal values associated with the characters |, !, ¬ and |).

The rationale used in classifying the PORTUGUESE character set hexadecimal
values that are different from the ENGLISH character set is as follows:

X'4A' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'4F' The character represented by this hexadecimal value in the PORTUGUESE
character set is the exclamation mark. Since this is also a special character
in the ENGLISH character set and is already classified as 6, there is no
need to reclassify it.

X'5A' This hexadecimal value, which represents a dollar sign ($) in the
PORTUGUESE character set, was reclassified from 6 to 0. This was done
because the dollar sign is not a special character in the SQL language. If
you want to use the dollar sign in unquoted identifiers and keywords,
however, you can reclassify it to 3.

X'5B' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'5F' This is another character that is reserved in the SQL language. In the
example PORTUGUESE character set, X'5F' represents a caret. Since this is
also a special character in the ENGLISH character set and is already
classified as 6, there is no need to reclassify it.

X'6A' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'79' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'7B' Because the character represented by this hexadecimal value is in the

Appendix E. Defining Your Own Character Set 455

Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'7C' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value should be classified as 3. It is
already classified as a 3 in the ENGLISH classifications, so there is no need
to reclassify it.

X'B0' This hexadecimal value, which represents a cent sign (¢) in the
PORTUGUESE character set, was reclassified from 6 to 0. This was done
because the cent sign is not a special character in the SQL language.

X'BA' The character represented by this hexadecimal value in the PORTUGUESE
character set is the NOT sign. Since this is a special character in the SQL
language, the value was reclassified from 0 to 6.

X'BB' The character represented by this hexadecimal value in the PORTUGUESE
character set is the vertical bar. Since this is a special character in the SQL
language, the value was reclassified from 0 to 6.

X'C0' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

X'D0' Because the character represented by this hexadecimal value is in the
Portuguese alphabet, the hexadecimal value was reclassified from 0 to 3.

Having reclassified the characters, you next need to consider the translation values
of those characters.

Table 57. Character Classification and Translation Table

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

1
0
0
0
0
0
0
0
0
0
0
5
6
6
6
6

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

3

456 System Administration

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

6
0
0
0
0
0
0
0
0
0
6
3
6
6
6
6

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

0

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

6
6
0
0
0
0
0
0
0
0
0
6
6
B
6
6

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

3 X'5B'

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

0
0
0
0
0
0
0
0
0
0
6
3
3
2
6
7

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

3 X'7C'

Appendix E. Defining Your Own Character Set 457

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

0
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0

80
C1
C2
C3
C4
C5
C6
C7
C8
C9
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

0
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0

90
D1
D2
D3
D4
D5
D6
D7
D8
D9
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

0
0
3
3
3
3
3
3
3
3
0
0
0
0
0
0

A0
A1
E2
E3
E4
E5
E6
E7
E8
E9
AA
AB
AC
AD
AE
AF

458 System Administration

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

0

6
6

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

0
A
A
A
A
A
A
A
A
A
0
0
0
0
0
0

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

3 X'7B'

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

0
A
A
A
A
A
A
A
A
A
0
0
0
0
0
0

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

3 X'4A'

Appendix E. Defining Your Own Character Set 459

Table 57. Character Classification and Translation Table (continued)

Hex Value English
Class.

English
Trans.

Brazilian
Class.

Brazilian
Trans.

Your Class. Your Trans.

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

0
0
A
A
A
A
A
A
A
A
0
0
0
0
0
0

E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

4
4
4
4
4
4
4
4
4
4
0
0
0
0
0
0

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Step 3: Determine Translation Characters
When the database manager translates a character string from lowercase to
uppercase, it checks the classification of each character in the string. If the
character is in class 3, it is translated. If not, the character is not changed.

To translate the character, the database manager consults a translation table. The
translation table contains the hexadecimal value to which a particular hexadecimal
value is to be translated.

For every hexadecimal value in your set that has a different character
representation than in English, you must define a translation value. Refer again to
Table 57 on page 456. The following rationale was used to choose the
PORTUGUESE translation values:

X'4A' Because the character represented by this hexadecimal value is an
uppercase E with an accent, there is no need to translate the hexadecimal
value to some other value when the database manager is folding to
uppercase. The translation value remains X'4A' (the same as the ENGLISH
value).

X'4F' The character represented by this hexadecimal value in Portuguese is the

460 System Administration

exclamation mark. Because the hexadecimal value should not be changed
when the database manager is doing a lowercase to uppercase translation,
the translation value should remain X'4F'.

X'5A' This hexadecimal value, which represents a dollar sign ($) in the
PORTUGUESE character set, should not change during a translation. The
translation value should remain X'5A'.

X'5B' Because this hexadecimal value represents an uppercase C with a cedilla, it
does not need to be changed during a translation. The translation value
should remain X'5B'.

X'5F' This is another hexadecimal value that does not represent a letter of the
alphabet. The hexadecimal value should not change during a translation.
The translation value should remain X'5F'.

X'6A' This hexadecimal value represents a lowercase c with a cedilla. During a
translation, it should be translated to an uppercase C with a cedilla. To
have the database manager do the correct translation, the translation value
should be X'5B' (the hexadecimal value for uppercase C with a cedilla).

X'79' This hexadecimal value represents a lowercase a with a tilde. During a
translation, it should be translated to an uppercase A with a tilde. The
translation value should be X'7C'.

X'7B' Because this hexadecimal value represents an uppercase O with a tilde, it
does not need to be changed during a translation. The translation value
should remain X'7B'.

X'7C' Because this hexadecimal value represents an uppercase A with a tilde, it
does not need to be changed during a translation. The translation value
should remain X'7C'.

X'C0' This hexadecimal value represents a lowercase o with a tilde. During a
translation, it should be translated to an uppercase O with a tilde. To have
the database manager do the correct translation, the translation value
should be X'7B' (the hexadecimal value for uppercase O with a tilde).

X'D0' This hexadecimal value represents a lowercase e with an accent. During a
translation, it should be translated to an uppercase E with an accent. To
have the database manager do the correct translation, the translation value
should be X'4A' (the hexadecimal value for uppercase E with an accent).

After determining what the translation values are, verify the following:
1. Hexadecimal values that you have reclassified to class 0 must be translated into

identical hexadecimal values. If you reclassify X'A2' from 3 to 0, you must
ensure that the translation value is set to X'A2', not X'E2' (as it is in ENGLISH).
In the PORTUGUESE example, this situation did not occur. No hexadecimal
values were reclassified from 3 to 0.

2. Hexadecimal values that you have reclassified to class 3 can be translated into
any hexadecimal value having a class of 3 or A. A quick check of the
PORTUGUESE-unique translation values show that the hexadecimal values
either translate to themselves or to hexadecimal values having class 3. The
PORTUGUESE example is still valid.

If your character set fails either of these tests, there is probably an error either in
reclassifications or in the translation values chosen.

Appendix E. Defining Your Own Character Set 461

Step 4: Update the SYSTEM.SYSCHARSETS Catalog Table
After you define translation values for the characters that require them, load the
character set into the SYSTEM.SYSCHARSETS catalog table. The easiest way to
load a character set is by modifying a copy of the DBS utility control commands
that load the sample ENGLISH character set. The file ARISCHAR MACRO V
contains these control commands.

Change your copy of ARISCHAR to reflect the classification and translation values
for your character set.

The first value in the INSERT statement is the name of the character set. For
'ENGLISH' substitute the name of your character set. You can specify up to
eighteen characters. The value 'PORTUGUESE' was chosen as the name of the
example Brazilian Portuguese SBCS character set.

The second value in the INSERT statement contains data for the character
classification table. There are 192 character classifications that you can set. You
should change only those character classifications in your character set that differ
from the ENGLISH classifications. Use the values you have recorded in Table 57 on
page 456.

The third value in the INSERT statement contains data for the character translation
table. There are 192 character translation values you can set. You should change
only those translation values in your character set that differ from the ENGLISH
translation values. Use the values you have recorded in Table 57 on page 456. Note
that the single quote (X'7D') must be entered twice. A single quote normally
delimits the end of a value in an INSERT statement. To use a single quote as part
of the data, the single quote must be entered twice.

Step 5: Update the SYSTEM.SYSCCSIDS Catalog Table
You must add a row to the SYSTEM.SYSCCSIDS catalog table to identify the
CCSID values to be associated with your new character set. You could issue the
following statement to update SYSTEM.SYSCCSIDS for the character set defined
for this example:

INSERT INTO SYSTEM.SYSCCSIDS (CCSID,SUBTYPE,DBCSID,SBCSID,CHARNAME)
VALUES (57344,

'S',
0,
0,
'PORTUGUESE')

If you are defining your own CCSID (that is, one that is not obtained from the
Character Data Representation Architecture (CDRA)) registry, you must use a value
that is within the range of 57 344 to 61 439 (X'E000' to X'EFFF'). Values within this
range are reserved for user-defined CCSIDs. Ensure that the value you specify does
not already exist: the CCSID column cannot contain duplicate information. Also
keep the following in mind:
v If the character set that you are defining uses conversion tables that are

provided by the CDRA registry, use the CCSIDs that they indicate.
v The SUBTYPE column identifies the subtype of the CCSID. In this example, the

value is 'S' for SBCS.
v The SBCSID column and the DBCSID column specify the SBCS and the DBCS

components for a mixed CCSID. Because the CCSID in this example is SBCS, the
value for both of these columns is 0.

462 System Administration

v The value that you specify for the CHARNAME column must be the same as
the value that you specified in the NAME column of the
SYSTEM.SYSCHARSETS catalog table.

For examples of statements that insert rows into the SYSTEM.SYSCCSIDS catalog
table, review the ARITPOP MACRO that is supplied with the database manager.

Step 6: Update the SYSTEM.SYSSTRINGS Catalog Table
The SYSTEM.SYSSTRINGS catalog table identifies the tables that will be used for
conversion between specific pairs of CCSIDs. Conversion tables for
CDRA-supplied CCSIDs are provided by the CDRA registry. For more information
on CDRA conversion tables, see the Character Data Representation Architecture Level
1, Registry manual. After you create your CCSID, you must determine the
conversion table information for SYSTEM.SYSSTRINGS. You must add a row to
SYSTEM.SYSSTRINGS for each conversion that you want to support both to and
from the new CCSID. For a detailed description to update SYSTEM.SYSSTRINGS,
see “Appendix D. Updating SYSTEM.SYSSTRINGS” on page 445.

Suppose you added CCSID 57344 and you want to support the following
conversions:
v CCSID 37 to CCSID 57344
v CCSID 57344 to CCSID 37
v CCSID 57344 to CCSID 28709.

You must add three rows to the SYSTEM.SYSSTRINGS catalog table. To specify
any of these conversions in SYSTEM.SYSSTRINGS, you would use an INSERT
statement to insert the necessary information into the following columns of the
catalog table:
v INCCSID, which specifies the CCSID of the input character.
v OUTCCSID, which specifies the CCSID to which the conversion is done.
v TRANSTYPE, which identifies the type of conversion to be done (for example,

'SS' for SBCS to SBCS).
v ERRORBYTE, which identifies characters that have no representation in the

target code page. If a character to be converted maps to a code point containing
this byte an error occurs.

v SUBBYTE, which identifies characters that have no representation in the target
code page. If a character to be converted maps to a code point identified by this
byte, a warning is issued.

v TRANSPROC, which identifies the conversion procedures that are used for
conversion between CCSIDs. The procedures are used either for converting
between DBCS CCSIDs, or for converting the DBCS components of mixed
CCSIDs. The TRANSPROC value is blank if a DBCS conversion procedure is not
applied. For more information, see “Coding Your Own TRANSPROC Exit” on
page 361.

v TRANSTAB1, which represents the first 64 bytes of the conversion table.
v TRANSTAB2, which represents the last 192 bytes of the conversion table.

The conversion table maps the hexadecimal representation of each character in the
source CCSID to the hexadecimal representation of each character in the target
CCSID. For example, in CCSID 37 an exclamation mark (!) is represented by X'5A'.
The hexadecimal representation for the exclamation mark in CCSID 281 is X'4F'.
The hexadecimal value of the character at offset 90 in the conversion table where

Appendix E. Defining Your Own Character Set 463

INCCSID=37 and OUTCCSID=281 would be X'4F'. Remember, when counting
offsets, the first offset is zero. Therefore, the byte at offset 90 is actually the 91st.

For a detailed description to update SYSTEM.SYSSTRINGS, see “Appendix D.
Updating SYSTEM.SYSSTRINGS” on page 445.

Step 7: Update the CCSID-Related CMS Files
After you have updated the SYSTEM.SYSCHARSETS, SYSTEM.SYSCCSIDS and
SYSTEM.SYSSTRINGS catalog tables, use the ARISDBMA EXEC to load the CCSID
information from the catalog tables into three CMS files (ARISCCS, ARISSTR, and
ARISSCR). The application server and the application requester use these files to
enable the use of the new character set. For more information on the ARISDBMA
EXEC, refer to the DB2 Server for VM Program Directory.

When you have completed steps 1 through 7, you can start the application server
using the newly defined character set. If the database manager detects an error in
the character set, it uses the value of CHARNAME that was used the last time the
application server was started.

464 System Administration

Appendix F. Macro List

The macros identified in this appendix are provided as programming interfaces for
customers by the DB2 Server for VM database management system.

Attention: Do not use as programming interfaces any DB2 Server for VM macros
other than those identified in this chapter.

Macro list

The database manager provides the following General-use programming interface
macros:
v ARIRCAN
v ARIBFPPB.

© Copyright IBM Corp. 1987, 2001 465

466 System Administration

Appendix G. Service and Maintenance Utilities

This appendix describes the following utilities:
v “ARISAVES EXEC”, below
v “ARISPDFC EXEC” on page 469
v “SQLBOOTS EXEC” on page 470
v “SQLDBLD EXEC” on page 470
v “SQLDBDEF EXEC” on page 471
v “SQLGENLD EXEC” on page 475

ARISAVES EXEC
The VMSES/E VMFBLD exec calls ARISAVES to load and save each segment.

COMPONENT(compid)
You must specify this parameter. It identifies the component for which a saved
segment is generated. The valid values for compid are:

RA For the resource adapter (RA), DRRM and CONV

LANGxxxx
For the national language message segment (where xxxx is the
language key; LANGS001 is used for American mixed case English)

ISQL For ISQL

DBSS For DBSS and DSC

RDS For RDS, WUM, DRRM and CONV

ORIGIN(origin)
You must specify this parameter. It identifies the saved segment load address,
and is specified as a hexadecimal value. The ARISAVES EXEC does not check
that the origins you specify give enough virtual storage to each component.
However, if there is not enough room, the component is unusable.

Specify the origin that your System Programmer determined for the saved
segment.

SYSNAME(name)
You must specify this parameter.

Specify the name you specified for the saved segment name in the OBJNAME
field of the Add Segment Definition panel. See “Chapter 8. Saved Segments” on
page 171. For example, SQLSQLDS for the DBSS component.

STORKEY(key)
This parameter is optional. For key, specify the storage key value (in decimal)
for the saved segment.

�� ARISAVES COMPONENT(compid) ORIGIN(origin) SYSNAME(name)
STORKEY(key)

��

Figure 124. ARISAVES EXEC

© Copyright IBM Corp. 1987, 2001 467

|

|

|

If you omit this parameter, 13 is used for STORKEY. Normally, you would not
specify this parameter.

VMSES/E Consideration

To use a different storage key, you need to change the build lists for the
segments you are going to use. The following table lists the segment and their
corresponding build list name.

Segment Name Buildlist Name
SQLRMGR ARIBLMGR
SQLISQL ARIBLISQ
SQLSQLDS ARIBLDBS
SQLXRDS ARIBLRDS
LANGS001 ARIBLLNG

To change the build lists, you must use the VMSES/E local modification
procedures described in the ″Local Modifications for DB2 for VM″ appendix in
the DB2 Server for VM Program Directory.

End of VMSES/E Consideration

For example, to save the DBSS at origin B00000, invoke the ARISAVES EXEC as
follows:

The ARISAVES EXEC does the following:
v Ensures the CP EMSG function is off.
v Reads the link book text file for the identified component.
v Verifies the text file exists.
v Prompts you asking whether the saved segments are to be the new default

saved segments. If you reply YES, ARISAVES updates the origin values in the
ARISSEGC MACRO, and generates bootstrap modules by calling the SQLBOOTS
EXEC.
The ARISSEGC MACRO identifies the contents of the default (SQLDBA)
bootstrap package. For more information, see “Step 12. Update the ARISSEGC
Macro” on page 185.
If you reply NO, you must create a bootstrap package yourself by using the
SQLGENLD EXEC shown in “Step 15. Create a Bootstrap Package” on page 187.

v Builds and runs a CMS LOAD command and subsequent CMS INCLUDE
commands to create the saved segment at the specified origin address. All text
files must reside on the service minidisk except for the text file ARIRVSTC,
which must be on the production minidisk.

v Restores the original setting of the CP EMSG function.
v Prints the load map for the saved segment to a virtual print file.
v Issues a CMS SETKEY command to set the storage key for the saved segment.
v Issues a CP SAVESEG command to save the saved segment.

ARISAVES COMPONENT (DBSS) ORIGIN (B00000) SYSNAME (SQLSQLDS)

468 System Administration

ARISPDFC EXEC
The ARISPDFC EXEC copies IBM-supplied production code from a source service
disk or SFS directory (accessed as filemode V) to a target (secondary) production
disk or directory. (Secondary production disks and directories are described in
“Types of Database Machines” on page 270.)

You can use this EXEC to create additional primary database virtual machines. (A
primary database machines owns a production minidisk.) You can also use it to
service a secondary production minidisk. This is described in the DB2 Server for
VM Program Directory.

Authorization
To run the ARISPDFC EXEC, you must have:
v Read access to the source service minidisk or SFS directory (filemode V). You

need to specify your default language with the SET LANG command after
accessing this disk.

v Write access to the target production minidisk or SFS directory (file mode Q)
v CP CLASS = G.

Note: You can only issue this EXEC in the database machine that owns the target
production disk or SFS directory.

Syntax

Description
The ARISPDFC EXEC does the following:
v Copies the files that make up DB2 Server for VM, identified by the contents of

ARISPDEC MACRO V (except for the ARISPIDC MACRO, the ARISNLSC
MACRO, and the ARISSEGC MACRO), from the source service minidisk or
directory (filemode V) to the target production minidisk or directory (filemode
Q).

v Copies the ARISQLLD LOADLIB Q file at the latest service level. (The “latest
service level” includes the VM Data Spaces Support Feature or the DRDA code
if it is currently installed on your source service disk or directory.)

v Erases (if it exists) and creates the CMS file ARISPIDC MACRO Q that identifies
the source service disk or directory and this version of the target production
disk or directory. The first record identifies the target; the second identifies the
source.

Notes:
After running the ARISPDFC EXEC, you should:
1. Copy the ARISNLSC MACRO and ARISSEGC MACRO to your target

(secondary) production disk or directory from the primary production disk or
directory.

2. Acquire read access to your target production minidisk by entering:

�� ARISPDFC ��

Appendix G. Service and Maintenance Utilities 469

RELEASE Q (DETACH
LINK machid cuu cuu RR
ACCESS cuu Q

If you are using SFS, acquire read access to SFS production directory by
entering:

ACCESS machid.SQL.PRODUCTION Q

SQLBOOTS EXEC
The SQLBOOTS EXEC creates the default bootstrap files that must exist on the
DB2 Server for VM production minidisk or SFS directory.

Authorization
To run the SQLBOOTS EXEC, you must have:
v Read access to the service minidisk or SFS directory
v Write access to the production minidisk or SFS directory.

Also ensure that the database machine using the production minidisk or SFS
production directory to be updated is not active.

Syntax

Description
The SQLBOOTS EXEC creates the following bootstrap files:

DBSS/RDS SQLDBA SQLDBBT Q

ISQL SQLDBA SQLISBT Q

Resource Adapter SQLDBA SQLRMBT Q

SQLDBLD EXEC
The SQLDBLD EXEC loads the packages that are required by the SQLDBDEF
utility.

Authorization
To run the SQLDBLD EXEC, you must have:
v DBA authority
v Read access to the service minidisk or SFS directory.

Syntax

�� SQLBOOTS ��

�� SQLDBLD
DB(dbname) ID(userid)PW(pw) SYSPRint(fn ft fm)

��

Figure 125. SQLDBLD EXEC

470 System Administration

|

|
|

|

|
|
|

|

|

The EXEC invokes the Database Services Utility to load the packages.

Description
The parameters of the EXEC are as follows:

DB (dbname)
dbname is the DB2 Server for VSE & VM database into which the packages will
be loaded. If the DB parameter is not specified, the database currently listed as
the dbname when the SQLINIT QUERY command is issued is used.

ID (userid)
userid is the connect ID to be used when running the SQLDBLD EXEC. The
userid must have DBA authority in order to load the package

The ID parameter is optional. If the ID parameter is specified, the PW
parameter must also be specified. If the ID parameter is not specified, the
SQLDBLD EXEC will not issue an explicit CONNECT, and the connected ID
will be the VM userid from which the utility was invoked.

PW (pw)
pw is the connect password to be used when running the SQLDBLD utility.
The PW parameter is not specified if the ID parameter is not specified.

SYSPRint (fn ft fm)
The SYSPRint parameter indicates the name to be used for the output of the
job that loads the packages. The default is SQLDBLD DBSOUT A.

If a null input is provided, or if the filemode is not provided, or the filetype
and filemode are not provided, the default will be used for the missing
information. For example, if the user specifies LOADDBDF, the output file is
LOADDBDF DBSOUT A. Alternatively, the user can use ″=″ to indicate that the
default is to be used for filename, filetype, or filemode. For example, if the
user specifies LOADDBDF=C, the output file is LOADDBDF DBSOUT C.

SQLDBDEF EXEC
The SQLDBDEF utility extracts the definition of database objects from a DB2
Server for VSE & VM database, and generates a DBSU job that can be used to
create the same objects on another DB2 database. The SQL statements in the DBSU
job can be grouped in one of two ways:
v By dbspace
v By object type

Note that the SQLDBDEF utility does not generate SQL statements to recreate
system tables and dbspaces. However, it does generate SQL statements to recreate
user-created views, synonyms, and indexes on system tables.

When the objects have been created on the target platform, the load utilities of the
target database can be used to load the data. Packages can be unloaded from the
source database and reloaded to the target database so that existing client
applications can continue to be used.

Before running the SQLDBDEF utility, you must load the associated packages and
link-edit the utility. SQLDBLD EXEC is provided to load the packages. For more
information see “SQLDBLD EXEC” on page 470.

Refer to the DB2 Server for VM Program Directory for instructions on how to
link-edit the SQLDBDEF utility.

Appendix G. Service and Maintenance Utilities 471

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

Authorization
To run the SQLDBDEF EXEC, you must have DBA authority.

Syntax

Description
The parameters for the SQLDBDEF utility are as follows:

DBname (dbname)
dbname is the DB2 Server for VSE & VM database from which SQL object
definitions will be extracted. If the DB parameter is not specified, the database
currently listed as the dbname when the SQLINIT QUERY command is issued
is used.

ID (userid)
userid is the connect ID to be used when running the SQLDBDEF utility, as
well as the USERID specified in the CONNECT statement in the output DBSU
job. Userid must have DBA authority in the source DB2 Server for VSE & VM
database.

The ID parameter is optional. If the ID parameter is specified, the PW
parameter must also be specified. If the ID parameter is not specified, the
SQLDBDEF utility will not provide a userid and password on the CONNECT
statement and the connected ID will be the VM user ID from which the utility
was invoked. The output DBSU job will always contain a CONNECT
statement.

�� SQLDBDEF
DBname (dbname) ID (userid) PW (pw)

Target (OS390)
OS400
OTHER db2 udb
VSE
VM

�

�
Grants (YES)

Grants (NO)

Storedprocs (YES)

Storedprocs (NO) DBSpaces (*)
DBSpaces (dbsp_val)
Objects (object-types)

�

�
SYSPUnch(fn ft fm) SYSPRint (fn ft fm)

NOPRint
��

object-types:

*
Dbspaces

Auth (YES)
Tables

Auth (NO)
Synonyms
Indexes
Views

Figure 126. SQLDBDEF Utility

472 System Administration

|||
|

|
||
|

|
|||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||||||||||

|
||
|
|

|

|

|

||

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

PW (pw)
pw is the connect password to be used when running the SQLDBDEF utility.
The PW parameter is not specified if the ID parameter is not specified.

