<|lI!

DB2 Server for VM

System Administration

Jersion 7 Release 2

SC09-2980-01

<|lI!

DB2 Server for VM

System Administration

Jersion 7 Release 2

SC09-2980-01

Before using this information and the product it supports, be sure to read the general information under LNnh.ceiun_pa.geﬁJﬂ

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in the United States or 1-800-IBM-4Y0OU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Manual. X
Organization of This Manual.ix
Syntax Notation Conventionsxi
SQL Reserved WordsXV
Summary of Changes. Xvil

Summary of Changes for DB2 Version 7 Release 2 xvii
Enhancements, New Functions, and New
Capabilities xvil
Reliability, Avallablhty and Serv1ceab1lrty

Improvements. . Xviii
Chapter 1. Planning for Installation . . . 1
Operating System Overview . .1
Virtual Machine Overview . .1

Components of the Relational Database Management
System . .

Software Requ1rements

Virtual Storage Requirements .

Database Machine Size .

Service Machine Size

User Machine Size
Hardware Requirements

Real Storage Requirements.

DASD Space Requirements

Tape Requirements .

Display Terminal Requ1rements . .
Considerations When Defining a Database Machlne
and Generating a Database . . .9

Considerations When Adding D1rect0ry Control

Q@ 00 U1 U1 U1 Ul = = = W DN

Statements . . .9
Considerations When Loadlng IBM Supplred Flles 9
Considerations When Generating a Database 9
Considerations When Defining a Service Machine . . 9
Updating the Service Machine VM Directory . . 9
Considerations When Loadlng IBM- suppl1ed Files 9
Defining User Machines10
Defining Saved Segments.10
Setting Up the CMS Communrcahons D1rect0ry .. 10
Updating the SNA NETID File11
Chapter 2. Planning for Database
Generation13
Database Generation Parameters13
Defining Database Directory Size14
Defining the Database Log16
Establishing Database Capacity Parameters . .18
Establishing Initial Dbspace Requirements . . . 19
Determining Initial Dbextent Requirements. . . 21
Choosing an Application Server Name and VM
Resource Identifier28
Choosing the Application Server Default
CHARNAME and CCSID.23
Choosing the Application Server Default Character
Subtype25

© Copyright IBM Corp. 1987, 2001

Choosing the Default CHARNAME and CCSID for

Application Requesters26
Preparing for Database Regeneratron o027
Database Generation Worksheet27

Chapter 3. Planning for Database

Migration. . . . e
Migration Cons1derat1ons .o o032
Increasing the HELPTEXT Dbspace G VA
Migrating from Version 3 Release 132
Considerations for Invalid Indexes.32
Conversion of Packages33
Migrating from Version 3 Release233
Choosing an Application Server Default
CHARNAME.33
Choosing the Default CHARNAME for All
Application Requesters . . . 36
Considerations for Mixed Prlmary Keys w1th
Field Procedures.36
Migrating from Version 3 Release 3 B
Considerations for EXPLAIN Tables36
Considerations for VSE Guest Sharing . . .37
Considerations for the VM Data Spaces Support
(VMDSS) - . .37
Migrating from Version 3 Release 4 N V4
Considerations for Assembler Even Precision
Packed Decimal37
Considerations for SQLSTATE Changes for
SQL92 Support B V4
Migrating from Version 3 Release 5 < 7
Considerations for Uncommitted Read 37
Considerations for VMSES/E37
Considerations for Support of ESA-mode
Processors Only 38

Considerations for the Renammg of the Product 38
Considerations for the Removal of the User

Facility Subset38
Migrating from Version 5 Release 138
Considerations for RDS Above 16M38
Considerations for TCP/IP38
Migrating from Version 6 Release 138
Migrating from Version 7 Release 138
Release Coexistence Considerations . . . 39

Migrating from a VSE to a VM Operating System 39
Moving a Database from a VSE to a VM

Operating System 40
Choosing a VM Resource Ident1f1er R 10
Converting Data in the Database40
Converting Packages40
Converting Programs . . . 10
VSE Databases Coexisting under VM40
Migrating from a VM/XA to a VM/ESA
Environment41
Delaying the D1rectory and Database Name
Changes4

iii

Setting up the Database Machine Directory Entry 41
Example of a Database Machine Directory with

Multiple Databases 43
Setting Up the User Machlne D1rectory Entry . 43
Database Naming Considerations . . . 45
Migrating from a VM/SP to a VM/ESA Operatmg
System 45
Installing Another IBM VM System on Your
Processoro)
Moving a Database .o . 45
Using Archive and Restore to Move a Database 45
Using the SQLDBDEEF Utility 46
Moving a VM Application Server from One User ID
to Another. 47
Converting a Service Machlne to a Database
Machine 49

Changing the Server Name and Resource Identlfler 49

Chapter 4. Planning for Operation of

the Database Manager 53
Starting the Application Server.53
The Database Operator53
Multiple User Mode Initialization Parameters . .54
Single User Mode Initialization Parameters. . . 72
Tape Support.74
General File Support . . . 76
Starting the Application Server in Multlple User
Mode . . . N4
Starting the Apphcatlon Server in Smgle User
Mode80
Overriding Inltlahzatlon Parameters88
Creating a Parameter File.88
Running the Database Manager89
Operating Modes . . . oo .. 89
Disconnecting the Database Machme L. .09
Stopping the Application Server90
Taking an Archive91
Verifying the Directory93
Online Support Con51derat10nsfor VSE Guest
Sharing.93
A Note about M1n1d1sk Passwords93
Inter-Machine Communications. 9%

Chapter 5. Operating the Online

Support for VSE Guest Sharing 97

Operating VSE Guest Sharing97

Operator Responsibilities.98
Starting the Application Server99
Starting the Online Resource Adapter -- The
CIRB Transaction 100
Adding Connections -- The CIRA Transactlon 106
Automatic Restart Resynchronization 109
Changing the Default Server -- The CIRC
Transaction 115

Removing Connectlons -- The CIRR Transactlon 116
Displaying Information -- The CIRD Transaction 119
Stopping the Online Support -- The CIRT

Transaction 128
Password Imphcatlons on Onhne Resource
Adapter Termination.132

iV System Administration

Chapter 6. Maintaining Database

Security. 135
Communications and System Securlty ... 135
Session-Level Security136
Conversation-Level Security 136
VM Directory Control Statements. 137
User ID Translation139
Minidisk Protection 139
Connect Userid and Password Resolutlon .. 140
CMS Restrictions . . . 140
System and DB2 Server for VM Operator Console
Considerations . . . A Y |
Access Control to ISQL on a VSE Guest . v |

Chapter 7. Managing Database

Storage.143
Storage Concepts 143
How Information is Stored in Dbspaces ... 144
Adding Dbspaces to the Database 145
Considerations for Adding Dbspaces 148
Example of Adding a Dbspace to a Database 149
Expanding the Database Directory 150
Acquiring Dbspaces for Packages. 153
Managing Storage Pools. 155
Design Considerations for Storage Pools .. . 155
Monitoring Storage Pools157
Maintaining Storage Pools 157
Running the SQLADBEX EXEC16l
Moving Dbextents.168
Moving Log Disks.170
Chapter 8. Saved Segments 171
Using Saved Segments for Components 171
Example1175
Example2175
Example3176
Example4 e V44
Defining Saved Segments B V4
o . 179
e . 184
Running in User Free Storage after Using
Default Saved Segments. 189
ARISNLSC MACRO18

Chapter 9. Making Backups and

Recovering from Failures 191
Understanding Recovery Concepts 191
What is a Logical Unit of Work? 191
Whatisalog?.192
What is a Checkpoint? 193
What Happens after a System Fallure? .. . 193
What is an Archive? 194
Recovering from DASD Fallures that Damage
the Database . . . 195
Recovering from DASD Fallures that Damage a
Log. . . . 196
Recovering from DASD Fallures that Damage
the Database and Log 196
Establishing DASD Recovery Procedures 1%

Choosing a Log Mode
Backing Up the History Area .
Archiving Procedures.

Performing Database Arch1ves W1th Database

Manager Facilities .
Example of an SQLEND ARCHIVE
Performing Database Archives With User
Facilities .
Performing Log Archlves
Example of an SQLEND LARCHIVE
Labeling Your Archive Tapes

Recovery Procedures . .
Restarting Procedures
Restoring the Database .

Restarting from Failure of a Database Restore

Restarting from a System Failure While
Archiving

Restarting from Fa1lure of a Database
Generation or COLDLOG Operation
Relocating the Database Manager. .
Replacing a Minidisk Using DASD Dump
Restore o
Replacing a Database M1n1d1sl<

Replacing a Log Minidisk .

Recovering to a Secondary System

Chapter 10. Special Topics in
Recovery Design .
Switching Log Modes
From LOGMODE=A .
From LOGMODE-=L .
From LOGMODE=Y or N .
Using Dual Logging .
Using the VM DUPLEX Command
Reconfiguring and Reformatting the Logs .
Log Reconfiguration . .
Log Reformatting . .
Running the SQLLOG EXEC
Switching Log Data between Logs
History Area .
Nonrecoverable Storage Pools

Characteristics of Dbspaces in Nonrecoverable

Storage Pools

Data That Can be Placed in Nonrecoverable

Storage Pools .
Data That Should Not Be Placed in
Nonrecoverable Dbspaces

Setting Up Nonrecoverable Storage Pools and

Dbspaces .

Querying for Nonrecoverable Storage Pools and

Dbspaces .

Chapter 11. Using the Accounting
Facility . .
Where to Find More about VM Accountmg
Preparing to Use the Accounting Facility .
Starting the Accounting Facility

Generation of Accounting Records
Supplying Accountmg Data from DRDA
Applications. o

. 196
. 199
. 199

. 199
. 200

. 203
. 204
. 205
. 210
. 211
. 211
. 212

215

. 217

. 218
. 218

. 218
. 219
. 221
. 223

. 225
. 225
. 225
. 225
. 226
. 227
. 227
. 228
. 228
. 229
. 229
. 231
. 232
. 236

. 237
. 240

. 243

. 243

. 244

. 247
. 247
. 247
. 248
. 249

. 250

Formats of the Accounting Records .
Initialization Records .
Operator and Checkpoint Records
Termination Records .
CMS User Records
Remote User Records.
VSE Guest User Records.
Maintaining Accounting Data . .
Considerations for an Accounting Dbspace
Tables to Hold Accounting Data .
Loading the Accounting Data .

Chapter 12. Planning and
Implementing Configurations
Configuration Concepts . . .
Reasons for Adding a Database Machme .
Databases in a TSAF Collection or an SNA
Network . .
Adding Service Machlnes
Types of Database Machines
Primary Database Machines
Why Add a Database Machine?
Adding a Primary Database Machine
Adding a Secondary Database Machine
Adding a Service Machine . .
Defining Additional User Machines .
Adding a Database
VSE Guest Sharing Conﬁguratmn

Chapter 13. Choosing a National
Language and Defining Character
Sets
Considerations when changmg default
CHARNAME and CCSID
Changing from pre-Euro CHARNAME to
Euro-compatible CHARNAME
Using Alternative Character Sets .

Hexadecimal Values of the Sample Character

Sets

Specifying an IBM Supplred Character Set at

Run Time.

Using Double-Byte Character Set (DBCS)
Identifiers Containing DBCS Characters
Constants and Data Containing DBCS
Characters Lo

CCSID Conversion

Determining CCSID Values .

Setting the Application Server Default

CHARNAME and CCSIDs .

Changing the CCSID Attribute of an Ex1st1ng

Column .

Changing the Subtype Attr1bute of an Exrstrng

Column . .
Setting the Appl1cat10n Requester Default
CHARNAME and CCSIDs .

Setting the Default CHARNAME and CCSIDs

for All Application Requesters.

Setting the Default CHARNAME and CCSIDs

for an Application Requester .

Contents

. 251
. 252
. 252
. 253
. 253
. 254
. 255
. 256
. 256
. 257
. 260

. 263
. 263
. 263

. 265
. 268
. 270
. 272
. 272
. 273
. 278
. 280
. 280
. 282
. 299

. 303
. 304

. 305
. 306

. 306
. 313
. 314
. 315
. 316
. 317
. 320
. 321
. 323
. 323
. 323
. 324

. 324

\'%

Setting the Application Server Default Character

Subtype 325

Setting the DBCS Optlon for the Apphcatlon Server 326

Setting DBCS Option for Application Requestors 326
Setting the DBCS Option for all Application

Requesters 326
Setting the DBCS Optlon for an Apphcatlon
Requester. L0327
EUC Conversions327
Unicode Conversions. 327
Examples of Setting Values for an Installatlon .. 327
Examplel328
Example2 329
Identifying Classrﬁcatron and Translatron Tables
foraCCSID. 330
National Language Support for Messages and
HELP Text . . . R 1
CMS HELP Text F1les . . 333
National Language Messages in a VSE Guest
Sharing Environment. 333

Defining Message Repositories as Saved Segments 333

Chapter 14. Creating Installation Exits 337

Supplying Account Numbers for Users. 337
How the ARIUXIT Module Works 338
Coding Your Own Accounting Exit 342
Installing Your Version of ARIUXIT 348
Service Considerations for ARIUXIT. 350

Defining Your Own Datetime Format 350
Datetime Formats350
How Datetime Exits Work 351
Coding Your Own Datetime Exit. 354
Installing Your Version of ARTUXDT or
ARIUXTM 358
Updating the SYSTEM SYSOPTIONS Catalog
Table o . 360

Coding Your Own TRANSPROC Ex1t L3l

..36l

Coding Your Own Cancel Exit363
Resource Adapter Cancel Support . . . 364
RMXC (Resource Adapter Cancel Exit Control) 364

Field Procedures L3067
Specifying the Field Procedure368
When Field Procedures are Called 368
General Considerations for Writing Field
Procedures . . . e ... 369
A Warning about Blanks G [
Maintaining Field Procedures 370
Recovering from Abends in Exits. 370
Security with Field Procedures 370
Field Procedures for Cultural Sorts 370
Field Procedure Interface to the Database
Manager . . . L. .. .32
Field-Definition (Functron Code 8)37
Field-Encoding (Function Code 0) 377
Field-Decoding (Function Code4) 379

Chapter 15. Using a DRDA
Environment. 391
. 391

Vi System Administration

Benefits of Using the DRDA Protocol
Added Responsibilities in Using the DRDA
Protocol . . S
Types of Dlstrlbuted Access
Remote Unit of Work.
Distributed Unit of Work .
Summary of DRDA Support in DB2 Server for
VM. o
Preparing to Irnplernent DRDA
On the Application Requester .
On the Application Server .
Installing and Removing the DRDA Code
Steps to Install or Remove the DRDA Code
Using DRDA
Using the DBS Utility on non—DB2 Server for VM
Application Servers

Using ISQL on non-DB2 Server for VM Apphcatlon

. . .39
. 400
. 400
. 403
. 404
. 405
. 405
. 405
. 408

Servers . .

Two-Phase Comrnlt Processmg
Using the Two-Phase Commit Protocol

Operator Commands .

CRR Operator Commands .

Resynchronization. .
Resync When Partner is Not Actlve .
Resynchronization Initialization .
Resynchronization Recovery
Displaying Resynchronization Status us1ng the
SHOW CONNECT Command .
Terminating Resynchronization using the
FORCE Command.

Chapter 16. Using TCP/IP with DB2
Server for VM
Preparing the Application Server to use TCP/ IP

. 391

. 392
. 392
. 392
. 393

. 394
. 394
. 394
. 394
. 395
. 395
. 398

. 398

. 411

. 412

. 415

415

Preparing the Application Requester to use TCP/IP 418

Security Considerations for TCP/IP .
Application Requester

Appendix A. Virtual and Real Storage
Requirements

Appendix B. Estimating Database
Storage . . .
Storage Capacities of IBM DASD Dev1ces .
Determining Equivalent Minidisk Sizes on
Different Device Types . .
Relationship of Megabytes to 4- Kllobyte Pages .
Estimating Directory Space Requirements .
Estimating Storage Pool Requirements .
Estimating SYS0001 Dbspace Requirements
SYS0001 Storage Estimating General Formula
Assumptions
Derivation of the General Formula for SYSOOOl
Storage Estimating
Formula for SYS0001 Storage Estlmatlng
Examples of Using the SYS0001 Storage
Estimating Formula .
Modifying the SYS0001 Storage Estrrnatlng
General Formula . .
Estimating ISQL Dbspace Requlrements

. 419
. 421

. 423

. 425
. 425

. 428
. 429
. 430
. 430
. 431

. 432

. 435
. 436

. 436

. 438
. 440

Estimating Dbspace Sizes for Routines . . 440
Estimating Dbspace Size for Stored SQL
Statements (Stored Queries) . . 441
Appendix C. Maximum Values . 443
Database Manager Maximum Values . 443
Database Maximum Values. . 444
Appendix D. Updating
SYSTEM.SYSSTRINGS . 445
Appendix E. Defining Your Own
Character Set . 449
Step 1: Identify All Characters in Your Character
Set45
Step 2: Cla551fy the Characters . . 452
Step 3: Determine Translation Characters . . 460
Step 4: Update the SYSTEM.SYSCHARSETS
Catalog Table . 462
Step 5: Update the SYSTEM SYSCCSIDS Catalog
Table . . . 462
Step 6: Update the SYSTEM SYSSTRINGS Catalog
Table 463
Step 7: Update the CCSID Related CMS Flles . 464
Appendix F. Macro List . 465
Appendix G. Service and Maintenance
Utilities . . 467
ARISAVES EXEC . . 467
ARISPDFC EXEC . . 469
Authorization . . 469
Syntax. . 469
Description . . 469
Notes:. . . . 469
SQLBOOTS EXEC . 470
Authorization . . 470
Syntax. . 470
Description . . 470
SQLDBLD EXEC . . 470
Authorization . . 470
Syntax. . 470
Description . . 471

SQLDBDEF EXEC .
Authorization .
Syntax.
Description .

SQLGENLD EXEC
Authorization .

Appendix H. DRDA Considerations
Omissions from the Standards.

Extensions to the Standards . .

DB2 Server for VSE & VM PFacility Restrlctlons .

Appendix I. Incompatibilities Between
Releases :
Definition of an Incompatrblhty .
Impact on Existing Applications .
V2R1 and V1R3.5 Incompatibilities .
V2R2 and V2R1 Incompatibilities .
Detailed Notes on V2R2-V2R1 Incompatrbrhtres
V3R1 and V2R2 Incompatibilities .
Detailed Notes on V3R1-V2R2 Incompatlbllltles
V3R2 and V3R1 Incompatibilities .
Detailed Notes on V3R2-V3R1 Incompatrbrhtres
V3R3 and V3R2 Incompatibilities (VM Only) .
Detailed Notes on V3R3-V3R2 Incompatibilities
V3R4 and V3R3 Incompatibilities (VM Only) .
Detailed Notes on V3R4-V3R3 Incompatibilities
V3R5 and V3R4 Incompatibilities.
V5R1 and V3R5 Incompatibilities .
V6R1 and V5R1 Incompatibilities .
V7R1 and V6R1 Incompatibilities .
V7R2 and V7R1 Incompatibilities .

Notices . .
Programming Interface Informatlon
Trademarks .

Bibliography.
Index .

Contacting IBM

Product information .

Contents

. 471
. 472
. 472
. 472
. 475
. 475

477

. 477
. 477
. 478

. 479
. 479
. 479
. 480
. 482

484

. 485

490

. 495

500

. 502

508

. 509

512

. 513
. 513
. 514
. 514
. 514

. 515
. 517
. 517
. 519
. 523

. 537
. 537

vii

viii System Administration

About This Manual

This manual describes how to carry out system planning and administration tasks
for DB2 Server for VM that is:

On a VM/ESA™ operating system (Virtual Machine/Enterprise Systems
Architecture)

Configured with VSE running as a guest under VM.

Specific VM operating systems are mentioned in the text when a task or DB2
Server for VM facility applies to a subset of the VM operating systems.

The following tasks are described here:

Installation

Migration

Operation

Management of resources (including security)

Modification of facilities (including national language support)

Installation and maintenance of Distributed Relational Database Architecture
(DRDA®) facilities.

The term database manager refers to the DB2 Server for VM database manager,
unless otherwise stated.

Organization of This Manual

E'Summary of Changes” on page xvii lists the changes made to the product since
Version 7 Release 1.

4 . : 7

summarizes the software,
hardware, and storage requirements for installing the database manager.

4 : : ”

describes how to set
up your initial database, including specifying parameters to define the logical
and physical limits for its capacity and setting its initial DASD allocations.

7 n . . 77

explains the planning
you must do before migrating a database from a previous release of the database
manager to the Version 7 Release 2 level. For the actual migration steps, see the

operational characteristics of the application server when it is started by the DB2
Server for VM operator.

Note: Starting, operating, and stopping the application server are also discussed
in the jod manual.

VM/ESA operating system, and how to operate the online support for

CICS/VSE® transactions.

Note: These subjects are also discussed in the [DB2 Seruer for VSE & VM
manual.

© Copyright IBM Corp. 1987, 2001 ix

X

System Administration

E'Chapter 6. Maintaining Database Security” on page 139 discusses how to control
access to the application server.

a . ”

explains how to manage
the disk storage allocated to the database, including adding (or defining)
dbspaces, defining storage pools, adding dbextents to storage pools, and
managing storage pools.

EChapter 8 Saved Segments” on page 171l discusses using, defining and running
saved segments.

” . . . 7

describes facilities provided for recovery from system failures and DASD
failures; how to back up your database; and how to recover from different types
of failures.

” 17

discusses dual
logging and switching log modes.

U‘Chapter 11 Using the Accounting Facility” on page 247 describes the DB2

Server for VM accounting facility, which tracks how database resources are
consumed by users.

n B . B B 77

describes
configuration topics like adding database and user machines, and configuring
for different operating systems.

NOO I'.k. ll- -l. ace and De II' NAra = - ala
page 303 contains information on national language character set and coded
character set identifier (CCSID) support, as well as how to provide HELP text
and messages in languages supported by the database manager.

UChapter 14 Creating Installation Fxits” an page 337 describes the types of

installation exits that you can code to customize the database manager:

— Accounting exits, to customize account information

— Date and time exits, to create your own date or time format if the
IBM-supplied formats do not fit your requirements

— TRANSPROC exits, to carry out DBCS conversions

— Cancel exits, to replace the product-supplied cancel function when coding
your own interactive program

— Field Procedures, to change the sorting sequence by encoding and decoding
data if the standard sorting sequence does not meet your requirements.

’ : : 7

discusses using the
database manager in a distributed environment; benefits; how to prepare DB2
Server for VM application requesters and application servers; administrative
responsibilities; and using the database services utility (DBS Utility) and ISQL to
access a non-DB2 Server for VM application server. Considerations for
distributed databases and for choosing the PROTOCOL parameter are also
discussed.

4 : . ”

discusses
using TCP/IP to access application servers.

" . . . ”

presents
guidelines for estimating the processor requirements needed for running the
database manager.

" . . . ”

contains procedures for
estimating the sizes of the database directory, public dbspaces, and the ISQL
dbspace.

v . : ”

contains the system and database
maximums for the database manager.

¢ EAppendix D. Updating SYSTEM.SYSSTRINGS” on page 445 details how to
update this catalog table to support your own CCSID conversion.

* EAppendix E Defining Your Own Character Set” on page 449 describes how to

create your own character set.

» FAppendix F Macro List” on page 463 lists the macros identified as

programming interfaces for customers by the database management system.

”

‘Appendix G Service and Maintenance Utilities” on page 464 lists and describes
O

service and maintenance utilities.

» FAppendix H DRDA Considerations” on page 477 discusses what you should

consider in a distributed environment.

. EAppend;LL_angm.pahbﬂJhes_BehueenJZeleaseslgn_pa.geAld describes the

incompatibilities between releases.

A bibliography is provided at the back of the book.

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

* Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The »—— symbol indicates the beginning of a statement or command.

The — symbol indicates that the statement syntax is continued on the next
line.

The »—— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
»— symbol and end with the — symbol.

* Some SQL statements, Interactive SQL (ISQL) commands, or database services
utility (DBS Utility) commands can stand alone. For example:

»—SAVE <

Others must be followed by one or more keywords or variables. For example:

»>—SET AUTOCOMMIT OFF ><

* Keywords may have parameters associated with them which represent
user-supplied names or values. These names or values can be specified as either
constants or as user-defined variables called host_variables (host_variables can only
be used in programs).

v
A

»»>—DROP SYNONYM—synonym

About This Manual ~ Xi

xii

Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be present;
you can omit those in lowercase.

Parameters appear in lowercase and in italics (for example, synonym).

If such symbols as punctuation marks, parentheses, or arithmetic operators are
shown, you must use them as indicated by the syntax diagram.

All items (parameters and keywords) must be separated by one or more blanks.

Required items appear on the same horizontal line (the main path). For example,
the parameter integer is a required item in the following command:

»»—SHOW DBSPACE—integer ><

This command might appear as:
SHOW DBSPACE 1
Optional items appear below the main path. For example:

v
A

»»—CREATE INDEX
|—UN IQU E—|

This statement could appear as either:
CREATE INDEX

or
CREATE UNIQUE INDEX
If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For
example:

»»—SHOW LOCK DBSPACE—EALL ><
integer—l

System Administration

Here, the command could be either:
SHOW LOCK DBSPACE ALL

or
SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main
path. For example:

A\
A

»>—BACKWARD |:

integer—
MAX

Here, the command could be:
BACKWARD

or
BACKWARD 2

or
BACKWARD MAX

* The repeat symbol indicates that an item can be repeated. For example:

»>—ERASE—Y—name ><

This statement could appear as:
ERASE NAME1

or
ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

»»—VALUES— (—X——constant) ><
host_variable list—
NULL
special_register—

 If an item is above the main line, it represents a default, which means that it will
be used if no other item is specified. In the following example, the ASC keyword
appears above the line in a stack with DESC. If neither of these values is
specified, the command would be processed with option ASC.

|—ASC—|
- |—DESC—|

A\
A

About This Manual ~ Xxiii

* When an optional keyword is followed on the same path by an optional default
parameter, the default parameter is assumed if the keyword is not entered.
However, if this keyword is entered, one of its associated optional parameters
must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you do not
enter PCTFREE =, the database manager will set it to the default value of 10.

|—PCTFREE = 10

>

|—PCTFREE

integer—

* Words that are only used for readability and have no effect on the execution of
the statement are shown as a single uppercase default. For example:

PRIVILEGES
»—REVOKE ALL |_ —l ><

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

* Sometimes a single parameter represents a fragment of syntax that is expanded
below. In the following example, fieldproc_block is such a fragment and it is
expanded following the syntax diagram containing it.

>> | i fieldproc_block i ><

|—NOT NULL ii

UNIQUE
PRIMARY KEY—

fieldproc_block:

v

constant—

|—FIELDPROC—program_name L J }
(—)

Xiv System Administration

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in
SQL statements except for their defined meaning in the SQL syntax or as host
variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

ACQUIRE GRANT RESOURCE
ADD GRAPHIC REVOKE
ALL GROUP ROLLBACK
ALTER ROW
AND HAVING RUN
ANY
AS IDENTIFIED SCHEDULE
ASC IN SELECT
AVG INDEX SET

INSERT SHARE
BETWEEN INTO SOME
BY IS STATISTICS

STORPOOL

CALL LIKE SUM
CHAR LOCK SYNONYM
CHARACTER LONG
COLUMN TABLE
COMMENT MAX TO
COMMIT MIN
CONCAT MODE UNION
CONNECT UNIQUE
COUNT NAMED UPDATE
CREATE NHEADER USER
CURRENT NOT

NULL VALUES
DBA VIEW
DBSPACE OF
DELETE ON WHERE
DESC OPTION WITH
DISTINCT OR WORK
DOUBLE ORDER
DROP

PACKAGE
EXCLUSIVE PAGE
EXECUTE PAGES
EXISTS PCTFREE
EXPLAIN PCTINDEX

PRIVATE
FIELDPROC PRIVILEGES
FOR PROGRAM
FROM PUBLIC

About This Manual

XV

XVi System Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM
database management system for this edition of the book. Several manuals are
affected by some or all of the changes discussed here. For your convenience, the
changes made in this edition are identified in the text by a vertical bar (1) in the
left margin. This edition may also include minor corrections and editorial changes
that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server
for VSE & VM product; see either the IDB2 Seruer for VSE & VM SQL Rpfprpwr‘A bB_j
Berver for VM q?j/cfpm Adwministration or the IDR2 Qprnprfnr VSE Suyste

manuals for a discussion of incompatibilities.

| Summary of Changes for DB2 Version 7 Release 2

| Version 7 Release 2 of the DB2 Server for VSE & VM database management

[system is intended to run on the Virtual Machine/Enterprise Systems Architecture
[(VM/ESA®) Version 2 Release 3 or later environment and on the Virtual Storage

| Extended /Enterprise Systems Architecture (VSE/ESA™) Version 2 Release 3

[Modification 1 or later environment.

| Enhancements, New Functions, and New Capabilities
| The following have been added to DB2 Version 7 Release 2:

Security Enhancements

The following enhancements have been made to the CONNECT statement in
DRDA:

* Server and client support for password encryption over TCP/IP and SNA

* CONNECT IDENTIFIED BY enablement for the VM requestor

For more information, see the following DB2 Server for VSE & VM documentation:

 IDB2 Server for VM System Administration

- [DBR2 Server for VSE & VM Application Prngmmmingl

» [DB2 Server for VSE & VM SQI. Referencd

o IDB2 Server fmf VM Prngrnm Diw’ﬂfnrjlj

Archive Tape Handling Enhancements

Two initialization parameters have been added:

* For VSE & VM, the TAPEMGR parameter allows you to specify that tape
manager functionality is available and will be used.

