DB2 Text Search Guide **DB2 Text Search Guide** #### Note Before using this information and the product it supports, read the general information under Appendix E, "Notices," on page 209. #### **Edition Notice** This document contains proprietary information of IBM. It is provided under a license agreement and is protected by copyright law. The information contained in this publication does not include any product warranties, and any statements provided in this manual should not be interpreted as such. You can order IBM publications online or through your local IBM representative. - To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order - To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/planetwide To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU (426-4968). When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. #### © Copyright International Business Machines Corporation 2008, 2009. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. # Contents | Part 1. DB2 Text Search 1 | Configuring DB2 Text Search using the Configuration Tool | |---|--| | Part 2. DB2 Text Search overview 3 | Updating the services file on the server for TCP/IP communications | | Chapter 1. Key features and concepts 5 | Part 4. Administering and | | Scenario: Indexing and searching 5 Text search index creation, updates, and changes 7 Linguistic processing for DB2 Text Search 9 | maintaining text search indexes 43 | | Command-line tools for DB2 Text Search 10 Issuing text search commands | Chapter 7. Starting the DB2 Text Search instance service 45 | | Chapter 2. Text search solution planning | Chapter 8. Enabling a database for DB2 Text Search 47 | | Security considerations for DB2 Text Search | Chapter 9. Installing DB2 Accessories Suite | | Database administrator | Chapter 10. Setting-up DB2 Text Search for rich text document support 53 | | Document formats supported for DB2 Text Search Supported data types | Chapter 11. Enabling DB2 Text Search for rich text document support 55 | | Supported languages and code pages | Chapter 12. Stopping the DB2 Text Search instance service 57 | | Part 3. Installing and configuring DB2 Text Search 21 | Chapter 13. Disabling a database for DB2 Text Search 59 | | Chapter 3. Installing and configuring DB2 Text Search with the DB2 Setup Wizard | Chapter 14. Disabling DB2 Text Search for rich text document support 61 | | Installing DB2 servers (Windows) | Chapter 15. Text search index creation Creating a text search index | | Chapter 4. Installing and configuring DB2 Text Search with a response file . 31 Installing a DB2 product using a response file | Creating a text search index on unsupported data types | | (Windows) | Chapter 16. Text search index maintenance | | Chapter 5. Installing DB2 Text Search using db2_install (Linux and UNIX) 35 Installing a DB2 product using the db2_install or | Viewing text search index status | | doce_install command (Linux and UNIX) 35 | Chapter 17. Synonym dictionaries for | | Chapter 6. Configuring DB2 Text Search | DB2 Text Search | | Removing a synonym dictionary for DB2 Text | SYSTS_UPDATE procedure - Update the text | | | |---|---|--|--| | Search | search index | | | | | SYSTS_CLEAR_EVENTS procedure - Delete | | | | Chapter 18. Maintenance and | indexing events from an index's event table 160 | | | | troubleshooting for DB2 Text Search 77 | SYSTS_CLEAR_COMMANDLOCKS procedure - | | | | Deleting orphaned text search collections | Remove command locks for text search indexes 162 | | | | Tracing to investigate text search errors | | | | | Clearing text search index events | Chapter 23. Text search administrative | | | | Troubleshooting hints and tips | views | | | | | SYSIBMTS.TSDEFAULTS view | | | | Part 5. Searches 83 | SYSIBMTS.TSLOCKS view | | | | Part 5. Searches | SYSIBMTS.TSCOLLECTIONNAMES view 166 | | | | | SYSIBMTS.TSINDEXES view 166 | | | | Chapter 19. Searching with text search | SYSIBMTS.TSCONFIGURATION view 167 | | | | indexes | SYSIBMTS.TSEVENT view | | | | Search functions for DB2 Text Search | SYSIBMTS.TSSTAGING view 169 | | | | Text search query planning 87 | | | | | Searching in text search indexes | Chapter 24. Text Search tools 171 | | | | Searching text search indexes using SCORE 90 | Configuration Tool for DB2 Text Search 171 | | | | Enhancing performance during text searches 91 | Administration Tool for DB2 Text Search 173 | | | | Text search argument syntax | Synonym Tool for DB2 Text Search | | | | Searching XML documents using DB2 Text Search 95 | Log Formatter Tool for DB2 Text Search 176 | | | | Search syntax for XML documents 97 | Eog Formatter 1001 for DD2 Text Search 170 | | | | | Dowl 7 Appendixes 177 | | | | Part 6. Reference | Part 7. Appendixes 177 | | | | | | | | | Chapter 20 COL and VMI built in | Appendix A. DB2 Text Search and Net | | | | Chapter 20. SQL and XML built-in | Search Extender comparison 179 | | | | search functions | Migration to DB2 Text Search | | | | CONTAINS function | | | | | SCORE function | Appendix B. Locales supported for | | | | xmlcolumn-contains function | DB2 Text Search | | | | | DDZ Text Search | | | | Chapter 21. Administration commands | Annoydiy C. DD0 commonds 105 | | | | for DB2 Text Search | Appendix C. DB2 commands 185 | | | | db2ts START FOR TEXT | db2iupgrade - Upgrade instance | | | | db2ts STOP FOR TEXT | db2icrt - Create instance | | | | db2ts CLEANUP FOR TEXT | db2idrop - Remove instance | | | | db2ts ENABLE DATABASE FOR TEXT | db2iupdt - Update instances 194 | | | | db2ts DISABLE DATABASE FOR TEXT 120 | | | | | db2ts CLEAR COMMAND LOCKS | Appendix D. Overview of the DB2 | | | | db2ts CREATE INDEX | technical information 199 | | | | db2ts DROP INDEX | DB2 technical library in hardcopy or PDF format 199 | | | | db2ts ALTER INDEX | Ordering printed DB2 books 202 | | | | db2ts UPDATE INDEX | Displaying SQL state help from the command line | | | | db2ts CLEAR EVENTS FOR INDEX | processor | | | | db2ts HELP | Accessing different versions of the DB2 | | | | acto (1221 | Information Center | | | | Chapter 22. DB2 Text Search routines 141 | Displaying topics in your preferred language in the | | | | | DB2 Information Center 203 | | | | SYSTS_ADMIN_CMD stored procedure - Run text | Updating the DB2 Information Center installed on | | | | search administration commands | your computer or intranet server | | | | SYSTS_ENABLE procedure - Enable current | Manually updating the DB2 Information Center | | | | database for text search | installed on your computer or intranet server 205 | | | | SYSTS_DISABLE procedure - Disable current | DB2 tutorials | | | | database for text search | DB2 troubleshooting information | | | | SYSTS_CREATE procedure - Create a text search | Terms and Conditions | | | | index on a column | Terms and Conditions 200 | | | | SYSTS_DROP procedure - Drop a text search index 152 | Annondiy E Notices | | | | SYSTS_ALTER procedure - Change the update | Appendix E. Notices 209 | | | | characteristics of an index | | | | Index 213 ### Part 1. DB2 Text Search DB2[®] Text Search allows you to issue SQL and XQuery statements to perform text search queries on data stored in a DB2 database. DB2 Text Search provides extensive capabilities for searching data in text columns stored in a DB2 table. The search system provides fast query response times and a consolidated, ranked result set that enables you to quickly and easily locate the information that you need. By incorporating the functions of DB2 Text Search in your SQL and XQuery statements, you can create powerful and versatile text-retrieval programs. DB2 Text Search achieves high performance and scalability by employing data streaming to avoid high resource consumption during search. DB2 Text Search is supported on the following platforms: - AIX® (64-bit) platforms - Linux[®] x86-64 (64-bit) platforms - HP-UX on Itanium-based HP Integrity Series (64-bit) platforms - Solaris on AMD (64-bit) platforms - Solaris on UltraSPARC (64-bit) platforms - Windows[®] on x86 (32-bit) platforms - Windows on x86-64 (64-bit) platforms - Linux x86 (32-bit) platforms are supported for development or test purposes only. Note: DB2 Text Search does not support Microsoft® Failover Clustering. DB2 Text Search includes the following key features: #### Tight integration with DB2 Database for Linux, UNIX®, and Windows - · A stored procedure interface for administration commands - Installation and configuration performed by the DB2 installer - · Invisible authentication - SQL codes for error handling #### Document indexing - · Fast indexing of large amounts of data - pureXML® support - Multiple document format support - · Incremental and asynchronous index updating #### Advanced search technology - SQL, SQL/XML, and XQuery support - The CONTAINS and SCORE SQL functions - Built-in SQL functionality combined with the DB2 Optimizer - The xmlcolumn-contains XML function - XML filtering - Linguistic processing in all supported languages - Weight, wildcard, and optional term support - Synonym dictionary support ### Part 2. DB2 Text Search overview DB2 Text Search allows you to search text columns stored in a DB2 table. By enabling text search support, you can use the CONTAINS, SCORE, and xmlcolumn-contains functions, which are built into the DB2 engine, to search text search indexes based
on the search arguments that you specify. DB2 Text Search works by collecting data from diverse sources and indexing it for subsequent fast retrieval. Furthermore, the search engine uses linguistic analysis to ensure that it returns only relevant search query results. As shown in Figure 1, you install the DB2 Text Search server and DB2 servers on the same system, but the DB2 Text Search server runs in its own Java Virtual Machine (JVM). You explicitly start and stop the DB2 Text Search services after starting the DB2 instance. You can install DB2 Text Search and DB2 Net Search Extender on the same DB2 instance, but you can enable a database for only one of these text searching options. Figure 1. Deployment diagram for the DB2 Text Search server DB2 Text Search does not have a graphical user interface. Instead, command-line tools are available for tasks such as configuring and administering the DB2 Text Search server, creating a synonym dictionary for a collection, and diagnosing problems. In addition, you can use a stored-procedure interface for some common administrative tasks. #### Related concepts Appendix A, "DB2 Text Search and Net Search Extender comparison," on page 179 Even though queries performed using DB2 Text Search and Net Search Extender look similar, there can be some discrepancies between the query results. Therefore, it is important to be aware of the differences between the two search engines. Part 3, "Installing and configuring DB2 Text Search," on page 21 DB2 Text Search is an optionally installable component whose installation and configuration are fully integrated with the installation of all DB2 server products. Chapter 2, "Text search solution planning," on page 13 Chapter 19, "Searching with text search indexes," on page 85 After you populate a text search index with data, you can search that index. DB2 Text Search supports searches in SQL, XQuery, and SQL/XML. ### Chapter 1. Key features and concepts ### Scenario: Indexing and searching After you have installed and configured DB2 Text Search, there are four steps that you must take before performing searches. - 1. Start the DB2 Text Search instance services. - The process that maintains the update schedule of text search indexes is started when you issue the db2ts START FOR TEXT command. The text search instance service updates the text search index automatically at the specified times - 2. Prepare the database for use by DB2 Text Search. You must enable a database for DB2 Text Search only once. Note that you cannot enable Net Search Extender for the same database. - 3. Create a text search index on a column that contains, or will contain, text that you want to search. - 4. Populate the text search index. This adds data to the empty, newly created text search index. After a text search index contains data, you can search the index using an SQL statement and can searchwith XQuery if the index contains XML data. As Figure 2 on page 6 shows, you should update existing text search indexes, either manually or automatically, to reflect changes to the text column that the index is associated with. Figure 2. Setting up text search indexes for searching ### Simple scenario Suppose that you want to make the products in the PRODUCT table in the SAMPLE database searchable by DB2 Text Search. Assuming that you already created the sample database (by running the db2sampl command) and that you set the **DB2DBDFT** environment variable to SAMPLE, you could issue the following commands: ``` db2ts START FOR TEXT db2ts ENABLE DATABASE FOR TEXT db2ts CREATE INDEX myschema.productindex FOR TEXT ON product(name) db2ts UPDATE INDEX myschema.productindex FOR TEXT ``` The product names and descriptions contained in the NAME column of PRODUCT are now indexed and searchable. If you want to find the product IDs of all the snow shovels, you can issue the following search query: ``` db2 "SELECT pid FROM product WHERE CONTAINS (name, 'snow shovel') = 1" ``` #### Related concepts Chapter 15, "Text search index creation," on page 63 A text search index is a compilation of significant terms extracted from text documents. Each term is associated with the document from which it was extracted. Chapter 16, "Text search index maintenance," on page 69 After you create text search indexes, there are several maintenance tasks that you need to perform. There are several ways to perform these tasks, including using various administration commands, stored procedures, and the Administration Tool. Chapter 19, "Searching with text search indexes," on page 85 After you populate a text search index with data, you can search that index. DB2 Text Search supports searches in SQL, XQuery, and SQL/XML. #### Related tasks Chapter 7, "Starting the DB2 Text Search instance service," on page 45 Before you can enable your database for text search, you must start the DB2 Text Search instance service. ### Text search index creation, updates, and changes Text search index creation is the process of defining and declaring the properties of an index. After you create a text search index, you can update it by adding new data from the table that it is associated with. You can also alter the properties of the text search index. Using DB2 Text Search, you can create a text search index to allow the data of a text column to be searched using text search functions. A text search index consists of significant terms that are extracted from text documents. The primary key of a row is used to uniquely identify the text document in that row. When creating the text search index, you can specify various properties for it, including its update frequency and the directory that it will be stored in. Immediately after its creation, a text search index contains no data. You add data to a text search index using the text-search-specific db2ts UPDATE INDEX command or the SYSTS_UPDATE administrative SQL routine. The first index update adds all text documents from a text column to the index. This update is typically known as the *initial update*. All subsequent updates are known as *incremental updates*. Text search indexes are reorganized automatically as needed; you cannot explicitly trigger a reorganization or re-create an index when you update it. However, you can drop the text search index, create a new one, and perform an initial update on it. You can change some of the properties of a text search index after creating it, such as the update frequency or the minimum number of changes required to trigger an update. #### **Example** In this example, a user creates a text search index called myschema.productindex on the PRODUCT table contained in the SAMPLE database. Figure 3 on page 8 shows that the index is empty until an initial update is performed and that as additional product information is added to PRODUCT, an incremental update must be performed. #### Create index for text # Update index for text (initial update) # Update index for text (incremental update) Figure 3. The two types of updates to a text search index #### Related concepts Chapter 15, "Text search index creation," on page 63 A text search index is a compilation of significant terms extracted from text documents. Each term is associated with the document from which it was extracted. "Asynchronous index updates" on page 15 To improve performance, a text search index is not synchronized with its associated user table within the scope of a DB2 transaction that updates, deletes text documents from, or inserts text documents into that table. Instead, text search indexes are updated asynchronously. #### Related tasks "Updating a text search index" on page 69 You can update a text search index automatically or manually. Automatic updates occur based on how you defined the text search index. You can update indexes manually by issuing a command or by calling a stored procedure. ### Linguistic processing for DB2 Text Search DB2 Text Searchprovides dictionary packs to support the linguistic processing of documents and queries that are not in English. As an alternative to dictionary-based word segmentation, the search engine uses n-gram segmentation support for languages such as Chinese, Japanese, and Korean. If a text document is in one of the supported languages, linguistic processing is carried out during the tokenization stage, that is when then text is broken up into individual words. For unsupported languages, the document is parsed using white space or n-gram segmentation. Lemmatization (like stemming, this means to find the normalized form of a word, but it also analyzes the word's part of speech) is not performed on unsupported languages. When you search a text search index, a match is indicated if the indexed document contains the query terms or linguistic variations of the query terms. The variations of a word depend on the language of the query. #### Linguistic processing for Chinese, Japanese, and Korean documents Documents that are in Chinese, Japanese, or Korean are processed using n-gram segmentation. For a search engine, getting good search results depends in large part on the techniques that are used to process text. After the text is extracted from the document, the first step in text processing is to identify the individual words in the text. Identifying the individual words in the text is referred to as segmentation. For many languages, white space (blanks, the end of a line, and certain punctuation) can be used to recognize word boundaries. However, Chinese, Japanese, and Korean do not use white space between characters to separate words, so other techniques must be used. Currently DB2 Text Search does not provide dictionary-based word segmentation for Chinese, Japanese, and Korean. #### N-gram segmentation N-gram segmentation avoids the problem of identifying word boundaries, and instead indexes overlapping pairs of characters. Because two characters are used, this technique is also called bi-gram segmentation. N-gram segmentation
always returns all matching documents that contain the search terms; however, this technique can return documents that do not match the query. By default, DB2 Text Search comes with a pre-configured index that uses n-gram segmentation for Chinese, Japanese, and Korean. To show how both types of linguistic processing work, examine the following text in a document: election for governor of Kanagawa prefecture. In Japanese, this text contains eight characters. For this example, the eight characters are represented as A B C D E F G H. A sample query that users might enter could be election for governor, which is four characters and are represented as E F G H. (The document text and the sample query share similar characters.) After the document is indexed, the search engine segments the text election for governor of Kanagawa prefecture into the following sets of characters: AB BC CD DE EF FG GH. The sample query election for governor is segmented into the following sets of characters: DE EF FG GH. If you search with the sample query election for governor, the document will be found by the query because the tokens for both the document text and the query appear in the same order. With n-gram segmentation, you will likely see more results but possibly less precise results. For example, in Japanese, if you search with the query Kyoto and a document in your index contains the text City of Tokyo, the query Kyoto will return the document with the text City of Tokyo. The reason is that City of Tokyo and Kyoto share two of the same Japanese characters. #### Related reference Appendix B, "Locales supported for DB2 Text Search," on page 183 #### Command-line tools for DB2 Text Search Four command-line tools are included with DB2 Text Search to facilitate its use. #### The Configuration Tool For performing both the initial and subsequent configurations of DB2 Text Search #### The Administration Tool For performing various administrative tasks related to the DB2 Text Search server #### The Synonym Tool For adding synonym dictionaries to text search indexes and removing synonym dictionaries from text search indexes #### The Log Formatter Tool For viewing and saving system messages and trace messages ### Issuing text search commands You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. To use the db2ts command shell, pass the command string as a parameter. The db2ts command shell acts like the DB2 command shell in that a command must contain the connection information if a remote database is used. Unlike the DB2 command shell, however, db2ts does not provide a session; instead, each command is a separate unit and thus must establish a connection separately. You do not have to specify the database connection if you are running the command locally for the default database specified using the DB2DBDFT environment variable. Set the DB2DBDFT environment variable at the operating system level. If you also set it using the db2set command, ensure that the same value is used. Using an administrative SQL routine enables you to issue administration calls from a DB2 client on which you have not installed DB2 Text Search. You can call either the generic SYSTS_ADMIN_CMD administrative SQL routine with a command string as a parameter or the specific administrative SQL routine for that command. Note: Error messages resulting from db2ts commands are written in the client locale, but messages resulting from the administrative routines are written in the locale specified by the message-locale argument or in en_US if you do not specify a locale. Because some commands are not related to a specific database, for example, START FOR TEXT and STOP FOR TEXT, you can run them only using the db2ts command shell. #### Related concepts Chapter 21, "Administration commands for DB2 Text Search," on page 115 There are a number of commands that allow you to administer DB2 Text Search at the instance, database, table, and text-index levels. You run all of the commands using db2ts. Chapter 22, "DB2 Text Search routines," on page 141 DB2 Text Search provides several administrative SQL routines for running commands and for returning the result messages of the commands that you run and the result message reason codes. #### Related reference "SYSTS_ADMIN_CMD stored procedure - Run text search administration commands" on page 141 The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. ### Rich text document support DB2 Version 9.7 Text Search supports rich text documents. With this support, DB2 Text Search can index and search rich text documents within a properly configured DB2 Text Search instance. DB2 Text Search supports TEXT, XML, and HTML text index formats to prepare indexes for full-text search on text data. DB2 Version 9.7 and rich text support adds the INSO text index format to prepare indexes for full-text search on rich text data. Rich text documents are documents that contain text as well as formatting instructions such as bold, italics, font types, font sizes, spacing, and more. Common and popular office products produce documents that are prime examples of rich text documents. A more specific example is the resume. This type of document is typically created in various office product software suites. DB2 Text Search can now store, index, and search such documents with greater ease and flexibility. Non-English dictionary keywords (for example: street name, e-mail address, and computer languages) can also be correctly searched and retrieved. For more information on the enablement and configuration of the rich text support feature, see the following topics. #### Related tasks Chapter 10, "Setting-up DB2 Text Search for rich text document support," on page DB2 Text Search servers must be properly configured before rich text documents are supported. ## Chapter 2. Text search solution planning Understanding certain key concepts, such as supported document types and languages and user roles, will help you leverage the benefits of DB2 Text Search. ### **Security considerations for DB2 Text Search** There are a number of steps that you need to take to ensure that confidential data is protected. Table 1. Security-related issues and solutions | Issue | Solution | |---|---| | Access and audit policies for the base data table are not inherited for the staging table. | The staging table will need to be appropriately protected if confidential data is used in the primary key of the base table | | If confidential data is indexed, this data is represented in the text index and some data might be readable. | The file and folder access permissions should be checked to verify that they match with the company policy. | | On Windows, when a custom collection directory is specified (which occurs when the COLLECTION DIRECTORY clause is specified when creating a text index) it does not have restricted privileges. | Ensure that you check (and change, if necessary) the access permissions to the collection directories. For example if the extended security model is employed, then only DB2ADMNS should have permissions on the directory. | | Fenced user ID and instance user ID must
be members of the same primary group to
grant the instance user ID correct access to
files created by the fenced user ID and vice
versa. | Assign correct group membership and file permissions. | #### **User roles** There are different user roles and authorizations for users of DB2 Text Search. Typical users include the following ones: - DB2 instance owners - Database administrators - User table owners - Users performing text search queries #### Instance owner The instance owner user ID is used to start and stop the DB2 Text Search instance services on the DB2 server. Note that the DB2 instance and the DB2 Text Search services must be processes of the same user ID. #### **Prerequisite** In Version 9.7, the instance owner must hold DBADM with DATAACCESS authority. In addition to performing its primary task of controlling the instance services, the DB2 instance owner user ID acts as a central point of control for all database changes triggered by DB2 Text Search. Another primary task is cleaning up any unused text search indexes. The instance owner is determined differently on UNIX and Windows systems: - On UNIX systems, the instance owner user is the name and user ID of the instance specified for the db2icrt command. - On Windows systems, the instance owner is the user ID running the DB2 instance service. #### Related concepts "Database administration authority (DBADM)" in Database Security Guide #### Related tasks Chapter 7, "Starting the DB2 Text Search instance service," on page 45 Before you can enable your database for text search, you must start the DB2 Text Search instance service. #### Related reference "db2ts START FOR TEXT " in Command Reference "db2ts STOP FOR TEXT" in Command Reference "db2ts CLEANUP FOR TEXT" in Command Reference #### Database administrator The database administrator enables and disables databases for use with DB2 Text Search. Another main task that the database administrator performs is clearing command locks. This role corresponds to DBADM authorization, which allows the manipulation of all database objects, including text search indexes. #### Related concepts "Database administration authority (DBADM)" in Database Security Guide #### Related tasks Chapter 8, "Enabling a database for DB2 Text
Search," on page 47 You must enable each database that contains columns of text to be searched. You can enable a database for DB2 Text Search by using the db2ts ENABLE DATABASE FOR TEXT command or the SYSPROC.SYSTS_ENABLE stored procedure. #### Related reference "db2ts ENABLE DATABASE FOR TEXT" in Command Reference "db2ts DISABLE DATABASE FOR TEXT" in Command Reference "db2ts CLEAR COMMAND LOCKS" in Command Reference #### User table owner The user table owner defines and maintains text search indexes. Typical user table owner tasks include the following ones: - Creating text search indexes and defining their characteristics - Updating text search indexes - Changing the update characteristics of text search indexes - Dropping text search indexes - Clearing the event table periodically The user table owner role corresponds to the CONTROL privilege for the table on which a text search index is created. #### Related concepts "Authorization, privileges, and object ownership" in SQL Reference, Volume 1 Chapter 16, "Text search index maintenance," on page 69 After you create text search indexes, there are several maintenance tasks that you need to perform. There are several ways to perform these tasks, including using various administration commands, stored procedures, and the Administration Tool. #### Related tasks "Creating a text search index" on page 64 After you enable a database for DB2 Text Search, you can create text search indexes on columns that contain the text that you want to search. #### Related reference "db2ts CREATE INDEX " in Command Reference "db2ts DROP INDEX " in Command Reference "db2ts ALTER INDEX " in Command Reference "db2ts UPDATE INDEX " in Command Reference "db2ts CLEAR EVENTS FOR INDEX" in Command Reference ### User performing text search queries Users who perform search queries can use the DB2 Text Search CONTAINS and SCORE functions in an SQL query against a user table. They can also use the xmlcolumn-contains function in an XQuery that references a table with a text search index. There is no specific DB2 Text Search search authorization. Depending on the access rights that the users are granted on the table that the text search index is created on, the query is permitted or rejected. If users can issue a SELECT statement on a given table, they can also perform a text search on that table. Users performing the search queries can include the following functionality in their queries: - Limit the text search to a particular document (using SQL or XQuery) - Return a score indicating how well a document compares with other matching documents for a given search argument (using SQL) #### Related concepts Chapter 19, "Searching with text search indexes," on page 85 After you populate a text search index with data, you can search that index. DB2 Text Search supports searches in SQL, XQuery, and SQL/XML. ### Asynchronous index updates To improve performance, a text search index is not synchronized with its associated user table within the scope of a DB2 transaction that updates, deletes text documents from, or inserts text documents into that table. Instead, text search indexes are updated asynchronously. To facilitate the asynchronous update of a text search index, a staging table (also known as a log table), is created for each text search index. Triggers on the text table capture any changes to a text column (for example, inserts, deletes, or updates) that the text search index is associated with and write them to the staging table. The updates to the text search index are applied at a later stage, during either a manual update or an automatic update. The update is made to a copy of a very small part of the index. During the update, you can still perform searches on the index, but you cannot access the updated text search index until the synchronization is complete. #### Resource consumption The text search server consumes system resources such as file descriptors to handle multiple index update and search requests. In a typical system, the number of open file descriptors per process may be limited to a relatively small number like 1024, which can result in the text search server running out of file descriptors. If this occurs, the search and update requests will fail. To determine if this has happened, check the server logs for an exception with the message string similar to " too many open files." If the text search server runs out of file descriptors, follow these steps: - 1. Shut down the text search server - 2. Increase the number of file descriptors per process by following your operating system manual. This increase in file descriptors must hold good across login sessions. - 3. Restart the text search server. #### Related reference "SYSIBMTS.TSSTAGING view" on page 169 The staging table stores the change operations on the user table that requires synchronization with the text search index. ### Document formats supported for DB2 Text Search You must specify the format (or type) of text documents that you intend to search using DB2 Text Search. This information is necessary for indexing text documents. The text column data can be plain text, rich text, an HTML document, or an XML document. Documents are parsed to extract only the relevant parts for indexing, thus making them searchable. For example, tags and metadata in an HTML document are not extracted because they are not indexed. ### Supported data types The data types in the text columns that you want to index and search can be either binary or character. DB2 Text Search supports the following data types: - CHAR - VARCHAR - LONG VARCHAR - CLOB - DBCLOB - BLOB - GRAPHIC - VARGRAPHIC - LONG VARGRAPHIC - XML #### Related tasks "Creating a text search index on binary data types" on page 66 When creating a text search index, you have the option of specifying a code page for a binary column. Doing so helps the DB2 Text Search engine identify the character encoding. ### Conversion of unsupported formats and data types You can use your own function to convert an unsupported format or data type into a supported format or data type. By creating the text index using a user-defined function (UDF), you can convert an unsupported format to a supported format that can be processed during indexing by filtering the unsupported characters. You can also use this approach for indexing documents that are stored in external unsupported data stores. In this case, where a DB2 column contains document references, you can use a UDF to return the content of documents that have the relevant document reference. #### Related tasks "Creating a text search index on unsupported data types" on page 66 If documents are in a column of an unsupported data type, such as a user-defined type (UDT), you must provide a function that takes the user type as input and provides an output type that is one of the supported types. #### Related reference "Supported data types" on page 16 The data types in the text columns that you want to index and search can be either binary or character. ### Supported languages and code pages You can specify that the text documents be parsed using a particular language when you first create a text search index. You can also specify that the guery terms be interpreted in a particular language while searching. In addition, you can specify a code page when you create a text search index on a binary data type column. #### Language specification A locale is a combination of language and territory (region or country) information and is represented by a five-character locale code. You define the message locale for a text search administration procedure by passing the procedure the locale code. Refinements of these locale codes are possible depending on the locales installed on the DB2 server. There is an important difference between specifying a language when you create a text search index and specifying a language when you issue a search query: The locale that you specify in your db2ts CREATE INDEX command determines the language used to tokenize or analyze documents for indexing. If you know that all documents in the column to be indexed use a specific language, specify the applicable locale when you create the text search index. If you do not specify a locale, the database territory will be used to determine the default setting for LANGUAGE. To have your documents automatically scanned to determine the - locale, in the SYSIBMTS.TSDEFAULTS view, set the LANGUAGE attribute to AUTO. The SYSIBMTS.TSDEFAULTS view describes database defaults for text search using attribute-value pairs. - The locale that you specify in a search query is used to perform linguistic processing on the query and to help identify the base forms of the query term. After the locale of the base form has been identified, the locale does not play any part in the search process itself. Thus, you could use the English language for a query and obtain German documents in the search result if the search term in its base form is present in the documents. The list of supported locales can be found here. ### Code page specification You can index documents if they use one of the supported DB2 code pages. Although specifying the code page when creating a text search index is optional, doing so helps to identify the character encoding of binary columns. If you do not specify a code page for binary columns, the code page from the column property is #### Related reference "SYSIBMTS.TSDEFAULTS view" on page 165 SYSIBMTS.TSDEFAULTS displays all the default values for all text search indexes in a database. #### **Document size considerations** DB2 Text Search has limits on the size of the document that can be indexed and on the number of characters within that document. The maximum size of documents that can be processed successfully is 100 MB. If a document exceeds the size limit, that document is rejected and an entry is created in the event table with that information, including the primary key