Target (OS390), Target (OS400), Target (OTHER db2 udb), Target (VSE), Target
(VM)

This parameter indicates the platform on which the target database runs.
OS390 indicates that the output DBSU job will be run on a DB2 database on
MVS, OS/390, or z/OS. OS400, VSE, and VM indicate that the output DBSU
job will be run on a DB2 database on OS/400, VSE, or VM respectively.
OTHER db2 udb indicates that the output DBSU job will be run on a DB2
database on an Intel or UNIX platform, for example, Windows, AIX, or Linux.

Grants (YES) Grants (NO)
The Grants parameter determines whether GRANT statements for user
authorities should be generated. Note that for GRANT CONNECT statements,
the passwords in effect on the source system will not be displayed in the
output DBSU job. Instead, the string ″<PW>″ will be displayed. The default is
YES, which causes the utility to generate the GRANT statements.

Storedprocs (YES), Storedprocs (NO)
The Storedprocs parameter determines whether CREATE PROCEDURE
statements and (if the target platform is VM or VSE) CREATE PSERVER
statements are to be generated. The default is YES, which causes the utility to
generate these CREATE statements.

DBSpaces (*), DBSpaces (dbsp_val)
This parameter indicates that the SQLDBDEF utility is to generate SQL
statements to recreate all objects in one dbspace or in all dbspaces. If this
parameter is specified, the utility extracts dbspace, table, view, synonym, and
index definitions, as well as table and column privileges, from the system
catalog.

If ″*″ is specified, the output DBSU job contains SQL statements to recreate all
objects in all dbspaces, and the statements are grouped by dbspace.

If dbsp_val is specified, the output DBSU job contains SQL statements to
recreate the objects in that dbspace only. Dbsp_val can be a dbspace number or
a qualified or unqualified dbspace name. If an unqualified dbspace name is
provided, SQLDBDEF looks first for a private dbspace with the specified name
that is owned by the connected user. If no private dbspace is found,
SQLDBDEF looks for a public dbspace with the specified name.

Note that either the DBSpaces parameter or the Objects parameter can be
specified, but not both. If neither is specified, the SQLDBDEF utility does not
generate SQL statements to create dbspaces, tables, synonyms, indexes, or
views.

Objects (*), Objects (Dbspaces), Objects (Tables), Objects (Synonyms), Objects
(Indexes), Objects (Views)

This parameter indicates that the SQLDBDEF utility is to generate SQL
statements to recreate one particular type of object, or all objects.

If ″*″ is specified, the output DBSU job contains SQL statements to recreate all
object types, and the statements are grouped by object type.

If a specific object type is specified, the output DBSU job contains SQL
statements to recreate objects of that type only.

Appendix G. Service and Maintenance Utilities 473

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

Note that either the Objects parameter or the DBSpaces parameter can be
specified, but not both. If neither is specified, the SQLDBDEF utility does not
generate SQL statements to create dbspaces, tables, synonyms, indexes, or
views.

Auth (YES), Auth (NO)
If you are generating SQL statements to create all table objects, you can direct
the SQLDBDEF utility to generate SQL statements to GRANT existing table
and column privileges as well. The Auth parameter determines whether
GRANT statements for table and column privileges are generated. The default
is YES.

SYSPUnch (fn ft fm)
The SYSPUnch parameter indicates the name to be used for the output DBSU
job. It is applicable in VM only, since in VSE the output DBSU job goes to
SYSPCH. The default is filename DBSU A, where filename is:
v The same as the filename of the listing file (as specified by the SYSPRint

parameter), if the SYSPRint parameter is specified before the SYSPUnch
parameter

v SQLDBDEF, if the SYSPRint parameter is not specified before the SYSPUnch
parameter.

If a null input is provided, or if the filemode is not provided, or the filetype
and filemode are not provided, the default will be used for the missing
information. For example, if the user specifies NEWDBDEF, the output file is
NEWDBDEF DBSU A. Alternatively, the user can use ″=″ to indicate that the
default is to be used for filename, filetype, or filemode. For example, if the
user specifies NEWDBDEF = C, the output file is NEWDBDEF DBSU C.

If the file specified already exists, it will be overwritten.

SYSPRint (fn ft fm)
The SYSPRint parameter indicates the name to be used for the listing file. It is
applicable in VM only, since in VSE the listing goes to SYSLST. The default is
filename LISTING A, where filename is:
v The same as the filename of the output DBSU job (as specified by the

SYSPUnch parameter), if the SYSPUnch parameter is specified before the
SYSPRint parameter

v SQLDBDEF, if the SYSPUnch parameter is not specified before the SYSPRint
parameter.

If a null input is provided, or if the filemode is not provided, or the filetype
and filemode are not provided, the default will be used for the missing
information. For example, if the user specifies NEWDBDEF, the output file is
NEWDBDEF LISTING A. Alternatively, the user can use ″=″ to indicate that the
default is to be used for filename, filetype, or filemode. For example, if the
user specifies NEWDBDEF= C, the output file is NEWDBDEF LISTING C.

If the file specified already exists, it will be overwritten.

NOPRint
Specifying NOPRint indicates that no listing file is to be generated.

The utility generates a DBSU job that can be run to create the database objects (or
equivalent objects) on the target database. In order to do this, it must map
platform-specific SQL statements to their equivalents on the target platform. For

474 System Administration

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

example, if the target database is DB2 UDB for OS/390, ACQUIRE DBSPACE
statements are mapped to CREATE TABLESPACE.

For SQL clauses that are the same for both the source and target database, the
value that was specified for the source database will be used. SQL clauses that can
be specified on the target database but are not applicable on the source database
do not appear in the generated SQL statement. SQL clauses that can be specified
on the source database but are not applicable on the target database do not appear
in the generated SQL statement.

You must customize the output DBSU job as follows:
1. Ensure that the CONNECT statement specifies the userid and password of a

user that has DBA, DBADM, or SYSADM authority (depending on the target
platform).

2. Provide valid passwords on the GRANT statements, if applicable.
3. Ensure that the user authorities being granted are appropriate for your

installation.
4. Ensure that the CREATE TABLESPACE and ACQUIRE DBSPACE statements

are appropriate for your installation.

It is recommended that you review the entire DBSU job prior to running it, to
verify that the objects it will create are appropriate for your installation.

SQLGENLD EXEC
The SQLGENLD EXEC recreates the bootstrap packages in saved segments.

Authorization
To run the SQLGENLD EXEC, you must have:
v Read access to the service minidisk or SFS directory
v If you run this EXEC from a database machine that does not have write access

to the production minidisk or SFS directory, the EXEC will ask for the write
password.

You must only run this EXEC from a database machine (single user mode).

Appendix G. Service and Maintenance Utilities 475

|
|

|
|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|

476 System Administration

Appendix H. DRDA Considerations

Users who are planning to design applications that:
v run on non-VM platforms and use the Distributed Relation Database

Architecture (DRDA) protocol to connect to DB2 Server for VSE & VM servers,
or

v run on VM/ESA and use the Distributed Relation Database Architecture (DRDA)
protocol to connect to servers other than DB2 Server for VSE & VM

need to be aware that DB2 Server for VSE & VM’s support of SQL does not exactly
match the IBM SQL standard5 or the SQL Entry Level standard.6 This appendix
attempts to provide some guidance in discrepancies to these standards.

Omissions from the Standards
For a list of where DB2 Server for VSE & VM does not support the IBM SQL or
SQL92 entry level standard, please consult the DB2 Server for VSE & VM SQL
Reference manual.

Extensions to the Standards
1. Packages that were created in SQLDS protocol by using extended dynamic

statements 7 cannot be processed in DRDA protocol, or the other way around.
2. There is no support for modifiable packages created by using extended

dynamic statements. If you request such support by specifying the MODIFY
option on the CREATE PACKAGE statement, the system will override this
option with NOMODIFY.

3. Nonmodifiable packages created by using extended dynamic statements are
supported with the following restrictions:
a. There is no support for the positioned UPDATE and positioned DELETE

statements.
b. If the Basic Extended PREPARE form of the extended PREPARE statement

prepares a statement that contains parameter markers, the USING
DESCRIPTOR clause must be used to identify an input SQLDA structure.

c. There is no support for the Single Row Extended PREPARE form of the
extended PREPARE statement.

d. There is no support for the NODESCRIBE option of the CREATE PACKAGE
statement. If specified, it will be ignored.

e. There is no support for “USER” in the ISOLATION option of the CREATE
PACKAGE statement. The system will override USER with CS.

f. There is no support for “LOCAL” in the DATE or TIME option of the
CREATE PACKAGE statement. If specified, SQLCODE -168 (SQLSTATE
42615) will be generated, indicating an incorrect parameter.

5. IBM SQL is a superset of the SQL99 Entry Level standard

6. Entry Level of the International Organization for Standardization (ISO) 9075-1992 Database Language SQL specification

7. Since DB2 RXSQL uses extended dynamic statements, any restrictions on the use of extended dynamics apply to DB2 RXSQL as
well.

© Copyright IBM Corp. 1987, 2001 477

g. DB2 Server for VSE & VM servers do not support cursors declared with the
“WITH HOLD” clause. However, applications may use the “WITH HOLD”
clause against other DRDA servers if they support it, except when extended
dynamic statements are involved.

4. There is no support for the semantics checking of the Flagger, but the syntax
checking of static SQL against the SAA and SQL-89 standards will still be
carried out.

DB2 Server for VSE & VM Facility Restrictions
1. There is no support for the USERID option of the SQLPREP EXEC.
2. There is no support for “USER” in the preprocessing parameter ISOLATION.

The system will override USER with CS.
3. There is no support for “LOCAL” in the preprocessor parameters DATE and

TIME. If specified, SQLCODE -168 (SQLSTATE 42615) will be generated,
indicating an incorrect parameter.

4. There is no support for the blocking of PUTs. However, the PUT operation will
still be supported one row at a time as unblocked inserts.

5. The following ISQL commands are not supported when using the DRDA
protocol, because they request functions specific to DB2 Server for VM:
v SET ISOLATION
v COUNTER
v SHOW

6. The following DBSU commands are not supported when using the DRDA
protocol, because they request functions specific to DB2 Server for VM:
v UNLOAD DBSPACE
v UNLOAD TABLE
v UNLOAD PACKAGE
v RELOAD DBSPACE
v RELOAD TABLE
v SET ISOLATION
v SET UPDATE STATISTICS
v REBIND PACKAGE
v REORGANIZE INDEX

7. Fortran packages and any other packages created by using extended dynamic
statements that were created in SQLDS protocol cannot be RELOADed by the
DBS Utility in DRDA protocol, or the other way around.

8. Portable packages created under SQL/DS Version 2 Release 2 cannot be
RELOADed by the DBS Utility in DRDA protocol.

9. If accounting data is sent from a DRDA application requester to a DB2 for VSE
& VM server, only the first 16 bytes of user-defined data 8 is captured by the
server and put into accounting records.

8. For example, from DDCS for OS/2 user-defined data can be set by the DFT_ACCOUNT_STR configuration parameter.

478 System Administration

Appendix I. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between each release of the
product and the previous release, going back to Version 1 Release 3.5. There is a
separate section in the appendix for each release.

Note on Skipping Releases: If your migration plans call for skipping one or more
releases (for example, migrating directly from V2R2
to V3R4), you will still be affected by the
incompatibilities introduced by the releases that you
are skipping.

Within each section, the incompatibility items are grouped into the following
categories:
v SQL and Data
v Application Programming
v System Environment

Definition of an Incompatibility
For the purpose of this appendix, an “incompatibility” is defined to be a part of
the product that works differently than it did in the previous release, in such a
way that if used in an existing application, it will produce a different result,
necessitate a change to the application, or reduce performance. In this definition,
“application” can apply to a broad range of things (singly or in combination), such
as:
v Application program code
v Specifications for preprocessing application programs
v Interactive SQL queries
v ISQL functions
v DBS Utility functions
v Miscellaneous tools in your operating environment.

This appendix does not describe incompatibilities where certain operations in the
current release are less likely to generate an error condition than they did in the
previous release, as those changes will only have a positive impact on your
applications. (For example, the SUM and AVG column functions no longer
overflow as easily because they now use a larger accumulator, and a change to the
use of the equal (=) compare predicate with a negative indicator variable now
evaluates to UNKNOWN rather than generating an error condition.)

Impact on Existing Applications
Read the appropriate section of this appendix carefully to determine what changes
you will need to make to your applications when migrating from one release to the
next. You may also want to review the chapter in the DB2 Server for VM System
Administration manual on migration considerations which discusses some of these
incompatibilities in more detail, plus other considerations for each
release-to-release migration.

This appendix excludes the numerous changes and enhancements for which no
impact on existing applications is anticipated. These are listed in the Summary of
Changes section (included with each manual) of the appropriate release of the

© Copyright IBM Corp. 1987, 2001 479

library. Review that section to see where you could make changes to your existing
applications in order to take advantage of some of these enhancements.

V2R1 and V1R3.5 Incompatibilities

SQL and Data

1. Evaluation of HAVING and SELECT Clauses
Prior to V2R1, the HAVING clause was evaluated after the SELECT clause. This
caused a statement such as the following to fail on a zero divide and generate
SQLCODE -802, if a zero part number was encountered:

SELECT 200/PARTNO FROM T1
GROUP BY PARTNO HAVING PARTNO > 0

In V2R1, the HAVING clause is evaluated before the SELECT clause. This
means your applications now have the potential of producing different results.
In the above example, if a zero part number is encountered, the query does not
fail and SQLCODE -802 is not generated.

2. Null Values as a Grouping Criterion
Prior to V2R1, if any row had a null value in one of the columns referenced in
a GROUP BY clause, each such row was treated as a separate group.
In V2R1, null values are considered identical for purposes of grouping.
This means that your existing applications may generate fewer rows in the
result table than they did in previous releases, since multiple null-value-groups
are now consolidated into one group. Any derived column function values will
reflect this consolidation (for example, SUM(BONUS)).

3. Negative Decimal Zero Support
Prior to V2R1, the system recognized negative decimal zero as a valid value.
However, it did not evaluate positive and negative decimal zero values as
equivalent.
In V2R2, any negative decimal zeros found in SQL statements are converted to
positive decimal zeros before execution. This means that inserting, updating, or
deriving negative decimal zeros, or using them in a comparison, is no longer
possible. A utility called SQLZERO is provided which converts all negative
decimal zeros in the database to positive decimal zeros.
For a detailed discussion of this topic, see “Elimination of Negative Decimal
Zero” in the chapter which discusses migrating from V1R3.5 in the System
Planning and Administration manual, V2R1 or later.

4. Insertion of Invalid Decimal Values
Prior to V2R1, it was possible to insert invalid decimal data into the database
during DATALOAD by specifying string values that were invalid for
DECIMAL columns. For example, X'0000' has no sign value.
In V2R1, this is no longer allowed. Doing so will generate SQLCODE -424.

Application Programming

5. Use of ORDER BY Clause with SELECT INTO
Prior to V2R1, the SELECT INTO statement was allowed to contain an ORDER
BY clause.
In V2R1, this is no longer allowed. Doing so will generate SQLCODE -524.

6. Scope of Prepared Statements
Prior to V2R1, a prepared statement could sometimes, but not always, be
referenced in subsequent logical units of work (LUWs).

480 System Administration

In V2R1, this inconsistency is removed. A prepared statement may now only be
referenced within the same LUW in which it was prepared.
If your applications contain code that references prepared statements across
LUWs, they will have to be restructured accordingly.

7. SQLCODE Returned After a Format 2 INSERT
Prior to V2R1, when a format 2 INSERT (known as “INSERT via subselect” in
V2R2 and later releases) returned an empty answer set for insertion, SQLCODE
+0 was generated.
In V2R1, SQLCODE +100 is generated instead.

8. Preprocessor Errors Converted to Warnings
Prior to V2R1, a certain set of conditions generated errors during preprocessing.
In V2R1, these conditions now generate warnings, although the associated
SQLCODEs are still negative (starting with V3R1, the codes are presented as
positive numbers). These conditions and their corresponding SQLCODEs are
shown in the table below.

SQLCODE DESCRIPTION

-134 IMPROPER USE OF THE LONG FIELD COLUMN column.

-135 THE INPUT FOR A LONG FIELD COLUMN IN AN INSERT OR UPDATE
MUST BE FROM A HOST VARIABLE OR THE KEYWORD NULL.

-150 THE VIEW CANNOT BE USED TO MODIFY DATA SINCE IT IS BASED
ON MORE THAN ONE TABLE.

-151 A COLUMN OF A VIEW CANNOT BE UPDATED SINCE IT IS DERIVED
FROM AN EXPRESSION.

-152 A COLUMN OF A VIEW CANNOT BE USED IN A WHERE-CLAUSE
SINCE IT IS DERIVED FROM A COLUMN FUNCTION.

-154 VIEW LIMITATIONS DO NOT ALLOW THE USE OF THE FOLLOWING
OPERATION: operation

-155 YOU CANNOT PERFORM A JOIN ON A VIEW CONTAINING A
GROUP-BY CLAUSE OR A DISTINCT KEYWORD.

-156 RESTRICTIONS APPLY WHEN SELECTING FROM A VIEW CREATED
WITH THE DISTINCT OR GROUP BY KEYWORD.

-202 COLUMN column WAS NOT FOUND IN ANY TABLE REFERENCED BY
THE COMMAND.

-205 COLUMN column WAS NOT FOUND IN TABLE creator.table.

-401 INCOMPATIBLE DATA TYPES FOUND IN AN EXPRESSION OR
COMPARE OPERATION.

-404 A CHARACTER STRING SPECIFIED IN AN INSERT OR UPDATE IS
TOO LARGE FOR THE TARGET COLUMN.

-405 THE NUMERIC VALUE, value, IS NOT WITHIN THE RANGE OF THE
DATA TYPE.

-407 AN UPDATE OR INSERT OF A NULL VALUE FOR A COLUMN
DEFINED AS NOT NULL IS NOT ALLOWED.

-408 AN UPDATE OR INSERT OF A DATA VALUE IS INCOMPATIBLE WITH
THE DATA TYPE OF THE ASSOCIATED TARGET COLUMN.

-414 LIKE WAS USED FOR A NUMERIC OR DATE/TIME COLUMN TYPE. IT
MUST ONLY BE USED WITH CHAR OR VARCHAR TYPE COLUMNS.

-415 THE DATA TYPES OF CORRESPONDING ITEMS IN THE
SELECT-CLAUSES CONNECTED BY A UNION ARE NOT IDENTICAL.

Appendix I. Incompatibilities Between Releases 481

SQLCODE DESCRIPTION

-416 YOU CANNOT SPECIFY A LONG FIELD COLUMN IN THE
SELECT-CLAUSE OF A UNION.

-419 THE PRECISION OF THE NUMERATOR AND/OR THE SCALE OF THE
DENOMINATOR ARE TOO LARGE FOR DECIMAL DIVISION.

-421 A HEXADECIMAL LITERAL WITH AN ODD LENGTH MAY NOT BE
USED WITH A DBCS COLUMN IN A PREDICATE.

V2R2 and V2R1 Incompatibilities

SQL and Data

1. Leading and Trailing zeros in Decimal Constants
Prior to V2R2, leading and trailing zeros of decimal constants were removed by
the system when calculating their scale and precision.
In V2R2, if the precision of a decimal constant is greater than 15, leading zeros
are removed to bring the precision down to 15. Trailing zeros are not removed.
If your current applications provide output from the result table without any
intervening formatting, this change has the potential of altering that output. If
formatting is involved, you may have to change the formatting logic to obtain
the same output.
Similarly, input to the database by means of INSERT or UPDATE may be
affected, if a decimal constant is involved.

2. Use of Host Variables with UNION
Prior to V2R2, two select-lists could be successfully UNION’ed even when they
contained corresponding items that were host variables of different data types
and different lengths. The statement below is an example of this, where host
variables :hw and :fw are halfword fixed binary (15) and fullword fixed binary
(31), respectively.

SELECT :hw FROM T1
UNION
SELECT :fw FROM T1

In V2R2, the above statement is no longer allowed. Issuing it will generate
SQLCODE -415.

Note: In V3R1, some restrictions on the use of data types within a UNION are
removed, including the above incompatibility.

Application Programming

3. Atomic Operations Against the Database
Prior to V2R2, many types of operational errors (that is, SQL statement errors)
against the database caused the system to roll back the entire current logical
unit of work (LUW), leaving the application with no control over the status of
the LUW.
In V2R2, all operations against the database are now atomic. That is, within an
LUW, each operation can succeed or fail separately, with no effect on other
operations, provided they do not depend on it. If an operation fails, the
application is free to either continue working on the same LUW, or commit the
changes made so far, or roll back the LUW. Some system errors, such as
deadlocks, still require the entire LUW to be rolled back by the system. Also,
atomic operation is not supported for:

482 System Administration

v Operations on data located in nonrecoverable storage pools
v Operations on data when running without a log (LOGMODE=N).

As a result of this change, you may want to extend the logic of your LUW
processing in your applications.

Note: The next incompatibility item contains a special case of atomic operation.
4. Multiple Row Changes Within an Atomic Operation

Prior to V2R2, if an error occurred during a single operation involving multiple
row changes to the database, the database was potentially left in an
inconsistent state. (This was one of those operational errors that was not rolled
back by the system.) Some of the rows were processed; the rest were not. The
only practical way to avoid this inconsistency was to have the application roll
back the entire current LUW.
There was one exception to this: in the case of a data definition statement, such
as CREATE TABLE, the system itself rolled back the LUW to avoid a partial
definition of a table in the catalog. The application had no control over the
status of the LUW.
In V2R2, with atomic operation in place, the system automatically undoes that
portion of the multiple row operation that was processed prior to the error.
This eliminates the potential of an inconsistent database resulting from such an
operation, and leaves the application free to control the current LUW as it sees
fit.
See “Detailed Notes on V2R2-V2R1 Incompatibilities” on page 484 for an
example.

5. Four-Byte Floating-point Data
Prior to V2R2, all floating-point data had to be eight bytes.
In V2R2, it can be four bytes.
This leads to a potential problem in V2R2 for programs that allocate eight bytes
when using DESCRIBE on a FLOAT column. When using DESCRIBE,
applications should allocate storage based on the SQLLEN of a column (as
given in the SQLDA), not the SQLTYPE.

6. Arithmetic and Conversion Errors
Prior to V2R2, an arithmetic or conversion error terminated processing of the
statement and generated SQLCODE -802.
In V2R2, these types of errors are tolerated when they involve a host variable
that has an indicator variable. In such cases, processing of the SQL statement
continues; SQLCODE +802 is generated; a -2 is placed in the indicator variable;
and the associated database variable remains unchanged.
If your application is checking for these errors, this could impact its logic. The
types of errors that can now be tolerated are:
v Fixed point overflow
v Decimal overflow
v Exponent overflow
v Exponent underflow
v Divide exception.

For more detail, see the Messages and Codes manual, V2R2 or later, for
SQLCODEs +802 and -802.

7. GRANT Authority for PUBLIC
Prior to V2R2, “WITH GRANT OPTION” in a GRANT statement passed
GRANT authority to the user receiving the privilege in question, even when
the user was PUBLIC.

Appendix I. Incompatibilities Between Releases 483

In V2R2, when “PUBLIC” and “WITH GRANT OPTION” are used together, the
privilege is granted to PUBLIC, but without GRANT authority. In such cases, a
warning is given to that effect.
This can impact your current authorization of views or programs, since these
objects, which previously could have been grantable (for example, a value of 'G'
recorded for a program in catalog table SYSPROGAUTH), will no longer be so
(a value of 'Y' now in SYSPROGAUTH) if they depend on PUBLIC access to an
object.
For example, if a program contains a static SELECT statement involving table
T1, and the owner of the program is dependent on PUBLIC access to T1, then
'Y' is the highest authorization value attainable for that statement — and
therefore for the program. This means that the owner is still able to run the
program, but not to grant the RUN privilege on it to others. This, in turn,
means that when this program is preprocessed under V2R2, users who
previously may have had authority to run it (by virtue of receiving RUN
authority from the owner) will no longer have that authority.

System Environment

8. Change to Message Numbers
Prior to V2R2, the ARI message numbers were three digits long and were
followed by an action indicator. This identification formed a header for each
line of the message text, as illustrated below:

ARI297A RESPONSE TO ARCHIVE PROMPT
ARI297A IS NOT VALID.