* For VSE only, the ARCHTAPE parameter allows you to specify that the archive
tape be automatically unloaded from the tape drive at the end of writing each
tape of a log or database archive.

| For more information, see the following DB2 Server for VSE & VM documentation:

| . DSt - — !

| . IDRBR2 QPwmrfmf VSE qlqupm Administration

© Copyright IBM Corp. 1987, 2001 xvii

xviii

o IDB2 Server for VSE & VM Opprafinnl
o [DB2 Server for VM Program Directori)
o IDB2 Server for VSE ngmm Directori)

New Database Replication Utility

A new utility has been added in support of database replication:

Redefine Database
Extracts the definition of database objects from a DB2 Server for VSE &
VM database and generates a DBSU job to create the same objects on
another DB2 database.

For more information, see the following DB2 Server for VSE & VM documentation:
. [DR2 prmrfnr VSE Sustemr Administration

- [DB2 Serner fnr VM Prngrnm Directori
SHOW Command Enhancements
The SHOW DBCONFIG command has been changed to show the current version,

release, and modification level of the database, in addition to the version, release,
and modification level at which the database was originally generated.

The SHOW INITPARM command has been changed to show the current version,
release, and modification level of the database.

The SHOW SQLDBGEN command has been added to show the current database
information. The output can be used to create a new SQLDBGEN file (for VM) or
ARISDBG.A source member (for VSE) in order to generate a copy of the database
with the current configuration. This copy can be used, for example, to create a new
test system.

For more information, see the following DB2 Server for VSE & VM documentation:

. DT a ————

o |DB2 Server for VSE Systems Administration
o IDB2 Server for VSE & VM Op?mh’nnl

o [DB2 Serper fmf VSE A/foccngpc and Coded

Reliability, Availability, and Serviceability Improvements

TCP/IP Auto-Restart

The database is now able to detect when TCP/IP has gone down, and
automatically restart it. New initialization parameters control enablement of
auto-restart and the maximum number of retry attempts.

For more information, see the following DB2 Server for VSE & VM documentation:

. D LS —

- IDR2 prmrfmf VSE Sustem Adwministratiod

. IDRBR2 QPrﬂPrfnr VM Prngrnm Directari)

System Administration

. mmg@ulsm%nm&d
Support for STGPROT=YES Parameter in CICS (VSE only)

Changes have been made to the instructions used in DB2 Server for VSE to allow
the use of STGPROT=YES when starting CICS/TS for VSE/ESA.

See the [DB2_Seruer fmf VSE Prngw)m T)ivpr*hwbl for additional information.

Migration Considerations

Migration is supported from SQL/DS™ Version 3 and DB2 Server for VSE & VM

Versions 5 and above. Migration from SQL/DS Version 2 Release 2 or earlier

releases is not supported. Refer to the W_Smg&uﬂﬁysiem_ﬁdmmﬂaﬁad or
uistratiod manual for migration considerations.

Summary of Changes ~ XiX

XX System Administration

Chapter 1. Planning for Installation

This chapter discusses the tasks that need to be done before you begin to install
the DB2 Server for V on how to perform installation
can be found in the |

Operating System Overview

The database manager runs on a VM/ESA Version 2 Release 3 or later operating
system. If you are running VSE as a guest operating system under VM, VSE users
and applications can access DB2 Server for VM servers. This feature is called VSE
Guest Sharing.

If DRDA code is installed, DB2 Server for VM requesters can use the DRDA
protocol to access servers on other platforms, and requesters on other platforms
can use the DRDA protocol to access a DB2 Server for VM database. For more

information, see I‘Chapter 15 Tsing a DRDA Environment” on page 391l

Note that this product does not support mixed levels of CP and CMS.

Virtual Machine Overview

This section provides an overview of the virtual machines required by the database
manager.

You need one or more of the following virtual machines for installation and
subsequent use:

1. MAINT. This machine already exists in your VM system.

2. Installation User ID. You need it to use VMSES/E to install, service, and migrate
the database manager.

3. Database machine. A database machine is a virtual machine in which the
database manager code runs. There can be more than one database machine.

The database machine owns a database. It provides all database management
services for a database. The database machine processes SQL requests from
users, and returns the results to the users.

Note: The word “own”, in this context, describes the association of the
database machine’s user ID as the owner of the minidisks that contain
the database. Users who want to link to and access minidisks owned by
another user must be authorized by the owner or the system
administrator.

The VM database machines can be defined as either a LOCAL resource, which
restricts access to users on the same processor, or a GLOBAL resource, which
allows access to users on other processors. For more information on defining
databases, see ”

4. Service machine. A service machine is required by any processor that does not
have its own database machine, and has users who want to access data in a
relational database, either using private or DRDA protocol.

DRDA Remote Unit of Work (RUOW) support was introduced in SQL/DS
Version 3 Release 3. DRDA Distributed Unit of Work (DUOW) server support

© Copyright IBM Corp. 1987, 2001 1

is introduced in DB2 Server for VM Version 5 Release 1. For more information
on the DRDA environment, see I’Chapfpr 15 Using a DRDA Environment” on

The service machine provides essential support to users by allowing access to a
DB2 Server for VM production minidisk. The production minidisk contains files
required by the users. For example, the SQLINIT EXEC files that enable ISQL

(Interactive Structured Query Language), the DBS utility, and the preprocessors

are located on this minidisk.

For information on installing the service machine and the files that it uses, see
the m

5. User machine. A user machine is a virtual machine that has read access to the
database machine production minidisk.

Components of the Relational Database Management System

2

System Administration

w depicts a typical configuration with one database and two users.

Communication Link (IUCV, APPC/VM or TCP/IP)

Database User
Machine Machine
Data System Control :

Service —
IAplecatlon Requester

Relational Data System|

Database Storage Mpisy
Subsystem

Database Manager

Interactive SQL

Preprocessors

Proguyction

DBS Utility
// \ \\ N Applications
1 ! User
' Machine
- o | | [eetnef
| | 1
- :] :
! 1
: : IAppIication Requesterl
| RN s s— ,
DirecToN : : : Interactive SQL i
log Disk]] | !
i 1 Preprocessors |
1 Storage 1 !
| Pool ! DBS Utility 1
_________ | 1
Database | I Applications I

Application Server

Figure 1. Basic Components of the RDBMS in VM/ESA

The database is composed of :
* A collection of data contained in one or more storage pools, each of which in turn
is composed of one or more database extents (dbextents). A dbextent is a VM

minidisk.
* A directory that identifies data locations in the storage pools. There is only one
directory per database.

* A log that contains a record of operations performed on the database. A database
can have either one or two logs.

The database manager is the program that provides access to the data in the
database. It is loaded into the database virtual machine from the production disk.

The application server is the facility that responds to requests for information from
and updates to the database. It is composed of the database and the database
manager.

The application requester is the facility that transforms a request from an
application into a form suitable for communication with an application server.

Software Requirements

The database manager for VM requires an environment provided by IBM Virtual
Machine/Enterprise Systems Architecture (VM/ESA operating system), Version 2
Release 3 or later either by itself, or as the base of any VM package. Depending on
your intended use of the database manager, you may need other licensed program
products, as follows:

* For VSE guest sharing, VSE is required.

* For remote printing by ISQL you need the remote spooling communications
subsystem (RSCS) Version 2 Release 3 or later.

* To develop DB2 Server for VM application programs, you can use one or more
of the following compilers:
- A PL/I compiler
- A COBOL compiler
— A VS Fortran compiler
- A C Compiler
— An Assembler.

¢ The database manager supports some of the enhancements of VS COBOL Il
Release 3. You can take advantage of these enhancements if you have a VS
COBOL II Release 3 (or later) compiler. For information , see the

icati ingl manual.

* To use double-byte character set (DBCS) characters in application programs, you
need the following compilers:

— VS COBOL II compiler

For VS COBOL 1II Release 2 and later programs, SQL identifiers, SQL host
variables, and SQL labels with DBCS characters can be used in SQL
statements. The COBOL Kanji preprocessor is not required.

— PL/I compiler

For PL/I Release 2.1 and later programs, SQL identifiers, SQL host variables,
and SQL labels with DBCS characters can be used in SQL statements.

— VS Fortran compiler

VS Fortran Version 2 Release 3 and later programs support DBCS symbolic
names and DBCS characters in character constants.

— C compiler

For C programs, SQL identifiers, SQL host variables, and SQL labels with
DBCS characters can be used in SQL statements.

— Assembler compiler

DBCS variables and constants are not supported in Assembler programs. You
can still use DBCS characters in dynamically defined SQL statements.

Chapter 1. Planning for Installation 3

* If you want to use REXX, you need RXSQL.

When using RXSQL, you cannot use DBCS characters in cursor names and
statement names.

* To provide remote unit of work access between application requesters and
application servers in an SNA network, you need VTAM* Version 3 Release 2 or
later. If you want to use either partner LU verification or SECURITY=SAME
conversations that are routed through AVS, you must have VTAM Version 3
Release 3 (or later) and RACF* Version 1 Release 9 (or later), or an equivalent
security manager product.

For more information about remote unit of work in a DRDA environment, see
the Distributed Relational Database Connectivity Guide manual.

* To archive the database using user facilities, consider using the DASD Dump
Restore (DDR) utility included with your VM operating system.

Note: All references to above programs apply to equivalent non-IBM products.

Virtual Storage Requirements

4

All DB2 Server for VM operations are serviced by database machines. A database
machine is a virtual machine in which the system code (the components of the
database manager) runs.

Database Machine Size

The amount of virtual storage required by the database machine depends on
several factors. The dominant ones are the sizes of the buffer pools (used for the
directory and the data), the number of concurrent users to be supported, the
complexity of the SQL requests, and the definition of the database. Refer to the
DR2 Server for VM Pragram Directory for recommended virtual storage for the
database machine.

If you have coded any date or time exit routines, the size of these routines must be
added to the minimum virtual storage. For more information, see

Own Datetime Format” on page 350. ISQL cannot be run in the database machine.

If you plan to run the database manager in single user mode, add the size of the

application being run, and the resource adapter. See the IDB2 Server for VM Progran
m for more information on virtual storage requirements.For a description of

”

resource adapter, see [

The database manager (as a default) runs in the user free storage area. (The entire
user program area is used for user free storage when the database manager is
running.)

For detalled formulas for calculating virtual storage requirements, see

Service Machine Size

System Administration

If CMS is defined as a saved segment, a 1-megabyte machine size is recommended;
if not, ensure that you define enough virtual storage for the service machine to run
CMS. For information on saved segments and how they are defined see

Baved Segments” on page 177,

The service machine does not perform any processing. Its purpose is to own the
database manager minidisks so that SQL users can access the IBM-supplied
programs, such as ISQL, the DBS utility, and the preprocessors.

User Machine Size

Refer to the bBQ—S@%%MM@gma—D%W for the virtual storage

requirements for a user machine

Hardware Requirements

Hardware requirements include real storage, DASD space, tape, and display
terminals.

Real Storage Requirements

The database manager itself does not require any real storage. However, if more
real storage is available, there is less paging, thus improving performance.

The VSE guest sharing facility requires 40 kilobytes of real storage for each
database communication link.

DASD Space Requirements

The DASD space requirements for the virtual machines are discussed below.

Minidisks Required for the Installation User ID Machine

You no longer install and service DB2 Server for VM strictly using the MAINT user
ID. You should use the user ID, 5697F42R. You can change this user ID, however,
by creating a PPF override. See the DB2 Server for VM Program Directary) for more
information.

See the IDB2 Server for VM Program Directory) for the recommended DASD sizes for
the installation user ID machine and initial installation, migration, and service
instructions.

Minidisks Required for a Database Machine
A database machine requires two kinds of minidisks: system minidisks and
database minidisks.

System Minidisks: A database machine must have read/write access to its own
work minidisk (A-disk). In addition, it must be able to access the DB2 Server for
VM production and service minidisks. Collectively, these three minidisks are
referred to as the system minidisks. The system minidisks can be optionally installed
in shared file system (SFS) directories with default names of VMSYS:SQLMACH,
VMSYS:SQLMACH.SQL.PRODUCTION and VMSYS:SQLMACH.SQL.SERVICE.
From now on, any reference to the service or production minidisk can be replaced
by these directories.

The work minidisk is required because the database manager does various
operations that require space temporarily.

The production minidisk contains IBM-supplied EXECs and programs that are
required for day-to-day use of the database manager. The production minidisk
defines an entire DB2 Server for VM environment, and contains all the CMS files
that enable database machines to access databases. It also contains CMS files that
allow users to access a database with a given database machine. The CMS files

Chapter 1. Planning for Installation 5

6

System Administration

determine the default application server and thus the database a user can access.
Users can access other database machines and thus other databases by database
switching.

The DB2 Server for VM LOADLIB resides on the production minidisk. Every
virtual machine must have read access to the production minidisk in order to
access the database manager.

The service minidisk also contains IBM-supplied EXECs and programs, but it
needs to be accessed only during installation, database generation, migration,
maintenance or system administration activities.

Usually, all database machines use the same production and service minidisks.
Thus, they can be defined once for the entire installation. You can define more than
one production minidisk as your installation grows. Multiple production minidisks
are convenient when you have many database machines that often perform
administrative tasks. If you define a second production minidisk, you create a
second DB2 Server for VM environment. This environment has its own users, its
own database machines, and its own databases. It is independent of any other DB2
Server for VM environment that is defined by any other production mlmdlsk
More spec1f1c information is in

Z . In planning your initial installation, assume there will
be only one production minidisk and one service minidisk.

Initially, there is only one database machine, SQLMACH. Thus, for installation, you
need to be concerned only with the size of the work minidisk for that initial
database machine. The installation process makes SQLMACH the owner of the
production and service minidisks.

See the IDB2 Server for VM Pragram Directory) for the recommended database

machine DASD sizes for the service minidisks and production minidisks.

A service minidisk must contain only IBM-supplied files: it must not contain any
user-created files. The IBM-supplied service minidisk files are documented in the

DB2 Server for VM Program Directory.

The production minidisk may contain user files, but it must contain all the

IBM -supplied files. The IBM-supplied production minidisk files are documented in
he IDB2 Server for VM Program Directory. The space allocations shown for the

productlon minidisk reflect the requirements for the IBM-supplied files plus

approximately 30% free space.

The service minidisk allocation for non-English versions of the HELP text is

described in the program directory supplied with the non-English HELP text

distribution tape. The allocations documented in the DB2 Server for VM Prograui
include space for the English version of the HELP text.

The service minidisk is referred to as the SQLMACH 193 minidisk, but can be
defined with any valid user ID and virtual address. Similarly, although the
production minidisk is referred to as the SQLMACH 195 minidisk, you can use
any valid user ID and virtual device address. The same virtual machine must own
both the service and production minidisks. When migrating from a previous
release of the database manager, another user ID and virtual device address can be
used for the production minidisk for testing. If you have not used a previous

release of the database manager, you should use the user ID SOLMACH and the
193 and 195 virtual device addresses as described in the DB2 Seruer for VA

Program Directory).

Database Minidisks: Minidisk requirements for a database machine vary based
on the number and size of databases defined on it. Each database has a minimum
minidisk storage requirement. A database requires a minimum of three VM
minidisks, but a typical database has several more. The minidisk requirements are
summarized below:

A directory minidisk to hold internal control information for the database.

* Either one or two log minidisks, to hold recovery information. Only one is
required, but defining two log minidisks on separate volumes is recommended,
to protect against I/O errors on access to the log information.

e Database extents (dbextents) to hold the user data of the database. It is possible
to have only one dbextent, but a typical database has several.

The directory, log and database extents minidisks cannot be in CMS shared file
system directories.

The directory and log minidisks are discussed further in I‘Chapter 2 Planning_for
Da.tahasp_Gen.enanonlon_pa.ge_'lﬂ Dbextent mmldlsks are discussed in greater

detail in

The Starter Database

The ARISDBG MACRO, which comes with this product, contains IBM-supplied
specifications for generating a starter database. This database consists of one
directory minidisk, one log minidisk, and one data minidisk. You can later add
more dbextents, up to a logical maximum size of about 4.6 gigabytes, using the
information in ”

You should generate the starter database at the time of initial installation and
experiment with it in order to familiarize yourself with the database manager. You
may then keep it as your production database. However, as your needs grow, you
may find it necessary to transfer its contents to another database, which can be a
major undertaking. Thus, once you are familiar with how it works, it is best to
discard the starter database and generate your own database by following the
guidelines in -

The initial physical size of the starter database is predefined and will be about the

same on all IBM storage devices. See the [DB2 Server for VM Program Directory for

the recommended DASD sizes for the starter database.

This starter database must be able to fit in a single dbextent. If you do not have
enough DASD, you will not be able to use the IBM-supplied specifications, and
will have to generate your own database at the time of installation. If you want to
define the equivalent of the starter database on the devices, you must define
multiple dbextents on multiple volumes.

If you are migrating from a previous release of the database manager, you already
have at least one database, so generating the starter database is optional. The
advantage of doing so is that you can use it as a test database to verify your
installation, but the disadvantages are the work involved and the necessary DASD
allocations. Thus to deal with migration needs, the database manager provides
allocations for generating a starter database that is large enough to hold the initial
database components (for example, HELP text, catalog tables, and Fortran

Chapter 1. Planning for Installation 7

8

packages), but not much else. The IDB2 Server for VM Program Directory also shows
the minidisk sizes for a minimum starter database.

Minidisks Required for a Service Machine

The service machine must have read /write access to its own work minidisk
(A-disk). In addition, it must be able to access the production and service
minidisks. For more information see L inidisks”

If you only have a service machine on a processor and intend to access a database

manager (defined as a global resource) in another processor, the code that is

installed on your local processor is known as the service machine. If you install the

service machine, you do not need a database machine. See the [DB2 Seruer for VM
for the recommended DASD sizes for the service machine.

Minidisks Required for a User Machine

During installation, it is recommended that one virtual machine be defined as a
user machine. A user machine also requires a 191 minidisk (A-disk, formatted at
the 1024 byte block size with free space equivalent to at least 3 cylinders of an IBM
3380 storage device). The user machine 191 disk can optionally be installed in a
CMS shared file system directory. See the IDB2 Serner for VM Program Directary) for
the recommended DASD sizes for the user machine. After initial installation, you
will probably want to define many user machines.

Tape Requirements

One tape drive is required for installation. Depending on the DB2 Server for VM
facilities you use, you may need tape drives after installation. Tape processing can
be used for the following activities:

* Database archive and log archive processing (both creating the archive and
restoring the database from the archive) to support recovery from DASD failures

¢ Unloading and reloading data into the database using the DBS utility
* Holding the output of the trace facility
* Holding the output of the accounting facility

For all of these facilities except archiving, you can use DASD instead of tape.

Also, with the exception of accounting output, the database manager does not
require the continuous use of any tape drive: tape mounts are requested when
needed. If you are using tape drives, you should have at least two to cover all
your needs.

The database manager supports all tape drives that are supported by the operating
system.

Display Terminal Requirements

System Administration

A variety of display terminals are supported, including the larger screen sizes
offered by some models of the 3278 and 3279 (or equivalent) devices. Since the
database manager relies on CP (control program) and CMS to provide terminal
support for DB2 Server for VSE online applications, the terminal must be one that
is supported by CMS.

You can direct ISQL-printed output to any printer supported by the Remote
Spooling Communications Subsystem (RSCS). Use CP SPOOL and TAG commands
to change the routing of the print output.

Note: To display and print DBCS characters (for example, Japanese HELP text), a
DBCS terminal and printer (for example, the IBM 5550 terminal) are
required.

Considerations When Defining a Database Machine and Generating a
Database

Read this section before carrying out any activities.

Considerations When Adding Directory Control Statements

VM directory control statements are describe on i22 You add them to your
database machine to:

* Define its virtual storage

* Enable communications between it and the user machines or gateways.

¢ Provide links to the service, production, and database minidisks. (The database
machine’s PROFILE EXEC must be updated so that these minidisks or CMS
shared file directories can be accessed.)

Considerations When Loading IBM-Supplied Files

Install all the IBM-supplied files into the production and service minidisks. This
loads the full product version to support both a database and your users.

Considerations When Generating a Database

You generate a database by specifying parameters to define its maximumes. It is
recommended that the first time you do so, you use the IBM-supplied set of
predefined parameters called the starter database specifications. (See the

for VM Program Director} for instructions on how to generate a starter database.)
Once you are familiar with how the starter database works, you should delete it

and §enerate your own. Refer to !Chapter 2_Planning for Database Generation” onl

Considerations When Defining a Service Machine

Read this section if you plan to define a service machine.

Updating the Service Machine VM Directory

Add VM directory control statements for the service virtual machine to:
* Define its virtual storage
* Provide links to the service and production minidisks.

More information is provided in !‘Chapter 12_Planning and Implementing
t I 3 l 3 7”7 2 E d

Considerations When Loading IBM-supplied Files

Since this is a service machine, you should not generate a database. However,
because all the DB2 Server for VM files are already loaded where you installed the
service machine, you can generate a database in the future. For information on
generating a database on a processor that has a service machine, see

EMMW. ” .

Chapter 1. Planning for Installation 9

Defining User Machines

Carry out the following procedure for each user machine that you define:
1. Add VM directory control statements to:

a. Define the virtual storage for the user machine

b. Provide a link to a database machine production minidisk

2. Add (optionally) IUCV statements for communications between the user
machine and a specified database machine or gateway machine.

3. Update the user machine’s PROFILE EXEC so that it can access the production
minidisk.

For information on performing these steps, see I'Defining Additional Used

Defining Saved Segments

You can load saved segments any time after installation or migration of the
database manager using VMSES/E, which uses the ARISAVES EXEC.

The instructions for defining saved segments are explained in I‘Chapter 8 Saved

Setting Up the CMS Communications Directory

10

You must define a CMS communications directory when one of the following is
true:

* You access a remote application server through the VTAM product

* The resid and server name are not the same

* You use SECURITY=PGM

* The database name is longer than 8 bytes

* You access a database using TCP/IP.

If you are accessing a database server using DRDA and SECURITY=PGM, you can
optionally specify the PWDENC tag in the COMDIR entry for added security. If
PWDENC=Y, the CONNECT password will be encrypted before it is sent to the
server. The server must support decryption of the password. If PWDENC=N, or it
is not specified, the CONNECT password will not be encrypted and will be sent as
plain text.

The CMS communications directory provides SNA address resolution for the
application servers. If this file does not exist or does not contain an entry, or if you
issue the COMDIR OFF BOTH command, then the following assumptions are
made: that the application server name is the same as the resid, the application
server is within the same TSAF collection as the application requester, and
SECURITY=SAME.

Any type of abend in the user machine (whether it is an application or initiated by
the application requester code) can cause the CMS communications directory in
virtual storage to be unloaded automatically. If there is a user-level directory,
reload it by using the SET COMDIR RELOAD USER command. If there is a
system-level directory, reload it by using the SET COMDIR RELOAD SYSTEM
command.

System Administration

Issue the QUERY COMDIR command: if the directory is unusable, this command
returns an UNLOADED indicator. In this case, the communications directory is
reloaded for you.

Note: DB2 Server for VM makes use of the CMS NAMEFIND command when
resolving CMS communications directory nicknames from database names.
The NAMEFIND command should be issued within PROFILE EXEC or
SYSPROF EXEC after the SET COMDIR command to prevent virtual storage
fragmentation.

For more information on the CMS communications directory, see the VM/ESA:
Connectivity Planning, Administration, and Operation manual. If you intend to access
non-DB2 Server for VM application servers, also refer to the Distributed Relational
Database Connectivity Guide manual.

Updating the SNA NETID File

If your host machine is part of an SNA network, you must update the SNA NETID
file to include your NETID (network identifier). The NETID is used in the
generation of the LU 6.2 LUWID (logical unit of work identifier), which is
necessary for distributed processing. With distributed processing, a DB2 Server for
VM application server can receive requests from both DB2 Server for VM and
non-DB2 Server for VM application requesters, and DB2 Server for VM application
requesters can access non-DB2 Server for VM application servers.

You can create or change the SNA NETID file using an editor. The NETID that you
specify should be that of the SNA network of which your host system is a part. It
must be from one to eight characters long, and must begin in column 1 of the SNA
NETID file. Your VTAM administrator can provide the NETID that you should use.
(The default NETID supplied in the SNA NETID file is SNANETID. If you do not
specify a valid NETID, SNANETID will be used.) The new NETID is used in the
next database startup.

If you want to ensure the uniqueness of your NETID, ask your IBM representative
about the IBM SNA Network Registry service.

Chapter 1. Planning for Installation 11

12 System Administration

Chapter 2. Planning for Database Generation

As described in ['The Starter Database” on page 4, when you first install the

database manager you should generate an initial database using the IBM-supplied
specifications. This eases installation, and enables you to gain experience with the
system.

However, once you know how to work with this database, you will probably want
to discard it and create several databases that are tailored to your own needs. This
chapter describes the parameters that are set at the time of database generation,
and presents some general design considerations.

If you are migrating from an earlier version of the database manager, then instead

of reading this chapter go to /Chapter 3 Planning for Database Migration” odl

The database-generation process does not require definition of any data specifics; it
merely establishes the potential capacity of the database. Some of the
capacity-planning decisions require knowledge of the data and application
requirements of your users. For example, to estimate how big the database will
become, you need to know the potential number of tables that will be stored, and
the storage requirements of those tables. To obtain this information, consult with
the person responsible for the data and application requirements for the database.
Also refer to the [DB2 Server for VSE & VM Database Adwinistratiod manual.

Database Generation Parameters

Planning for the generation of a database entails establishing logical and physical
limits for its capacity, and setting its initial DASD allocations.

The parameters that you must establish at this time are summarized in [ahle 1.
This figure also shows the IBM-provided values used for the starter database.

Note: The parameters that have a Yes entry in the Fixed column must be
established during generation of the database, and cannot be changed for
the lifetime of the database. Also note that some parameters are established
by the VM directory MDISK control statements, whereas others are
established by input to an IBM-supplied EXEC called SQLDBGEN.

Following the figure is a discussion of how to set these parameters, and of the
issues to consider when setting them.

Table 1. Database Parameters Set at Database Generation Time

Parameter Default |Minimum |Maximum | Starter Fixed Set by
Database

Database directory size None 1 cylinder |1 volume 34 cylinders No MDISK

Log data set (or data sets) None 1 cylinder |524,287 8 cylinders No MDISK

-Size (each) None 1 4Kb pages |1

-Number 2 volumes

Maximum number of storage 32 1 999 256 Yes SQLDBGEN

pools (MAXPOOLS)

© Copyright IBM Corp. 1987, 2001

13

Table 1. Database Parameters Set at Database Generation Time (continued)

Parameter Default |Minimum |Maximum | Starter Fixed Set by
Database

Maximum number of dbextents | 64 1 999 256 Yes SQLDBGEN
(MAXEXTNT)
Maximum number of dbspaces |1000 7 32000 10240 Yes SQLDBGEN
(MAXDBSPC)
Catalog dbspace None 128 8388607 12800 Yes SQLDBGEN
(PUBLIC.SYS0001)
Size (4 kilobyte pages)
First package dbspace None 128 8388607 2048 Yes SQLDBGEN
(PUBLIC.SYS0002)
Size (4 kilobyte pages)
HELP text dbspace None 2304 8388607 8192 No SQLDBGEN
(PUBLIC.HELPTEXT)
Size (4 kilobyte pages)
ISQL dbspace None 128 8388607 1024 No SQLDBGEN
(PUBLIC.ISQL)
Size (4 kilobyte pages)
SAMPLE dbspace None 512 8388607 512 No SQLDBGEN
(PUBLIC.SAMPLE)
Size (4 kilobyte pages)
Internal dbspaces None 128 8388607 1024 No SQLDBGEN
-Size (each) None 2 31997 80
(4 kilobyte pages)
-Number
Initial dbextents None 1 cylinder |1 volume 77 cylinders No MDISK
-Size (each) None 1 999 1
-Number

Notes:

1. The cylinder specifications listed above for the starter database are for IBM
3380 storage devices. Make the appropriate adjustment for your storage
devices.

2. PUBLIC means that the dbspace is publicly owned.
3. Not all dbspaces generated by the starter database are shown in [Cable 1. For all

dbspaces generated for the starter database, see Eigure 91 on page 291,

Defining Database Directory Size

The DB2 Server for VM directory (called BDISK) contains control information and
page tables for mapping dbspace page references to physical DASD locations. Its
size determines the maximum number of dbextent pages and the number of page
table entries that can be supported by the database being generated.

If necessary, you can later expand the directory to hold more dbspace pages, or

more dbspace and dbextent pages. Refer to !Expanding the Datahase Directary” onl

for more details.

The directory for the database is defined by adding an MDISK control statement to
the VM directory entries for a database machine. If Data Spaces Support is used,
4096-byte blocks can be used for the directory, but otherwise the database manager
requires the use of 512-byte blocks for its directory. The SQLDBGEN EXEC does

14 System Administration

the actual formatting of the minidisk. The MDISK parameters you supply
determine the number of blocks in the directory minidisk.