to identify it. Processing continues for other documents that are a part of that update operation. #### **Document truncation** DB2 Text Search limits the number of Unicode characters that you can index for each text document. Sometimes, this character limit results in the truncation of large text documents in the text search index. The default value for the number of Unicode characters allowed for each text document is 10 000 000. For a rich text document, this limit is applied after the document is transformed to plain text. If a text document is truncated during the parsing stage, you receive a warning that some text was not processed correctly or completely. Text that is incorrectly or incompletely processed is not indexed and cannot be searched. Details about the warning are written to the event table that was created for the text search index. You might want to remove a truncated document to avoid unexpected behavior during search processing. You can remove the document by removing it from the DB2 table or by changing the value for the document to empty or null. The maximum number of characters indexed for XML documents is the same as for non-XML documents, but the count includes not only the plain text but also tag names, attribute names, and attribute values. XML directives and comments are not indexed and do not count toward the truncation limit. #### Related reference "SYSIBMTS.TSEVENT view" on page 168 The event view provides information about indexing status and error events. # Part 3. Installing and configuring DB2 Text Search DB2 Text Search is an optionally installable component whose installation and configuration are fully integrated with the installation of all DB2 server products. You can have the DB2 installer automatically install and configure DB2 Text Search. The steps that you must take are platform dependent. Figure 4 describes the installation and configuration process on Windows platforms, and Figure 5 on page 22 describes the process on Linux and UNIX platforms. Figure 4. Installing and configuring on Windows platforms 1. If you run db2setup as a non-root user, have your system administrator (who has SYSADM authority) run the **db2rfe** command afterwards to reserve the port number that you want in the services file. Figure 5. Installing and configuring on Linux and UNIX platforms #### Restrictions DB2 Text Search does not support a Database Partitioning Feature (DPF) instance. #### Related reference "Configuration Tool for DB2 Text Search" on page 171 The Configuration Tool is a command-line tool that you can use for the initial text search configuration or the post-installation customization of the text search configuration for a DB2 instance. # Chapter 3. Installing and configuring DB2 Text Search with the DB2 Setup Wizard You can install DB2 Text Search with the DB2 Setup Wizard as a part of a custom installation of your DB2 product. Perform a custom installation of your DB2 product and select DB2 Text Search from the feature tree. You can have DB2 Text Search automatically configured, or you can manually configure it later. To perform a custom installation of DB2 Text Search using setup or db2setup: - 1. Install the DB2 server using the instructions for your platform: - "Installing DB2 servers using the DB2 Setup wizard (Windows)" in Installing DB2 Servers - "Installing DB2 servers using the DB2 Setup wizard (Linux and UNIX)" in *Installing DB2 Servers* You can select the DB2 Text Search component from the feature tree. During the installation, you have the option to configure DB2 Text Search for the default instance. If you do not want to configure DB2 Text Search, skip step 2. 2. To configure DB2 Text Search yourself, provide a valid service name and port number if these fields do not already have values. You do not have to configure DB2 Text Search immediately after installing it; you can configure it later. For instructions on how to perform the configuration later, see Configuring DB2 Text Search. ### Installing DB2 servers (Windows) This task describes how to start the DB2 Setup wizard on Windows. You will use the DB2 Setup wizard to define your installation and install your DB2 database product on your system. #### Before you begin Before you start the DB2 Setup wizard: - If you are planning on setting up a partitioned database environment, refer to "Setting up a partitioned database environment". - Ensure that your system meets installation, memory, and disk requirements. - If you are planning to use LDAP on Windows to register the DB2 server in Active Directory, you should extend the directory schema before you install. - If you are planning to use the IBM® Tivoli® Monitoring for Databases: DB2 Agent, before installing your DB2 product see topic "Installing IBM Tivoli Monitoring for Databases: DB2 Agent with the DB2 installer" for details, limitations and restrictions. - You must have a local Administrator user account with the recommended user rights to perform the installation. In DB2 database servers where LocalSystem can be used as the DAS and DB2 instance user and you are not using the database partitioning feature, a non-administrator user with elevated privileges can perform the installation. **Note:** If a non-Administrator user account is going to do the product installation, then the VS2005 runtime library must be installed before attempting to install a DB2 database product. The VS2005 runtime library is needed on the operating system before the DB2 database product can be installed. The VS2005 runtime library is available from the Microsoft runtime library download web site. There are two choices: choose vcredist_x86.exe for 32-bit systems or vcredist_x64.exe for 64-bit systems. - · Although not mandatory, it is recommended that you close all programs so that the installation program can update any files on the computer without requiring a reboot. - Installing DB2 products from a virtual drive or an unmapped network drive (such as \\hostname\sharename in Windows Explorer) is not supported. Before attempting to install DB2 products, you must map the network drive to a Windows drive letter (for example, Z:). #### Restrictions - · You cannot have more than one instance of the DB2 Setup wizard running in any user account. - The DB2 copy name and the instance name cannot start with a numeric value. The DB2 copy name is limited to 64 English characters consisting of the characters A-Z, a-z and 0-9. - The DB2 copy name and the instance name must be unique among all DB2 - The use of XML features is restricted to a database that has only one database partition. - No other DB2 database product can be installed in the same path if one of the following is already installed: - IBM Data Server Runtime Client - IBM Data Server Driver Package - DB2 Information Center - The DB2 Setup wizard fields do not accept non-English characters. - If you enable extended security on Windows Vista or Windows 2008, or higher, users must belong to the DB2ADMNS or DB2USERS group to run local DB2 commands and applications because of an extra security feature (User Access Control) that limits the privileges that local administrators have by default. If users do not belong to one of these groups, they will not have read access to local DB2 configuration or application data. #### **Procedure** To start the DB2 Setup wizard: - 1. Log on to the system with the local Administrator account that you have defined for the DB2 installation. - 2. If you have the DB2 database product DVD, insert it into the drive. If enabled, the autorun feature automatically starts the DB2 Setup Launchpad. If the autorun does not work, use Windows Explorer to browse the DB2 database product DVD and double-click on the setup icon to start the DB2 Setup Launchpad. - 3. If you downloaded the DB2 database product from Passport Advantage[®], run the executable file to extract the DB2 database product installation files. Use Windows Explorer to browse the DB2 installation files and double-click on the setup icon to start the DB2 Setup Launchpad. - 4. From the DB2 Setup launchpad, you can view installation prerequisites and the release notes, or you can proceed directly to the installation. You may want to review the installation prerequisites and release notes for late-breaking information. - 5. Click **Install a Product** and the Install a Product window will display the products available for installation. If you have no existing DB2 database products installed on your computer, launch the installation by clicking **Install New**. Proceed through the installation following the DB2 Setup wizard's prompts. If you have at least one existing DB2 database product installed on your computer, you can: - Click Install New to create a new DB2 copy. - Click **Work with Existing** to update an existing DB2 copy, to add function to an existing DB2 copy, upgrade an existing DB2 Version 9.1, or Version 9.5 copy, or to install an add-on product. - 6. The DB2 Setup wizard will determine the system language, and launch the setup program for that language. Online help is available to guide you through the remaining steps. To invoke the online help, click **Help** or press **F1**. You can click **Cancel** at any time to end the installation. #### Results Your DB2 database product will be installed, by default, in the *Program_Files*\IBM\sqllib directory, where *Program_Files* represents the location of the Program Files directory. If you are installing on a system where this directory is already being used, the DB2 database product installation path will have _xx added to it, where xx are digits, starting at 01 and increasing depending on how many DB2 copies you have installed. You can also specify your own DB2 database product installation path. #### What to do next - Verify your installation. - Perform the necessary post-installation tasks. For information on errors encountered during installation, review the installation log file
located in the My Documents\DB2LOG\ directory. The log file uses the following format: DB2-ProductAbrrev-DateTime.log, for example, DB2-ESE-Tue Apr 04 17_04_45 2008.log. If this is a new DB2 product installation on Vista 64–bit, and you will use a 32–bit OLE DB provider, you must manually register the IBMDADB2 DLL. To register this DLL, run the following command: c:\windows\SysWOW64\regsvr32 /s c:\Program Files\IBM\SQLLIB\bin\ibmdadb2.dll where Program_Files represents the location of the Program Files directory. If you want your DB2 database product to have access to DB2 documentation either on your local computer or on another computer on your network, then you must install the DB2 Information Center. The DB2 Information Center contains documentation for the DB2 database system and DB2 related products. By default, DB2 information will be accessed from the web if the DB2 Information Center is not locally installed. #### DB2 Express Edition and DB2 Workgroup Server Edition memory limits If you are installing DB2 Express Edition, the maximum allowed memory for the instance is 4 GB. If you are installing DB2 Workgroup Server Edition, the maximum allowed memory for the instance is 16 GB. The amount of memory allocated to the instance is determined by the **INSTANCE_MEMORY** database manager configuration parameter. #### Important notes when upgrading from Versions 9.1 or 9.5: - If the memory configuration for your Version 9.1 DB2 database product exceeds the allowed limit, the DB2 database product might not start after upgrading to the current version. - The self tuning memory manager will not increase your overall instance memory limit beyond the license limits. #### Related concepts "DB2 object naming rules" in Database Administration Concepts and Configuration Reference #### Related tasks "Applying fix packs" in Installing and Configuring DB2 Connect Servers "Verifying the installation of DB2 servers using First Steps (Linux and Windows)" in Installing DB2 Servers "Verifying the installation using the command line processor (CLP)" in Installing DB2 Servers "Extending the Active Directory Schema for LDAP directory services (Windows)" in Installing and Configuring DB2 Connect Personal Edition "Setting up a partitioned database environment" in Installing DB2 Servers "Applying DB2 licenses" in Installing DB2 Servers "An overview of installing your DB2 server product (Windows)" in Installing DB2 Servers "Uninstalling IBMTivoli Monitoring for Databases: DB2 Agent with the DB2 installer" in Installing DB2 Servers #### Related reference "UPDATE ADMIN CONFIGURATION" in Command Reference "Installation requirements for DB2 servers and IBM data server clients (Windows)" in Installing DB2 Servers "Required user accounts for installation of DB2 server products (Windows)" in Installing and Configuring DB2 Connect Servers "Multiple DB2 copies overview" in Database Administration Concepts and Configuration Reference ### Installing DB2 servers using the DB2 Setup wizard (Linux and UNIX) This task describes how to start the DB2 Setup wizard on Linux and UNIX operating systems. The DB2 Setup wizard is used to define your installation preferences and to install your DB2 database product on your system. #### Before you begin Before you start the DB2 Setup wizard: - If you are planning on setting up a partitioned database environment, see how to do this by following the related link at the bottom of this topic. - Ensure that your system meets installation, memory, and disk requirements. - Ensure you have a supported browser installed (Firefox 2.0+, Mozilla 1.7+, or SeaMonkey 1.1.4). - You can install a DB2 server using either root or non-root authority. For more information on non-root installation, see the related links. - The DB2 database product image must be available. You can obtain a DB2 installation image either by purchasing a physical DB2 database product DVD, or by downloading an installation image from Passport Advantage. - If you are installing a non-English version of a DB2 database product, you must have the appropriate National Language Packages. - The DB2 Setup wizard is a graphical installer. You must have X windows software capable of rendering a graphical user interface for the DB2 Setup wizard to run on your machine. Ensure that the X windows server is running. Ensure that you have properly exported your display. For example, export DISPLAY=9.26.163.144:0. - If you are using security software in your environment, you must manually create required DB2 users before you start the DB2 Setup wizard. - If you are planning to use the IBM Tivoli Monitoring for Databases: DB2 Agent, before installing your DB2 product see topic "Installing IBM Tivoli Monitoring for Databases: DB2 Agent with the DB2 installer" for details, limitations and restrictions. #### Restrictions - You cannot have more than one instance of the DB2 Setup wizard running in any user account. - The use of XML features is restricted to a database that is defined with the code set UTF-8 and has only one database partition. - The DB2 Setup wizard fields do not accept non-English characters. #### **Procedure** To start the DB2 Setup wizard: 1. If you have a physical DB2 database product DVD, change to the directory where the DB2 database product DVD is mounted by entering the following command: ``` cd /dvdrom ``` where /dvdrom represents the mount point of the DB2 database product DVD. - 2. If you downloaded the DB2 database product image, you must extract and untar the product file. - a. Extract the product file: ``` gzip -d product.tar.gz ``` where *product* is the name of the product that you downloaded. b. Untar the product file: ``` On Linux operating systems tar -xvf product.tar ``` #### On AIX, HP-UX, and Solaris operating systems gnutar -xvf product.tar where *product* is the name of the product that you downloaded. **c**. Change directory: cd ./product where *product* is the name of the product that you downloaded. **Note:** If you downloaded a National Language Package, untar it into the same directory. This will create the subdirectories (for example ./nlpack) in the same directory, and allows the installer to automatically find the installation images without prompting. - 3. Enter the ./db2setup command from the directory where the database product image resides to start the DB2 Setup wizard. - 4. The IBM DB2 Setup Launchpad opens. From this window, you can view installation prerequisites and the release notes, or you can proceed directly to the installation. You can also review the installation prerequisites and release notes for late-breaking information. - 5. Click **Install a Product** and the **Install a Product** window will display the products available for installation. Launch the installation by clicking **Install New**. Proceed through the installation following the DB2 Setup wizard's prompts. Once you have initiated the installation, proceed through the DB2 Setup wizard installation panels and make your selections. Installation help is available to guide you through the remaining steps. To invoke the installation help, click **Help** or press F1. You can click **Cancel** at any time to end the installation. #### **Results** For non-root installations, DB2 database products are always installed in the \$HOME/sqllib directory, where \$HOME represents the non-root user's home directory. For root installations, DB2 database products are installed, by default, in one of the following directories: #### AIX, HP-UX, and Solaris /opt/IBM/db2/V9.7 Linux /opt/ibm/db2/V9.7 If you are installing on a system where this directory is already being used, the DB2 database product installation path will have _xx added to it, where _xx are digits, starting at 01 and increasing depending on how many DB2 copies you have installed. You can also specify your own DB2 database product installation path. DB2 installation paths have the following rules: - Can include lowercase letters (a–z), uppercase letters (A–Z), and the underscore character (_) - Cannot exceed 128 characters - Cannot contain spaces • Cannot contain non-English characters The installation log files are: - The DB2 setup log file. This file captures all DB2 installation information including errors. - For root installations, the DB2 setup log file name is db2setup.log. - For non-root installations, the DB2 setup log file name is db2setup_username.log, where username is the non-root user ID under which the installation was performed. - The DB2 error log file. This file captures any error output that is returned by Java[™] (for example, exceptions and trap information). - For root installations, the DB2 error log file name is db2setup.err. - For non-root installations, the DB2 error log file name is db2setup_username.err, where username is the non-root user ID under which the installation was performed. By default, these log files are located in the /tmp directory. You can specify the location of the log files. There is no longer a db2setup.his file. Instead, the DB2 installer saves a copy of the DB2 setup log file in the DB2_DIR/install/logs/ directory, and renames it db2install.history. If the name already exists, then the DB2 installer renames it db2install.history.xxxx, where xxxx is 0000-9999, depending on the number of installations you have on that machine. Each installation copy has a separate list of history files. If an installation copy is removed, the history files under this install path will be removed as well. This copying action is done near the end of the installation and if the program is stopped or aborted before completion, then the history file will not be created. #### What to do next - Verify your installation. - Perform the necessary post-installation tasks. National Language Packs can also be installed by running the ./db2setup command from the directory where the National Language Pack resides, after a DB2 database product has been installed. On Linux x86, if
you want your DB2 database product to have access to DB2 documentation either on your local computer or on another computer on your network, then you must install the *DB2 Information Center*. The *DB2 Information Center* contains documentation for the DB2 database system and DB2 related products. ### DB2 Express Edition and DB2 Workgroup Server Edition memory limits If you are installing DB2 Express Edition, the maximum allowed memory for the instance is 4 GB. If you are installing DB2 Workgroup Server Edition, the maximum allowed memory for the instance is 16 GB. The amount of memory allocated to the instance is determined by the INSTANCE_MEMORY database manager configuration parameter. Important notes when upgrading from Versions 9.1 or 9.5: - If the memory configuration for your Versions 9.1 or 9.5 DB2 database product exceeds the allowed limit, the DB2 database product might not start after upgrading to the current version. - The self tuning memory manager will not increase your overall instance memory limit beyond the license limits. ## Related concepts "DB2 object naming rules" in Database Administration Concepts and Configuration Reference "DB2 installation methods" in Installing DB2 Servers "Non-root installation overview (Linux and UNIX)" in Installing and Configuring DB2 Connect Personal Edition "Main menu entries for DB2 tools (Linux)" in Installing DB2 Servers #### Related tasks "Setting up a partitioned database environment" in Installing DB2 Servers "Installing a DB2 product as a non-root user" in Installing and Configuring DB2 Connect Personal Edition "Uninstalling IBMTivoli Monitoring for Databases: DB2 Agent with the DB2 installer" in Installing DB2 Servers #### Related reference "UPDATE DATABASE CONFIGURATION" in Command Reference "UPDATE ADMIN CONFIGURATION" in Command Reference "Multiple DB2 copies overview" in Database Administration Concepts and Configuration Reference # Chapter 4. Installing and configuring DB2 Text Search with a response file You can install and configure DB2 Text Search as a part of custom silent installation of your DB2 product. This type of installations uses the setup or db2setup command with a response file. Perform a custom installation of your DB2 product to install DB2 Text Search. You must add a number of keywords to your response file to have DB2 Text Search installed and configured. To perform a custom installation: 1. Add the line ``` COMP = TEXT SEARCH ``` to the response file that you are using to install your DB2 product. - 2. To configure DB2 Text Search during the installation, add the following lines to the response file: - For root installations only: ``` db2inst name.TEXT SEARCH HTTP SERVICE NAME = db2j db2inst name ``` where *db2inst_name* is the name of the DB2 instance and *db2j_db2inst_name* is the service name. - If you provide a value for the TEXT_SEARCH_HTTP_SERVICE_NAME keyword for a non-root installation, an error will be returned. - For root installations and non-root installations: ``` db2inst_name.TEXT_SEARCH_HTTP_PORT_NUMBER = port-number You can specify any valid service name and port number that are not in use. If ``` You can specify any valid service name and port number that are not in use. If you do not provide any values, default values are used for configuration if the response file keyword *db2inst_name*.**CONFIGURE_TEXT_SEARCH** is set to YES. - 3. Install the DB2 product using the instructions for your platform: - "Installing a DB2 product using a response file (Windows)" in Installing DB2 Servers - "Installing a DB2 product using a response file (Linux and UNIX)" in Installing DB2 Servers **Note:** You do not have to configure DB2 Text Search immediately after installing it; you can configure it later. For instructions on how to perform the configuration later, see Configuring DB2 Text Search. # Installing a DB2 product using a response file (Windows) Before you begin the installation, ensure that: • Your system meets all of the memory, hardware, and software requirements to install your DB2 product. To perform an installation from the workstation where the DB2 product will be installed: 1. Connect to the shared directory of the network drive or DVD drive containing the DB2 installation files by entering the following command from the command prompt: net use x: \\computer name\directory sharename /USER:domain\username #### where: - *x*: represents the shared directory on the local drive. - computer name represents the computer name of the remote server where the DB2 installation files are located. - · directory_sharename represents the share name of the directory on the network drive or DVD drive where the DB2 installation files are located. - *domain* represents the domain where the account is defined. - username represents a user that has access to this system. For example, to use the remote db2prods directory, which was shared as DB2 Installation Images and is located on the remote server Server, as the local x: drive, enter the following command: ``` net use x: \\Server\DB2 Installation Images ``` Depending on how security is set up across your network, you might have to specify the /USER parameter. 2. Enter the setup command as follows: ``` setup -u response file ``` where response file represents the full path and file name of the response file to use. If you are using a response file that was created using the response file generator, ensure that all the instance profiles are located in the same drive and directory as the response file that you specify. 3. Check the messages in the log file when the installation finishes. For information about errors encountered during installation, review the installation log file located in the My Documents\DB2LOG\ directory. The log file uses the following format: DB2-ProductAbrrev-DateTime.log, for example, DB2-ESE-Tue Apr 04 17_04_45 2007.log. If you want your DB2 product to have access to DB2 documentation either on your local computer or on another computer on your network, you must install the DB2 Information Center. #### Related concepts "DB2 Information Center installation options" in Installing DB2 Servers #### Related tasks "Installing the DB2 Information Center using the DB2 Setup wizard (Windows)" in Installing DB2 Servers #### Related reference "IBM Data Server Runtime Client installation command-line options" in Installing IBM Data Server Clients "Command line options to install IBM Data Server Driver Package (Windows)" in Installing IBM Data Server Clients # Installing a DB2 product using a response file (Linux and UNIX) Before you begin the installation, ensure that: - For root installations, log on with the user ID that has root privileges. For non-root installations, log on with the user ID that is to own the DB2 installation. - Your system meets all of the memory, hardware, and software requirements to install your DB2 product. - You can install a DB2 product using a response file with either root or non-root authority. For more information about non-root installation, see the related links. - All DB2 processes associated with the copy of DB2 you are working with are stopped. To perform a response file installation: 1. Enter the db2setup command as follows: ``` dvd/db2setup -r responsefile directory/response file ``` #### where: - *dvd* represents the location of the DB2 installable image; - responsefile_directory represents the directory where the customized response file is located; and - response file represents the name of the response file. - 2. Check the messages in the log file when the installation finishes. The installation logs are located, by default, in the /tmp directory: - db2setup.log (db2setup_username.log for non-root installations, where *username* is the non-root user ID under which the installation was performed) - db2setup.err (db2setup_username.err for non-root installations, where *username* is the non-root user ID under which the installation was performed) You can specify the location of the log file. An installation history log db2install.history is located in *DB2DIR*/install/logs where *DB2DIR* specifies the path where the DB2 product was installed. The default installation directory is: - For AIX, HP-UX or Solaris /opt/IBM/db2/V9.7 - For Linux/opt/ibm/db2/V9.7 If more than one DB2 product is installed in the same location, you will see db2install.history.xxxx, where xxxx are digits, starting at 0001 and increasing depending on how many DB2 copies you have installed. If you want your DB2 product to have access to DB2 documentation either on your local computer or on another computer on your network, then you must install the DB2 Information Center. The DB2 Information Center contains documentation for the DB2 database and related products. #### Related tasks "Installing the DB2 Information Center using the DB2 Setup wizard (${\rm Linux}$)" in Installing DB2 Servers "Installing a DB2 product as a non-root user" in Installing and Configuring DB2 Connect Personal Edition #### Related reference "db2_install - Install DB2 product " in Command Reference "installFixPack - Update installed DB2 products " in Command Reference # Chapter 5. Installing DB2 Text Search using db2_install (Linux and UNIX) When you issue the db2_install command, you also install DB2 Text Search. To install DB2 Text Search, follow the steps outlined in "Install a DB2 product using db2_install" in *Installing DB2 Servers*. DB2 Text Search will automatically be installed as a part of the installation of your DB2 product. If this is a non-root installation, a DB2 instance is created and DB2 Text Search will be installed. If this a root installation, you must create a DB2 instance and configure DB2 Text Search using one of the available methods. You do not have to configure DB2 Text Search immediately after you install it. For instructions on how to perform the configuration, see Configuring DB2 Text Search. # Installing a DB2 product using the db2_install or
doce_install command (Linux and UNIX) Before you install DB2 products and features or the DB2 Information Center: - You should refer to the installation documentation for the particular DB2 product you want to install. For example, if you want to install DB2 Enterprise Server Edition, then refer to the *Quick Beginnings for DB2 Servers* documentation to review installation prerequisites and other important setup information. - You can install a DB2 product and the DB2 Information Center using either root or non-root authority. - The DB2 product image must be available. You can obtain a DB2 installation image either by purchasing a physical DB2 product DVD, or by downloading an installation image from Passport Advantage. The db2_install command installs DB2 products and features on supported Linux and UNIX operating systems. The doce_install command installs the DB2 Information Center on supported Linux operating systems. You *cannot* manually install a DB2 product or feature using an operating system's native installation utility such as rpm, SMIT, swinstall or pkgadd. Any existing scripts containing a native installation utility that you use to interface and query with DB2 installations will need to change. The db2_install command is not supported on the National Language Package DVD. Only one copy of the DB2 Information Center for the current release can be installed on your system. The Information Center cannot be installed in the same location where a DB2 product is installed. If you install the DB2 Information Center on a system with a firewall, and you plan to allow other systems to access the DB2 Information Center, you must open the port in your firewall setting. To install a DB2 product or feature using the db2_install command, or to install the DB2 Information Center using the doce_install command: - 1. If you have a physical DB2 product DVD, insert and mount the appropriate DVD or access the file system where the installation image was stored. - 2. If you downloaded the DB2 product image, you must decompress and untar the product file. - a. Decompress the product file: ``` gzip -d product.tar.gz ``` For example, gzip -d ese.tar.gz b. Untar the product file: ### On Linux operating systems tar -xvf product.tar For example, tar -xvf ese.tar ### On AIX, HP-UX, and Solaris operating systems gnutar -xvf product.tar For example, gnutar -xvf ese.tar **c**. Change directory into the product directory: cd $\operatorname{\textit{product}}$ For example, cd ese 3. Enter the ./db2 install or ./doce install command: ``` ./db2 install -b DB2DIR -p productShortName -c NLPackLocation -L language... -n ``` #### where: - *DB2DIR* specifies the path where the DB2 product will be installed. If the path is not specified, you are prompted to either select the default path or to provide the path. The default installation path is: - for AIX, HP-UX or Solaris operating systems: /opt/IBM/db2/V9.7 - for Linux operating systems: /opt/ibm/db2/V9.7 - for the DB2 Information Center: /opt/ibm/db2ic/V9.7. The Workstation version of the DB2 Information Center does not have a default installation path, you must specify the installation location. However, by default, the Workstation version of the DB2 Information Center is installed at port 51097. If you provide your own path, you must specify the full path name. DB2 installation paths have the following rules: - Can include lowercase letters (a–z), uppercase letters (A–Z), and the underscore character (_) - Cannot exceed 128 characters - Cannot contain spaces - Cannot contain non-English characters Note: For DB2 products and components to work together, they must be installed to a single path. This is not to be confused with the ability to install DB2 products to multiple paths. But, for products and components to work together, they must be installed to the same path, and, must be at the same release level. - *productShortName* specifies the DB2 product to be installed. This parameter is case insensitive and is mandatory when the -n parameter is specified. The product short name (productShortName) can be found in the file ComponentList.htm (under the product full name) located in the /db2/plat directory on your media where plat is the platform name that you are installing on. You can only install one product at a time. - NLPackLocation specifies the National Language Pack (NLPACK) location. - language specifies national language support. You can install a non-English version of a DB2 product. However, you must run this command from the product DVD, not the National Language pack DVD. - By default, English is always installed, therefore, English does not need to be specified. When more than one language is required this parameter is mandatory. To indicate multiple languages, specify this parameter multiple times. For example, to install both French and German specify -L FR -L DE. - *n* parameter indicates noninteractive installation mode. When this parameter is specified, both -b and -p must also be specified. You only need to specify -c and -L if applicable. When installing the DB2 Information Center, if you specify a port number other than the default, you might receive the error "The service name specified is in use". You can correct this error by either choosing to use the default port number or by specifying a different service name. After installation, you must manually configure your DB2 server. Tasks include user and instance creation and configuration. #### Related concepts "DB2 Information Center installation options" in Installing DB2 Servers "Non-root installation overview (Linux and UNIX)" in Installing and Configuring DB2 Connect Personal Edition "Limitations of non-root installations" in Installing and Configuring DB2 Connect Personal Edition #### Related tasks "Manually configuring DB2 servers after installation" in Installing DB2 Servers "Removing DB2 products using the db2_deinstall or doce_deinstall command (Linux and UNIX)" in Installing DB2 Servers "Listing DB2 database products installed on your system (Linux and UNIX)" in Installing DB2 Servers "Installing a DB2 product as a non-root user" in Installing and Configuring DB2 Connect Personal Edition #### Related reference "db2_install - Install DB2 product " in Command Reference "doce install - Install DB2 Information Center " in Command Reference "Installation requirements for DB2 database products" in Installing DB2 Servers # **Chapter 6. Configuring DB2 Text Search** Your options for configuring DB2 Text Search depend on whether you are performing the initial configuration or a reconfiguration and which platform you are using. Before reconfiguring DB2 Text Search, stop the text search instance services, as outlined in Starting and stopping the DB2 Text Search instance services. ### Determining whether DB2 Text Search is configured To determine whether DB2 Text Search is configured, run the Configuration Tool by issuing the following command: configTool printAll -configPath absolute-path-to-config-folder In the output of the printAll, option, the authentication token is an empty string if DB2 Text Search is not configured. ### Configuring DB2 Text Search for the first time On Linux and UNIX operating systems, use one of the following methods to configure DB2 Text Search: - Rerun the silent installation as described in Installing and configuring DB2 Text Search with a response file. - Rerun the GUI installation as described in Installing and configuring DB2 Text Search with the DB2 Setup Wizard . - Use the Configuration Tool. Note that using the Configuration Tool to perform a manual installation requires you to manually configure all of the parameters, whereas using the installer requires you to configure only two parameters. - Issue the db2isetup command. Note that on Linux and UNIX systems, if you create an instance using db2icrt, DB2 Text Search is not automatically configured. On Windows operating systems, use one of the following methods to configure DB2 Text Search: - Rerun the silent installation as described in Installing and configuring DB2 Text Search with a response file. - Rerun the GUI installation as described in Installing and configuring DB2 Text Search with the DB2 Setup Wizard. - Issue the db2icrt, db2iupdt, or db2iupgrade command. ### Reconfiguring DB2 Text Search After you have configured DB2 Text Search, you cannot use the GUI installer to reconfigure it. You must make any updates to the configuration manually. On Linux and UNIX operating systems, use one of the following methods to reconfigure DB2 Text Search: - Rerun the silent installation as described in Installing and configuring DB2 Text Search with a response file. - Use the Configuration Tool. - Issue the db2isetup command with the -r option. On Windows operating systems, use one of the following methods to reconfigure DB2 Text Search: - Rerun the silent installation as described in Installing and configuring DB2 Text Search with a response file. - Use the Configuration Tool. - Run the db2icrt, db2iupdt, or db2iupgrade command, specifying the -j option as shown to meet your needs: - j "TEXT_SEARCH" attempts to configure DB2 Text Search with the default service name and a generated port value. - j "TEXT_SEARCH, [servicename]" reserves the service name with an automatically generated port number or with the same port number assigned to that service name if the service name is already reserved in the services file. - j "TEXT_SEARCH, [port number]" reserves the port with the default service name. - j "TEXT_SEARCH,[servicename],[port#]" reserves the specified service name and port number. **Note:** On Windows operating systems, the PATH in the DB2 command window points to *current-default-copy-install-path*\db2tss\bin, so to configure an instance that is not in the current DB2 copy, first switch to the appropriate DB2 command window for that copy. # Configuring DB2 Text Search using the Configuration Tool The
