
IBM DB2 Cube Views

Business Modeling Scenarios

Version 8

SC18-7803-00

���

Note
Note: Before using this information and the product it supports, read the information in “Notices” on page 31.

This document contains proprietary information of IBM® . It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2® publications from DB2 Marketing and Sales in the United States or Canada, call 1800-IBM-4YOU
(425-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book. v
Who should read this book v

Chapter 1. Calculating the flow and value of
the stock in a warehouse over time. . . . 1
Details of scenario 1
Steps to create measures 3

Chapter 2. Correlating advertising costs to
sales 7
Details of scenario 7
Steps to create measure 7

Chapter 3. Calculating the profit and profit
margin of a store 13
Details of scenario 13
Steps to create the measures 13

Chapter 4. Counting the number of Internet
orders. 19
Details of the scenario. 19
Steps to create the measure 20

Chapter 5. Ranking sales figures 23
Details of the scenario. 23
Steps to create the measure 25

Chapter 6. Using time data stored in the
fact table to create a Time dimension . . 27
Details of the scenario. 27
Steps to create the attributes and dimension 28

Notices 31
Trademarks 33

© Copyright IBM Corp. 2003 iii

iv IBM DB2 Cube Views: Business Modeling Scenarios

About this book

This book provides supplemental information to the DB2 Cube Views Setup and
User’s Guide, about how to model common real-world business scenarios
using DB2 Cube Views metadata.

Who should read this book

Read this book if you are a database administrator (DBA) who works with
OLAP metadata and DB2 Universal Database™ (DB2). You should be familiar
with:
v OLAP concepts, such as star schemas
v DB2 Cube Views metadata objects, such as cube models, facts objects,

dimensions, joins, measures, and attributes

© Copyright IBM Corp. 2003 v

vi IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 1. Calculating the flow and value of the stock in a
warehouse over time

A retail business, XYZ Retail, keeps its stock in a warehouse before the stock
is sent to a particular store to be sold. XYZ Retail maintains data about the
state of the stock in the warehouse over time, and wants to analyze this data.
In particular, the company wants to examine two aspects of its warehouse:
v The flow of merchandise in to and out of the warehouse
v The value of the merchandise in the warehouse at a given time

The first aspect, the flow of the merchandise involves looking at data over
time. The second aspect, the value of the merchandise takes a snapshot of the
warehouse at a particular moment in time.

Details of scenario

XYZ Retail has a fact table with the following warehouse-related columns:
QUANTITY_IN, QUANTITY_OUT, CURRENT_QUANTITY,
PRODUCT_VALUE, PRODUCT_ID, and TIME_ID. This data is entered in the
table on a weekly basis. The database also has a Product table and Time table.
For example, a set of sample fact table data is shown in Table 1.

Table 1.

PRODUCT
_ID

TIME_ID QUANTITY
_ID

QUANTITY
_OUT

CURRENT
_QUANTITY

PRODUCT
_VALUE

1234 1 5 0 5 5

1234 2 20 10 15 5

1234 3 10 20 5 5

The PRODUCT_ID value for each of the three sample data entries is the same
because one product type can move in and out of the warehouse multiple
times.

The DBA for XYZ Retail must create three different measures:

Flow In
Models the flow of merchandise into the warehouse.

Flow Out
Models the flow out of the warehouse.

© Copyright IBM Corp. 2003 1

Current Value
Models the value of the merchandise at a given time.

To create the first two measures, Flow In and Flow Out, the DBA creates
measures that map to the QUANTITY_IN and QUANTITY_OUT columns
respectively, and sum the data across all dimensions. This is known as a fully
additive measure because the data is aggregated using only the SUM function
across all dimensions. For example, Table 2 shows a set of sample data for the
QUANTITY_IN and QUANTITY_OUT columns for three months for the
product with a PRODUCT_ID of 1234. The Flow In and Flow Out measures
sum these monthly values to calculate the total quantities that came in and
out of the warehouse over the quarter.