[able A shows the recommended cylinder (or block) allocations for various DASD
device types, based on assumed maximum database sizes.

Table 2. Recommended Directory Allocations for Various Database Sizes

Directory Space for Various IBM Storage Devices

Maximum

Database FB-512
Size 3375 3380 3390 9345 BLOCKS
10 megabytes TRK(3) TRK(3) TRK(3) TRK(4) BLK(124)
50 megabytes TRK(7) TRK(6) TRK(6) TRK(7) BLK(310)
100 CYL(1) TRK(11) TRK(10) TRK(12) BLK(496)
megabytes

500 CYL(5) CYL(4) CYL(4) CYL(6) BLK(2232)
megabytes

1 gigabyte CYL(10) CYL(8) CYL(7) CYL(11) BLK(4480)
2 gigabytes CYL(19) CYL(16) CYL(14) CYL(21) BLK(8866)
4 gigabytes CYL(38) CYL(32) CYL(27) CYL(42) BLK(17696)
5 gigabytes CYL(47) CYL(40) CYL(34) CYL(52) BLK(22080)
10 gigabytes CYL(92) CYL(80) CYL(68) CYL(101) BLK(44144)
50 gigabytes CYL(459) CYL(400) CYL(337) CYL(504) BLK(220286)

Note: The values in this table apply when the defaults are used for MAXPOOLs,

MAXDBSPC, and MAXEXTNT. These parameters are described in

M]mm&?&#mm—m—pa%ﬂﬂ” .

Use to choose the initial directory size. Detailed information for generating

its values is contained in lAppendix B Estimating Database Storage” on page 428.

When estimating the maximum database size, include the sizes of the public,
private, and internal dbspaces.

The directory minidisk for the starter database supports about 4.9 gigabytes of
data. This includes space for internal dbspace definitions so the actual space
supported for public and private dbspaces is about 4.6 gigabytes.

Directory Allocation Considerations

Maximum Database Size: The directory minimum size cannot extend beyond a
single volume; therefore, the maximum database size is limited by the single
volume capacity of the device type used. The absolute maximum size for a
database is either 64 gigabytes or the limit imposed by the device type, whichever
is smaller. For the limits imposed by various devices, see and

[able 39 on page 427,

Placement of Directory: The directory minidisk will be used extensively by the
database manager for resolution of data addresses. Thus, you should not allocate it
to a volume that will contain either the log minidisks or heavily used data
dbextents. Instead, place it on a separate volume to avoid device contention.

Chapter 2. Planning for Database Generation 15

16

If DASD is limited on your system and the directory must share a volume with
data dbextents, put it on a volume with a dbextent that contains infrequently
referenced data. For example, sharing a volume with private dbspaces or historical
data is preferable to sharing one with public dbspaces or current, highly active
data.

Defining the Database Log

The database manager requires at least one log minidisk and can support two. It is
recommended that you use two logs.

The log minidisks contain information, recorded during database processing, that
is used to support database recovery facilities. This includes control information
(for example, COMMIT statement and checkpoint records) and the specifics of
database changes (for example, inserts, updates, and deletes).

If you define two log minidisk they must be exactly the same size. Do not define
them on different device types because it is almost impossible (because of
rounding) to get identically sized data sets using space allocation algorithms.

The log history area, which is the final page of the log, is copied to the database
machine’s A-disk as the file ARIHSDS ARCHIVE immediately after a successful
database or log archive. This A-disk file is used during a subsequent restore, if the
log history area is unusable due to a log failure. The A-disk file is also copied to
the file ARIHSDS PRECLDLG when a COLDLOG RECONFIGURE is done to
ensure recoverability.

The size of the log data setis specified by the VM MDISK control statement, as
shown in Bigure 88 an page 283. The size you specify will depend on the use of the
database and on the type of recovery capabilities you want. If you underestimate
this size at database generation time, you can redefine it afterwards, as described

in 'Log Reconfiguration” on page 228

Log Size Considerations

The log size depends on the number of changes that you expect will be made to
the database and on whether or not you plan to use archiving facilities. If either
database or log archiving is enabled, the log must be large enough to hold all the
logging done between archives; otherwise it need only be large enough to hold the
logging done in a few hours.

Note: If you are putting dbspaces in nonrecoverable storage pools, keep in mind
that only minimal logging is done for them, so the following log size
considerations would not apply to those dbspaces.

Log Size without Archiving: If you run the database manager without the
archiving facilities (LOGMODE=Y or N), log space is reclaimed as applications
finish and checkpoints of the database are taken. Usually, this occurs every few
seconds or every few minutes. Many uses of the database manager can be
supported by a log size of only one or two cylinders; however, a long-running
application may require more log space.

Typically, the largest demand for log space is online loading or data reorganization.
These processes run longer than most applications and cause a lot of logging to
occur.

A starting estimate for the initial log size is twice the space requirements of your
largest dbspace. If you have one exceptionally large dbspace, you can disregard it

System Administration

and use the size of the next largest dbspace. The data in the largest dbspace can be
loaded and reorganized offline with logging inhibited.

Log Size with Archiving: If you are using the archiving facilities (LOGMODE=A
or L), log space is not reclaimed until an archive is taken. That is, log space is not
reused between archives of the log or database. Typically, you would only archive
the database once or twice a week. You may choose to do log archiving more
frequently, depending on database usage.

To estimate the size of the log, consider the amount of logging that will occur
between archives. A useful approach is to estimate the percentage of data that will
be generated, deleted, and changed over one archive period as follows:

logsize estimate = (percentage generated
+ percentage deleted
+ percentage changed x 2)
x database size

For example, assume that in a one-week period the database size grows by 5% but
also shrinks by 4%, and that 6% of the database (rows) are changed. Your estimate
for the log size would be:

logsize estimate = .21 x database size

If your database size were 100 megabytes and you wanted an archive period of
one week, your log size estimate would be:

logsize estimate = 21 megabytes
This is approximately 30 cylinders of an IBM 3390 DASD device.

Logging Generated by Loading: The log requirements for processing the DBS
utility DATALOAD and RELOAD commands in multiple user mode are:

* If the NEW option is used: enough space to hold the log entries for all table
rows to be inserted

* If the PURGE option is used: enough space to hold the log entries for all table
rows to be deleted as well as for all rows to be inserted.

The log space consumption caused by these operations can be avoided by running
the DBS utility in single user mode with LOGMODE=N specified, or by using the
COMMITCOUNT option to force periodic checkpoints in multiple user mode.

Placement of Logs: Like the directory minidisk the log minidisks are frequently
referenced during processing. To avoid device contention, they should reside on
separate volumes from the directory or heavily used dbextents.

Placement of Dual Logs: If two log minidisks are defined, place them on separate
volumes. If they were allocated to the same one, loss of that volume would cause
the loss of both logs, thus defeating the purpose of dual logging.

Placement of Database A-disk: The database machine A-disk should be on a
volume separate from the log minidisks. If it is allocated to the same volume as
either log, loss of that volume would result in loss of both copies of the log history
area (that is, the one on the log itself and the one on the A-disk) thus defeating the
purpose of having two copies of the history area.

Chapter 2. Planning for Database Generation 17

18

Establishing Database Capacity Parameters

The MAXPOOLS, MAXEXTNT, MAXDBSPC, and CUREXTNT keyword control
statements can be specified as input to database generation. The SQLDBGEN EXEC
calls the program ARISQLDS with STARTUP=C to process these control
statements. The first three of these statements are optional. The last one must be
specified.

The MAXPOOLS, MAXEXTNT, and MAXDBSPC values are fixed when the
database is generated: once defined, they cannot be changed for its lifetime. To
avoid future limitation problems, it is recommended that you set them to the
allowed maximums. This will take about 1 cylinder of DASD on a 3380 device for
the directory, and 280K virtual storage when the database manager is running.

Estimating MAXPOOLS

The MAXPOOLS specification determines the maximum number of storage pools
that can be defined in the database. Storage pools control the location of data on
DASD volumes - that is, what dbspaces are located on what volumes. You can
make a generous estimate for MAXPOOLS, since the value specified results in only
a small directory space allocation for each potential storage pool. You should plan
on having one storage pool for each user group (or billing account), and one for
each major application you expect the database to support.

Estimating MAXEXTNT

The MAXEXTNT controls the maximum number of dbextents that are defined to
support the database being generated. Dbextents determine the physical allocation
of DASD space for a storage pool.

Because a dbextent is a VM minidisk, it cannot span DASD volumes. This means
that you need at least as many dbextents as volumes. You can, of course, define
multiple dbextents on one volume. It also means that if you have a dbspace that
spans multiple volumes, the corresponding storage pool requires multiple
dbextents.

Because you should plan to support multiple dbextents for each storage pool and
you should be prepared to extend most, if not all, of your planned storage pools,
MAXEXTNT should be much larger than MAXPOOLS. Your estimate for it can be
generous because this value results in only a small directory space allocation for
each potential dbextent.

Estimating MAXDBSPC
MAXDBSPC controls the maximum number of dbspaces, including internal
dbspaces, that can be defined for the database. See ' ini

i “ . A dbspace is a logical allocation of database
space for holding one or more tables and their indexes. A dbspace is assigned to a
storage pool when it is defined and draws on the actual DASD space available in
that storage pool on an as-needed basis. Typically, dbspaces are defined to support
private space allocations for individual users and space allocations for specific
applications; thus, the number of dbspaces required generally depends on the
number of users and the number of tables needed for applications. Each user
probably requires from one to five private dbspaces over the lifetime of the
database, and each application requires, at most, one dbspace for each table being
accessed. For performance reasons, one table per dbspace is recommended.

As with the previous two parameters, your estimate for MAXDBSPC can be
generous, because the value you specify will result in only a small allocation of
directory space for each potential dbspace.

System Administration

Estimating CUREXTNT

CUREXTNT determines the number of dbextents defined during database
generation. This number should be sufficient to support your initial storage
requirements. You can add more dbextents after database generation.

Establishing Initial Dbspace Requirements

Determining the System Dbspace Requirements

Any public dbspace that has SYS as the first three characters in its name is
reserved for system use only. The system dbspaces established at database
generation time are PUBLIC.SYS0001, PUBLIC.SYS0002, PUBLIC.HELPTEXT,
PUBLIC.ISQL, and PUBLIC.SAMPLE.

This section presents only general concepts related to setting the initial dbspace

sizes. For more information, see kSpem.ﬁma.g_lmﬂal_Dbspa.ceslon_pa.ge_Z‘)A and

4 ”

e PUBLIC.SYS0001 holds the database catalog tables. The size required for it varies
considerably, depending on factors such as the number of tables, columns,
indexes, views, and users in the database. For guidelines, see

EYSo0m D A 7 =l

Note: Physical space is not actually consumed until required, so you can afford
to define the SYS0001 dbspace to be very large. Be generous: this dbspace
cannot be dropped or recreated after the database is generated. If you
make it too small and SYS0001 runs out of usable space, you will have to
regenerate the database which can be a considerable task.

¢ PUBLIC.SYS0002 holds the definitions of views and packages. This dbspace,
which cannot be dropped or recreated after generation, can hold a combination
of 255 views and packages. If you anticipate more views and packages than this,
you can acquire additional dbspaces after database generation, as described in

4 ”

* PUBLIC.HELPTEXT holds the online HELP tables. You will need 2304 pages for
each IBM-supplied HELP text that you install. The starter database uses 8192
pages.

¢ PUBLIC.ISQL holds several tables; EXAMPLE.ROUTINE, SOLDBA.ROUTINE,
and SQLDBA.STORED QUERIES. An allocation of 1024 pages should be enough
for most uses. If you have many users or expect to make extensive use of the

ISQL stored queries facility, consider increasing this. See ['Estimating 1SQII
[Dbspace Requirements” on page 44()

”

¢ PUBLIC.SAMPLE contains copies of the sample tables for ISQL users, to help
them gain experience with using the database manager. Usually, every ISQL user
has a copy of the sample tables. An allocation of 512 pages should be enough for
all your users, but you can increase the size if you have many ISQL users.
Alternatively, you can ask experienced ISQL users to drop their copies after they
no longer need them to free space for new users’ tables.

The ARISDBU MACRO contains SQL statements to acquire the public dbspaces
HELPTEXT, ISQL, and SAMPLE. If you want to increase their size, update the
appropriate ACQUIRE DBSPACE statement in ARISDBU.

Except for PUBLIC.SAMPLE, the sizes that you establish for system dbspaces at

database generation time can limit the logical capacity of your database. Because
physical space is not actually used until required, you should establish large sizes

Chapter 2. Planning for Database Generation 19

20

for them. The large recommended sizes shown in Eigure A will support most uses
of the database manager.

Default
System dbspace Recommended Sizes (in Pages) in pages
SYS0001 (Catalog Tables) 30+ .33 x the number of tables 12,800
+ .40 x the number of views
+ .10 x the number of columns
+ .50 x the number of packages
+ .03 x the number of dbspaces
(including package
dbspaces)
+10.28 x the number of users
+ 8.10 x the number of package
dbspaces
+ .25 x the number of
character sets
+ .13 x the number of keys
SYS000n (packages) 2,048 for each dbspace 2,048
PUBLIC.HELPTEXT 2,304 x Number of languages installed 8,192
PUBLIC.ISQL The larger of : 1,024 or 1,024
(0.88 x the number of stored queries)
PUBLIC.SAMPLE 512 512

Figure 2. Guidelines for the Sizes of the System Dbspaces

Determining the Initial User Dbspace Requirements

When you generate the database, you need only consider the dbspace requirements

for its initial use. To determine the initial user dbspace requirements, either consult

with the database administrator or refer to the [DB2 Server for VSE & VM Databasd
manual. The SQLADBSP EXEC can be used to add more later, up to

the MAXDBSPC value.

For more information, refer to ‘Chapter 7 Managing Datahase Storage” onl

Determining the Internal Dbspace Requirements
The database manager uses internal dbspaces to process commands that require
sort operations and to process views that require materialization. For information

on sorting and materialization, see the [DB2 Serner for VSE & VM Databasd
manual.

The internal dbspaces are held until a COMMIT or ROLLBACK statement is
issued; therefore, a single application may hold a number of internal dbspaces at
one time. For example, if each SELECT needs an average of two internal dbspaces,
and a certain program issues five SELECTs before issuing a COMMIT statement,
then that program will hold 10 internal dbspaces. Internal dbspaces that are not in
use take up minimal space (approximately 4 bytes of directory space for each

page).

Allocate at least 30 internal dbspaces; more if your installation has interactive
users. The exact number required depends on the number of logical units of work
(LUWs) that are concurrently active and the amount of sorting and view
materialization required in those LUWSs. Because the number of NCUSERS is

System Administration

comparable to the number of concurrently active LUWS, as a guideline, in addition
to the minimum of 30, you may want to provide 10 internal dbspaces for each
NCUSER (see the description of the NCUSERS parameter on m

page 63). After the database has been generated, you can always add more internal
dbspaces by using the SQLADBSP EXEC. All internal dbspaces (and their storage
pool assignments) are redefined on each run of this EXEC.

The physical placement of the internal dbspaces affects performance, especially
when you perform a sort operation on a large table. You should place internal
dbspaces in their own storage pool, and use multiple dbextents over multiple
devices. There are several ways of doing this. Suppose you had 300 3380-type
cylinders for internal dbspace dbextents, you could use one of these strategies:

1. Make the first dbextent small (less than 100 cylinders), and each succeeding
dbextent twice the size of the preceding one. For example, have dbextents that
are 20, 40, 80, and 160 cylinders in size.

2. Graduate the sizes of the dbextents. For example, have dbextents that are 10,
20, 30, 40, 50, 60, and 90 cylinders in size. The last dbextent is extra large so
that unusually large sorts can be accommodated.

3. Have several small dbextents and a few big ones. For example, have five
dbextents of 20 cylinders each, and two of 100 cylinders.

The purpose of all these strategies is to spread input/output activity over more
devices as the size of a sort increases. The strategy you adopt determines how
many dbextents a sort requires. With the first strategy, a sort requiring 60 cylinders
uses two dbextents. With the second and third strategies, the same sort requires
three dbextents. Use a strategy that is suitable for your organization.

Sorting is done for ORDER BY, GROUP BY, join, CREATE INDEX, or UNION
operations. The internal dbspaces must be large enough to hold the rows being
sorted. For example, if an ORDER BY operation is requested using all the columns
of an entire table, the internal dbspace must be large enough to hold the whole
table. Less space is required if all the columns are not selected. During index
creation, space is required only for the key columns. To calculate the required size
of an internal dbspace, use the formula (KEYSIZE + 8 bytes) * ROWCOUNT. Make
the internal dbspaces large enough to hold the largest table or query result you
want to be able to sort. The dbspace size estimates are discussed under

[Ié i' B E l' l D l] SI ”]25

The number of internal dbspaces required also depends on the planned usage of
the system. Fewer are needed for preplanned application processing than for
dynamic query processing, as query users usually hold dbspaces longer than do
preplanned applications.

Internal dbspaces can also be stored on a virtual disk. Only use virtual disks for
internal dbspaces because information on a virtual disk is lost when the database
is restarted. For more information on virtual disk support, see the

' manual.

Determining Initial Dbextent Requirements

Sufficient space must be allocated during database generation to support your
initial dbspace data storage requirements. You must define at least one dbextent for
each storage pool that initially contains dbspaces. The specific amount to allocate
for each storage pool depends on the following considerations:

* System dbspace support

Chapter 2. Planning for Database Generation 21

System dbspaces are heavily used, so they should not share their storage pool
(storage pool 1) with heavily used user dbspaces. Until you gain experience with
your data, do not put user dbspaces in the same storage pool as system
dbspaces.

You should undercommit storage pool support for the SYS0001 and SYS0002
dbspaces. If the catalog tables grow significantly, you can later allocate an
additional dbextent, probably on a separate device, to avoid excessive device
contention on catalog access.

Storage pool support for PUBLIC.HELPTEXT should be large enough to hold
the HELP tables; PUBLIC.ISQL must be large enough to hold your initial needs
for stored queries; and PUBLIC.SAMPLE should be large enough to hold the
number of sample data tables needed.

* End user dbspace support

Dbspaces for use primarily by end users should be supported by one or more
storage pools. Public and private dbspaces can share a storage pool; however,
you may want to manage space allocation differently for these two cases.

A recommended approach to storage pool support for end user data is to define
more dbextent space than is needed to support your initial dbspace definitions.
This approach is called overcommitting, and ensures that end user space
requirements can be accommodated as existing users need more space or more
users are added to the system.

If your installation plans to bill users for DASD storage space, you may want to
consider separate storage pools for different user groups (or account numbers).

Note: You can also use statistics from the SYSTEM.SYSDBSPACES catalog table
to achieve this.

* Dbspace support for applications

Storage pool support of dbspaces for use primarily by application programs
varies, depending on the nature of the data and the storage management
technique. In general, consider using different storage pools for different
applications, and undercommitting storage pool support for application
dbspaces.

The dbspaces for applications should be defined to be larger than is believed
necessary, to avoid later reorganization because of data growth. If you do this,
storage pool requirements are smaller than the dbspace sizes indicate. The initial
storage pool allocations should be large enough to cover initial loading of the
data plus growth over the next planning period (for example, six months or a
year).

* Internal dbspace support

Storage pool support for internal dbspaces should be undercommitted, since you
probably do not need storage to support all internal dbspaces at the maximum
size. As a rough estimate, the storage pool for internal dbspaces should have
enough DASD space available to hold data for three internal dbspaces (at the
internal dbspace size specified at database generation).

Storage space for internal dbspaces is taken from the storage pool assigned at
database generation time. In general, this storage pool should not be used for
system dbspaces or other heavily used dbspaces. Consider using a separate
storage pool just for internal dbspaces.

”

For more information on storage organization techniques, see m

22 System Administration

Choosing an Application Server Name and VM Resource ldentifier

In planning for database generation, you can choose two names for your database.
The first name is the server name that the users will specify. The second name is
the resid (VM resource identifier) that identifies the application server to VM. The
server name and the resid can be the same if the requirements for both are met. If
the server name is longer than 8 characters, then you must choose a resid. You
must also decide whether the application server can be accessed from other
processors.

Note: When using remote access, it is recommended that the system administrator
ensure that server names are unique within a set of interconnected SNA
networks, and that resids are unique in a TSAF collection or a gateway. (A
gateway is also referred to as an LU.) The resid must also be identified with
a GLOBAL scope. For more information about these requirements, see

The server name must be from 1 to 18 characters. It should start with an alphabetic
character which can be followed by alphabetic characters, numeric characters, or
underscores. The server name should be unique within a set of networks that are
interconnected. The server name is stored in the resid SQLDBN file on the
production minidisk.

The resid must start with an alphanumeric character and be from 1 to 8 characters.
The terms resid and the TPN (transaction program name) are synonymous. The
resid is used to identify the database resource to the VM system, and in
combination with the NETID and LU name (AVS gateway name) provides the
network address of the resource. The resid can also be a 4 byte hex TPN such as
the DRDA default TPN x’07F6C4C2’. However, there is little need to define a
hexadecimal resid for an application server. The use of a character resid is
preferred because it is more readable.

To specify a value for resid that is different from that specified for the server name,
you must create an entry in the RESID NAMES file that is on the accessed
production minidisk of the application server. This file correlates the server name
and the resid. The resid defaults to the server name if:

e The RESID NAMES file does not exist, or

¢ The database manager does not find a matching entry in the RESID NAMES file.

For ease of administration, it is best to keep the resid identical to the server name.
If the two names are not identical, the VM users accessing the application server
must also access a CMS communication Directory that has an entry defined for this
server and resid (known as the :dbname and :tpn tags respectively) even if both
the user and the application server are in the same TSAF collection.

Choosing the Application Server Default CHARNAME and CCSID

The application server default CHARNAME is set using the CHARNAME
initialization parameter. The database manager uses the CHARNAME value to
determine the classification table and translation table which are used to identify
valid characters and to determine how to fold lowercase characters to uppercase.
For more information on the CHARNAME initialization parameter, see

4 ”

The CHARNAME parameter also specifies the application server default coded
character set identifier (CCSID). For a newly installed database, the application

Chapter 2. Planning for Database Generation 23

24

server default CHARNAME is INTERNATIONAL, and the application server
default CCSID is 500. For a migrated database, the application server default
CHARNAME is ENGLISH, and the application server default CCSID is 37. The
application server default CCSID is the value of CCSIDMIXED if it is not zero,

otherwise it is the value of CCSIDSBCS. Refer to LCCSID Conversion” on page 317
and LDeiemmm.g_C.CSHDAZab.‘.es_gn_pa.ge.Bld for more information on CCSIDs.

If you use DBCS characters, you need to use a mixed CCSID as the application
server default. A mixed CCSID has both an SBCS component CCSID, and a DBCS
component CCSID. For more information, see

The application server default CCSID value is used for the following:
* The CCSID that SQL statements are converted to for processing by the relational
data system (RDS) component

* The CCSID of constants (including hexadecimal constants) which are part of the
SQL statement processed by the RDS component

Depending on the application server default subtype value (that is, the CHARSUB
value), the application server default value for CCSIDMIXED or CCSIDSBCS is
used for the following:

¢ The CCSID of special registers which represent character data (for example,
CURRENT USER and CURRENT DATE)

e The CCSID of the results of the scalar functions CHAR, DIGITS, and HEX

e The CCSID of the character representation of datetime values (for DRDA
protocol, this is always the CCSIDSBCS value)

* The CCSID of character columns created using the CREATE TABLE or ALTER
TABLE statements (when the CCSID or subtype clause is not explicitly specified
and When package defaults are not specified). See the IDR2 Server for VSE & VM

manual for more details on package defaults.

It is important that you choose the correct default CHARNAME and CCSID for
your installation. The goals of choosing the correct values are to ensure the
integrity of character data representation, and to reduce the performance overhead
associated with CCSID conversion. The application server and application
requester should have the same CCSID value unless there is a specific reason for
them to be different.

When the application server and application requester have different CCSID
values, character conversion cannot be avoided. This conversion has an associated
performance overhead. Performance degradation also occurs if the CCSID
conversion causes a sargable predicate to become residual. For example, this can
occur on a simple equals predicate like, T1.C1 = T2.C2. For this case, C2 was
created prior to migrating to Version 3 Release 3 and has a CCSID of 37. C1 was
created using Version 3 Release 4 with the application server default CHARNAME
set to INTERNATIONAL (CCSID 500), As a result, since this predicate requires the
CCSID conversion of the data in the columns, it is residual. For more information

on performance, see the DB2 Seruer for VSE & VM Performance Tuning Handhool).

For example, if your application server is only accessed by local users whose
terminal controllers are generated with code page 37 and character set 697 (CP/CS
37/697) for the US ENGLISH characters, then you should set the application server
default CHARNAME to ENGLISH. This is because CP/CS 37/697 corresponds to
the CCSID of 37 which corresponds to the CHARNAME of ENGLISH.

System Administration

To eliminate unnecessary CCSID conversion, choose an application server default
CCSID to be the same as the CCSID of the application requesters which access
your application server most often.

The following is an example of how these two goals can be in conflict.

The situation has these characteristics:

* An application server is accessed by 5 application requesters which are local
(that is, they have the protocol parameter set to SQLDS).

 This application server is also accessed by 100 application requesters which are
remote (that is, they are using the DRDA protocol).

* The local application requesters have controllers which are defined with CP/CS
37/697 (this corresponds to CCSID 37).

* The remote application requesters use CCSID 285.

If the application server default CHARNAME is set to ENGLISH (CCSID 37), this
keeps the data integrity for the local application requesters. However, CCSID
conversion overhead is incurred for all remote application requesters who have
CHARNAME UK-ENGLISH (CCSID 285).

If the application server default CHARNAME is set to UK-ENGLISH (CCSID 285),
this will avoid the CCSID conversion overhead incurred for the remote application
requesters, but will cause data integrity problems for the local application
requesters. Certain characters will not be displayed correctly for local application
requesters. For example, a British pound sign (£) will be displayed as a dollar sign

$).

These are the trade-offs to consider when choosing your application server default
CHARNAME.

For more information on CCSIDs, see the Character Data Representation Architecture
Reference and Registry manual.

Attention: Immediately following an installation, the application server
CHARNAME is set to INTERNATIONAL and the CCSID is 500. Immediately
following a migration, the application server CHARNAME is set to ENGLISH and
the CCSID is 37. If you do not choose your own application server defaults, these
settings may not be correct for your system.

For information on how to change the application server default CHARNAME and
CCSID, see ['Setting the Application Server Default CHARNAME and CCSIDs” onl
. For information on how to choose the default CCSID for an application

requester, see [‘Setting the Application Requester Default CHARNAME and

. For a summary of the considerations for changing these

7

values, see L

bage3nd.

Choosing the Application Server Default Character Subtype

The database manager supports three types of character data:
* SBCS

* Mixed

+ Bit.

Chapter 2. Planning for Database Generation 25

Note: Character refers to data types CHAR, VARCHAR and LONG VARCHAR in
this discussion.

Each database has a default character subtype (that is, the CHARSUB value) which
can be either SBCS (single-byte character set) or mixed (mixed single and
double-byte character set). The default character subtype is the value used for the
subtype attribute of any new character column that is created by either the
CREATE TABLE statement or the ALTER TABLE statement. The default subtype is
used if a subtype is not specified as a package default option or a preprocessing
option, and is not specified explicitly using a subtype clause, or implicitly using a
CCSID clause.

The CHARSUB value is also used for determining CCSIDs. For more information
on CCSIDs, see ‘Choasing the Application Server Default CHARNAME and
CCSID” on page 23, 'CCSID Conversion” on page 317, and ‘Determining CCSID
klab.l.es_nn_p.age_m For information on how to change the default character

subtzge see Bethn.g.tbe.A.pmeahnn.Sm&Defa;ﬂLChami&Subingelaﬂ

Choosing the Default CHARNAME and CCSID for Application

Requesters

It is important that the appropriate application requester default CHARNAME and
appropriate application requester default CCSID be chosen. The goals of choosing the
correct values are to ensure the integrity of character data representation, and to
reduce the performance overhead associated with CCSID conversion.

For example, if your terminal controller is generated with code page 37 and
character set 697 (CP/CS 37/697) for US ENGLISH characters, then the application
requester should set the default CHARNAME to ENGLISH. This is because CP/CS
37/697 corresponds to the CCSID of 37 which corresponds to the CHARNAME of
ENGLISH.

The application requester default CCSID is the value of CCSIDMIXED if it is not
zero; otherwise, it is the value of CCSIDSBCS. The application requester default
CCSID is used for the following:

* The CCSID of SQL statements coded at the application requester
e The CCSID of host variables which represent character data

¢ The CCSID of character values described by an input or output SQLDA (when
the SQLNAME field is not used to override the CCSID value)

* The CCSID of character data returned in a DESCRIBE SQLDA
e The CCSID of message tokens returned in an SQLCA

For more 1nformat10n on setting the default CHARNAME for an apphcat10n
requester, see LS .
” . For more 1nformat10n on CCSIDS see m

You can avoid the need for all application requesters to specify the default
CHARNAME by setting it using the SQLGLOB EXEC. For information on setting
the default CHARNAME for all application requesters, see L2 i

”

26 System Administration

Preparing for Database Regeneration

If the SYS0001 dbspace ever becomes too small to hold the catalog tables, or if the
contents of the directory minidisk or a dbextent minidisk are damaged or
destroyed and you do not have archives to restore them, the database can no
longer serve your needs and must be regenerated.