Configuration Tool is a command-line tool that you can use to perform the initial configuration of DB2 Text Search or to change the current configuration. For the initial configuration, the recommended method is to have it done automatically by the DB2 installer. However, if you want to manually reconfigure DB2 Text Search, the Configuration Tool is an effective means of doing so. To customize most of the configuration settings, you must stop the DB2 Text Search instance services. To perform an the initial configuration of DB2 Text Search: - 1. Run the configTool command with the **configureParams** option to set the configuration path, log path, temporary directory path, and installation path values: - On Linux and UNIX platforms, specify the options as shown: - configTool configureParams - -configPath absolute-path-to-config-folder - -logPath path - -tempDirPath path - -installPath path Where the logPath specifies the log path to be used by DB2 Text Search, the tempDirPath specifies the temporary directory path to be used by DB2 Text Search, and the installPath specifies the path to the DB2 Text Search installation directory. • On Windows platforms, specify the command as shown. You need to specify only *configPath*; all of the other parameters are assigned default paths and values. ``` configTool -configPath absolute-path-to-config-folder ``` 2. Generate the authentication token by issuing the configTool command with thegenerateToken parameter, as follows: ``` configTool generateToken -configPath absolute-path-to-config-folder -seed myInstanceName ``` DB2 Text Search authenticates text search index administration and text search requests by using an authentication token. You do not have to remember the authentication token or the authentication key because the text search instance services use the token internally. 3. Specify the HTTP port by issuing the configTool command with the configure HTTP Listener parameter, as follows: ``` configTool configureHTTPListener -configPath absolute-path-to-config-folder -adminHTTPPort port-number -hostName localhost ``` **Note:** The value of the port should be between 1024 and 65535. The administrative HTTP port allows communication between text search processes using TCP/IP. During the installation of a DB2 product or during instance creation, you can specify a service name and port if you have root authority. These are used for updating the services file. 4. Update the services file. When you use the Configuration Tool for configuration, the tool does not update the services file. Therefore, you must update the services file manually, **Note:** Only root users can update the services file. Non-root users must have the system administrator run the db2rfe command first. # Updating the services file on the server for TCP/IP communications This task is part of the main task of *Configuring TCP/IP communications for a DB2 instance*. The TCP/IP services file specifies the ports that server applications can listen on for client requests. If you specified a service name in the *svcename* field of the DBM configuration file, the services file must be updated with the service name to port number/protocol mapping. If you specified a port number in the *svcename* field of the DBM configuration file, the services file does *not* need to be updated. Update the services file and specify the ports that you want the server to listen on for incoming client requests. The default location of the services file depends on the operating system: #### Linux and UNIX operating systems /etc/services ## Windows operating systems %SystemRoot%\system32\drivers\etc\services Using a text editor, add the Connection entry to the services file. For example: db2c_db2inst1 3700/tcp # DB2 connection service port where: ## $db2c_db2inst1$ represents the connection service name 3700 represents the connection port number tcp represents the communication protocol that you are using # Part 4. Administering and maintaining text search indexes # Chapter 7. Starting the DB2 Text Search instance service Before you can enable your database for text search, you must start the DB2 Text Search instance service. To start the DB2 Text Search instance service, enter the following command: db2ts "START FOR TEXT" The index update service is started when you issue db2ts START FOR TEXT. Related reference "db2ts START FOR TEXT " in Command Reference "db2ts STOP FOR TEXT " in Command Reference # Chapter 8. Enabling a database for DB2 Text Search You must enable each database that contains columns of text to be searched. You can enable a database for DB2 Text Search by using the db2ts ENABLE DATABASE FOR TEXT command or the SYSPROC.SYSTS_ENABLE stored procedure. You must start the DB2 instance service. The authorization ID of the statement must hold DBADM and DATAACCESS authority. When you enable a database, you can use the following views to get information about the text search indexes in the database and their properties: #### **SYSIBMTS.TSDEFAULTS** Shows the database default values for index, text, and processing characteristics #### SYSIBMTS.TSLOCKS Shows information about command locks set at the database and index level #### SYSIBMTS.TSINDEXES Shows all text search indexes and their settings #### SYSIBMTS.TSCONFIGURATION Shows the index configuration parameters #### SYSIBMTS.TSCOLLECTIONNAMES Shows the collection names for each index After you enable a database for text search, it remains enabled until you explicitly disable it. To prepare the database for use with DB2 Text Search, use one of the following methods: • Enter the following command: ``` db2ts "ENABLE DATABASE FOR TEXT CONNECT TO databaseName" ``` You must do this step only once for each database. You do not have to enable a database each time that you stop and restart the instance services. For example, to enable a database named SAMPLE, enter the following command: db2ts "ENABLE DATABASE FOR TEXT CONNECT TO SAMPLE" - Call one of the administrative SQL routines, as follows: - CALL SYSPROC.SYSTS_ADMIN_CMD ('ENABLE DATABASE FOR TEXT','en_US', ?) - CALL SYSPROC.SYSTS ENABLE('en US', ?) #### Related reference "db2ts ENABLE DATABASE FOR TEXT " in Command Reference "SYSTS_ENABLE procedure - Enable current database for text search" on page 142 This procedure enables DB2 Text Search for the current database. # Chapter 9. Installing DB2 Accessories Suite DB2 Accessories Suite provides the filter libraries required for the DB2 Text Search rich text document support functionality. To install DB2 Accessories Suite you must: Download DB2 Accessories Suite (V8.2.2 of Oracle's Outside In Technology Search Export SDK and HTML Export SDK). For the download link, see https://www.ibm.com/services/forms/preLogin.do?source=swg-dm-db2accsuite #### About this task It is imperative that the filter libraries provided within DB2 Accessories Suite are installed according to the instructions within this task. The rich text document support feature will only function with the proper filter libraries in place. #### Restrictions In order to install DB2 Accessories Suite on Linux and UNIX, you must be logged on to the DB2 server as a system administrator. On Windows, you must be logged on as a user with Local Administrator authority. #### Procedure To install DB2 Accessories Suite: - 1. Stop the DB2 Text Search instance service. To stop the service, run db2ts "STOP FOR TEXT". For more information on this command, see Chapter 12, "Stopping the DB2 Text Search instance service," on page 57. - 2. Log on to the DB2 server with a user having permissions as described in the Restrictions section. - 3. Unzip the package. The following files are provided: - For Linux and UNIX operating systems: ``` ./db2-install-directory/db2tss/lib/ciemsg ./db2-install-directory/db2tss/lib/whitney agntcfg.zip ./db2-install-directory/db2tss/bin/richtextTool.sh ./oit sdk/file name 1.zip ./oit sdk/file name 2.zip ./db2 accsuite license/license files readme.txt setup.sh The file names in the oit sdk directory are platform dependent Platform file name 1 file name 2 V13087-01.zip V13119-01.zip Linux32 V13125-01.zip V13132-01.zip Linux64 V13094-01.zip V13126-01.zip V13088-01.zip V13121-01.zip Solaris V13095-01.zip V13127-01.zip For Windows operating systems: .\db2-install-directory\db2tss\lib\ciemsg.exe .\db2-install-directory\db2tss\lib\whitney_agntcfg.zip .\db2-install-directory\db2tss\bin\richtextTool.bat .\oit sdk\file name 1.zip .\oit sdk\file name 2.zip .\db2 accsuite license\license files ``` readme.txt setup.bat The file names in the oit_sdk directory are platform dependent Platform file name 1 file name 2 Windows32 V13098-01.zip V13130-01.zip Windows64 V13099-01.zip V13131-01.zip - 4. Check for required files and packages. - For Linux and UNIX operating systems, check that the following exist: \$DB2DIR/db2tss/ciemsg \$DB2DIR/db2tss/whitney_agntcfg.zip \$DB2DIR/db2tss/richtextTool.sh where *DB2DIR* is the location of the DB2 Version 9.7 copy. If the *db2tss* directory is missing, DB2 Text Search has not been properly installed and configured. If the *db2tss* directory exists, but the required files and packages are missing, copy *ciemsg* and *whitney_agntcfg.zip* from the unzipped package to \$DB2DIR/db2tss/lib, and copy *richtextTool.sh* to \$DB2DIR/db2tss/bin where DB2DIR is the location of the DB2 Version 9.7 copy. ## Example: ``` cp /opt/IBM/db2/V9.7-0IT/db2tss/lib/ciemsg ./$DB2DIR/db2tss/lib/ cp /opt/IBM/db2/V9.7-0IT/db2tss/lib/whitney_agntcfg.zip ./$DB2DIR/db2tss/lib/ cp /opt/IBM/db2/V9.7-0IT/db2tss/bin/richtextTool.sh ./$DB2DIR/db2tss/bin/ ``` • For Windows operating systems, check that the following exist: ``` DB2PATH\db2tss\ciemsg.exe DB2PATH\db2tss\whitney_agntcfg.zip DB2PATH\db2tss\richtextTool.bat ``` where DB2PATH is the location of the DB2 Version 9.7 copy. If the *db2tss* directory is missing, DB2 Text Search has not been properly installed and configured. If the *db2tss* directory exists, but
the required files and packages are missing, copy *ciemsg.exe* and *whitney_agntcfg.zip* from the unzipped package to *DB2PATH*\db2tss\lib, and copy *richtextTool.bat* to *DB2PATH*\db2tss\bin where *DB2PATH* is the location of the DB2 Version 9.7 copy. #### Example: - 5. For Linux and UNIX operating systems, so that the instance owner can run them, ensure execute permission has been set on *ciemsg* and *richtextTool.sh*. - 6. Run the setup. - For Linux and UNIX operating systems: \$01T extract directory/setup.sh <DB2DIR> where *OIT_extract_directory* is where you unpacked the DB2 Accessories Suite, and *<DB2DIR>* is the location of the DB2 Version 9.7 copy. • For Windows operating systems: ``` OIT extract directory\setup.bat "<DB2PATH>" ``` where *OIT_extract_directory* is where you unpacked the DB2 Accessories Suite, and *<DB2PATH>* is the location of the DB2 Version 9.7 copy. ## **Results** You have successfully installed DB2 Accessories Suite. ## What to do next You can now setup rich text document support for DB2 Text Search. See, Chapter 10, "Setting-up DB2 Text Search for rich text document support," on page 53 for more details. # Chapter 10. Setting-up DB2 Text Search for rich text document support DB2 Text Search servers must be properly configured before rich text documents are supported. To setup rich text document support for DB2 Text Search servers you must: - Download and install the DB2 Accessories Suite package (Oracle's Outside In Technology (OIT)). For more information, see Chapter 9, "Installing DB2 Accessories Suite," on page 49 - 2. As a system administrator or user with administrative permissions, run the richtextTool utility to setup rich text document support. #### About this task The richtextTool utility sets-up, enables, and disables rich text document support for DB2 Text Search. The tool must be run before full-text indexes can be created for rich text document processing. #### Restrictions In order to run richtextTool setup on Linux and UNIX, you must be logged on to the DB2 server as a system administrator or a user with write and execute permissions on the DB2 install directory. In order to run richtextTool setup on Windows, you must be logged on as a user with Local Administrator authority. You must be able to write to the DB2 installation directory. #### Procedure - 1. Stop the DB2 Text Search instance service. To stop the service, run db2ts "STOP FOR TEXT". For more information on this command, see Chapter 12, "Stopping the DB2 Text Search instance service," on page 57. - 2. Log on to the DB2 server with a user having permissions as described in the Restrictions section. - 3. Run the richtextTool utility to setup support. To setup support: - For Linux and UNIX operating systems: \$INSTHOME/sqllib/db2tss/bin/richtextTool setup <DB2DIR> <OIT zipfile-directory> where *INSTHOME* is the instance home directory, *<DB2DIR>* is the location of the DB2 Version 9.7 copy, and *<OIT zipfile-directory>* contains the OIT(search and html export) library zip files. • For Windows operating systems: DB2PATH\db2tss\bin\richtextTool.bat setup <DB2PATH> <OIT zipfile-directory> where *<DB2PATH>* is the location of the DB2 Version 9.7 copy and *<OIT zipfile-directory* contains the OIT(search and html export) library zip files. 4. Start the DB2 Text Search instance service. To start the service, run db2ts "START FOR TEXT". For more information on this command, see Chapter 7, "Starting the DB2 Text Search instance service," on page 45. ## Results You have setup rich text support for a DB2 Text Search server. # Chapter 11. Enabling DB2 Text Search for rich text document support Rich text support can be enabled on properly configured DB2 Text Search servers. In Version 9.7, the instance owner must hold DBADM with DATAACCESS authority. To enable rich text document support for DB2 Text Search servers you must, as the instance owner, run the richtextTool utility with the enable option. Before enabling rich text document support, each DB2 Text Search server must be setup for rich text document support. For more details see, Chapter 10, "Setting-up DB2 Text Search for rich text document support," on page 53. #### Restrictions In order to run richtextTool enable, you must be logged on as the instance owner. #### Procedure - 1. Log on as the instance owner. - 2. Stop the DB2 Text Search instance service. To stop the service, run db2ts "STOP FOR TEXT". For more information on this command, see Chapter 12, "Stopping the DB2 Text Search instance service," on page 57. - 3. Run the richtextTool utility to enable support. To enable support: - For Linux and UNIX operating systems: \$INSTHOME/sqllib/db2tss/bin/richtextTool enable <DB2DIR> where *INSTHOME* is the instance home directory, , and *<DB2DIR>* is the location of the DB2 Version 9.7 copy. For Windows operating systems: DB2PATH\db2tss\bin\richtextTool.bat enable <DB2PATH> where *DB2PATH* is the location where you installed your DB2 Version 9.7 copy. 4. Start the DB2 Text Search instance service. To start the service, run db2ts "START FOR TEXT". For more information on this command, see Chapter 7, "Starting the DB2 Text Search instance service," on page 45. #### **Results** You have enabled rich text support for a DB2 Text Search server. # Chapter 12. Stopping the DB2 Text Search instance service When you stop the DB2 Text Search instance service, any currently running db2ts commands will be completed, but you cannot issue any new ones. To stop the DB2 Text Search instance service, enter the following command: db2ts "STOP FOR TEXT" # Chapter 13. Disabling a database for DB2 Text Search Disable a database when you no longer intend to perform text searches in that database. When you disable a database for text search, you also delete the following objects from the SYSIBMTS schema: - SYSIBMTS.TSDEFAULTS - SYSIBMTS.TSLOCKS - SYSIBMTS.TSINDEXES - SYSIBMTS.TSCONFIGURATION - SYSIBMTS.TSCOLLECTIONNAMES To disable a database for text search, use one of the following methods: - 1. Drop any text search indexes defined in the database, using the DROP INDEX command. - 2. To disable a database for text search, use one of the following methods: - Issue the DISABLE DATABASE FOR TEXT command: db2ts "DISABLE DATABASE FOR TEXT CONNECT TO databaseName" - Call the SYSPROC.SYSTS_DISABLE procedure: - CALL SYSPROC.SYSTS DISABLE('en US', ?) **Note:** Text search indexes can also be dropped using the **FORCE** option. However, it is possible that some data, specifically a text search collection, will remain after you disable the database. This can occur because the **FORCE** option allows you to drop text search indexes even if the DB2 Text Search server cannot be reached. #### Related reference "SYSTS_DISABLE procedure - Disable current database for text search" on page 144 The procedure disables DB2 Text Search for the current database. "db2ts DISABLE DATABASE FOR TEXT " in Command Reference # Chapter 14. Disabling DB2 Text Search for rich text document support Rich text support can be disabled at any time on DB2 Text Search servers. In Version 9.7, the instance owner must hold DBADM with DATAACCESS authority. To disable rich text document support for DB2 Text Search servers you must, as the instance owner, run the richtextTool utility with the disable option. #### Restrictions In order to run richtextTool disable, you must be logged on as the instance owner. #### **Procedure** - 1. Log on as the instance owner. - 2. Stop the DB2 Text Search instance service. To stop the service, run db2ts "STOP FOR TEXT". For more information on this command, see Chapter 12, "Stopping the DB2 Text Search instance service," on page 57. - 3. Run the richtextTool utility to disable support. To disable support: - For Linux and UNIX operating systems: \$INSTHOME/sqllib/db2tss/bin/richtextTool disable where *INSTHOME* is the instance home directory. For Windows operating systems: DB2PATH\db2tss\bin\richtextTool.bat disable where *DB2PATH* is the location where you installed your DB2 Version 9.7 copy. 4. Start the DB2 Text Search instance service. To start the service, run db2ts "START FOR TEXT". For more information on this command, see Chapter 7, "Starting the DB2 Text Search instance service," on page 45. #### Results You have disabled rich text support for a DB2 Text Search server. # **Chapter 15. Text search index creation** A text search index is a compilation of significant terms extracted from text documents. Each term is associated with the document from which it was extracted. You create a text search index once for each column that contains text to be searched. When you create a text search index, you also create the following objects: ## A staging table This keeps track of all changed rows in the user table. #### An event table This collects information about the status of an update index command or any errors encountered during its processing. If errors occur during indexing, *index update events* are added to the event table. ## Triggers on the user table These add information to the staging table whenever a document in the column is added, deleted, or changed. The information is necessary for index synchronization when indexing time next occurs. **Note:** If you use the LOAD command to populate your documents, triggers are not activated, and incremental indexing of the loaded documents will not work. Instead, use the IMPORT command, which does activate triggers. After you create a text search index, it is empty (and, therefore, not searchable) until you update it. When creating the text search index, you can specify that the text search instance service is to check periodically whether an update of the text search index is required and that the update command is to be run if necessary. ## Related concepts "Asynchronous index updates" on page 15 To improve performance, a text search index is not synchronized with its associated user table within the scope of a DB2 transaction that updates,
deletes text documents from, or inserts text documents into that table. Instead, text search indexes are updated asynchronously. #### Related reference "SYSIBMTS.TSDEFAULTS view" on page 165 SYSIBMTS.TSDEFAULTS displays all the default values for all text search indexes in a database. "SYSIBMTS.TSEVENT view" on page 168 The event view provides information about indexing status and error events. "SYSIBMTS.TSSTAGING view" on page 169 The staging table stores the change operations on the user table that requires synchronization with the text search index. "SYSIBMTS.TSINDEXES view" on page 166 You can view the db2ts CREATE INDEX command parameters and generated settings using SYSIBMTS.TSINDEXES. ## Creating a text search index After you enable a database for DB2 Text Search, you can create text search indexes on columns that contain the text that you want to search. Creating a text search index requires one of following authorization levels: - CONTROL privilege on the index table - INDEX privilege on the index table with either the IMPLICIT_SCHEMA authority on the database or the CREATEIN privilege on the index table schema - DBADM with DATAACCESS authority ### Restrictions - A primary key must exist for this table. If a primary key does not exist, you must create one before creating the index. - A text column in an index must be one of the following supported types: - CHAR - VARCHAR - LONG VARCHAR - CLOB - GRAPHIC - VARGRAPHIC - LONG VARGRAPHIC - DBCLOB - BLOB - XML - Text search related objects must follow not only DB2 naming conventions, their identifiers must also contain these characters only: - $[A-Za-z][A-Za-z0-9@\#\$_]* or$ - "[A-Za-z][A-Za-z0-9@#\$_]*" This limitation applies to the following: - the name of the schema containing the text search index - the name of the table the text search index is associated with - the name of the text column - the name of the text search index #### Procedure Create a text search index using one of the following methods: • Issue the CREATE INDEX command: ``` db2ts "CREATE INDEX index-name FOR TEXT ON table-name (column-name)" ``` Call the SYSPROC.SYSTS_CREATE stored procedure: CALL SYSPROC.SYSTS_CREATE('index-schema', 'index-name', 'table-name (column-name)', 'options', 'locale', ?) For example, the PRODUCT table in the SAMPLE database includes columns for the product ID, name, price, description, and so on. To create a text search index called MYSCHEMA.MYTEXTINDEX for the NAME column, issue the command or called the stored procedure, as follows: ``` db2ts "CREATE INDEX MYSCHEMA.MYTEXTINDEX FOR TEXT ON PRODUCT(NAME)" CALL SYSPROC.SYSTS CREATE('myschema', 'myTextIndex', 'product (name)', '', 'en US', ?) ``` Similarly, to create a text search index called MYSCHEMA.MYXMLINDEX for the XML column DESCRIPTION, enter the following command: ``` db2ts "CREATE INDEX MYSCHEMA.MYXMLINDEX FOR TEXT ON PRODUCT(DESCRIPTION)" ``` or ``` CALL SYSPROC.SYSTS_CREATE('myschema', 'myXMLIndex', 'product (description)', '', 'en_US', ?) ``` #### Specifying update frequency If you don't want to manually manage updating a text search index as the table with which it is associated with changes, you can add update parameters to your db2ts CREATE INDEX command. **UPDATE MINIMUM** specifies the minimum number of changes that must be made to the underlying table before an update can be triggered, and **UPDATE FREQUENCY** specifies how often the update services should check to see whether an update is required. For example, to specify that MYSCHEMA.MYTEXTINDEX is to be updated after at least five changes have occurred and that the update services are to check every Monday and Wednesday at 12 midnight and 12 noon, issue the following command: ``` db2ts "CREATE INDEX MYSCHEMA.MYTEXTINDEX FOR TEXT ON PRODUCT(NAME) UPDATE FREQUENCY d(1,3) h(0,12) m(0) UPDATE MINIMUM 5" CALL SYSPROC.SYSTS_CREATE('myschema', 'myTextIndex', 'product (name)', 'UPDATE FREQUENCY D(1,3) H(0,12) M(0)' 'UPDATE MINIMUM 5', 'en_US', ?) ``` #### Language specification When you create an index, you can specify its locale (language and territory), using the LANGUAGE option. To have your documents automatically scanned to determine the locale, set the LANGUAGE to AUTO. If you do not specify LANGUAGE is not specified then a default LANGUAGE is used. This default is derived using the DEFAULTVALUE from SYSIBMTS.TSDEFAULTS where DEFAULTNAME='LANGUAGE'. (In this case, DEFAULTVALUE is set at the time the database is enabled for text search. This value is derived from the database territory if the database territory can be mapped to one of the document locales supported. If the database territory cannot be used to determine a supported document locale, DEFAULTVALUE is set to AUTO.) #### Related concepts "Document size considerations" on page 18 DB2 Text Search has limits on the size of the document that can be indexed and on the number of characters within that document. #### Related reference "SYSTS_CREATE procedure - Create a text search index on a column" on page 146 This procedure creates a text search index for a text column which allows the column data to be searched using text search functions. "db2ts CREATE INDEX " in Command Reference "SYSTS_ADMIN_CMD stored procedure - Run text search administration commands" on page 141 The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. Appendix B, "Locales supported for DB2 Text Search," on page 183 ## Creating a text search index on binary data types When creating a text search index, you have the option of specifying a code page for a binary column. Doing so helps the DB2 Text Search engine identify the character encoding. To specify the code page when creating the text search index, use the following command: db2ts "CREATE INDEX index-name FOR TEXT ON table-name CODEPAGE code-page" When you store data in a column having a binary data type, such as BLOB or FOR BIT DATA, the data is not converted. This means that the documents retain their original code pages, which can cause problems when you create a text search index because you might have two different code pages. Therefore, you need to determine whether you are using the code page of the database or the code page specified for the db2ts CREATE INDEX command. If you do not know which code page was used to create the text search index, you can find out by issuing the following statement: db2 "SELECT CODEPAGE FROM SYSIBMTS.TSINDEXES where INDSCHEMA='schema-name' and INDNAME='index-name'" #### Related reference "Supported data types" on page 16 The data types in the text columns that you want to index and search can be either binary or character. "SYSIBMTS.TSINDEXES view" on page 166 You can view the db2ts CREATE INDEX command parameters and generated settings using SYSIBMTS.TSINDEXES. ## Creating a text search index on unsupported data types If documents are in a column of an unsupported data type, such as a user-defined type (UDT), you must provide a function that takes the user type as input and provides an output type that is one of the supported types. A text column in an index must be one of the following supported types: - CHAR - VARCHAR - LONG VARCHAR - CLOB - GRAPHIC - VARGRAPHIC - LONG VARGRAPHIC - DBCLOB - BLOB - XML To convert the data type of the column to one of valid types, use one of the following methods: • Run the db2ts CREATE INDEX command with the name of a transformation function. ``` db2ts "CREATE INDEX index-name FOR TEXT ON table-name function-name(text-column-name)" ``` Use a user-defined external function (UDF), which is specified by function-name, that accesses text documents in a column that is not of a supported type for text searching, performs a data-type conversion of that value, and returns the value as one of the supported data types. In the following example, there is a table UDTTABLE that contains a column of a user-defined type (UDT) named "COMPRESSED_TEXT", which is defined as CLOB(1M). To create an index on that data type, first create a UDF called UNCOMPRESS, which receives a value of type COMPRESSED_TEXT. Next, create your text search index in the following way: ``` db2ts "CREATE INDEX UDTINDEX FOR TEXT ON UDTTABLE UNCOMPRESS(text) ..." ``` ### Improving the performance of text search indexes There are a number of ways that you can improve the performance of your text search indexes. To enhance performance during indexing, use the following techniques: - To store a text search index and the database files, use a VARCHAR data type. - For primary key columns, use small data types, such as TIMESTAMP or INTEGER, instead of a VARCHAR type. - Ensure that your system has enough real memory available for the index update operation. Index updates require memory that is in addition to that required for any database buffer pools. If there is insufficient memory, the operating system uses paging space instead, which decreases search performance considerably. - Avoid working with a large number of small documents, which increases your per-document overhead. Also, note that performance might decrease during an index update if error and warning messages are written to the event table. ## Chapter 16. Text search index maintenance After you create text search indexes, there are several maintenance tasks that you need to perform. There are several ways to perform these tasks, including using various administration commands, stored procedures, and the Administration Tool. The routine text search index maintenance tasks include the following ones: - Running periodic updates - Unless you specified that automatic updates are to be performed, you must update the text search indexes to reflect changes in the indexed text columns that they are associated with. - Monitoring the event table You can use the event table to determine whether there are document errors or whether the index update frequency needs to change. Less frequent maintenance tasks include
altering and dropping text search indexes. #### Related concepts Chapter 21, "Administration commands for DB2 Text Search," on page 115 There are a number of commands that allow you to administer DB2 Text Search at the instance, database, table, and text-index levels. You run all of the commands using db2ts. Chapter 22, "DB2 Text Search routines," on page 141 DB2 Text Search provides several administrative SQL routines for running commands and for returning the result messages of the commands that you run and the result message reason codes. #### Related tasks "Dropping a text search index" on page 72 When you no longer intend to perform text searches in a text column, you can drop the text search index. "Viewing text search index status" on page 71 To get information on the current text search indexes within a database, you can query the administrative views or use the Administration Tool. "Updating a text search index" You can update a text search index automatically or manually. Automatic updates occur based on how you defined the text search index. You can update indexes manually by issuing a command or by calling a stored procedure. #### Related reference "Administration Tool for DB2 Text Search" on page 173 The Administration Tool is a command-line tool that provides a convenient way to perform several administrative tasks related to DB2 Text Search. ## Updating a text search index You can update a text search index automatically or manually. Automatic updates occur based on how you defined the text search index. You can update indexes manually by issuing a command or by calling a stored procedure. Updating a text search index requires either the CONTROL privilege or DATAACCESS authority on the target table. After creating and updating (filling) the text search index for the first time, you must keep it up to date. For example, when you add a text document to a database or change an existing document in a database, you must index the document to keep the content of the text search index synchronized with the content of the database. Also, when you delete a text document from a database, you must remove its terms from the text search index. You should plan periodic indexing carefully because indexing text documents is a time- and resource-consuming task. The time taken depends on many factors, including how big the documents are, how many documents you added or changed since the previous text search index update, and how powerful your processor is. The Administration Tool's status option can be used to retrieve information about the progress of document updates while the db2ts UPDATE INDEX command is running. If an index update is still in progress when a new update starts, the new update fails. #### Automatic updates To have text search index updates performed automatically, use one of the following commands: - db2ts CREATE INDEX - db2ts ALTER INDEX The **UPDATE FREQUENCY** parameter, which has a minimum setting of five minutes, specifies the update frequency. The **UPDATE MINIMUM** parameter specifies the minimum number of text changes that must be queued. If there are not enough changes in the staging table for the specified day and time, the text search index is not updated. #### Manual updates There are also times when you want to update a text search index immediately: for instance, after you create a text search index, when the index is still empty, or after you have added several text documents to a database and want to search. To fill or synchronize (update) a text search index with the table data, use one of the following methods: - Issue the UPDATE INDEX command: db2ts "UPDATE INDEX index-name FOR TEXT" - Call the SYSPROC.SYSTS_UPDATE administrative SQL routine: For example, suppose that there are two text search indexes on the PRODUCT table: MYSCHEMA.MYTEXTINDEX on the NAME column and MYSCHEMA.MYXMLINDEX on the DESCRIPTION column. A new entry is added to PRODUCT as follows: ``` INSERT INTO PRODUCT VALUES ('100-104-01', 'Wheeled Snow Shovel', 99.99, NULL, NULL, NULL, XMLPARSE(DOCUMENT 'roduct xmlns="http://posample.org/wheelshovel" pid="100-104-01"><description><name>Wheeled Snow Shovel</name> <details>Wheeled Snow Shovel, lever assisted, ergonomic foam grips, gravel wheel, clears away snow 3 times faster</details><price>99.99</price> </description></product>')) ``` Too make the information in the new entry searchable, issue the following commands: ``` db2ts "UPDATE INDEX MYSCHEMA.MYTEXTINDEX FOR TEXT" db2ts "UPDATE INDEX MYSCHEMA.MYXMLINDEX FOR TEXT" ``` #### Related reference "db2ts UPDATE INDEX " in Command Reference "SYSTS_UPDATE procedure - Update the text search index" on page 157 This procedure updates the text search index to reflect the current contents of the text column with which the index is associated. "SYSTS_ADMIN_CMD stored procedure - Run text search administration commands" on page 141 The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. ## Viewing text search index status To get information on the current text search indexes within a database, you can query the administrative views or use the Administration Tool. To obtain information about the currently available text search indexes, use the following command: ``` db2 "select column-name from SYSIBMTS.TSINDEXES" ``` To check the status of all text search collections and their properties using the Administration Tool, use the following command: ``` {\it adminTool status} \\ -{\it configPath} \ {\it absolute-path-to-config-folder} \\ ``` #### Related concepts Chapter 18, "Maintenance and troubleshooting for DB2 Text Search," on page 77 Maintenance tasks for DB2 Text Search include deleting orphaned text search collections and clearing text search index events. #### Related reference "Administration Tool for DB2 Text Search" on page 173 The Administration Tool is a command-line tool that provides a convenient way to perform several administrative tasks related to DB2 Text Search. "SYSIBMTS.TSINDEXES view" on page 166 You can view the db2ts CREATE INDEX command parameters and generated settings using SYSIBMTS.TSINDEXES. ## Altering a text search index You can alter the update properties of a text search index. The db2ts ALTER INDEX command requires either the CONTROL privilege or DBADM with DATAACCESS authority on the target table. To alter an index, use one of the following methods: Run the following command: ``` db2ts "ALTER INDEX index-name FOR TEXT update-characteristics" ``` Where *update-characteristics* is a characteristic such as the update frequency of the text search index. Call the SYSPROC.SYSTS_ALTER administrative SQL routine: CALL SYSPROC.SYSTS_ALTER('db2ts', 'myTextIndex', 'alter-option', 'en_US', ?) Where alter-option is a characteristic such as the update frequency of the text search index. If an index update is already running, an error message is displayed, informing you that the text search index is currently locked and that no changes can be made. You can use either method to change both the update frequency of a text search index and the minimum number of changes required to trigger an update. (If you do not specify any parameters, the current settings are left unchanged.) For example, to change the update frequency for the text search index MYTEXTINDEX so that it is updated from Monday to Friday at 12 noon and 3 p.m., provided that at least 100 changes have occurred to the indexed column, issue the following command: ``` db2ts "ALTER INDEX MYTEXTINDEX FOR TEXT UPDATE FREQUENCY d(1,2,3,4,5) h(12,15) m(00) UPDATE MINIMUM 100" ``` To stop the periodic updating of MYTEXTINDEX, issue the following command: db2ts "ALTER INDEX MYTEXTINDEX FOR TEXT UPDATE FREQUENCY NONE" #### Related reference "db2ts ALTER INDEX " in Command Reference "SYSTS_ALTER procedure - Change the update characteristics of an index" on page 154 This procedure changes the update characteristics of an index. "SYSTS_ADMIN_CMD stored procedure - Run text search administration commands" on page 141 The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. ## **Dropping a text search index** When you no longer intend to perform text searches in a text column, you can drop the text search index. When you issue the DROP INDEX command, the privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the index is defined - DBADM authority When you drop a text search index, the following other objects are also dropped: - Index staging and event tables - Triggers on the user table Always drop the text search indexes on a table before dropping the table. If you drop the table first, you may create what is called an *orphaned collection*. When you create a text search index, a collection (the file system representation of the index) is created with an automatically generated name. If the collection remains after the index has been dropped, it can lead to problems with future queries if the following are also true: - the same database connection is being used, - a table is created with the same table name, - a text index with the same name as before is created on this table, and - the same query is re-issued as before. In this case, a cached query plan might be reused, which could result in a wrong query result. To drop a text search index, use one of the following methods: . - Issue the DROP INDEX command: db2ts "DROP INDEX index-name FOR TEXT" - Call the SYSPROC.SYSTS_DROP stored procedure: - CALL SYSPROC.SYSTS DROP('index-schema', 'index-name', 'locale', ?) - Where *locale* is the five-character locale code, such as en_US, that specifies the language in which messages will be written to the log file. **Note:** If any orphaned collections exist after you drop a text search index, you can remove them using the Administration Tool.