Table 2. Calculation of the sample data for the Flow In and Flow Out fully additive
measures for PRODUCT_ID 1234

January February March Quarter 1

QUANTITY_IN 5 20 10 35

QUANTITY_OUT 0 10 20 30

Fully additive measures are the simplest and most common measures to
create and are often used as the building blocks for more complex measures.
For measures based on numeric source data, the OLAP Center creates a fully
additive measure by default.

To create the third measure, Current Value, the DBA creates a calculated
measure that computes the value by multiplying PRODUCT_VALUE by
CURRENT_QUANTITY. For example, if the value of the product with
PRODUCT_ID=1234 is 5, then the Current Value measure for the sample data
is shown in Table 3.

Table 3. Calculation of the sample data for the Current Value measure for
PRODUCT_ID 1234

January February March

CURRENT_QUANTITY 5 10 20

Current Value 25 50 100

This data must then be aggregated across the dimensions. However, because
this measure is calculating the value at a specific point in time, it does not
make sense to sum across the time dimension. Instead, the aggregation will
sum the data across the Product dimension, and find the average of the data
over time. This is known as a semi-additive measure because only part of the
aggregation involves the SUM function.

2 IBM DB2 Cube Views: Business Modeling Scenarios

Measures that calculate snapshot data, data that represents a particular
moment in time such as month inventory data, are often semi-additive
measures because it does not make sense to add the months into quarters. If a
product remains in the warehouse for an entire quarter, that product is
included in the CURRENT_QUANTITY snapshot data of the warehouse
inventory each of the three months of the quarter. If the
CURRENT_QUANTITY data is summed over time, the product that sat in the
warehouse for three months is counted three times. As shown in Table 4, the
value 25 for Quarter 1 has no significance to the warehouse’s activities. The
table shows that the warehouse never had 25 products in the warehouse, so
calculating the value of 25 products has no meaning.

Table 4. Calculation of the sample data for the CURRENT_QUANTITY column using the
SUM function for the time dimension for PRODUCT_ID 1234

January February March Quarter 1

SUM(CURRENT_
QUANTITY)

5 15 5 25

Instead of using the SUM function across all dimensions, you can perform
other aggregation functions such as AVG, MIN, and MAX for the time
dimension. For example, with the same set of sample data for January,
February, and March, you can use a second aggregation function for the time
dimension as shown in Table 5 to create meaningful values for the Quarter.
The Current Value measure can represent the average total value of
merchandise stored in the warehouse over the quarter, or the maximum or
minimum value at any point in time during the quarter.

Table 5. Calculation of the sample data for the CURRENT_QUANTITY column using
the AVG, MAX, and MIN functions for the time dimension for PRODUCT_ID 1234

January February March Quarter 1

AVG(CURRENT_
QUANTITY)

5 15 5 8.3

MAX(CURRENT_
QUANTITY)

5 15 5 15

MIN(CURRENT_
QUANTITY)

5 15 5 5

Steps to create measures

The following steps explain how you could use the OLAP Center Facts
Properties window to create the Flow In, Flow Out, and Current Value
measures in an existing facts object:

Chapter 1. Calculating the flow and value of the stock in a warehouse over time 3

1. To open the Facts Properties window, right-click the facts object in the
OLAP Center object tree, and click Edit Measures. The Facts Properties
window opens.

2. Create the Flow In measure:
a. On the Measures page, click Create Calculated Measure to create the

Flow In measure. The SQL Expression Builder window opens.
b. In the SQL Expression Builder window, type FLOW IN in the Name

field.
c. To create the flow in expression, complete the following steps:

v Expand the Columns folder and the fact table in the Data list.
v Double-click the QUANTITY_IN column to add it to the expression.
v Click OK to close the SQL Expression Builder window. You do not

need to change the default aggregation function, SUM, on the
Aggregations page. The SUM function is the default for the Flow In
measure because the data source is numeric and the measure refers
to a column, not to only existing measures.