In V2R2, these message numbers are expanded to four digits to accommodate
future expansion of the system. Message numbers existing in the earlier
releases now contain a high-order zero. Also, the message header is now only
used on the first line of the message. The above example becomes:

ARI0297A RESPONSE TO ARCHIVE PROMPT
IS NOT VALID.

This could impact any automated operating system facility that you may be
using (for example, the VM Programmable Operator) to scan the message
number and text.

Detailed Notes on V2R2-V2R1 Incompatibilities
1. Multiple Row Changes Within an Atomic Operation

In the following example, the operations are contained in one LUW. The second
operation involves multiple row changes to the database.

DELETE FROM SUPPLIER WHERE SUPPNO = 64
UPDATE INVENTORY SET PARTNO = PARTNO + 1
INSERT INTO QUOTATIONS VALUES (64, 221, .25, 5, 100)

The DELETE statement removes a supplier from the SUPPLIER table. The
UPDATE statement changes the first two rows of the INVENTORY table, but
fails on the third row because the operation would create a duplicate primary
key value.9

Prior to V2R2, the system would have left the new values in the first two rows
of INVENTORY, with the rest of the table unchanged. To avoid this undesirable

9. In V3R2 this error will not occur, because the enforcement of uniqueness is done after all the rows are updated.

484 System Administration

inconsistency, the application would have had to contain logic to recognize this
error and roll back the entire LUW, thus undoing the DELETE.

In V2R2, when this error occurs, the system undoes the UPDATE statement by
reversing the changes made to the first two rows. Because neither the DELETE
nor the INSERT depends on the success of the UPDATE (these operations are
atomic), the application has the following options open to it:
v Proceed and perform the INSERT, or
v Commit the successful DELETE, or
v Roll back the LUW to undo the DELETE.

V3R1 and V2R2 Incompatibilities

SQL and Data

1. Table Designation Rules
Prior to V3R1, the following set of ANS/ISO SQL rules for table designation
in FROM clauses were not fully enforced:
v Duplicate table or view names in a FROM clause must all have a correlation

name assigned to them.
v Correlation names in a FROM clause must be distinct from each other.
v Correlation names in a FROM clause must be distinct from the table or

view names in the same clause.

When the application contained ambiguities, such as
SELECT A.COL1
FROM A B, B A

where COL1 appeared in both table A and table B, the system accepted the
statement, employing its own set of rules to resolve the ambiguity. This
example represents only one type of ambiguity that could occur.

In V3R1, the ANS/ISO rules are fully enforced. Any violations generate
SQLCODE -211 (SQLSTATE 52012).

2. New Reserved Words
Prior to V3R1, the following were not reserved words in SQL and could
therefore be used as ordinary identifiers:
v CHAR
v CHARACTER
v DOUBLE
v EXECUTE
v FIELDPROC
v GRAPHIC
v LONG
v PACKAGE.

Similarly, the following were not reserved words for the DBS Utility:
v REORGANIZE
v SCHEMA.

In V3R1, these are reserved words, so an existing application that uses any
words in the SQL group above as an ordinary identifier will have to be
changed before it is preprocessed, or SQLCODE -105 (SQLSTATE 37501) will
be generated. Similarly, the words in the DBS Utility group above can no
longer be used in DBS Utility commands as ordinary identifiers.

Appendix I. Incompatibilities Between Releases 485

You can address this incompatibility by changing these ordinary identifiers to
use nonreserved words, or you can retain the original names by redefining
them as delimited identifiers.

3. Significance of Trailing Blanks
Prior to V3R1, trailing blanks were treated as significant in both object names
and VARCHAR and VARGRAPHIC column values.
In V3R1, such trailing blanks are not considered significant.
If your applications must continue to treat trailing blanks as significant, you
may have to undertake some redesign. See “Detailed Notes on V3R1-V2R2
Incompatibilities” on page 490 for further discussion and examples.

4. Timestamp at the 24th Hour
Prior to V3R1, a timestamp value in which the hour portion was 24 and the
minute, second, or microsecond portion was not zero, was accepted as valid
data for insertion or updating.
In V3R1, an attempt to insert or update a column with such a value generates
SQLCODE -181 (SQLSTATE 22007). When the hour portion is 24, the other
time portions must now be zero.
If you have any of these invalid values in your tables after migrating to V3R1,
they will prevent you from doing a DBS Utility unload/reload operation or an
INSERT using a subselect. You will have to first correct these values to
conform to the rule mentioned above.

Application Programming

5. Invalid Pointers in SQLDA and RDIIN
Prior to V3R1, the system checked for invalid pointers in the SQLDA and
RDIIN structures. This checking was extensive, often resulting in poor
performance.
In V3R1, in the interest of better performance, this checking has been
eliminated. It is up to the application programmer to follow the rules on
setting pointers in the SQLDA, as outlined in the chapter “Using Dynamic
Statements” in the V3R1 Application Programming manual. Pointers in the
RDIIN must not be changed by the application. If your application does not
satisfy these rules, the results will be unpredictable.

6. Continuation Characters in Fortran
Prior to V3R1, the Fortran preprocessor ignored any continuation character
located in front of an EXEC SQL on the same line, provided it was not part of
an IF or ELSE statement — even though such coding was incorrect.
In V3R1, the continuation character is acknowledged and the EXEC SQL is
ignored.

7. Missing Comma in COBOL Continuation Lines
Prior to V3R1, if you left out an intended comma from a list of parameters in
an SQL statement embedded in a COBOL program (as illustrated below) and
did not code a continuation character in the next line, the system would
assume a continuation character and misinterpret the parameter list, giving
potentially wrong results.

SELECT *
FROM T1
WHERE COL1 IN ('AB' <--- missing comma

'CD', <--- no continuation character
'EF')

In V3R1, this error is detected and reported at preprocessor time.

486 System Administration

8. DROP PROGRAM Statement Containing Host Variables
Prior to V3R1, the processing of a DROP PROGRAM statement that contained
host variables required a specific section in the access module. (In this form of
the statement, the name of the owner of the program or the name of the
program or both are expressed as host variables.)

Note on New Terminology: As of V3R1, PACKAGE becomes the new
reserved word for PROGRAM, the latter
remaining as a synonym. Access modules are
now referred to as packages. This new
terminology is used below.

In V3R1, the host variable form of the DROP PACKAGE statement no longer
requires a section in the package. All the information required to execute the
statement is sent with the execution-time request. You will be affected if you
have this form of the DROP PACKAGE coded in your application programs.

If the programs that use these packages are explicitly repreprocessed, they will
have to be recompiled (or reassembled) and relinked in order to execute
successfully. Otherwise, errors will result, since there will be fewer sections in
the new package and this will cause a mismatch between section numbers in
the RDIIN structure and the new package.

9. Data Type of String Constants
Prior to V3R1, application programs that assumed that string constants have a
data type of VARGRAPHIC because they are used in the context of GRAPHIC
and VARGRAPHIC data, were accepted.
In V3R1, such constants are considered to be VARCHAR, and if used in
conjunction with GRAPHIC or VARGRAPHIC data will result in an error,
such as SQLCODE -171 (SQLSTATE 53015) or SQLCODE -408 (SQLSTATE
53021).
If the host language is COBOL, PL/I, or C, you should use explicitly coded
graphic constants. See the section of the V3R1 SQL Reference manual that
discusses graphic string constants.

10. New Options in CREATE PROGRAM Statement
Prior to V3R1, when the following three options:

ISOL({RR|CS|USER})
DATE({ISO|USA|EUR|JIS|LOCAL})
TIME({ISO|USA|EUR|JIS|LOCAL})

were used in conjunction with an extended dynamic access module, the
values for these options were determined when statements referencing the
extended dynamic access module were executed. The values were set based
on the corresponding preprocessing options of the program containing the
extended dynamic statements.

Note on New Terminology: As of V3R1, PACKAGE becomes the new
reserved word for PROGRAM, the latter
remaining as a synonym of the former. Access
modules are now referred to as packages. This
new terminology is used below.

In V3R1, these options are added to the CREATE PACKAGE statement, so that
they become preprocessing options. This means that their values are stored

Appendix I. Incompatibilities Between Releases 487

with the package itself, and are enforced when the sections of the package are
executed. Consequently, your programs may now run at a different isolation
level than they did in V2R2.

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 490 for
examples that illustrate how incompatibilities may arise as a result of this
change.

11. Views Created from SELECT *
Prior to V3R1, views created as SELECT * FROM T1 required no special
attention when being migrated from release to release, even when columns
had been added to table T1 after the creation of the view.
In V3R1, a necessary change to the system now requires special attention in
the above situation. The first time the system encounters such a view in an
application, it attempts to rebuild the view, and fails with SQLCODE -835
(SQLSTATE 56049).
To avoid this failure, drop and recreate the view before running the
application on V3R1. Depending on how your application logic is coded, you
may have to change that logic in order to handle the extra columns that were
added to table T1. The best practice is to avoid the use of SELECT * for view
creation, and specify the explicit columns that the application requires.

12. Semicolon Delimiter in SYSVIEW Table
Prior to V3R1, when a view was created through the DBS Utility or by
running a preprocessed program, the CREATE VIEW statement was inserted
into column VIEWTEXT of catalog table SYSVIEWS with a semicolon
delimiter.
In V3R1, this delimiter is no longer included.
If your application has a dependency on the existence of this delimiter in the
SYSVIEWS table, you will need to change it accordingly.

13. Replacement of Error Message ARI0565E
Prior to V3R1, error message ARI0565E was issued during preprocessing of
Fortran programs whenever the input source contained no SQL statements
that required creation of a package.
In V3R1, this message is replaced by information message ARI0565I. In
addition, related message, ARI0598I, dealing with the status of the package, is
modified.
This could impact any automated operating system facility that you may be
using (for example, the VM Programmable Operator) to scan the message
number and text.

14. Replacement of SQLCODE -150
Prior to V3R1, an attempt to modify data through a view based on more than
one table generated SQLCODE -150.
In V3R1, this is replaced with SQLCODE +149 at preprocessor time, and
SQLCODE -149 (SQLSTATE 53007) at run time.

15. New Positive SQLCODEs
Prior to V3R1, a number of negative SQLCODEs and associated positive
RDSCODEs were returned during preprocessing to indicate a warning
situation.
In V3R1, new positive SQLCODEs are returned instead, which correspond
identically to the above negative SQLCODEs in code number and (in most
cases) message text and explanation. If the error is not removed, the
corresponding negative SQLCODEs will be issued at run time.

488 System Administration

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 490 for a list of
these new positive SQLCODEs.

System Environment

16. Uppercase and Mixed Case in Message Text
Prior to V3R1, all message text was in uppercase for all the languages
available in the product except German, which was available only in mixed
case.

Note: The uppercase applied to both English language offerings, AMENG and
UCENG. It also applied to the English text embedded in the DBCS
languages Japanese and Korean (for example, “FORCE”, “SQLEND”).

In V3R1, the message text of three more languages is now changed to mixed
case only. These languages are AMENG (the default language setting), Italian,
and Spanish. If you are using any of these three languages and you have
existing case-sensitive applications that scan for specific message text in
uppercase only, you will have to modify them to detect lowercase as well.
This could impact any automated operating system facility that you may be
using for this purpose (for example, the VM Programmable Operator).

An alternative approach (for English users only) to modifying your
applications would be to specify UCENG instead of AMENG, through the SET
LANGUAGE command.

17. Authorization for Changing System Catalog Tables
Prior to V3R1, certain portions of the catalog could be updated, deleted, or
inserted into, by any user with DBA authority.
In V3R1, the number of columns in the catalog tables for which these changes
are allowed is reduced.
This change may affect the authorization of some of your applications. See
Appendix E of the V3R1 SQL Reference manual for a list of the columns that
can now be updated, deleted, or inserted.

18. Modification of Sample Tables and Applications
Prior to V3R1, the sample tables shipped with the product consisted of five
Manufacturing tables and four Organizational-project tables. The sample
applications shipped with the product used the Manufacturing tables.
In V3R1, the Manufacturing tables are not included, but can be installed
optionally. The Organization-project tables are enhanced to provide more
guidance on referential integrity and also consistency across the IBM relational
database products. The enhancements include:
v Two new tables
v A new column in an existing table
v Renaming of a table
v Modification of a foreign key definition.

The sample applications are now modified to use the enhanced
Organization-project tables. They now issue a ROLLBACK instead of a
COMMIT, so that they can be rerun without having to first restore the sample
database.

If you have any applications that use these tables, such as an online tutorial or
a test package for new releases, you will need to upgrade them accordingly.

System Environment (VM Only)

Appendix I. Incompatibilities Between Releases 489

19. Storage of SQLINIT Parameters
Prior to V3R1, the parameters for the SQLINIT EXEC were stored in a
bootstrap module. The VM Resource Adapter (VRA) could access this module
as long as the module was on one of the accessed minidisks.
In V3R1, these SQLINIT parameters are stored in the LASTING GLOBALV
file, which is only accessible by the VRA if this file is on the A-disk. (The CMS
GLOBALV manipulation commands require this file to be on the A-disk.)
For example, if you have been executing batch SQL applications by requesting
a CMS batch machine to access (as a non-A-disk) the disk where the program
and bootstrap reside, you now have to request the CMS batch machine to
issue SQLINIT explicitly, so that the proper parameters can be appended to
the LASTING GLOBALV file on the batch machine’s A-disk.

20. Default Name for Database Machine
Prior to V3R1, the default name of the database machine was SQLDBA.
In V3R1, this default name is now SQLMACH, to distinguish it from
SQLDBA, which remains the default name of the database defined on
SQLMACH.
This change is only of interest to the system administrator who supplies the
name of the database machine during the set up of the SQLDBN file in the
XA environment.

Detailed Notes on V3R1-V2R2 Incompatibilities
1. Significance of Trailing Blanks

Prior to V3R1, delimited identifiers "TABLE1" and "TABLE1�" would be
considered two different tables, and VARCHAR values 'ABC' and 'ABC��' two
different values, where '�' represents a blank character.
In V3R1, in the case of the table names, the system would not accept the two
tables because they now have identical names. In the case of the VARCHAR
values, they are considered equal, except in a LIKE comparison. However, if
specified at INSERT or UPDATE time, trailing blanks are included in the
varying length string data stored in the database.
If your applications must continue to treat trailing blanks as significant, you
may have to undertake some redesign. For example, prior to V3R1, if your
table had a VARCHAR column, COLX, containing 'AAA���' and you wanted to
select all values from COLX that were not equal to 'AAA', the following search
condition would satisfy this requirement, because it would return value
'AAA���' along with any other values not equal to 'AAA':

WHERE COLX <> 'AAA'

In V3R1, value 'AAA���' does not get returned in the above example. This
search condition must be redesigned in order to get the same results as in prior
releases. One solution is:

WHERE COLX NOT LIKE 'AAA'

For more discussion on migration considerations for this item, see
“Considerations for VARCHAR and VARGRAPHIC Compare” in the chapter
which discusses migrating from V2R2, in the System Administration manual,
V3R1 or later.

2. New Options in CREATE PROGRAM Statement
The following examples illustrate the incompatibilities that may arise when you
migrate to V3R1.

490 System Administration

Figure 128 illustrates how isolation levels are determined for packages created
using extended dynamic SQL in V2R2. For example, program PROG1 contains
the CREATE PROGRAM statement for package PACKA, and prepares a section
in the package. Program PROG2 subsequently executes the section in PACKA.
Since program PROG2 was preprocessed with isolation level cursor stability
(CS), the section executes using CS.

Load Module

Package

Execution

2.2 3.1

Figure 127. Legend

PACKA

section n section n

PACKB

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

. . .
EXECUTE :SECTION IN PACK A

. . .

CREATE PROGRAM PACKA

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

. . .

CREATE PROGRAM PACKB

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

PROG4 (ISOL=USER)

Figure 128. Version 2 Release 2

Appendix I. Incompatibilities Between Releases 491

Figure 129 shows the same scenario in V3R1. In this case, the isolation level RR
is specified when the PACKA package is created. When program PROG2
executes a section in PACKA, isolation level RR is used.

PACKA

section n section n

PACKB

(run at CS)

(run at RR)

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

. . .
EXECUTE :SECTION IN PACK A

(run at RR)

PROG4 (ISOL=USER)PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA
OPTION ISOL(RR)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

. . .

CREATE PACKAGE PACKB
OPTION ISOL(USER)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKB

(run at RR)

Figure 129. Version 3 Release 1

492 System Administration

Figure 130 shows packages being migrated to V3R1. In this case, the isolation
level bind option will be automatically set to USER. Applications will notice no
change in isolation level handling from previous releases.

PACKA PACKB

section nsection n

section n section n

. . .
EXECUTE :SECTION IN PACK A

. . .
SQLISL = C
EXECUTE :SECTION IN PACKA
. . .
EXECUTE :SECTION IN PACKB

SQLISL = R
EXECUTE :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

MIGRATION

PROG2 (ISOL=CS)

PACKB (ISOL=USER)PACKA (ISOL=USER)

PROG3 (ISOL=USER)

Figure 130. Migration

Appendix I. Incompatibilities Between Releases 493

Figure 131 and Figure 132 show that once an extended dynamic package has
been dropped and recreated in V3R1 with an isolation level other than USER,
the isolation level bind option will be enforced whenever the executing
application has also been preprocessed, assembled, and re-linked under V3R1.
If the PACKA package has been dropped and recreated in V3R1, with an
isolation level of RR, then:
v If program PROG2 is still pre-V3R1, when the section in PACKA is executed,

isolation level CS will be used.
v Otherwise, isolation level RR will be enforced whenever sections in PACKA

are executed.
3. New Positive SQLCODEs

These codes are shown in the table below.

SQLCODE SQLSTATE DESCRIPTION

+117 01525 The number of data values to be inserted does not equal
the number of columns specified or implied.

+134 Improper use of long string.

PACKA

section n

(run at CS)

. . .
EXECUTE :SECTION IN PACK A

PROG1 (ISOL=RR)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA
OPTION ISOL(RR)

PREPARE FROM :STMTSTR
SETTING :SECTION IN PACKA

Figure 131. Dropping and Re-creating PACKA Without Repreprocessing PROG2

PACKA

section n

. . .
EXECUTE :SECTION IN PACK A

(run at RR)

PROG2 (ISOL=CS)

Figure 132. Re-preprocessing PROG2

494 System Administration

SQLCODE SQLSTATE DESCRIPTION

+135 The input for a long string column in an INSERT
statement or UPDATE statement must be from a host
variable or be the keyword NULL.

+149 The view cannot be used to modify data because it is
based on more than one table.

+151 A column of a view cannot be updated since it is derived
from an expression.

+154 View limitations do not allow you to use the following
operation: xxxxxx

+202 01533 Column xxxxxx was not found in any table referenced by
the statement.

+204 01532 xxxxxx was not found in the system catalog.

+205 01533 Column xxxxxx was not found in table yyyyyy.

+206 01533 The xxxxxx on yyyyyy was not found.

+401 Incompatible data types found in an expression or
compare operation.

+404 A character string specified in an INSERT or UPDATE
statement is too large for the target column.

+405 The numeric value, xxxxxx, is not within the range of the
data type.

+407 Either an UPDATE statement or an INSERT statement
with a null value for a column defined as NOT NULL is
not allowed, or a null host variable value is not allowed in
a SELECT list.

+408 An UPDATE or INSERT of a data value is incompatible
with the data type of the associated target column.

+414 The LIKE clause was used for a numeric or date/time
column type. LIKE must only be used with character or
graphic compatible columns.

+415 The corresponding columns, n, of the operand of a
UNION or a UNION ALL do not have comparable
column descriptions.

+416 You cannot specify a long string column in the SELECT
clause of a UNION.

+419 The precision of the numerator and/or the scale of the
denominator are too large for decimal division.

+421 A hexadecimal literal associated with a graphic compatible
column in a predicate cannot have an odd length.

+551 01548 User xxxxxx does not have the yyyyyy privilege.

+552 01542 xxxxxx is not authorized to perform this statement.

+668 Table xxxxxx is inactive and you cannot access it.

V3R2 and V3R1 Incompatibilities

SQL and Data

1. Nonexposed Table Names

Appendix I. Incompatibilities Between Releases 495

Prior to V3R2, nonexposed table names (those that have an associated
correlation name in the FROM clause) could be referenced within the SQL
statement containing such a name.
In V3R2, this is no longer the case. Any application code that makes such a
reference will have to be changed to reference the associated correlation name
instead. Otherwise, SQLCODE -201 (SQLSTATE 52003) will be generated.
For example, if both tables in the FROM clause

FROM TABLE1, TABLE2 A

have a column named DESCR, any reference in the query to this column for
the second table would have to be written as A.DESCR, not TABLE2.DESCR,
because TABLE2 is a nonexposed table name.

2. DISTINCT Column Functions in HAVING Clauses
Prior to V3R2, a DISTINCT column function was allowed in conjunction with
a dyadic operator in the predicate of a HAVING clause. (A dyadic operator is
an operator having two operands.) For example, the following would be
accepted as valid:

SELECT JOB, AVG(SALARY), AVG(BONUS)
FROM EMPLOYEE
GROUP BY JOB
HAVING AVG(DISTINCT BONUS) + 50 > 100

In V3R2, as part of the product’s compliance with SQL-89 in the introduction
of unary minus in DISTINCT column functions, this code is no longer
allowed. Using it will generate SQLCODE -112 (SQLSTATE 37507).

3. New Reserved Word, SOME
Prior to V3R2, SOME was not a reserved word in SQL and could therefore be
used as an ordinary identifier.
In V3R2, SOME is a reserved word that is used in quantified predicates as a
synonym for ANY, so any existing applications that use it as an ordinary
identifier will have to be changed before they are preprocessed under V3R2.
Id SOME is used as an ordinary identifier, SQLCODE -105 (SQLSTATE 37501)
will be generated.
You can address this incompatibility by changing this ordinary identifier to
use a nonreserved word, or you can retain the original name by redefining it
as a delimited identifier.

4. Comparing Character Data with Unquoted Numeric Data
Prior to V3R2, applications that compared character data type columns to an
unquoted numeric, represented invalid SQL code that was accepted. For
example,

WHERE C1 = 3

where C1 was defined as CHAR(1).

In V3R2, this is no longer accepted. Doing this comparison will generate
SQLCODE -401 (SQLSTATE 53018).

5. CHAR Scalar Function with a Timestamp Argument
Prior to V3R2, applications that used a second argument for the CHAR scalar
function, when the first argument was a timestamp expression, represented
invalid SQL code that was accepted. The second argument was ignored.
In V3R2, this is no longer accepted. Using this argument will generate
SQLCODE -171 (SQLSTATE 53015).

496 System Administration

6. No Column Name in a Column Function Within a HAVING Clause
Prior to V3R2, applications that used a column function within a HAVING
clause with no explicit column name in its argument, represented invalid SQL
code that was accepted. For example:

HAVING MIN(1) > 30

In V3R2, this is no longer accepted. Using this function will generate
SQLCODE -111 (SQLSTATE 56001).

7. Even-numbered Precision for Columns
Prior to V3R2, columns that were specified with even-numbered precision
were rounded up to the next odd-numbered precision, when creating or
altering a table. For example, DECIMAL(6,2) became DECIMAL(7,2) at
CREATE time.
Similar rounding up is also performed for arithmatic expressions found inside
statements. For example, the expression 99.9999/12*(12+3) will become
099.9999/12*(12+3) during processing.
In V3R2, this rounding is no longer done. In the above example, any
application code that relies on such rounding in order to store seven digits in
the column will require a redefinition of the column to DECIMAL(7,2), if the
table gets recreated in V3R2. Otherwise, one of the following error conditions
(depending on where the mismatch between column and length of the
variable occurs) will be generated: SQLCODE -302 (SQLSTATE 22003),
SQLCODE -405 (SQLSTATE 53020), or SQLCODE -413 (SQLSTATE 22003).
Arithmatic expression that relies on such rounding to obtain enough precision
to accomodate the result of the calculation will need modification. In the
above example, the 99.9999 in the expression 99.9999/12*(12+3) must be
changed to 099.9999 in order to accomodate the result which is 124.99988.
Otherwise, SQLCODE -802 (SQLSTATE 22003) will be generated.

Date/time Durations: Date and time durations are specified as DECIMAL(8,0)
and DECIMAL(6,0) respectively, but if stored in the
database prior to V3R2, they became DECIMAL(9,0)
and DECIMAL(7,0) columns. Because of this, V3R2 still
accepts the odd-numbered precision for these durations,
when they are used as input.