If, after dropping a text search index, you plan to create a new one on the same text column, you must first disconnect from and then reconnect to the database. #### Related concepts Chapter 16, "Text search index maintenance," on page 69 After you create text search indexes, there are several maintenance tasks that you need to perform. There are several ways to perform these tasks, including using various administration commands, stored procedures, and the Administration Tool. #### Related reference "db2ts DROP INDEX " in Command Reference "SYSTS_DROP procedure - Drop a text search index" on page 152 This procedure drops an existing text search index associated with any table column. "SYSTS_ADMIN_CMD stored procedure - Run text search administration commands" on page 141 The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. ## Chapter 17. Synonym dictionaries for DB2 Text Search A synonym dictionary contains words that are synonyms of each other. You can use a synonym dictionary to search for synonyms of your query terms in a text search index, thus improving the results of your search queries. Using a synonym dictionary, you can search for words specific to your organization, such as acronyms and technical jargon. By default, a synonym dictionary is not used for a search. To use a synonym dictionary, you must explicitly add it to a specific text search index. The text search index needs to be updated at least once before you can add a synonym dictionary. After the synonym dictionary has been added, you can modify it as frequently as you want. A synonym dictionary consists of synonym groups that you define in an XML file, as shown in the following example: #### Related tasks "Adding a synonym dictionary for DB2 Text Search" You can easily add a synonym dictionary to a text search index by using the Synonym Tool. ## Adding a synonym dictionary for DB2 Text Search You can easily add a synonym dictionary to a text search index by using the Synonym Tool. - You must activate the DB2 Text Search instance service before you can add a synonym dictionary to a text search index. - You must have updated the text search index at least once. - You must also have a synonym XML file that specifies synonym groups. To add a synonym dictionary: - 1. Copy the XML file to any directory on the DB2 Text Search server. - 2. Determine the name of the text search collection associated with the text search index to which you want to add the synonym dictionary. You can use the Administration Tool to report all text search collections, as follows: ``` adminTool status -configPath absolute-path-to-config-folder ``` 3. Use the Synonym Tool to add the synonym dictionary to the specific text search index. You can add the synonyms in **append** or **replace** mode, meaning that you either add them to or replace the existing synonyms defined for that text search index. ``` synonymTool importSynonym -synonymFile absolute-path-to-syn-file -collectionName collection-name -replace true or false -configPath absolute-path-to-config-folder ``` **Note:** If the XML format is not valid or if the XML file is empty, an error is returned. For example, to add the synonym file synfile.xml in append mode, use the following command: ``` synonymTool importSynonym -synonymFile $HOME/sqllib/misx/xmlsynfile.xml -collectionName tigertail_DBCP1208_TS867530_0000 -replace false -configPath $HOME/sqllib/db2tss/config ``` #### Related concepts Chapter 17, "Synonym dictionaries for DB2 Text Search," on page 75 A synonym dictionary contains words that are synonyms of each other. You can use a synonym dictionary to search for synonyms of your query terms in a text search index, thus improving the results of your search queries. ## Removing a synonym dictionary for DB2 Text Search You need to remove synonym dictionaries on a collection-by-collection basis, so you must use the Synonym Tool on each text search index. To remove a synonym dictionary, use the following command: ``` {\tt synonymTool removeSynonym -collectionName} \ {\tt collection-name -configPath} \ absolute-path-to-config-folder ``` Where *collection-name* specifies the text search collection and *absolute-path-to-config-folder* specifies the absolute path to the text search configuration folder. #### Related concepts Chapter 17, "Synonym dictionaries for DB2 Text Search," on page 75 A synonym dictionary contains words that are synonyms of each other. You can use a synonym dictionary to search for synonyms of your query terms in a text search index, thus improving the results of your search queries. #### Related tasks "Adding a synonym dictionary for DB2 Text Search" on page 75 You can easily add a synonym dictionary to a text search index by using the Synonym Tool. # **Chapter 18. Maintenance and troubleshooting for DB2 Text Search** Maintenance tasks for DB2 Text Search include deleting orphaned text search collections and clearing text search index events. There are three resources that can help you perform problem determination for DB2 Text Search: the event table, the db2trc command, and the Log Formatter Tool. A complete list of all of the DB2 Text Search server messages can be found here. ## **Deleting orphaned text search collections** One of the administrative tasks that you might have to do when using DB2 Text Search is deleting orphaned collections. You can delete orphaned collections using the Administration Tool. A text search collection refers to the underlying representation of a text search index. There is a one-to-one relationship between a text search collection and a text search index. Although the db2ts commands operate on text search indexes, the text search tools operate on the text search collections. When a text search index no longer exists but its corresponding text search collection does, it is called an orphaned collection. You also create an orphaned collection by performing any of the following operations when the text search server is not reachable: - Dropping a table or dropping a database The DROP TABLE statement and the DROP DATABASE command result in text search indexes being dropped; however, the text search collection is not dropped. - Using the FORCE option with the db2ts DROP INDEX or DISABLE DATABASE FOR TEXT commands, or the SYSTS_DROPINDEX or SYSTS_DISABLE stored procedures. All of these commands or stored procedures succeed even if the text search server is not reachable. To determine whether any orphaned collections exist: - 1. Use the Administration Tool to report all text search collections, as follows: adminTool status -configPath absolute-path-to-config-folder - 2. Query the SYSIBMTS.TSCOLLECTIONNAMES administrative view to report all text search indexes on the current database, as follows: SELECT collectionname FROM SYSIBMTS.TSCOLLECTIONNAMES Perform this query on all the databases enabled for DB2 Text Search, and combine the results into a list. **Note:** The Administration Tool lists all text search collections, whereas the query on SYSIBMTS.TSCOLLECTIONNAMES lists only text search indexes on the current database. 3. Compare the lists returned by the Administration Tool and by the SELECT statement. Any text search collection returned by the Administration Tool but not by the SELECT statement is an orphaned collection. The only exception to this is the "Default" collection that is created when DB2 Text Search is started. To remove the orphaned text search collections, use the following command: ``` {\tt adminTool\ delete\ -configPath\ } absolute-path-to-config-folder \\ -collectionName\ } collection-name ``` #### **Example** A user currently has DB2 Text Search enabled for a database called DBCP1208, which is running on a UNIX system. To determine whether any orphaned text search collections exist, the user employs the Administration Tool and a SELECT statement: adminTool.sh status -configPath \$HOME/sqllib/db2tss/config | CollectionName | IndexSize | NumOfDocuments | | |--------------------|-----------------|----------------|----| | Default 13 | 3,159B | 0 | | | tigertail_DBCP1208 | 3_TS542717_0000 | 13,159B | 11 | | tigertail_DBCP1208 | TS012817_0000 | 13,159B | 17 | | tigertail_DBCP1208 | TS082817_0000 | 13,159B | 16 | | tigertail_DBCP1208 | TS152817_0000 | 13,159B | 18 | | tigertail DBCP1208 | TS212817 0000 | 13,159B | 16 | | tigertail_DBCP1208 | 3_TS302817_0000 | 13,159B | 17 | | tigertail_DBCP1208 | TS392817_0000 | 13,159B | 10 | | tigertail_DBCP1208 | 3_TS462817_0000 | 13,159B | 10 | | tigertail_DBCP1208 | TS542817_0000 | 13,159B | 12 | | tigertail_DBCP1208 | TS022917_0000 | 13,159B | 10 | | tigertail_DBCP1208 | TS112917_0000 | 13,159B | 16 | | tigertail_DBCP1208 | TS192917_0000 | 13,159B | 11 | | tigertail_DBCP1208 | TS262917_0000 | 13,159B | 12 | | tigertail_DBCP1208 | 3_TS867530_0000 | 13,159B | 16 | db2 select collectionname from sysibmts.tscollectionnames #### COLLECTIONNAME 13 record(s) selected. ``` tigertail_DBCP1208_TS542717_0000 tigertail_DBCP1208_TS012817_0000 tigertail_DBCP1208_TS082817_0000 tigertail_DBCP1208_TS152817_0000 tigertail_DBCP1208_TS212817_0000 tigertail_DBCP1208_TS302817_0000 tigertail_DBCP1208_TS392817_0000 tigertail_DBCP1208_TS392817_0000 tigertail_DBCP1208_TS462817_0000 tigertail_DBCP1208_TS542817_0000 tigertail_DBCP1208_TS542817_0000 tigertail_DBCP1208_TS12917_0000 tigertail_DBCP1208_TS112917_0000 tigertail_DBCP1208_TS192917_0000 tigertail_DBCP1208_TS192917_0000 tigertail_DBCP1208_TS262917_0000 ``` Comparing the two outputs, the user sees that the text search collection tigertail_DBCP1208_TS867530_0000 doesn't have a corresponding text search index. The user then uses the Administration Tool to delete that orphaned collection: ``` adminTool.sh delete -configPath $HOME/sqllib/db2tss/config -collectionName tigertail_DBCP1208_TS867530_0000 ``` #### Related reference "Administration Tool for DB2 Text Search" on page 173 The Administration Tool is a
command-line tool that provides a convenient way to perform several administrative tasks related to DB2 Text Search. ### Tracing to investigate text search errors If you need to report an error to an IBM representative, you might be asked to switch on tracing so that information can be written to a file that can be used for locating the error. You can use the DB2 tracing facility, db2trc, to capture information about the problems that might occur while you are performing text searches or administrative operations associated with text searches. Because system performance is affected when tracing is switched on, use the trace facility only when directed by an IBM Support Center representative or by your technical support representative. To turn tracing on and receive information specific to DB2 Text Search, run the db2trc command using a mask with a component code for CIE (155), as follows: db2trc on -m '*.*.CIE.*.*' To help diagnose severe errors, it might also help to look in the db2diag log file. #### Related reference "db2trc - Trace " in Command Reference "db2diag - db2diag logs analysis tool " in Command Reference ## Clearing text search index events If you no longer need the messages in the event view of an index, you can clear (delete) them. Clearing the event view requires either the CONTROL privilege or DBADM with DATAACCESS AUTHORITY. Information about indexing events, such as the update start and end times, the number of indexed documents, or document errors that occurred during the update, are stored in the event view of a text search index. This information can help you determine the cause of a problem. To clear the event view of a text search index, use one of the following methods: - Run the db2ts CLEAR EVENTS FOR INDEX command, as follows: db2ts "CLEAR EVENTS FOR INDEX index-name FOR TEXT" - Use the SYSPROC.SYSTS_CLEAR_EVENTS administrative SQL routine, as follows: CALL SYSPROC.SYSTS CLEAR EVENTS('index-schema', 'index-name', 'locale') #### Related reference "db2ts CLEAR EVENTS FOR INDEX " in Command Reference "SYSTS_CLEAR_EVENTS procedure - Delete indexing events from an index's event table" on page $160\,$ This procedure deletes indexing events from an index's event table used for administration. "SYSIBMTS.TSEVENT view" on page 168 The event view provides information about indexing status and error events. ## Troubleshooting hints and tips Use the information in the following table to help troubleshoot problems. Table 2. Issues and solutions | Issue | Solution | |---|---| | If you drop and re-create a text index while a DB2 connection session is active, a plan for a previously used query (for Net Search Extender or DB2 Text Search) might be cached and reused, thus producing incorrect results. If the DB2 Text Search engine encounters this issue, IQQG0037W will be returned, indicating that an incorrect collection name was used for the search. | Use the FLUSH PACKAGE CACHE DYNAMIC statement to remove the execution plans for the SQL statements from the statement cache. | | If you drop or update your DB2 instance using the db2idrop, db2iupdt, or db2iupgrade command, the entire sqllib directory in the instance is removed, including the sqllib/db2tss/config directory. This will make it hard to reuse text search instance databases. | Back up the sqllib/db2tss/config directory before issuing the db2idrop, db2iupdt, or db2iupgrade command. Also, use the printAll option of the configTool command to save a record of the configuration parameters, which should help you to configure the new instance. | | A disk full error might cause the text index metadata to be inconsistent. | Use the Administration Tool to check whether there are any orphaned collections and to remove them, as outlined in "Deleting orphaned text search collections" on page 77. Note that you might not be able to reuse the text index name that was being used when you encountered the disk full error. | | You receive the message CIE00301 "Insufficient authority" or CIE00377 "Only instance owner <i><instance-owner></instance-owner></i> can use that command" after issuing a db2ts START FOR TEXT command. | For Windows users, have a user with sufficient authorization issue db2ts START FOR TEXT. For Linux and UNIX, have the instance owner issue this command. | Table 2. Issues and solutions (continued) #### Issue You receive the message CIE00311 telling you that an internal file cannot be opened. This message can indicate a missing configuration directory, or indicate that a file may have been lost or corrupted, for example, due to a disk full error on the filesystem where db2tss/config is located, or because of a problem during the backup of the db2tss/config directory. #### Solution Check to see if the instance has a 'config' directory for text search. - If the 'config' directory is missing ensure that DB2 Text Search was installed and configured. - If the 'config' directory is in another location, add a symbolic link to it (UNIX). If this error is being caused by a missing or corrupted file: - If the file is 'ciedem.dat' you can regenerate it with the following steps: - 1. Issue the db2ts STOP FOR TEXT command. - Locate the ciedem.dat file. It should be in instancehome/sqllib/db2tss/config (UNIX) or instanceprofilepath\ instancename\db2tss\config (Windows)(You can find the instance profile path using the following: db2set DB2INSTPROF) - 3. If the file exists, back it up and then remove it. - 4. Issue the db2ts START FOR TEXT command. (The internal file should be regenerated as a 0 byte file) - 5. Issue the db2ts CLEANUP FOR TEXT command - If the file is something other than 'ciedem.dat, contact IBM Support. ## Part 5. Searches ## Chapter 19. Searching with text search indexes After you populate a text search index with data, you can search that index. DB2 Text Search supports searches in SQL, XQuery, and SQL/XML. You can use the following search functions: - The SQL function CONTAINS and the XML function xmlcolumn-contains, to create queries for specific words or phrases - The SQL function SCORE, to obtain the relevancy of a found text document Searches on text search indexes can range from the simple, such as queries for the occurrence of a single word in a title, to the complex, such as queries that use Boolean operators or term boosting. In addition to the operators that allow you to refine the complexity of your search, features such as synonym dictionaries and linguistic support can enhance searches on text search indexes. ### Search functions for DB2 Text Search After you update a text search index, you can search using the CONTAINS or SCORE SQL scalar search function or using the xmlcolumn-contains function. Searches on text search indexes can range from the simple, such as queries for the occurrence of a single word in a title, to the complex, such as queries that use Boolean operators or term boosting. In addition to the operators that allow you to refine the complexity of your search, features such as synonym dictionaries and linguistic support can enhance searches on text search indexes. You can use the following search functions: - The SQL function CONTAINS and the XML function xmlcolumn-contains, to create queries for specific words or phrases - The SQL function SCORE, to obtain the relevancy of a found text document The scalar text search functions, CONTAINS and SCORE, are seamlessly integrated within SQL. You can use the search functions in the same places that you would use standard SQL expressions within SQL queries. The SQL SCORE scalar function returns an indicator of how well the text documents matched a given text search condition. The SELECT phrase of the SQL query determines which information is returned to you. The CONTAINS function, like the SQL LIKE predicate and = operator, searches for exact or substring matches of words or phrases. However, there are key distinctions between using the CONTAINS function and using the SQL LIKE predicate or = operator. LIKE and = search for patterns in a document. However, when you use the CONTAINS function, the DB2 Text Search engine uses linguistic processing: that is, it searches for different forms of the search term. For example, searches for the term work also return documents containing working and worked. Moreover, you can add a synonym dictionary to the text search index, vastly increasing the scope of a search. For example, you can group laptop and ThinkPad together so they are returned from searches for notebook computers. For XML documents, the XML search argument syntax allows you to search for text inside tags and attributes. As well, XQuery searches are case sensitive. Note that the DB2 optimizer estimates how many text documents can be expected to match a CONTAINS predicate and how costly different access plan alternatives will be. The optimizer chooses the cheapest access plan. The function xmlcolumn-contains is a built-in DB2 function that returns XML documents from a DB2 XML data column based on a text search performed by the DB2 Text Search engine. You can use xmlcolumn-contains in XQuery expressions to retrieve documents based on a search of specific document elements. For example, if your XML documents contain product descriptions and prices for toys that you sell, you can use xmlcolumn-contains in an
XQuery expression to search the description and price elements and return only the documents that have the term outdoors but not pool and cost less than \$25.00. There are key distinctions between using the xmlcolumn-contains function and the XQuery contains function. The XQuery contains function searches for a substring inside a string; it looks for an exact match of the search term or phrase. The XQuery xmlcolumn-contains function, however, has similar functionality to the CONTAINS function, except that it operates on XML columns only. As well, it returns XML documents containing the search term or phrase, whereas contains returns only a value such as 1, 0, or NULL to indicate whether the search term was found. #### Locale specification When you perform a search on a text search index, it is recommended that you always use the **QUERYLANGUAGE** option with your search query to specify which locale (a combination of language and territory information) to use to interpret a search term. For example, if you have a search term such as "bald", you can specify to treat it as an English word by setting the **QUERYLANGUAGE**—en LIS in the search query. Similarly, if you want it to be **QUERYLANGUAGE**=en_US in the search query. Similarly, if you want it to be treated as a German word, **QUERYLANGUAGE** can be set to de_DE. However, it should be noted that the results returned are highly dependent on the LANGUAGE used for indexing, regardless of the **QUERYLANGUAGE** specified in a query. If the **QUERYLANGUAGE** is not specified in the search query, then the following logic is used: - The search term is interpreted to be of the locale that was set for the underlying text index during index creation. - If the locale set for the index during index creation is AUTO, then this defaults to English (en_US), and the search term will be treated as an English word. ### Restrictions: - If the locale specified in the search queries is invalid (for example, QUERYLANGUAGE=Mongolian), then the query will be considered invalid and an exception will be thrown. - Setting QUERYLANGUAGE=AUTO in the search query is an unsupported option and the results of the query are undefined. Note that the locale specified by **QUERYLANGUAGE** has no effect on the locale of error messages resulting from search queries. The error-message locale that is used depends on whether you started the text search instance services. If you did not start them, messages are written using en_US; if you did start them, messages are written in the same locale of the environment in which you issued the db2ts START FOR TEXT command. #### Related reference "CONTAINS function" on page 105 The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. "SCORE function" on page 107 The SCORE function searches a text search index using criteria that you specify in a search argument and returns a relevance score that measures how well a document satisfies the query as compared with the other documents in the column. Appendix B, "Locales supported for DB2 Text Search," on page 183 "xmlcolumn-contains function" on page 110 The db2-fn:xmlcolumn-contains function returns a sequence of XML documents from an XML data column based on a text search performed by the DB2 Text Search engine for specified search terms. ## Text search query planning There are a number of things to consider when planning your text search query: Using a wildcard character at the beginning of a search term slows down query processing Where possible, avoid performing searches such as *search-term or ?search-term. **Note:** The optional marker "?search-term" does not impact performance. - Text search arguments are not case sensitive - This is true even when you specify an exact term or phrase using double quotation marks. For example, a search for the term "Hamlet" can return both the Shakespeare play Hamlet and hamlet, the word for a small village. - Word-form derivation, or stemming, can have exceptions Some search terms are not considered to be derived from their base forms, so some documents that appear to be relevant documents might not be returned. For example, a search for the term winning does not return documents containing win, wins, and won. In this case, you should consider including the base form, by searching for winning OR win. - The score of a document is dynamic Undates to a document can cause the score of a term use - Updates to a document can cause the score of a term used to search that document to change. - Search-argument options are properties of the search argument For example, in the following search query for the word bank in English and German, the search arguments in the two calls are distinct because the search arguments belong to different query languages in these two calls: - ...CONTAINS(column, 'bank', 'QUERYLANGUAGE=en_US') and CONTAINS(column, 'bank', 'QUERYLANGUAGE=de_DE')... - Multiple instances of RESULTLIMIT within a query require the same search argument to produce predictable results If you use multiple text searches that specify **RESULTLIMIT** in the same query, use the same search argument. Using different text search arguments might not return the expected results. For example, in the following query, it is unpredictable whether the 10 documents specified by **RESULTLIMIT** will be returned: ``` SELECT EMPNO FROM EMP_RESUME WHERE RESUME_FORMAT = 'ascii' AND CONTAINS(RESUME, '"ruby on rails"', 'RESULTLIMIT=10') = 1 AND CONTAINS(RESUME, '"java script"', 'RESULTLIMIT=10') = 1 ``` #### Instead, use RESULTLIMIT as follows: ``` SELECT EMPNO FROM EMP_RESUME WHERE RESUME_FORMAT = 'ascii' AND CONTAINS(RESUME, '"java script" "ruby on rails"', 'RESULTLIMIT=10') = 1 ``` Note that this method works only when both CONTAINS functions are operating on the same table column. If they are not operating on the same column, try using FETCH FIRST *n* ROWS to improve query performance. #### Searching on XML namespaces requires a workaround You can index XML documents that contain namespace bindings without generating errors, but the namespace information is removed from each tag. As a result, text searches on XML documents with namespace bindings can lead to undesired results. However, there is a workaround to this limitation for queries that use DB2 XQuery. The DB2 Text Search engine is not namespace aware, but you can use the DB2 XQuery support for namespaces to do namespace filtering for the unwanted documents returned from a text search. Consider the following example in which the default database environment variable is set to SAMPLE and a text search index called prod_desc_idx is created on the PRODUCT table: ``` db2ts "ENABLE DATABASE FOR TEXT" db2ts "CREATE INDEX prod desc idx FOR TEXT ON product(description)" ``` Now, a new row with the namespace http://posample.org/wheelshovel is added to the PRODUCT table, which already has two XML documents with the namespace http://posample.org: ``` INSERT INTO PRODUCT VALUES ('100-104-01', 'Wheeled Snow Shovel', 99.99, NULL, NULL, NULL, XMLPARSE(DOCUMENT 'roduct xmlns= "http://posample.org/wheelshovel" pid="100-104-01"> <description><name>Wheeled Snow Shovel</name><details> Wheeled Snow Shovel, lever assisted, ergonomic foam grips, gravel wheel, clears away snow 3 times faster</details> <price>99.99</price></description></product>')) ``` The text search index is then updated, as follows: ``` db2ts "UPDATE INDEX prod desc idx FOR TEXT" ``` The following XQuery expression, which specifies the default element as http://posample.org, returns all documents that have the matching XPath/product/description/details that contains the word ergonomic: ``` xquery declare default element namespace "http://posample.org"; db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', '@xpath: ''/product/description/details [. contains ("ergonomic")]''') ``` Three documents are returned, two of which are expected because they have the namespace http://posample.org and one of which is unexpected because it has the namespace http://posample.org/wheelshovel. The following XQuery expression uses the path expression /product/.. to use the DB2 XQuery support for XML search and namespaces to filter the documents returned by DB2 Text Search engine so that only documents with the namespace http://posample.org are returned: ``` xquery declare default element namespace "http://posample.org"; db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', '@xpath: ''/product/description/details [. contains ("ergonomic")]''')/product/.. ``` **Note:** SQL queries can use DB2 XQuery to force namespace filtering. Given the previous example, the corresponding expression using an SQL query is as follows: ``` xquery declare default element namespace "http://posample.org"; db2-fn:sqlquery("select description from product where contains(description, '@xpath:''/product/description/details [. contains (""ergonomic"")]''') = 1") ``` The workaround is as follows: ``` xquery declare default element namespace "http://posample.org"; db2-fn:sqlquery("select description from product where contains(description, '@xpath:''/product/description/details [. contains (""ergonomic"")]''') = 1")/product/.. ``` Similarly, to access a specific element in the document (as opposed to just having the matching document returned, as in the previous query), the following query can be used: ``` xquery declare default element namespace "http://posample.org"; db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', '@xpath: ''/product/description/details [. contains ("ergonomic")]''') /product/description[price > 20]/name ``` **Note:** This workaround is limited and might not work as expected if, for example, multiple product elements exist within a document. #### Related reference "Text search argument syntax" on page 92 A search argument comprises one or more terms and optional search parameters, separated by white space, that you
specify to search in text documents. "Search syntax for XML documents" on page 97 Using an XML search expression, you can use the DB2 Text Search engine to search specific portions of an XML document in a DB2 XML column. "CONTAINS function" on page 105 The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. "SCORE function" on page 107 The SCORE function searches a text search index using criteria that you specify in a search argument and returns a relevance score that measures how well a document satisfies the query as compared with the other documents in the column. "xmlcolumn-contains function" on page 110 The db2-fn:xmlcolumn-contains function returns a sequence of XML documents from an XML data column based on a text search performed by the DB2 Text Search engine for specified search terms. ## Searching in text search indexes You can use an SQL statement or XQuery to search through text search indexes. To search a text search index for a specific term or phrase, use one of the following methods: #### Searching with SQL To search a text search index for a specific term or phrase with an SQL statement, use the CONTAINS function as follows: ``` db2 "SELECT column-name FROM table-name WHERE CONTAINS (\dots)" ``` For example, the following query searches the PRODUCT table for the names and prices of various snow shovels: ``` db2 "SELECT NAME, PRICE FROM PRODUCT WHERE CONTAINS (NAME, '"snow shovel"') = 1" ``` #### · Searching with XQuery To search a text search index for a specific term or phrase using XQuery, use the db2-fn:xmlcolumn-contains() function. For example, the following query searches the PRODUCT table for the names and prices of various snow shovels: ``` db2 "xquery for \$info in db2-fn:xmlcolumn-contains ('PRODUCT.DESCRIPTION','"snow shovel"') return <result> {\$info/description/name, \$info/description/price} </result>" ``` **Note:** Depending on the operating system shell that you are using, you might need a different escape character in front of the dollar sign of the variable information. The previous example uses the backward slash (\setminus) as an escape character for UNIX platforms. #### Related concepts "Searching XML documents using DB2 Text Search" on page 95 DB2 Text Search supports using XML search for searching XML documents. #### Related reference "CONTAINS function" on page 105 The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. "xmlcolumn-contains function" on page 110 The db2-fn:xmlcolumn-contains function returns a sequence of XML documents from an XML data column based on a text search performed by the DB2 Text Search engine for specified search terms. ## Searching text search indexes using SCORE You can use the SCORE function to find out the extent to which a document matches a search argument. SCORE returns a double-precision floating-point number between 0 and 1 that indicates how well a document meets the search criteria. The better a document matches the query, the more relevant the score and the larger the result value. **Note:** Do not interpret scores returned for XML search queries in the same manner as you interpret scores that SCORE returns from plain text documents. Non-structured queries use only the text terms for scoring. For example, assume there is a set of documents discussing transportation and pollution. If you want to locate documents containing references to both terms, while treating occurrences of the term pollution more prominently than transportation, you can use the following command: ``` SELECT document_id FROM document_library WHERE SCORE(document_content, 'pollution') > SCORE(document_content, 'transportation') and CONTAINS(document content, 'transportation pollution') = 1 ``` However, to enhance performance, you can format your query to use the boost (^) modifier so that the search function is run only once, as follows: ``` SELECT document_id FROM document_library WHERE SCORE(document_content, 'pollution^10 transportation') > 0 ORDER BY SCORE(document_content, 'pollution^10 transportation') DESC ``` The first query does not return any results if pollution scores low. The second query gives higher importance to pollution but still returns documents if pollution scores low in all documents. Similarly, to search in the SAMPLE database for the number of employees who indicated on their resumes that they know how to program in Java or COBOL, you can issue the following query: ``` SELECT EMPNO, INTEGER(SCORE(RESUME, 'programmer AND (java OR cobol)') * 100) AS RELEVANCE FROM EMP_RESUME WHERE RESUME_FORMAT = 'ascii' ORDER BY RELEVANCE DESC ``` However, the following query using CONTAINS is superior. The DB2 optimizer evaluates the CONTAINS predicate in the WHERE clause first and thereby avoids evaluating the SCORE function in the SELECT list for every row of the table. Note that this is possible only if the SCORE and CONTAINS arguments in the query are identical. ``` SELECT EMPNO, INTEGER(SCORE(RESUME, 'programmer AND (java OR cobol)') * 100) AS RELEVANCE FROM EMP_RESUME WHERE RESUME_FORMAT = 'ascii' AND CONTAINS(RESUME, 'programmer AND (java OR cobol)') = 1 ORDER BY RELEVANCE DESC ``` #### Related reference "SCORE function" on page 107 The SCORE function searches a text search index using criteria that you specify in a search argument and returns a relevance score that measures how well a document satisfies the query as compared with the other documents in the column. ## Enhancing performance during text searches To enhance performance during searches, use one or more of the following approaches: - Use the EXPLAIN statement to check the processing plan of the DB2 optimizer when searching within SQL. - Avoid using the SCORE function without the CONTAINS function. Also, to avoid duplicate processing, ensure that the string (that is, the search argument and any search options) that you specify for the CONTAINS function exactly matches the string (including white spaces) that you use for the SCORE function. - Ensure that the DB2 compiler has the correct table statistics. Use the RUNSTATS command to update the statistics. #### Related reference "EXPLAIN" in SQL Reference, Volume 2 "RUNSTATS" in Command Reference "CONTAINS function" on page 105 The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. "SCORE function" on page 107 The SCORE function searches a text search index using criteria that you specify in a search argument and returns a relevance score that measures how well a document satisfies the query as compared with the other documents in the column. ### Text search argument syntax A search argument comprises one or more terms and optional search parameters, separated by white space, that you specify to search in text documents. To perform a simple search, you can enter one or more terms. The search engine returns documents that contain all of those terms and, by default, variations on those terms. For example, if you perform a search on the term king, documents containing king and kings are returned. If you search on two terms, the search engine returns only documents containing both terms. If you want the terms to be searched as an exact phrase, add quotation marks. #### Note: - Searches are not case sensitive, so a search in Spanish for the exact term "DOS" might return documents containing DOS or dos. - Text search queries must not exceed DB2 SQL query limits. The more specific the search term that you use, the more precise the results. However, you can also refine your searches by using options such as the following ones: - · Boolean operators. Use AND or OR to search on both terms or at least one term. - The AND operator is the default conjunction operator, so if there is no logical operator between the two terms, AND is used. - The OR operator links the two terms and finds a matching document if either of the terms exists in a document. - Occurrence modifiers. Use +, NOT, or to specify that terms are required or prohibited. - The + modifier is distinct from the AND operator because the + modifier indicates that the second term must be an exact match-that is, no synonym is used. _ - Boost. Use ^ to give higher importance to occurrences of a given term (relevant for the SCORE function). - ^ provides a *boost* to the term or phrase that precedes it when the specified number is greater than 1. If you want to reduce the ranking of the term or phrase in the returned list, specify a number greater than 0 but less than 1. - For the boost modifier to work correctly, use it with the ORDER BY clause and the SCORE function. - Wildcards. Use ? to enable one character or * to enable any number of characters to be added to your search terms, which allows spelling variations and increases search scope. - The * character specifies that any number of characters can be added to the term. - Using the wildcard * at the beginning of a search term has a negative performance impact on the search query. - The ? character specifies that a single character can be added to the term. - You must use double quotation marks for an initial? character to be treated as a wildcard character. Otherwise, it is treated as an *optional-term* modifier, as outlined in the following bullet. - Optional terms. Use an initial? to specify that a term or phrase is optional - The escape character: Use \ so that special characters, namely: | < | > | && | 11 | ! | |---|---|----|----|---| | (|) | ! | = | " | | { | } | ~ | * | ? | | [|] | : | \ | - | are analyzed as part of the query. - Exact search. Use " " around your search term or phrase to have only exact matches returned. - Parentheses. Use () to have search terms (and the relationship) treated as a
single item. Write XML search queries that are sent to the XML parser in a subset of the XPath language using opaque terms. The query parser recognizes an opaque term by the syntax that is used in the query. For any language-specific processing during a search, a locale is assumed for the search-argument parameter. This query language is the locale of the text search index that is used when the search function is run. The search argument syntax is as follows: Search argument **QualifiedClause** ((Operator) (QualifiedClause)) Operator AND | OR QualifiedClause (Modifier) Clause (^number) Modifier + | - | NOT Clause unqualified term | opaque term. #### Note: • An unqualified term is a term or a phrase. A term can be a word, such as king; an exact word, such as "king"; or a word that includes a wildcard, such as king* or king?. Similarly, a phrase can be a group of words, such as cabbages and kings; an exact phrase, such as "The King and I"; or a phrase that includes a wildcard, such as "all the king's ho*ses" or "all the king's ?". • An opaque query term is not parsed by the linguistic query parser; opaque terms are identified by their syntax. The opaque term used for text search queries is @xpath: for example, @xpath:'/TagA/TagB[. contains("king")]'. ## **Examples** Table 3. Boolean operators for search queries | Operator | Example | Query results | |----------|----------------------------|---| | AND | King AND Lear
King Lear | Returns documents that contain the terms King and Lear. If you have a synonym dictionary enabled, words such as monarch can also be returned. | | OR | Hamlet OR Othello | Returns documents that contain either Hamlet or Othello. | Table 4. Occurrence modifiers | Modifier | Example | Query result | |----------|---------------------------------------|---| | NOT - | Hamlet NOT Othello
Hamlet -Othello | Returns documents that contain Hamlet but not Othello. You cannot use the NOT and - modifiers with only one term. For example, the following search returns no results: NOT Hamlet. | | + | Lear + King | Returns documents that contain the terms Lear and King. Documents containing Lear and monarch aren't returned. | Table 5. Other modifiers | Modifier | Example | Query result | |---|---------------------------------------|--| | term1 or phrase1^number
term2 or phrase2 | Hamlet^2 Othello
Hamlet Othello^.5 | Returns documents containing Hamlet and Othello but gives more importance to the term Hamlet. In both example queries, each occurrence of the term Hamlet is given twice as much importance as each occurrence of Othello is given. | | * | king*
k*ng
*ing | Returns documents that contain possible combinations of the search term with the wildcard character. The example query could return results such as king and kingdom in the first example, king and kissing in the second example, and king and skiing in the third example. | | ? | mea?