3. Create the Flow Out measure:
a. On the Measures page, click Create Calculated Measure to create the

Flow Out measure. The SQL Expression Builder window opens.
b. In the SQL Expression Builder window, type FLOW OUT in the Name

field.
c. To create the flow out expression, complete the following steps:

v Expand the Columns folder and the fact table in the Data list.
v Double-click the QUANTITY_OUT column.

d. Click OK to close the SQL Expression Builder window. You do not
need to change the default aggregation function, SUM, on the
Aggregations page. The SUM function is the default for the Flow Out
measure because the data source is numeric and the measure refers to
a column, not to only existing measures.

4. Create the Current Value measure:
a. On the Measures page, click Create Calculated Measure to create the

Current Value measure. The SQL Expression Builder window opens.
b. In the SQL Expression Builder window, type CURRENT VALUE in the

Name field.
c. To create the Current Value expression, complete the following steps:

v Expand the Columns folder and the fact table in the Data list.
v Double-click the PRODUCT_VALUE column in the Data list.
v Double-click the * operator in the Operators list.
v Double-click the CURRENT_QUANTITY column in the Data list.

4 IBM DB2 Cube Views: Business Modeling Scenarios

Figure 1 shows the Current Value expression that you can create in the
SQL Expression Builder window.

d. Click OK to close the SQL Expression Builder window.
e. On the Aggregations page, click the aggregation for the Current Value

measure, and click Aggregation script from the list. The Aggregation
Script Builder window opens. The default aggregation script has the
SUM function used for all dimensions.

f. If necessary, move the Time dimension down by selecting Time and

clicking the push button, so that it is the last dimension listed
in the script. Then with the Time dimension selected, double-click the
AVG function in the Column functions list. The aggregation script, as
shown in Figure 2 on page 6, sums the data across all of the dimensions
except Time, over which the data is averaged.

Figure 1. Complete Current Value expression in the SQL Expression Builder window

Chapter 1. Calculating the flow and value of the stock in a warehouse over time 5

g. In the Aggregation Script Builder window, click Validate to verify that
the aggregation script is valid. Click OK to save the aggregation script
and close the window.

5. Click OK to save the changes to the facts object and to close the Facts
Properties window.

You now have three calculated measures for the stock in the warehouse. You
can use these measures to analyze the patterns of product flow in and out of
your warehouse.

Figure 2. Aggregation script for the Current Value measure

6 IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 2. Correlating advertising costs to sales

A car dealership is considering increasing its advertising spending. To make
an educated decision, the dealership first wants to analyze the historical
relationship between advertising spending and sales. The dealership is
interested in determining if varying levels of advertising have affected sales,
and in particular if increased advertising is closely associated with increased
sales.

Details of scenario

The dealership’s database has a fact table with Sales and Ad Costs columns.
The database also has several other dimension tables. The DBA can create a
measure that uses the DB2 CORRELATION function to perform correlation
calculations between the costs and the sales. The CORRELATION function is a
multiparameter function that requires two input parameters. In this case, the
DBA will use the Sales and Ad Costs columns as the two input parameters.

The DBA must apply the multiparameter aggregation function first in the
aggregation script. The multiparameter function can be applied across all of
the dimensions, or it can be applied first to all dimensions except for the Time
dimension, and a second function, such as the MAX function, can be applied
to the Time function. The DBA defines the SQL expression for the measure so
that it maps directly to the Ad Costs column. The SQL expression is the first
of the two parameters used in the multiparameter function. The DBA defines
the second parameter as an SQL expression that maps directly to the Sales
column. The CORRELATION function is defined as the only aggregation
function so that the measure can calculate the statistical correlation between
advertising costs and sales results across all dimensions.

Steps to create measure

The following steps explain how you could use the OLAP Center Facts
Properties window to create the Advertising-Sales Correlation measure in an
existing facts object:
1. Open the Facts Properties window by right-clicking the facts object in the

OLAP Center object tree, and clicking Edit Measures.
2. Click the Create Calculated Measure push button. The SQL Expression

Builder window opens.
3. In the SQL Expression Builder window, type ADVERTISING-SALES

CORRELATION in the Name field.

© Copyright IBM Corp. 2003 7

4. Define the measure’s expression that will also be used as the first
parameter of the multiparameter CORRELATION function in the
aggregation script. To define the expression, expand the Measures folder
in the Data list and double-click the AD COSTS measure to add it to the
Expression list. Figure 3 shows the expression that you create in the SQL
Expression Builder window.