Performance of Assembler Programs: Assembler does not support
even-numbered precision. If such table
columns are referenced in a predicate
containing a comparative host variable
in an Assembler program, the latter
must be declared with a precision one
higher than the column. This leads to
inefficient processing. You should
consider redefining such table columns
to odd-numbered precision to avoid
this reduction in performance.

8. Floating-point Ranges
Prior to V3R2, there was a certain range of floating-point values that went
beyond the allowable values for the database and if encountered, would
generate SQLCODE -405 (SQLSTATE 53020).

Appendix I. Incompatibilities Between Releases 497

In V3R2, because of a necessary change in the checking algorithm for
floating-point constants, the following two narrow ranges have been added to
the original range and will now also trigger SQLCODE -405 when
encountered:
v Approximately +7.2370055773322608E+75 to +7.23700557733622E+75
v Approximately -7.2370055773322608E+75 to -7.23700557733622E+75.

9. Decimal Precision in Internal Sorts
Prior to V3R2, an arithmetic operation involving decimal columns, such as
COL1*COL2/100 or SUM(COL3), allowed a precision of up to 15 digits,
unless the SQL query specified something less.
In V3R2, with the enhancement of decimal precision, this allowable precision
is now expanded to 31 digits. As a result, it is possible for a query that has
been migrated from V3R1 to generate SQLCODE -101 (SQLSTATE 54001) with
a value of 'ARIXECK' in the SQLERRP field of the SQLCA. This error
indicates that the maximum allowable size (255) of an internal sort key has
been exceeded. This can only occur if the query is fairly complex and requires
an internal sort.

Note: Queries that use internal sorts are typically those that use ORDER BY,
UNION, or DISTINCT.

If you experience this error, you can reduce the precision of the arithmetic
operations in the select list of your query by applying the DECIMAL scalar
function. This, in turn, may reduce the internal sort key to an acceptable
length.

10. Quantified Predicates Involving Null Values
Prior to V3R2, null values in quantified predicates (ALL, ANY) were not
handled according to the FIPS standard.
In V3R2, the FIPS standard applies. As a result, the truth value of these
predicates is different from previous releases for some cases involving null
values.
See “Detailed Notes on V3R2-V3R1 Incompatibilities” on page 500 for a
discussion on these cases and examples to illustrate the incompatibilities.

Application Programming

11. Negative Indicator Variables in Predicates
Prior to V3R2, the use of negative indicator variables in predicates was limited
to the basic equal-to (=) predicate in static, dynamic, and extended dynamic
SQL.
In V3R2, the use of negative indicator variables in predicates is extended in
some areas and restricted in others. This use is now allowed in all predicates
of static SQL and extended dynamic SQL when a descriptor is specified on the
PREPARE statement. SQLCODE -309 (SQLSTATE 22512) is generated when a
negative indicator variable is used in any predicate within dynamic SQL, or
extended dynamic SQL when no descriptor is specified on the PREPARE
statement.

12. Declaration of Indicator Variables
Prior to V3R2, existing application programs that used indicator variables
declared with a data type other than the equivalent of SMALLINT were
accepted.

498 System Administration

In V3R2, these programs are no longer accepted. For FORTRAN programs,
error message ARI0550E is generated at preprocessing time; for Assembler, C,
COBOL, and PL/I programs, SQLCODE -326 (SQLSTATE spaces) is generated
at preprocessor time.

13. Incorrect Data Inserted from Variable Length Host Variables
Prior to V3R2, incorrect data could get inserted into the database from a
variable length host variable that had a length value greater than the
maximum that was defined at preprocessing time.
In V3R2, this is prevented. If it is attempted, SQLCODE -311 (SQLSTATE
22501) will be generated.

14. Incorrect String Representations of Date/time Values
Prior to V3R2, incorrect string representations of date/time values generated
errors at preprocessor time.
In V3R2, warning messages are issued instead; then if the string
representations are not corrected, they will result in errors at run time.

15. COBOL Host Variable Names
Prior to V3R2, if a COBOL program contained a hyphen (-) in the declaration
of a host variable name, this hyphen could be represented as an underscore
(_) where the name was used within an SQL statement.
In V3R2, the preprocessor no longer accepts this substitution within the
program.
If you have any such substitutions in your COBOL source code, they will have
to be converted to hyphens before preprocessing under V3R2.

16. Validation of Host Variables
Prior to Version 3, applications containing any of the SQL statements SELECT,
SELECT INTO, UPDATE, INSERT, or DELETE, could be preprocessed from a
user machine on one release of the product to a database machine on another
release of the same version.
In V3R2, there is a change to the validation of host variables for these
statements. As a result, this preprocessing fails when the two releases
involved are V3R1 and a later release of Version 3. To circumvent this
problem, you must preprocess the application from a user machine at the
same release level as the database machine on which you would like the
package created before compiling, linking, and executing the application from
the user machine.

Application Programming (VM Only)

17. Backslash Continuation Character Embedded in C
Prior to V3R2, the backslash was not recognized as a continuation character in
SQL statements embedded in the C language. For example, the following
two-line SQL statement ends its first line with a backslash followed by three
blanks, each denoted as �:

EXEC SQL INSERT INTO T1 VALUES(‘abcd\���
efg’, 2);

In these earlier releases, the first value inserted into the table would be:
‘abcd\���efg’

In V3R2, the blackslash is recognized as a continuation character in SQL
statements embedded in the C language. As a result, the first value inserted
into the table, using the above example, becomes:

‘abcdefg’

Appendix I. Incompatibilities Between Releases 499

18. SQL Statements Embedded in the C Language
Prior to V3R2, if an SQL statement was followed by a C statement, C
comment, or another SQL statement on the same line, this follow-on
information was ignored by the preprocessor.
In V3R2, this follow-on information is processed by the preprocessor, with one
exception: if the first SQL statement on the line is an INCLUDE statement
(other than INCLUDE SQLCA or INCLUDE SQLDA), warning message
ARI5406I is issued and the follow-on information is not processed.

19. NUL-terminated Strings in C
Prior to V3R2, if a host variable was declared just one byte too short to hold
the NUL byte, the system did not insert the NUL byte into the host variable
and no truncation of the data occurred. SQLWARN1 in SQLCA was set to 'N'
in such cases.
In V3R2, the database manager interprets a character string in C that has a
length greater than 1 as a NUL-terminated string. It puts a NUL byte at the
end of the string, even though this may cause truncation. This applies when
the data type from the database is either character or date/time. In the case of
the host variable being declared just one byte short of the actual length of the
data, SQLWARN1 is no longer set to N. It is treated the same as other
truncation cases: SQLWARN1 is set to W, and the last byte of the declared
length of the host variable becomes a NUL byte.

20. SQL Case-Sensitive Names in C
Prior to V3R2, statement names and cursor names in SQL statements
embedded in C were case-sensitive (that is, a letter coded in lowercase would
not be equal to the same letter coded in uppercase).
In V3R2, these names are folded into uppercase.
This will require a change to your application code, if you have used multiple
statements or cursor names that differ only by their case sensitivity.

Detailed Notes on V3R2-V3R1 Incompatibilities
1. Quantified Predicates Involving Null Values

Those cases for which your applications will give different results than they did
in earlier releases can be divided into three types, as described below. The
accompanying examples are based on these two tables, where the question
mark represents a null value:

Table T1: C1 C2 Table T2: C3
-- -- --
? 1 ?
2 2 2

Recalling that a quantified predicate involves the structure
<expression> <quantifier> <subquery>

the three types can be described as follows:
a. Prior to V3R2, when
v The value of the expression is NULL, and
v The subselect returns an empty set,

the truth value of the quantified predicate was UNKNOWN.

In V3R2, the truth value is TRUE if the quantifier is ALL, and FALSE if the
quantifier is ANY.

500 System Administration

In the example below, the second row of T1 is returned by any release of
the database manager, but the first row of T1 is only returned by V3R2.

SELECT * FROM T1
WHERE C1 > ALL (SELECT C3 FROM T2 WHERE C3 > 2)

b. Prior to V3R2, when
v The quantifier is ALL, and
v The subselect returns at least one NULL, and
v There are no values in the result of the subselect for which the implied

predicate (the predicate applied to just one value in the result) is FALSE;

or when
v The quantifier is ANY, and
v The subselect returns at least one NULL, and
v There are no values in the result of the subselect for which the implied

predicate (the predicate applied to just one value in the result) is TRUE,

the truth value of the quantified predicate was FALSE, except when the
expression was NULL.

In V3R2, the truth value is UNKNOWN.

Note: This change will only affect the results of queries in which a NOT
has been applied to the quantified predicate in the situations
described above. When a NOT is applied, the truth value is TRUE for
prior releases, but is UNKNOWN for V3R2.

In the example below, both rows of T1 are returned by previous releases,
but only the first row of T1 is returned by V3R2:

SELECT * FROM T1
WHERE NOT C2 = ALL (SELECT C3 FROM T2)

See the following references for performance implications of queries similar
to those shown in the above examples:
v Chapter 2 of the V3R2 Database Administration manual for a discussion on

nulls in quantified predicates where null columns are allowed, under
“Creating Tables”.

v Chapter 5 of the V3R2 Diagnosis Guide and Reference manual for a
discussion on inefficient search where nullable expressions are involved,
under “Analysis of Performance Problems”.

c. Prior to V3R2, when:
v The expression contains an arithmetic expression, scalar function or

column function
v The quantifier is ALL
v The subselect returns at least one NULL, and
v There are no values in the result of the subselect for which the implied

predicate (the predicate applied to just one value in the result) is FALSE,

the truth value of the quantified predicate was TRUE, except when the
expression was NULL.

In V3R2, the truth value is UNKNOWN.

Appendix I. Incompatibilities Between Releases 501

In the example below, the second row of T1 is not returned by any release
of the database manager. However, the first row of T1 is returned by
previous releases, but not by V3R2.

SELECT * FROM T1
WHERE C2 + 1 = ALL (SELECT C3 FROM T2)

Comparison of types (b) and (c): Type (c) is really a subset of the more general
case outlined in type (b), by virtue of its
extra condition about the expression.
However, type (c) is included separately
here, because it represents an exception to
the more general case. The exception lies in
the fact that these two types generated
different results for the truth value prior to
V3R2. In V3R2, however, this exception
disappears, because their results are now the
same (truth value = UNKNOWN).

V3R3 and V3R2 Incompatibilities (VM Only)

Note: This section does not include the restrictions on the use of DRDA protocol,
as that topic is covered in the appendix describing DRDA considerations.

SQL and Data

1. New Reserved Word, CONCAT
Prior to V3R3, CONCAT was not a reserved word in SQL and could therefore
be used as an ordinary identifier.
In V3R3, CONCAT is a reserved word, and can be used as an alternative to
the concatenation operator (||). Any existing applications that use it as an
ordinary identifier will have to be changed before they are preprocessed
under V3R3; otherwise SQLCODE -105 (SQLSTATE 37501) will be generated.
You can address this incompatibility by changing this ordinary identifier to
use a nonreserved word, or you can retain the original name by redefining it
as a delimited identifier.

2. REVOKE UPDATE
Prior to V3R3, the REVOKE statement for the UPDATE privilege ignored any
column names that might be present as parameters of the UPDATE option —
even though such coding was invalid. (This statement is only done on a table
basis, never a column basis.)
In V3R3, such parameters are not allowed. If they are used, SQLCODE -105
(SQLSTATE 37501) will be generated.

3. Numeric Data in Character Strings
Prior to V3R3, columns with a data type of CHAR or VARCHAR accepted
numeric data, including FLOAT, on insert or update. For example, the
following statements did not create an error:

CREATE TABLE T1 (COL CHAR(8))
CREATE TABLE T2 (COL VARCHAR(8))

INSERT INTO T1 (123)
INSERT INTO T2 (123)
INSERT INTO T1 (1E1)
INSERT INTO T2 (1E1)

502 System Administration

UPDATE T1 SET COL = 123
UPDATE T2 SET COL = 123
UPDATE T1 SET COL = 1E1
UPDATE T2 SET COL = 1E1

In V3R3, these inserts and updates now generate SQLCODE -408 (SQLSTATE
53021).

If you want to use the value 123, you must now use it as a character literal
('123'). Float literals are no longer allowed for character columns.

4. Invalid String Representation of Datetime
Prior to V3R3, when a predicate was being evaluated that contained an
operand that was one of the special registers CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, and one of the other operands was a
character column of the correct length but containing a value that was not a
valid string representation of a datetime, the application ran successfully. Any
row containing such an invalid value was returned if it met the search
condition. For example, all invalid date values in column, ORDERDATE, were
returned for the following condition:

WHERE CURRENT DATE <> ORDERDATE

In V3R3, SQLCODE -180 (SQLSTATE 22007) is generated under the above
condition.

5. Internally Generated Table Names
Prior to V3R3, the system internally built a composite table name that
included the name of the relational database, based on a certain maximum
length.
In V3R3, this length is slightly increased, and the internal process is now
common to the SQL/DS and DRDA protocols. As a result, there is a very
small probability that some of your SQL statements could exceed an internal
limitation of the system and generate an SQLCODE -101 (SQLSTATE 54001).
The more table names you have in a statement, the greater the probability of
this occurring. If you experience this error, one possible solution would be to
break the statement down into two separate statements.

Application Programming

6. Setting of SQLN Field
Prior to V3R3, if field SQLD in the SQLDA area held a greater value than the
SQLN field after a DESCRIBE, the system set SQLN to zero.
In V3R3, the value of SQLN is not changed.
If your application tests SQLN for zero to verify successful completion of the
DESCRIBE, the logic will have to be revised to test for SQLD > SQLN.

7. C NUL-Terminated Strings - Variable Length
Prior to V3R3, a C input string with a length greater than 1 was treated as a
fixed length character host variable. It was not mandatory to have a NUL
present in it except when the input host variable length was 255, in which
case SQLCODE -426 (SQLSTATE 22523) was generated.
In V3R3, a C input string is no longer treated as fixed length. A NUL must be
present on all C NUL-terminated input strings except those with a length of 1;
otherwise SQLCODE -302 (SQLSTATE 22001) is generated. SQLCODE -426
(SQLSTATE 22523) is no longer generated.

8. C NUL-Terminated Strings - NUL Byte

Appendix I. Incompatibilities Between Releases 503

Prior to V3R3, the NUL byte in a C NUL-terminated string was treated as a
blank.
In V3R3, it is treated as a string terminator.

9. C NUL-Terminated Strings - Trailing Blanks
Prior to V3R3, any trailing blanks in a C NUL-terminated string were
removed when using the string to update or insert a VARCHAR column or to
compare to a VARCHAR column.
In V3R3, these blanks will no longer be removed.

10. C NUL-Terminated Strings - Length
Prior to V3R3, the scalar function, LENGTH, with a C NUL-terminated string
as its argument, returned the defined length.
In V3R3, this function now returns the length according to the position of the
NUL terminator. (This length excludes the terminator itself.)

11. SQL Statement String
Prior to V3R3, an SQL statement string could end with a statement terminator,
when used in conjunction with EXECUTE IMMEDIATE, PREPARE, or
Extended PREPARE. An example of such a statement is

DROP TABLE T1;

which has a trailing semicolon. This was allowed in application programs,
even though such coding was invalid. It was also allowed in ISQL and QMF*,
since those facilities also use the above three statements to process
interactively issued statements.

In V3R3, this statement terminator is not allowed. If it is used, SQLCODE -104
(SQLSTATE 37501) will be generated.

If you have been using such a terminator for the CREATE VIEW statement,
your use of catalog table SYSVIEWS could be affected, as described in the DB2
Server for VSE & VM SQL Reference manual.

12. Preprocessing of Extended Dynamic Statements
Prior to V3R3, a cursor-variable with a defined length greater than 18 was
accepted by the preprocessor, even though such variables should only be
defined with a length of 18.
In V3R3, the preprocessor traps this condition and generates SQLCODE -324
(SQLSTATE spaces). You will have to change any applications that use these
invalid cursor-variable lengths in your extended dynamic statements.

13. Data Type of Hexadecimal Constants
Prior to V3R3, application programs that assumed that hexadecimal constants
have a data type of VARGRAPHIC, because they are used in the context of
GRAPHIC and VARGRAPHIC data, were accepted.
In V3R3, such constants are considered to be VARCHAR. If used in
conjunction with GRAPHIC or VARGRAPHIC data, they will cause a number
of specific SQLCODEs and corresponding SQLSTATEs, dependent on
individual cases.
This also means that SQLCODE -421 (SQLSTATE 53055), dealing with
hexadecimal literals of odd length, is no longer generated.

14. Non-updatable View

504 System Administration

Prior to V3R3, a user with DBA authority who tried to update a view that was
not updatable got an appropriate error, such as SQLCODE -154 (SQLSTATE
56009). A user without DBA authority, however, got an authorization error,
SQLCODE -551 (SQLSTATE 59001).
In V3R3, the latter user receives the same error message as the DBA user,
instead of the authorization message.

15. SYSTEM Table Missing from the System Catalog
Prior to V3R3, if you tried to INSERT, DELETE, or UPDATE a table or view
created by 'SYSTEM', but which was not in the system catalog, SQLCODE
-823 (SQLSTATE 53032) was generated, indicating that you lacked proper
authorization.
In V3R3, SQLCODE -204 (SQLCODE 52004) is generated instead, indicating
that the object could not be found in the system catalog.

16. Folding of Lowercase in PREP and DBSU
Prior to V3R3, folding of lowercase into uppercase in PREP and the DBS
Utility was done by adding X’40’ to the hexadecimal representation of the
lowercase character. Sometimes this resulted in characters being folded
incorrectly (for example, in the Katakana character set).
In V3R3, this is done using the 370 built-in Assembler instruction
TRANSLATE and the user-specified character translation table, in order to be
consistent with how the application server handles this operation. One
exception to this is when the DBS Utility processes SCHEMA input files.
Folding is no longer done on these files; this makes it consistent with the DBS
Utility control file, which only allows uppercase input.
If your applications have built-in dependencies on the previous folding
scheme, you could get different results. For example, a Katakana user may
have a character in his or her coding scheme that has a hexadecimal value
that appears to the database manager as one of the 26 lowercase English
letters. Instead of being folded to uppercase English, the Katakana character
will now be folded according to the Katakana character translation table.
If you have lowercase in your DBS Utility SCHEMA input file, you will have
to change it to uppercase.

17. Loading Audit Trace
Prior to V3R3, the Database Administration manual contained sample table
definition and DATALOAD parameters for creating a security audit table and
loading trace records into it.
In V3R3, the position of the columns within the table are changed and a new
column, EXTLUWID, added. If you have been loading audit trace data using
this table definition and a DATALOAD job, you will need to change the
DATALOAD job, as documented in the V3R3 Database Administration manual.
If you also want to make use of the new EXTLUWID column, you will need
to recreate the table as well.

18. Switching Databases without Connect Authority
Prior to V3R3, if you attempted to switch databases and did not have connect
authority for the new database, SQLCODE -561 (SQLSTATE 42505) was
generated as a warning situation. It was possible to continue processing on
the original database with a non-CONNECT statement.
In V3R3, this situation is treated as a severe error, SQLWARN0 and
SQLWARN6 are set to 'S', and any subsequent non-CONNECT statement
results in termination of the application. Only a CONNECT statement is
accepted.

19. SQLCODE Generated by Operator FORCE Command

Appendix I. Incompatibilities Between Releases 505

Prior to V3R3, either SQLCODE -933 (SQLSTATE 57027) or SQLCODE -948
(SQLSTATE 57027) was returned to the application, when the operator issued
a FORCE command to roll back the current logical unit of work.
In V3R3, only SQLCODE -933 (SQLSTATE 57027) is returned.

20. SQLSTATE Changes
Prior to V3R3, certain SQLCODEs had associated SQLSTATEs that did not
conform to the SAA standards.
In V3R3, these SQLSTATEs are replaced with ones that do conform. See
“Detailed Notes on V3R3-V3R2 Incompatibilities” on page 508 for a list of
these codes, along with their old and new SQLSTATEs.

System Environment

21. The Use of DBCS Characters with the CHARNAME Setting
Prior to V3R3, you could use graphic or mixed constants, the VARGRAPHIC
scalar function, or you could define columns as GRAPHIC or FOR MIXED
DATA, independent of the CHARNAME setting on the application server.
Furthermore, you could use graphic or mixed constants, independent of the
CHARNAME setting on the application requester.
In V3R3, the above usages result in error conditions such as SQLCODE -640
(SQLSTATE 56031) and SQLCODE -332 (SQLSTATE 57017), if the
corresponding CHARNAME does not define a character set with mixed
CCSID (that is, if CCSIDMIXED = 0).

22. Setting of CHARNAME
Prior to V3R3, if no CHARNAME was specified, SQLSTART defaulted to
CHARNAME = ENGLISH.
In V3R3, it defaults to the CHARNAME used on the previous invocation. If
the CHARNAME setting does not define a character set with mixed CCSID
(that is, if CCSIDMIXED = 0), then the default character subtype (CHARSUB)
will be forced to a value of SBCS.
See the V3R3 System Administration manual for the initial default
CHARNAME value after installation or migration.

23. Addressing Mode 31-Bit
Prior to V3R3, application programs running in single user mode in a VM
environment of XA, ESA 1.0 ESA, or ESA 1.1 ESA, as well as any user exits
(accounting, datetime, or field procedures) executed in these environments on
the database machine, whether single or multiple user mode, only ran in
24-bit addressing mode.
In V3R3, if the database manager is running in 31-bit addressing mode
(AMODE 31) on the database machine, the above application programs and
user exits will also run in this mode.
If you have application programs or user exits that fit into this category, you
must do one of the following:
v Ensure that they can accommodate 31-bit addressing mode
v Operate the database machine in 370 mode
v Set the AMODE SQLSTART parameter to 24 to force the database manager

to run in 24-bit addressing mode.

For information on converting your applications to accommodate 31-bit
addressing mode, see the VM/XA* Application Conversion Guide For more
information on single user mode and user exits, see the System Administration
manual.

24. Section Size in a Package

506 System Administration

Prior to V3R3, during the preprocessing of a program, the system allocated a
section size for each statement in the package.
In V3R3, due to other design changes, it is necessary to increase the size of
these sections for SELECT statements. As a result, when an existing package is
subjected to a dynamic repreparation, it may cause the dbspace to become
full, generating SQLCODE -946 (SQLSTATE 57025).
If this occurs in your installation, you will have to explicitly prepare the
program with the SQLPREP EXEC, making sure that you have a dbspace that
can accommodate the revised package.
Also, the larger sections increase the amount of virtual storage required to run
the package. For example, if you have many dynamic SELECT statements in a
logical unit of work, they will use up more storage than in the previous
release.

25. Three-Part Object Names
Prior to V3R3, an object that was created on a database named (for example)
DBX could be successfully referenced later by an application, even though the
name for that database had been changed (to, say, DBY). All you had to do
was use the revised name, DBY, when you established the database for the
application by means of the SQLINIT EXEC.
In V3R3, the system maintains the name of the database that was used at the
time of the object’s creation (DBX in this example), as the first part of the
object name, thereby making it a three-part name. If you now establish the
database for the application under a different name (for example, DBY) the
system uses that name as the new qualifier when you try to reference the
object. This results in a mismatch of object names and causes SQLCODE -114
(SQLSTATE 56061) to be generated.
This problem can be avoided by simply not changing the names of your
databases.

26. Special Characters for CONCAT Operation and Not Equal Condition
Prior to V3R3, the class of the hexadecimal values in the table below was 0.

CHARNAME Hexadecimal Values

ENGLISH X'5A', X'B0'

FRENCH X'BA', X'BB'

GERMAN X'BA', X'BB'

ITALIAN X'BA', X'BB'

KATAKANA X'5A', X'B0'

SPANISH X'BA', X'BB'

In V3R3, the class of these hexadecimal characters is changed to 6. This is
reflected in the CHARCLASS column values of the SYSTEM.SYSCHARSETS
catalog table. This change provides additional special characters that can be
used to depict the CONCAT operation and the not equal condition in SQL
syntax. This, in turn, provides greater flexibility in the use of these two SQL
facilities between application requesters and servers that are assigned different
CHARNAMES.

This could affect your applications, if they are dependent on previous
reclassifications of any of the above characters from class 0 to class 3, for use
in ordinary identifiers. For example, if you had reclassified the explanation
mark (!) so that DANGER! could be used as an ordinary identifier, this will no
longer work because the explanation mark is one of the characters that is now
assigned to class 6.