be?n
"?ean" | Returns documents that contain possible combinations of the search term with the wildcard character. returning results such as meal and mean in the first example, bean and been in the second example, and mean and bean in the third example. | Table 5. Other modifiers (continued) | Modifier | Example | Query result | |--|--|---| | initial ? | King James ?Edition | Returns documents that contain both king and james, but edition is an optional term. | | "phrase" "exact term" "phrase with wildcard" | "King Lear" "king" "John * Kennedy" "John ? Kennedy" | Returns documents that contain the exact word or phrase: King Lear in the first example and the word king and no other forms, such as kings or kingly, in the second example. You can use quotation marks with wildcards, returning occurrences of John Kennedy with or without various middle names or initials in the third example and John <i>initial</i> Kennedy in the fourth example. | | () | (Hamlet OR Othello) AND plays | Returns documents that contain the following terms: • The term Hamlet or Othello • The term plays | | | \(1\+1\)\:2 | Returns documents that contain (1+1):2. Use the \ character to escape special characters that are part of the query syntax. | ## Searching XML documents using DB2 Text Search DB2 Text Search supports using XML search for searching XML documents. By using a subset of the XPath language with extensions for text search, XML search allows you to index and search XML documents. You can use structural elements (tag names, attribute names, and attribute values) separately or combine them with free text in queries. The following list highlights the key features of XML search: #### XML structural search By using XML search syntax in text search queries, you can search XML documents for structural elements (tag names, attribute names, and attribute values) and text scoped by those elements. Note that plain searches do not search the attribute field in an XML document. #### XML query tokenization The text used in the XML search predicate expression as XML query terms is tokenized the same way that text in non-XML query terms is tokenized, except that spelling corrections, fielded terms, and nested XML search terms are unsupported. Synonyms, wildcard characters, phrases, and lemmatization are supported. #### Disregarding of XML namespaces Namespace prefixes are not retained in the indexing of XML tag and attribute names. You can index and search XML documents declaring and using namespaces, but namespace prefixes are discarded during indexing and removed from XML search queries. #### Numeric values Predicates comparing attribute values to numbers are supported. #### Complete match The operator = (equal sign) with a string argument in a predicate means that a complete match of all tokens in the string with all tokens in the identified text span is required, with the order being significant. #### No UIMA access Unstructured Information Management Architecture (UIMA) is used for tokenization in XML search, but user-written annotators are unsupported. The subset of XPath that is implemented in XML search differs from standard XPath in the following ways: - It does not support iteration and ranges in path expressions. - It eliminates filter expressions: that is, it allows filtering only in the predicate expression, not in the path expression. - It disallows absolute path names in predicate expressions. - It implements only one axis (tag) and allows propagation only in the forward direction. The following table lists some valid XML search queries. Table 6. Valid XML search queries | Query | Description | |---|---| | / | The root node; any document | | /sentences | Any document with a top-level tag of sentences | | //sentences | Any document with a tag at any level of sentences | | sentences | Any document with a tag at any level of sentences | | /sentence/paragraph | Any document with a top-level tag of sentences having a direct child tag of paragraph | | /sentence/paragraph/ | Any document with a top-level tag of sentences having a direct child tag of paragraph | | /book/@author | Any document with a top-level book tag having an attribute author | | /book//@author | Any document with a top-level book tag having a descendant tag at any level with attribute author | | /book[@author contains("barnes") and @title contains("lemon")] | Any document with a top-level book tag with the attributes author and title with values that contain the normalized strings shown | | /book[@author contains("barnes") and
(@title contains("lemon") or @title
contains("flaubert"))] | Any document with a top-level book tag with the specified author attribute and either of the two specified title attributes | | /program[. contains("""hello, world.""") | Any document with a top-level program tag containing at least the tokens hello and world | Table 6. Valid XML search queries (continued) | Query | Description | |--|---| | /book[paragraph contains("flaubert")]// sentence | Any document with a top-level tag book tag with a direct child tag of paragraph containing "flaubert" and, referring to the book tag, having a descendant tag sentence at any level | | /auto[@price <30000] | Any document with a top-level auto tag
having an attribute price with a numeric
value that is less than 30000 | | //microbe[@size <3.0e-06] | Any document containing a microbe tag at any level with a size attribute with a value that is less than 3.0e-06 | Note: The following are unsupported
in the XML search syntax: - /* - //* - /@* - //@* A plain search does not search the attribute field in the XML document. #### Related reference "Search syntax for XML documents" Using an XML search expression, you can use the DB2 Text Search engine to search specific portions of an XML document in a DB2 XML column. ## Search syntax for XML documents Using an XML search expression, you can use the DB2 Text Search engine to search specific portions of an XML document in a DB2 XML column. ### Syntax #### XML search query: #### @xpath: The keyword that starts a text search query on an XML document. #### XML search query A text search query used by DB2 Text Search to search XML documents. The query is enclosed in single quotation marks. The XML search query is an XML search expression that consists of a location path specifying the portion of the XML document to search and an optional predicate that specifies the search criteria. location-path An XML search expression that uses a subset of the XPath abbreviated syntax to specify an XML document node or attribute. More information is provided in the "Location path" section below. search-predicate The optional search criteria used by DB2 Text Search when searching an XML document. More information is provided in the "Search predicate" section below. The DB2 Text Search engine returns the XML document if it finds the text specified in the *search-predicate* in the specified nodes or attributes of the XML document. #### Location path When performing a text search on an XML document, DB2 Text Search uses local node and attribute names and a subset of the XPath syntax to specify nodes and attributes in an XML document. DB2 Text Search supports the following XML search elements: - · Local node or attribute names - . (period) as the current context node - / or // as the separator character - @ as the abbreviated symbol for attribute Name normalization: XML node and attribute names are not normalized when they are indexed for use by the DB2 Text Search engine: they are not converted to lowercase, tokenized, or modified in any way. Case is significant in XML node and attribute names, so the strings that you use for them in queries must match exactly the names appearing in documents to get a match. Namespace handling: When creating a text search index, you can use XML documents that contain XML namespace specifiers, but namespace specifiers are not retained in the index. For example, the tag <nsdoc:heading> is indexed under heading only, and the query term @xpath:'/nsdoc:heading' is parsed as @xpath:'/heading'. XML namespace prefixes are discarded during query parsing. #### **Examples** The following example is a valid text search query using XML search that searches for the term snow shovel in the description node of product information: @xpath:'/info/product/description[. contains("snow shovel")]' The following example is a not a valid text search query using XML search because it uses "..", the XML search abbreviation for parent::node(): @xpath:'/info/product/description/../@ID[. contains("A2")]' #### Search predicate #### **Syntax** search-expression A DB2 Text Search XML search query. DB2 Text Search uses a search expression to search node or attribute values in an XML document. You can use the following operators to create search expressions: - Logical operators: AND, OR, and NOT - Containment operators: contains and excludes - Comparison operators: =, >, <, >=, <=, and != #### Note: Comparison operators can be applied to attribute values only, not node values. Thus, for the <root><aaa id="10">100</aaa><aaa id="11">101</aaa></root>, the following query is invalid: select id from testtable where contains(item,'@xpath:''/root/aaa[. > 20]''')>0 An example of a valid query would be: select id from testtable where contains(item,'@xpath:''/root/aaa/@id[. > 20]''')>0 You can combine the comparison and containment operators with the logical operators AND, OR and NOT to create complex search expressions. You can also use parentheses to group expressions. Use single or double quotation marks to enclose a string. A string that contains quotation marks cannot be enclosed by the same type of quotation marks. For example, a string enclosed in single quotation marks cannot contain a single quotation mark. **Operator Precedence:** In XML search predicates, comparison operators take precedence over logical operators, and all logical operators have the same precedence. You can use parentheses to ensure intended evaluation precedence. **Attribute value and node value normalization:** Free text in XML documents (text between tags, not inside a tag itself) and attribute values are normalized before indexing. Free text in XML queries (in containment operators) is normalized in the same way that it is in non-XML queries. #### Example The following example uses an XML search query to search for products that contain the term snow shovel in the product description and that have a price lower than \$29.99. ``` @xpath:'/info/product [(description contains("snow shovel")) and (@price < 29.99)]]'</pre> ``` #### Comparison expressions Comparison expressions compare the value of an attribute with a specified value. ### Syntax ▶ —path-expression—operator—literal— #### path-expression The path expression using a subset of the XML search abbreviated syntax to specify a node or attribute. ### operator The type of comparison to perform. The operator can be one of the following types: - = path-expression value is equal to literal. - > path-expression value is greater than literal. - < path-expression value is less than literal. - >= path-expression value is greater than or equal to literal. - <= path-expression value is less than or equal to literal. - != path-expression value is not equal to literal. #### literal A string or number used to compare against the *path-expression* node or attribute value. Enclose the string in single or double quotation marks. A string that contains quotation marks cannot be enclosed by the same type of quotation marks. For example, a string enclosed in single quotation marks cannot contain a single quotation mark. Use the backslash character (\setminus) to escape double quotation marks (") . If the string contains double quotation marks, you can enclose the string in single quotation marks. The following example shows a string containing double quotation marks enclosed in single quotation marks: ``` 'he said "Hello, World"' ``` If the a string contains single quotation marks, you can enclose the string in escaped double quotation marks. The following example shows a string containing a single quotation mark enclosed in double quotation marks: ``` \"the cat's toy\" ``` DB2 Text Search features such as phrases, wildcards, and synonyms are not supported in XML search queries. #### **Example** The following example uses the = operator to find product IDs equal to the string 100-200-101: @xpath:'/info/product/@pid[. = "100-200-101"]' #### Note: The only comparison operators that are supported with string arguments are = and !+, so <, <=, >, >= cannot be used. All six operators are supported with numerical arguments. Numerical arguments are supported for comparison to attribute values, but not to tag(node) content ### Containment expressions Containment expressions determine whether the value of a node or an attribute contains a specified value. ## **Syntax** path-expression The XML search expression that specifies an XML node or attribute. #### contains An expression that specifies that path-expression value contains literal. #### excludes An expression that specifies that path-expression value excludes literal. literal A string used to compare against the *path-expression* node or attribute value. Use single or double quotation marks to enclose a string. A string cannot contain enclosing quote type: for example, a string enclosed in single quotation marks cannot contain a single quotation mark. Use the backslash character (\) to escape double quotation marks ("). If the string contains double quotation marks, you can enclose the string in single quotation marks. The following example shows a string containing double quotation marks enclosed in single quotation marks: ``` 'he said "Hello, World"' ``` If the string contains single quotation marks, you can enclose the string in escaped double quotation marks. The following example shows a string containing a single quotation mark enclosed in double quotation marks: ``` \"the cat's toy\" ``` DB2 Text Search features such as phrases, wildcards, and synonyms are not supported in XML search queries. ## **Example** The following example uses the XQuery abbreviated syntax for path expressions to specify that the description node excludes the term ice scraper: @xpath:'/info/product/description[. excludes('ice scraper')]' #### Related reference "Text search argument syntax" on page 92 A search argument comprises one or more terms and optional search parameters, separated by white space, that you specify to search in text documents. ### Related information "Abbreviated syntax for path expressions" in XQuery Reference # Part 6. Reference # Chapter 20. SQL and XML built-in search functions You can use the following DB2 built-in search functions in DB2 Text Search. The schema of these functions is SYSIBM. #### **CONTAINS** Returns a NULL or an INTEGER value of 0 or 1 depending on whether the input text document matches the text search condition #### **SCORE** Returns a NULL or a DOUBLE value between 0 and 1 indicating the extent to which the text document meets the search criteria. #### xmlcolumn-contains Returns a NULL or an INTEGER value 1 or 0 depending on whether the input text document of XML data type matches the text search condition ## **CONTAINS** function The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. ##
Function syntax #### Notes: 1 *string-constant* must conform to the rules for search-argument-options. ### search-argument-options: #### Notes: 1 You cannot specify the same clause more than once. The schema is SYSIBM. ### **Function parameters** column-name A qualified or unqualified name of a column that has a text search index that is to be searched. The column must exist in the table or view identified in the FROM clause in the statement and the column of the table, or the column of the underlying base table of the view, must have an associated text search index (SQLSTATE 38H12). The underlying expression of the column of a view must be a simple column reference to the column of an underlying table, either directly or through another, nested view. #### search-argument An expression that returns a value that is a string value (except a LOB) that contains the terms to be searched for and is not be all blanks or the empty string (SQLSTATE 42815). The string value that results from the expression cannot exceed 4096 bytes (SQLSTATE 42815). The value is converted to Unicode before it is used to search the text search index. The maximum number of terms per query must not exceed 1024 (SQLSTATE 38H10). ### string-constant A string constant that specifies the search argument options that are in effect for the function. The options that you can specify as part of the search-argument-options are as follows: ### **QUERYLANGUAGE** = locale Specifies the locale that the DB2 Text Search engine uses when performing a text search on a DB2 text column. The value can be any of the supported locales. If you do not specify QUERYLANGUAGE, the default is the locale of the text search index. If the LANGUAGE parameter of the text search index is AUTO, the default value for **QUERYLANGUAGE** is en_US. ### **RESULTLIMIT** = value If the optimizer chooses a plan that calls the search engine for each row of the result set to obtain the SCORE, then the RESULTLIMIT option has no effect on performance. However, if the search engine is called once for the entire result set, **RESULTLIMIT** acts like a FETCH FIRST clause. When using multiple text searches that specify RESULTLIMIT in the same query, use the same search-argument. If you use different search-argument values, you might not receive the results that you expect. ## SYNONYM = OFF | ON Specifies whether to use a synonym dictionary that is associated with the text search index. The default is OFF. To use synonyms, add the synonym dictionary to the text search index using the Synonym Tool. OFF Do not use a synonym dictionary. ON Use the synonym dictionary associated with the text search index. The result of the function is a large integer. If the second argument can be null, the result can be null; if the second argument is null, the result is null. If the third argument is null, the result is as if you did not specify the third argument. CONTAINS returns the integer value 1 if the document contains a match for the criteria specified in the search argument. Otherwise, it returns 0. CONTAINS is a non-deterministic function. **Note:** You must take additional steps when using parameter markers as a search argument inside the text search functions. Parameter markers do not have a type when precompiled in JDBC and ODBC programs, but the search argument in the text search functions must resolve to a string value. Because the unknown type of the parameter marker cannot be resolved to a string value (SQLCODE -418), you must explicitly cast the parameter marker to the VARCHAR data type. ## **Examples** • The following query is used to find all of the employees who have COBOL in their resumes. The text search argument is not case-sensitive. ``` SELECT EMPNO FROM EMP_RESUME WHERE RESUME_FORMAT = 'ascii' AND CONTAINS(RESUME, 'COBOL') = 1 ``` • In the following C program, the exact term ate is searched for in the COMMENT column: ``` char search_arg[100]; /* input host variable */ ... EXEC SQL DECLARE C3 CURSOR FOR SELECT CUSTKEY FROM CUSTOMERS WHERE CONTAINS(COMMENT, :search_arg) = 1 ORDER BY CUSTKEY; strcpy(search_arg, "ate"); EXEC SQL OPEN C3; ``` • The following query is used to find any 10 students who wrote online essays that contain the phrase fossil fuel in Spanish, which is combustible fósil. A synonym dictionary was created for the associated text search index. Because only 10 students are needed, the query is optimized by using the **RESULTLIMIT** option to limit the number of results from the underlying text search server. ``` SELECT FIRSTNME, LASTNAME FROM STUDENT_ESSAYS WHERE CONTAINS(TERM_PAPER, 'combustible fósil', 'QUERYLANGUAGE= es ES RESULTLIMIT = 10 SYNONYM=ON') = 1 ``` ### Related tasks "Adding a synonym dictionary for DB2 Text Search" on page 75 You can easily add a synonym dictionary to a text search index by using the Synonym Tool. "Searching in text search indexes" on page 89 You can use an SQL statement or XQuery to search through text search indexes. ### Related reference "Text search argument syntax" on page 92 A search argument comprises one or more terms and optional search parameters, separated by white space, that you specify to search in text documents. Appendix B, "Locales supported for DB2 Text Search," on page 183 ## **SCORE** function The SCORE function searches a text search index using criteria that you specify in a search argument and returns a relevance score that measures how well a document satisfies the query as compared with the other documents in the column. ## **Function syntax** #### Notes: 1 *string-constant* must conform to the rules for search-argument-options. #### search-argument-options: #### Notes: 1 You cannot specify the same clause more than once. The schema is SYSIBM. ## **Function parameters** column-name A qualified or unqualified name of a column that has a text search index that is to be searched. The column must exist in the table or view identified in the FROM clause in the statement and the column of the table, or the column of the underlying base table of the view, must have an associated text search index (SQLSTATE 38H12). The underlying expression of the column of a view must be a simple column reference to the column of an underlying table, either directly or through another, nested view. ### search-argument An expression that returns a value that is a string value (except a LOB) that contains the terms to be searched for and is not be all blanks or the empty string (SQLSTATE 42815). The string value that results from the expression cannot exceed 4096 bytes (SQLSTATE 42815). The value is converted to Unicode before it is used to search the text search index. The maximum number of terms per query must not exceed 1024 (SQLSTATE 38H10). string-constant A string constant that specifies the search argument options that are in effect for the function. The options that you can specify as part of the *search-argument-options* are as follows: ### **QUERYLANGUAGE** = locale Specifies the locale that the DB2 Text Search engine uses when performing a text search on a DB2 text column. The value can be any of the supported locales. If you do not specify **QUERYLANGUAGE**, the default is the locale of the text search index. If the LANGUAGE parameter of the text search index is AUTO, the default value for **QUERYLANGUAGE** is en_US. ### **RESULTLIMIT** = value If the optimizer chooses a plan that calls the search engine for each row of the result set to obtain the SCORE, then the **RESULTLIMIT** option has no effect on performance. However, if the search engine is called once for the entire result set, RESULTLIMIT acts like a FETCH FIRST clause. When using multiple text searches that specify **RESULTLIMIT** in the same query, use the same search-argument. If you use different search-argument values, you might not receive the results that you expect. Note: If the number of results is an issue, limit the number of results through a refinement of the search terms, rather than by using RESULTLIMIT. Because RESULTLIMIT returns at most the specified number of results with no consideration of their scores, the highest-ranking documents might not be included. #### SYNONYM = OFF | ON Specifies whether to use a synonym dictionary that is associated with the text search index. The default is OFF. To use synonyms, add the synonym dictionary to the text search index using the Synonym Tool. **OFF** Do not use a synonym dictionary. ON Use the synonym dictionary associated with the text search index. The result of the function is a double-precision floating-point number. If the second argument can be null, the result can be null; if the second argument is null, the result is null. If the third argument is null, the result is as if you did not specify the third argument. The result is greater than 0 but less than 1 if the column contains a match for the search criteria specified by the search argument. The more frequently a match is found, the larger the result value. If the column does not contain a match, the result is 0. SCORE is a non-deterministic function. Note: You must take additional steps when using parameter markers as a search argument inside the text search functions. Parameter markers do not have a type when precompiled in JDBC and ODBC programs, but the search argument in the text search functions must resolve to a string value. Because the unknown type of the parameter marker cannot be resolved to a string value (SQLCODE -418), you must explicitly cast the parameter marker to the VARCHAR data type. ### Example • The following query is used to generate a list of employees in order of how well their resumes satisfy the query "programmer AND (java OR cobol)", along with a relevance value that is normalized between 0 and 100: ``` SELECT EMPNO, INTEGER (SCORE (RESUME, 'programmer AND (java OR cobol)') * 100) AS RELEVANCE ``` ``` FROM EMP RESUME WHERE RESUME FORMAT = 'ascii' AND CONTAIN\overline{S}(RESUME, 'programmer AND (java OR cobol)') = 1
ORDER BY RELEVANCE DESC ``` #### Related tasks "Adding a synonym dictionary for DB2 Text Search" on page 75 You can easily add a synonym dictionary to a text search index by using the Synonym Tool. "Searching text search indexes using SCORE" on page 90 You can use the SCORE function to find out the extent to which a document matches a search argument. #### Related reference "Text search argument syntax" on page 92 A search argument comprises one or more terms and optional search parameters, separated by white space, that you specify to search in text documents. Appendix B, "Locales supported for DB2 Text Search," on page 183 ## xmlcolumn-contains function The db2-fn:xmlcolumn-contains function returns a sequence of XML documents from an XML data column based on a text search performed by the DB2 Text Search engine for specified search terms. ## Syntax 1 4 1 #### **Notes:** options-string-literal must conform to the rules for search-argument-options. ### search-argument-options: ### Notes: You can specify each option only once. #### string-literal Specifies the name of a XML data type column to be searched by db2-fn:xmlcolumn-contains. The value of string-literal is case sensitive and must match the case of the table and column name. You must qualify the column name using a table name or a view name. The SQL schema name is optional. If you do not specify the SQL schema name, the value of CURRENT SCHEMA is used. The column must have a text search index. #### search-argument An expression that returns an atomic string value or an empty sequence. The string cannot be all space characters or an empty string. The string must be castable to the type VARCHAR according to the rules of XMLCAST with a maximum length of 4096 bytes. ### options-string-literal Specifies the search argument options that are in effect for the function. The options that you can specify as part of the *search-argument-options* are as follows: ### **QUERYLANGUAGE** = locale Specifies the locale that the DB2 Text Search engine uses when performing a text search on a DB2 text column. The value can be any of the supported locales. If you do not specify QUERYLANGUAGE, the default is the locale of the text search index. If the LANGUAGE parameter of the text search index is AUTO, the default value for QUERYLANGUAGE is en_US. ### **RESULTLIMIT** = value If the optimizer chooses a plan that calls the search engine for each row of the result set to obtain the SCORE, then the **RESULTLIMIT** option has no effect on performance. However, if the search engine is called once for the entire result set, **RESULTLIMIT** acts like a FETCH FIRST clause. When using multiple text searches that specify **RESULTLIMIT** in the same query, use the same *search-argument*. If you use different *search-argument* values, you might not receive the results that you expect. For an example of what might happen when using multiple text searches and a solution, see the last example in "Examples" on page 112. #### SYNONYM = OFF | ON Specifies whether to use a synonym dictionary that is associated with the text search index. The default is OFF. To use synonyms, add the synonym dictionary to the text search index using the Synonym Tool. **OFF** Do not use a synonym dictionary. ON Use the synonym dictionary associated with the text search index. ### Returned values The returned value is a sequence that is the concatenation of the non-null XML values from the column that is specified by *string-literal*. The non-null XML values are returned in a nondeterministic order. The XML values are the XML documents where the SQL CONTAINS function using *search-argument* for the column specified by *string-literal* would return 1. If there are no such XML values, an empty sequence is returned. If *search-argument* is an empty sequence, an empty sequence is returned. If *search-argument* is an empty string or string containing all space characters, an error is returned. If the third argument is null, the result is as if you did not specify the third argument. If the column that you specify using string-literal does not have a text search index, an error is returned. The db2-fn:xmlcolumn-contains function is related to the db2-fn:sqlquery function, and both functions can produce the same result. However, the arguments of the two functions differ in case sensitivity. The first argument, string-literal, in the db2-fn:xmlcolumn-contains function is processed by XQuery and is case sensitive. Because table names and column names in a DB2 database are uppercase by default, the first argument of db2-fn:xmlcolumn-contains is usually uppercase. The first argument of the db2-fn:sqlquery function is processed by SQL, which automatically converts identifiers to uppercase. The following function calls are equivalent and return the same results assuming that the PRODUCT table is in the schema currently assigned to CURRENT SCHEMA: ``` db2-fn:xmlcolumn-contains("PRODUCT.DESCRIPTION", "snow shovel") db2-fn:sqlquery("select description from product where contains(description, 'snow shovel')) = 1") ``` ## **Examples** The following examples use the DB2 Text Search engine to perform searches. The columns being searched are XML columns and have a text search index. The first function searches for XML documents stored in the PRODUCT.DESCRIPTION column that contain the words snow and shovel. The function sets the maximum number of returned documents to two. If the text search returns a large number of documents, you can optimize the search by using the **RESULTLIMIT** option to limit the maximum number of documents returned. ``` db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', 'snow shovel', 'RESULTLIMIT=2') ``` The function returns the XML documents that match the search criteria. The documents might contain more than just a product description. For example, the following XML fragment consists of two product descriptions from an XML column. Each document contains a product description and information such as the product name, price, weight, and product ID. ``` cproduct xmlns="http://posample.org" pid="100-100-01"> <description> <name>Snow Shovel, Basic 22 inch</name> <details>Basic Snow Shovel, 22 inches wide, straight handle with D-Grip</details> <price>9.99</price> <weight>1 kg</weight> </description> corg" pid="100-101-01"> <description> <name>Snow Shovel, Deluxe 24 inch</name> <details>A Deluxe Snow Shovel, 24 inches wide, ergonomic curved handle with D-Grip</details> <price>19.99</price> <weight>2 kg</weight> </description> </product> ``` The following function searches the XML column STUDENT_ESSAYS.ABSTRACTS for 10 student essays that contain the phrase fossil fuel in Spanish, which is combustible fósil. The function specifies es_ES (Spanish as spoken in Spain) as the language to use for the text search and uses the synonym dictionary that was created for the associated text search index. The function optimizes the search by using **RESULTLIMIT** to limit the number of results. ``` db2-fn:xmlcolumn-contains('STUDENT_ESSAYS.ABSTRACTS', '"combustible fosil"', 'QUERYLANGUAGE=es ES RESULTLIMIT=10 SYNONYM=ON') ``` The following example uses db2-fn:xmlcolumn-contains to find XML documents stored in the PRODUCT.DESCRIPTION column that contain the word ergonomic. The expression returns the name of the product whose price is less than 20. ``` xquery declare default element namespace "http://posample.org"; db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', 'ergonomic')/product/description[price < 20]/name</pre> ``` The previous expression returns only the name elements from the returned XML documents. For example, if the term ergonomic is in the product description of the product Snow Shovel, Deluxe 24 inch, the expression returns a name element similar to the following one: ``` <name xmlns="http://posample.org" >Snow Shovel, Deluxe 24 inch<name> ``` The following expression uses db2-fn:xmlcolumn-contains to find the XML documents from the PRODUCT.DESCRIPTION column that contain the words ice and scraper. The expression uses the product IDs from the product descriptions to find purchase orders in the PURCHASEORDER table that contain the product IDs. The expression returns the customer IDs from purchase orders that contain the product IDs from the matched XML description documents. ``` xquery declare default element namespace "http://posample.org"; for $po in db2-fn:sqlquery(' select XMLElement(Name "po", XMLElement(Name "custid", purchaseorder.custid), XMLElement(Name "porder", purchaseorder.porder)) from purchaseorder') let $product := db2-fn:xmlcolumn-contains('PRODUCT.DESCRIPTION', 'ice scraper')/product where $product/@pid = $po/porder/PurchaseOrder/item/partid order by $po/custid return $po/custid ``` The expression returns custid elements containing the customer IDs. The elements are in ascending order. For example, if three purchase orders matched and the purchase orders had customer IDs 1001, 1002, and 1003, the expression returns the following elements: ``` <custid xmlns="http://posample.org">1001</custid> <custid xmlns="http://posample.org">1002</custid> <custid xmlns="http://posample.org">1003</custid> ``` If there are multiple text searches in the same query, the DB2 Text Search engine combines the multiple text search results and returns them. For example, the following SELECT statement searches for employee resumes that contain the exact phrases ruby on rails and ajax web. The WHERE clause contains two text searches. Each text search returns a maximum of 10 results, and each text search uses a different search argument to search for employee resumes. The statement might return fewer than 10 employee IDs even if there are more than 10 employee resumes that contain both phrases. ``` SELECT EMPNO FROM EMP RESUME WHERE XMLEXISTS('db2-fn:xmlcolumn-contains(''EMP RESUME.XML FORMAT'', ''"ruby on rails"'', ''RESULTLIMIT=10'')') AND XMLEXISTS('db2-fn:xmlcolumn-contains(''EMP_RESUME.XML_FORMAT'', ''"ajax web"'',