5. On the Aggregations page, click the aggregation function for the
ADVERTISING-SALES CORRELATION measure and select Aggregation
script, as shown in Figure 4 on page 9. The Aggregation Script Builder
window opens.

Figure 3. Complete advertising–sales correlation expression in the SQL Expression Builder window

8 IBM DB2 Cube Views: Business Modeling Scenarios

6. In the Column functions field, select Multiparameter functions. In the list
of multiparameter functions, select the CORRELATION function and click
Add to Script. Figure 5 on page 10 shows that the CORRELATION
function is at the top of the list of dimensions in the script.

Figure 4. Aggregations page of the Facts Properties window

Chapter 2. Correlating advertising costs to sales 9

7. Click the Parameters push button to specify the second parameter for the
CORRELATION function. The Function Parameters window opens. Select
Using existing measure and select SALES. Figure 6 on page 11 shows the
Function Parameters window with the Sales measure specified as the
second parameter. Click OK to save your selection and close the Function
Parameters window.

Figure 5. Aggregation script for the Advertising-Sales Correlation measure

10 IBM DB2 Cube Views: Business Modeling Scenarios

8. In the Aggregation Script Builder window, click the Validate push button
to verify that the aggregation script is valid. Click OK to save the
aggregation script and close the window.

9. Click OK to save the changes to the facts object and to close the Facts
Properties window.

You now have a measure that correlates two types of data in your database.
You can use this measure to make decisions on future advertising spending
based on historical trends in results.

Figure 6. Sales measure specified as the second parameter in the Function Parameters window

Chapter 2. Correlating advertising costs to sales 11

12 IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 3. Calculating the profit and profit margin of a
store

The general manager of a toy store wants to be able to analyze how various
factors, such as time of year and type of product , affect the profit and profit
margin. Before the more advanced analysis can be completed, the DBA for the
toy store must first create profit and profit margin measures. Then the DBA
can create additional measures that correlate and compare different factors to
the profit and profit margin measures.

Details of scenario

The toy store’s database has a fact table with Sales, Costs of Goods Sold
(COGS), and Expense columns, in addition to corresponding foreign key
columns for each of the several dimension tables. The DBA already created
Sales, COGS, and Expense measures that map to the Sales, COGS, and
Expense columns, respectively. The Profit and Profit Margin measures can be
created entirely from these existing measures.

To create the Profit measure, the DBA creates a measure that calculates
SALES-(COGS+EXPENSE) in the SQL Expression, and sums the calculated
data across all dimensions. The Profit measure can be created by referencing
existing measures, or columns, or a combination of both.

After the Profit measure is created, the DBA can create the Profit Margin
measure. The Profit Margin measure is a ratio of two existing measures
expressed as a percentage, (Profit / Sales)*100, and does not require its own
aggregation function. An aggregation function is not required because the
measure refers only to other measures whose data is already aggregated. If
the DBA uses a composite measure, a measure that only references other
measures, to calculate a ratio, the DBA does not need to define an additional
aggregation. Most aggregation functions, such as SUM, do not make sense
with ratios. For example, if the toy store has profit margins of 40%, 32%, 28%,
and 37% for four consecutive quarters, summing the ratios over time, would
result in a profit margin of 137% for the year, which does not make sense.

Steps to create the measures

The following steps explain how you could use the OLAP Center Facts
Properties window to create the Profit and Profit Margin measures in an
existing facts object:

© Copyright IBM Corp. 2003 13

1. To open the Facts Properties window, right-click the facts object in the
OLAP Center object tree, and click Edit Measures. The Facts Properties
window opens.

2. Create the Profit measure:
a. On the Measures page, click the Create Calculated Measure push

button. The SQL Expression Builder window opens.
b. In the SQL Expression Builder window, type PROFIT in the Name field.
c. To create the Profit expression, expand the Measures folder in the Data

list and complete the following steps:
v Double-click the SALES measure in the Data list to add it to the

expression.
v Double-click the − operator in the Operators list.
v Double-click the COGS measure in the Data list.
v Double-click the + operator in the Operators list.
v Double-click the EXPENSE measure in the Data list.
v In the Expression field, highlight the part of the expression that

reads: @Measure(MDSAMPLE.COGS)+@Measure(MDSAMPLE.EXPENSE) and
double-click the (..) operator from the Operators list to enclose the
selected part of the expression in parenthesis.