The size and complexity of the regeneration task depends on the size and
complexity of the database. This task includes:

Regenerating the database, including any dbspaces, dbextents, and VM
minidisks that may have been added since the previous generation

Using the DBS utility to unload and reload all the data in the database,
including the ISQL routines and the ISQL stored queries.

Repreprocessing all application program packages
Reestablishing the entire authority scheme
Recreating all views and indexes.

One way to simplify this task is to keep a record of the various types of
information you would need to reestablish the operating environment that existed
in the previous database. In particular:

Keep all the ACQUIRE DBSPACE, CREATE TABLE, ALTER TABLE, GRANT,
CREATE INDEX, CREATE VIEW, and CREATE SYNONYM statements for the
database in EXECs that call the DBS utility. These EXECs can be run easily on
the regenerated database.

Note: If these statements are not kept, you can reconstruct them from
information available in the system catalog tables. However, this could
take a long time for a large production database.

Keep all of the input control statements for any add dbspace or add dbextent
operations. These statements can be used as input to the SQLDBGEN EXEC
when it regenerates the database.

Keep EXECs used to preprocess each application program so that they can be
run on the regenerated database (as separate jobs).

Database Generation Worksheet

This section provides a worksheet. [lable 3 covers the database generation control
statements. Fill it out as you design your database; then refer to it when you define
your minidisks or provide control statements to the SQLDBGEN EXEC.

Table 3. Database Generation Worksheet

Database Name
Server Name

RESID

Database Scope

(LOCAL or GLOBAL)

Chapter 2. Planning for Database Generation 27

Table 3. Database Generation Worksheet (continued)

Minidisk Definitions:
cylr/ cyls/
cuu devtype blkr blks volser mode pr pw

Directory MDISK R
Log Disk 1 MDISK R
Log Disk 2 MDISK R
Dbextent 1 MDISK R
Dbextent 2 MDISK R
Dbextent 3 MDISK R
Dbextent 4 MDISK R
Database Capacity Parameters:

CUREXTNT (A value from 1 to 999 must be specified.)
MAXPOOLS (Default is 32. Value can be from 1 to 999.)
MAXEXTNT (Default is 64. Value can be from 1 to 999.)
MAXDBSPC (Default is 1 000. Value can be up to 32 000.)

Nonrecoverable Storage Pools:

POOL NOLOG (Storage pool 1 cannot be specified.)
POOL NOLOG
POOL NOLOG
POOL NOLOG

Database Extent (Dbextent) Placement:

Dbextent Storage Pool
Number (Default is 1)

Note: The number of dbextents must equal CUREXTNT, but one is required. The MAXEXTNT value determines the
maximum number of database extents.

28 System Administration

Table 3. Database Generation Worksheet (continued)

PubTic Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
Catalog Tables T
Packages _ —
HELP Text _ J—
1SQL 1024 (minimum)
Sample Tables 512 (minimum)

Note: The public dbspaces for the catalog tables, packages, HELP text, ISQL, and the sample tables are required.

The catalog tables must be in storage pool 1.

Private Dbspaces:

SIZE Storage Pool
Purpose (In 4K Pages) (Default is 1)
Internal Dbspaces:
Number: Size in 4K Pages: Storage Pool:

Note: The MAXDBSPC value determines the maximum total number of public, private, and internal dbspaces
possible.

Chapter 2. Planning for Database Generation

29

30 System Administration

Chapter 3. Planning for Database Migration

If your installation already has a previous release of the database manager
installed, you must consider the effect that migration to the new release will have
on your existing databases and applications.

You can migrate to a DB2 Server for VM Version 7 Release 2 database from:
* Version 7 Release
e Version 6 Release
* Version 5 Release
* Version 3 Release
* Version 3 Release
* Version 3 Release
* Version 3 Release 2
* Version 3 Release 1

Wk Ol = = =

Note: If you are on an earlier release, you will have to migrate to Version 3
Release 5 first and then to Version 7 Release 2.

Before migrating;:
* Read the discussions on release-to-release incompatibilities in W
[Incompatibhilities Between Releases” an page 479 for changes that may be

required in application programs.

« Ensure that the requirements discussed in Chapter 1 Planning for Installation’]

are met. For information on the actual installation and migration
steps, see the IDB2 Server fnr VM Program Directori) .

* It is strongly recommended that you archive your databases before migrating, so
that you can back out of the migration process should it become necessary.

* Consider installing the database manager and generating a starter database to
try out the new functions before migrating your existing databases.

This chapter also contains sections on the following:
* Release coexistence considerations

It can be impractical to migrate all the databases in a local or distributed
environment to the current level at the same time. For information on the level
of coexistence that is possible see I“Release Coexistence Considerations” onl

¢ Migration from a VSE to a VM operating system

It is possible to move a DB2 Server for VSE database to a VM operating system.
There is no need to convert the data in a database when you move from VSE to
VM; the data is system-independent. You move data from VSE to VM by taking
a database archive of the DB2 Server for VSE database and then restoring the
database archive tape on the VM operating system.

If you have moved a database from VSE to VM, you may have some VSE
application programs that you do not want to convert. These programs can
access the databases on VM using VSE guest sharing. For more information, see

% . . . 17

* System migration from one IBM VM system to another

You can migrate your databases to a new VM operating system in two ways:

© Copyright IBM Corp. 1987, 2001 31

— Archive them in the original VM operating system, install the database
manager on your new VM operating system, and restore the databases in the
new operating system.

— Install a new VM operating system on the processor you use to access your
databases. You can then access your databases as you did in the original
operating system.

See the information about the operating systems involved, beginning on page

G . 7

* Converting a service machine to a database machine

For any particular processor, you may need to convert a service machine to a
database machine if a database machine is required on that processor.

U‘Converting a Service Machine to a Database Machine” on page 49 explains this

process.

Migration Considerations

For users of an earlier version of the database manager, installing Version 7
Release 2 means loading the new code by running one or more IBM supplied
programs, and migrating any existing databases. This section highlights the
considerations that you should be aware of when doing this.

The topics are grouped by the release level of the database that is being migrated.
Start at your release level and read to the end of this chapter. For example, if your
database is Version 3 Release 1, you must review all the topics; if it is Version 3
Release 2, you need only read from that topic to the end of the chapter.

Increasing the HELPTEXT Dbspace

A database that is migrated keeps its existing HELPTEXT dbspace, which may not
be large enough to support the Version 7 Release 2 HELP text. The size required
for this dbspace depends on the number of national languages for which you have
HELP text. It should be:

2,304 pages x number of Tanguages installed.

This dbspace can be increased at any time before you install the current HELP text.

For information, see the DB2 Server for VSE & VM Database Administratiod manual.

If users are running their applications under the DRDA protocol, some database
manager facilities are not supported. For a list of these restrictions, see

”

Migrating from Version 3 Release 1

32

Considerations for Invalid Indexes

Before you migrate, at least four dbspace blocks must be available in the database
directory to allow for expansion of the invalid entities table. During migration, any
entries in the invalid entities table are migrated to the new format. The new table
format requires additional space in the directory. If there are any entries in the
invalid entities table, it is possible that there may not be enough room in the
directory to allow the table to be modified during migration.

For information about directory space verification, see the DB2 Server for V. M

Pragram Directory) .

System Administration

Conversion of Packages

After migration, all packages are dynamically repreprocessed on first use. This
conversion can cause a performance degradation over the first few days as the
packages are referenced and repreprocessed.

To help minimize this degradation, the REBIND PACKAGE command is provided
so that all packages can be recreated, if desired, after migration but before
production. For information about this command, see the

WAL Database Services Lltility) manual.

You can also convert a package by explicitly repreprocessing the application
program. Before repreprocessing your applications, you should be aware of any
statements that may behave dlfferentlv with the new release See 'Release to
Release Incompatibilities' in

”

Migrating from Version 3 Release 2

When migrating from a Version 3 Release 2 database, you may want to update the
SNA NETID file. For information on this task, see Ll Indating the SNA NETTD File’]

With Version 3 Release 3, you can specify a server name of up to 18 characters,
and a resid that is correlated with it. For more information on the conventions to

follow when specifying the server name and resid, see !Chaosing an Application

Berver Name and VM Resanirce Identifier” on page 23

Choosing an Application Server Default CHARNAME

After migration, the database manager sets the application server default
CHARNAME to ENGLISH, and sets the application server CCSID values as
follows:

* CCSIDSBCS = 37

* CCSIDMIXED =0

* CCSIDGRAPHIC = 0.

You can change the value of the default CHARNAME, which in turn determines
the values for the three application server default CCSIDs. These four values are
stored in the VALUE column of the SYSTEM.SYSOPTIONS catalog table. The
corresponding values in the SQLOPTION column for these defaults are
CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC.

The value you choose for the default CHARNAME should accurately reflect the
type of data that will be stored in the database: that is, the type of code page and
character set that describes the data, and whether or not the database manager is
to support DBCS characters or MBCS characters, or both. For more information,

7 ”

see

LCha.racter_Set_Cons;dexaims.aLStantup_ou_page.Ed LDetenm.m.m.g_CﬁHj
klab.t&slan.pa.ge.iﬁd, and ECCSID Conversion” on page 314, For a summary of the
LCQnSJ.dena.tlms_mhen_cba.n.gm.g

considerations for changing these values, see

7

Setting Migration CCSID Values

After choosing your default CHARNAME, you must also set your CCSID values
for character and graphic data that existed before the migration to Version 3
Release 3. The CCSID value of character and graphic data stored in tables that
were created before Version 3 Release 3 are specified by the three other rows (with

Chapter 3. Planning for Database Migration 33

34

SQLOPTION value MCCSIDSBCS, MCCSIDMIXED and MCCSIDGRAPHIC) in the
SYSTEM.SYSOPTIONS catalog table. The migration CCSID values (MCCSIDSBCS,
MCCSIDMIXED, and MCCSIDGRAPHIC) are used for single byte, mixed, and
graphic data that was created prior to Version 3 Release 4 and therefore does not
have a CCSID associated with it. The database manager sets the migration CCSID
values as follows:

* MCCSIDSBCS = 37

* MCCSIDMIXED = 0

* MCCSIDGRAPHIC = 0.

If the code page and character set used to create the migrated data (that is, the
data that was inserted into the database prior to Version 3 Release 3) is not CP/CS
37/697, these settings are not correct for your installation and must be changed.
You can determine the CCSIDs for migrated data from the code page and character
set that was used to generate the terminal controller where the data was entered.

For an example of how your choice of migration CCSID value affects the
characters displayed, refer to page B22.

To determine if your database contains graphic or mixed data, issue the following

query:

SELECT COUNT(*) FROM SYSTEM.SYSCOLUMNS
WHERE COLTYPE = 'GRAPHIC' OR

COLTYPE = 'VARGRAPH' OR
COLTYPE = 'LONGVARG' OR
SUBTYPE = 'M'

If the query returns a result of zero rows, the database contains neither graphic nor
mixed data; a nonzero result indicates the number of columns in your database
that do contain such data.

Handling SBCS Data: If your database contains only SBCS data (that is, the
above query returns a result of zero) prior to Version 3 Release 3, the migrated
CCSID values for mixed and graphic data (MCCSIDMIXED and
MCCSIDGRAPHIC) must remain 0.

If the MCCSIDSBCS value of 37 is not correct for your installation, this must be
changed to correspond to the code page and character set used to create the
migrated data. For example, if the data was created with CP/CS 273/697
(GERMAN), the CCSID value you should use is 273. For a list of some of the SBCS

CCSIDs and their character set and code page values, see [able 21 on page 320.

The row that you must update for data in tables created before Version 3
Release 3 is:

* SQLOPTION=MCCSIDSBCS'

Change the value in the VALUE column to the appropriate SBCS CCSID (for
example, 273 for GERMAN). The following statements show how to update or
insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '273'

WHERE SQLOPTION = 'MCCSIDSBCS'

System Administration

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('mMccsIDSBCS', '273',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

Handling Mixed Data: If your database contains graphic or mixed data prior to
Version 3 Release 3, you must update the VALUE column of
SYSTEM.SYSOPTIONS for the row where SQLOPTION="MCCSIDMIXED' with the
appropriate nonzero CCSID value. You must also update the row where
SQLOPTION="MCCSIDSBCS' to the value of the SBCS component of the mixed
CCSID, and the row where SQLOPTION=MCCSIDGRAPHIC' to the value of the
DBCS component of the mixed CCSID. If these CCSIDs do not correspond to the
components of the mixed CCSID, the wrong conversion selection tables are being
used. For a list of some of the mixed CCSIDs and their component SBCS and

DBCS CCSIDs, see [[able 21 on page 320.

The rows that you must update for data in tables created before Version 3
Release 3 are:

* SQLOPTION=MCCSIDMIXED'

Change the value in the VALUE column to the appropriate mixed CCSID. If you
used DBCS characters before Version 3 Release 3, specify the appropriate CCSID
value. For example, if you used Kanji characters, specify the value 5035. The
following statements show how to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '5035'
WHERE SQLOPTION = 'MCCSIDMIXED'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDMIXED', '5035',
'DEFAULT CCSID FOR MIGRATED MIXED CHARACTER COLUMNS')

* SQLOPTION="MCCSIDSBCS'
Change the value in the VALUE column to the appropriate SBCS CCSID. If you
used DBCS characters before Version 3 Release 3, you must specify the SBCS
component CCSID of the MCCSIDMIXED value. For example, if
MCCSIDMIXED is set to 5035, specify 1027. The following statements show how
to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '1027'
WHERE SQLOPTION = 'MCCSIDSBCS'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('McCCSIDSBCS', '1027',
'DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS')

* SQLOPTION='MCCSIDGRAPHIC'

Change the value in the VALUE column to the appropriate graphic CCSID. If
you used DBCS characters before Version 3 Release 3, this value must be the
DBCS component CCSID of the MCCSIDMIXED value that you used. For

Chapter 3. Planning for Database Migration 35

example, if you used Kanji characters, specify 4396. The following statements
show how to update or insert the row using this value:

UPDATE SYSTEM.SYSOPTIONS SET VALUE = '4396'
WHERE SQLOPTION = 'MCCSIDGRAPHIC'

INSERT INTO SYSTEM.SYSOPTIONS VALUES
('MCCSIDGRAPHIC', '4396',
'DEFAULT CCSID FOR MIGRATED GRAPHIC COLUMNS')

Choosing the Default CHARNAME for All Application
Requesters

After migration, the application requester default CHARNAME is determined from
the SQLGLOB file. By default it is set to INTERNATIONAL, and the application
requester CCSID values are as follows:

+ CCSIDSBCS = 37

* CCSIDMIXED = 0

» CCSIDGRAPHIC = 0.

To ensure the integrity of character data representation and to reduce the
performance overhead associated with CCSID conversion, it is important to choose
the appropriate CHARNAME for the code page used by each application requester.
If you need to, you can later change it for all application requesters by using the
global default SQLGLOB EXEC. See [i

CCSID for Application Requesters” on page 26 and ESetting the Application]
Requester Defanlt CHARNAME and CCSIDs” on page 323. For more general
information on CCSIDs, see CCSID Conversion” on page 317 and I'Determining

Considerations for Mixed Primary Keys with Field Procedures

If you are migrating from Version 3 Release 1 or Version 3 Release 2, the value of
CCSID in SYSTEM.SYSKEYCOLS is NULL. For some primary keys, this value is
not correct. In this case, you should drop and recreate the primary keys, which you
can identify by running the ARISFPKY EXEC after migrating. (For information on
this procedure, see the [DB2 Seruer for VM Program Directari.)

Migrating from Version 3 Release 3

36

Considerations for EXPLAIN Tables

Several changes and enhancements were made to the EXPLAIN tables in Version 3
Release 4. If you have existing EXPLAIN tables they must either be renamed, or,
dropped and recreated before using the EXPLAIN statement.

An IBM-supplied macro, ARISEXP, recreates the EXPLAIN tables for you.

For additional information on using EXPLAIN tables, see the IDB2 Serner for VSE &

WM Performance Tuning Handhood manual.

System Administration

Considerations for VSE Guest Sharing

VSE batch applications can access an application server on VM that is either
remote or local. If the application server is in a remote network, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure must be replaced by the SET
APPCVM TARGET command. If the application server is local, the SET XPCC
TARGET SYSARI command in the VSE IPL procedure is not needed, and can be
deleted.

Regardless of whether the application server is remote or local, an entry in the
DBNAME directory may also be necessary to map the DBNAME to the resid when
the DBNAME is greater than 8 characters, or when the DBNAME and the resid are
different.

Considerations for the VM Data Spaces Support (VMDSS)

If VMDSS was installed prior to migration, the VMDSS code must be link-edited
with the DB2 Server for VM code before running the migration utilities. See the

DR2 Server for VSE & VM Performance Tuning Handbooll manual for more

information.

Migrating from Version 3 Release 4

Considerations for Assembler Even Precision Packed Decimal

Prior to Version 3 Release 5, assembler host variables declared as even precision
packed decimal were converted to odd precision by the preprocessor. As of
Version 3 Release 5, the database manager supports assembler host variables
defined as even precision packed decimal, and they are not converted to odd
precision. In some cases, the lack of conversion may cause a datatype mismatch
between a host variable and a column. To prevent potential performance
degradation, applications affected by this change should be modified so the
datatypes of the host variables exactly match the datatypes of the columns to
which they will be compared.

Considerations for SQLSTATE Changes for SQL92 Support

The SQLSTATES returned by several conditions were changed to comply with
SQL92. Application programs that have a dependency on the SQLSTATE returned
may be affected by these changes. See IDB2 Server for VM Messages and Coded for
information on the changed SQLSTATEs.

Migrating from Version 3 Release 5

Considerations for Uncommitted Read

Prior to Version 5 Release 1, the database manager accepted isolation level
uncommitted read as a preprocessor parameter, but internally the isolation level
was escalated. As of Version 5 Release 1, isolation level uncommitted read is fully
supported. However, this isolation level to take effect, packages that were prepped
with uncommitted read in a previous release must be explicitly repreprocessed
after migration.

Considerations for VMSES/E

As of Version 5 Release 1, installation and service of the database manager code is
done using VMSES/E, which is a component of the VM operating system. Several
administrative and maintenance processes have changed as a result, including;:

Chapter 3. Planning for Database Migration 37

* Defining and loading saved segments

e Adding a primary database machine

* Moving an application server to another VM ID

¢ Installing your own date, time, and accounting exits
* Enabling the DRDA code

* Enabling the DSS code

* Installing NLS support.

Considerations for Support of ESA-mode Processors Only

Any user exits (date, time, or accounting), field procedures, or applications that
run in single user mode that are dependent on running in a 370 mode virtual
machine must be converted to execute in an ESA mode virtual machine. AMODE
24 is still supported, however it cannot be used if the database is started with
SYNCPNT=Y. If the database is started with SYNCPNT=Y (which is possible only
in multiple user mode), exits and field procedures must run with AMODE 31. If
the database is started with SYNCPNT=N, exits, field procedures, and single user
mode applications that require AMODE 24 can be used.

Considerations for the Renaming of the Product

The text of several messages was modified as the result of the renaming of the
product. Applications with dependencies on the text of messages may be affected.

Considerations for the Removal of the User Facility Subset

The User Facility Subset is no longer supported; machines on which the subset was
previously installed must now contain the full product.

Migrating from Version 5 Release 1

Considerations for RDS Above 16M

After migration, the RDS component will be loaded above 16M whenever possible.
As a result,

* If you use AMODE 24, you must use a maximum virtual storage size of 16MB.

* If you use saved segments, it is highly recommended that the RDS and DBSS
segments not be put in the same segment space, as this would force the RDS

segment to be located below 16M. See Illsing Saved Segments for Components’]

Considerations for TCP/IP

In DB2 Server for VM Version 6 Release 1 and later, the database manager will
attempt to use TCP/IP for communications by default. If you do not want to use
TCP/IP, specify the initialization parameter TCPPORT=0.

Migrating from Version 6 Release 1

There are no issues to consider when migrating from Version 6 Release 1 to
Version 7 Release 1.

| Migrating from Version 7 Release 1

[There are no issues to consider when migrating from Version 7 Release 1 to
| Version 7 Release 2.

38 System Administration

Release Coexistence Considerations

For installations with multiple databases, you should migrate all your databases to
the current level. All users have the same features available to them, and future
database migrations are easier.

Applications at any supported release level can access application servers at any
supported release level. However, if an application requester and application
server are at different release levels, any functions used must be available in both
release levels. That is, you cannot use any new release facilities from ISQL, DBS
Utility, or application programs when the application server is running a different
level of DB2 Server for VSE & VM than the application requester.

All existing applications that accessed a database before the database was migrated
to another release level continue to work after migration.

” . I 7

See for
incompatibilities that exist between each release and the next release.

Migrating from a VSE to a VM Operating System

This section describes two operating environments on VSE from which you can
migrate a database:

 Standalone VSE system. VSE is the only operating system on the processor. The
database manager runs under VSE.

* VSE runs as a guest operating system under VM. The database manager runs
entirely under VSE.

When you move the database from VSE, you can move it to one of these operating
systems:

* VM operating system with VSE guest sharing. In this situation, VSE is a guest
operating system under a VM operating system, and the database machine is on
VM.

* VM/ESA ESA Feature operating system. The database machine runs under a
VM/ESA operating system with the ESA Feature.

If you do not have a database on VM, you can migrate your database from a VSE
to a VM operating system by archiving the database on VSE, generating a new
database on VM, and then restoring the archived database on VM. For more

information, see Moving a Database” on page 43.

If you already have a database on VM, you can move the data in your VSE
database to the VM database using the UNLOAD and RELOAD commands. For
more information on the UNLOAD and RELOAD commands, see the

Jhw VSE & VM Database Seruvices ”HIH}J manual. If you move the data this way, you
have to unload and reload all dbspaces and packages. When the database is on
VM, you must recreate all views and indexes, and reestablish the authorities and
privileges each user has with GRANT and REVOKE commands for the tables
moved from VSE. This is similar to regenerating a database. For more information,

see ['Preparing for Database Regeneration” on page 27.

When migrating from a prior release, you may want to update the SNA NETID
file. For information on this task, see L i ile”

Chapter 3. Planning for Database Migration 39

40

Moving a Database from a VSE to a VM Operating System

Before attempting to move a database from a VSE to a VM operating system, you
should understand the database manager on VM as well as on VSE. You must
know how to define and generate a database on VM before you can move a VSE
database to VM.

Choosing a VM Resource Identifier

In a DB2 Server for VM database, you can choose a VM resource identifier (resid)
in addition to the server name. The resid identifies the application server to VM.

For more information on this, see !Choosing an Application Server Name and VM

77

Converting Data in the Database

There is no need to convert the data in a database when you move the database
from a VSE to a VM operating system; the data is system-independent. You must
have the same release level of the database manager installed on both operating
systems, otherwise the database manager at the lower release level must be
migrated first. Once both databases are using the same release level, archive the
database on VSE and restore it on VM.

Converting Packages

Although the database manager itself does not require you to convert user-created
packages when you move from VSE to VM, any program that is moved will have
to be compiled and linked again in the VM environment. If you have revised any
programs, you should repreprocess these programs. Remember to use the
preprocessor KEEP option to retain existing authorizations on the program.

Views are stored as packages. These packages do not need to be recreated.

Converting Programs

The VSE programs moved to the VM operating system must be recompiled and
linked in the VM operating system. Some of the programs can be run in a
CMS/DOS environment without modification. The CMS/DOS environment does
not support all VSE macros and functions; some programs must be recoded.
Programs that do not need to be recoded still have to be preprocessed, compiled,
and link-edited in the VM environment.

The CICS/VSE programs cannot be converted to the CMS environment; they must
be rewritten to be used in CMS.

VSE Databases Coexisting under VM

You might choose to move some VSE databases to VM. In such cases, you can run
the database on VM, with VSE running as a guest under VM. Users and
applications in VSE can also access databases on VM through VSE guest sharing.

For more information on guest sharing, see '’VSE Guest Sharing Configuration” onl

If you have databases on VSE, use the DB2 Server for VSE manuals. See the brd

Berver for VSE & VM Master Index aud Glossarif manual for a list of these manuals.

System Administration

Migrating from a VM/XA to a VM/ESA Environment

You can migrate your VM /XA databases to a VM/ESA operating system in two

ways:

* Archive the databases in the VM /XA operatmg svstem and restore them in the
VM/ESA operating system. See L

* Install a VM/ESA operating system on the processor that you use to access your
databases. See L ”

You maz have to update the SNA NETID file. See I'Updating the SNA NETID File’]

Delaying the Directory and Database Name Changes

If you have just installed a VM/ESA operating system, and you want to delay the
directory and database naming changes, you can operate your database machines
in non-APPC/VM mode. In this mode, IUCV is used and the remote unit of work
and database switching capabilities are not available.

To indicate that the database machine is to use IUCV communication paths instead
of APPC/VM, set the DBMODE initialization parameter to N when you start the
application server. This connects you to an application server using the database
machine’s VM ID. Otherwise, APPC/VM paths will be used, and you will be
connected to the application server using the resource identifier (resid).

If you have already made the directory changes and database name changes, do
not set DBMODE to N.

Setting up the Database Machine Directory Entry

To use Version 6 Release 1, ensure that you have the necessary VM directory
control statements. An example of these statements is shown in

Note: Only those statements that differ from the ones used in the VM /XA
operating system are explamed following the f1gure For details of the other
statements, see z

1 ---> USER SQLMACH sqlmachpw xM xM G
ACCOUNT nnnnnnnn
2 ---> OPTION MAXCONN 26
IUCV ALLOW
3 ---> IUCV *=IDENT SQLDBA GLOBAL
IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 =
SPOOL 00D 2540 A
SPOOL 0OE 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql

Figure 3. Example VM Directory Control Statements for the SQLMACH Machine

Chapter 3. Planning for Database Migration 41

Statement 1: USER SQLMACH sglmachpw xM xM G

This statement defines the database machine SQLMACH with the VM privilege

class G. Refer to ['Virtual Storage Requirements” on page 4 for the recommended

virtual storage size for the database machine.

Statement 2: OPTION MAXCONN 26

The MAXCONN value must be increased by 1 (over that specified for the VM /XA
operating system), because the machine now makes one additional IUCV
connection to *IDENT.

The default value for MAXCONN is 4 in the VM/XA operating system, and 16 in
the VM/ESA operating system.

Statement 3: IUCV *IDENT SQLDBA GLOBAL

In a VM/ESA operating system, the database machine is the resource owner, so it
must be authorized to connect to the VM system service *IDENT. This
authorization is granted by the IUCV entry in the database machine directory. The
name of the database (specified in the DBNAME parameter of the SQLDBINS
EXEC) is used as the resource identifier.

w shows the syntax of the IUCV *IDENT statement.

»—TJUCV *IDENT

v
A

I—resi d—I |—LOCAL—|
|—RESANY—| |—G.LOBAL—|

Figure 4. [UCV *IDENT Syntax

42

resid
This variable is the resource identifier of an application server that can be
started in this virtual machine. The machine can have multiple resid entries in
its directory. (In Eigure 3 an page 41, the resid is SQLDBA.) Usually, the resid is
the server name of the application server. However, if the resid and the server
name are different, they must both be defined in the RESID NAMES file
during database generation.

RESANY
This parameter enables the database machine to identify any resource identifier
as either a LOCAL or GLOBAL resource. Specify it if you want to access more
than one application server (accessed one at a time).

LOCAL
This parameter ensures that only the application requesters that are on the
same processor as the database machine can use this application server

GLOBAL
This parameter identifies an application server as a resource that can be
accessed by all application requesters in a network.

System Administration

Example of a Database Machine Directory with Multiple
Databases

Eigure 3 shows the control statements in the directory of a database machine with
multiple databases. This database machine can manage three application servers on
this processor, but only one at any given time. The three database resids in this
example are SQLRES1, SQLRES2, and SQLRES3. The first two can only be accessed
by users on the local processor, while the third can be accessed by both local and
remote users.

---> USER SQLMACH sglmachpw xM xM G
ACCOUNT nnnnnnnn
OPTION MAXCONN 26
IUCV ALLOW

---> TUCV *IDENT SQLRES1 LOCAL

---> TUCV *IDENT SQLRES2 LOCAL

---> IUCV *IDENT SQLRES3 GLOBAL
IPL CMS PARM AUTOCR
CONSOLE 009 3215 T OPERATOR
SPOOL 00C 2540 =
SPOOL 00D 2540 A
SPOOL 0OE 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 010 volser W
MDISK 193 3380 cylr 060 volser R rsql wsql
MDISK 195 3380 cylr 020 volser RR rsql wsql msql
MDISK 200 3380 cylr 034 volser R rsql wsql
MDISK 201 3380 cylr 008 volser R rsql wsql
MDISK 202 3380 cylr 077 volser R rsql wsql
MDISK 203 3380 cylr 034 volser R rsql wsql
MDISK 204 3380 cylr 008 volser R rsql wsql
MDISK 205 3380 cylr 077 volser R rsql wsql
MDISK 206 3380 cylr 034 volser R rsql wsql
MDISK 207 3380 cylr 008 volser R rsql wsql
MDISK 208 3380 cylr 077 volser R rsql wsql

Figure 5. Database Machine Directory Entries

Setting Up the User Machine Directory Entry

In a VM/ESA operating system, the database manager uses advanced-program-to-
program-communications/virtual machine (APPC/VM) in place of IUCV. User
machines connect to a resource, not to the database machine. A change is required
if access to the resource had been controlled by specifying IUCV dbmachid in the
directory entries of the user machines. The IUCV dbmachid must be replaced with
the IUCV resid statement in each virtual machine directory, to allow the user
machine to connect to the application server identified as a resource.

shows an example of the VM directory entry for a user machine.