''RESULTLIMIT=10'')') ``` For the previous statement, DB2 Text Search returns at most 10 rows for each text search. However, if the resumes in the returned rows contain only one of the phrases (not both phrases), no employee IDs are returned. One way to modify the SELECT statement is to combine the two text searches in the WHERE clause into a single text search. The following statement uses a single text search and returns employee IDs whose resumes have both the phrase ruby on rails and a jax web: ``` SELECT EMPNO FROM EMP RESUME WHERE XMLEXISTS('db2-fn:xmlcolumn-contains(''EMP RESUME.XML FORMAT'', ''"ruby on rails" AND "ajax web"'', ''RESULTLIMIT=10'')') ``` ### Related concepts Chapter 15, "Text search index creation," on page 63 A text search index is a compilation of significant terms extracted from text documents. Each term is associated with the document from which it was extracted. #### Related tasks "Adding a synonym dictionary for DB2 Text Search" on page 75 You can easily add a synonym dictionary to a text search index by using the Synonym Tool. #### Related reference "Text search argument syntax" on page 92 A search argument comprises one or more terms and optional search parameters, separated by white space, that you specify to search in text documents. "Search syntax for XML documents" on page 97 Using an XML search expression, you can use the DB2 Text Search engine to search specific portions of an XML document in a DB2 XML column. "CONTAINS function" on page 105 The CONTAINS function searches a text search index using criteria that you specify in a search argument and returns a value that indicates whether a match is found. Appendix B, "Locales supported for DB2 Text Search," on page 183 # Chapter 21. Administration commands for DB2 Text Search There are a number of commands that allow you to administer DB2 Text Search at the instance, database, table, and text-index levels. You run all of the commands using db2ts. Use the instance-level administration commands to start and stop the DB2 Text Search instance services and clean up text search indexes that are no longer usable: #### db2ts START FOR TEXT Starts the DB2 Text Search instance services #### db2ts STOP FOR TEXT Stops the DB2 Text Search instance services #### db2ts CLEANUP FOR TEXT Cleans up any text search collections that are not usable Use the database-level administration commands to set up or disable databases for DB2 Text Search and clear command locks: #### db2ts ENABLE DATABASE FOR TEXT Enables the current database to create, manage, and use text search indexes #### db2ts DISABLE DATABASE FOR TEXT Disables DB2 Text Search for a database and drops a number of text search catalog tables and views ### db2ts CLEAR COMMAND LOCKS Deletes all command locks for a specific text search index or for all indexes in a database Use table- and index-level commands to create and manipulate text search indexes on columns of a table: #### db2ts CREATE INDEX Creates a text search index #### db2ts DROP INDEX Drops a text search index associated with a text column ### db2ts ALTER INDEX Changes the characteristics of a text search index #### db2ts UPDATE INDEX Populates or updates a text search index based on the current contents of a text column ### db2ts CLEAR EVENTS FOR TEXT Deletes events from the SYSIBMTS.TSEVENT view, an events view that provides information about indexing status and errors ### db2ts HELP Displays the list of db2ts command options and information about specific error messages ## db2ts START FOR TEXT This command: - Starts the DB2 Text Search instance services that support other DB2 Text Search administration commands and the ability to reference text search indexes in SQL queries. - Starts services (daemons on UNIX) on the host machine running the DB2 database server. These services are responsible for the scheduling of text search index updates on the DB2 database server and for text search engine processing. Instance services are started under the authorization-name of the DB2 instance owner. If the instance services are already running, the command has no effect. For execution, the command needs to be prefixed with db2ts at the command line. #### Authorization Instance owner must hold DBADM with DATAACCESS authority for the current DB2 instance. ## Required connection This command must be issued from the DB2 database server. ## **Command syntax** ►►—START FOR TEXT— ### **Command parameters** None #### Related tasks "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. Chapter 7, "Starting the DB2 Text Search instance service," on page 45 Before you can enable your database for text search, you must start the DB2 Text Search instance service. ## db2ts STOP FOR TEXT This command stops the DB2 Text Search instance services. For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** Instance owner must hold DBADM with DATAACCESS authority for the current DB2 instance. ### Required connection This command must be issued from the DB2 database server. ## Command syntax ►►STOP FOR TEXT- ### Command parameters None ### **Usage notes** Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. To avoid interrupting the execution of currently running commands, make sure no other administrative commands like update index are still active before issuing the stop command. Some of the conflicting commands are: - DROP INDEX - UPDATE INDEX - CLEAR EVENTS FOR INDEX - ALTER INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT #### Related tasks Chapter 12, "Stopping the DB2 Text Search instance service," on page 57 When you stop the DB2 Text Search instance service, any currently running db2ts commands will be completed, but you cannot issue any new ones. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts CLEANUP FOR TEXT This command cleans up any DB2 Text Search collections within the instance that are obsolete. A collection can become obsolete if: - A database with text search indexes is dropped before DB2 Text Search has been disabled for the database. - A table is dropped before the text search indexes, associated with it, have been dropped. Note: A text search collection refers to the underlying representation of a text search index. There is a one-to-one relationship between a text search collection and a text search index. While the commands operate on text search indexes, tools operate on text search collections. Query the SYSIBMTS.TSCOLLECTIONNAMES catalog table to determine the text search collection for a text search index. See "Administration Tool for DB2 Text Search" for additional information. For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** To issue the command successfully, the user must be the DB2 instance owner with DBADM and DATAACCESS authority. ## Required connection This command must be issued from the DB2 database server. ## Command syntax ►► CLEANUP FOR TEXT— ## **Command parameters** None #### Related concepts Chapter 18, "Maintenance and troubleshooting for DB2 Text Search," on page 77 Maintenance tasks for DB2 Text Search include deleting orphaned text search collections and clearing text search index events. ### Related tasks "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts ENABLE DATABASE FOR TEXT Enables DB2 Text Search for the current database. This command must be issued successfully before it will be possible to create text search indexes on columns in tables within the database. For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** The user must have DBADM privilege to execute the ENABLE DATABASE command. ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to instance owner before running the ENABLE DATABASE command. ### Required connection Database ## Command syntax ▶ — ENABLE DATABASE FOR TEXT — connection options \vdash ### connection options: ## **Command parameters** ### **CONNECT TO** database-name This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. ### USER username USING password This clause specifies the authorization name and password that will be used to establish the connection. ## **Usage notes** When executed successfully, this command: - Enables the DB2 Text Search feature for the database. - Establishes DB2 Text Search database configuration default values in the view SYSIBMTS.TSDEFAULTS. - Creates the following DB2 Text Search administrative views in the SYSIBMTS schema: - SYSIBMTS.TSDEFAULTS - SYSIBMTS.TSLOCKS - SYSIBMTS.TSINDEXES - SYSIBMTS.TSCONFIGURATION - SYSIBMTS.TSCOLLECTIONNAMES The tables are created in the default table space (IBMDEFAULTGROUP) of the database. Changes to the file system on the DB2 server: None. #### Related tasks Chapter 8, "Enabling a
database for DB2 Text Search," on page 47 You must enable each database that contains columns of text to be searched. You can enable a database for DB2 Text Search by using the db2ts ENABLE DATABASE FOR TEXT command or the SYSPROC.SYSTS_ENABLE stored procedure. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts DISABLE DATABASE FOR TEXT This command somewhat reverses the changes (e.g., drops the text-search related tables and view) done by the command ENABLE DATABASE FOR TEXT. When issued, this command: - Disables the DB2 Text Search feature for the database. - Will delete tables and views such as: - SYSIBMTS.TSDEFAULTS - SYSIBMTS.TSLOCKS - SYSIBMTS.TSINDEXES - SYSIBMTS.TSCONFIGURATION - SYSIBMTS.TSCOLLECTIONNAMES The tables are removed from the default table space (IBMDEFAULTGROUP) of the database. If the FORCE option is specified, all text index information is removed from the database and all associated collections are deleted. In addition, the text service is updated to remove any remaining update schedule information. See the "db2ts DROP INDEX command" for reference. For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** The privileges held by the authorization ID of the statement must include DBADM authority. ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the DISABLE DATABASE command. ### Required connection Database ### **Command syntax** #### connection options: ## Command parameters #### **FORCE** Specifies that all text search indexes be forcibly dropped from the database. If this option is not specified and text search indexes are defined for this database, the command will fail. If this option is specified and DB2 Text Search service has not been started (the db2ts START FOR TEXT command has not been issued), the text search indexes (collections) are not dropped. #### **CONNECT TO** *database-name* This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. #### **USER** *username* **USING** *password* This clause specifies the authorization name and password that will be used to establish the connection. ### Usage notes This command does not influence the DB2 Net Search Extender enablement status of the database. It deletes the DB2 Text Search catalog tables and views that are created by the ENABLE FOR TEXT command. Before dropping a DB2 database that has text search index definitions, issue this command and make sure that the text indexes and collections have been removed successfully. If some indexes could not be deleted using the FORCE option, the collection names are written to the db2diag log file. If the text search index command DISABLE DATABASE FOR TEXT is not executed before the CLP command DROP DATABASE, the text search index services must also be cleaned up using the CLEANUP FOR TEXT command. See the DROP INDEX command for more about dropping indexes, and the CLEANUP FOR TEXT command for information about text search collections and their relationship to text search indexes. Note: The user is discouraged from usage that results in orphaned collections, i.e., collections that remain defined on the text search server but are not used by DB2. Here are some cases that cause orphaned collections: - When a DROP DATABASE CLP command or DROP TABLE statement is executed without running a DISABLE DATABASE FOR TEXT command. - When a DISABLE DATABASE FOR TEXT command is executed using the FORCE option. Some other error conditions. The CLEANUP FOR TEXT command can be used in some scenarios. Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - DROP INDEX - UPDATE INDEX - CLEAR EVENTS FOR INDEX - ALTER INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT #### Related tasks Chapter 13, "Disabling a database for DB2 Text Search," on page 59 Disable a database when you no longer intend to perform text searches in that database. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts CLEAR COMMAND LOCKS Removes all command locks for a specific text search index or for all text search indexes in the database. A command lock is created at the beginning of a text search index command, and is destroyed when it is done. It prevents undesirable conflict between different commands. A cleanup is done automatically of all locks associated with processes that are no longer alive. This is done to make a text search index accessible to a new search request. Use of this command is required in the rare case that locks remain in place due to an unexpected system behavior, and need to be cleaned up explicitly. For execution, the command needs to be prefixed with db2ts at the command line. #### **Authorization** The username for the database connection must have DBADM authority if an index name is not specified. For clearing a command lock on a specific index, the username for the database connection must have CONTROL privilege on the table for which the text search index was created. ### **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the CLEAR COMMAND LOCKS command. ## Required connection Database ## **Command syntax** ## Command parameters ### **FOR INDEX** *index-name* The name of the index as specified in the CREATE INDEX command. #### **CONNECT TO** *database-name* This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. #### **USER** *username* **USING** *password* This clause specifies the authorization name and password that will be used to establish the connection. ## **Usage notes** You would invoke this command because the process owning the command lock is dead. In this case, the command (represented by the lock) may not have completed, and the index may not be operational. You need to take appropriate action. For example, the process executing the DROP INDEX command dies suddenly. It has deleted some index data, but not all the catalog and collection information. The command lock is left intact. After clearing the DROP INDEX command lock, you may wish to re-execute the DROP INDEX command. In another example, the process executing the CREATE INDEX command dies suddenly. It has created some index catalog and collection information, but not all. The command lock is left intact. After clearing the CREATE INDEX command lock, you can execute the DROP INDEX and CREATE INDEX commands. When this command is issued, the content of the DB2 Text Search view SYSIBMTS.TSLOCKS is updated. #### Related tasks "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ### db2ts CREATE INDEX Creates a text search index for a text column which allows the column data to be searched using text search functions. The index will not contain any data until the text search UPDATE INDEX command is explicitly executed by the user, or implicitly issued by the text search service, according to the defined update frequency for the index. For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: One of: - CONTROL privilege on the table on which the index is defined - INDEX privilege on the table on which the index is defined and one of the following: - IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the index does not exist - CREATEIN privilege on the schema, if the schema name of the index refers to an existing schema - DBADM authority ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the CREATE INDEX command. ### Required connection Database ### Command syntax #### text default information: ### update characteristics: ### update frequency: ### incremental update characteristics: ### storage options: ## index configuration options: ## connection options: ## **Command parameters** ### **CREATE INDEX** *index-name* Specifies the name of the index (optionally schema qualified) to be created, that will uniquely identify the text search index within the database. The index name must adhere to the naming restrictions for
DB2 indexes. #### **ON** *table-name* The table name containing the text column. Text search indexes cannot be created on the following tables: - range-partitioned tables - · federated tables - materialized query tables - views #### text-column-name The column name of the column to be indexed. The column must be of one of the following data types: CHAR, VARCHAR, LONG VARCHAR, CLOB, DBCLOB, BLOB, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, or XML. If the data type of the column is not one of these, use a transformation function specified with function-schema.function-name to convert the column type to one of the valid types. Alternatively, you can specify a user-defined external function that accesses the text documents to be indexed. Only a single text search index can be created for a column. ### *function-name*(*text-column-name*) Specifies the schema qualified name, conforming to DB2 naming conventions, of an external scalar function that accesses text documents in a column that is not of a supported type for text searching. Performs a data type conversion of that value and returns the value as one of the supported data types for text searching. Its task is to perform a column type conversion. This function must take only one parameter and return only one value. ### **CODEPAGE** *code-page* Specifies the DB2 code page (CODEPAGE) to be used when indexing text documents. The default value is specified by the value in the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='CODEPAGE' (which happens to be the database code page). This argument only applies to binary data types, i.e., the column type or return type from a transformation function must be BLOB or character-type FOR BIT DATA. ### **LANGUAGE** locale Specifies the language to be used by DB2 Text Search for language specific processing of a document during indexing. If you do not specify a locale, the database territory will be used to determine the default setting for LANGUAGE. If you would like to have your documents automatically scanned to determine the locale, specify locale as AUTO. #### **FORMAT** format Specifies the format of text documents in the column. The supported formats include: TEXT, XML, and HTML. DB2 Text Search needs this information when indexing documents. If the format is not specified, the default value is used. The default value is in the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='FORMAT'. For columns of data type XML, the default format 'XML' is used, regardless of the value of DEFAULTNAME. ### **UPDATE FREQUENCY** Specifies the frequency with which index updates are made. The index will be updated, if the number of changes is at least the value set for UPDATE MINIMUM. The update frequency NONE indicates that no further index updates will be made. This can be useful for a text column in a table with data that will not change. It is also useful when the user intends to manually update the index (using the UPDATE INDEX command). Automatic updates can only be done if the START FOR TEXT command has been run and the DB2 Text Search instance services are running. The default frequency value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEFREQUENCY'. #### NONE No further index updates are made. The update has to be started manually. - The day(s) of the week when the index is updated. - Every day of the week. integer1 Specific days of the week, from Sunday to Saturday: 0 to 6 - H The hour(s) of the specified day(s) when the index is updated. - Every hour of the day. integer2 Specific hours of the day, from midnight to 11 pm: 0 to 23 **M** The minute(s) of the specified hour(s) when the index is updated. integer3 Specified as top of the hour (0), or in multiples of 5 minute increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55 ### **UPDATE MINIMUM** minchanges Specifies the minimum number of changes to text documents before the index is updated incrementally at the time specified in UPDATE FREQUENCY. Positive integer values only are allowed. The default value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEMINIMUM'. Note: This value is ignored during an UPDATE INDEX command (unless the USING UPDATE MINIMUM option is used there). A small value increases consistency between the table column and the text search index. However, it also causes higher performance overhead. ### **COLLECTION DIRECTORY** directory The directory in which the text search index is stored. By default, the collection data will be located in DBPATH/NODExxxx/SQLxxxx/db2collections/index identifier/data. You must specify the absolute path. The maximum length of the absolute path name is 215 characters. ### **ADMINISTRATION TABLES IN** *tablespace-name* Specifies the name of an existing regular table space for the administration tables created for the index. If not specified, the table space of the base table for which the index is being created is used. ### **INDEX CONFIGURATION** (option-value) Specifies additional index related values as option value string pairs. These values must be enclosed in single quotes. **Note:** A single quote character within a string value must be represented by two consecutive single quotes. The following values are supported: Table 7. Specifications for option-value | Option | Allowed values
(Default) | Meaning | |---------|--------------------------------------|--| | COMMENT | String value shorter than 512 bytes. | Adds a string comment value to the REMARKS column in the DB2 Text Search catalog view TSINDEXES. It also adds the string comment value as the description of the collection. | ### Example: INDEX CONFIGURATION (COMMENT 'Index on User''s Guide column') ### **CONNECT TO** database-name This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. ### USER username USING password This clause specifies the authorization name and password that will be used to establish the connection. ### **Usage notes** All limits and naming conventions, that apply to DB2 database objects and queries, also apply to DB2 Text Search features and queries. DB2 Text related identifiers must conform to the DB2 naming conventions. In addition, there are some additional restrictions. For example, these identifiers can only be of the form: [A-Za-z] [A-Za-z0-9@#\$]* [.. _w _] [.. _w _0 _0 _0 __] or "[A-Za-z][A-Za-z0-90#\$_]*" With the successful execution of the CREATE INDEX command: • DB2 Text Search server data is updated. A collection of name instance_database-name_index-identifier_number is created, as in the following example: tigertail_MYTSDB_TS250517_0000 The collection name can be retrieved from the SYSIBMTS.TSCOLLECTIONNAMES view (column COLLECTIONNAME). - DB2 Text Search catalog information is updated. An index staging table is created in the specified table space with appropriate DB2 indexes. In addition, an index event table is created in the specified table space. - The newly created text search index is not automatically populated. The UPDATE INDEX command must be executed either manually or automatically (as a result of an update schedule having been defined for the index through the specification of the UPDATE FREQUENCY option) for the text search index to be populated. - The Text Search index data file on the DB2 database server is updated. Scheduled update information is recorded for each index in the instance. Usage restrictions: - A primary key must be defined for the table. In DB2 Text Search, a multi-column DB2 primary key can be used without type limitations. The number of primary key columns is limited to 2 columns less than the number of primary key columns allowed by DB2. - The total length of all primary key columns for a table with DB2 Text Search indexes is limited to 15 bytes less than the maximum total primary key length allowed by DB2. Refer to the restrictions of the DB2 CREATE INDEX statement. Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - DROP INDEX - UPDATE INDEX - CLEAR EVENTS FOR INDEX - ALTER INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT #### Related tasks "Creating a text search index" on page 64 After you enable a database for DB2 Text Search, you can create text search indexes on columns that contain the text that you want to search. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts DROP INDEX Drops an existing text search index. For execution, the command needs to be prefixed with db2ts at the command line. #### Authorization The privileges held by the authorization ID of the statement must include at least one of the following: - · CONTROL privilege on the table on which the index is defined - DBADM authority ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the DROP INDEX command. ### Required connection Database ## **Command syntax** ### connection options: ## **Command parameters** #### **DROP INDEX** *index-name* The
schema and name of the index as specified in the CREATE INDEX command. It uniquely identifies the text search index in a database. ### **CONNECT TO** *database-name* This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. ### **USER** username **USING** password This clause specifies the authorization name and password that will be used to establish the connection. ### **Usage notes** Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - DROP INDEX - UPDATE INDEX - CLEAR EVENTS FOR INDEX - ALTER INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT Dropping the user table in DB2 does not trigger the dropping of text search indexes. They must be dropped manually before or after dropping the table (preferably before dropping the table). After a text search index is dropped, text search is no longer possible on the corresponding text column. If you plan to create a new text search on the same text column, you must first disconnect from the database and then reconnect before creating the new text search index. #### Changes to the database: - Update the DB2 Text Search catalog information. - Drop the index staging/event tables. - Delete triggers on the user text table. The collection associated with the DB2 Text Search index definition is destroyed. #### Related tasks "Dropping a text search index" on page 72 When you no longer intend to perform text searches in a text column, you can drop the text search index. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## db2ts ALTER INDEX This command changes the update characteristics of an index. For execution, the command needs to be prefixed with db2ts at the command line. ### Authorization The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the text index is defined - DBADM authority ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the ALTER INDEX command. ## Required connection Database ### Command syntax ### update characteristics: ### update frequency: #### incremental update characteristics: ### connection options: ### **Command parameters** ### **ALTER INDEX** index-name The schema and name of the index as specified in the CREATE INDEX command. It uniquely identifies the text search index in a database. #### **UPDATE FREQUENCY** Specifies the frequency with which index updates are made. The index will be updated, if the number of changes is at least the value set for UPDATE MINIMUM. The update frequency NONE indicates that no further index updates will be made. This can be useful for a text column in a table with data that will not change. It is also useful when the user intends to manually update the index (using the UPDATE INDEX command). Automatic updates can only be done if the START FOR TEXT command has been run and the DB2 Text Search instance services are running. The default frequency value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEFREQUENCY'. #### NONE No automatic updates will be applied to the text index. Any further index update will have to be started manually. - **D** The day(s) of the week when the index is updated. - Every day of the week. integer1 Specific days of the week, from Sunday to Saturday: 0 to 6 - H The hour(s) of the specified day(s) when the index is updated. - Every hour of the day. integer2 Specific hours of the day, from midnight to 11 pm: 0 to 23 **M** The minute(s) of the specified hour(s) when the index is updated. integer3 Specified as top of the hour (0), or in multiples of 5 minute increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55 If you do not specify the UPDATE FREQUENCY option, the frequency settings are left unchanged. ### **UPDATE MINIMUM** minchanges Specifies the minimum number of changes to text documents that must occur before the index is incrementally updated. Multiple changes to the same text document are treated as separate changes. If you do not specify the UPDATE MINIMUM option, the setting is left unchanged. #### **CONNECT TO** *database-name* This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. ### **USER** *username* **USING** *password* This clause specifies the username and password that will be used to establish the connection. ## Usage notes All limits and naming conventions, that apply to DB2 database objects and queries, also apply to DB2 Text Search features and queries. DB2 Text Search related identifiers must conform to the DB2 naming conventions. In addition, there are some additional restrictions. For example, these identifiers can only be of the form: [A-Za-z][A-Za-z0-90#\$]* ``` "[A-Za-z][A-Za-z0-90#$]*" ``` Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - ALTER INDEX - CLEAR EVENTS FOR INDEX - DROP INDEX - UPDATE INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT Changes to the database: Updates the DB2 Text Search catalog information. #### Related tasks "Altering a text search index" on page 71 You can alter the update properties of a text search index. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ### db2ts UPDATE INDEX This command updates the text search index (collection in DB2 Text Search) to reflect the current contents of the text column with which the index is associated. While the update is being performed, a search is possible. Until completion of the update, the search operates on a partially updated index. For execution, the command needs to be prefixed with db2ts at the command line. #### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: - · CONTROL privilege on the table on which the text index is defined - DATAACCESS authority ## **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the UPDATE INDEX command. ## Required connection Database ## **Command syntax** ### **Command parameters** **UPDATE INDEX** index-name Specifies the name of the text search index to be updated. The index name must adhere to the naming restrictions for DB2 indexes. #### **USING UPDATE MINIMUM** Specifies that the UPDATE MINIMUM minchange settings, specified in the CREATE INDEX command used to create the index, should be used, and starts an incremental update if the specified minimum number of changes have occurred. By default the update is started unconditionally. ## **CONNECT TO** database-name This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. ### **USER** username **USING** password This clause specifies the authorization name and password that will be used to establish the connection. ## Usage notes All limits and naming conventions, that apply to DB2 database objects and queries, also apply to DB2 Text Search features and queries. DB2 Text Search related identifiers must conform to the DB2 naming conventions. In addition, there are some additional restrictions. For example, these identifiers can only be of the form: [A-Za-z][A-Za-z0-90#\$]* ``` or "[A-Za-z][A-Za-z0-90#$]*" ``` This command does not return until all index update processing is completed. The duration depends on the number of documents to be indexed and the number of documents already indexed. The collection name for the index can be retrieved from the SYSIBMTS.TSCOLLECTIONNAMES view (column COLLECTIONNAME). Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - UPDATE INDEX - CLEAR EVENTS FOR INDEX - ALTER INDEX - DROP INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT Note: In cases of
individual document errors, the documents must be corrected. The primary keys of the erroneous documents can be looked up in the event table for the index. The next UPDATE INDEX command will reprocess these documents if the corresponding rows in the user table are modified. Changes to the database: - Insert rows to the event table (including parser error information from DB2 Text Search). - Delete from the index staging table in case of incremental updates. - Before first update, create triggers on the user text table. - The collection is updated. - New or changed documents are parsed and indexed. - · Deleted documents are discarded from the index. #### Related tasks "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. "Updating a text search index" on page 69 You can update a text search index automatically or manually. Automatic updates occur based on how you defined the text search index. You can update indexes manually by issuing a command or by calling a stored procedure. ## db2ts CLEAR EVENTS FOR INDEX This command deletes indexing events from an index's event table used for administration. The name of this table can be found in the view SYSIBMTS.TSINDEXES in column EVENTVIEWNAME. Every index update operation produces informational and, in some cases, error entries in the event table. For automatic updates, this table has to be regularly inspected. Document specific errors have to be corrected (by changing the document content). After correcting the errors, the events can be cleared (and should be, in order not to consume too much space). For execution, the command needs to be prefixed with db2ts at the command line. ### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the index is defined - DBADM authority ### **Prerequisite** Instance owner must hold DBADM with DATAACCESS authority. The SYSADM no longer holds SECADM nor DBADM privilege in Version 9.7. SECADM must explicitly grant DBADM with DATAACCESS authority to the instance owner before running the CLEAR EVENTS command. ## Required connection Database ### Command syntax ▶►—CLEAR EVENTS FOR INDEX—index-name—FOR TEXT—| connection options |----- #### connection options: ``` -CONNECT TO-database-name -USER—username—USING—password ``` #### Command parameters index-name The name of the index as specified in the CREATE INDEX command. The index name must adhere to the naming restrictions for DB2 indexes. #### **CONNECT TO** *database-name* This clause specifies the database to which a connection will be established. The database must be on the local system. If specified, this clause takes precedence over the environment variable DB2DBDFT. This clause can be omitted if the following are all true: - The DB2DBDFT environment variable is set to a valid database name. - The user running the command has the required authorization to connect to the database server. #### **USER** *username* **USING** *password* This clause specifies the authorization name and password that will be used to establish the connection. #### Usage notes All limits and naming conventions, that apply to DB2 database objects and queries, also apply to DB2 Text Search features and queries. DB2 Text Search related identifiers must conform to the DB2 naming conventions. In addition, there are some additional restrictions. For example, these identifiers can only be of the form: [A-Za-z][A-Za-z0-90#\$]* ``` or "[A-Za-z][A-Za-z0-90#$]*" ``` When regular updates are scheduled (see UPDATE FREQUENCY options in CREATE INDEX or ALTER INDEX commands), the event table should be regularly checked. To cleanup the DB2 Text Search event table for a text search index, use CLEAR EVENTS FOR INDEX command after you have checked the reason for the event and removed the source of the error. Be sure to make changes to all rows referenced in the event table. By changing the rows in the user table, you ensure that the next UPDATE INDEX attempt can be made to successfully re-index the once erroneous documents. Note that multiple commands cannot be executed concurrently on a text search index if they may conflict. If this command is issued while a conflicting command is running, an error will occur and the command will fail, after which you can try to run the command again. Some of the conflicting commands are: - CLEAR EVENTS FOR INDEX - UPDATE INDEX - ALTER INDEX - DROP INDEX - DISABLE DATABASE FOR TEXT - STOP FOR TEXT Changes to the database: The event table is cleared. #### Related tasks "Clearing text search index events" on page 79 If you no longer need the messages in the event view of an index, you can clear (delete) them. "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. #### db2ts HELP HELP displays the list of available DB2 Text Search commands, or the syntax of an individual command. Use the db2ts HELP command to get help on specific error messages as well. For execution, the command needs to be prefixed with db2ts at the command line. #### **Authorization** None. #### **Command syntax** #### **Command parameters** #### HELP | ? Provides help information for a command or a reason code. command The first keywords that identify a DB2 Text Search command: - ENABLE - DISABLE - CREATE - DROP - ALTER - UPDATE - CLEAR (for both CLEAR COMMAND LOCKS and CLEAR EVENTS FOR INDEX) - CLEANUP - START - STOP sqlcode SQLCODE for message returned by db2ts command (within or outside the administration stored procedure) or text search query. sqlstate Sqlstate returned by command, administration stored procedure, or text search query. error-identifier An identifier is part of the text-search-error-msg that is embedded in error messages. This identifier starts with 'CIE' and is of the form CIEnnnnn where *nnnnn* is a number. This identifier represents the specific error that is returned upon an error during text search. It may also be returned in an informational message upon completion of a text search command or in the message printed at the completion of a text search administration procedure. If the identifier does not start with 'CIE', then db2ts help cannot provide information about the error-identifier. For example, db2ts cannot provide help for a message with an error-identifier such as IQQR0012E. #### **Usage notes** When using a UNIX shell, it might be necessary to supply the arguments to db2ts using double-quotes, as in the following example: db2ts "? CIE00323" Without the quotes, the shell tries to match the wildcard with the contents of the working directory and it may give unexpected results. If the first keyword of any db2ts command is specified, the syntax of the identified command is displayed. For the two db2ts commands that share the same first keyword (CLEAR COMMAND LOCKS and CLEAR EVENTS FOR INDEX), the syntax of both commands will be displayed when db2ts help clear is issued, but each command may be specifically displayed by adding the second keyword to distinguish them, for example db2ts help clear events. If a parameter is not specified after? or HELP, db2ts lists all available db2ts commands. Specifying a sqlcode, sqlstate, or CIE error-identifier will return information about that code, state, or error identifier. For example, db2ts help SQL20423 or db2ts ? 38H10 or db2ts ? CIE00323 Note: For the following Text Search commands, the command help options listed are not valid at this time: db2ts DISABLE DATABASE FOR TEXT [SERVER] db2ts ENABLE DATABASE FOR TEXT [SERVER] db2ts UPDATE INDEX [REORGANIZE] and [PARSE ONLY] #### Related tasks "Issuing text search commands" on page 10 You can issue commands by running the db2ts command shell or by calling one of the administrative SQL routines that is a stored procedure for DB2 Text Search. ## **Chapter 22. DB2 Text Search routines** DB2 Text Search provides several administrative SQL routines for running commands and for returning the result messages of the commands that you run and the result message reason codes. You can run the following db2ts commands using the administrative SQL routines: - ENABLE DATABASE - DISABLE DATABASE - CREATE INDEX - DROP INDEX - ALTER INDEX - UPDATE INDEX - CLEAR EVENTS - CLEAR COMMAND LOCKS # SYSTS_ADMIN_CMD stored procedure - Run text search administration commands The SYSTS_ADMIN_CMD procedure is used by applications to run text search administrative commands using the SQL CALL statement. ### **Syntax** ►►—SYSTS ADMIN CMD—(—command-string—,—message-locale—,—message—)———— The schema is SYSPROC. #### Procedure parameter #### command-string An input argument of type VARCHAR (32K) that specifies a single text search index administration command that is to be executed. The command syntax is the same as the DB2 Text Search command with the exception of the connection options. Connection options are not supported through this procedure. Commands that are run through this procedure use the current connection. #### message-locale An input argument of type VARCHAR (33) that specifies the desired language for any error message text returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. #### message An output argument of type VARCHAR (32K) that specifies a warning or informational message for an operation that is considered successful. #### **Authorization** EXECUTE privilege on the SYSTS_ADMIN_CMD procedure. The procedure currently supports the following DB2 Text Search commands: - ALTER INDEX - CLEAR COMMAND LOCKS - CLEAR EVENTS - CREATE INDEX - DISABLE DATABASE - DROP INDEX - ENABLE DATABASE - UPDATE INDEX #### Example Update text