Figure 7 on page 15 shows the profit expression that you can create in
the SQL Expression Builder window.

14 IBM DB2 Cube Views: Business Modeling Scenarios

d. Click OK to create the Profit measure and close the SQL Expression
Builder window.

e. On the Aggregations page, click the aggregation for the Profit measure,
and select the SUM function. The Profit measure is complete.

3. Create the Profit Margin measure:
a. On the Measures page, click Create Calculated Measure. The SQL

Expression Builder window opens.
b. In the SQL Expression Builder window, type PROFIT MARGIN in the

Name field.
c. To create the Profit Margin expression, expand the Measures folder in

the Data list and complete the following steps:
v Double-click the PROFIT measure in the Data list to add it to the

expression.
v Double-click the ⁄ operator from the Operators list.
v Double-click the SALES measure in the Data list.

Figure 7. Complete profit expression in the SQL Expression Builder window

Chapter 3. Calculating the profit and profit margin of a store 15

v Enclose the entire expression in parentheses by typing in the
Expression field.

v Position the cursor at the end of the expression and double-click the
* operator from the Operators list.

v Type 100 at the end of the expression in the Expression field.

Figure 8 shows the profit margin expression that you can create in the
SQL Expression Builder window.

d. Click OK to create the Profit Margin measure and close the SQL
Expression Builder window.
On the Aggregations page, the OLAP Center sets the aggregation
function to NONE by default for composite measures, so you do not
need to change the aggregation function.

4. Click OK to close the Facts Properties window and save the two new
measures that you added to the facts object.

Figure 8. Complete profit margin expression in the SQL Expression Builder window

16 IBM DB2 Cube Views: Business Modeling Scenarios

After the DBA creates these two measures, additional analysis can be
completed with respect to these important measures.

Chapter 3. Calculating the profit and profit margin of a store 17

18 IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 4. Counting the number of Internet orders

A retail company expanded its business by adding Internet sales a few years
ago. Now the company wants to analyze the impact of the Internet sales. One
of the first calculations that the company needs is the number of orders
completed over the internet.

Details of the scenario

The company’s database has a fact table for Internet orders with ORDER_ID,
PRODUCT_ID, QUANTITY, and TIME_ID columns. The PRODUCT_ID
column includes each product sold in a corresponding order, and the
QUANTITY column stores the quantity of the product purchased in the order.
Orders with more than one product have as many row entries as the number
of unique products sold in the order. For example, Table 6 shows three orders,
where Order 1 included three Product As, one Product O and one Product G.

Table 6. Partial fact table contents

ORDER_ID PRODUCT_ID QUANTITY

1 A 3

1 O 1

1 G 1

2 L 1

2 Q 2

3 P 5

The DBA can create an Order Count measure that counts each unique entry in
the ORDER_ID column. The Order Count measure is defined using the
DISTINCT keyword in the SQL expression, and the COUNT function for the
aggregation across all of the dimensions. The measure’s SQL expression will
create a list of distinct orders, which are counted during the aggregation.
Because the measure does not involve any summing, it is called a
non-additive measure.

Non-additive measures are also useful when you have character data or other
data that you want to count. For example, you might use non-additive
measures to count the number of postal codes that you shipped products to.

In this example, the DBA decided to define an Order ID measure that maps
directly to the ORDER_ID column. However, you can choose to use the

© Copyright IBM Corp. 2003 19

ORDER_ID column in the same way. The default aggregation is different
based on if a column or a measure is used in the SQL expression, but in either
case, you need to change the default aggregation to the COUNT function, as
described in “Steps to create the measure”.

Steps to create the measure

The following steps explain how you could use the OLAP Center Facts
Properties window to create the Order Count measure in an existing facts
object:
1. To open the Facts Properties window, right-click the facts object in the

OLAP Center object tree, and click Edit Measures. The Facts Properties
window opens.