Note: Only those statements that differ from the ones used in the VM /XA
operating system are explained following the figure. For information on user
machine directory entries, see 'Defining Additional User Machines” onl

. For a complete description of VM directory control statements,
refer to the VM/ESA: Planning and Administration manual.

Chapter 3. Planning for Database Migration 43

1 ---> USER SQLUSER sqluser xM xM G
ACCOUNT nnnnnnnn
2 ---> IUCV resid
IPL CMS PARM AUTOCR
CONSOLE 009 3215
SPOOL 00C 2540 =
SPOOL 00D 2540 A
SPOOL 0OE 1403
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
MDISK 191 3380 cylr 003 volser W
LINK SQLMACH 195 195 RR

Figure 6. Example VM Directory Entries for a User Machine

Statement 1: USER SQLMACH sglmachpw xM xM G

This statement defines the user machine with the VM privilege class G.

Refer to [Virtual Storage Requirements” on page 4 for the recommended

virtual storage size for the user machine.

Statement 2: IUCV resid (used for the VM/ESA operating system)

This statement is only required if the IUCV ALLOW control statement is
not present in the VM directory for the database machine (SQLMACH).
Since the default arrangement is for IUCV ALLOW to be specified in the
VM directory entry for the database, most users omit this statement. If you
later decide to have more control over user machine-to-application server
communications, you can change the IUCV control statements.

w shows the syntax of the IUCV statement used for the VM/ESA operating
system.

»»—TIUCV

A\
A

Ly

—resid
—gatewayid—

Figure 7. IUCV Statement Syntax

ANY

This parameter authorizes the user machine to connect to any application
server identified as a resource.

resid
This variable authorizes a user machine to connect only to the application
server identified by resid. If more than one IUCV resid statement is specified in
the machine’s directory, the user machine can communicate with more than
one application server.

gatewayid
This variable authorizes the user machine to connect to the resources in an
SNA network through gatewayid, rather than to a specified virtual machine.

For more information about the VM directory control statements that affect
inter-machine communications, see ['VM Directory Cantrol Statements” onl

44 System Administration

Database Naming Considerations

You may have to change the names of your databases (server-name), to ensure that
they are unique within a set of interconnected SNA networks, and that their resids
are unique in a TSAF collection or gateway. For more information, see

”

When you migrate a database from a VM/XA to a VM/ESA operating system you
can specify a value for server-name of up to 18 characters and a Value for resid of
up to 8 characters. For more information, see

MMWL@—W’ .

Migrating from

a VM/SP to a VM/ESA Operating System

You can migrate your VM/SP databases to a VM/ESA operating system in two

ways:

e Install the VM/ESA operatmg system on the processor you use to access your
databases. See L

* Archive the databases in VM/SP, and restore them in the VM/ESA operating

system. See I‘Maving a Database’].

If you have user exits or single user mode applications that do not support 31-bit
addressing, these applications must be converted before the database manager can
run AMODE(31).

Installing Another IBM VM System on Your Processor

You can access your databases in another IBM VM system by installing that VM
operating system on the processor on which the databases are located. Before
doing so, you should archive your databases.

For information on installing VM/ESA, see the VM/ESA: Installation Guide manual.

| Moving a Database

This section provides information about moving a database.

Using Archive and Restore to Move a Database

To move a database to another database manager:

1. Start the source application server.

If you normally use the database manager archiving facility, specify the
LOGMODE-=A initialization parameter to archive the database, or
LOGMODE=L to archive the log. If you do not use the archiving facility,
specify LOGMODE=Y.

2. Set the password for authorization ID SQLDBA in the source application server
to SQLDBAPW.

3. Create a database archive tape file by issuing the SQLEND ARCHIVE
DVERIFY operator command. If LOGMODE is set to L, the database manager
also takes a log archive. You cannot use a database archive created by user
facilities when moving your database.

Do not destroy the source database until you are certain that it has been
correctly moved to the target.

4. Install the database manager that you are going to use as the target (if you
have not already done so).

Chapter 3. Planning for Database Migration 45

46

Before proceeding to move the database, it is recommended that you first
install and verify the IBM-supplied starter database on the target database
manager, to ensure that the target database manager has been correctly
installed. For information on how to do this, see the IDB2 Server for VM Program

Define and generate a database on the target system. The new database
directory and dbextents must be defined with sufficient space to contain the old
directory and dbextents.

If you are moving from a VSE to a VM operating system, you must increase the
space allocations used by approximately 16% for count-key-data DASDs that
are 10 cylinders or fewer, and for FBA devices that are 5000 blocks or fewer.
For data sets larger than 10 cylinders or larger than 5000 FBA blocks, increase
the allocation by about 3%. These increases account for VM DASD block 1/0. If
you use allocations on VM that are the same size as those you used on VSE,
the VM database will be too small.

You must define exactly the same number of dbextents and logs that existed on
the old database.

For database planning information, see

Generation” on page 13. For the database definition and generation procedure,
see the DR2 Server for VM Program Directory and DB2 Server for VSE Progrand

Perform coldlog processing against the target database manager, by entering
the command:

SQLLOG DBNAME (server-name)

Respond CONTINUE to message ARIO688D (for single logging) or ARI6129D (for
dual logging). Respond 0 to message ARI0944D to reformat the log.

Restore the database archive tape file created in step B above to the target
database, by entering the command:

SQLSTART DBNAME (server-name) PARM(STARTUP=R)

Do not specify LOGMODE=A or L when you issue SQLSTART. Message
ARI0253D is displayed, indicating that the restored database archive is not
known to the database manager. (The database manager keeps track of archives
in the log history area.) Reply IGNORE to this message. When the application
server is started and ready for operator commands, shut it down by issuing the
SQLEND command.

Install the correct version of the HELP text into the target database.

This text is different on the VSE and VM operating systems, so if you have
moved from one system to the other and had the HELP text installed, replace it
with the target system version.

For information on how to install the HELP text, see the DB.Z_SewegfaL‘LM

Using the SQLDBDEF Utility

The SQLDBDEEF utility can be helpful if you are moving your database. This utility
extracts the definition of database objects from a DB2 Server for VSE & VM
database, and generates a DBSU job that can be used to create the same objects on
another DB2 database. The target database can be any DB2 database, for example,
DB2 Server for VSE & VM, DB2 UDB for OS/390, DB2 UDB for Linux, and so on.
When the objects have been created on the target platform, the load utilities of the

System Administration

target database can be used to load the data. Packages can be unloaded from the
source database and reloaded to the target database so that existing client
applications can continue to be used.

For more information about the SQLDBDEF utility, see LAppendix G.-Service and

Moving a VM Application Server from One User ID to Another

If you are moving a database from one VM user ID to another VM user 1D, you
need to do the following:

1. Update the VM directory entries for the new_user ID Use the same statements
as they were used in the origin user ID. See L

Btatements” on page 137 for some example entries of the VM directory control

statements.

I_ VMSES/E Consideration

If the database you are moving is the original database machine (SQLMACH),
which VMSES/E recognizes, you must update the installation user ID’s VM
directory to link to the new production and service minidisks.

l_ End of VMSES/E Consideration

2. Copy all the files from the original service and production minidisks to the
new service and production minidisks.

3. Copy the PROFILE EXEC from the original database user ID’s A-disk to the
new user ID’s A-disk.

4. In the new user ID, access the production minidisk as file mode Q in write
mode.

5. XEDIT the file ARISPIDC MACRO Q. Change the original database user ID to
the new user ID. For example:

Before:
Line 1: PRODUCTION: SQLMACH 195
Line 2: SERVICE: SQLMACH 193
After:
Line 1: PRODUCTION: NEWMACH 195

Line 2: SERVICE: NEWMACH 193

6. XEDIT the file resid SQLDBN Q. Change the original database user ID to the
new user ID. For example:

Before:
DBMACHID=SQLMACH,DCSSID=dcssid,DBNAME=dbname

After:
DBMACHID=NEWMACH,DCSSID=dcssid,DBNAME=dbname

7. XEDIT the file resid SQLFDEF Q. Change all the occurrences of the original
database user ID to the new user ID. For example:

Before:

Chapter 3. Planning for Database Migration 47

48

10.

System Administration

[*** FOLLOWING LINES FOR BDISK %/
If varl='DEF' Then CP LINK SQLMACH 200 200 W

/*** FOLLOWING LINES FOR LOGDSK1 #*x*/
If varl='DEF' Then CP LINK SQLMACH 201 201 W

/*** FOLLOWING LINES FOR LOGDSK2 ===/
If varl='DEF' Then CP LINK SQLMACH 202 202 W

[*** FOLLOWING LINES FOR DDSK1 w**x*/
If varl='DEF' Then CP LINK SQLMACH 203 203 W

[*** FOLLOWING LINES FOR DDSK2 **+*/
If varl='DEF' Then CP LINK SQLMACH 204 204 W

/*** FOLLOWING LINES FOR DDSK20 ***/
If varl='DEF' Then CP LINK SQLMACH 216 216 W

After:

[*** FOLLOWING LINES FOR BDISK #**/
If varl='DEF' Then CP LINK NEWMACH 200 200 W

[*** FOLLOWING LINES FOR LOGDSK1 w#w*x*/
If varl='DEF' Then CP LINK NEWMACH 201 201 W

/*** FOLLOWING LINES FOR LOGDSK2 **x*/
If varl='DEF' Then CP LINK NEWMACH 202 202 W

/*%% FOLLOWING LINES FOR DDSK1 #x*/
If varl='DEF' Then CP LINK NEWMACH 203 203 W

/*** FOLLOWING LINES FOR DDSK2 #xx/
If varl='DEF' Then CP LINK NEWMACH 204 204 W

[*** FOLLOWING LINES FOR DDSK20 **=*/
If varl='DEF' Then CP LINK NEWMACH 216 216 W

If the database server name is going to be different, follow the steps described

in EChangoing the Server Name and Reso e Iden e on tochange
O O O
the server name and the resource ID.

Copy the database minidisks (Directory, log disks and dbextents) to the new
userid. For details on moving the database minidisks, refer to the following
sections in L i ; - 7

VMSES/E considerations: To apply service to the new user ID, you must
create a PPF (Product Parameter File) override to the 5697F42R $PPF file. The
PPF override must reflect the new database user ID and service and

production minidisk address or SFS directory names. The $PPF file resides on
the VMSES/E Software Inventory disk (MAINT 51D). Therefore, when
servicing DB2 Server for VM, the files are copied to the correct database user
ID. Refer to the VM/ESA: VMSES/E Introduction and Reference for more
information on creating a PPF override.

Converting a Service Machine to a Database Machine

You may need at times to convert a service machine to a database machine if a
database is required on that processor.

To convert this processor to a database machine, all you have to do is generate a
database and make the appropriate VM directory changes.

For more information, see LAdding a Primary Database Machine” on page 273

Changing the Server Name and Resource Identifier

Situations exist where you may want to change the application server name or the
resource identifier. For example, you may want to change an application server
name from 8 to 18 characters or have it conform to your naming conventions, or
you may want to change a resource identifier name to a registered DRDA TPN.

The first character of the application server name must be an uppercase letter
(A-Z), followed by alphanumeric characters. The name must be from 1 to 18
characters.

The following example shows how to rename an application server with a
character resource identifier. In this example, the DB2 Server for VM production
minidisk is assumed to be the Q-disk, and an application server with a DBNAME
of dbnamel and a RESID of resid1 will be renamed to dbname2 resid?2.

Notes:

1. In a DRDA2 environment, the database manager uses the RESID to create its
own log name. Therefore, before changing the server name, ensure that any
DRDA? in-doubt agents have been resolved. Once the server name has
changed, use the RESET CRR LOGNAMES command to clear old log names.
When the database manager is next started with the initialization parameters
PROTOCOL=AUTO and SYNCPNT=Y and Resynchronization Initialization
occurs, the DB2 Server for VM log status will be COLD.

2. If the RESID NAMES Q file is not on the production minidisk, use XEDIT to
create the file. Create it with one entry that has the following three tags:

:nick

:dbname

iresid
1. Access the Q-disk with write capability.
2. Enter the CMS command:

FILELIST residl = Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:

a. residl SQLDBGEN

b. residl SQLDBN

c. residl SQLFDEF

3. Rename the file name of each file:

Chapter 3. Planning for Database Migration 49

50

RENAME / resid2 SQLDBGEN Q
RENAME / resid2 SQLDBN Q
RENAME / resid2 SQLFDEF Q

4. Edit resid2 SQLDBN Q:
XEDIT resid2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbnamel

Replace the DBNAME value (DBNAME=dbnamel) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2
5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

In this file, you see the :DBNAME and :RESID tags. Replace the resource
identifier resid1l with resid2, and dbnamel with dbname?2.

Before:

:nick. :dbname.dbnamel :resid.residl
After:

tnick. :dbname.dbname2 :resid.resid2

6. If the old server name or resid (for example, TPN) is referenced by any CMS
communication directory entries, you must update those directory entries.

After changing your application server name and resource identifier, ensure that
users enter:

SQLINIT DB(dbname2)
to identify the application server to be accessed.

When you want to start the renamed application server, specify the new server
name when you enter SQLSTART:

SQLSTART DB(dbname2)

The following example shows how to rename an application server, and how to
change a resource identifier to a registered DRDA TPN. In this example, the DB2
Server for VM production minidisk is assumed to be the Q-disk, and an
application server with a DBNAME of dbnamel and a RESID of resid1 will be
renamed to dbname2 07F6C4C2. The RESID 07F6C4C2 represents the default DRDA
TPN X'07F6C4C2'.

Note: If the RESID NAMES Q file is not on the production minidisk, use XEDIT to
create the file. Create it with one entry that has the following three tags:
:nick
:dbname
iresid
1. Access the Q disk with write capability.
2. Enter the CMS command:

FILELIST residl = Q

A list of files from the Q-disk is displayed. Three files are on the Q-disk for
each application server:

a. residl SQLDBGEN

b. residl SQLDBN

System Administration

c. residl SQLFDEF
3. Rename the file name of each file:

RENAME / 07F6C4C2 SQLDBGEN Q
RENAME / 07F6C4C2 SQLDBN Q
RENAME / 07F6C4C2 SQLFDEF Q

4, Edit 07F6C4C2 SQLDBN Q:
XEDIT 07F6C4C2 SQLDBN Q

This file contains a statement similar to the following:
DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbnamel

Replace the DBNAME value (DBNAME=dbnamel) with your new server
name:

DBMACHID=Dbmachid,DCSSID=Dcssid,DBNAME=dbname2
5. Edit RESID NAMES Q:
XEDIT RESID NAMES Q

In this file, you will see :DBNAME and :RESID tags. Replace the resource
identifier resid1 with the hexadecimal value X'07F6C4C2' and dbnamel with

dbname?2.
Before:

:nick. :dbname.dbnamel :resid.residl
After:

:nick. :dbname.dbname2 :resid.X'07F6C4C2'

6. Enter a hexadecimal TPN value in the CMS communication directory by using
the SET VERIFY ON HEX 1 72 command, and entering the hexadecimal
digits.

Chapter 3. Planning for Database Migration 51

52 System Administration

Chapter 4. Planning for Operation of the Database Manager

Once the DB2 Server for VM code is installed and your database generated, the
operator can start the application server so that users can access the databases and
submit SQL statements. This chapter explains the planning tasks associated with
starting, running, and stopping the application server. For information on the
actual operator commands, see the IDB2 Server for VSE & VM Qperatiod manual.

Starting the Application Server

This section discusses the following topics:

¢ The database operator

* Multiple user mode initialization parameters

* Single user mode initialization parameters

* Tape support

* General file support

* Starting the application server in multiple user mode
* Running multiple user mode applications

* Starting the application server in single user mode
* Opverriding initialization parameters

¢ Creating a parameter file

The Database Operator

Each database machine has its own operator console called the DB2 Server for VM
operator console. The user who operates this console is referred to as the database
operator.

When more than one database machine is active, there is more than one database
operator console. With VM facilities, a single person can operate many database
machines. For example, one person can operate many database machines by
running the virtual machines disconnected. This common operator can reconnect to
the various machines as needed.

Another way to have one operator is to use the VM Single Console Image Facility
or the Programmable Operator Facility. These facilities allow the VM system
operator to operate all the database machines. To learn more about the single
console image facility and the programmable operator facility, refer to the VM/ESA:
CP Programming Services or the VM/ESA: Planning and Administration manuals.

The database manager can operate in one of two modes: multiple user mode, or
single user mode.

In multiple user mode, one or more users or applications concurrently access the
same database. The database manager runs in a virtual machine while one or more
applications run in other virtual machines. Users specify the database they want to
access by running the SQLINIT EXEC. This EXEC establishes a default database for
each user. For example, a user who first wants to access a database called TEST,
then use ISQL, would enter:

SQLINIT DB(TEST)
ISqQL

The initialization parameter SYSMODE=M defines this mode.

© Copyright IBM Corp. 1987, 2001 53

In single user mode, the database manager and only one application program run in
the same virtual machine. The application server is started, the program name is
passed as a parameter to the database manager, the application is run, and the
application server terminates. The initialization parameter SYSMODE=S defines
this mode.

Multiple User Mode Initialization Parameters

[Cable 4 identifies the initialization parameters that apply when the database
manager is operating in multiple user mode, and lists their defaults. A discussion
of the appropriate settings for these parameters follows.

Table 4. Multiple User Mode Initialization Parameters

Parameter | Default Minimum Maximum
Environment Parameters
DBNAME(name) None — —
DCSSID() SQLDBA — —
AMODE() 31 — —
SYSMODE=M M — —
STARTUP=W IRIU W — —
PARMID=name None — —
DBMODE=G | LIN *IDENgn?ri;eCtorY — _
T - -
CHARNAME=name INTERNATIONAL — —
ACCOUNT=DIN N — —
If
SYNCPNT=Y IN PROTOCOL=AUTO, — —
Y
DSPSTATS=nn 0 0 21
TCPMAXRT=n 158 1 9999
TCPPORT=n ETC SERVICES 0 65535
TCPRETRY=Y IN Y — —
SECALVER=Y IN N — —
SECTYPE=DB2 | ESM DB2 — —
Performance Parameters
NCUSERS=n 5 1 251
NPACKAGE=n 10 1 32766
NPACKPCT=n 30 0 100
NPAGBUF=n 10 + NCUSERS x 4 10 40000
NDIRBUF=n NPAGBUF 10 40000
NLRBU=n 1000 10 583333
NLRBS=n @ X(EIEI[{JSST) : 1arg§é>lfjgglgsr) 2x 583333
NCUSERS)/2 +10
DISPBIAS=n 7 1 10

54 System Administration

Table 4. Multiple User Mode Initialization Parameters (continued)

Parameter Default Minimum Maximum
NCSCANS=n 30 1 655
LTIMEOUT=n 0 0 99999
PTIMEOUT=n 180 0 99999
PROCMXAB=n 0 0 255

Recovery Parameters
LOGMODE=Y | AIL Y — —
CHKINTVL=n 10 1 99999999
SLOGCUSH=n 90 11 90
ARCHPCT=n 80 10 99
TAPEMGR=N 1Y N — —
SOSLEVEL=n 10 1 100

Service Parameters

DUMPTYPE=PI|FIN F — —
EXTEND=Y IN N — —
TRACDBSS=nnn... 000... 000... 222...
TRACRDS=nnnnnnn 0000000 0000000 2222222
TRACWUM=n 0 0 2
TRACDRRM=nnnn 0000 0000 2222
TRACDSC=nn 00 00 22
TRACCONV=n 0 0 2
TRACSTG=n 0 0 1
TRACEBUF=n 0 0 99999

Environment Parameters
DBNAME

A database machine can own more than one database. When starting the
application server, specify the name of the database that is to be accessed by the
database machine. Note that DBNAME is not specified in the parameter list of the
SQLSTART command as an initialization parameter. Eigure 8 an page 54 shows the
DBNAME parameter specified correctly.

DCSSID

This parameter specifies the name of the bootstrap package to be used. It is not
needed if saved segments are not being used. For more information on saved
segments and specifying the DCSSID parameter, see

bn page 171 [Figure 8 on page 54 shows the DCSSID parameter specified
correctly For more 1nformat10n on the use of this parameter, see m
AMODE

This parameter specifies the type of addressing the database manager runs in:
31-bit addressing or 24-bit addressing. Note that AMODE is not specified in the
parameter list of the SQLSTART EXEC as an initialization parameter.

page 56

Chapter 4. Planning for Operation of the Database Manager 55

bage 54 shows the AMODE parameter specified correctly. For more information on
the use of this parameter, see [i icati i i

Mo_dun_pa.g.&zz” .
SYSMODE

This parameter is used to specify either single(S) or multiple(M) user mode. Set it
to M to initialize the database manager for multiple user mode operation. This is
the default mode. You will NOT normally specify this parameter as SQL EXECs set
this parameter for you automatically.

STARTUP

This parameter specifies how the database will be started:
* Most of the time let STARTUP default to W (warm start).

* Use STARTUP=R (restore) to restart the application server and restore the
database from an archive tape file.

 Specify STARTUP=U (user restore) if you have archived and restored the
database with user facilities.

For more information, see Restoring the Database” on page 212
PARMID

This parameter can be used to specify a CMS file containing the values for the
other initialization parameters. Application program parameters (user parameters)
cannot be included. Specify only the file name for PARMID. The database manager
assumes that the file type is SQLPARM and the file mode is *. The * tells CMS to
search all accessed minidisks (A to Z). w shows an example startup that uses
the PARMID parameter.

SQLSTART DBNAME (SQLDBA) DCSSID(MYBOOT) AMODE(31) PARM(PARMID=WARM1,LOGMODE=A)

Figure 8. Starting in Multiple User Mode with a CMS File

DBMODE

This parameter identifies the database name as a LOCAL resource (DBMODE=L), a
GLOBAL resource (DBMODE=G), or non-APPC/VM (DBMODE=N) for a
particular session. If the DBMODE parameter is not specified, the resource
authorization specified in the VM directory of the database machine is used.
Consider the following when specifying the DBMODE parameter:

* If you specify DBMODE=L or G to run SQLSTART and the database machine
directory does not contain the control statement IUCV with parameters GLOBAL
or LOCAL, the SQLSTART EXEC fails.

* When DBMODE=G is specified, and the IUCV *IDENT directory entry does not
allow that resource name to be identified as a GLOBAL resource, the application
server ends the startup.

 If DBMODE-=L is specified, the application server is identified as a LOCAL
resource even if the IUCV directory entry specifies that the resource is GLOBAL.
Specify this parameter to restrict access to the application server to users on the
local processor.

* If DBMODE=N is specified, no *IDENT directory entries are required, because
the database machine uses IUCV instead of APPC/VM. You should use
DBMODE=N if you have just migrated to a VM/ESA operating system, and you
do not want to make directory changes yet. For more information about
DBMODE=N, see [!Delaying the Directory and Database Name Changes” onl

56 System Administration

For more information about directory entries, see ['VM Directory Control
I I [l ”]32

PROTOCOL

This parameter specifies the types of protocols that the application server can
handle. It has two options on the SQLSTART EXEC: SQLDS and AUTO.

When PROTOCOL=SQLDS is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM application requesters only. These
application requesters and application server can be in either a local or remote
environment. This option is the default.

When PROTOCOL=AUTO is specified, the DB2 Server for VM application server
allows access from DB2 Server for VM and non-DB2 Server for VM application
requesters. This parameter can only be specified if the DRDA code has been
installed. It is used with the SYNCPNT parameter to control the DRDA
environment. For more 1nformat10n see the descrlptlon of the SYNCPNT
parameter and see “

On the application server, the PROTOCOL parameter is specified using the
SQLSTART EXEC. On the application requester, the SQLINIT EXEC also has a
PROTOCOL parameter. When a connection is made between the application
requester and the application server, the combination specified by these parameters
determines whether the DRDA protocol or the SQLDS protocol is to be used for
that connection.

You should be aware of the performance impacts of the chosen protocol. For a
detailed explanation on protocols, see the DB2 Server for VSE & VM PPanrmanml

For a list of restrictions when using the DRDA protocol, see

LA.p.pend.Lx_H_DRDAl
Considerations” on page 474. For information on the SQLINIT EXEC, see the

Fprwprfnr VSE & VM Database Administratiod manual.

CHARNAME

This section discusses the following:
* Character set considerations at startup

* National language considerations at startup.

Character Set Considerations at Startup: Use the CHARNAME parameter to
specify the CCSIDs to be used as the application server defaults. The default
CCSIDs determine the character sets and code pages to be used to interpret
statements and return results.

The valid CHARNAME values you can specify are ENGLISH (CCSID=37),
INTERNATIONAL (CCSID=500), and all the values that are in the CHARNAME
column of the SYSTEM.SYSCCSIDS catalog table.

The database manager obtains the CCSIDs associated with the CHARNAME by
looking up the row of the SYSTEM.SYSCCSIDS catalog table where the
CHARNAME column matches the CHARNAME parameter. It also obtains the
classification and translation tables associated with the CHARNAME by looking
up the row of the SYSTEM.SYSCHARSETS catalog table where the NAME column
matches the CHARNAME parameter. The classification table is used to identify
valid characters in identifiers. The translation table is used to indicate how to fold
ordinary lowercase identifiers to uppercase.

Chapter 4. Planning for Operation of the Database Manager 57

58

For CHARNAMEs ENGLISH and INTERNATIONAL, their CCSID values, the
classification table and the translation table are stored internally. The rows in
SYSTEM.SYSCCSIDS and SYSTEM.SYSCHARSETS for these CHARNAMES are for
reference purposes only and are not used by the database manager.

During startup, if you do not specify the CHARNAME parameter, the application
server uses the same CHARNAME that was used the last time it was started. The
values stored in the rows where SQLOPTION equals CHARNAME, CCSIDSBCS,
CCSIDMIXED, and CCSIDGRAPHIC are for reference purposes only. They reflect
the current values associated with the system. The only way to change the default
values is by starting the application server with a different CHARNAME
parameter. Any updates to the values in the SYSTEM.SYSOPTIONS table are
ignored during startup.

Note: The database manager determines the current default CHARNAME from the
CCSID attribute of the CNAME character column in the
SYSTEM.SYSCOLUMNS catalog table. If this value is null, then 37 is used (a
CCSID of 37 corresponds to a CHARNAME of ENGLISH). The database
manager uses the CCSID value to locate the corresponding row in the
ARISCCS MACRO file to obtain the associated CHARNAME. The value in
the CHARNAME column of this row is the current application server
default CHARNAME.

When you specify a value for the CHARNAME parameter that is different from
the current application server default CHARNAME, you are prompted to choose
whether or not you want to change the application server default CHARNAME. If
you specify YES and have supplied a valid CHARNAME value, the database
manager updates the application server default values for CHARNAME,
CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC. It also modifies the CCSID
attribute of all character columns that are part of the catalog tables to the
application server default CCSID. The CCSID attribute of character columns that
are not part of the catalog tables are not modified. If the value for CCSIDMIXED is
not zero, this value is used as the application server default CCSID. If the value for
CCSIDMIXED is zero, then the application server default CCSID is the value of
CCSIDSBCS.

Note that the tables which have their CCSID modified when the CHARNAME is
changed include:

* All tables created by SYSTEM

* The following tables created by SQLDBA:
SQLDBA.ROUTINE
SQLDBA.STORED QUERIES
SQLDBA.SYSLANGUAGE
SQLDBA.SYSTEXT2
SQLDBA.SYSUSERLIST

When a CHARNAME is changed, the following should be considered:

1. The FIPS Flagger package must be reloaded by using the ARISDBMA EXEC.
Failure to do this can cause SQLCODE=-931 (SQLSTATE=58004). This will
render the agent reporting the SQLCODE error unable to preprocess packages
until the application server is started. Once the FIPS Flagger package is
reloaded or repreprocessed, this error will not occur.

2. All views which are dependent on the tables that had their CCSID modified
must be dropped and recreated.

The following query lists all such view packages:

System Administration

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'V!'
AND VALID = 'N'

This query is useful in that owners of affected views can be notified to drop
and recreate their view before they try and use the view and get an error
(SQLCODE=-835, SQLSTATE=56049, with SQLERRD1 set to -833).

3. All packages which are dependent on the tables that had their CCSID modified
must be dropped and recreated.

The following query lists all such packages:

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE TABTYPE = 'X'
AND VALID = 'N'

This query is useful in that owners of affected packages can be notified to
rebind the packages instead of having them dynamically repreprocessed at run
time. The DBS utility REBIND PACKAGE command can be used to rebind the
packages listed.