search index MYTEXTINDEX in schema DB2TS and return any error messages in English. ``` CALL SYSPROC.SYSTS ADMIN CMD ('UPDATE INDEX DB2TS.MYTEXTINDEX FOR TEXT', 'en US', ?)"; ``` The following is an example of output from this query. ``` Value of output parameters Parameter Name : MESSAGE Parameter Value: CIE00001 Operation completed successfully. Return Status = 0 ``` #### Usage notes If the execution of the command is not successful, SQLCODE -20427 and SQLSTATE 38H14 is returned with the text search specific error message. For example, if index MYTEXTINDEX already exists and the following statement is issued: ``` CALL SYSPROC.SYSTS ADMIN CMD ('CREATE INDEX MYTEXTINDEX FOR TEXT ON DB2TS.TEXTBOOKS (STORY)', 'en US', ?) ``` the index creation will fail with the following error message. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00201 Text search index "DB2TS "."MYTEXTINDEX" already exists. ". SQLSTATE=38H14 ``` • If an SQLCODE is returned by the procedure, the message might be truncated. Full message information can be found in the db2diag log files. #### Related reference ``` "db2ts DROP INDEX " in Command Reference "db2ts ALTER INDEX" in Command Reference "db2ts UPDATE INDEX " in Command Reference "db2ts CLEAR EVENTS FOR INDEX " in Command Reference ``` ### SYSTS_ENABLE procedure - Enable current database for text search This procedure enables DB2 Text Search for the current database. This procedure must be issued successfully before text search indexes on columns in tables within the database can be created. This procedure issues the ENABLE DATABASE FOR TEXT text search administration command on the database server. #### **Syntax** ``` ►►—SYSTS_ENABLE—(—message_locale—,—message—)— ``` The schema is SYSPROC. #### **Procedure parameters** message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### Authorization The user must have DBADM privilege to execute the ENABLE DATABASE command. ### **Examples** Example 1: Enable the database for text search and return any error messages in English. ``` CALL SYSPROC.SYSTS ENABLE('en US', ?) ``` The following is an example of output for this query. ``` Value of output parameters Parameter Name : MESSAGE Parameter Value: Operation completed successfully. Return Status = 0 ``` Example 2: In the following example, SYSTS_ENABLE is called on a database that is already enabled for text search. This results in an error message to the caller. ``` CALL SYSPROC.SYSTS_ENABLE('en_US', ?) ``` The following is an example of output for this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message from the text search product is "CIE00322 Specified or default database already enabled for text. ". SQLSTATE 38H14 ``` #### Usage notes Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - When this procedure is run, - this procedure creates database objects, such as text search administration catalog tables and views, in the schema SYSIBMTS. These objects are placed in the default table space of the database (IBMDEFAULTGROUP). - the established database defaults for text search index are available in view SYSIBMTS.TSDEFAULTS. - and when the command has successfully completed, the text search catalog tables and views are created and are available. ### SYSTS_DISABLE procedure - Disable current database for text search The procedure disables DB2 Text Search for the current database. Once the Text Search feature has been disabled, text search indexes and commands are no longer available for use with the database. The procedure issues a DISABLE DATABASE FOR TEXT text search administration command on the database server. #### **Syntax** The schema is SYSPROC. #### Procedure parameters options An input argument of type VARCHAR(128) that specifies the options to be used when disabling the database. The argument can be set to FORCE. When this value is specified, all indexes are dropped and the Text Search feature is disabled by force. No text search indexes are preserved and no error message or warning is returned. If the argument is null or an empty string, an attempt is made to disable the Text Search feature for the database. #### message locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The privileges held by the authorization ID of the statement must include DBADM authority. #### **Examples** Example 1: In the following example, Text Search is disabled for a database using the SYSTS_DISABLE procedure. The FORCE option is specified to ensure that the feature is disabled even if text search indexes still exist on tables in the database. Error messages are specified requested to be returned in English. The message output parameter is set to an informational message string. ``` CALL SYSPROC.SYSTS DISABLE('FORCE', 'en US', ?) ``` The following is an example of output from this query. ``` Value of output parameters Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` Example 2: In the following example, Text Search is disabled for a database with existing text search indexes using the SYSTS_DISABLE procedure without specifying the FORCE option. This results in an error message to the caller. It is preferable to drop all existing text search indexes prior to disabling the Text Search feature or alternatively to specify the FORCE option for the options input parameter value. ``` CALL SYSPROC.SYSTS DISABLE('', 'en US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00326 Text search index active in specified or default database. ". SQLSTATE 38H14 ``` #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be executed concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands are: - SYSTS_ALTER procedure or ALTER INDEX db2ts command - SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command - SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - STOP FOR TEXT db2ts command - SYSTS UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE 38H13. - When this procedure is run, - the DB2 Text Search catalog information is updated. The index log and event tables are dropped. Triggers on the user text table are deleted. - if the FORCE option is specified, all text index information is removed from the database and all associated collections are deleted. In addition, the text service is updated to remove any remaining update schedule information. See the "db2ts DROP INDEX command" or "SYSTS_DROP procedure" for reference. - This procedure does not influence the DB2 Net Search Extender enablement status of the database. It deletes the DB2 Text Search catalog tables and views that are created by the SYSTS_ENABLE procedure or the ENABLE FOR TEXT command. - Before dropping a DB2 database that has text search index definitions, run this procedure and make sure that the text indexes and collections have been removed successfully. - If some indexes could not be deleted using the FORCE option, the collection names are written to the db2diag log files. If the text search index procedure SYSTS_DISABLE or the command DISABLE DATABASE FOR TEXT is not executed before the CLP command DROP DATABASE, the text search index services must also be cleaned up using the CLEANUP FOR TEXT command. See the SYSTS_DROP procedure or DROP INDEX command for more about dropping indexes, and the CLEANUP FOR TEXT command for information about text search collections and their relationship to text search indexes. **Note:** The user is discouraged from usage that results in orphaned collections, that is, collections that remain defined on the text search server but are not used by DB2. Here are some cases that may cause orphaned collections: - When a DROP DATABASE CLP command or DROP TABLE statement is executed without running the SYSTS_DISABLE procedure or a DISABLE DATABASE FOR TEXT command. - When the SYSTS_DISABLE procedure is run or a DISABLE DATABASE FOR TEXT command is executed using the FORCE option. - Some other error conditions. The CLEANUP FOR TEXT command can be used in some scenarios. ### SYSTS_CREATE procedure - Create a text search index on a column This procedure creates a text search index for a text column which allows the column data to be searched using text search functions. Once the text search index is created, the column can be searched
using text search functions in queries. The index will not contain any data until the text search UPDATE INDEX command or SYSTS_UPDATE procedure is explicitly executed by the user, or implicitly executed by the text search instance level services, according to the defined update frequency for the index. The procedure issues a CREATE INDEX text search administration command on the database server. #### Syntax 5 4 1 #### text source: ``` |--table-name-(--| text column name |--)-,- text column name: -column-name- -function-name (column-name)\dashv options: text default information ⊢ update characteristics storage options \vdash index configuration options \vdash text default information: -CODEPAGE—code-page— LANGUAGE—language— FORMAT—format— update characteristics: -UPDATE FREQUENCY- ⊣ update frequency ⊢ ightharpoonup incremental update characteristics \mid— update frequency: incremental update characteristics: -UPDATE MINIMUM\!-\!\!\!\!\!\!\!\!urchanges\!-\!\!\!\!\! storage options: ``` COLLECTION DIRECTORY—directory #### index configuration options: The schema is SYSPROC. #### **Procedure parameters** index_schema An input argument of type VARCHAR(128) that specifies the schema of the text search index. The index_schema must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index_schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with index_schema, it uniquely identifies a text search index in a database. The *index name* is case-sensitive. #### text source An input argument of type VARCHAR(1024) that specifies the name of the column to be indexed. The options are: table-name The table name containing the text column. Text search indexes cannot be created on the following tables: - · range-partitioned tables - federated tables - materialized query tables - views The *table-name* is case-sensitive. #### text column name The column name of the column to be indexed. column-name The column must be of one of the following data types: CHAR, VARCHAR, LONG VARCHAR, CLOB, DBCLOB, BLOB, GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, or XML. If the data type of the column is not one of these, use a transformation function specified with function-schema.function-name to convert the column type to one of the valid types. Refer to the function-name (column-name) for syntax and details. Alternatively, you can specify a user-defined external function that accesses the text documents to be indexed. Only a single text search index can be created for a column. The column-name is case-sensitive. function-name (column-name) Specifies the schema qualified name, that conforms to DB2 naming conventions, of an external scalar function that accesses text documents in a column that is not of a supported type for text searching. Performs a data type conversion of that value, and returns the value as one of the supported data types for text searching. Its task is to perform a column type conversion. This function must take only one parameter and return only one value. The function-name (column-name) is case-sensitive. #### options An input argument of type VARCHAR(32K) that specifies the options to be used. If no options are needed, the argument can be null or an empty string. The available options are: #### CODEPAGE code-page Specifies the DB2 code page (CODEPAGE) to be used when indexing text documents. The default value is specified by the value in the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='CODEPAGE' (which happens to be the database code page). This argument only applies to binary data types, i.e., the column type or return type from a transformation function must be BLOB or character-type FOR BIT DATA. #### LANGUAGE language Specifies the language to be used by DB2 Text Search for language specific processing of a document during indexing. If you do not specify a locale, the database territory will be used to determine the default setting for LANGUAGE. If you would like to have your documents automatically scanned to determine the locale, specify locale as AUTO. #### **FORMAT** format Specifies the format of text documents in the column. The supported formats include: TEXT, XML, and HTML. DB2 Text Search needs this information when indexing documents. If the format is not specified, the default value is used. The default value is in the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='FORMAT'. For columns of data type XML, the default format 'XML' is used, regardless of the value of DEFAULTNAME. #### UPDATE FREQUENCY Specifies the frequency with which index updates are made. The index will be updated, if the number of changes is at least the value set for UPDATE MINIMUM. The update frequency NONE indicates that no further index updates will be made. This can be useful for a text column in a table with data that will not change. It is also useful when the user intends to manually update the index (using the UPDATE INDEX command). Automatic updates can only be done if the START FOR TEXT command has been run and the DB2 Text Search instance services are running. The default frequency value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEFREQUENCY'. No further index updates are made. The update has to be started manually. - **D** The day(s) of the week when the index is updated. - Every day of the week. #### integer1 Specific days of the week, from Sunday to Saturday: 0 to 6 - H The hour(s) of the specified day(s) when the index is updated. - * Every hour of the day. integer2 Specific hours of the day, from midnight to 11 pm: 0 to 23 **M** The minute(s) of the specified hour(s) when the index is updated. integer3 Specified as top of the hour (0), or in multiples of 5 minute increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55 #### **UPDATE MINIMUM** minchanges Specifies the minimum number of changes to text documents before the index is updated incrementally at the time specified in UPDATE FREQUENCY. Positive integer values only are allowed. The default value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEMINIMUM'. **Note:** This value is ignored during an UPDATE INDEX command (unless the USING UPDATE MINIMUM option is used there). A small value increases consistency between the table column and the text search index. However, it also causes higher performance overhead. #### **COLLECTION DIRECTORY** directory The directory in which the text search index is stored. By default, the collection data will be located in *DBPATH*/NODExxxx/SQLxxxx/db2collections/*index identifier*/data. You must specify the absolute path. The maximum length of the absolute path name is 215 characters. #### **ADMINISTRATION TABLES IN** *tablespace-name* Specifies the name of an existing regular table space for the administration tables created for the index. If not specified, the table space of the base table for which the index is being created is used. #### **INDEX CONFIGURATION** (option-value) Specifies additional index related values as option value string pairs. These values must be enclosed in single quotes. **Note:** A single quote character within a string value must be represented by two consecutive single quotes. The following values are supported: Table 8. Specifications for option-value | Option | Allowed values
(Default) | Meaning | |---------|--------------------------------------|--| | COMMENT | String value shorter than 512 bytes. | Adds a string comment value to the REMARKS column in the DB2 Text Search catalog view TSINDEXES. It also adds the string comment value as the description of the collection. | #### Example: INDEX CONFIGURATION (COMMENT 'Index on User''s Guide column') message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: #### One of: - CONTROL privilege on the table on which the index is defined - INDEX privilege on the table on which the index is defined and one of the following: - IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the index does not exist - CREATEIN privilege on the schema, if the schema name of the index refers to an existing schema - DBADM authority #### **Examples** Example 1: In the following example, a text search index with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex' is created using the SYSTS_CREATE procedure. The option 'UPDATE MINIMUM 10' specifies that at least 10 changes should be made to the text documents associated with the index before an incremental update of the index should be performed. Any error messages are requested to be returned in English. When the underlying text search command runs successfully, the output parameter message is set to indicate the status of the command execution. ``` CALL SYSPROC.SYSTS_CREATE('db2ts', 'myTextIndex', 'myUserSchema.myBaseTable (myTextColumn)', 'UPDATE MINIMUM 10', 'en_US', ?) ``` The following is an example of output from this query. ``` Value of output parameters ----- Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` *Example 2:* In the following example, SYSTS_CREATE is called to create a text search index with *index_schema* 'db2ts' and *index_name* 'myTextIndex'. No options are specified.
In this example, the index already exists which results in an error message being returned to the caller. ``` CALL SYSPROC.SYSTS_CREATE('db2ts', 'myTextIndex', 'myUserSchema.myBaseTable (myTextColumn)', '', 'en US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00201 Text search index "db2ts"."myTextIndex" already exists. ". ``` #### Usage notes Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be executed concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands are: - SYSTS_ALTER procedure or ALTER INDEX db2ts command - SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts - SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - STOP FOR TEXT db2ts command - SYSTS_UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE 38H13. - With the successful execution of the CREATE INDEX command: - DB2 Text Search server data is updated. A collection of name instance_database-name_index-identifier_number is created, as in the following example: tigertail MYTSDB TS250517 0000 The collection name can be retrieved from the SYSIBMTS.TSCOLLECTIONNAMES view (column COLLECTIONNAME). - DB2 Text Search catalog information is updated. An index staging table is created in the specified table space with appropriate DB2 indexes. In addition, an index event table is created in the specified table space. - The newly created text search index is not automatically populated. The SYSTS_UPDATE procedure or UPDATE INDEX command must be executed either manually or automatically (as a result of an update schedule having been defined for the index through the specification of the UPDATE FREQUENCY option) for the text search index to be populated. - The Text Search index data file on the DB2 database server is updated. Scheduled update information is recorded for each index in the instance. #### Usage restrictions: - A primary key must be defined for the table. In DB2 Text Search, a multi-column DB2 primary key can be used without type limitations. The number of primary key columns is limited to 2 columns less than the number of primary key columns allowed by DB2. - The total length of all primary key columns for a table with DB2 Text Search indexes is limited to 15 bytes less than the maximum total primary key length allowed by DB2. Refer to the DB2 restrictions of DB2 CREATE INDEX statement. ### SYSTS_DROP procedure - Drop a text search index This procedure drops an existing text search index associated with any table column. After successful execution of this procedure, text search queries cannot be run on that column. The procedure issues a DROP INDEX text search administration command on the database server. #### Syntax 1 4 1 ``` ►►—SYSTS_DROP—(—index_schema—,—index_name—,— ▶-message_locale--,--message--)-- ``` The schema is SYSPROC. #### **Procedure parameters** index schema An input argument of type VARCHAR(128) that specifies the schema of the text search index. The index_schema must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index_schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with index_schema, it uniquely identifies a text search index in a database. The *index name* is case-sensitive. message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### Authorization The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the index is defined - DBADM authority #### **Examples** Example 1: In the following example, the text search index that was created with index_schema 'db2ts' and index_name 'myTextIndex' is being dropped. Any error messages are requested to be returned in English. When the procedure succeeds, the output parameter message indicative of the successful operation is returned to the caller. ``` CALL SYSPROC.SYSTS DROP('db2ts', 'myTextIndex', 'en US', ?) ``` The following is an example of output from this query. ``` Value of output parameters Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` Example 2: In the following example, SYSTS_DROP is called to drop a text search index with index schema 'db2ts' and index name 'myTextIndex'. This index does not exist and results in an error. ``` CALL SYSPROC.SYSTS DROP('db2ts', 'myTextIndex', 'en US', ?) ``` The following is an example of output from this query. SOL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00316 Text search index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14 #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be executed concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands are: - SYSTS_ALTER procedure or ALTER INDEX db2ts command - SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command - SYSTS DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - STOP FOR TEXT db2ts command - SYSTS_UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE - Dropping the user table in DB2 does not trigger dropping of indexes, they must be dropped manually before or after dropping the table. - When this procedure is run, - the text search catalog information is updated. The index staging and event tables are dropped. Triggers on the user table are deleted. - the index entry in the Text Search Index Data file is deleted. The file contains a persistent representation of update schedules (also empty ones) for each index in the instance. - the collection associated with the text search index definition is removed. - If, after dropping a text search index, you plan to create a new one on the same text column, you must first disconnect from and then reconnect to the database before creating the new text search index. ### SYSTS_ALTER procedure - Change the update characteristics of an index This procedure changes the update characteristics of an index. The procedure issues an ALTER INDEX text search administration command on the database server. #### Syntax 1 4 1 #### update characteristics: #### update frequency: The schema is SYSPROC. ### **Procedure parameters** index schema An input argument of type VARCHAR(128) that specifies the schema of the text search index. The index_schema must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index_schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with index_schema, it uniquely identifies a text search index in a database. The *index_name* is case-sensitive. #### update characteristics An input argument of type VARCHAR(32K) that specifies the alter options. The alter options allowed are as follows: #### UPDATE FREQUENCY Specifies the frequency with which index updates are made. The index will be updated, if the number of changes is at least the value set for UPDATE MINIMUM. The update frequency NONE indicates that no further index updates will be made. This can be useful for a text column in a table with data that will not change. It is also useful when the user intends to manually update the index (using the UPDATE INDEX command). Automatic updates can only be done if the START FOR TEXT command has been run and the DB2 Text Search instance services are running. The default frequency value is taken from the view SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='UPDATEFREQUENCY'. #### NONE No automatic updates will be applied to the text index. Any further index update will have to be started manually. - **D** The day(s) of the week when the index is updated. - * Every day of the week. integer1 Specific days of the week, from Sunday to Saturday: 0 to 6 - H The hour(s) of the specified day(s) when the index is updated. - * Every hour of the day. integer2 Specific hours of the day, from midnight to 11 pm: 0 to 23 **M** The minute(s) of the specified hour(s) when the index is updated. integer3 Specified as top of the hour (0), or in multiples of 5 minute increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55 If you do not specify the UPDATE FREQUENCY option, the frequency settings are left unchanged. #### **UPDATE MINIMUM** minchanges Specifies the minimum number of changes to text documents that must occur before the index is incrementally updated. Multiple changes to the same text document are treated as separate changes. If you do not specify the UPDATE
MINIMUM option, the setting is left unchanged. #### message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the text index is defined - DBADM authority #### **Examples** Example 1: In the following example, the update-characteristics of a text search index is being altered. This index was originally created with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex'. By using 'UPDATE FREQUENCY NONE', the intention is to make no further updates to the text search index as possibly no changes are expected for the associated table column. Any error messages are requested to be returned in English. When the procedure succeeds, the output parameter message indicative of the successful operation is returned to the caller. ``` CALL SYSPROC.SYSTS_ALTER('db2ts', 'myTextIndex', 'UPDATE FREQUENCY NONE', 'en_US', ?) ``` The following is an example of output from this query. ``` Value of output parameters ----- Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` Example 2: In the following example, the SYSTS_ALTER stored procedure is called to alter the update-characteristics for a text search index with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex'. The intention is to ensure that updates to the index occur every hour on the hour. However, this index does not exist and results in an error ``` CALL SYSPROC.SYSTS_ALTER('db2ts', 'myTextIndex', 'update frequency D(*) H(*) M(0)', 'en_US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00316 Text search index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14 ``` #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be run concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands are: - SYSTS_ALTER procedure or ALTER INDEX db2ts command - SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command - SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - SYSTS_DROP procedure or DROP INDEX db2ts command - STOP FOR TEXT db2ts command - SYSTS_UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE 38H13. - · When this procedure is run, - the content of the DB2 Text Search view SYSIBMTS.TSLOCKS is updated. - the index entry in the Text Search Index Data file is updated. The file contains a persistent representation of update schedules (also empty ones) for each index in the instance. ### SYSTS_UPDATE procedure - Update the text search index This procedure updates the text search index to reflect the current contents of the text column with which the index is associated. While the update is being performed, a search is possible. Until completion of the update, the search operates on a partially updated index. The procedure issues an UPDATE INDEX text search administration command on the database server. #### **Syntax** The schema is SYSPROC. #### **Procedure parameters** index schema An input argument of type VARCHAR(128) that specifies the schema of the text search index. The *index_schema* must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index_schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with *index_schema*, it uniquely identifies a text search index in a database. The *index_name* is case-sensitive. update_options An input argument of type VARCHAR(32K) that specifies update options. The possible values are: - USING UPDATE MINIMUM: this setting respects the UPDATE MINIMUM settings from the CREATE INDEX text search administration command and the SYSTS_CREATE procedure. - NULL or an empty string ("): the update is unconditionally started when the procedure is called. message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the text index is defined - · DATAACCESS authority #### **Examples** Example 1: In the following example, the text search index that was created with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex' is being updated. A NULL value in the place of the <code>update_options</code> means that an update is unconditionally started when the stored procedure is called. Any error messages are requested to be returned in English. When the procedure succeeds, the output parameter message indicative of the successful operation is returned to the caller. ``` CALL SYSPROC.SYSTS_UPDATE('db2ts', 'myTextIndex', '', 'en_US', ?) ``` The following is an example of output from this query. ``` Value of output parameters ------ Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` *Example 2:* In the following example, SYSTS_UPDATE is called to update a text search index with *index_schema* 'db2ts' and *index_name* 'myTextIndex'. This index does not exist and results in an error. ``` CALL SYSPROC.SYSTS_UPDATE('db2ts', 'myTextIndex', 'USING UPDATE MINIMUM', 'en US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00316 Text search index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14 ``` #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be run concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands - SYSTS ALTER procedure or ALTER INDEX db2ts command - SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command - SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - SYSTS_DROP procedure or DROP INDEX db2ts command - STOP FOR TEXT db2ts command - SYSTS_UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE 38H13. - This procedure does not return until all index update processing is completed. The duration depends on the number of documents to be indexed and the number of documents already indexed. The collection name for the index can be retrieved from the SYSIBMTS.TSCOLLECTIONNAMES view (column COLLECTIONNAME). - When there are individual document errors, the documents must be corrected. The primary keys of the erroneous documents can be looked up in the event table for the index. By changing the corresponding rows in the user table, the next call to SYSTS_UPDATE will reprocess these documents. - When this procedure is run, - rows are inserted into the event table (including parser error information). Information is deleted from the index staging table in case of incremental updates. Before the first update, it creates triggers on the user table. - the collection is updated: new or changed documents are parsed and indexed and deleted documents are discarded from the index. ### SYSTS CLEAR EVENTS procedure - Delete indexing events from an index's event table This procedure deletes indexing events from an index's event table used for administration. The name of the event table can be found in the view SYSIBMTS.TSINDEXES in column EVENTVIEWNAME. Every index update operation produces informational and, in some cases, error entries in the event table. For automatic updates, the event table has to be regularly inspected. Document specific errors must be corrected by changing the document content. After correcting the errors, the events can be cleared (and should be, in order not to consume too much space). The procedure issues a CLEAR EVENTS FOR INDEX text search administration command on the database server. #### **Syntax** The schema is SYSPROC. #### **Procedure parameters** index_schema An input argument of type VARCHAR(128) that specifies the schema of the text search index. The index_schema must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with index_schema, it