Appendix I. Incompatibilities Between Releases 507

See the DB2 Server for VM System Administration manual for details on these
classifications.

Detailed Notes on V3R3-V3R2 Incompatibilities
1. SQLSTATE Changes

These changes are shown in the following table.

SQLCODE Old
SQLSTATE

New
SQLSTATE

DESCRIPTION

-131 53004 22019 Either the LIKE predicate has an invalid escape character, or the
string pattern contains an invalid occurrence of the escape
character.

-551 59001 42501 User wwwwww does not have the xxxxxx privilege to perform
yyyyyy on zzzzzz.

-552 59002 42502 xxxxxx is not authorized to yyyyyy.

-554 59002 42502 You cannot grant a privilege to yourself.

-555 59002 42502 You cannot revoke an authority or a privilege from yourself.

-556 59002 42502 An attempt to revoke a privilege from xxxxxx was denied.
Either xxxxxx does not have this privilege, or yyyyyy does not
have this authority to revoke this privilege.

-556 59004 42504 An attempt to revoke a privilege from xxxxxx was denied.
Either xxxxxx does not have this privilege, or yyyyyy does not
have this authority to revoke this privilege.

-558 59004 42504 You cannot revoke an authority from xxxxxx because xxxxxx
has DBA authority.

-560 59005 42505 A CONNECT statement contains an incorrect password for
xxxxxx.

-561 59005 42505 User xxxxxx does not have CONNECT authority.

-566 59001 42501 User ID xxxxxx does not have authorization to modify package
yyyyyy.

-606 59002 42502 The COMMENT ON or LABEL on statement failed because the
specified table or column is not owned by xxxxxx.

-610 59002 42502 The statement failed because a user without DBA authority
attempted to create a table in a DBSPACE owner by another
user or by the system.

-708 59002 42502 You cannot ALTER, LOCK, or DROP a PUBLIC DBSPACE
because you do not have DBA authority.

-713 37515 53015 Incorrect isolation level value xxxxxx specified. Only values C
or R may be used.

-801 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on
zzzzzz data.

-802 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on
zzzzzz data, position nnnnnn. psw1 psw2.

-815 59005 42502 CONNECT denied by accounting user exit routine.

-30053 59006 42506 Owner xxxxxx authorization failed.

508 System Administration

V3R4 and V3R3 Incompatibilities (VM Only)

Note: This section does not include the restrictions on the use of DRDA protocol,
as that topic is covered in the appendix describing DRDA considerations.

SQL and Data

1. Enhanced EXPLAIN Tables
Prior to V3R4, the tables used by the EXPLAIN statement had some major
differences from the corresponding tables in the DB2* product.
In V3R4, these differences are minimized to enhance the EXPLAIN functions
and make them more compatible with those in the DB2 product. As a result,
there are significant changes to the design of these tables, and the EXPLAIN
statement no longer works on the old tables. These changes include new
columns dispersed among old ones, the loss of one column, a column data
type change, and a column length change.
See the DB2 Server for VSE & VM SQL Reference manual for the new design of
these tables.
If you have used the EXPLAIN tables in prior releases, you will have to
recreate the revised tables before using the EXPLAIN statement in V3R4. To
assist you in this task, a DBSU job file containing the necessary create
statements is now included as a MACRO file (called ARISEXP) with the
product.
Similarly, if you have applications which depend upon the design of the old
EXPLAIN tables, you will need to modify these applications to reflect the new
design.

Application Programming

2. Reason Codes for Incorrect Host Variable Declarations
Prior to V3R4, a large number of SQLERRD1 codes were associated with
SQLCODE -314 (SQLSTATE spaces) at preprocessor time for invalid host
variables.
In V3R4, with the introduction of host structures and the associated parsing of
declaration statements by the preprocessor, the values of some of these
SQLERRD1 codes have changed.
If your application has dependencies on specific SQLERRD1 values, you
should look for these changes in the DB2 Server for VM Messages and Codes
manual and modify your application accordingly.

3. Structured Declarations in COBOL and C
Prior to V3R4, there were a number of error situations for structure
declarations in the SQL DECLARE SECTION that were not checked by the
COBOL and C preprocessors.
In V3R4, these situations are subjected to validation checks, resulting in the
following potential errors, which must be corrected before compilation:

SQLCODE SQLSTATE Condition

-107 54003 Host variable name too long

-307 spaces Duplicate host variable names

-314 spaces Syntax and semantic errors in a host variable

4. Qualified Field Names in RPG

Appendix I. Incompatibilities Between Releases 509

Prior to V3R4, it was not necessary to qualify the name of a field or subfield
in an SQL statement, when that field or subfield name had been duplicated in
more than one data structure.
In V3R4, you must qualify these names as follows:
v file-name.field-name
v DS-name.subfield-name

The preprocessor needs this information in order to interpret the reference. If
the qualifier is missing, a preprocessor ARI5370E message is generated.

5. Use of Structures in RPG as Host Variables
Prior to V3R4, when the database manager referenced an RPG structure as a
host variable, one of two things happened:
v If the structure contained one or more subfields, the database manager

accepted the reference. The structure was interpreted as a single character
field with a length equal to the length of the total structure.

v If the structure contained no subfields, the database manager rejected the
reference, generating an error message.

In V3R4:
v If the structure contains one or more subfields, the reference to it is now

interpreted as a reference to each subfield in the structure, giving
unpredictable results and potential errors at execution time.

v If the structure contains no subfields, the reference to it is now interpreted
as a reference to a fixed length character string with a length equal to the
length of the data structure.

Note: Individual subfields within a structure can still be directly referenced as
valid host variables. There is no change to this.

If your application references RPG structures as host variables, you will have
to change either the declaration section or the SQL statements affected.

6. Application Programs in an Unconnected State
Prior to V3R4, if an application program was connectable but in an
unconnected state as a result of a severe error (SQLWARN6 = S) and issued a
non-connect SQL statement, the database manager initiated an abend of the
application.
In V3R4, SQLCODE -900 (SQLSTATE 51018) is generated and the abend does
not occur. If your application is dependent on the abend scenario in this
situation, you will have to change it. Otherwise, it may enter an infinite loop.

7. Use of Host Variables in CONNECT Statement
Prior to V3R4, if you used a host variable for the userid or password in a
CONNECT statement and the data type of that variable did not satisfy one of
the conditions listed below, an error was generated at run time:
v C programs: C-NUL string of length 9
v Assembler, COBOL, or PL/I programs: fixed length character string of

length 8.

In V3R4, these conditions are checked by the preprocessor. If they fail the
check, SQLCODE -324 (SQLSTATE spaces) is generated.

8. Data Types of Parameter Markers in Predicates
Prior to V3R4, the resolution of data types for a parameter marker was
dependent on the highest order of the data types of all the operands to the
left of the parameter marker. Highest order, in the case of numeric operands,
implies FLOAT > DECIMAL > INTEGER > SMALLINT.

510 System Administration

In V3R4, this resolution process is changed to become more consistent with
the DB2 product. If there is an operand expressed as a column name in a
BETWEEN predicate, the data type of any parameter marker is resolved as
that of the leftmost such operand. Otherwise, the data type of the parameter
marker is resolved as that of the leftmost operand that is not a parameter
marker — whether in a BETWEEN predicate or an IN predicate.
This could cause a different result from previous releases for predicates that
can have more than two operands (namely BETWEEN and IN), but only if
your application assigns parameter marker values that are inappropriate for
your data.
See “Detailed Notes on V3R4-V3R3 Incompatibilities” on page 512 for some
examples and further discussion.

9. Bad Input Records in DATALOAD
Prior to V3R4, a bad input record would terminate DATALOAD command
processing on multiple tables when the DBS Utility was running in multiple
user mode — whether or not it was preprocessed with the NOBLOCK option.
An insert error would be indicated with one of the following codes, followed
by message ARI0862E:

SQLCODE SQLSTATE
-405 53020
-424 22502
-530 23503
-802 22003, 22012, or 22502
-803 23505

In V3R4, such command processing is no longer terminated, if the DBS Utility
is preprocessed with the NOBLOCK option. The error indications are still
generated, but the processing skips over the bad record and continues.

If you have a dependency in your application on this termination approach
prior to V3R4, you may want to address this change in the case of the
NOBLOCK option.

10. Index Dependency of a Package
Prior to V3R4, when a SELECT DISTINCT was applied to a single column
that had a unique index, the system assumed uniqueness within the column,
rather than applying a sort. However, this kind of index dependency was not
recorded in the package.
In V3R4, this technique now records the index dependency in the package (for
system integrity), even though the index is not actually used to access the
table. In addition, the technique is extended to column functions that use
DISTINCT — for example, SELECT COUNT(DISTINCT(COL4)), where COL4
has a unique index.
If the index is dropped, the package will now be marked as invalid, causing a
dynamic reprep. After the reprep, the application will take longer to execute,
because a sort will be needed to process DISTINCT correctly.

System Environment

11. Invocation of TRACE for Storage
Prior to V3R4, if you specified level 2 trace for the STAT or PA component of
the TRACDBSS or TRACRDS parameter, respectively, when starting the
database manager, you received the Working Storage Manager tracing.
In V3R4, you can use the same specifications, but the Working Storage
manager tracing is no longer part of the output.

Appendix I. Incompatibilities Between Releases 511

In order to get this part, you must now use the TRACSTG parameter, or select
the STG component when using the TRACE operator command. The format
from this trace is different.

12. DBCS Data Conversion Errors
Prior to V3R4, if there was a loading error in a DBCS data conversion routine,
SQLCODE -332 (SQLSTATE 57017) was generated with reason code 9. If there
was a dropping error in a DBCS data conversion routine, SQLCODE -901
(SQLSTATE 58004) or SQLCODE -30020 (SQLSTATE 58009) was generated.
In V3R4, the above codes are replaced with SQLCODE -674 (SQLSTATE 57011)
with a separate reason code for each specific error.

13. Saved Segments in Installation Process
Prior to V3R4, you could install into saved segments during the installation
process (with the I5688103 EXEC), or at post installation time.
In V3R4, this step is no longer in the I5688013 EXEC. Installing into saved
segments must be done afterwards.
If you have automated the running of this EXEC by providing an input file
containing the answers to the prompts (rather than submitting them from the
console), the EXEC will fail when trying to process your input to the removed
saved segment step. You will have to modify your answer file accordingly.

14. Enhancement to COLDLOG
Prior to V3R4, the COLDLOG reconfiguration function erased the log contents
before starting the database manager. No warning was given if there were any
logical units of work in the log that were needed for recovery processing.
In V3R4, the log content is not erased until after startup, and the user is
warned beforehand if the log content is needed for recovery.
If you have automated the COLDLOG function in some way by providing a
predetermined set of answers to the prompts (rather than submitting them
from the console), the SQLLOG EXEC will fail. You will have to modify your
automated process to accommodate the change. See the DB2 Server for VM
System Administration manual for more information on this function.

Detailed Notes on V3R4-V3R3 Incompatibilities
1. Data Types of Parameter Markers in Predicates

In this first example, prior releases would resolve the data type of the
parameter marker as DEC(4,2), whereas V3R4 would resolve it as INTEGER
(assuming INTEGERCOL is the name of a column with a data type of
INTEGER).

23.55 BETWEEN ? AND INTEGERCOL

The next two examples illustrate how these data type differences can produce
quite different end results when the SQL statement is executed. In this next
example, the predicate would generate SQLCODE -302 (SQLSTATE 22003) in
prior releases, when the leftmost parameter marker is assigned a value of 345
and the rightmost parameter marker is assigned a value of 206.7. This error will
not occur in V3R4.

EDLEVEL IN (16, ?, 17.3, ?)

This is because the prior releases assign a data type of DEC(3,1) to the
rightmost parameter marker, to which the value 206.7 cannot be assigned. V3R4
assigns a data type of SMALLINT to the rightmost parameter marker (based on
the column EDLEVEL) and then truncates 206.7 to accommodate this data type.

512 System Administration

In the next example, the predicate would generate SQLCODE -302 (SQLSTATE
22001) in V3R4, but not in prior releases, when the parameter marker is
assigned a value of 'GHIJKL'.

DEPTNO IN ('ABCDEF', ?, 'ABC')

This is because V3R4 assigns a data type of CHAR(3) to the parameter marker
(based on column DEPTNO), to which the value 'GHIJKL' cannot be assigned.
Prior releases assign a data type of CHAR(6) to the parameter marker.

V3R5 and V3R4 Incompatibilities
1. SQL/DS Database Archive Incompatibilities

Archives that were created on prior releases of SQL/DS cannot be restored by
the SQL/DS V3R5 database manager. If this is attempted, the database manager
will issue message ARI2038E and terminate. See the DB2 Server for VM Messages
and Codes or DB2 Server for VSE Messages and Codes manual for more details on
this message.

2. SQL/DS VSAM Shareoptions Changes under VSE
In prior releases of SQL/DS (VSE), the VSAM SQL/DS directory, data and log
data sets were defined with SHAREOPTIONS(1). In SQL/DS V3R5, these
VSAM files must now be defined with SHAREOPTIONS(2).

3. SQLSTATE Values Changes
Many SQLSTATE values have changed in SQL/DS V3R5. The new SQLSTATE
values and their former values can be found in the DB2 Server for VM Messages
and Codes or DB2 Server for VSE Messages and Codes manuals. Changing
SQLSTATEs is an incompatible change since many SQLSTATE values that are
returned from diagnostic situations will be different from previous releases of
SQL/DS. Application programmers should review any programs that use
SQLSTATE in the SQLCA each time an SQL statement is executed.

4. Messages and Codes Changes
Some SQL/DS messages and codes have changed, and some new ones have
been added in SQL/DS V3R5. See the DB2 Server for VM Messages and Codes
and DB2 Server for VSE Messages and Codes manuals for details.

5. Display CICS Information on SHOW CONNECT
If the package that the connected user is running was created in SQL/DS
Version 2 Release 2 or earlier, the CICS information will not be displayed by
the SHOW CONNECT command because the RDIIN for V2R2 or earlier does
not contain the RDIIN extension area. The package must be reprepped with
SQL/DS V3R5 and recompiled to make the CICS information available.

V5R1 and V3R5 Incompatibilities
1. Messages and Codes Changes

Many messages and codes have changed, and some new ones have been added
in DB2 Server for VSE & VM Version 5 Release 1. See the DB2 Server for VM
Messages and Codes and DB2 Server for VSE Messages and Codes manuals.

2. DB2 Database Archive Incompatibilities
Archives that were created on prior releases cannot be restored by the DB2
Server for VSE & VM Version 5 Release 1 database manager. If this is
attempted the database manager will issue message ARI2038E and terminate.
See the DB2 Server for VM Messages and Codes manual.

3. DBSU

Appendix I. Incompatibilities Between Releases 513

If you use R350 DBSU to unload and reload a table in a R510 database, the
value of the DATACAPTURE column will be lost.

4. Date/Time Exits and Field Procedures
VM Users with Date/Time or Field Procedure Exits that are dependant on
running in a 370 Mode virtual machine must convert to execute in a ESA mode
virtual machine. Note that exits requiring AMODE=24 are not affected, as we
still support running the Server code in AMODE=24. The above also applies to
Single User Mode application programs. The above also applies to Vendor
programs that run on the Server, such as database monitoring or tape mount
handling programs.

V6R1 and V5R1 Incompatibilities
1. Running the Database Server in 24-bit Addressing Mode (VM)

With Version 7 Release 2 the RDS component is linkedited with the AMODE
ANY option, instead of AMODE 24. This allows RDS to be loaded and
executed above the 16 MB line. This will free up valuable storage below the 16
MB line. However, if you use the AMODE(24) parameter, then RDS cannot be
executed above the line. If this is attempted, a program check will occur at start
up time.
To avoid this, you must use a maximum virtual storage size of 16MB which
will force RDS to be loaded below the line. If you need to run with
AMODE(24) all of the time, you should create an RDS saved segment that
resides below the 16MB line. If you only use AMODE(24) some of the time,
such as with some single user mode applications, you can create an alternate
bootstrap package which specifies an alternate RDS saved segment which
resides below the 16MB line, or specifies that RDS is run from free storage.
The AMODE parameter value is saved in the ″resid SQLDBN Q″ file.

V7R1 and V6R1 Incompatibilities
There are no incompatibilities between DB2 Server for VM V6R1 and DB2 Server
for VM V7R1.

V7R2 and V7R1 Incompatibilities
There are no incompatibilities between DB2 Server for VM V7R2 and DB2 Server
for VM V7R1.

514 System Administration

|

|
|

Notices

IBM may not offer the products, services, or features discussed in this document in
all countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2001 515

|

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing, or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

516 System Administration

Programming Interface Information
This manual is intended to help system administrators plan and maintain the
database manager.

This manual also documents General-use Programming Interface and Associated
Guidance Information and Product-sensitive Programming Interface and
Associated Guidance Information provided by the database manager.

General-use programming interfaces allow the customer to write programs that
obtain the services of the database manager.

General-use Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

General-Use Programming Interface

General-use Programming Interface and Associated Guidance Information...

End of General-Use Programming Interface

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of the database manager. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
programming interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Product-Sensitive Programming Interface

Product-sensitive Programming Interface and Associated Guidance Information...

End of Product-Sensitive Programming Interface

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX/6000
CICS CICS/VSE
DATABASE 2 DB2
DB2 for AIX DB2 Server for VM
DB2 Server for VSE DB2 Server for VSE & VM
Distributed Relational Database Architecture DRDA
IBM OS/2
OS/400 SQL/DS
System/370 System/390
Virtual Machine/Enterprise Systems Architecture VM/ESA

Notices 517

VSE/ESA VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

518 System Administration

Bibliography

This bibliography lists publications that are
referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application
Programming, SC09-2889

v DB2 Server for VSE & VM Database
Administration, SC09-2888

v DB2 Server for VSE & VM Database Services
Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and
Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995
v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990
v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890
v DB2 Server for VM Messages and Codes,

GC09-2984
v DB2 Server for VSE & VM Operation, SC09-2986
v DB2 Server for VSE & VM Quick Reference,

SC09-2988
v DB2 Server for VM System Administration,

SC09-2980
v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987
v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,
SC09-2991

v DRDA: Every Manager's Guide, GC26-3195
v IBM SQL Reference, Version 2, Volume 1,

SC26-8416
v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745
v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837
v VM/ESA: Installation Guide, GC24-5836
v VM/ESA: Service Guide, GC24-5838
v VM/ESA: Planning and Administration,

SC24-5750

v VM/ESA: CMS File Pool Planning,
Administration, and Operation, SC24-5751

v VM/ESA: REXX/EXEC Migration Tool for
VM/ESA, GC24-5752

v VM/ESA: Conversion Guide and Notebook,
GC24-5839

v VM/ESA: Running Guest Operating Systems,
SC24-5755

v VM/ESA: Connectivity Planning, Administration,
and Operation, SC24-5756

v VM/ESA: Group Control System, SC24-5757
v VM/ESA: System Operation, SC24-5758
v VM/ESA: Virtual Machine Operation, SC24-5759
v VM/ESA: CP Programming Services, SC24-5760
v VM/ESA: CMS Application Development Guide,

SC24-5761
v VM/ESA: CMS Application Development

Reference, SC24-5762
v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763
v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764
v VM/ESA: CMS Application Multitasking,

SC24-5766
v VM/ESA: CP Command and Utility Reference,

SC24-5773
v VM/ESA: CMS Primer, SC24-5458
v VM/ESA: CMS User’s Guide, SC24-5775
v VM/ESA: CMS Command Reference, SC24-5776
v VM/ESA: CMS Pipelines User’s Guide, SC24-5777
v VM/ESA: CMS Pipelines Reference, SC24-5778
v VM/ESA: XEDIT User’s Guide, SC24-5779
v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780
v VM/ESA: Quick Reference, SX24-5290
v VM/ESA: Performance, SC24-5782
v VM/ESA: Dump Viewing Facility, GC24-5853
v VM/ESA: System Messages and Codes, GC24-5841
v VM/ESA: Diagnosis Guide, GC24-5854
v VM/ESA: CP Diagnosis Reference, SC24-5855
v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292
v VM/ESA: CMS Diagnosis Reference, SC24-5857

© Copyright IBM Corp. 1987, 2001 519

v CP and CMS control block information is not
provided in book form. This information is
available on the IBM VM/ESA operating
system home page
(http://www.ibm.com/s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672
v VM/ESA REXX/VM User’s Guide, SC24-5465
v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149
v IBM C for VM/ESA Language Reference,

SC09-2153
v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147
v IBM C for VM/ESA Programming Guide,

SC09-2151
v IBM C for VM/ESA User’s Guide, SC09-2152

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)
Architecture, Architecture Reference, Level 4,
SC21-9526

v IBM Distributed Data Management (DDM)
Architecture, Implementation Programmer’s Guide,
SC21-9529

v VM/Directory Maintenance Licensed Program
Specification, GC20-1836

v IBM Distributed Relational Database Architecture
Reference, SC26-4651

v IBM Systems Network Architecture, Format and
Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269
v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808
v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,
Executive Overview, GC09-2207

v Character Data Representation Architecture
Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and
Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,
GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189
v Network Administration and Subsystem

Management Guide, SC31-8181
v Command Reference, SC31-8183
v Message Reference, SC31-8185
v Problem Determination Guide, SC31-8186

Distributed Database Connection Services
(DDCS) Publications

v DDCS User’s Guide for Common Servers,
S20H-4793

v DDCS for OS/2 Installation and Configuration
Guide, S20H-4795

VTAM Publications

v VTAM Messages and Codes, SC31-6493
v VTAM Network Implementation Guide, SC31-6494
v VTAM Operation, SC31-6495
v VTAM Programming, SC31-6496
v VTAM Programming for LU 6.2, SC31-6497
v VTAM Resource Definition Reference, SC31-6498
v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435
v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764
v Administering CSP/AD and CSP/AE on VM,

SH20-6766
v Administering CSP/AD and CSP/AE on VSE,

SH20-6767
v CSP/AD and CSP/AE Planning, SH20-6770
v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714
v Installing and Managing QMF for VSE,

GC27-0721
v QMF Reference, SC27-0715
v Installing and Managing QMF for VM,

GC27-0720
v Developing QMF Applications, SC27-0718
v QMF Messages and Codes, GC27-0717

520 System Administration

v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows
Publications

v Getting Started with QMF for Windows,
SC27-0723

v Installing and Managing QMF for Windows,
GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,
SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,
GC26-3150

v VS COBOL II Migration Guide for MVS and
CMS, GC26-3151

v VS COBOL II General Information, GC26-4042
v VS COBOL II Language Reference, GC26-4047
v VS COBOL II Application Programming Guide,

SC26-4045
v VS COBOL II Application Programming

Debugging, SC26-4049
v VS COBOL II Installation and Customization for

CMS, SC26-4213
v VS COBOL II Installation and Customization for

VSE, SC26-4696
v VS COBOL II Application Programming Guide for

VSE, SC26-4697

Data Facility Storage Management
Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,
SC35-0141

Systems Network Architecture (SNA)
Publications

v SNA Transaction Programmer’s Reference Manual
for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture
Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808
v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,
and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699

v APL2 Programming: Using Structured Query
Language, SH21-1056

v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,
GC09-2993

v DB2 Replication Guide and Reference, SC26-9920

Bibliography 521

522 System Administration

Index

Numerics
3370 storage device

directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

3375 storage device
directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

3380 storage device 158
directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

3390 storage device
directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

370 mode 89
9332 storage device

directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

9335 storage device
directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

9345 storage device
directory size 15
production minidisk size 6
service minidisk size 6
work minidisk size 6

A
ABNEXIT

considerations 86
DB2 Server for VM usage 86

abnormal end
CICS code AEY9 99, 130
CICS code ASP7 130, 132
CICS code ASRA 130
exit 86
in a field procedure 370
log-full condition 70
SLOGCUSH 70

ACCESS
restriction 141

ACCOUNT initialization parameter 60
accounting facility

account numbers for users 337
accounting exits 337
dbspace 256
displaying statistics 60
enabling 60

accounting facility (continued)
exit 342
generating records 249
introduction 247
loading data 260
maintaining accounting data 256
OPTION statement 247
records 251
starting 248
tables 257
using 247

accounting record format
CMS user 253
initialization 252
operator/checkpoint 252
remote user 254
termination 253
VSE guest user 255