4. The ISQL package (SQLDBA.ARIISQL) and DBS utility package
(SQLDBA.ARIDSQL) can be reloaded and recreated using the ARISDBMA
EXEC. If this is not done, the first time these packages are used, they will be
dynamically repreprocessed.

To check if all the above activities have been done, run the following query:

SELECT CREATOR, TNAME, PLABEL
FROM SYSTEM.SYSACCESS
WHERE VALID = 'N'

If there are no rows found, all packages have been either recreated, reloaded,
rebound or dynamically repreprocessed and the VALID column value for the
package in SYSTEM.SYSACCESS has been changed to “Y”.

Note that CCSID conversion of the data in catalog tables does not occur: only the
CCSID attribute of the columns is modified. If you change the application server
default CHARNAME, system objects of the character data type (for example, table
names and column names) stored in the catalog may be displayed differently. The
reason for this is that a code point may represent different characters in different
code pages.

If you want to change the application server default CHARNAME, the default will
not be changed if:

* You specify an invalid value for the CHARNAME parameter
e An error occurs in the verification of the

— New CHARNAME CCSID values

— Classification table

— Translation table.

When the application server is started, it records the application server default
values for CHARNAME, CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC in the
SYSTEM.SYSOPTIONS catalog table. To obtain these values, you can query the
table. For example, to determine the name of the character set that is currently in
use, issue:

Chapter 4. Planning for Operation of the Database Manager 59

60

SELECT VALUE
FROM SYSTEM.SYSOPTIONS
WHERE SQLOPTION = 'CHARNAME'

For more information about character sets, see !Chapter 13_Choosing a National

National Language Considerations at Startup: You can use the SET LANGUAGE
command from the operator console to choose a national language so that DB2
Server for VM messages can be received in the selected language. For more

information see [!National Language Support for Messages and HELP Text” od

ACCOUNT

This parameter enables the accounting facility. When ACCOUNT=D is specified,
accounting records are generated and directed to the VM system accounting file. If
the default value of ACCOUNT=N is specified, accounting information is not
generated.

For a complete description of the accounting facility, see Chapter 11 Using thd

SYNCPNT

This parameter specifies whether or not a sync point manager (SPM) will be used
to coordinate DRDA2 DUOW two-phase commit and resynchronization activity. It
is only meaningful when PROTOCOL=AUTO.

If Y is specified, the server will use a sync point manager, if possible, to coordinate
two-phase commits and resynchronization activity. If N is specified, the server will
not use an SPM to perform two-phase commits. If N is specified, the database
manager is limited to multi-read, single-write distributed units of work and it can
be the single write site. If Y is specified, but the database manager finds that a
sync point manager is not available, then the server will operate as if N was
specified.

The default is SYNCPNT=Y, if PROTOCOL=AUTO.
DSPSTATS

This two digit parameter specifies what information is displayed and what level of
detail is displayed. If 0 is specified, nothing is displayed. If 1 is specified, the
minimum information is displayed. If 2 is specified, more detail is displayed. The
positional digits correspond to the following informational displays: the first is
checkpoint performance information and the second is counter information to be
displayed at system shutdown.

If the first option is 1, then format 1 of message ARI20521 is displayed every time a
checkpoint occurs. This is useful in determining how often checkpoints occur. If
the first option is 2, then format 2 of message ARI2052] is displayed every time a
checkpoint occurs. This is useful in determining if checkpoint processing is causing
a performance problem.

If the second option is 1, then the “COUNTER *” operator command is issued just
before the application server is shutdown. This is useful for performance tuning. If
the dataspaces feature is being used, “COUNTER POOL *” command is also
issued.

System Administration

The SET command changes the value of this parameter without having to stop and
restart the application server. For more information on the SET operator command,
see the [DB2 Server for VSE & VM ()’npmfinﬂ manual.

SECALVER

This parameter determines if the application server will accept users that have
already been verified by another system. If SECALVER=Y, verified users will be
accepted. The requester only needs to send a user ID to be validated. If
SECALVER=N, verified users will not be accepted. The requester must send a user
ID and password to be verified.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

SECTYPE

This parameter determines if the application server will validate a user ID and
password for connect authority using an external security manager or by checking
the DB2 SYSUSERAUTH catalog table. If SECTYPE=ESM an external security
manager will be used to validate the user ID and password. The external security
manager must support the RACROUTE application programming interface. If
SECTYPE=DB?2, the user ID and password are validated by checking the
SYSUSERAUTH catalog table.

Note: This parameter is only used when validating users are connecting via
TCP/IP or when users send the ACCSEC and SECCHK DRDA datastreams
in their connect request.

TCPMAXRT

This parameter specifies the maximum number of times the application server will
attempt to re-enable TCP/IP support if it was disabled.

For a complete description of TCP/IP support, see !‘Chapter 16 1lsing TCP /I0}
lith DB? Server far VM” an page 41 q.

TCPPORT
This parameter specifies the TCP/IP port number that the application server will
use to listen for incoming TCP/IP connect requests.

If this parameter is not specified, TCP/IP support will be initialized and the ETC
SERVICES file on the TCP/IP client disk will be searched to determine the port
number that the application server will use.

If this parameter is specified with a non-zero value, TCP/IP support will be
initialized and the value specified will be used as the port number that the
application server will use.

If this parameter is specified with a value of 0, TCP/IP support will not be
initialized.

For a complete description of TCP/IP support, see 'Chapter 16 1lsing TCP /I

7

TCPRETRY

This parameter determines if the application server will automatically attempt to
re-enable TCP/IP support if it becomes disabled.

Chapter 4. Planning for Operation of the Database Manager 61

62

For a complete description of TCP/IP support, see [[Chapter 16. Using TCP/TH
lrith DB2 Server for VM” on page 41 A

Performance Parameters
NCUSERS

This parameter defines the maximum number of real agents that the database
manager can actively handle at any one time, limiting the number of users that can
be supported by the database manager. The value of NCUSERS is usually less than
the number of connected users anticipated, because not all users will be accessing
data at the same time. This value directly affects the size of the virtual machine
required.

The number of NCUSERS is limited because some static agent storage for each real
agent is obtained below 16 megabytes. See '

w provides guidelines for setting the NCUSERS parameter. Because these are
only guidelines, you should modify them to concur with the activity on your

system. For additional information, see the [DB2 Serzer for VSE & VM Performancd

NCUSERS= 1 for each 1-2 users of ISQL (or other query products)
+ 1 for each 1-25 non-ISQL users
(variable on transaction workload)
+ 1 for each 2-5 application program developers

Figure 9. Guidelines for the NCUSERS Parameter

If you have application programs that maintain multiple logical units of work in
separate CMS work units, each additional work unit used by an application at one
time must be counted as an additional user.

Each ISQL user can generate a high level of system activity. If you set NCUSERS
so that all ISQL users can be active at the same time (NCUSERS=number of ISQL
users), you minimize the time that any one user must wait for services. However,
if this number is large, it may cause the database manager to be overloaded. To
prevent this, you should also set the MAXCONN parameter of the VM OPTION
directory control statement, which limits the number of users and the number of
DASDs that a given virtual machine can access. For information on this parameter,

see Inter-Machine Communications” on page 94.

Application developers typically do a considerable amount of other activity (such
as CMS file editing or output scanning). These users require less service from the
database manager, so NCUSERS can be lowered accordingly.

If you are using VSE guest sharing, the NCUSERS of the VM database machine
should be increased by the number required for the VSE guest. The demand for
services from CICS transaction processing can vary widely, depending on the
nature of the transactions.

The demand for services from batch application programs can also vary
considerably. If you have online or interactive activity on the database manager,
consider limiting the amount of concurrent SQL batch processing.

System Administration

Note: When the application server is started, there may be one or more in-doubt
logical units of work (LUWSs). The value of NCUSERS must be large enough
to handle these. When they have been resolved, the DB2 Server for VM
agent structures are used to handle new users. The creation and use of agent
structures for resolving in-doubt LUWs takes precedence over all new user
logical units of work. For more information about in-doubt LUWS, see

7 7

NPACKAGE

This parameter defines the maximum number of packages in an LUW, and
together with the value specified for NCUSERS, determines the size of the package
cache. The size of the package cache limits the number of packages that can be
present in storage simultaneously. (Package cache size =

NPACKAGE x NCUSERS.) The default value of NPACKAGE is 10, and that for
NCUSERS is 5, giving a default package cache of 50, allowing 50 packages to be
present in storage simultaneously.

In general, increasing the size of the package cache improves performance of the
database manager. However, do not increase it to the point where system paging
becomes too great. For more information, see the DB2 Server for VSE & VM

NPACKPCT

This parameter defines the percentage of the package cache that is used in the
calculation of the package cache threshold. The size of the threshold determines the
number of loaded packages that are kept in storage at the end of an LUW.
(Threshold = NPACKPCT percent of package cache.) If the threshold is exceeded,
the loaded packages are freed and returned to the package cache.

The default values for NPACKPCT and the package cache are 30 and 50
respectively, giving a threshold of 15. In general, increasing the size of the
threshold improves performance. For more information, see the IRB2 Server for VSH

NPAGBUF

This parameter specifies the number of 4096-byte data pages kept in storage
buffers at one time. The number of data buffers you want depends on the number
of active users and the nature of their request. The default for NPAGBUF assumes
an average of four buffer pages for each potentially active user (NCUSERS x 4),
plus ten buffer pages for the buffering of catalog and log information.

In general, increasing NPAGBUF improves the performance of the database
manager. However, increasing it also requires an increase in the size of the
database machine. Also -- and more importantly -- it can cause an increase in the
paging rate of the system. It is more efficient to let the database manager do more
I/0 operations than it is to let the system do more paging; database 1/O
operations are overlapped whereas system paging operations are not. Therefore do
not increase NPAGBUF to the point where system paging becomes too great.

For more information about NPAGBUF, see the [DB2 Server for VSE & VM Diaguasid

Guide aud Referencd manual.
NDIRBUF

This parameter determines the number of 512-byte directory pages to be kept in
storage. Increasing it reduces the number of /O operations. Again, bigger is better,
until you either run out of virtual storage or cause too much system paging. Each
directory page addresses 128 data pages.

Chapter 4. Planning for Operation of the Database Manager 63

64

When you set NPAGBUF and NDIRBUF, you have to choose how to split buffer
space between data pages and directory pages. At least initially, you should set
them to the same value. Issue the COUNTER commands to see the actual 1/O
activity; then adjust NPAGBUF and NDIRBUF.

For more information about NDIRBUF, see the [DB2 Seruer for VSE & VM Diaguosid

manual.

NLRBU and NLRBS

NLRBU specifies the maximum number of lock request blocks allowed for one
active user, while NLRBS specifies the number allowed for all active users.
(Usually, two lock request blocks are used for every lock that a user holds.)

The database manager can perform lock escalations, increasing the granularity of
data being locked from either row or page level to dbspace level. In general, you
only need to change the default values of NLRBU and NLRBS if contention
problems occur. Increasing them reduces the number of lock escalations performed
by the database manager.

When either the NLRBU limit for a user is reached or the NLRBS limit is
approached, lock escalation occurs. This results in fewer locks being required, and
lock request blocks being freed. This in turn reduces the opportunities to share
data. For example, when locking is done at a row level, many users may be
updating the same dbspace at the same time. When it is escalated to the dbspace
level, only one user can update rows in that dbspace. Everyone else must wait
until that person’s update is committed or rolled back.

Escalation can also cause deadlocks. A deadlock occurs when two or more LUWs
are in wait states and dependent on the completion of LUWs that are also in wait
states. For example, suppose two users are updating tables in a dbspace. When the
lock size is escalated to a dbspace level, both users can be locked out, with each
waiting for the other to complete an LUW. The database manager resolves
situations like these by rolling back the newest LUW. For more about locking, see
the DB2 Qprnprfnr VSE & VM A‘n‘nlimfinn Prngmmmin(cj manual.

If the default values for NCUSERS (5) and NLRBU (1000) are used, the database
manager defines 2520 lock request blocks, each of which requires 24 bytes; 60480
bytes of virtual storage are required for lock request blocks. With these defaults,
one application could use 1000 lock request blocks and four other applications
could simultaneously use an average of 370 lock request blocks each, before
causing an escalation.

Even though two lock request blocks are needed for each lock, the default values
allow a large number of locks for each application. With the defaults, one
application could use 500 locks while four other applications use an average of 185
locks each.

You should use the NLRBU and NLRBS default values at first, and increase them if
users either are experiencing delays when they access the database manager, or if
they are receiving SQLCODEs of -911, -912, or -915 (rollbacks that occur because of
deadlock, insufficient lock request blocks for the database manager, or insufficient
lock request blocks for a user application, respectively).

Note: These SQLCODEs may also be received during preprocessing, as the locks
are required then as well.

System Administration

To test the frequency of lock escalations and of deadlocks, use the COUNTER
operator command. Specify both the ESCALATE and the LOCKLMT counters to
get the number of successful escalations and the number of unsuccessful escalation
attempts respectively. (An escalation can fail if the LUW that reached the lock limit
is rolled back because of a deadlock, or if a sufficient number of lock request
blocks cannot be freed.) For example, suppose the operator issues the command
COUNTER ESCALATE LOCKLMT a few times a day and normally receives results in the
range of 10 to 150 for ESCALATE, and 0 to 5 for LOCKLMT. If, one day, the results
are 428 for ESCALATE and 23 for LOCKLMT, a locking problem would be
indicated.

In addition, the SHOW LOCK MATRIX command can be used to display information
about lock request block usage to determine whether unexpected delays are caused
by locking; to monitor how the database manager is using lock request blocks; and
to determine the lock request blocks required for a single application or for a run
of a preprocessor.

One of the values displayed is called MAX USED BY LUW: the maximum number
of lock request blocks used by any one application during an LUW. (When any
LUW starts to exceed NLRBU and the escalation process occurs, MAX USED BY

LUW is set to zero.) All this information can help you determine the required
values for NLRBU and NLRBS.

To establish the lock request block requirements for running a preprocessor, or for
an application that is causing contention problems:

1. Start the application server in multiple user mode with NCUSERS=1, NLRBU
about five times its current setting, and NLRBS set to the same value as
NLRBU.

2. Start the application and allow it to complete processing.

3. Verify that no escalation occurred by displaying the ESCALATE and LOCKLMT
counters. If no escalation occurred, MAX USED BY LUW will show the number
of lock request blocks required.

4. If an escalation did occur, set NLRBU to a value greater than or equal to MAX
USED BY LUW, then start the application server again, and rerun the
application.

If necessary, reset NLRBS. For example, suppose NLRBU is set to 1100, and two
users will run their applications -- each requiring 1100 lock request blocks -- at the
same time. Also assume that any other application requires about 500 lock request
blocks. If NCUSERS is 5, then set NLRBS to at least 3700 (1100 for each of two
applications and 500 for each of three additional applications).

If an application requires more lock request blocks than you have virtual storage
for, you should consider the following alternatives:

* Use either the SQL ALTER DBSPACE or the SQL LOCK statement to change the
locking level of the dbspace used by the application. The ALTER statement
permanently changes the locking level for all applications, while the LOCK
statement can be inserted into an application, and used to change the locking
level only when that application runs. The LOCK statement is the preferred way
to temporarily modify the locking level, because it involves no update to the
catalog tables.

¢ Consider changing the application: perhaps it is holding locks longer than
necessary. Additional SQL COMMIT WORK statements in the application may
necessitate fewer locks.

Chapter 4. Planning for Operation of the Database Manager 65

66

* Consider running the application by itself: either in single user mode, where no
locking is required, or in multiple user mode with a reduced NCUSERS and
with NLRBU and NLRBS set as required.

For more information about locking problems and how to solve them, see the DB3

Berver for VSE & VM Diaguosis Guide aud Referencd manual.
DISPBIAS

This parameter determines how the dispatcher selects the order in which agents
get serviced by the database manager. To set it, you need to understand how the
dispatcher works. Only one agent at a time can be serviced; the other agents wait
in a queue. Within this queue, agents are prioritized according to their estimated
resource consumption: those estimated to consume the least are placed at the top,
while those estimated to consume the most are placed at the bottom.

When the active agent returns to the dispatcher, the next agent at the top of the
queue is dispatched. Every time an agent is dispatched, the database manager
reevaluates the priority of the remaining agents, and requeues them according to
their new priorities.

A pure priority dispatcher can present some problems, however. If many
short-running LUWSs are present, the longer-running ones may never get serviced:
they are always at the bottom of the queue. To avoid this problem, fair-share
auditing is used, whereby all the agents in the queue are checked periodically to
see if they are receiving adequate service. When one is found that is not, its
priority is changed and it is moved to the top of the queue.

If fair-share auditing is done frequently, the dispatcher tends to operate more like a
round-robin dispatcher: agents get equal service because those at the bottom of the
queue get bumped to the top more frequently. If it is done infrequently, the
dispatcher tends to operate more like a priority dispatcher: agents get prioritized
service because long-running agents are forced to wait at the bottom of the queue
longer. (Eventually, fair-share auditing causes these agents to get service.)

The DISPBIAS parameter determines how often fair-share auditing is done. When
it is set low (near 1), fair-share auditing is done frequently, and the dispatcher
operates more in round-robin mode. When it is set high (near 10), fair-share
auditing is done infrequently, and the dispatcher operates more in priority mode.

Initially, you should use the DISPBIAS default of 7. If your long-running LUWs are
getting poor service, you may want to use a lower value; if your ISQL users are
often waiting for long-running applications to complete, you may want to use a
higher value. You can use the SET operator command to change the value of
DISPBIAS without having to stop and restart the application server. See the

Berver for VSE & VM Qperatiod manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

You may be tempted to set DISPBIAS to 10 to get good response time for ISQL
users. Keep in mind, however, that a long-running LUW can hold a large number
of locks. If other users are waiting for those locks, they must wait until the
application frees them. If the application is waiting at the bottom of the queue,
everyone is waiting. In this situation, you would want to have fair-share auditing

System Administration

occur more frequently, so the long-running unit can free the resources it has
locked. The default of seven represents a balance between the interests of
long-running and short-running LUWSs.

NCSCANS

This parameter determines the number of internal control scan blocks kept for
accessing tables and indexes. These blocks can vary in size and number depending
on the type of query being performed. This discussion is concerned with
long-running requests that might be queries or database change operations.

Scan control blocks contain positioning information related to a query. The
positioning information can result from a user-defined cursor or by an internal
cursor created by RDS. If an index is involved in the query, the size of the scan
control block depends on the key size for that index. An average scan control block
is assumed to be 50 bytes (32 bytes for control information, and an average key
length of 18 bytes).

The maximum table size to hold the scan control block entries for each agent is 32
kilobytes (32768 bytes). This can contain 655 entries of 50-byte scan control blocks,
which in general, is enough to support 255 user-declared cursors. If, however, the
key lengths for indexes are long, the scan table supports fewer user cursors. For
example, if the key length for a given index associated with a cursor is 255 bytes,
an entry would require 287 (255 + 32) bytes, and the maximum number of cursors
possible using that index would be 114 (32 kilobytes divided by 287). That number
would be reduced if the DB2 Server for VM requests caused internal cursors to be
created. Internal cursors are always smaller than 50 bytes, and cannot use index
keys.

If you have many complex requests, you may have to increase NCSCANS. If it is
not set to a high enough value, users will get SQLCODE -522. For information on
the virtual storage used by NCSCANS, see the IDB2 Server for VSE Pragraul

LTIMEOUT

This parameter specifies a general lock wait timeout period for any SQL
application, and especially as the way to avoid global deadlocks for DUOW
applications.

The range of the LTIMEOUT value is 0 to 99999 seconds. The value of zero
indicates that no lock timeout should be enforced for agents connected to this
database. This is the default value for a database.

A nonzero lock timeout value will cause any agents waiting for a lock to have their
current transaction rolled back when the lock timeout period has expired. The
agent will notify the application that a lock timeout has occurred with SQLCODE
-911 (SQLSTATE 40001). A reason code will be returned to indicate whether it is a
deadlock or lock timeout situation (reason code 2 for a deadlock situation and
reason code 68 for a lock timeout situation). The lock timeout period begins at the
moment an agent requests a lock on any database resource. The full lock timeout
period is allowed for each lock request.

The lock timeout control parameter should be adjusted in those environments

where lock contention between applications has started to affect the desired
performance and concurrency levels.

Chapter 4. Planning for Operation of the Database Manager 67

68

If a lock timeout is required for your environment, it is recommended that your
starting value be equivalent to the maximum period of time that you want an
application to wait for a lock.

Note: The LTIMEOUT parameter is changed through the SET operator command.
The timeout value will affect any users currently in LOCK WAIT. If a user
has been in a LOCK WAIT for 100 seconds and the value of LTIMEOUT is
set to a value less than 100, that user will receive a timeout. For more

information on the SET operator command, see the [DB2 Serzer for VSE &

manual.

If lock timeout control is activated, you should ensure that all applications
recognize and can handle the -911 SQLCODE that may be received as the result of
a lock timeout initiated rollback.

Note: New units of work that are waiting to begin because a log archive is
running or is scheduled to run are in a lock wait. The SHOW LOCK
WANTLOCK operator command shows these units of work waiting to
acquire an IX lock on the database. Because log archives can potentially take
a significant amount of time to complete, units of work in this particular
type of lock wait are ignored by the lock timeout function.

PROCMXAB

This parameter specifies the number of times a stored procedure is allowed to
terminate abnormally, after which a STOP PROC ACTION REJECT is performed
against the procedure and all subsequent SQL CALL statements for that procedure
are rejected. Note that a timeout that occurs while waiting for a stored procedure
server to be assigned for an SQL CALL statement is not included in this count.

PROCMXAB must be an integer between 0 and 255. The default, 0, means that the
first abend of a stored procedure causes SQL CALLs to that procedure to be
rejected. For production systems, you should accept the default.

PTIMEOUT

This parameter specifies:

e The number of seconds before DB2 Server for VSE & VM ceases to wait for an
SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT
interval expires, the SQL CALL statement fails.

¢ The number of seconds before DB2 Server for VSE & VM ceases to wait for the

START PSERVER command to complete. If the PTIMEOUT interval expires, a
message is displayed and the START PSERVER command terminates.

The default for PTIMEOUT is 180.

Recovery Parameters
LOGMODE

This parameter determines whether archives will be taken for the database and the
log. Specify LOGMODE=A to maintain an archive of the database, LOGMODE=L
to maintain an archive of the log, and LOGMODE=Y if you want logging but do
not want the log archived.

LOGMODE-=A allows you to restore the database and apply the current log.
LOGMODE=L allows you to maintain a database archive as well as log archives.
The database archive followed by the log archives are applied during restore, then
the current log is applied.

System Administration

Use LOGMODE=A or L if it is important to protect the database against media
(DASD) failures; otherwise use LOGMODE=Y.

Note: Each sequence of log archives must be preceded by a database archive, so if
you use LOGMODE=L, you must occasionally take a database archive. You
do not need to switch to LOGMODE=A to do so.

For more information on LOGMODE, see t!Choosing a Log Mode” on page 194.
CHKINTVL

This parameter determines how often a checkpoint is taken. A checkpoint is an
internal operation in which data and status information is written to permanent
(DASD) storage, and a summary status record is written to the log. A checkpoint
causes two important events:

* Storage pool space is freed.

As updates to data occur, duplicate copies of changed data pages are
maintained. These copies (called shadow pages) are kept in the storage pools of
the pages that were changed. A checkpoint frees the shadow pages, and thereby
frees the storage pool space where they are kept.

* Log space may be freed.

If LOGMODE=Y, a checkpoint typically frees log space by moving the logical
beginning of the log forward to the beginning of the oldest LUW still active at
the time of the checkpoint. If LOGMODE=A or L, log space is only freed when
an archive is taken; not on every checkpoint.

Checkpoints are taken periodically: however, by the time one is taken, there may
be a large amount of data to be committed. If a failure should occur before it is
committed, much processing may need to be redone after the database is restored.

The CHKINTVL parameter lets you take checkpoints at predetermined intervals.
Its value is specified in terms of the number of log pages written between
checkpoints. You can use the SET operator command to change the value of
CHKINTVL without having to stop and restart the application server. See the [DBA
Berver for VSE & VM Qperatiod manual for more information on the SET operator
command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

By setting it low, you minimize the risk of filling the log or storage pools.
However, because checkpoints are time-consuming operations that suspend SQL
processing until they are completed, they should be taken infrequently. For more
information on setting CHKINTVL, see the [DB2 Server for VSE & VM Performancd

uning Handbool.
SLOGCUSH

This parameter defines the point at which the log cushion is entered and log-full
processing begins. Its value is expressed in terms of the percentage of the log size.
The default of 90 means that when the log is 90% full, log-full processing will be
initiated.

In log-full processing, the oldest active LUWSs are rolled back until enough log
space is freed to bring the percentage of the log in use below the SLOGCUSH

Chapter 4. Planning for Operation of the Database Manager 69

70

level. Ideally, checkpoints and archiving would continually free log space so that
the log would never reach the SLOGCUSH level.

If the log should become 100% full, the database manager would end abnormally,
so you should set SLOGCUSH to a value that allows log-full processing to take
effect (free some log space) before this happens. If the database manager is ending
with log-full conditions, you may want to lower the SLOGCUSH value or increase
the size of your log minidisks.

ARCHPCT

This parameter can be used to define a point at which an archive is automatically
initiated. It is used only when LOGMODE=A or L is specified. Like SLOGCUSH,
its value is expressed in terms of a percentage of the log.

Archives free up log space; however, they take some time to complete. If the
SLOGCUSH value is reached during an online archive operation, all SQL
processing is suspended until the archive is done. For this reason, it is best to
ensure that archives are initiated in time to finish before the log fills to the
SLOGCUSH percentage. This is done by setting the value of ARCHPCT lower than
the value of SLOGCUSH.

When the log becomes full to the ARCHPCT value, a message is issued to the
database machine operator to mount an archive tape and identify the virtual
address (cuu) of the tape drive. The database manager then takes a database or log
archive depending on whether you have LOGMODE set to A (database) or L (log).

If LOGMODE-=L, the operator can also direct the log archive to disk. For more
information, see L ivi isk” .

Normally, the operator explicitly archives the database or the log before the
ARCHPCT value is reached, by issuing one of the archive commands. If the
ARCHPCT is reached, meaning that the log is almost full, the action that the
database manager takes depends on the LOGMODE that is in effect. See [able § for
a summary of these actions.

Table 5. Summary of Activity When ARCHPCT Level Is Reached
LOGMODE | Activity When ARCHPCT is Reached

Parameter

A An operator message is issued that requests a database archive.

L An operator message is issued that requests a log archive.

Y Because the log cannot be archived, the value for ARCHPCT is ignored.

When the log is full it wraps. If an LUW spans the entire log, a
ROLLBACK WORK is forced for that LUW.

Note: To see how full the log is, you can issue the SHOW LOG command. For a
description of this command, see the [DB2 Serper for VSE & VM OmeHnrJ
manual.

TAPEMGR

This parameter indicates whether there is a tape manager available to handle tape
assigns during database and log archives. Y indicates there is a tape manager; N
indicates there is no tape manager.

System Administration

If TAPEMGR=N, the operator is prompted to enter the virtual device address for
the database archive (with message ARI0299A) and has the option to change the
log archive output medium (with message ARI0246D).

If TAPEMGR=Y, the tape assign is handled by the tape manager and the operator
is not prompted to enter the virtual device number (cuu) of the database archive
output.Log archives are automatically directed to tape and the operator is not
prompted to change the medium of the log archive output. If the operator would
like to direct the log archive to disk, then either the database server must be
started with TAPEMGR= N or the SET TAPEMGR N operator command must be
issued before performing the log archive.

SOSLEVEL

This parameter defines the storage cushion for storage pools. Its value is expressed
as a percentage of space remaining in a storage pool. In multiple user mode
processing (and single user mode processing where LOGMODE is not N), if any
storage pool gets full to the point where only the SOSLEVEL percentage of storage
pool pages is still free, a checkpoint is taken to free any shadow pages in use.

If, following this, only enough pages are freed to bring the number of free pages
just above the SOSLEVEL, frequent checkpointing could occur. For more
information, see the [DB2 Server fm‘ VSE & VM T)iﬂgnnc:ic Guide aud Rpfprpnml
manual. If, however, the number of free storage pool pages is still at or below
SOSLEVEL, message ARI0202I is issued once to inform the user that the number of
free pages left in the storage pool is fewer than the SOSLEVEL. This message is
also issued once in single user mode with LOGMODE=N, but no checkpoint is
taken.

Attention: If message ARI0202I is received, it indicates some action may be
needed to prevent imminent filling of the storage pool.

One possible action is to stop the application server and extend that storage pool
with the SQLADBEX EXEC. However, you can remedy the situation without
stopping the application server if you have set SOSLEVEL high enough to give
you adequate warning. When the message is received, proceed to remove
unneeded data from the storage pool, either by dropping dbspaces or tables, or by
reorganizing the data with a smaller percentage of free space for each page. In
order to do this, you must have adequate warning to schedule the necessary
processing.

Service Parameters
DUMPTYPE

This parameter defines whether or not dumps are to be taken, and the amount of
information to be dumped if they are.

DUMPTYPE=N indicates that a dump is not taken.

DUMPTYPE=F gives you a full dump of the virtual machine, as well as any saved
segments it uses. This occurs on some error conditions and trace points.