2. On the Measures page, click the Create Calculated Measure push button.
The SQL Expression Builder window opens.

3. In the SQL Expression Builder window, type ORDER COUNT in the Name
field.

4. To create the order count expression, expand the Measures folder in the
Data list and complete the following steps:
v In the Functions and constants filed, select Miscellaneous. In the list of

miscellaneous functions and constants, double-click the DISTINCT
keyword.

v Double-click the ORDER ID measure in the Data list.

Figure 9 on page 21 shows the order count expression that you can create
in the SQL Expression Builder window.

20 IBM DB2 Cube Views: Business Modeling Scenarios

5. Click OK to close the SQL Expression Builder window.
6. On the Aggregations page, click the aggregation for the Order Count

measure, and select the COUNT function.
7. Click OK to save the changes to the facts object and to close the Facts

Properties window.

You now have the a measure that counts the number of distinct Order ID row
values. You can use this measure in conjunction with other measures to
further analyze your data.

Figure 9. Complete order count expression in the SQL Expression Builder window

Chapter 4. Counting the number of Internet orders 21

22 IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 5. Ranking sales figures

An office supply store chain has expanded rapidly over the last several years.
The business executives are considering closing some of the lowest
performing stores to cut costs and increase profits. The sales history for a
store is an important factor in deciding to close a store. Analysts need to be
able to rank the sales figures and drill-down across the dimensions to
complete their analysis.

Details of the scenario

The office supply store’s database has a fact table with a Sales column in
addition to other columns. The database also has several dimension tables.
The DBA can create a Sales Rank measure that uses the RANK function,
which is an OLAP function provided by DB2 Universal Database (DB2 UDB).

DB2 Cube Views supports the following OLAP functions that are provided by
DB2 UDB:

RANK

Orders the rows and assigns a ranking to each row. The rank is
defined as 1 plus the number of preceding rows that are distinct with
respect to the ordering. If the relative order of two or more rows
cannot be determined because they have duplicate row values, the
same rank number is assigned. The ranking results might have gaps
in the numbers if there are duplicate row values. Table 7 on page 24
shows an example of what the ranking results are from the RANK
function for a set of sample row values.

The typical syntax for the RANK function is:
RANK () OVER (ORDER BY sort-key-expression expression-order)

where sort-key-expression is the set of data to be ranked, and
expression-order is a keyword, ASC or DESC, that orders the values of
the sort-key-expression in ascending or descending order. DB2 Cube
Views requires that the sort-key-expression be an existing measure, not
a column or attribute. Also, DB2 Cube Views does not support the
PARTITION BY clause that is provided by DB2 UDB with this
function. More information about the RANK function is available in
the DB2 UDB Information Center.

DENSERANK

© Copyright IBM Corp. 2003 23

Orders the rows and assigns a ranking to each row. The rank of the
row is defined as 1 plus the number of rows that strictly precede the
row. Therefore, the ranking results will be sequential and without
gaps in the rank numbering. Table 7 shows an example of what the
ranking results are from the DENSERANK function for a set of
sample row values.

The typical syntax for the DENSERANK function is:
DENSERANK () OVER (ORDER BY sort-key-expression expression-order)

where sort-key-expression is the set of data to be ranked, and
expression-order is a keyword, ASC or DESC, that orders the values of
the sort-key-expression in ascending or descending order. DB2 Cube
Views requires that the sort-key-expression be an existing measure, not
a column or attribute. Also, DB2 Cube Views does not support the
PARTITION BY clause that is provided by DB2 UDB with this
function. More information about the DENSERANK function is
available in the DB2 UDB Information Center.

ROWNUMBER

Computes the sequential row number of the row by the ordering,
starting with 1 for the first row. If the ORDER BY clause is not
specified, the row numbers are assigned to the rows in arbitrary order.