ACCT operand for accounting
directory entries

for accounting 247
acquiring dbspace

for packages 153
ADD DBSPACE operation

restarting after a failure 149
SQLADBSP EXEC 146

adding
dbextents

caution regarding 166
initialization parameters 162

dbspaces
initialization parameters 146

storage pools 157
additional databases 284
address

alternate tape drive 75
addressing type

AMODE initialization parameter 55,
78

TRACEBUF initialization
parameter 72

advanced program-to-program
communication/virtual machine

application program usage 96
inter-machine communications 94

agent
priority 66

agent structures
description 94

allocating dbextent minidisks 158
ALT option

FILEDEF command 75
ALTER TABLE statement 370
altering

sorting sequence of a column 367
alternate tape drive

virtual device address 75
alternative character sets 306
AMODE(24) parameter

SQLSTART EXEC 78

AMODE(31) parameter
SQLSTART EXEC 78

AMODE parameter
in the SQLDBN file 289
SQLDBGEN 286
SQLDBINS 285
SQLLOG 229
SQLSTART 55

application program
eye-catcher usage 88
multiple user mode 80
running in single user mode 80

application requester
CCSID conversion 317
default CCSID 324
determining CCSID 320
setting DBCS option 326, 327
setting default CHARNAME 324

application requester defaults
choosing CCSID after migration 36
choosing CHARNAME after

migration 36
application server

CCSID conversion 317
default 23
default subtype

uses 24
name 23
setting DBCS option 326
setting default CCSID 321
setting default character subtype 325
setting default CHARNAME 321

application server defaults
choosing CCSID after migration 33
choosing CHARNAME after

migration 33
archiving

after ADD DBEXTENT 168
after DELETE DBEXTENT 168
ARCHIVE command 199
ARCHPCT initialization

parameter 70, 200
caution regarding 166
commands 199
concurrently 70
database 194, 199, 203
default FILEDEF 79
device address 92
disk 207

before starting the application
server 208

disadvantages 207
during an archive 207
maintaining 209
restoring 215
risks 207
with shared file system (SFS) 207

effects on nonrecoverable data 239
facilities 194
LARCHIVE command 204

© Copyright IBM Corp. 1987, 2001 523

archiving (continued)
log archive

disk 207
introduction 195
process 204

log continuity 226
log size impact 17
LOGMODE initialization parameter

description 69
of unallocated pages 195
procedures 199
processing 194
restart procedures 211
restore set and history area 233
restoring the database 212
shutdown 91
SQLEND ARCHIVE command 199
SQLEND LARCHIVE command 204
SQLEND UARCHIVE command 203
tape damage 217
tape requirements 8
user archive 203
using database manager facilities 194
using user facilities 194

ARCHPCT
initialization parameter

archiving 200
description 70
log archiving 204

log activity 70
ARIBFPPB mapping macro 372
ARIRCAN MACRO 366
ARISAVES EXEC

SQLDBA bootstrap 178
syntax 467

ARISCCS macro 58
ARISDBG MACRO V 290
ARISDBMA EXEC 396, 464
ARISDTM MACRO 351, 360
ARISFDEF EXEC 289
ARISFPKY EXEC 36
ARISNLSC MACRO 172, 189, 333
ARISPDFC EXEC 277, 469
ARISQLLD LOADLIB 6
ARISSEGC MACRO 185, 186

SQLBOOTS EXEC 468
arithmetic operator

in syntax diagrams xii
ARIUEXI

parameter list 339
ARIUEXI parameter list

associated areas 342
ARIUSRDD 82
ARIUXDT

IBM-supplied version 355
parameter list 352

ARIUXIT module
branching 338
example user version 346
IBM-supplied version 343
installing 348
service considerations 350

ARIUXTM
IBM-supplied version 357
parameter list 352

Assembler
release level 3

augmented OS QSAM support 74
automatic restart resynchronization 109,

114
AVS session limit considerations 268

B
backout

nonrecoverable data 238
BALR instruction 82
bias of the dispatcher, adjusting 66
blank

in column with a field procedure 369
BLKSIZE option 76
blocking

specifying 76
bootstrap module, contents 187
bootstrap package

contents 187
copied to A-disk 188
creating 187
definition 172

buffer
data pages in storage 63

C
C

release level 3
calculations

resource utilization 423
storage space 425

CALL/RETURN protocols for application
programs in single user mode 86

cancel exit 363
capacity planning 13

planning 31
catalog

row length 432
catalog table

average row lengths 432
modified by CHARNAME 58

catalog table rows 434
CEMT transaction 132
changing

the log 228
character data 317
character set

alternative 306
classification and translation 456
classification table 452
defining your own 449
ENGLISH 308
example 306, 451
FRENCH 309
GERMAN 309
ITALIAN 311
PORTUGUESE 450
selection 57
SPANISH 313
starting application server 314

character sets
JAPANESE (Katakana) 312

character string
constants 314, 316

character subtype
application server default 25
changing default 297
changing existing column

attributes 323
CHARSUB 24, 25
choosing default 24
setting application server default 325

CHARNAME
application requester default 303
application server default 303
catalog tables modified 58
change to catalog tables

SQLDBA.ROUTINE 58
SQLDBA.STORED QUERIES 58
SQLDBA.SYSLANGUAGE 58
SQLDBA.SYSTEXT2 58
SQLDBA.SYSUSERLIST 58

changing 58
changing default 297

considerations 304
changing pre-Euro 305
choosing application requester

default 26
choosing application requester default

after migration 36
choosing application server

default 23
choosing application server default

after migration 33
default CCSIDs 57
differences between international and

english code pages 322
initialization parameter 57, 313
INTERNATIONAL 321
setting for application requester

all application requesters 324
an application requester 324
hierarchy used 323
using SQLGLOB EXEC 324
using SQLINIT EXEC 324

setting for application server 321
checklist for database generation 27
checkpoint

accounting 251
before an online log archive 205
caused by nonrecoverable storage

pools 238
CHKINTVL initialization

parameter 69
definition 69
log archive 205
records on the log 193

CHKINTVL
initialization parameter 69

choose
in syntax diagrams xii

choosing
application requester default

CHARNAME 26
application server default

CHARNAME 23
application server default coded

character set identifier (CCSID) 23
default character subtype 24, 25
default coded character set identifier

(CCSID) 26

524 System Administration

CIRA syntax 106
CIRA transaction 110, 112
CIRB syntax 100
CIRB transaction 110, 112, 118, 120
CIRC syntax 115
CIRC transaction 118, 120
CIRD transaction 119
CIRR syntax 116
CIRR transaction 102, 125
CIRT syntax 128
CIRT transaction 102, 125
classification, character 452
classification table

character sets 456
coded character set identifier

(CCSID) 330
identifying 57

clearing the log 228, 229
CMS

abnormal end routine 86
file manipulation commands 288
FILEDEF, ALT option 75
files for initialization parameter 88
files for initialization parameters 88
HELP text files 333
initialization parameter files 56
OS QSAM 74
restrictions 140

CMS communications directory
installation process 10
reloading 10

CMS work unit 364
accounting exit 340

DB2 Server for VM tables 259
work unit ID 254

supported operating systems 1
VM/ESA features supported 1

COBOL
release level 3

code point 317
coded character set identifier (CCSID)

application requester default 26, 323
application server default 23, 58, 321
catalog tables modified 58
changing CHARNAME

repreprocess 58
changing defaults

summary 304
CHARNAME change

SQLDBA.ROUTINE 58
SQLDBA.STORED QUERIES 58
SQLDBA.SYSLANGUAGE 58
SQLDBA.SYSTEXT2 58
SQLDBA.SYSUSERLIST 58

CHARNAME mapping 317
choosing a national language 303
choosing application requester default

after migration 36
choosing application server default

after migration 33
conversion 317
DBCS conversion 361
default CCSIDs 57
defining character sets 303
determining for an application

requester 320
identifying classification table 330

coded character set identifier (CCSID)
(continued)

identifying translation table 330
loading information to CMS files 464
MCCSIDGRAPHIC 34, 35, 321
MCCSIDMIXED 34, 35, 321
MCCSIDSBCS 34, 35, 321
migration considerations 33, 321
mixed 320
performance overhead 24, 303, 322
SBCS 318
setting for application server 321

differences between international
and english code pages 322

uses 24
uses for application requester

default 26
coding data by field procedures 367
coding your own exit

accounting 342
requirements 354
TRANSPROC 361

coexistence
considerations 39
VSE and VM 40

COLDLOG operation 212, 229
log reconfiguration and

reformatting 228
no recovery 212
restarting from a failure 218

coldstart 289
collection

national language support 269, 270
service machines 268

COMDIR
definition 11
installation process 10, 11
namefind 11
reloading 10, 11

command
ARCHIVE 199
COMMIT WORK 249
COUNTER 65
DISCONN 90, 141
FORCE 114
FORMAT 288
LARCHIVE 204
RESERVE 288
ROLLBACK WORK 249
SHOW ACTIVE 114
SHOW LOCK MATRIX 65
SHOW LOG

scheduling archives 200
scheduling log archives 205
scheduling user archives 203

SHOW USERS 92, 95
SQLEND 91
SQLEND ARCHIVE 199
SQLEND DVERIFY 90
SQLEND LARCHIVE 204
SQLEND QUICK 90
SQLEND UARCHIVE 203

COMMIT WORK 192, 249
committing changes, nonrecoverable

data 238
common operator 53
communication protocol, specifying 57

concurrent
archive 70
specifying users 62
users, limit 62

configuration
concepts 263
database manager 263
multiple database machines and

multiple databases 265
national language support 269, 270
one database machine and one

database 264
primary database machine 272
secondary database machine 272
secondary production minidisk 271
service machine and processor 269
VSE guest sharing 299

console, DB2 Server for
VMoperator’s 53

constant
data type, character string 316

CONTINUE response 214
continuity of log archives 226
controlling

access to ISQL 141
active user number 105
data location 156
device and channel utilization 156

conventions
syntax diagram notation xi

converting
packages 33
service machine to database

machine 49
copying

production minidisk 277
count-key-data DASD storage

dbextent capacity 426
directory capacity 427
log capacity 426

COUNTER command 65
CP

commands
DISCONN 90, 141
LINK in SQLFDEF 289

CREATE TABLE statement 370
creating

bootstrap package 187
CMS files containing initialization

parameters 88
database archive 199
database machine 263
log archive 204
parameter file 88
SQLFDEF file 288
user archive 203
user machines 280

CSMT transaction 132
CUREXTNT

control statement
database generation 293

estimating 19
keyword control statement 292

Customer Information Control System
(CICS)

CEMT transaction 132

Index 525

Customer Information Control System
(CICS) (continued)

CIRD transaction
active transactions 130
transaction information 119

CIRT transaction 128
CSMT transaction 132
DBDCCICS 105

customizing database manager 337
CVD (column value descriptor) 372, 374

D
damaged minidisk

database 195
database and log 196
log 196

damaged minidisks
damaged

log 221
DASD

failures
damaged database 195
damaged database and log 196
damaged log 196

DASD Dump Restore (DDR)
optional software 4
utility 4

data
coding by a field procedure 367

data areas
RMXC 364

data location
controlling 156

data object 143
data pages

SYS0001 435
data recovery 143
Data System Control (DSC) 143
data type

character string
constants 316
subtypes 316

constants 316
database

adding 273, 282
dbextents 157
dbspaces 145

archiving 194, 204
capacity planning 13, 31
defining a log 16
deleting

dbextents 160
design 143
example 213
example storage estimate

for a production database 437
for a test database 436
for an application development

database 437
extents 7
generation

additional databases 263, 284
checklist 27
control statements 292
design considerations 14
keyword control statements 292

database (continued)
generation (continued)

parameters 13
planning 13
process 282
regeneration 27
restarting from a failure 218
service minidisk 279
SQLDBINS EXEC 277
summary of parameters 13
summary of process 298

machine size 4
maximum size 15
maximums 18, 444
migration 31
minidisks

replacement 219
minimum sizes 7
moving

dbextents 168
log disks 170

multiple 39, 264
user implications 265

name 23
conversion 45

operator
description 53

parameters set at database generation
time 13

physical
concept 144
design 144

recovery considerations 191, 247
regeneration 27
renaming 45, 49
restoring 204, 212, 213
sizes 15
starter 7, 13
storage estimating 425

database machine 1, 263
configuration 264, 272
creating 263
defining 263, 278
description 4
example control statements 273, 278
in a TSAF collection 265
in an SNA network 265

AVS session limit
considerations 268

minidisks 5
preparation 276, 279
primary 270, 272

adding 273
PROFILE EXEC 276, 279
secondary 270, 272

adding 278
size 4
types 270

database manager
environment 272
running in disconnect 90
startup using a CMS file 56

database manager archiving facilities
description 194
using to archive databases 199
using to archive logs 204

database services utility (DBS utility)
non-DB2 Server for VM application

server 398
date

exit 351
DATE parameter of the VSE STDOPT

JCC/JCS 121
datetime

exits 350, 352
DB2 Server for VM database manager

database
design 143
physical design 144

operator
VSE guest sharing 98

DB2 Server for VMdatabase manager
operator

console 53
description 53

DBCS (double-byte character set)
option 314
programming languages supported 3
requirements 3

DBCS conversion
CCSID to CCSID 361
TRANSPROC exit 361

DBCS option
setting by using SQLGLOB 326
setting by using SQLINIT 327
setting for all application

requesters 326
setting for an application

requester 327
setting for application server 326

dbextent 7
adding 157
capacities of IBM DASDs 426
caution regarding 166
defining minidisks 157
definition 293
deleting 160
determining initial requirements 21
estimating sizes 156
maximum number 14
MDISK statements for adding 157
moving 168
purpose 7
sizes 13, 283
specifying initial 293

DBMODE parameter 56
DBNAME directory

guest sharing 97
DBNAME Directory format

incompatibilities 514
DBNAME parameter

specifying 55
SQLADBEX EXEC 162
SQLADBSP EXEC 146
SQLCDBEX EXEC 151, 168
SQLDBGEN EXEC 286
SQLDBINS EXEC 285
SQLLOG EXEC 229
SQLSTART EXEC 78
starting the application server 55

dbspace
acquiring for packages 153
ADD DBSPACE operation 146

526 System Administration

dbspace (continued)
adding 145
concept defined 144
definition 294
determining internal dbspace

requirements 20
determining requirements

initial 19, 20
system dbspaces 19
user dbspace 20

index in 144
internal 21
maximum number 14
nonrecoverable 237
nonrecoverable storage pools 243
overcommitting storage 156
private 294
public 19, 294
requirement 431
restarting the ADD DBSPACE

operation after a failure 149
size for system dbspaces 20
special

catalog 14
HELP text 14, 32
HELPTEXT 19
internal 14, 295
ISQL 19, 440
package 14
SYS0001 19
SYS0002 19

specifying initial 294
SQLADBSP EXEC 146
SQLADBSP file 147
system dbspace requirements 19
table in 144
undercommitting storage 156
user dbspace requirements 20

DCSSID parameter
EXECs 173
specifying 55
SQLADBEX EXEC 162
SQLADBSP EXEC 146
SQLDBINS EXEC 286
SQLLOG EXEC 229
SQLSTART EXEC 78
starting the application server 55

DDR (DASD Dump Restore)
optional software 4
utility 4

deadlock
problems 64

default
changing CCSID

summary 304
changing CHARNAME

summary 304
in syntax diagrams xiii
multiple user mode parameters 56

default server 101
default server_name 118, 120, 125
default server-name 115
defining

a secondary production disk 272
additional database machines 263
database 9

log 16

defining (continued)
database (continued)

minidisks 282
saved segments in VM/ESA ESA

Feature operating system 178
user machines 280

DEFSEG
example

resource adapter above 16
megabytes 183

using 178
deleting

dbextents
from storage pools 160
initialization parameters 162

design
database generation

considerations 14
determining

initial dbextent requirements 21
internal dbspace requirements 20

DIRBLK parameter
SQLDBINS 285

direct access storage device (DASD)
directory capacity 427
space requirements 5
storage capacities 425

dbextent capacity 426
directory capacity 427
log capacity 426

storage for the DB2 Server for VM
production minidisk 6

storage for the DB2 Server for VM
service minidisk 6

directing the log archive to disk 207
directory

additional database machine
entries 278

allocation considerations 15
allocations and database size 15
capacities of IBM DASDs 427
CMS communications 10
delaying changes 41
example control statements 273

user machine 280
EXPAND DIRECTORY operation 150
expansion 150
minidisk 7
purpose 7
size 14, 283

calculating 430
defining 14

space estimating 430
SQLCDBEX EXEC 150
verifying 90
volume considerations 15

disciplines of dispatching 66
DISCONN 90, 141
disconnecting

security 141
disconnecting the database manager 90
discontiguous saved segment

defining components 171
discontiguous shared segment

defining components 171
disk

log archive 207

disk (continued)
log archiving to 8

DISK LOAD
restriction 141

dispatcher 66
DISPBIAS initialization parameter 66
display terminal

requirements 8
displaying

transaction information 119
distributed relational database

restrictions 477, 479
distributed relational database

architecture
installing DRDA code 395
removing DRDA code 395

double-byte character set (DBCS)
identifiers 314

DRDA protocol
benefits 391
checklist 394
DBS utility 398
installing DRDA code 395
ISQL 399
parameter 57
removing DRDA code 395
responsibilities 392
restrictions 477, 479

drive
alternate tape 75

DSC (Data System Control) 143
DSPSTATS initialization parameter 60
dual copy 227
dual logging

placement of logs 17
using 227

DUALLOG initialization parameter 227
DUMPTYPE initialization parameter 71
DVERIFY parameter 90

E
END RESTORE response 215
ENGLISH character set (CCSID=37) 308
entry point of DB2 Server for VM user

programs 82
environment considerations

VM/ESA operating system 272
equipment failures 216
ERASE

restriction 141
ESCALATE counter 65
escalation 64
estimating

catalog dbspace
(SYSTEM.SYS0001) 431

CUREXTNT 19
dbextent sizes 156
dbspace size for routines 440
dbspace sizes for stored SQL

statements 441
directory space requirement 430
internal dbspace requirements 20
ISQL dbspace requirements 440
MAXDBSPC parameter 18
MAXEXTNT parameter 18
MAXPOOLS parameter 18

Index 527

estimating (continued)
storage for a database 425
storage pool requirements 430
storage pool sizes 156

EUC (Extended UNIX Code) 327
example

adding dbextents 159
adding dbspaces 150
DBS utility commands

creating accounting tables 257
DBS Utility commands

loading accounting tables 260
defining VM minidisks for a

database 283
deleting dbextents 161
equivalent minidisk sizes on different

devices 428
field procedure 380
initialization parameters in CMS

file 88
starting the application server in

single user mode 81
SYS0001 storage estimating

formula 436
EXEC

ARISAVES 178, 467
ARISDBMA 464
ARISFDEF 289
ARISFPKY 36
ARISMEX 211
ARISPDFC 277, 469
SQLADBEX 162, 211

example 159, 161
SQLADBSP 146, 211

example 150
SQLBINS 211
SQLBOOTS 468, 470
SQLCDBEX 151, 168
SQLCIREO 211
SQLDBDEF 471
SQLDBGEN 211, 286
SQLDBINS 285
SQLDBLD 470, 472
SQLGENLD 188, 475
SQLLOG 211, 229
SQLSTART 211
STARTUP parameter 211

EXECIO
restriction 141

execution machine
description 4

exit
installation 337

exit point
for field procedures 368

exits
abnormal end 86
accounting 342
cancel 363
coding your own 354
date 351
time 351

EXPAND DIRECTORY operation
SQLCDBEX EXEC 150

EXTEND initialization parameter 72

F
failure

DASD
damaged database 195
damaged database and log 196
damaged log 196

equipment 216
restarting the ADD DBSPACE

operation 149
system 211

fair-share auditing 66
fast DB2 Server for VM shutdown 93
field-decoding

definition 367
input and output 379

field-definition
definition 367
input and output 375

field-encoding
definition 367
input and output 377

field procedure
abnormal end 370
control blocks

CVD 374
FPIB 373
FPPL 372
FPPVL 375
FVD 374

description 367
example 380
exit point 368
value descriptors 374

field procedure information block
(FPIB) 373

field procedure parameter list
(FPPL) 372

field procedure parameter value list
(FPPVL) 375

field procedures
data type considerations 369

FIELDPROC
clause of CREATE or ALTER

TABLE 368
FIELDPROC clause 370
file support for DB2 Server for VM

database manager 76
FILEDEF

ALT option 75
issued by SQLSTART 81
issued by SQLSTART EXEC 79
log archive to disk 79, 208
tape 74

FILEDEF command 75
files

CMS
initialization parameters 56

CMS commands 288
loading DB2 Server for VM 9
SQLADBEX 164
SQLADBEX file 164
SQLADBSP 147
SQLDBN 289, 298
SQLFDEF 163, 288, 298

FINDSYS
diagnose instruction 82

fixed-block architecture devices 6

fixed-block architecture devices
(continued)

dbextent capacity 426
log capacity 426

folding rules
coded character set identifier

(CCSID) 330
SBCS character set 303
TRANSLATE scalar function 306

FORCE 114
format

data passed to a field procedure
(FPPVL) 375

FPIB 374
value descriptors (CVDs) 374

FORMAT
restriction 141

formatting
database minidisks 288

FORTRAN
release level 3

FPIB (field procedure information
block) 373, 374

FPPL (field procedure parameter
list) 372

FPPVL (field procedure parameter value
list) 372, 375

fragment of syntax
in syntax diagrams xiv

FREEPCT column 154
SYSDBSPACES 154

FRENCH character set 309
FSERASE macro

restriction 141
FSWRITE macro

restriction 141
FVD (field value descriptor) 372, 374

G
general file support 76
generating a database 13

additional database machines 263
planning 13

GERMAN character set 310
GLOBAL resource 56
guest sharing

accessing and operator
responsibilities 97

DBNAME directory 97
starting 97
VM/ESA features supported 1

H
hardware requirements 5
header pages

SYS0001 436
help text

installation prompt 278
Help text

multiple language 304
HELP text

CMS files 333
loading

SQLDBINS EXEC 297

528 System Administration

HELP text (continued)
national language 331, 336
service disk storage 6

HELPTEXT dbspace 19
hexadecimal values of the sample

character sets 306
history area 232
host variable

in syntax diagrams xi

I
identifiers

national language 332
immediate DB2 Server for VM

shutdown 93
implicit CONNECT support 104
in-doubt logical units of work 109, 112,

114
incompatibilities, release to release

2.1 and 1.3.5 480, 482
2.2 and 2.1 482, 485
3.1 and 2.2 485, 495
3.2 and 3.1 495, 502
3.3 and 3.2 (VM only) 502, 509
3.4 and 3.3 (VM only) 509, 513
3.5 and 3.4 513
5.1 and 3.5 513
6.1 and 5.1 514
7.1 and 6.1 514
7.2 and 7.1 515
description 479

increasing the size of the logs 228
index

invalid 32
location in dbspaces 145

initialization parameters
ACCOUNT 60
AMODE 55
ARCHPCT 70
CHARNAME 57
CHKINTVL 69
CMS file 88
DBMODE 56
DBNAME 55
DCSSID 55
DISPBIAS 66
DSPSTATS 60
DUMPTYPE 71
EXTEND 72
LOGMODE 69
LTIMOUT 67
maximums 443
multiple user mode 54, 79
NCSCANS 67
NCUSERS 62
NDIRBUF 63
NLRBS 64
NLRBU 64
NPACKAGE 63
NPACKPCT 63
NPAGBUF 63
overriding 56, 88
parameter file creation 88
PROCMXAB 68
PROTOCOL 57
PTIMEOUT 68

initialization parameters (continued)
SECALVER 61
SECTYPE 61
single user mode application

programs 72
SOSLEVEL 71
SQLADBEX EXEC 162
STARTUP 56
SYNCPNT 60
SYSMODE 56
TAPEMGR 70
TCPMAXRT 61
TCPPORT 61
TCPRETRY 61
TRACCONV 72
TRACDBSS 72
TRACDRRM 72
TRACDSC 72
TRACEBUF 72
TRACRDS 72
TRACSTG 72
TRACWUM 72

installation
defaults

changing CCSID 304
changing CHARNAME 304

exit 337, 380
installation process

CMS communications directory 10
defining a user machine 10
generating an database 9
loading DB2 Server for VM 9
planning 1
SNA NETID file 11

installation replaceable exits 351
inter-machine communications 94
Inter-User Communication Vehicle