DUMPTYPE=P gives you a partial dump of the database machine on certain error
conditions. A dump is not taken when a limit error (message ARIO039E) or
hardware error (message ARI0O041E) occurs, or when a user specification error is
detected. (If you specify the DUMP keyword in the TRACE ON command,
DUMPTYPE=P also generates partial dump output to the trace file for a specified

Chapter 4. Planning for Operation of the Database Manager 71

72

trace point in the database manager.) The partial dump provides a dump of control
blocks and other dynamically obtained virtual storage in the database machine.

You can use the SET operator command to change the value of DUMPTYPE
without having to stop and restart the application server. See the [DB2 Serzer fol
jod manual for more information on the SET operator command.

Note: Any changes you make using the SET command are only in effect while the
application server is running. If you stop and restart the application server,
it will use the settings you specified in the startup procedure.

For more information on dumps, see the IDB2 Server for VSE & VM Diaguosis Guidd

manual.

EXTEND
This parameter specifies whether or not special recovery commands are processed
at startup. Only set it to Y when you have a DBSS processing error or a severe user
error. For more information on this parameter, see the discussion on starting the
application server to recover from DBSS errors in the [DB2 Serner for VSE & V M

1 '] manual.

TRACDBSS, TRACRDS, TRACWUM, TRACDRRM, TRACDSC,

TRACCONYV, and TRACSTG

These parameters call the trace facilities during startup (as opposed to the TRACE

operator command). Except for TRACWUM and TRACDRRM (which are not

supported in single user mode), they are used primarily for tracing in single user

mode, but can be set in multiple user mode if you want to start tracing as soon as
ossible. For information about tracing, refer to the [DB2 Server for VSE & VM

manual.

TRACEBUF

This parameter specifies the amount of memory (in kilobytes) to allocate to the
trace buffer. Specifying a nonzero value causes trace output to be stored in a fixed
size buffer in memory. Trace records are stored in wrap-around mode in this buffer,
and when tracing is turned off, the contents of the buffer are written to disk or to
tape (as specified by the ARITRAC FILEDEEF statement). The trace buffer is only
created if you specify TRACEBUF with at least one of the startup initialization
parameters TRACRDS, TRACDBSS, TRACDSC, TRACCONYV, TRACDRRM,
TRACWUM, or TRACSTG,; it is not created if the TRACEBUF default (n=0) is
specified. A suggested size for the trace buffer is 100 kilobytes or more. If you do
not specify TRACEBUF and tracing is requested, trace records are written directly
to disk or tape as the trace points are processed.

Single User Mode Initialization Parameters

[Cable d identifies the initialization parameters that apply when the database
manager is operating in single user mode.

Table 6. Single User Mode Initialization Parameters

Parameter Default Minimum Maximum
DBNAME(name) None — —
DCSSID() SQLDBA — —
AMODE() 31 — —
SYSMODE=S — — —
STARTUP=W IR Y — —

System Administration

Table 6. Single User Mode Initialization Parameters (continued)

PARMID=name None — —
CHARNAME=name INTERNATIONAL — —
ACCOUNT=DIN N — —
PROGNAME=name None — —
DSPSTATS=nn 00 00 21
Performance Parameters
NPACKAGE=n 10 1 32766
NPACKPCT=n 30 0 100
NPAGBUF=n 14 10 40000
NDIRBUF=n NPAGBUF 10 40000
NCSCANS=n 30 1 655
Recovery Parameters
LOGMODE=Y | AIL Y — —
CHKINTVL=n 10 1 99999999
SLOGCUSH=n 90 11 90
ARCHPCT=n 80 10 99
TAPEMGR=N Y N — —
SOSLEVEL=n 10 1 100
Service Parameters
DUMPTYPE=PI|FIN F — —
EXTEND=Y IN N — —
TRACDBSS=nnn... 000... 000... 222...
TRACRDS=nnnnnnn 0000000 0000000 2222222
TRACWUM-=n 0 0 2
TRACDRRM=nnnn 0000 0000 2222
TRACDSC=nn 00 00 22
TRACCONV=n 0 0 2
TRACSTG=n 0 0 1
TRACEBUF=n 0 0 99999

Most of the considerations for setting these parameters are the same as those

described under 'Multiple Ilser Mode Initialization Parameters” an page 54, with

the following exceptions:

¢ The value of SYSMODE is S, which specifies that the database manager is
dedicated to a single application.

* The database manager does not generate accounting records when
STARTUP=CI|EILISIIIM, which are special situations. For more information,
see the DB2 Server fnr VSE & VM Opﬁrﬂﬁnd manual.

¢ The DBMODE parameter does not apply.
* The PROTOCOL parameter does not apply.
¢ The SYNCPNT parameter does not apply.

Chapter 4. Planning for Operation of the Database Manager 73

74

* The PROGNAME parameter is required (except when
STARTUP=CIEILISIIIM, which are special cases), to identify the application
program to be run.

* The NCUSERS parameter is not used; it defaults to 1.
* The DISPBIAS parameter does not apply.

e The NLRBS and NLRBU parameters are omitted (there is no locking in single
user mode).

* The LOGMODE parameter can take the value N, which specifies that changes
made by the application program are not to be logged.

If LOGMODE=N, database changes are only committed when a checkpoint is
explicitly taken (with COMMIT WORK statements).

The ARCHPCT parameter cannot be specified if LOGMODE=N.
¢ The TRACDRRM and TRACWUM parameters do not apply.

Tape Support

The database manager can use tape files for recording archive and trace
information. You can also use tape files with the DATALOAD/DATAUNLOAD
and RELOAD/UNLOAD facilities of the DBS utility. (It is also possible to use tape
files for the DB2 Server for VM preprocessors, but this is unusual.)

For the archive and trace tape files, the IBM-supplied EXECs that starts these
facilities provide default CMS FILEDEF commands for the needed tapes. These
default FILEDEFs are shown under the descriptions of the EXECs that call them.

You can also take log archives to disk. For more information, see 'Lag Archiving td

DJS]LDn_p.a%&ZD.'Z' ” N

For the DBS utility tape files, you must supply your own CMS FILEDEF
commands. You can also specify LABELDEF commands. You should use the
LABELDEF command for multivolume standard label tapes.

To specify your own FILEDEF and LABELDEF commands, issue them before
invoking the EXEC that calls the facility. When an IBM-supplied EXEC issues a
CMS FILEDEF command for tape files, it uses the NOCHANGE parameter. This
means that any FILEDEF (or LABELDEF) that you supply before running the
EXEC overrides the default.

The database manager uses the CMS simulation of OS QSAM for its tape support.
The database manager also provides additional support, as follows:

* Unlabeled tapes and IBM (EBCDIC) standard labels

* Multivolume tape files (with standard labels only)

¢ Spanned records for both input and output

The following sections discuss considerations for using tape support.

Unlabeled Tapes

When using unlabeled tape output files, you should be aware of the following;:

* The mounted tape must not contain a volume label (VOL1). If it does, tape
OPEN processing fails.

* For output files, if end-of-volume is reached before the tape is closed, CMS ends
abnormally.

* A database or log archive cannot span multiple tapes if they are unlabeled tapes.
Standard labeled tapes must be used for multiple volume tape archives.

System Administration

Labeled Tapes

When using standard label tapes, you should ensure that the mounted tape
volume (or volumes) contain volume labels (VOL1) and file labels (HDR1). These
labels must be recorded in the same tape density as specified (or allowed to take
the default) when creating the new file. If you do not ensure that the labels are
recorded in the same density as specified when creating the new file, tape OPEN
processing fails.

You can use the CMS TAPE command to check whether a volume contains a
volume label (and display the label’s contents) with the DVOL1 keyword. (You
must supply the TAPn parameter as appropriate.)

You can also use the CMS TAPE command to create a volume label (VOL1) and
dummy HDRI1 label with the WVOL1 keyword. (Once again, you must supply the
TAPn and DEN parameters as appropriate.) The tape volume label must be
recorded in the same density as the file to be created. (The density of the volume
label must match the CMS FILEDEF command DEN parameter value.)

You should specify LABELDEF commands for your tape files so that processes that
use tapes (such as RESTORE) can verify that the correct tape is mounted. This is
particularly advisable when working with multivolume tape files.

Note: If you are processing multivolume tape files, you should use a different
VOLID for each tape volume so that the system can verify that the correct
tape is mounted. To do this, enter VOLID ? with the LABELDEF command.
CMS prompts you for the individual VOLIDs. For more information on the
LABELDEF command, see the VM/ESA: CMS Command Reference manual for
your VM system.

Single-Volume Tape Files
For single-volume tape files, you can use the following CMS FILEDEF command
tape label options:

* SLif the tape has standard labels
e NL if the tape is unlabeled

* BLP if the tape has standard labels, standard user labels, or nonstandard labels
with a tape mark at the end of the labels

* LABOFF if the tape is unlabeled (and has no leading tape mark).

The database manager does not support nonstandard labels or standard user labels
(except with the FILEDEF BLP parameter as described in the preceding list).
Therefore, you must not specify tape label options SUL or NSL in the CMS
FILEDEF command.

Multiple Volume Tape Files
In addition to the FILEDEF command, you should specify a LABELDEF command

for multivolume standard label tapes. This enables CMS to verify that the correct
tape is mounted when a multivolume tape file is being processed.

If you have two tape drives available, you can specify an alternate tape drive in
the FILEDEF command (this is only supported with labelled tapes). This causes
tape drives to be switched automatically when end-of-tape is reached. If you are
using a single tape drive you must mount a new tape when end-of-tape is reached.

Chapter 4. Planning for Operation of the Database Manager 75

76

The following is an example of FILEDEF and LABELDEF commands for a
database archive:

TAPE WVOL1 ARCD1 (TAP1

TAPE WVOL2 ARCD2 (TAP2

LABELDEF ARIARCH VOLID ?
DMSLBD441R Enter VOLID information:
ARCD1

DMSLBD441R Enter VOLID information:
ARCD2

DMSLBD441R Enter VOLID information:

FILEDEF ARIARCH TAP1 SL 1 (ALT TAP2

This LABELDEF statement assumes that the archive requires two tape drives. If it
requires more, you are prompted to enter more VOLIDs during the archive
procedure.

Tape Manager Support

The initialization parameter TAPEMGR indicates whether or not a tape manager is
being used. During a database or log archive, if a tape manager exists and
TAPEMGR =Y, the tape manager handles the tape assign. Otherwise, the operator
is prompted to enter the virtual device address of the archive output

Spanned Records
For spanned-record files, omit the LRECL value from the CMS FILEDEF command.
If specified, it is ignored.

There are no other special considerations for spanned-record input files.

For spanned-record output files:

* If RECFM=VBS is specified and the maximum logical record size is less than the
block size minus 4, the database manager changes the RECFM value to VB (in
the CMS file system).

Note: Files written in RECFM=VB format can be read with the RECFM
specification of either VBS or VB.

» If RECFM is not VBS, the database manager uses (in the CMS file system)
RECFM U and simulates RECFM=VS. (The file is written in RECFM=VS format.)

Note: Files written in RECFM=VS format can be read with the RECFM
specification of either VS or VBS.

Blocking for Archives to Tape and Disk
The block size for database archive file output and log archive file output is always
28 kilobytes.

General File Support

Many of the database manager facilities use SYSIN, SYSPRINT, and SYSPUNCH
files. The IBM-supplied EXECs that call these facilities often contain parameters
that allow you to assign these files to various devices. These EXEC parameters
generate CMS FILEDEF commands for the files internally.

In many instances, however, the EXECs provide for only the most common files. If
you want something that is not an option in an EXEC parameter, you can issue a

System Administration

FILEDEF command before running the EXEC. For example, to assign SYSIN to
tape for the DBS utility, you must issue a CMS FILEDEF command before running
the DBS utility EXEC (SQLDBSU).

Many of the usual VM assignments for SYSIN, SYSPRINT, and SYSPUNCH are
valid for DB2 Server for VM use. The following list summarizes the valid
assignments:

SYSIN
The SYSIN files can be CMS files, virtual reader files, the virtual machine
terminal, or tape and DASD SAM files supported by CMS OS QSAM. The
files must contain fixed-length 80-byte logical records. Except for the
virtual reader files and for terminal input, the files can be fixed block. A
CMS FILEDEF command for SYSIN can specify RECEM FB and BLKSIZE
nnnn. The nnnn must be some multiple of 80.

SYSPRINT
The SYSPRINT files can be CMS files, virtual printer files, the virtual
machine terminal, or tape SAM files supported by CMS OS QSAM. All
SYSPRINT records are fixed-length, 121-byte logical records. The 1st byte is
an ANSI (ASA) carriage control character.

Except for the virtual printer files and terminal output, the files can be
fixed blocked. A CMS FILEDEF command for a SYSPRINT file can specify
RECEFM FBA (or FB) and BLKSIZE nnnn. The nnnn must be some multiple
of 121. If you specify RECFM in the SYSPRINT FILEDEEF, you must specify
FA or FBA (unless you want the ANSI carriage control characters printed).
The value FA is the default.

The DBS utility and ISQL support other print file logical record sizes. In
addition, ISQL supports other devices. For more specific information, refer
to the IDB2_Serner for VSE & VM Database Sernices Ltilitid and the

for VSF & VM Interactive SQI Guide and Referencd manuals.

SYSPUNCH
The SYSPUNCH files (used only by the DB2 Server for VM preprocessors)
can be CMS files, virtual punch files, or tape sequential files supported by
CMS OS QSAM. The database manager punches fixed-length, 80-byte
logical records. Except for virtual punch files, they can be fixed blocked.
The CMS FILEDEF command for a SYSPUNCH file can specify RECFM FB
and BLKSIZE nnnn. The nnnn must be some multiple of 80.

Remember that normal CMS defaults on FILEDEF commands apply. Specifically, if
the file is a CMS file, and you do not specify a file mode, CMS uses Al. If you
specify only a file mode letter, CMS uses a file mode number of 1. If you specify *
for the file mode, CMS searches all accessed minidisks (A to Z) for a file with the
specified file name and file type.

Starting the Application Server in Multiple User Mode

You start the application server in multiple user mode so that one or more
applications can concurrently access the same application server.

To start the application server in multiple user mode:
1. Log on to a database machine

2. IPL CMS

3. Issue the SQLSTART EXEC.

Note: You cannot run the database manager in a CMS batch machine.

Chapter 4. Planning for Operation of the Database Manager 77

Figure 1d shows the format of the SQLSTART EXEC.

»»>—SQLSTART—Dbname (server_naime) >

|—dcssID(id)—| I—AMODE(nn)—| |—PARM (par‘ameters)—|

Figure 10. SQLSTART EXEC

78

The parameters for the SQLSTART EXEC are:

Dbname(server_name)

This parameter must be specified and must precede the PARM parameter. The
server_name variable identifies the application server.

After initial installation and database generation, the only application server
you have is named SQLDBA. If you add more databases, you can specify other
names for DBNAME.

dessID(id)

Specify this optional parameter only if you have created saved segments for
the DB2 Server for VM code and want to use those saved segments, and you
have generated a bootstrap package other than SQLDBA. If DCSSID is not
specified, the id value from the resid SQLDBN file on the production disk is
used. If DCSSID is specified, but is different from the value in the resid
SQLDBN file, the new value is saved. If no value is available, SQLDBA is used.

If specified, DCSSID must precede the PARM parameter. You can specify ID
instead of DCSSID for the keyword. No other abbreviation is valid. For more
information on starting the application server to use saved segments, refer to

4 7

AMODE(nn)

System Administration

This optional parameter specifies the type of addressing the database manager
runs in. It has two options:

AMODE@31)
When this option is specified, the database manager uses 31-bit
addressing and storage above 16M can be used. This is the
recommended addressing mode.

AMODE((24)
When this option is specified, the database manager uses 24-bit
addressing. In this case, storage above 16M cannot be used and must
NOT be defined (i.e., the virtual machine size must not exceed 16
megabytes), unless the RDS component is executed from a saved
segment defined below 16 megabytes, OR the RDS component is
linkedited with “AMODE ANY RMODE 24”.

The value specified for the AMODE parameter is saved in the resid SQLDBN
file. If AMODE is not specified in the SQLSTART EXEC, the resid SQLDBN file
is checked, and the AMODE value found in the resid SQLDBN file is used. If
this file does not exist or does not contain an AMODE value, AMODE(31) is
used and this value is saved in the resid SQLDBN file. The database manager
continues to use this value until a different value is specified.

When AMODE is specified in the SQLSTART EXEC, this parameter must
precede the PARM parameter. No abbreviation of AMODE is valid.

Single user mode applications and user exits will be invoked in the same
addressing mode as the database manager. If you have such applications that
do not support 31-bit addressing, you must do one of the following:

* Convert your application programs so you can exploit 31-bit addressing

* Use the AMODE(24) option of the SQLSTART EXEC.

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide. For more information on single user mode, see

W&W@%@W@W Por more

information on user exits, see

Note that the preprocessors and the DBS utility must run in 24-bit addressing
mode. In single user mode, if the database manager is running AMODE(31),
the AMODE is automatically switched to AMODE(24) before invoking the
preprocessor or DBS utility. The AMODE is then switched back to AMODE(31)
after control is returned to the database manager.

The resource adapter always runs AMODE(31) in XA mode or XC mode
regardless of the mode the database manager is running in.

PARM (parameters)
This optional parameter is used to specify initialization parameters and user
application program parameters. If specified, it must be placed last, after
DBNAME, DCSSID, or AMODE. When specifying initialization parameters,
separate them with a comma or a blank.

Note: For users moving from the database manager on VSE to the database
manager on VM. The same parameters that are supported on VSE are
supported on VM. The exceptions are the DSPLYDEV and DBPSWD
parameters.

The database manager on VM ignores the DSPLYDEV parameter.
Instead, SQLSTART always issues SP CON START HOLD (unless the
database manager is already spooled START), and all output (except
dumps) goes to the console. Dumps go to the virtual printer or reader.
This implementation is different because, on the VSE operating system,
there is only one operator console and one SYSLST for each partition. In
VM, all machines usually have their own console and virtual printer.

The DBPSWD parameter was used in VSE to specify a VSAM password.
This parameter does not apply to the database manager on VM, and is
ignored if specified.

During its processing, SQLSTART issues these CMS FILEDEF commands for the
trace and archive files:
FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM

FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARIARCH, and ARILARC for the trace,
database archive, and log archive files, respectively. Standard label, unlabeled,
single volume, and multivolume tapes are supported. For more information on

tape support, see [‘Tape Support” on page 74.

Chapter 4. Planning for Operation of the Database Manager 79

80

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

Do not specify any VOLID parameter on your LABELDEF (or FILEDEF)
commands for log archiving (ddname ARILARC). Because more than one log

archive file can be read or created during one database-manager session, you
should use different VOLIDs for the different files.

You can take log archives to disk rather than tape by changing the FILEDEF of
ARILARC. For more information on directing log archives to disk, see

s el]

It is possible to direct the trace output to a memory buffer or to a CMS file rather
than to a tape. This may be convenient if you often use the security audit trace.
For more about directing trace output to a memory buffer or to a CMS file, see the

DR2 Server for VSFE & VM Qperatiod manual.

Running Multiple User Mode Application Programs

When the application server is started in multiple user mode, and the user
machine is initialized (with the SQLINIT EXEC), SQL application programs can be
started by normal means (such as the CMS LOAD or START commands).

For more information on running application programs, see the [DB2 Serner for VS H
icati ing manual.

Note: If you plan to run your application programs in both multiple user mode
and single user mode, you should follow the protocols discussed in the
section “CAILIL/RETIURN Protacols for Application Programs in Single Lsed

Maode” on page 86.

Starting the Application Server in Single User Mode

An application program running in single user mode runs in the same machine as
the application server, and is under its control. (In this situation, the user machine
and the database machine are actually the same machine.) To run a single user
mode application program, start the application server in single user mode
(SYSMODE=S) and provide the program name as an initialization parameter
(PROGNAME=name). For PROGNAME specify the name you would specify if
running the program in multiple user mode. The program is loaded and control is
passed to it after the application server is started. For single user mode, only the
TEXT files need to be available. If you choose this method, you should put the files
in a TXTLIB, because the database manager does not issue INCLUDE commands.
It is preferable to create a module using the CMS LOAD/GENMOD commands,
especially if the program is to be used frequently.

Your application is invoked in the same addressing mode as the database machine.
If your single user mode application program does not support 31-bit addressing,
you must do one of the following;:

* Convert your application programs so you can exploit 31-bit addressing,

* Use the AMODE(24) option of the SQLSTART EXEC. See the RDS restriction

when using AMODE(24), t‘Starting the Application Server in Multiple Used

System Administration

For more information on converting your program, see the VM/ESA: CMS
Application Migration Guide.

Attention: The value specified for the AMODE parameter is saved in the resid
SQLDBN file between invocations of the SQLSTART EXEC. If AMODE is not
specified, the resid SQLDBN file is checked, and the last value is used. If you only
want AMODE(24) for single user mode applications, be sure to specify
AMODE(31) when restarting in multiple user mode. When running AMODE(24)
option, you cannot use any storage above 16M.

Some administrative tasks (such as adding dbextents and adding dbspaces) are
performed by running IBM-supplied EXECs in single user mode. These EXECs call
the SQLSTART command with the appropriate parameters.

w shows how to run an application program in single user mode. When the
application server is started, it passes control to the application program specified
by the PROGNAME parameter. All other initialization parameters are allowed to
default. You may want to specify some single user mode initialization parameters.
For information on single user mode initialization parameters, see mﬁ

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=name)

Figure 11. Starting in Single User Mode

Note: The PROGNAME parameter is not needed when STARTUP=CI|EILISIIIM
is specified. These startups specify the operation to be performed, so a
program name is not needed. Moreover, the database manager provides
separate EXECs for each of these situations, one of which must be used
instead of SQLSTART. (Each of these EXECs calls SQLSTART at the proper
time.)

During its processing, SOLSTART issues these CMS FILEDEF commands for the
trace, database archive, and log archive files:
FILEDEF ARIARCH TAP1 SL (NOCHANGE PERM

FILEDEF ARITRAC TAP2 SL (NOCHANGE PERM
FILEDEF ARILARC TAP3 SL (NOCHANGE PERM

To override these FILEDEF commands, issue your own before running SQLSTART.
You must use the ddnames ARITRAC, ARITARCH, and ARILARC for the trace,
database archives, and log archives, respectively. Specify the PERM option on your
FILEDEF commands if the application program is written in a language other than
Assembler. Standard label, unlabeled, single volume, and multivolume tapes are

supported. For more information on tape support, see 'Tape Suppaort” on page 74.

If you are using standard label tape files for tracing, database archiving, or log
archiving, you can optionally submit CMS LABELDEF commands before running
the SQLSTART EXEC. This allows you to specify values to be used for file header
label checking and creation. You should supply CMS LABELDEF commands to
ensure that you have the proper tape files and volumes mounted. You must use
the LABELDEF command for multivolume standard label tapes. For more
information, see the VM/ESA: CMS Command Reference manual.

Chapter 4. Planning for Operation of the Database Manager ~ 81

82

You should not specify VOLID parameters on any LABELDEF or FILEDEF
commands you issue for the log archive files. Because more than one tape file can
be created during a database manager run, you should use different VOLIDs for
the different tape files.

It is possible to direct the trace output to a CMS file rather than to a tape. This
may be convenient if you often use the security audit trace. For more information
about tracing, see the [DB2 Server for VSE & VM Qperation manual.

In addition to the FILEDEFs for archiving and tracing, SQLSTART issues the
following FILEDEF command for a user LOADLIB:

FILEDEF ARIUSRDD DISK USERLIB LOADLIB * (NOCHANGE

If you want to specify a different LOADLIB, issue your own FILEDEF command
before calling SQLSTART. You must use the ddname ARIUSRDD on the FILEDEF
command to identify a user LOADLIB to the database manager. Note that the file
mode used in the FILEDEEF is *. Remember to access the minidisk containing your
LOADLIB ahead of other minidisks that contain USERLIB LOADLIBs.

If you use AMODE(24), the application program must be RMODE 24. If it is not,
and the program is loaded above 16M, the database manager issues message
ARI0021E.

The application program can be a module, or it can reside in a LOADLIB (or,
conceivably, a saved segment). Because the database manager does not know
where the user program is (and there are many ways to load a program in VM),
the database manager tries a sequence of VM commands to load the program. The
following sequence is used:

1. CMS LOADMOD command: for CMS files with a file type MODULE. The
program is loaded into the CMS user program area.

2. CMS NUCXLOAD command: for members of CMS or OS LOADLIBs. The
program is loaded into free storage.

3. CP diagnose FINDSYS/LOADSYS instructions: for saved segments.

4. CMS LOAD command: for TEXT files or TXTLIB members. The program is
loaded into the CMS user program area. Note that CMS INCLUDE commands
are not issued in this situation. Also, a GLOBAL TXTLIB command must be
issued before SQLSTART if the text files are TXTLIB members. More than one
library can be specified on the GLOBAL command.

Because not all of the above VM load functions return the entry point, you should
code your program so the entry point is the same as the load point. Only
LOADMOD and NUCXLOAD return the program’s entry point. When the
database manager finds a program with the name specified in the PROGNAME
initialization parameter and successfully loads the program, the search sequence
ends. Control is passed to the program with a BALR instruction.

For example, suppose you have two programs on your A-disk. One is named
MYPROG MODULE A; the other is named MYPROG TEXT A. If you run
SQLSTART with PROGNAME=MYPROG, the program loaded is MYPROG
MODULE A. The database manager tries the LOADMOD command before the
LOAD command. If you want to load MYPROG TEXT A, you must either rename
it and change the PROGNAME parameter value accordingly, or you must rename
(or erase) MYPROG MODULE A.

System Administration

If the database manager does the entire search sequence, and a not found indication
is received from each of the load functions, four messages are issued:

ARI0026E Indicates an error occurred while attempting to load the program.
ARI0039E Indicates a limit error occurred.

ARI00421 Indicates the reason code is 4.

ARI00431 Indicates the return code is 512.

If the database manager receives an insufficient storage indication from any of the
load functions, the same four messages are issued, but the reason code in message
ARI00421 is 8 (not 4).

If the load of the user program fails for a reason other than those discussed above,
the database manager issues message ARI0O026E. Following that message is one or
more occurrences of message ARIO047E. Message ARIO047E has the format:

xxxxxxxx- Reason Code=nnn

The type of load is indicated in xxxxxxxx. The xxxxxxxx can be LOADMOD,
NUCXLOAD, SEGMENT LOAD, FETCH, or LOAD. The system return code from
that load is in nnn. This message is followed by either message ARIO039E or
ARIO0040E, depending on the type of error. Following that message is ARI00421
with a reason code of 0 (the reason code is given earlier in message ARIO047E),
and finally by message ARI00431 with a return code of 516.

Note that, for a NUCXLOAD or SEGMENT LOAD, the database manager must do
more than issue those commands.

For NUCXLOAD, the sequence of NUCEXT QUERY, NUCXDROP, NUCXLOAD,
and NUCEXT QUERY may be processed to load the code. Thus, the reason code
displayed in message ARIO047E can be a return code from NUCEXT QUERY or
NUCXDROP. (The return code is not necessarily from a NUCXLOAD.) You should
check the IDB2 Server for VM Messages and Coded manual for return codes from
NUCEXT QUERY and NUCXDROP as well as NUCXLOAD.

The database manager follows this process when attempting to load a program
with NUCXLOAD:

1. Issues NUCEXT QUERY to see if a copy of the code already exists in storage
(storage is not properly reset). If so, the CMS NUCXDROP command is issued.
If the NUCXDROP return code is not zero, the return code is displayed as the
ARIO047E reason code.

2. If the NUCEXT QUERY is successful (and NUCXDROP, if performed), the
NUCXLOAD is issued. If the load fails, the nonzero return code becomes the
reason code in message ARIO047E.

3. If the load is successful, another NUCEXT QUERY is issued to obtain the code
load address and the code length. If this fails, a reason code of 253 is displayed
in message ARIO047E.

A similar process is done for code that is to be loaded into a saved segment. The
database manager does a SEGMENT FIND instruction to get the code load address
and length. The SEGMENT LOAD instruction is then issued. Thus, the reason code
displayed in message ARIO047E can be a return code from the SEGMENT FIND
(not necessarily the SEGMENT LOAD) instruction. You should check the Dzl
manual for return codes from SEGMENT FIND as

well as SEGMENT LOAD.

Chapter 4. Planning for Operation of the Database Manager ~ 83

84

The database manager follows this procedure when attempting to load a program
with the SEGMENT LOAD macro:

1. Issues a SEGMENT FIND instruction to get the load address and length of the
code to be loaded.

2. If the SEGMENT FIND condition code is 2, an error occurred. The return code
XXX is displayed as the reason code in message ARIO047E:

ARIO047E SEGMENT LOAD - Reason Code=XXX

3. If the condition code is 1 (saved segment not yet loaded), the database manager
does some checking before attempting to load the code: If it is not, the reason
code 400 is displayed in message ARIO047E.

a. If the above check was successful, the database manager then checks to
ensure that loading the code at the indicated load address does not overlay
other database manager code. If an overlay would result, the database
manager displays a reason code of 500 in message ARIO047E.

b. If both checks are successful, the SEGMENT LOAD instruction is issued.
The code is loaded at the address returned by the SEGMENT FIND
instruction.