The typical syntax for the ROWNUMBER function is:
ROWNUMBER () OVER ([ORDER BY sort-key-expression expression-order])

where sort-key-expression is the set of data to be ranked, and
expression-order is a keyword, ASC or DESC, that orders the values of
the sort-key-expression in ascending or descending order. DB2 Cube
Views requires that an existing measure, not a column or attribute, be
used as the data source for this function. Also, DB2 Cube Views does
not support the PARTITION BY clause that is provided by DB2 UDB
with this function. More information about the ROWNUMBER
function is available in the DB2 UDB Information Center.

These OLAP functions are not listed in the SQL Expression Builder Functions
and constants list.

Table 7. Ranking results for a sample set of values using the RANK and DENSERANK
functions

Row values Ordering Ranking results
from the RANK
function

Ranking results
from the
DENSERANK
function

100 1 1 1

24 IBM DB2 Cube Views: Business Modeling Scenarios

Table 7. Ranking results for a sample set of values using the RANK and DENSERANK
functions (continued)

Row values Ordering Ranking results
from the RANK
function

Ranking results
from the
DENSERANK
function

35 2 2 2

23 3 3 3

8 4 4 4

8 4 4 5

6 5 6 6

Steps to create the measure

The following steps explain how you could use the OLAP Center Facts
Properties window to create the Sales Rank measure in an existing facts
object:
1. To open the Facts Properties window, right-click the facts object in the

OLAP Center object tree, and click Edit Measures. The Facts Properties
window opens.

2. On the Measures page, click Create Calculated Measure to create the
Sakes Rank measure. The SQL Expression Builder window opens.

3. In the SQL Expression Builder window, type SALES RANK in the Name
field.

4. To create the Sales Rank expression, complete the following steps:
v Type the following function syntax in the Expression field: RANK ()

OVER (ORDER BY measure DESC).
v Expand the Measures folder in the Data list.
v Highlight the word measure in the function syntax in the Expression

field and double-click the SALES measure to add the SALES measure to
the expression.

The final expression is shown in Figure 10 on page 26.

Chapter 5. Ranking sales figures 25

5. Click Validate to ensure that the expression is valid. Click OK to close the
SQL Expression Builder window.
You do not need to change the default aggregation, None, on the
Aggregations page. The None option is the default for the Sales Rank
measure because the data source is numeric and refers only to existing
measures.

Using the RANK function in the measure’s expression to order the Sales
column in descending order, the analysts can drill-down across the other
dimensions to determine the store with the worst sales history over the last
year, for a particular product line, or with respect to any other dimensional
data stored in the database.

Figure 10. Complete Sales Rank expression in the SQL Expression Builder window

26 IBM DB2 Cube Views: Business Modeling Scenarios

Chapter 6. Using time data stored in the fact table to
create a Time dimension

A retail business, XYZ Retail, is modeling their sales transaction data in DB2
Cube Views so that they can analyze their data more effectively. However,
because of the transactional nature of the data, the only time information that
is available is a date that is associated with each transaction. Time
information, that is modeled in a time dimension, is needed to add context to
many common calculations, such as analyzing sales trends by quarter, and
calculating the average inventory value for each week.

Many DBAs avoid storing time data as a date or timestamp for a transaction
because if there are no transactions on one day, then there are holes in the
data, which can create problems aggregating and displaying the data
accurately. Usually, modeling time data in a time table is a better choice.
However, the DBA for XYZ Retail is confident that there will be at least one
transaction every day and decides to keep the current structure for the data.

Details of the scenario

XYZ Retail has a fact table with measurable data about each transaction
including Sales, Costs, Quantity Sold, and Date. Additionally, the database
contains a Region dimension table and a Product dimension table. The
problem is that time data is included in the fact table rather than being stored
in a separate dimension table. The DBA must create a dimension object based
on the date data in the facts object.

Creating a time dimension based on a single column of date data in the fact
table has two unique requirements:
v Because all dimension objects in a valid cube model must be joined to the

facts object, and the time dimension object and the facts object are based on
the same fact table, the time dimension object must be joined to the facts
object by using a self-join to join the fact table to itself.

v The DBA must build calculated attributes that aggregate the date data into
meaningful levels such as Week, Month, Quarter, and Year.