(IUCV) 94
CONNECT 95
syntax for *IDENT 42
syntax for IUCV 44

internal dbspace
format 295
requirements 20

invalid indexes 32
ISQL (Interactive Structured Query

Language)
controlling access to 141
controlling active user number 105
dbspace 19
estimating dbspace requirements 440
non-DB2 Server for VM application

server 399
routines

estimating dbspace size 440
stored SQL statements

estimating dbspace size 441
ITALIAN character set 311
IUCV

*IDENT statement 274
ALLOW 274

J
JAPANESE (Katakana) character set 312

K
key

language keys and language
identifiers 332

keyword
in syntax diagrams xi

keyword control statements 292
formats 292

L
LABELDEF command 75
labeling

archive tapes 210
single-volume tapes 75
tapes 75

LANGKEY 332
language key 332
languages

choosing 303, 336
messages 331
national 331

keys and identifiers 332
messages 60
SYSLANGUAGE table 332

LARCHIVE 204
LINK commands in SQLFDEF 289
LOAD

used by database manager 82
load point of DB2 Server for VM user

programs 82
loading

accounting data 260
HELP text

SQLDBINS EXEC 277
message file 333
saved segments 185
sequence 82

LOADLIB
ARISQLLD 6
FILEDEF 82

LOADMOD 82
LOADSYS 82
LOCAL resource 56
lock escalation 64
lock wait timeout 67
LOCKLMT counter 65
log

activity when ARCHPCT is
reached 70

allocation considerations 17
archive

checkpoint 205
continuity 226
creating 204
device address 92
example 207
FILEDEF needed 79
introduction 195
LARCHIVE command for 204
SQLEND LARCHIVE

command 204
to disk 207

capacities of IBM DASDs 426
continuity 226
damaged minidisks 221

Index 529

log (continued)
database information 143
defining 283
description 192
dual

defining 16, 283
placing 17
using 227

failure
switching log data 231

full processing 69
history area 232
increasing the size of 228
log-full processing 69
maximum size by DASD type 445
mode switching 225, 229
moving 228
placement of dual logs 17
purpose 7
reconfiguration 228
reformatting 228, 229
replacing 221

damaged minidisk 196
size 14, 17
space 69
switching log data 231
switching log modes 225
usage by DBS Utility loading 17
volume considerations 17

logical unit of work (LUW)
in-doubt 114
recovery

depending on STARTUP
parameter 212

LOGMODE initialization parameter
archiving 69, 146
restoring 214
switching log modes 225

M
macro

ARISCCS 58
MACRO

ARIRCAN 366
ARISDBG 290
ARISDTM 351, 360
ARISNLSC 172, 189, 333
ARISSEGC 185, 186

SQLBOOTS EXEC 468
maintaining

accounting data 256
storage pools 157

managing
storage pools 155

manipulation commands, CMS files 288
mapping macro

ARIBFPPB 372
MAXCONN parameter 273

controlling overloading 62
inter-machine communications 94
new databases 283

MAXDBSPC control statement
establishing database maximums 18
estimating 18

MAXDBSPC keyword control statement
default 293

MAXDBSPC keyword control statement
(continued)

SQLDBGEN 292
MAXEXTNT control statement

establishing database maximums 18
estimating 18

MAXEXTNT keyword control statement
default 293
SQLDBGEN 292

maximum values
database 18
database size 15
system 443

MAXPOOLS control statement
establishing database maximums 18
estimating 18

MAXPOOLS keyword control statement
default 293
SQLDBGEN 292

MCCSIDGRAPHIC 34, 35, 321
MCCSIDMIXED 34, 35, 321
MCCSIDSBCS 34, 35, 321
MDISK control statements

allocating dbextent minidisks 158
directory size 14

MDISK statements
adding dbextents 157

megabytes of data on 4-kilobyte
pages 429

message
ARI0039E 71
ARI0041E 71
ARI0915I 149
choosing a national language for 331
loading message file 333
multiple language messages 331
multiple national languages 304
SET LANGUAGE command 60

methods of dispatching 66
migrating from a VSE operating

system 39
migration

CCSID considerations 33
CHARNAME considerations 33
considerations 31
conversion of packages 33
databases

multiple 39
defaults

changing CCSID 304
changing CHARNAME 304

directory space verification 32
handling mixed data 35
handling SBCS data 34
HELPTEXT dbspace 32
invalid indexes 32
MCCSIDGRAPHIC 34, 35
MCCSIDMIXED 34, 35
MCCSIDSBCS 34, 35
mixed primary keys 36
planning 1, 31
resource names 45
setting an application requester

default CCSID 36
setting an application requester

default CHARNAME 36

migration (continued)
setting an application server default

CCSID 33
setting an application server default

CHARNAME 33
VM/SP to a VM/ESA operating

system 45
VM/XA operating system to a

VM/ESA operating system 41
VSE guest sharing 40
VSE to a VM operating system 31,

39
minidisk

4 096-byte blocks 425
512-byte blocks 425
damaged

database 195
database and log 196
log 196

DASD storage requirements for
system minidisks 6

database 7
defining 282

dbextents 157
example 283

directory 7
formatting 288
log 229
passwords 93, 283
primary production 271
production 5
protecting 139
replacing 219
required for a database machine 5
requirements for the user facility

subset 8
reserving 288
secondary production 271
service 6
service machine 8
starter database 7
system 5
user machine 8

requirements 8
work 6

mixed data
handling after migration 35
MCCSIDGRAPHIC 35, 321
MCCSIDMIXED 35, 321
MCCSIDSBCS 35, 321
using 314

mode switching for logs 225, 229
module

bootstrap 172
SQLDBBT 174
SQLISBT 174
SQLRMBT 174

MOVEFILE
restriction 141

moving
dbextents 168
log disks 170

Moving
dbextents 168

moving a database
from one user ID to another 47

moving the logs 228

530 System Administration

multiple database migration 39
multiple language HELP text 304
multiple language messages 304, 331
multiple user access 265
multiple user mode

definition 53
initialization parameters 54
running application programs 80
startup using a CMS file 56

multiple virtual machine mode
definition 53

N
name

application server 23
changing 45
database 23

NAMEFIND
restrictions 11
storage fragmentation 11

NAMESYS macro
example SYSNAME values 177

national language 303, 336
character set 303
choosing 303
keys and identifiers 332
messages

and HELP text 331
remote support 269
VSE guest sharing 333

support 303
SYSLANGUAGE table 332

NCSCANS initialization parameter 67
NCUSERS

limit 62, 443
NCUSERS initialization parameter

guidelines 62
setting 62
VSE guest sharing 62

NDIRBUF initialization parameter 63
network

national language support 269
NLRBS initialization parameter 64
NLRBU initialization parameter 64
non-DB2 Server for VM application

server
DBS utility 398
ISQL 399

nonrecoverable data 239
backing out 238
committing 238
dbspaces 237
restoring 239
rolling back 238

nonrecoverable storage pool
data placement 240
dbspaces 243
querying 244

normal DB2 Server for VM
shutdown 92

NPACKAGE parameter 63
NPACKPCT parameter 63
NPAGBUF initialization parameter 63
NPAGBUF parameter 63
NUCEXT QUERY

used by database manager 83

NUCXDROP
used by database manager 83

NUCXLOAD
used by database manager 82, 83

O
objects 143
one-phase commit 109
online resource adapter 102, 118, 130,

132
online resource adapter data areas

RMXC 364
online support

implicit CONNECT support 104
operation 98
starting 100
stopping 128

online support for VSE guest sharing
considerations for stopping 93

operating
console 53
DB2 Server for VMoperator 53
multiple databases 53
online support 98
planning 53
VSE guest sharing 98

operating mode
changing 89

operating modes
modes supported

370 mode 1, 89
XA mode 1, 89
XC mode 1, 89

XA mode 338
XC mode 338

operating systems
overview 1

operator response during restore
CONTINUE 214
END RESTORE 215
STOP SYSTEM 214

OPTION statement for accounting 247
optional

default parameter
in syntax diagrams xiv

item
in syntax diagrams xii

keyword
in syntax diagrams xiv

OS QSAM
augmented by DB2 Server for VM

database manager 74
overcommitting dbspace storage 156
override file

example 177
overriding initialization parameters 56,

88
owning a database

definition 264

P
package 19, 153

conversion 33, 40
dbspace 153

package (continued)
unused 155

page
data

SYS0001 435
dbspace storage 144
header

SYS0001 436
megabytes and 4-kilobyte pages 429
storage buffers 63

parameter
ACCOUNT 60
adding dbspaces 146
AMODE(24)

SQLSTART EXEC 78
AMODE(31)

SQLSTART EXEC 78
CHARNAME 313
database parameters set at database

generation time 13
DATE 121
DBMODE 56
DBNAME

specifying in SQLSTART 56
SQLADBEX EXEC 162
SQLADBSP EXEC 146
SQLCDBEX EXEC 151, 168
SQLDBGEN EXEC 286
SQLDBINS EXEC 285
SQLLOG EXEC 229
SQLSTART EXEC parameter 78

dcssID
EXEC parameter 173
SQLADBEX EXEC 162
SQLADBSP EXEC 146
SQLDBINS EXEC 286

DCSSID
SQLLOG EXEC 229
SQLSTART EXEC 78

DSPSTATS 60
DVERIFY 90
LOGMODE 146
MAXCONN 273
MAXDBSPC 18
MAXEXTNT 18
MAXPOOLS 18
PARM 287
POOL 162, 287
PROCMXAB 68
PTIMEOUT 68
ranges 13
RESID

SQLDBGEN EXEC 287
SQLDBINS EXEC 285

SECALVER 61
SECTYPE 61
STARTER 287
starter database 13
SYNCPNT 60
TCPMAXRT 61
TCPPORT 61
TCPRETRY 61

parameter file
creation 88

parentheses
in syntax diagrams xii

PARM parameter 287

Index 531

partial row updates 240
password

minidisk 93, 283
password implications 132
physical database 144
PL/I

release level 3
planning

database generation 13
database manager 9
DB2 Server for VM database

machine 1
installation 1, 13
migration 1, 31
operation 53

POOL
keyword control statement 293
parameter 162, 287

PORTUGUESE character set 450
preparing input for SQLDBGEN 286
primary database machine 270, 272
primary production minidisk 271
priority dispatcher 66
privilege classes

user machine 280
processor storage requirements 423
PROCMXAB initialization parameter 68
product-supplied archiving facilities

description 194
using to archive databases 199
using to archive logs 204

production minidisk 5
primary 271
secondary 272

example 271
storage requirements 6

PROFILE EXEC
additional database machine 279
database machine 276, 279
user machine 281, 282

program products required by DB2
Server for VM database manager 3

programming languages
double-byte character set (DBCS)

support 3
release level 3

protecting minidisks 139
PROTOCOL parameter 57
pseudo-agent structure 94
PTIMEOUT initialization parameter 68
public dbspace 19, 294
punctuation mark

in syntax diagrams xii

Q
Q-disk

storage requirements 6
QSAM, as augmented by DB2 Server for

VM database manager 74
querying

nonrecoverable storage pools 244
quick DB2 Server for VM shutdown 93

R
READCARD

restriction 141
READY/RECOVERY agent 110
real agents 95
real storage requirements

summary 5
RECEIVE

restriction 141
reconfiguring the log 228
records

spanned 76
recoverable

DBS utility command 240
SQL statements 239

recovery 239
abnormal end in a field

procedure 370
considerations 191, 247
DASD failures

damaged database 195
damaged database and log 196
damaged log 196

dual copy 227
dual logging 227
dual logs 212
history area 232
log reconfiguration 228
log reformatting 229
nonrecoverable data 237
nonrecoverable dbspaces 237
nonrecoverable storage pools 236,

240
processing failures with

nonrecoverable data 239
special topics 225
SQLEND 93
switching log data between logs 231
switching log modes 225
system failure 211

recovery list 110
reference information for storage space

calculations 425
reformatting

log 228, 229
regenerating a database 27
regular DB2 Server for VM

shutdown 92
release level

coexistence 39
products required by DB2 Server for

VM database manager 3
release to release incompatibilities

2.1 and 1.3.5 480, 482
2.2 and 2.1 482, 485
3.1 and 2.2 485, 495
3.2 and 3.1 495, 502
3.3 and 3.2 (VM only) 502, 509
3.4 and 3.3 (VM only) 509, 513
3.5 and 3.4 513
5.1 and 3.5 513
6.1 and 5.1 514
7.1 and 6.1 514
7.2 and 7.1 515
description 479

reloading
CMS communications directory 10

reloading (continued)
COMDIR 10

remote spooling communications
subsystem (RSCS)

release required 3
remote unit of work

application server
renaming 49

Remote unit of work 1
renaming a database 45
renaming a resource identifier 50
repeat symbol

in syntax diagrams xiii
replacing

database and log minidisk 196
database minidisk 219
log minidisk 196
log minidisks 221

required item
in syntax diagrams xii

requirements
DB2 Server for VM database machine

software 3
RESERVE 288

restriction for 141
reserved words

SQL xv
resetting

the log 228, 229
RESID 23

renaming 49, 50
RESID NAMES file 23, 42, 49, 50
RESID parameter

SQLDBGEN EXEC 287
SQLDBINS EXEC 285

resource adapter
cancel support 365
definition 338

resource adapter data areas
RMXC 364

resource names migration 45
resource utilization calculations 423
restart recovery

definition 193
restarting

ARISMEX 211
from COLDLOG operation

failure 218
from database generation failure 218
from database restore operation 215
from system failure while

archiving 217
procedures 211
SQLADBEX 211
SQLADBSP 211
SQLCIREO 211
SQLSTART 211
STARTUP parameter 211

restore set 233
restoring

database
restarting from failure of 215
restore set and history area 233
starting the application server

when restoring 213
STARTUP=R 213

nonrecoverable data 239

532 System Administration

restoring a database
procedures 212

restriction
CMS 140
commands

ACCESS 141
DISK LOAD 141
ERASE 141
EXECIO 141
FORMAT 141
MOVEFILE 141
READCARD 141
RECEIVE 141
RESERVE 141

macros
FSERASE 141
FSWRITE 141

restrictions
DRDA protocol 477, 479

RESYNCH command 114
resynchronization 119
resynchronization transaction 109
REXX 4
RMXC 364
ROLLBACK WORK 249
ROLLBACK WORK command 192
rolling back

nonrecoverable data 238
round-robin dispatcher 66
routine

estimating dbspace size 440
running

application programs
single user mode 80

multiple user mode 80
SQLLOG EXEC 229

RXSQL 4

S
sample

character sets 306
saved segment

defining 10
saved segments

defining 177
loading 185
overlaps 177
SEGMENT RESERVE command 171,

177, 189
stop using 189

saved segments (DCSS)
national language 333

saving
segments 185

SBCS character set
folding rules 303

SBCS data
handling after migration 34
MCCSIDGRAPHIC 34
MCCSIDMIXED 34
MCCSIDSBCS 34

scan control blocks 67
scan table 67
SECALVER initialization parameter 61
secondary database machine 270
secondary production minidisk 271

secondary production minidisk
(continued)

defining 272
example 271

SECTYPE initialization parameter 61
security

conversation level 136
distributed processing

administration 139
security 138

maintaining 135, 143
session level 136
user ID translation 139
userid resolution 140
VM directory control statement

IUCV *IDENT 138
IUCV ALLOW 138
IUCV ANY 138
VM/ESA operating systems 138

SEGMENT FIND
used by database manager 83

SEGMENT LOAD
used by database manager 83

SEGMENT RESERVE command 171,
177, 189

segment saving 185
selecting

character sets 57
sequence of loading 82
server_names

on the CIRA transaction 107
on the CIRB transaction 102

service disk storage requirements 6
service machine

converting to a database machine 49
defining 9
example 269
in a collection 268
minidisks 8
size 4

service minidisk 6
session limit (AVS) 268
SET APPCVM 97
SET MACHINE command 89
setting

default character subtype 325
shadow paging 431
shared file system directory (SFS

directory)
production minidisk size 6
service minidisk size 6
work minidisk size 6

shared segment 171
SHOW ACTIVE 114
SHOW LOCK MATRIX command 65
SHOW LOG

scheduling archives 200
scheduling log archives 205
scheduling user archives 203

SHOW USERS 92, 95
shutdown of the application server 90
signing off the DB2 Server for VM system

console 90, 141
single console image facility (SCIF) 53
single user mode

AMODE(24) 80, 82

single user mode (continued)
CALL/RETURN protocols for

application programs 86
definition 53
initialization parameters 72
running application programs 80
starting the application server 80
starting the application server and

providing user parameters 85
single virtual machine mode

definition 53
single-volume tapes 75
size

database 15
directory 14, 283
internal dbspaces needed 20
log 14, 17

by DASD type 445
SLOGCUSH initialization parameter

description 69
freeing log space 200, 204

slots
use of 155

SNA (see Systems Network
Architecture) 266

SNA NETID file 11
software requirements 3
sorting sequence, altering by a field

procedure 367
SOSLEVEL initialization parameter 71
space

DB2 Server for VM production
minidisk 6

DB2 Server for VM service
minidisk 6

space allocations
log and dbextent minidisks 427

SPANISH character set 313
spanned records 76
specifying

initial dbspace 294
user parameters 84

SPIE exit
considerations 86

SQLADBEX EXEC 162
example 159, 161

SQLADBEX file 164
SQLADBSP EXEC 20, 145, 146

example 150
SQLADBSP file 147

SQLADBSP file 147
SQLBOOTS EXEC 189, 470
SQLCDBEX EXEC 151, 168
SQLCODE

-522 67
-937 132
-945 155
-946 155

SQLDBA
bootstrap package 172
password 298
SQLDBBT module 174
SQLISBT module 174
SQLRMBT module 174
user ID 298

SQLDBA.ROUTINE
CHARNAME change 58

Index 533

SQLDBA SQLDBBT Q 470
SQLDBA SQLISBT Q 470
SQLDBA SQLRMBT Q 470
SQLDBA.STORED QUERIES

CHARNAME change 58
SQLDBA.SYSLANGUAGE

CHARNAME change 58
SQLDBA.SYSLANGUAGE table 332
SQLDBA.SYSTEXT2

CHARNAME change 58
SQLDBA.SYSUSERLIST

CHARNAME change 58
SQLDBDEF EXEC 471

syntax 472
SQLDBGEN example 290
SQLDBGEN EXEC 286

files used by 290
format 286
preparing input for 286

SQLDBGEN file 49, 298
renaming a resource identifier 50

SQLDBINS EXEC 285
format 285
running 285

SQLDBLD EXEC 470
syntax 470

SQLDBN file
contents 289, 298
purpose 298
renaming a database 49
renaming a resource identifier 50
use of 174

SQLDS protocol 57
SQLEND

ARCHIVE 199
DVERIFY 90
LARCHIVE 204
QUICK 90
UARCHIVE 203

SQLEND operator command 91
SQLERRD2

-30 67
SQLFDEF file 298

creating 288
renaming a database 49
renaming a resource identifier 51
single logging 230
updated by SQLADBEX 163

SQLGENLD EXEC 172, 188, 475
SQLGLOB EXEC

setting DBCS option 326
setting default CHARNAME 324

SQLINIT EXEC
issuing for a user 282
setting DBCS option 327
setting default CHARNAME 324

SQLLOG EXEC 217, 229
SQLSTART EXEC 78, 149

restoring the database example 213
STAE exit, considerations for 86
starter database

control statements 291
STARTER parameter 287
starting

accounting facility 248
online support 100

starting application server
after restoring the database 214
FRENCH character set example 314
restoring 213
STARTUP=R 213

starting the application server 53, 89
multiple user mode 77
single user mode 80

STARTUP initialization parameter
restart procedures 211
restoring a database 213

STDOPT JCC/JCS 121
STOP SYSTEM response 214
stopping the application server

online support 93, 128
recovery considerations 91

storage
capacity IBM DASD 425
concepts 143
devices 15
estimating 425
processor requirements 423
requirements

DB2 Server for VM production
minidisk 6

DB2 Server for VM service
minidisk 6

storage pool
adding dbextents 157
concepts 143
controlling

channel utilization 156
device utilization 156

controlling data location 156
definition 293
deleting dbextents 160
design considerations 155
estimating size 156
maintaining 157
management 155
monitoring 157
nonrecoverable 236
requirements 430
space 69
specifying initial 293
support

application dbspaces 22
internal dbspaces 22
system dbspaces 21

storage pools
definition 294

storage requirements (virtual and
real) 423

storage space calculations 425
stored SQL statements

estimating dbspace size 441
subtype

application server uses 24
switching

log data between logs 231
log modes 225

SYNCPNT initialization parameter 60
SYNCPNT parameter

multiple-site read multiple-site
update 398

multiple-site read single-site
update 398

syntax diagram
notation conventions xi

SYS0001 dbspace 19
storage estimating 432

derivation of the formula 435
examples 436
modifying the formula 438

SYS0002 dbspace 19
allocation 153

SYS000n dbspace 154
SYSCCSIDS catalog table 306
SYSCHARSETS catalog table 306
SYSIN, valid assignments for 76, 77
SYSLANGUAGE catalog table

example 332
SYSMODE initialization parameter 56
SYSNAME values for NAMESYS

example 177
SYSOPTIONS catalog table

updating 360
SYSPRINT, valid assignments for 76, 77
SYSPUNCH, valid assignments for 76,

77
SYSSTRINGS catalog table 306
system

code
description 172

dbspaces
size 20

failure 211
maximums 443
minidisk 5

DASD storage requirements 6
minidisks 5
signing off console 90, 141
software requirements 3
virtual storage requirements 4

Systems Network Architecture (SNA)
AVS session limit considerations 268
database machines 265
definition 266
NETID file 11

T
table

character classification 452
location in dbspaces 145

tape
archiving 8
damage 217
DBS utility processing 8
FILEDEFs 74
LABELDEFs 74
labeled 75
labeling 210
requirements 8
single-volume 75
support 74
tracing 8
unlabeled 74

tape drive
alternate virtual device address 75

Tape Manager Support
alternate tape drive 76

534 System Administration

TAPEMGR
initialization parameter

description 70
TCPMAXRT initialization parameter 61
TCPPORT initialization parameter 61
TCPRETRY initialization parameter 61
terminal

requirements 8
terminal line-edit 276

symbols 279
terminating

online applications 131
the application server

starting 53
time

exit 351
TRACCONV initialization parameter 72
TRACCONV parameter

SQLSTART 72
TRACDBSS initialization parameter 72
TRACDRRM initialization parameter 72
TRACDRRM parameter

SQLSTART 72
TRACDSC initialization parameter 72
TRACEBUF initialization parameter 72
TRACEBUF parameter

SQLSTART 72
tracing

default FILEDEF 79
tape requirements 8

TRACRDS initialization parameter 72
TRACSTG initialization parameter 72
TRACSTG parameter

SQLSTART 72
TRACWUM initialization parameter 72
TRACWUM parameter

SQLSTART 72
transaction information

displaying 119
transactions

CEMT 132
CIRD 99
CIRT 128
CSMT 132

TRANSLATE function
folding rules 306

translation table
character sets 456
coded character set identifier

(CCSID) 330
identifying 57

Transparent Services Access Facility
(TSAF) 266

collection
database machines 265
definition 266

TRANSPROC exit
coding your own 361

two-phase commit 109

U
unallocated pages

archiving 195
undercommitting dbspace storage 156
Unicode data 327
unlabeled tapes 74

unused package 155
updating

partial rows 240
VM directory entries 273, 278

user archive
creating 203

user facility subset
converting to a database 49
description 1
minidisk requirements 8

user free storage 171
user machine

additional 280
defining 280
example control statements 280
minidisk requirements 8
minidisks 8
PROFILE EXEC 282
size 5

user parameters
in single user mode 84

user restore
definition 213

userid resolution 140
using 227

dual logging 227
using AMODE(24)

incompatibilities 514
Utilites

SQLBOOTS 470
Utilities

ARISAVES 467
ARISPDFC 469
SQLDBDEF 471
SQLDBLD 470
SQLGENLD 475

V
V-disk

storage requirements 6
value

descriptors in field procedures 374
verifying

directory 90
virtual device address

alternate tape drive 75
virtual disk support

internal dbspaces 21
virtual machine

overview 1
size

DB2 Server for VM database
manager 4

user 280
Virtual Machine (VM)

accounting 247
directory entries

for a user machine 280
for database machines 278
updating 273, 278

single console image facility
(SCIF) 53

virtual storage
service machine 4
user machine 5

VM/ESA (Virtual Machine/Enterprise
Systems Architecture)

considerations 272
DB2 Server for VM features 1
directory entries for accounting 247
migration from a VM/SP operating

system 45
migration from a VM/XA operating

system 41
running the database manager 89

VM/SP (Virtual Machine/System
Product)

migration to VM/ESA operating
system 31

VM/XA SP (Virtual Machine/Extended
Architecture System Product)

migration from VM/SP operating
system 31

migration from VM/XA operating
system 31

migration from VSE 39
running the database manager 89

VMBACKUP 194, 203
optional software 4

volume considerations
directory 15
log 17

VSE guest sharing 299
accessing and operator

responsibilities 97
configuration 299
DBNAME directory 97
migration 40
national language messages 333
online support 93
release level of VSE 3
sample configurations 300
single processor 300
TSAF 300
VM/ESA features supported 1
VTAM product 301

VSE guest user accounting record 255
VSE operating system

migration to 39
VSE STDOPT JCC/JCS 121

W
warm start of the application server 56
work units

accounting exit
CMS 259
work unit ID 254

CMS 364
accounting exit 340
supported operating systems 1

VM/ESA features supported 1

Index 535

|

536 System Administration

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help
with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact
an IBM representative at a local branch office or contact any authorized IBM
software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-237-5511 for customer support
v 1-888-426-4343 to learn about available service options

Product information
DB2 Server for VSE & VM product information is available by telephone or by the
World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,
newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:
v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.
v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM
Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support
structure for information.