4. If the SEGMENT LOAD is issued and the condition code is 2, an error
occurred. The SEGMENT LOAD return code is displayed as the reason code in
message ARIO047E.

5. If the SEGMENT LOAD is issued and the condition code is 1, a code overlay
occurred. A reason code of 500 is displayed in message ARIO047E.

In addition to the loading sequence, you should be aware of the following when
preparing to run a single user mode program:

* If the program resides in an OS LOADLIB, you must ensure that the proper
GLOBAL and FILEDEF commands are issued before starting the application
server.

* The database manager uses CMS OS QSAM for sequential file support. The CMS
OS QSAM support uses the GETMAIN area of the virtual machine. The CMS OS
QSAM support is called before the user’s application program. You should not
issue the CMS STRINIT macro in the application program, as this may release
all GETMAIN storage currently allocated by the database manager. This can
only occur if the setting of the CMS STORECLR option is 'ENDCMD’. When the
STORECLR option is set to 'ENDSVC’ (the CMS default), the STRINIT macro is
ignored.

* If the application does not support 31-bit addressing, you must use AMODE(24).

* When running AMODE(24), single user mode applications (and user exits)
should not switch to AMODE(31) and branch to other applications above 16M
unless: those applications have no interaction or interface with DB2 Server for
VM code, and, AMODE(24) is reset before returning control to the database
manager.

Specifying User Parameters

If you start the application server in single user mode, you can also specify user
parameters to be passed to the application program using the PARM keyword of
the SQLSTART EXEC. The SQLSTART EXEC purges the CMS program and console
stacks. Thus, any program run in single user mode cannot rely on console or
program stack input.

Place a slash (/) between the database manager initialization parameters and the
user parameters, as shown in [Ei

System Administration

SQLSTART DB(SQLDBA) PARM(SYSMODE=S,PROGNAME=PROG1/parml,parm2)

Figure 12. Starting in Single User Mode and Providing User Parameters

Note: Only the first 130 characters of the command line are read by CMS. The
exception to this rule occurs when SQLSTART is called from a user-written
EXEC; then CMS reads the first 256 characters. If you specify many
initialization parameters and user parameters, they will not fit on the
command line. Thus, you must use a CMS file for some of the parameters.
Because user parameters cannot be specified in a CMS file, you should
specify the initialization parameters in the CMS file, and the user parameters
on the command line.

The user parameters are passed to the application program with register 0. Register
0 points to an area called NPLIST, which contains three addresses, which point to:

1. COMVERB, the command name, the name of the application program specified
in the PROGNAME initialization parameter.

2. BEGARGS, the start of the user parameter string.

3. ENDARGS, the byte following the last character of the user parameters.

The user parameter string is untokenized: it has not been separated into individual
user parameters. This pointer scheme is similar to the one that the EXEC 2
interpreter uses when running programs. w shows how register 0 points to
the user parameters.

Register 0 points to NPLIST —|

v

Points to:

NPLIST DS OF
DS A(COMVERB) Command name (application name)
DS A(BEGARGS) Start of user parameter string
DS A(ENDARGS) End of user parameter string + 1
DS A(0)

COMVERB EQU *
DC C 'applname' Command name (PROGNAME)
DC c'' Delimiter

BEGARGS EQU *
DC C ' user-parameters ' User parameter string

ENDARGS EQU *

Figure 13. Passing User Parameters to a User Application Program

The length of the parameters can be obtained by subtracting the BEGARGS
address from the ENDARGS address. If there are no user parameters, the
ENDARGS address is equal to the BEGARGS address (ENDARGS - BEGARGS =
0.) Both addresses, in this situation, point to the next byte after the name of the
application.

Chapter 4. Planning for Operation of the Database Manager ~ 85

86

User parameters are not displayed along with the initialization parameters. User
parameters cannot be specified in a DB2 Server for VM parameter data set.

CALL/RETURN Protocols for Application Programs in Single
User Mode

In single user mode, an application is called using normal CALL/RETURN
protocols, as follows:

Register 0 Pointer to pointer to user parameters
Register 1 Contains zeros

Register 13 Pointer to DB2 Server for VM save area
Register 14 Return point to the database manager

Register 15 Entry point of the user program.

Note: This same protocol can also be used by programs running in multiple user
mode.

Register 0 was discussed in the previous section. A program written in C, PL/I,
COBOL, or FORTRAN requires an interface routine to process the user parameters.

Upon entry, the application program must store the registers in the DB2 Server for
VM save area, and restore them before returning control to the database manager.
Failure to do so causes unpredictable results.

An abnormal termination exit is set to intercept abnormal termination conditions,
including program checks. If the user program establishes its own abnormal end
exit, the user exit overrides the DB2 Server for VM abnormal end exit.

The abnormal end exit is set (with CMS ABNEXIT) to intercept abnormal end
conditions (including program checks). If the user program establishes an
abnormal end exit (for example, with ABNEXIT, STAE, SPIE), the user program
gets control before the DB2 Server for VM abnormal end exit does. (However,
STAE and SPIE are not supported in 31-bit addressing mode.) When the user
program completes its abnormal end processing, it should return control to the
CMS abnormal end routine. The CMS abnormal end routine then passes control to
the DB2 Server for VM abnormal end routine. The application programmer must
be careful when processing abnormal end conditions. These possibilities must be
considered:

1. The abnormal end condition occurs in your program, and you can determine
that this is the case. You can then circumvent the problem and continue
processing. In this case, reset the abnormal end exit. Otherwise, future
abnormal end conditions cause control to be given to the DB2 Server for VM
abnormal end routine.

If you determine that processing cannot continue, you should reset your
abnormal end exit, clear the abnormal end exit, and return control to the CMS
abnormal end routine. The CMS routine then passes control to the DB2 Server
for VM abnormal end routine.

2. If you cannot determine anything about the abnormal end condition, you
should reset the abnormal end exit, clear the abnormal end exit, and return
control to the CMS abnormal end routine. (You would do so when, for
example, you did not know if your program caused the abnormal end.) The
CMS abnormal end routine then passes control to the DB2 Server for VM
abnormal end routine.

3. Finally, consider the situation when no abnormal end condition occurs, and

your program ends normally (control is returned to the database manager). In
this situation, your abnormal end exit should be cleared prior to returning

System Administration

control to CMS. When both DB2 Server for VM processing and user processing
finish, both abnormal end exits must be cleared. Otherwise, future abnormal
end conditions in the virtual machine could cause unpredictable results.

The DB2 Server for VM abnormal end routines sever the IUCV links to the
database minidisks, and close the trace file if tracing was activated. This same
processing is also done when, upon completion, the user program returns control
to the database manager. The database manager does not have to do this
processing (for example, if the program does not return control to the database
manager). If the IUCV links to the database minidisks are not severed, VM severs
the links when you log off the database machine. (This also is true if the database
machine abnormally ends.) If tracing or accounting were active, their output files
may not have had the last buffers written. If the output files were on tape, no tape
mark was written. You can then write tape marks with the CMS TAPE command.

The database manager uses eye-catcher technique for determining when a specific
module is in error. The eye-catcher is displayed in the DB2 Server for VM
mini-dump. A user program can use the same technique in single user mode,
assuming that the DB2 Server for VM abnormal termination exit has not been
overridden by a user abnormal end exit. A suggested coding example in assembler
language is shown in

USING =*,15
B SKIPEYE BRANCH AROUND EYE-CATCHER
DC AL1(16) LENGTH OF CHARACTER STRING

DC CL8'progname' PROGRAM NAME EYE-CATCHER
DC CL8'&SYSDATE' DATE PROGRAM COMPILED

DS OH
SKIPEYE EQU *

ST™M 14,12,
BALR 12,0
DROP 15
USING *,12

LA 11,MYSAVEAR GET ADDRESSABILITY TO MY SAVE AREA
ST 11,8(13) SAVE ADDRESS OF SAVE AREA IN DB2 Server for VM SAVE AREA
ST 13,MYSAVEAR+4 SAVE ADDRESS OF DB2 Server for VM SAVE AREA IN SAVE AREA

LR 13,11

Body of the Application Program

EXIT L 15,RETCOD SET RETURN CODE (OR SET TO ZERO)
L 13,4(13) GET DB2 Server for VM SAVE AREA
L 14,12(13) GET DB2 Server for VM REGISTER 14
LM 0,12,20(13) GET OTHER DB2 Server for VM REGISTERS
BR 14 RETURN TO DATABASE MANAGER

12(13) SAVE DB2 Server for VM REGISTERS
ESTABLISH BASE REGISTERS

SET REGISTER 13 TO MY SAVE AREA

Figure 14. Use of an Eye-catcher by an Application Program

Notes:

1. The instruction BALR 15,0 can be used just ahead of the USING *,15 instruction
as long as other registers are not used until the DB2 Server for VM registers
have been saved.

2. The techniques shown here work whether the application program is called by
the database manager, or is called as a CMS command. Thus, the same
application program can be run in either single or multiple user mode.

3. The techniques shown here may not always be achievable by a FORTRAN, C,
COBOL, or PL/I program. A program written in one of these languages may

Chapter 4. Planning for Operation of the Database Manager ~ 87

88

need to be called by a pre-entry routine, to ensure that register 15 contains a
zero (or valid return code) upon return to the database manager.

Overriding Initialization Parameters

When starting the application server, you can change the default parameter values
in either of two ways:

* By specifying the parameters in the PARM field of the SQLSTART EXEC.
* By creating a CMS file that contains DB2 Server for VM parameters and calling

it with the PARMID initialization parameter. See Eigure 8 on page 54 for an
example.

You can also combine the two methods. Parameters specified in the CMS file
override the default values. Parameters specified on the SQLSTART EXEC override
both the default values and those specified in the CMS file. A user who has a CMS
file with an incorrect parameter value can override the value in error with a correct
specification on the SQLSTART EXEC.

When all the values of the initialization parameters have been resolved, the final
values (or defaults, if no values have been overridden) are displayed on the DB2
Server for VM operator’s console.

When you specify parameters on the SQLSTART EXEC, separate each parameter
with a comma or blank. For example:

SQLSTART DBNAME (SQLDBA) PARM(DUMPTYPE=F,LOGMODE=A)

SQLSTART DBNAME (SQLDBA) PARM(DUMPTYPE=F LOGMODE=A)

Because CMS reads only the first 130 positions of the CMS command line, you
may choose to set up your initialization parameters in one or more CMS files. Such
an arrangement allows you to specify more user parameters (if any) when running
application programs in single user mode. User parameters (those for the
application program itself), cannot be specified in a CMS file, and must be
specified in the PARM field of the SQLSTART EXEC. If you plan to use user
parameters, refer to f’ql’apri Fvi‘ng User Parameters” on page 84

You can also call the SQLSTART EXEC from within a user-written EXEC.

Creating a Parameter File

You can store various parameters in a CMS file that has a file type of SQLPARM,
and a fixed record length of 80 bytes. To have the database manager use the file,
specify the file name in the PARMID initialization parameter. Each file can start the
application server for a slightly different environment. w shows a
parameter file.

LOGMODE=A,NDIRBUF=20,

NPAGBUF=20,

DUMPTYPE=F COMMENT -- FULL VIRTUAL MACHINE DUMP
NCSCANS=20

Figure 15. Example of an Initialization Parameter File

The rules for specifying parameters in a CMS file are a little different from the
rules for specifying parameters on the SQLSTART EXEC:

¢ The parameters must be in uppercase in a parameter file.

System Administration

* Because a blank after a parameter ends the processing of the line, do not put a
blank between parameters. Anything on the line after that blank is ignored. You
can, however, use this arrangement to put comments in the file, as shown in

for the DUMPTYPE parameter.

e A comma at the end of a line is not required, but can be used to make the
statement easier for you to read.
¢ User parameters (those destined for the application program itself) cannot be

specified in a parameter file. If the database manager detects parameters other
than its own initialization parameters, it issues error messages and stops.

Running the Database Manager

When you use the database manager, you should be aware of the following:
* Saved segments are defined using VMSES/E.

* The resource adapter and the RDS component can be saved above the 16
megabyte line.

For more information, see 'Defining Saved Segments” on page 177,

¢ Operating modes

Your virtual machine can be set to XA/ESA mode or XC mode. If certain
components are defined as saved segments, they must be saved below the 16
megabyte virtual storage line. (The exceptions are the resource adapter and RDS,
which can be saved above the 16 megabyte line.) The AMODE parameter
specifies the type of addressing the database manager runs in. For more
information, see L i icati i i

1

A user machine can run in XA/ESA mode or XC mode. It can take advantage of
a resource adapter saved segment saved above the 16 megabyte virtual storage
line.

User application programs can take advantage of 31- or 24-bit addressing, and
reside above or below the 16 megabyte virtual storage line.

For more information on running application programs in either XA /ESA or XC
mode, see the IDB2 _Server for VSE. & VM A‘nlnlimfinn Prngmmmingl manual.

* The following facilities are available:
— VSE guest sharing
- CMS work unit support
— Database switching
- Remote unit of work
— Distributed unit of work.

Operating Modes

You set the virtual machine operating mode in the machine’s CMS directory, or
with the SET MACHINE command. Users can issue this command for their virtual
machines, and the operator issues it for the database machine. For more
information on this command, see the VM/ESA: CMS Command Reference manual.

[Cable 2 shows how features can take advantage of the VM /ESA ESA Feature.
Table 7. Summary of Support

AMODE RMODE
24 31 24 ANY
RA/DRRM/CONV X X X X1

Chapter 4. Planning for Operation of the Database Manager ~ 89

Table 7. Summary of Support (continued)

DSC X X2 X
RDS/DRRM/WUM/CONV X X X X
DBSS X X2 X
ISQL X X
DBSU X3 X
Preprocessors X3 X
User Applications X X X X4

Notes:

1. The resource adapter (RA) runs AMODE(31) RMODE(ANY). It does not
depend on the AMODE parameter.

2. This DB2 Server for VM code must reside below the 16 megabyte line.
However, most dynamic storage is allocated above it (if available).

3. In single user mode, if the database manager is running AMODE(31), it
automatically switches to AMODE(24) when the preprocessor or DBSU is
invoked by the database manager. The AMODE is then switched back to
AMODE(31) after returning control to the database manager.

4. For more 1nformat1on refer to LSiaLhng_th&Apmeamm_SemeunMﬂthﬂlse.d
lpage 80, and M&e&@n&hﬂam&tw

Disconnecting the Database Machine

You can free up the database machine console in two ways:
* Stop the application server and log off the database machine

* Disconnect from the database machine (and leave the database manager
running).

To log off the database machine, stop the application server by using the SQLEND
command and then log off. Stopping the application server is explained in

‘ 2. If you want to sign off the database machine,
and leave the database manager running, enter these commands:

#CP SET RUN ON
#CP DISCONN

You should not leave the operator console unattended. To protect the integrity of
your database, always have the operator sign off the operator console with the
DISCONN command before leaving the console.

Stopping the Application Server

This section discusses the following topics:

* Taking an archive

* Verifying the directory

* Online support considerations for VSE guest sharing
* Minidisk passwords

¢ Inter-machine communications

90 System Administration

In single user mode, the application server stops itself when the task is completed.
In multiple user mode, the operator stops it by issuing the SQLEND operator
command. In both modes, the database files and the trace file (if active) are closed.
The SQLEND command is described in the DB2 Server for VSE & VM Operation

manual.

The SQLEND command can be entered from the operator console of a database
machine. Its format is shown in w The ARCHIVE, LARCHIVE, and
UARCHIVE parameters are used to initiate archive activities after the database has
been shut down, and are discussed in the next section. The NORMAL parameter is
used to shut down the database when all work in progress is completed. The
QUICK parameter is used to stop all work in progress and shut down
immediately. The TRCPURGE parameter is used if you want to purge the contents
of the trace buffer at DB2 Server for VM shut down. You can also specify the
DVERIFY parameter to do a directory verification.

|—NORMAL—
»»—SQLEND

A\
A

ARCHIVE— |—DVERI FY—| |—TRCPURGE—|
LARCHIVE—
UARCHIVE—
QUICK——

Figure 16. SQLEND Operator Command

Do not issue SHUTDOWN from the VM console as it shuts down VM and causes
the database manager to end abnormally.

Taking an Archive

The SQLEND command can be set up to enable the operator to take a database or
log archive after all DB2 Server for VM activity has stopped. The following
parameters are available for archiving:

* ARCHIVE for a database archive using DB2 Server for VM facilities

¢ LARCHIVE for a log archive using DB2 Server for VM facilities

e UARCHIVE for a database archive using user facilities.

Attention: User archive facilities are available for the database, but not the log.
Never attempt to use user facilities to archive a log.

The most appropriate time to take an archive is at shutdown, so consider setting
up a procedure for periodic SQLENDs with the ARCHIVE, UARCHIVE, or
LARCHIVE parameters, as needed.

For both database and log archives, online archives are disruptive to users. Taking
archives during SQLEND avoids this disruption. In addition, database archives
taken at SQLEND contain data that is consistent, whereas those started by operator
ARCHIVE commands or triggered by ARCHPCT typically contain uncommitted or
incomplete data, and require information from the log to make the data consistent.
(Consistency is not a problem for log archives regardless of when they are taken,
because the database manager always waits until all LUWs end before taking the
checkpoint on which the log archive is based.)

Chapter 4. Planning for Operation of the Database Manager 91

92

If the operator specifies ARCHIVE or UARCHIVE when LOGMODE=Y, the
database manager automatically switches the LOGMODE to A. To resume running
with LOGMODE=Y, the operator must do a COLDLOG. See

Should you decide not to take an archive at shutdown, specify NORMAL or
QUICK. During a normal shutdown, the database manager allows all active LUWs
to finish before ending. During a quick shutdown, the application server ends
immediately: in-progress LUWs receive a negative SQLCODE and are rolled back
the next time the application server is started.

Note: A User Archive will NOT be consistent if it is taken following an SQLEND
QUICK shutdown.

If you are running with LOGMODE=L, and request a database archive, and if there
is data in the log, then the database manager takes a log archive before taking the
database archive. This log archive is written to tape. However, you can direct it to
disk if you change the FILEDEEF for the log archive file, or if you direct the log
archive to disk when you archive it. For more information on directing log archives

to disk, see I‘Lag Archiving to Disk” on page 207

Database archives are written to tape. When running a database archive, the
database manager displays external label information for you to write on the tape
if you are archiving to tape. It then requests that you mount the required volumes.
If you are archiving to disk, you should respond by typing the virtual device
address. Unless you have issued your own CMS FILEDEF command before
starting the application server, the virtual device address for database archives is
181. The virtual device address for log archives (either explicitly requested or

automatically created) is 183. See “/Archiving Pracedures” on page 199 for more

information.

When the SQLEND command is issued with the NORMAL, ARCHIVE,
LARCHIVE, or UARCHIVE parameters, a shutdown is not initiated until all users
are disconnected from the application server. The database manager displays a
message showing how many agents are still active. (An agent is an internal
representation for a user.) As each agent becomes inactive, another message is
displayed with an updated count.

The initial count displayed in the message includes all active user agents. When
users who are inactive (not allocated to a real agent) disconnect from the database
manager, no message is displayed to indicate a reduction in agents; the message is
issued only when a user disconnects from the database manager while still
allocated a real agent. This results in gaps in the updated count messages.

After issuing an SQLEND command, and before shutdown commences, the
operator can issue a SHOW ACTIVE command to find out who is still using the
database manager. Users who are connected with no active LUW can prevent the
database manager from performing shutdown operations. For example, an ISQL
user can end an LUW and then leave the terminal without exiting from ISQL. To
determine whether inactive users are preventing the shutdown operation, use the
SHOW USERS operator command to determine which users are still active. For more

information on the SHOW commands, see the IDB2 Serzer for VSE & VM Queration

manual.

System Administration

If the SQLEND command is issued with the QUICK parameter, all in-progress
work ends and return code 508 is displayed on the console. This command can be
issued at any time, even following an SQLEND issued with another parameter.

Verifying the Directory

The DVERIFY parameter determines whether the database manager checks for
inconsistencies in the directory. It can be specified with the other parameters, but is
ignored if you specify QUICK. It should be specified each time the database is
archived (using either DB2 Server for VM or user facilities); if it is not, any
inconsistency in the directory will be recorded in the database archive, so a
subsequent restore operation using that archive would fail.

Even if you have not requested a database archive, you should periodically verify
the directory (perhaps every few days, depending on the volume of update
activity). Otherwise, inconsistencies may surface later. For example, an
inconsistency can cause an abnormal end during checkpoint processing. Early
detection reduces data loss.

If an error is found in the directory, a message is displayed. If this happens, and
you had specified ARCHIVE, the archive is not taken. If you had specified
UARCHIVE (a database archive using user facilities), then when you are prompted
to take the archive, do not do so. However, if you had specified LARCHIVE, the
log archive is taken; the inconsistency in the directory does not affect the log, so
the log archive is still valid. For information on recovering from directory

verification errors, see the IDB2 Server for VSE & VM Diaguosis Guide and Referencd

manual.

Online Support Considerationsfor VSE Guest Sharing

If you are supporting an online (CICS) environment, you should stop the online
support before ending the application server, in order to clean up CICS transaction
processing efficiently. To stop the online support, enter the CIRR or CIRT
transaction. For more 1nformat1on on the effect of a shutdown on onhne
applications, see 'Stapping the Online Support == The CIRT Transaction” od

page 124 andLRﬁmmun.g_ConnemonsMthansamﬂn_on_pa.gﬂld

Note: For DB2 Server for VSE, each link from the Online Support requires a
dedicated agent, whether or not these agents are actually active. SQLEND
NORMAL will not terminate these connections.

A Note about Minidisk Passwords

Many of the IBM-supplied EXECs described in this chapter (and throughout the
manual) access the DB2 Server for VM production and service minidisks. These
EXECs often must write to and read from those minidisks.

Depending on the tasks you are trying to do and the virtual machine you are
using, you can be prompted for the read, write, or multiple access passwords for

the minidisks.

You should always be prepared to supply the passwords for the production and
service minidisks before you run the IBM-supplied EXECs.

Note: DB2 Server for VM users should not know the passwords for the production
and service minidisks, or any other database machine minidisks.

Chapter 4. Planning for Operation of the Database Manager 93

94

Inter-Machine Communications

Advanced Program-to-Program Communication/Virtual Machine (APPC/VM) is
used by software to communicate between user and database machines, regardless
of their physical locations. The Inter-User Communication Vehicle (IUCV) is
limited to communications between two virtual machines residing on the same
processor.

Internally, the database manager uses NCUSERS to determine the number of agent
structures to create. Each agent structure serves one user at a given time. (That is,
one user who is within an LUW.) Processing time is divided among the agent
structures. You can think of an agent structure as equivalent to a user for whom
the database manager is currently doing work. Thus, NCUSERS controls the
number of concurrent users (agent structures) using the database manager.

As discussed earlier, each agent structure uses virtual storage and produces some
processor overhead. If NCUSERS is set too high for your particular system
configuration, the database manager may become overloaded and perform poorly.
To determine the optimal NCUSERS setting for your installation, use the guidelines

given in NCUSERS” on page 6.

The optimum number for NCUSERS is usually less than the total number of users
planned for a database. Thus, the number of connected users trying to access a
database machine usually far exceeds the number specified for NCUSERS. For
example, if there are 80 users and only 8 agent structures, all 80 users would be
competing for those structures.

To solve this problem, the number of connected users can exceed the number
specified for NCUSERS. The number of users that can be connected is related to a
value called MAXCONN.

The MAXCONN parameter of the VM OPTION directory control statement
determines the maximum number of IUCV connections allowed for a virtual
machine. For inter-machine communications, the virtual machine is the database
machine. MAXCONN has a default value of 16.

The database manager uses APPC/VM (or IUCV) to access the database minidisks
(including the directory, the logs, and the dbextents) and to communicate with user
machines. Thus, the number of users that can be connected to a database machine
is equal to the value of MAXCONN minus the number of minidisks for the
database currently being accessed. On a VM/ESA operating system, the number of
users that can be connected is decreased by one more because the DB2 Server for
VM machine makes an additional connection to CP system service *IDENT. It is
further reduced by one if the special TCP/IP communications real agent is active.

Usually, MAXCONN is set when a database machine is defined. (For more
information, see ’Adding a Primary Database Machine” on page 273.) This initial
setting is based on an estimate of the number of minidisks that make up the
database and the number of users. As these conditions change, MAXCONN should
be readjusted.

Because the number of connected users can exceed the number of real agents, the
database manager uses another mechanism to keep track of users that are not
assigned to real agents. This mechanism is called the pseudo-agent structure.

System Administration

The number of pseudo-agents is equal to the value of MAXCONN minus the
number of minidisks for the database currently being accessed. Initially, these
pseudo-agents are placed on an available queue. When an APPC/VM (or IUCV)
CONNECT to the database manager is issued, the user is assigned to a
pseudo-agent, and placed in an in-use queue. When a user issues a statement (for
example, SELECT), the user machine sends a message to the database machine. At
this time, the user’s pseudo-agent is assigned to a real agent, if one is available. If
none is available at the moment, that user’s pseudo-agent is placed in a first-in,
first-out wait queue. When a real agent becomes available, the first pseudo-agent
in the wait queue is assigned to that real agent.

When the user performs any action that results in the end of an LUW (for example
COMMIT or ROLLBACK)), that user’s pseudo-agent is deallocated from the real
agent. An exception occurs when there are no waiting pseudo-agents and the user
has sent another message to the database machine. When a pseudo-agent is
deallocated from a real agent, it is placed on an inactive queue until and unless the
user sends another message. At that time the pseudo-agent is placed at the end of
the wait queue, unless a real agent is available. When a pseudo-agent is
deallocated from a real agent, the first waiting pseudo-agent on the wait queue is
allocated to the available real agent.

A pseudo-agent is deallocated from a user when the connection to the database
manager is severed (for example, COMMIT WORK RELEASE or end-of-program).

The database manager does not verify that the users are allocated to real agents;
that is, it does not determine whether the real agent has received a message
recently (is active). A user can tie up a real agent by being inactive. For example, a
user can start an LUW and leave the terminal unattended. In this situation, the
DB2 Server for VM operator can use the FORCE command to end the LUW.

Pseudo-agents that are not attached to real agents have no effect on performance
other than the use of extra virtual storage.

Pseudo-agents can affect shutdown procedures. When the DB2 Server for VM
operator issues any SQLEND command (except SQLEND QUICK), the database
manager does not end (or begin the archive process) until all users (owners of
pseudo-agents) are disconnected. All users can complete their work and disconnect
from the database manager (unless forced off by the VM system operator or by the
DB2 Server for VM operator).

You can determine inactive but connected users by issuing the SHOW USERS
command. The SHOW ACTIVE command is inappropriate because it displays
information about agent structures. It does not tell you whether inactive users are
holding pseudo-agents.

Note: The DB2 Server for VM operator can force (with the FORCE command) only
those users attached to real agents. Only the VM system operator can force
(log off) those users who are waiting for real agents or who have inactive
pseudo-agents. The alternative is for the DB2 Server for VM operator to
issue the SQLEND QUICK command, which immediately stops the application
server and disconnects all users.

In some situations, you may want to limit the number of users who can connect to
the database manager. For example, if your installation has 100 DB2 Server for VM
users, you may want only 50 of them on at a time for performance reasons. Lower
the MAXCONN parameter to decrease the number of users. This places a limit on

Chapter 4. Planning for Operation of the Database Manager 95

the number of connected users. Users who try to access the database manager
when the limit is reached receive a message indicating that they cannot access the
database.

Application Program Use of APPC/VM or IUCV

The database manager’s use of APPC/VM does not preclude users from using
both APPC/VM and SQL statements in the same application program in either
single user mode or multiple user mode.

For more information about how the database manager uses APPC/VM and IUCYV,
see the DB2_Seruer fnr VSE & VM Diﬂgﬂnciq Guide and Rpfprpwrpl manual.

96 System Administration

Chapter 5. Operating the Online Support for VSE Guest
Sharing

This chapter explains how to enable VSE guests to access an application server on
a VM operating system, and how to operate the VSE online support.

Operating VSE Guest Sharing

Your VSE online users can access an application server on a VM host operating
system when the VSE operating system is running as a guest in a virtual machine.
Database switching is supported for CICS online applications, which means that
one resource adapter in one CICS region can connect to multiple application
servers. Any CICS transaction in the CICS region can connect to any of the DB2
Server for VM application servers to which the online resource adapter has
established connections. This means that:

1. Different transactions in a CICS region will be able to connect to different DB2
Server for VM application servers

2. Single transactions will be able to connect to different DB2 Server for VM
application servers in different units of work.

The DB2 Server for VM application server can be accessed by specifying the
server_name parameter on the CIRB transaction or on the CIRA transaction. The
DB2 Server for VM application server must be defined in the DBNAME Directory.
The DBNAME Directory provides the mapping of mapped DBNAME to resid. See
for more DBNAME Directory information. The resid is the basic DBNAME, and
must be the same as the one specified in the SET APPCVM command during the
VSE initial program load. If there are multiple DB2 Server for VM servers on the
VM host, there can be more than one SET APPCVM command.

The VM application server being accessed can be either on the same processor or
on another processor in the network. For batch applications and for online users
who want to access an application server on another processor in a