A self-join is a type of join that joins a table to itself, in this case the table is
the fact table. The self join should join one or more columns that together can
uniquely identify any row in the fact table. The primary key is the best choice.
However, if a primary key is not defined, a good primary key candidate is the
set of columns that are used to join the fact table with the dimension tables.

© Copyright IBM Corp. 2003 27

To optimize the cube model, a primary key must be defined. The join
cardinality must be 1:1, and the join type must be inner.

Figure 11 shows how a facts object, a dimension based on the fact table, and a
facts-to-dimension join can map to the same fact table.

Steps to create the attributes and dimension

The following steps explain how you could use the OLAP Center Dimension
wizard to create the Time dimension and calculated attributes based on the
fact table:
1. To open the Dimension wizard, right-click the cube model in the OLAP

Center object tree, and click Create Dimension. The Dimension wizard
opens.

2. On the Name page, type Time in the Name field. You can optionally
change the business name and type a comment. Click Next.

Self join

Relational fact table in DB2

OLAP model objects

Cube
model

Facts

Attribute

Join

Measure

Dimension

Figure 11. How a self-join joins a table to itself

28 IBM DB2 Cube Views: Business Modeling Scenarios

3. Select the cube model’s fact table. Click Next. You do not need to specify
dimensional joins because you have only one table in your dimension. On
the Dimension Joins page, click Next.

4.

5. On the Dimension Attributes page, select the Timestamp column.
6. Optional: Create the additional calculated attributes that aggregate the

timestamp data into larger chunks such Month, Quarter, and Year. To
create calculated attributes, click the Create Calculated Attribute push
button to open the SQL Expression Builder and define the expression for
each attribute that calculates the source timestamp column into months,
quarters, and years. After defining each calculated attribute, click the
Validate push button to ensure that the expression is valid, and then click
OK to close the SQL Expression Builder and return to the Dimension
wizard. Click Next after you select and create all of the attributes that you
want.

7. On the Dimension Type page, select Time. Click Next.
8. On the Fact-Dimension Join page, click Create Join. In the Join wizard that

opens, create the self join. Type a name and click Next. Select the column
or set of columns that uniquely define any row in the fact table, such as
the primary key, for both the left and right attributes. Select one pair at a
time and click Add to add the attribute pair to the join. Select the inner
join type and 1:1 cardinality. After adding the necessary attribute pairs,
click Finish. The Join wizard closes.

9. On the Fact-Dimension Join page, click Finish.

With the Time dimension defined in the cube model, XYZ Retail can add a
new level of meaning to its data analysis. They can now perform time-related
analyses including inventory.

Chapter 6. Using time data stored in the fact table to create a Time dimension 29

30 IBM DB2 Cube Views: Business Modeling Scenarios

Notices

This information was developed for products and services offered in the
U.S.A.

IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 2003 31

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some

32 IBM DB2 Cube Views: Business Modeling Scenarios

measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

DB2
DB2 Universal Database
IBM
Office Connect
Redbooks

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, and
Microsoft Excel are trademarks or registered trademarks of Microsoft
Corporation.

Java or all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both
and is licensed exclusively through X/Open Company Limited.

Linux is a registered trademark of Linus Torvalds. Red Hat and all Red
Hat-based trademarks and logos are trademarks or registered trademarks of
Red Hat, Inc. in the United States and other countries.

Other company, product, or service names may be trademarks or service
marks of others.

Notices 33

	Contents
	About this book
	Who should read this book

	Chapter 1. Calculating the flow and value of the stock in a warehouse over time
	Details of scenario
	Steps to create measures

	Chapter 2. Correlating advertising costs to sales
	Details of scenario
	Steps to create measure

	Chapter 3. Calculating the profit and profit margin of a store
	Details of scenario
	Steps to create the measures

	Chapter 4. Counting the number of Internet orders
	Details of the scenario
	Steps to create the measure

	Chapter 5. Ranking sales figures
	Details of the scenario
	Steps to create the measure

	Chapter 6. Using time data stored in the fact table to create a Time dimension
	Details of the scenario
	Steps to create the attributes and dimension

	Notices
	Trademarks