© Copyright IBM Corp. 1987, 2001 537

|

|

|
|

|
|
|

|

|

|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

����

File Number: S370/4300-50
Program Number: 5697-F42

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-2980-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
D

B
2

Se
rv

er
fo

r
V

M
Sy

st
em

Ad
m

in
is

tr
at

io
n

Ve
rs

io
n

7
R

el
ea

se
2

	Contents
	About This Manual
	Organization of This Manual
	Syntax Notation Conventions
	SQL Reserved Words

	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 2
	Enhancements, New Functions, and New Capabilities
	Security Enhancements
	Archive Tape Handling Enhancements
	New Database Replication Utility
	SHOW Command Enhancements

	Reliability, Availability, and Serviceability Improvements
	TCP/IP Auto-Restart
	Support for STGPROT=YES Parameter in CICS (VSE only)
	Migration Considerations

	Chapter 1. Planning for Installation
	Operating System Overview
	Virtual Machine Overview
	Components of the Relational Database Management System
	Software Requirements
	Virtual Storage Requirements
	Database Machine Size
	Service Machine Size
	User Machine Size

	Hardware Requirements
	Real Storage Requirements
	DASD Space Requirements
	Minidisks Required for the Installation User ID Machine
	Minidisks Required for a Database Machine
	The Starter Database
	Minidisks Required for a Service Machine
	Minidisks Required for a User Machine

	Tape Requirements
	Display Terminal Requirements

	Considerations When Defining a Database Machine and Generating a Database
	Considerations When Adding Directory Control Statements
	Considerations When Loading IBM-Supplied Files
	Considerations When Generating a Database

	Considerations When Defining a Service Machine
	Updating the Service Machine VM Directory
	Considerations When Loading IBM-supplied Files

	Defining User Machines
	Defining Saved Segments
	Setting Up the CMS Communications Directory
	Updating the SNA NETID File

	Chapter 2. Planning for Database Generation
	Database Generation Parameters
	Defining Database Directory Size
	Directory Allocation Considerations

	Defining the Database Log
	Log Size Considerations

	Establishing Database Capacity Parameters
	Estimating MAXPOOLS
	Estimating MAXEXTNT
	Estimating MAXDBSPC
	Estimating CUREXTNT

	Establishing Initial Dbspace Requirements
	Determining the System Dbspace Requirements
	Determining the Initial User Dbspace Requirements
	Determining the Internal Dbspace Requirements

	Determining Initial Dbextent Requirements

	Choosing an Application Server Name and VM Resource Identifier
	Choosing the Application Server Default CHARNAME and CCSID
	Choosing the Application Server Default Character Subtype
	Choosing the Default CHARNAME and CCSID for Application Requesters
	Preparing for Database Regeneration
	Database Generation Worksheet

	Chapter 3. Planning for Database Migration
	Migration Considerations
	Increasing the HELPTEXT Dbspace

	Migrating from Version 3 Release 1
	Considerations for Invalid Indexes
	Conversion of Packages

	Migrating from Version 3 Release 2
	Choosing an Application Server Default CHARNAME
	Setting Migration CCSID Values

	Choosing the Default CHARNAME for All Application Requesters
	Considerations for Mixed Primary Keys with Field Procedures

	Migrating from Version 3 Release 3
	Considerations for EXPLAIN Tables
	Considerations for VSE Guest Sharing
	Considerations for the VM Data Spaces Support (VMDSS)

	Migrating from Version 3 Release 4
	Considerations for Assembler Even Precision Packed Decimal
	Considerations for SQLSTATE Changes for SQL92 Support

	Migrating from Version 3 Release 5
	Considerations for Uncommitted Read
	Considerations for VMSES/E
	Considerations for Support of ESA-mode Processors Only
	Considerations for the Renaming of the Product
	Considerations for the Removal of the User Facility Subset

	Migrating from Version 5 Release 1
	Considerations for RDS Above 16M
	Considerations for TCP/IP

	Migrating from Version 6 Release 1
	Migrating from Version 7 Release 1
	Release Coexistence Considerations
	Migrating from a VSE to a VM Operating System
	Moving a Database from a VSE to a VM Operating System
	Choosing a VM Resource Identifier
	Converting Data in the Database
	Converting Packages
	Converting Programs
	VSE Databases Coexisting under VM

	Migrating from a VM/XA to a VM/ESA Environment
	Delaying the Directory and Database Name Changes
	Setting up the Database Machine Directory Entry
	Example of a Database Machine Directory with Multiple Databases
	Setting Up the User Machine Directory Entry
	Database Naming Considerations

	Migrating from a VM/SP to a VM/ESA Operating System
	Installing Another IBM VM System on Your Processor
	Moving a Database
	Using Archive and Restore to Move a Database
	Using the SQLDBDEF Utility

	Moving a VM Application Server from One User ID to Another
	Converting a Service Machine to a Database Machine
	Changing the Server Name and Resource Identifier

	Chapter 4. Planning for Operation of the Database Manager
	Starting the Application Server
	The Database Operator
	Multiple User Mode Initialization Parameters
	Environment Parameters
	DBNAME
	DCSSID
	AMODE
	SYSMODE
	STARTUP
	PARMID
	DBMODE
	PROTOCOL
	CHARNAME
	ACCOUNT
	SYNCPNT
	DSPSTATS
	SECALVER
	SECTYPE
	TCPMAXRT
	TCPPORT
	TCPRETRY
	Performance Parameters
	NCUSERS
	NPACKAGE
	NPACKPCT
	NPAGBUF
	NDIRBUF
	NLRBU and NLRBS
	DISPBIAS
	NCSCANS
	LTIMEOUT
	PROCMXAB
	PTIMEOUT
	Recovery Parameters
	LOGMODE
	CHKINTVL
	SLOGCUSH
	ARCHPCT
	TAPEMGR
	SOSLEVEL
	Service Parameters
	DUMPTYPE
	EXTEND
	TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC, TRACCONV, and TRACSTG
	TRACEBUF

	Single User Mode Initialization Parameters
	Tape Support
	Unlabeled Tapes
	Labeled Tapes
	Single-Volume Tape Files
	Multiple Volume Tape Files
	Tape Manager Support
	Spanned Records
	Blocking for Archives to Tape and Disk

	General File Support
	Starting the Application Server in Multiple User Mode
	Running Multiple User Mode Application Programs

	Starting the Application Server in Single User Mode
	Specifying User Parameters
	CALL/RETURN Protocols for Application Programs in Single User Mode

	Overriding Initialization Parameters
	Creating a Parameter File

	Running the Database Manager
	Operating Modes

	Disconnecting the Database Machine
	Stopping the Application Server
	Taking an Archive
	Verifying the Directory
	Online Support Considerationsfor VSE Guest Sharing
	A Note about Minidisk Passwords
	Inter-Machine Communications
	Application Program Use of APPC/VM or IUCV

	Chapter 5. Operating the Online Support for VSE Guest Sharing
	Operating VSE Guest Sharing
	Operator Responsibilities
	Starting the Application Server
	Starting the Online Resource Adapter -- The CIRB Transaction
	Starting the CIRB Transaction
	SCHEDULE Authority for VSE Guest Sharing
	Implicit CONNECT Support
	Supporting Multiple User Online Access
	CIRB Impact to System Resources
	Supporting Multiple CICS Partitions

	Adding Connections -- The CIRA Transaction
	Automatic Restart Resynchronization
	Resolving In-Doubt Transactions

	Changing the Default Server -- The CIRC Transaction
	Removing Connections -- The CIRR Transaction
	Displaying Information -- The CIRD Transaction
	Stopping the Online Support -- The CIRT Transaction
	Effect of a Shutdown on Online Applications
	Terminal Availability During Online Shutdown
	Shutdown Impact to Online Applications

	Password Implications on Online Resource Adapter Termination

	Chapter 6. Maintaining Database Security
	Communications and System Security
	Session-Level Security
	Conversation-Level Security
	VM Directory Control Statements
	Control Statements for VM/ESA Environments
	Distributed Processing Security
	Distributed Processing Administration

	User ID Translation
	Minidisk Protection
	Connect Userid and Password Resolution

	CMS Restrictions
	System and DB2 Server for VM Operator Console Considerations
	Access Control to ISQL on a VSE Guest

	Chapter 7. Managing Database Storage
	Storage Concepts
	How Information is Stored in Dbspaces

	Adding Dbspaces to the Database
	Considerations for Adding Dbspaces
	Example of Adding a Dbspace to a Database

	Expanding the Database Directory
	Acquiring Dbspaces for Packages
	Managing Storage Pools
	Design Considerations for Storage Pools
	Estimating Storage Requirements
	Controlling Device and Channel Utilization
	Controlling Data Location

	Monitoring Storage Pools
	Maintaining Storage Pools
	Adding Dbextents to a Storage Pool
	Deleting Dbextents from a Storage Pool
	Considerations for the MAXCONN Setting

	Running the SQLADBEX EXEC
	Updating the SQLFDEF File for Added Dbextents
	Updating the Database Directory
	Updating the SQLFDEF File for Deleted Dbextents
	Possible Outcomes
	Considerations for Adding and Deleting Dbextents

	Moving Dbextents
	Example of Moving a Dbextent

	Moving Log Disks

	Chapter 8. Saved Segments
	Using Saved Segments for Components
	Example 1
	Example 2
	Example 3
	Example 4
	Defining Saved Segments
	Step 1. Plan to Define and Build Segments
	Step 2. Log On to the Installation User ID
	Step 3. Access VMSES/E Code and Software Inventory Minidisks

	
	Step 4. Prepare to Add DB2 Server for VM Segment Definitions
	Step 5. Add or Change the DB2 Server for VM Segment Definitions
	Step 6. Obtain the DB2 Server for VM Segment Definitions
	Step 7. Update the DB2 Server for VM Segment Definition
	Step 8. Display Refreshed Segment Map Panel
	Step 9. Save the New Segment Information

	
	Step 10. Verify Virtual Storage
	Step 11. Prepare to Build the DB2 Server for VM Segments
	Step 12. Update the ARISSEGC Macro
	Step 13. Release the Production Minidisk or SFS Directory
	Step 14. Build the DB2 Server for VM Segments
	Step 15. Create a Bootstrap Package
	Step 16. Verify the Virtual Storage Size

	Running in User Free Storage after Using Default Saved Segments
	ARISNLSC MACRO

	Chapter 9. Making Backups and Recovering from Failures
	Understanding Recovery Concepts
	What is a Logical Unit of Work?
	What is a Log?
	What is a Checkpoint?
	What Happens after a System Failure?
	Restart Recovery with a Log
	Restart Recovery Without a Log

	What is an Archive?
	Database Archives
	Log Archives

	Recovering from DASD Failures that Damage the Database
	Recovering from DASD Failures that Damage a Log
	Recovering from DASD Failures that Damage the Database and Log

	Establishing DASD Recovery Procedures
	Choosing a Log Mode
	Deciding between LOGMODE=A or L

	Backing Up the History Area

	Archiving Procedures
	Performing Database Archives With Database Manager Facilities
	Contention During an Archive

	Example of an SQLEND ARCHIVE
	SQLEND ARCHIVE with LOGMODE=A
	SQLEND ARCHIVE with LOGMODE=L

	Performing Database Archives With User Facilities
	Freeing Log Space during a User Archive

	Performing Log Archives
	Contention During an Archive

	Example of an SQLEND LARCHIVE
	Log Archiving to Tape
	Log Archiving to Disk

	Labeling Your Archive Tapes

	Recovery Procedures
	Restarting Procedures
	Restoring the Database
	Selecting the Archive Copy to Use
	Restoring from a Database Manager Archive
	Restoring from a User Archive
	When to Use LOGMODE=A
	When to Use LOGMODE=L
	Restoring Log Archives from Disk

	Restarting from Failure of a Database Restore
	Restarting from a System Failure While Archiving
	Restarting from Failure of a Database Generation or COLDLOG Operation
	Relocating the Database Manager
	Replacing a Minidisk Using DASD Dump Restore
	Replacing a Database Minidisk
	Replacing a Log Minidisk
	Recovering to a Secondary System

	Chapter 10. Special Topics in Recovery Design
	Switching Log Modes
	From LOGMODE=A
	From LOGMODE=L
	From LOGMODE=Y or N

	Using Dual Logging
	Using the VM DUPLEX Command

	Reconfiguring and Reformatting the Logs
	Log Reconfiguration
	Log Reformatting
	Running the SQLLOG EXEC
	Switching Log Data between Logs
	History Area
	How the Database Manager Uses the History Area

	Nonrecoverable Storage Pools
	Characteristics of Dbspaces in Nonrecoverable Storage Pools
	Data That Can be Placed in Nonrecoverable Storage Pools
	Example 1
	Example 2
	Example 3

	Data That Should Not Be Placed in Nonrecoverable Dbspaces
	Setting Up Nonrecoverable Storage Pools and Dbspaces
	Querying for Nonrecoverable Storage Pools and Dbspaces

	Chapter 11. Using the Accounting Facility
	Where to Find More about VM Accounting
	Preparing to Use the Accounting Facility
	Starting the Accounting Facility
	Generation of Accounting Records
	Supplying Accounting Data from DRDA Applications
	Formats of the Accounting Records
	Initialization Records
	Operator and Checkpoint Records
	Termination Records
	CMS User Records
	Remote User Records
	VSE Guest User Records

	Maintaining Accounting Data
	Considerations for an Accounting Dbspace
	Tables to Hold Accounting Data
	SQLDETAIL Table
	SYSDETAIL Table
	USERDETAIL Table
	REMDETAIL Table

	Loading the Accounting Data

	Chapter 12. Planning and Implementing Configurations
	Configuration Concepts
	Reasons for Adding a Database Machine
	Implications for Users

	Databases in a TSAF Collection or an SNA Network
	Implications for the User
	AVS Session Limit Considerations

	Adding Service Machines
	National Language Support for Databases

	Types of Database Machines
	VM/ESA Operating System Considerations

	Primary Database Machines
	Why Add a Database Machine?
	Adding a Primary Database Machine
	Step 1: Update the VM Directory
	Step 2: Prepare the New Database Machine
	Step 3: Generate a Database

	Adding a Secondary Database Machine
	Step 1: Update the VM Directory
	Step 2: Prepare the Database Machine
	Step 3: Generate a Database

	Adding a Service Machine
	Defining Additional User Machines
	Adding a Database
	Step 1: Defining the Database Minidisks
	Step 2: Generating a Database
	Step 3: Optionally Changing the Application Server Default CHARNAME
	Step 4: Optionally Changing the Application Server Default Character Subtype
	Step 5: Optionally Setting the DBCS Option to YES
	Step 6: Changing the Password of User ID SQLDBA
	Summary of Database Generation Process

	VSE Guest Sharing Configuration
	VSE Guest Sharing Restrictions
	Examples of VSE Guest Sharing Configurations

	Chapter 13. Choosing a National Language and Defining Character Sets
	Considerations when changing default CHARNAME and CCSID
	Changing from pre-Euro CHARNAME to Euro-compatible CHARNAME

	Using Alternative Character Sets
	Hexadecimal Values of the Sample Character Sets
	Specifying an IBM-Supplied Character Set at Run Time

	Using Double-Byte Character Set (DBCS)
	Identifiers Containing DBCS Characters
	Constants and Data Containing DBCS Characters

	CCSID Conversion
	Determining CCSID Values
	Setting the Application Server Default CHARNAME and CCSIDs
	Changing the CCSID Attribute of an Existing Column
	Changing the Subtype Attribute of an Existing Column

	Setting the Application Requester Default CHARNAME and CCSIDs
	Setting the Default CHARNAME and CCSIDs for All Application Requesters
	Setting the Default CHARNAME and CCSIDs for an Application Requester

	Setting the Application Server Default Character Subtype
	Setting the DBCS Option for the Application Server
	Setting DBCS Option for Application Requestors
	Setting the DBCS Option for all Application Requesters
	Setting the DBCS Option for an Application Requester

	EUC Conversions
	Unicode Conversions
	Examples of Setting Values for an Installation
	Example 1
	Example 2
	Identifying Classification and Translation Tables for a CCSID

	National Language Support for Messages and HELP Text
	CMS HELP Text Files
	National Language Messages in a VSE Guest Sharing Environment

	Defining Message Repositories as Saved Segments

	Chapter 14. Creating Installation Exits
	Supplying Account Numbers for Users
	How the ARIUXIT Module Works
	Coding Your Own Accounting Exit
	Installing Your Version of ARIUXIT
	Step 1. Stop the Application Server
	Step 2. Log on to the Installation or Service User ID
	Step 3. Establish the Minidisk or SFS Directory Order
	Step 4. Copy the MACRO Source Code (First Time Only)
	Step 5. Edit the ASSEMBLE File
	Step 6. Update the Local Version Vector Table
	Step 7. Assemble the File
	Step 8. Build your New Local Modification
	Step 9. Place the New Local Modification into Production
	Step 10. Restart the Application Server

	Service Considerations for ARIUXIT

	Defining Your Own Datetime Format
	Datetime Formats
	Default Output Format

	How Datetime Exits Work
	When Date and Time Exits are Called (Exit Points)

	Coding Your Own Datetime Exit
	Installing Your Version of ARIUXDT or ARIUXTM
	Step 1. Stop the Application Server
	Step 2. Log on to the Installation or Service User ID
	Step 3. Establish the Minidisk or SFS Directory Order
	Step 4. Copy the MACRO Source Code (First Time Only)
	Step 5. Edit the ASSEMBLE File
	Step 6. Update the Local Version Vector Table
	Step 7. Assemble the File
	Step 8. Build your New Local Modification
	Step 9. Place the New Local Modification into Production
	Step 10. Restart the Application Server

	Updating the SYSTEM.SYSOPTIONS Catalog Table

	Coding Your Own TRANSPROC Exit
	

	Coding Your Own Cancel Exit
	Resource Adapter Cancel Support
	RMXC (Resource Adapter Cancel Exit Control)
	

	Field Procedures
	Specifying the Field Procedure
	When Field Procedures are Called
	General Considerations for Writing Field Procedures
	A Warning about Blanks
	Maintaining Field Procedures
	Recovering from Abends in Exits
	Security with Field Procedures
	Field Procedures for Cultural Sorts
	Field Procedure Considerations with Data Capture for VM

	Field Procedure Interface to the Database Manager
	The Field Procedure Parameter List (FPPL)
	The Work Area
	The Field Procedure Information Block (FPIB)
	Value Descriptors
	The Field Procedure Parameter Value List (FPPVL)

	Field-Definition (Function Code 8)
	On ENTRY
	On EXIT

	Field-Encoding (Function Code 0)
	On ENTRY
	On EXIT

	Field-Decoding (Function Code 4)
	On ENTRY
	On EXIT
	A Sample Exit

	Chapter 15. Using a DRDA Environment
	
	Benefits of Using the DRDA Protocol
	Added Responsibilities in Using the DRDA Protocol
	Types of Distributed Access
	Remote Unit of Work
	Distributed Unit of Work
	Summary of DRDA Support in DB2 Server for VM

	Preparing to Implement DRDA
	On the Application Requester
	On the Application Server

	Installing and Removing the DRDA Code
	Steps to Install or Remove the DRDA Code

	Using DRDA
	Using the DBS Utility on non-DB2 Server for VM Application Servers
	Using ISQL on non-DB2 Server for VM Application Servers
	Two-Phase Commit Processing
	Using the Two-Phase Commit Protocol

	Operator Commands
	CRR Operator Commands
	Resynchronization
	Resync When Partner is Not Active
	Resynchronization Initialization
	Resynchronization Recovery
	Displaying Resynchronization Status using the SHOW CONNECT Command
	Terminating Resynchronization using the FORCE Command

	Chapter 16. Using TCP/IP with DB2 Server for VM
	Preparing the Application Server to use TCP/IP
	Preparing the Application Requester to use TCP/IP
	Security Considerations for TCP/IP
	Application Requester

	Appendix A. Virtual and Real Storage Requirements
	Appendix B. Estimating Database Storage
	Storage Capacities of IBM DASD Devices
	Determining Equivalent Minidisk Sizes on Different Device Types
	Determining the Number of Blocks or Cylinders on Your Current Device

	Relationship of Megabytes to 4-Kilobyte Pages
	Estimating Directory Space Requirements
	Estimating Storage Pool Requirements
	Estimating SYS0001 Dbspace Requirements
	SYS0001 Storage Estimating General Formula Assumptions
	Average Row Lengths for Catalog Table Rows
	Assumptions on the Number of Catalog Table Rows

	Derivation of the General Formula for SYS0001 Storage Estimating
	Formula for SYS0001 Storage Estimating
	Examples of Using the SYS0001 Storage Estimating Formula
	For a Test Database
	For an Application Development Database
	For a Production Database

	Modifying the SYS0001 Storage Estimating General Formula

	Estimating ISQL Dbspace Requirements
	Estimating Dbspace Sizes for Routines
	Estimating Dbspace Size for Stored SQL Statements (Stored Queries)

	Appendix C. Maximum Values
	Database Manager Maximum Values
	Database Maximum Values

	Appendix D. Updating SYSTEM.SYSSTRINGS
	Appendix E. Defining Your Own Character Set
	Step 1: Identify All Characters in Your Character Set
	Step 2: Classify the Characters
	Step 3: Determine Translation Characters
	Step 4: Update the SYSTEM.SYSCHARSETS Catalog Table
	Step 5: Update the SYSTEM.SYSCCSIDS Catalog Table
	Step 6: Update the SYSTEM.SYSSTRINGS Catalog Table
	Step 7: Update the CCSID-Related CMS Files

	Appendix F. Macro List
	Appendix G. Service and Maintenance Utilities
	ARISAVES EXEC
	ARISPDFC EXEC
	Authorization
	Syntax
	Description
	Notes:

	SQLBOOTS EXEC
	Authorization
	Syntax
	Description

	SQLDBLD EXEC
	Authorization
	Syntax
	Description

	SQLDBDEF EXEC
	Authorization
	Syntax
	Description

	SQLGENLD EXEC
	Authorization

	Appendix H. DRDA Considerations
	Omissions from the Standards
	Extensions to the Standards
	DB2 Server for VSE & VM Facility Restrictions

	Appendix I. Incompatibilities Between Releases
	Definition of an Incompatibility
	Impact on Existing Applications
	V2R1 and V1R3.5 Incompatibilities
	V2R2 and V2R1 Incompatibilities
	Detailed Notes on V2R2-V2R1 Incompatibilities

	V3R1 and V2R2 Incompatibilities
	Detailed Notes on V3R1-V2R2 Incompatibilities

	V3R2 and V3R1 Incompatibilities
	Detailed Notes on V3R2-V3R1 Incompatibilities

	V3R3 and V3R2 Incompatibilities (VM Only)
	Detailed Notes on V3R3-V3R2 Incompatibilities

	V3R4 and V3R3 Incompatibilities (VM Only)
	Detailed Notes on V3R4-V3R3 Incompatibilities

	V3R5 and V3R4 Incompatibilities
	V5R1 and V3R5 Incompatibilities
	V6R1 and V5R1 Incompatibilities
	V7R1 and V6R1 Incompatibilities
	V7R2 and V7R1 Incompatibilities

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