uniquely identifies a text search index in a database. The *index name* is case-sensitive. message locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The privileges held by the authorization ID of the statement must include at least one of the following: - CONTROL privilege on the table on which the index is defined - · DBADM authority #### **Examples** Example 1: In the following example, SYSTS_CLEAR_EVENTS is being called for a text search index that was created with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex'. Any error messages are requested to be returned in English. When the procedure succeeds, the output parameter message indicative of the successful operation is returned to the caller. ``` CALL SYSPROC.SYSTS_CLEAR_EVENTS('db2ts', 'myTextIndex', 'en_US', ?) ``` The following is an example of output from this query. ``` Value of output parameters ------ Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` Example 2: In the following example, SYSTS_CLEAR_EVENTS is called to clear the event table entries for a text search index with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex'. This index does not exist and results in an error. ``` CALL SYSPROC.SYSTS_CLEAR_EVENTS('db2ts', 'myTextIndex', 'en_US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00316 Text search index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14 ``` #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - Multiple procedures or commands cannot be run concurrently on a text search index if they might conflict. Some of the conflicting procedures and commands are: - SYSTS_ALTER procedure or ALTER INDEX db2ts command - SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts command - SYSTS_DROP procedure or DROP INDEX db2ts command - STOP FOR TEXT db2ts command - SYSTS_UPDATE procedure or UPDATE INDEX db2ts command If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE 38H13. - When regular updates are scheduled (see UPDATE FREQUENCY options in SYSTS_CREATE or SYSTS_ALTER procedures), the event table should be checked regularly. - To clean up the DB2 Text Search event table for a text search index, use the SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command after you have checked the reason for the event and removed the source of the error. - Ensure that changes have been made to all rows referenced in the event table. By changing the rows in the user table, you ensure that when you run the SYSTS_UPDATE procedure or UPDATE INDEX db2ts command again, an attempt is made to index the erroneous documents again. - When this command is issued, the event table is cleared. ### SYSTS_CLEAR_COMMANDLOCKS procedure - Remove command locks for text search indexes This procedure removes all command locks for a specific text search index or for all text search indexes in the database. A command lock is created at the beginning of a text search index command, and is destroyed when the command has completed. It prevents undesirable conflict between different commands. A cleanup is done automatically of all locks associated with processes that are no longer alive. This is done to make a text search index accessible to a new search request. Use of this procedure is required in the rare case that locks remain in place due to an unexpected system behavior, and need to be cleaned up explicitly. This procedure issues the CLEAR COMMAND LOCKS text search administration command on the database server. ### **Syntax** The schema is SYSPROC. #### **Procedure parameters** index schema An input argument of type VARCHAR(128) that specifies the schema of the text index. The *index_schema* must follow the naming restriction for DB2 schema names. If the argument is null or an empty string, the value of CURRENT SCHEMA is used. The *index schema* is case-sensitive. index name An input argument of type VARCHAR(128) that specifies the name of the index. Together with index_schema, it uniquely identifies a text search index in a database. If the argument is null or an empty string, the procedure deletes command locks for all text search indexes in the database. The index_name is case-sensitive. message_locale An input argument of type VARCHAR(33) that specifies the locale to be used for any error message returned. If the argument is null or an empty string, or the message files for the specified locale are not available on the server, 'en_US' is used. message An output argument of type VARCHAR(32K) that specifies a warning or informational message for a successfully completed operation. #### **Authorization** The *username* for the database connection must have DBADM authority if an index name is not specified. For clearing a command lock on a specific index, the *username* for the database connection must have CONTROL privilege on the table for which the text search index was created. #### **Examples** Example 1: In the following example, SYSTS_CLEAR_COMMANDLOCKS is issued for a text search index with <code>index_schema</code> 'db2ts' and <code>index_name</code> 'myTextIndex'. Error messages are requested to be returned in English. When the procedure succeeds, the output parameter message indicative of the successful operation is returned to the caller. ``` CALL SYSPROC.SYSTS CLEAR COMMANDLOCKS('db2ts', 'myTextIndex', 'en US', ?) ``` The following is an example of output from this query. ``` Value of output parameters ----- Parameter Name : MESSAGE Parameter Value : Operation completed successfully. Return Status = 0 ``` *Example 2:* In the following example, SYSTS_CLEAR_COMMANDLOCKS is called to clear the command locks for a text search index with *index_schema* 'db2ts' and *index_name* 'myTextIndex'. This index does not exist and the procedure returns an error message. ``` CALL SYSPROC.SYSTS_CLEAR_COMMANDLOCKS('db2ts', 'myTextIndex', 'en_US', ?) ``` The following is an example of output from this query. ``` SQL20427N An error occurred during a text search administration procedure or command. The error message is "CIE00316 Text search index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14 ``` #### Usage notes - Text search administration procedures use an existing connection to the database. The current transaction might be committed or rolled back depending on the completion of the procedures. As such, you might want to commit all transaction changes to avoid any unexpected impact from such a commit or rollback. One way to achieve this is to turn on AUTOCOMMIT. - The process and thread information in the view SYSIBMTS.TSLOCKS can be used to check if the thread or process that holds the lock still exists. The locks for existing processes belonging to running text search administration procedure or command (for example, SYSTS_UPDATE or UPDATE INDEX) should not be cleared. - You would invoke this procedure because the process owning the command lock is dead. In this case, the command (represented by the lock) may not have completed, and the index may not be operational. You need to take appropriate action. For example, the process executing the DROP INDEX command dies suddenly. It has deleted some index data, but not all the catalog and collection information. The command lock is left intact. After clearing the DROP INDEX command lock, you may wish to re-execute the SYSTS_DROP procedure. In another example, the process executing the SYSTS_CREATE procedure dies suddenly. It has created some index catalog and collection information, but not all. The command lock is left intact. After clearing the command lock, you can execute the SYSTS_DROP and SYSTS_CREATE procedures. - When this procedure is run, the content of the DB2 Text Search view SYSIBMTS.TSLOCKS is updated. ## Chapter 23. Text search administrative views DB2 Text Search creates and maintains several administrative views that describe the text search indexes in a database and their properties. Do not update any of these views unless specifically instructed to do so. The following views reflect the current configuration of your system: - Database-level views: - SYSIBMTS.TSDEFAULTS - SYSIBMTS.TSLOCKS - Index-level views: - SYSIBMTS.TSINDEXES - SYSIBMTS.TSCONFIGURATION - SYSIBMTS.TSCOLLECTIONNAMES - SYSIBMTS.TSEVENT_nnnnnn - SYSIBMTS.TSSTAGING_nnnnnn #### SYSIBMTS.TSDEFAULTS view SYSIBMTS.TSDEFAULTS displays all the default values for all text search indexes in a database. The default values are available as attribute-value pairs in this view. Table 9. SYSIBMTS.TSDEFAULTS view | Column name | Data type | Nullable? | Description | |--------------|------------------|-----------|--| | DEFAULTNAME | VARCHAR (30) | NO | Database default parameters for text search | | DEFAULTVALUE | VARCHAR
(512) | NO | Values for database default parameters for text search | The following values are used as defaults for the db2ts CREATE INDEX, ALTER INDEX, UPDATE INDEX, and CLEAR EVENTS FOR INDEX commands: - CODEPAGE. The initial default code page for new indexes is the database code page. - FORMAT. The initial default for the
document format is plain text. - LANGUAGE. The initial default for document indexing is en_US. - UPDATEFREQUENCY. The initial default for the update schedule for new indexes is NONE. - UPDATEMINIMUM. The initial default for updating new indexes is 1, meaning that incremental updates can be done after every change. - UPDATEAUTOCOMMIT. The initial default for updating new indexes is 0, meaning that there will be no intermediate commits when documents are read from DB2 text columns. This value is reserved, and you cannot change it. You cannot use db2ts commands to change the default values at the database level. #### SYSIBMTS.TSLOCKS view You can view command lock information at the database and index level using SYSIBMTS.TSLOCKS. Table 10. SYSIBMTS.TSLOCKS view | Column name | Data type | Nullable? | Description | |----------------|--------------|-----------|--| | COMMAND | VARCHAR(30) | NO | Name of the command that created the lock. Possible values are: CREATE INDEX, ALTER INDEX, DROP INDEX, UPDATE INDEX, CLEAR EVENTS, DISABLE DATABASE. | | LOCKSCOPE | VARCHAR(30) | NO | Scope of the lock. Possible values are: DATABASE or INDEX. | | INDSCHEMA | VARCHAR(128) | YES | Schema name of the text search index (only for LOCKSCOPE = INDEX) | | INDNAME | VARCHAR(128) | YES | Unqualified name of the text search index (only for LOCKSCOPE = INDEX) | | PROCESSID | INTEGER | NO | Identifier of the process that created the lock | | THREADID | INTEGER | NO | Identifier of the thread that created the lock | | LOCKCREATETIME | TIMESTAMP | NO | Time stamp when the lock was granted | You can use the process or thread information to check whether the process or thread still exists. If they no longer exist, remove the lock by running the db2ts CLEAR COMMAND LOCKS command. ### SYSIBMTS.TSCOLLECTIONNAMES view The SYSIBMTS.TSCOLLECTIONNAMES view displays the names of collections. Each row represents a collection for a text search index. Table 11. SYSIBMTS.TSCOLLECTIONNAMES view | Column name | Data type | Nullable? | Description | |----------------|--------------|-----------|---| | INDSCHEMA | VARCHAR(128) | NO | Schema name of the text search index | | INDNAME | VARCHAR(128) | NO | Unqualified name of the text search index | | COLLECTIONNAME | VARCHAR(132) | NO | Name of the associated collection on the text search server | #### SYSIBMTS.TSINDEXES view You can view the db2ts CREATE INDEX command parameters and generated settings using SYSIBMTS.TSINDEXES. You can query the view to obtain information about the indexes. This example uses the index schema: db2 "SELECT COLNAME from SYSIBMTS.TSINDEXES where INDSCHEMA=schema-name and INDNAME=index-name" Table 12. SYSIBMTS.TSINDEXES view | Column name | Data type | Nullable? | Description | |-------------|--------------|-----------|--| | INDSCHEMA | VARCHAR(128) | NO | Schema name for the text search index. | Table 12. SYSIBMTS.TSINDEXES view (continued) | Column name | Data type | Nullable? | Description | |----------------------|----------------|-----------|--| | INDNAME | VARCHAR(128) | NO | Unqualified name of the text search index. | | TABSCHEMA | VARCHAR(128) | NO | Schema name of the base table. | | TABNAME | VARCHAR(128) | NO | Unqualified name of the base table. | | COLNAME | VARCHAR(128) | NO | Column that the text search index was created on. | | CODEPAGE | INTEGER | NO | Document code page for the text search index. | | LANGUAGE | VARCHAR(5) | NO | Document language for the text search index. | | FORMAT | VARCHAR(30) | YES | Document format. | | FUNCTIONSCHEMA | VARCHAR(128) | YES | Schema for the column type. | | FUNCTIONNAME | VARCHAR(18) | YES | Name of the column type conversion function. | | COLLECTIONDIRECTORY | VARCHAR(512) | YES | Directory for the text search index files. | | UPDATEFREQUENCY | VARCHAR(300) | NO | Trigger criterion for applying updates to the index. | | UPDATEMINIMUM | INTEGER | YES | Minimum number of entries in the log table before
an incremental update is performed. A lower value
means better consistency between the table column
and the text search index. However, it also increases
the text search indexing overhead. | | EVENTVIEWSCHEMA | VARCHAR(128) | NO | Schema for the event view created for the text search index (always SYSIBMTS). | | EVENTVIEWNAME | VARCHAR(128) | NO | Name of the event view created for the text search index. | | STAGINGVIEWSCHEMA | VARCHAR(128) | YES | Schema for the log view created for the text search index (always SYSIBMTS). | | STAGINGVIEWNAME | VARCHAR(128) | YES | Name of the log view created for the text search index. | | REORGAUTOMATIC | INTEGER | YES | Reserved (not supported in this release). The value is always 1. | | RECREATEONUPDATE | INTEGER | NO | Reserved (not supported in this release). The value is always 0. | | ATTRIBUTES | VARCHAR(32000) | YES | Reserved (not supported in this release). | | COLLECTIONNAMEPREFIX | VARCHAR(128) | NO | Prefix of the collection name on the text search server. | | COMMENT | VARCHAR(512) | YES | Comment specified in the index properties of the CREATE INDEX command. | ### SYSIBMTS.TSCONFIGURATION view Information about index configuration parameters is available in the SYSIBMTS.TSCONFIGURATION view. Each row represents a configuration parameter of the text search index. Following is an example of a query against the view that uses the index name: db2 "SELECT VALUE from SYSIBMTS.TSCONFIGURATION where INDSCHEMA=schema-name and INDNAME=ind-name and PARAMETER ='parameter'" Table 13. SYSIBMTS.TSCONFIGURATION view | Column name | Data type | Nullable? | Description | |-------------|--------------|-----------|---| | INDSCHEMA | VARCHAR(128) | NO | Schema name of the text search index | | INDNAME | VARCHAR(128) | NO | Unqualified name of the text search index | | PARAMETER | VARCHAR(30) | NO | Name of a configuration parameter | | VALUE | VARCHAR(512) | NO | Value of the parameter | The PARAMETER column contains the names of the text search index configuration parameters specified with the CREATE INDEX statement and the names of some of the parameters from the SYSIBMTS.TSDEFAULTS view. #### SYSIBMTS.TSEVENT view The event view provides information about indexing status and error events. A database might have multiple views with the prefix SYSIBMTS.TSEVENT_. Each view is differentiated by the *nnnnnn* value, an internal identifier that points to the corresponding text index that the view is associated with. To determine the text search index associated with a particular view, query the view SYSIBMTS.TSINDEXES, searching for the schema name and view name in the columns EVENTVIEWSCHEMA and EVENTVIEWNAME. The query returns a single row that describes the text search index and user table in question. The number of columns in this view depends on the number of primary key columns in the user table. The columns PK1..PKnn are similar to the primary key columns of the user table. The data type of each of the columns in the view exactly corresponds to the data type of the corresponding primary key column. Each row in this view represents a message from an UPDATE INDEX command on the text search index. For instance, a row might indicate that an UPDATE INDEX command has started or has completed. Alternatively, a row might describe a problem that occurred when a text document was being indexed. You can identify the text document by retrieving the primary key column values from the row in this view and looking them up in the user table. Note: If a document is inserted and then the same document is deleted before the next index update, the event table will indicate that two documents were deleted. You can clear events by using the db2ts CLEAR EVENTS FOR INDEX command. Table 14. Event view | Column | Data type | Nullable? | Description | |-----------|-----------|-----------|--| | name | | | | | OPERATION | INTEGER | YES | The operation (insert, update, or delete) on the base table to be reflected in the text search index | | TIME | TIMESTAMP | YES | Time stamp of event entry creation | Table 14. Event view (continued) | Column | Data type | Nullable? | Description | |----------|---|-----------|--| | name | | | | | SEVERITY | INTEGER | YES | If the message corresponds to a single document, one of the following values: | | | | | • 1 = Informational | | | | | • 4 = Parts of the document were indexed but there was a warning, as indicated by the message | | | | | 8 = The document was not indexed, as indicated by the message | | | | | • 0= Otherwise | | SQLCODE | INTEGER | YES | SQLCODE for the associated error, if any | | MESSAGE | VARCHAR(1024) | YES | Text information about the specific error | | PK01 | Data type of the first
primary key column
of the base table | YES | Value of the first primary key column of the base table of the text search index for the row being processed when the event occurred | | PKnn | Data type of the last
primary key column
of the base table | YES | Value of the last primary key column of the base table of the text
search index for the row being processed when the event occurred | Informational events, such as starting, committing, and
finishing update processing are also available in this view. In this case, PK01, PKnn and OPERATION all have NULL values. The code page and the locale of MESSAGE correspond to the database settings. ### SYSIBMTS.TSSTAGING view The staging table stores the change operations on the user table that requires synchronization with the text search index. Triggers are created on the user table to feed change information into the staging table. The UPDATE INDEX command reads the entries and deletes them after successful synchronization. The database might have multiple views with the prefix SYSIBMTS.TSSTAGING_. Each view is differentiated by the *nnnnnn* value, an internal identifier that points to the corresponding text index that the view is associated with. To determine the text search index associated with a particular view, query the view SYSIBMTS.TSINDEXES, searching for the schema name and view name in the columns STAGINGVIEWSCHEMA and STAGINGVIEWNAME. The query returns a single row that describes the text search index and user table in question. The number of columns in this view depends on the number of primary key columns in the user table. The columns PK1..PKnn are similar to the primary key columns of the user table. The data type of each of the columns in the view exactly corresponds to the data type of the corresponding primary key column. Each row in this view represents an insert, a delete, or an update operation on a user table row or text document. You can identify the text document by retrieving the primary key column values from the row in this view and looking them up in the user table. You can use the following query to obtain information about the view: # db2 "SELECT STAGINGVIEWSCHEMA, STAGINGVIEWNAME from SYSIBMTS.TSINDEXES where INDSCHEMA= schema-name and INDNAME= index-name" Table 15. SYSIBMTS.TSSTAGING view | Column
Name | Data type | Nullable? | Description | |----------------|---|-----------|--| | OPERATION | INTEGER | NO | The operation (insert, update, or delete) on the base table to be reflected on the text search index. | | TIME | TIMESTAMP | No | Sequence ID of a row (when an insert, an update, or a delete trigger is fired). This is a time stamp but does not exactly represent the time of the operation. | | PK01 | Data type of the first
primary key column
of the base table | YES | First primary key column of the base table. | | PKnn | Data type of the last
primary key column
of the base table | YES | Last primary key column of the base table. | ## **Chapter 24. Text Search tools** ### **Configuration Tool for DB2 Text Search** The Configuration Tool is a command-line tool that you can use for the initial text search configuration or the post-installation customization of the text search configuration for a DB2 instance. Using the text search configuration set up during the installation of your DB2 database product is preferable to using the Configuration Tool to manually configure DB2 Text Search because using the tool requires you to configure all of the parameters, whereas using the installer requires you to configure only two settings. However, the Configuration Tool is the only means of making subsequent changes to a number of the settings, including the following ones: - Various paths, such as the configuration path, the log path, the installation path, and the temporary directory path - · The log level #### **Tool syntax** #### **Parameters** #### Mandatory command parameters #### configureHTTPListener Allows you to configure an administration HTTP port to allow communication between text search processes using TCP/IP. Specify the following argument: #### -adminHTTPPort value Specifies the port to be used by DB2 Text Search #### Note - There are other arguments for **configureHTTPListener** that are listed in the Usage section, but you cannot use them with DB2 Database for Linux, UNIX, and Windows. - You must stop the text search instance services before configuring the administration HTTP port. #### upgradeInstance You can update DB2 Text Search server for your instances by issuing the **upgradeInstance** command. Specify the following argument: #### -installedConfigPath value Specifies the fully qualified path to the installed configuration directory. For example, • On Linux and UNIX operating systems, this path might be - -installedConfigPath \$DB2DIR/cfg/db2tss/config - -configPath \$INSTHOME/sqllib/db2tss/config where *INSTHOME* is the instance home directory and *DB2DIR* is the location of the DB2 Version 9.7 copy. - For Windows operating systems, this path might be - -installedConfigPath "%DB2PATH%\CFG\DB2TSS\CONFIG" - -configPath "%INSTPROFDIR%\instance-name\DB2TSS\CONFIG" where DB2PATH is the location of the DB2 Version 9.7 copy and *INSTPROFDIR* is the instance profile directory. #### configureParams Allows you to configure the various configurable parameters for DB2 Text Search. Specify one of the following arguments: #### -logPath path Specifies the log path to be used by DB2 Text Search. #### -installPath path Specifies the fully qualified path to the text search installation directory. For example, on UNIX platforms, this path might be \$HOME/sqllib/db2tss.. #### -tempDirPath path Specifies the temporary directory path to be used by DB2 Text Search. #### -logLevel value Specifies the logging level for messages in the log file for the text search engine. The settings (in order of severity) are as follows: - FINEST - FINER - FINE - WARNING - SEVERE - OFF #### generateToken Generates the authentication token. The following argument is the only one that you can use: #### -seed value Acts as an arbitrary string for generating an authentication token. Given the same seed value, the Configuration Tool generates the same token every time. #### printToken Prints the authentication token. This option does not require you to stop the instance services. #### printAll Prints to standard output the values for all of the properties that are configurable. This option does not require you to stop the instance services. #### printAdminHTTPPort Prints the current value for the administration HTTP port. This command does not require you to stop the instance services. #### **-configPath** absolute-path-to-config-folder Specifies the absolute path to the text search configuration folder, such as /opt/ibm/search/config. Note that when you use configureParams, configPath is used not only to point to the configuration directory but also to modify the configuration to use the specified configuration path. #### -locale locale Specifies the five-character locale for writing any error messages that are returned during the use of the tool, such as en_US, de_DE, or fr_FR. The default is en_US. For details see Supported locales #### help Prints the Configuration Tool command usage. The usage information is also printed if you run the Configuration Tool without a required argument. # Usage - Unless otherwise noted in a parameter description, you must stop the text search instance services to configure the parameter. For the configuration settings that require the instance services to be stopped, the Configuration Tool detects the related condition and returns a message indicating that the instance services are running and must be stopped. - The Configuration Tool and the other command-line tools do not authenticate users. However, you must have access to the configuration files to run these tools. On Windows platforms, if the extended DB2 security model is implemented, only members of the DB2ADMNS group can run the command-line tools. If the extended DB2 security model is not implemented, the DB2 database administrator must control access to these tools. - The Configuration Tool does not update the services file. If you use the Configuration Tool for first-time configuration or changes to an existing configuration, you must update the services file manually. # **Administration Tool for DB2 Text Search** The Administration Tool is a command-line tool that provides a convenient way to perform several administrative tasks related to DB2 Text Search. The tasks include the following ones: - Checking the status and properties of text search collections - Deleting orphaned text search collections - · Reporting the version of the server The text search instance services must be running for the Administration Tool to remove text search collections. # Tool syntax ►—locale—five-char-locale-string——help—— Individual command specific argument——— Individual command specific argument———— #### **Parameters** #### delete Deletes the text search collection specified by -collectionName. -collectionName collection-name Specifies the text search collection to be deleted. #### status Provides the status of a text search collection, including the index size, the number of documents present, and the progress of index updates. -collectionName collection-name Specifies the text search collection for which you want the status printed. #### version Returns the server version. ### configureTrace Turns tracing on or off. - -trace - on - off #### printTrace Prints the current trace setting. #### -configPath absolute-path-to-config-folder Specifies the absolute path to the text search configuration folder. #### -locale five-char-locale-string Specifies the five-character locale for writing any error messages that are returned during the use of the tool. If you do not specify this parameter, the server locale is used. #### help Prints the Administration Tool command usage. The usage information is also printed if you run the Administration Tool without a required argument. # **Usage** The error or trace log is, by default, written to AdminTool.0.log in the default log directory. You can format the
log by using the Log Formatter tool. ## **Examples** To print the status of all of the collections using the French locale, issue the following command: adminTool status -configPath c:\Program Files\IBM\Search\config -locale fr_FR To turn on tracing, issue the following command: adminTool configureTrace -configPath /opt/ibm/search/config -trace on #### Related tasks "Deleting orphaned text search collections" on page 77 One of the administrative tasks that you might have to do when using DB2 Text Search is deleting orphaned collections. You can delete orphaned collections using the Administration Tool. # Synonym Tool for DB2 Text Search The Synonym Tool is a command-line tool that provides a convenient way to add synonym dictionaries to or remove synonym dictionaries from text search indexes. You do not have to stop the text search instance services to use the Synonym Tool. # Tool syntax #### **Parameters** #### importSynonym Adds the synonym dictionary specified by **-synonymFile** to the text search collection specified by **-collectionName**. #### **-synonymFile** absolute-path-to-syn-file Specifies the XML file that is to be used as a synonym dictionary. #### -replace • true Specifies that the synonyms in the file specified by **-synonymFile** are to replace the current synonyms of the existing synonym dictionary associated with the text search collection. false Specifies that the synonyms in the file specified by **-synonymFile** are to be appended to the existing synonym dictionary associated with the text search collection. #### removeSynonym Removes any synonym dictionary from the text search collection specified by -collectionName. #### -collectionName collection-name Specifies the text search collection. #### **-configPath** absolute-path-to-config-folder Specifies the absolute path to the text search configuration folder. #### help Prints the Synonym Tool command usage. The usage information is also printed if you run the Synonym Tool without a required argument. #### Usage The XML file that is to be used as a synonym dictionary must be on the text search server. The error or trace log is, by default, written to SynonymTool.0.log in the default log directory. # Log Formatter Tool for DB2 Text Search DB2 Text Search logs system messages and trace messages to help you determine the source of problems that might occur. You can view and save the server logs using the Log Formatter Tool. The server logs are located in the *INSTALL_HOME*/log directory. By default, the trace log is turned off, and the system log level is set to SEVERE. The server logs are rotated, meaning that after a log file contains 10 MB of data, a new generation of the log file is created. At any given time, a maximum of five generations of log files are kept on the system. # **Tool syntax** #### **Parameters** #### logformatter Enables server log viewing or saving. -f log-file Specifies the server log file that you want to format. -1 locale Specifies the five-character locale for writing the reformatted log messages. The default is en_US. **-o** output-file Specifies the output file where the reformatted log messages are to be written by using UTF-8 encoding. If you do not specify this option, a standard output file is used - -v Specifies that debugging messages are to be written in verbose mode. - -? Prints the help message. # Part 7. Appendixes # **Appendix A. DB2 Text Search and Net Search Extender comparison** Even though queries performed using DB2 Text Search and Net Search Extender look similar, there can be some discrepancies between the query results. Therefore, it is important to be aware of the differences between the two search engines. Use the following tables, which compare the features and functions of DB2 Text Search and Net Search Extender, to help you decide which search tool best suits your needs. Table 16. Administration and environments | Feature or function | DB2 Text Search | DB2 Net Search Extender | |--------------------------------------|-----------------------------------|---| | The command-line interface | Supported | Supported | | Stored procedures for administration | Supported | Unsupported | | External storage of text documents | Unsupported | Supported | | Partitioned database environments | Unsupported | Supported on all platforms
except Linux PPC, Solaris on
AMD64 and Microsoft
Cluster server | | Error handling | SQL codes, product-specific codes | Product-specific codes | | Linguistic processing | In all supported languages | In English only | Table 17. Searching | Feature or function | DB2 Text Search | DB2 Net Search Extender | |---|-----------------|-------------------------| | XPath | Supported | Unsupported | | XQuery | Supported | Supported | | SQL/XML queries | Supported | Supported | | SQL queries | Supported | Supported | | SCORE function (The scoring algorithms used by DB2 Text Search and Net Search Extender are different, thus the results when using the SCORE function are probably not the same. Even though score results are consistent among other documents in the same search result, the score values for a particular document may be different between DB2 Text Search and Net Search Extender, therefore score limits used in a query may need to be adjusted.) | Supported | Supported | Table 17. Searching (continued) | Feature or function | DB2 Text Search | DB2 Net Search Extender | | |--|---|---|--| | CONTAINS and xmlcolumn-contains functions | Supported | Supported | | | NUMBEROFMATCHES scalar function | Unsupported | Supported | | | Highlighting | Unsupported | Supported | | | Weight or boosting | Supported | Supported | | | RESULTLIMIT argument | Supported | Supported | | | Escape characters | Supported | Supported | | | Optional terms | Supported | Unsupported | | | Attribute search | Unsupported | Supported | | | Fielded search | For XML documents, using XML search expressions | For XML documents, by defining fields with a document model | | | Proximity search | Unsupported | Supported | | | Fuzzy search | Unsupported | Supported | | | Wildcard search | Supported | Supported | | | Relationships in thesaurus (hierarchical, associative, and user-defined) | Unsupported | Supported | | | Synonym dictionaries | Supported | Supported | | Table 18. Indexing and data | Feature or function | DB2 Text Search | DB2 Net Search Extender | | |---|-----------------------------------|--|--| | Index reorganization | Implicit reorganization supported | Implicit and explicit reorganization supported | | | Index updates on triggers | Supported | Supported | | | Index updates using replication | Unsupported | Supported | | | Index re-creation on update | Unsupported | Supported | | | Index creation on view columns | Unsupported | Supported | | | Index creation on nicknames in federated databases | Unsupported | Supported | | | Multiple indexes per column | Unsupported | Supported | | | Presorted indexes | Unsupported | Supported | | | Caching of index information
(subset of index information
kept in memory to speed up
retrieval for frequent queries) | Unsupported | Supported | | | Streaming of results | Supported | Unsupported | | | Custom transformation functions | Supported | Supported | | | Use of model files to index XML documents | Unsupported | Supported | | Table 18. Indexing and data (continued) | Feature or function | DB2 Text Search | DB2 Net Search Extender | | |----------------------|---|--|--| | XML namespaces | Not directly supported (must use workaround) | Limited support | | | Stop word processing | Unsupported | Supported | | | Document formats | Text, HTML, XML, proprietary formats (using INSO) | Text, HTML, XML, General
Purpose Format (GPP),
proprietary formats (using
INSO) | | #### Related concepts "Net Search Extender k ey concepts" in Net Search Extender Administration and User's Guide Part 2, "DB2 Text Search overview," on page 3 DB2 Text Search allows you to search text columns stored in a DB2 table. By enabling text search support, you can use the CONTAINS, SCORE, and xmlcolumn-contains functions, which are built into the DB2 engine, to search text search indexes based on the search arguments that you specify. # **Migration to DB2 Text Search** Although DB2 Text Search provides a rich set of functions and features, it is in its initial stage of integration with DB2 Database for Linux, UNIX, and Windows. Therefore, follow these steps before migrating to DB2 Text Search from Net Search Extender (NSE): - 1. Install both NSE and DB2 Text Search with Version 9.5. - 2. Continue to use NSE on your production database. - 3. Create a test database with the production data. - 4. Start the DB2 Text Search instance services. - 5. Enable the test database for DB2 Text Search. - 6. Map the text search index update requests and search queries for the NSE database to the test database. - 7. Study the difference in functionality and performance between NSE and DB2 Text
Search. **Note:** Migration from NSE to DB2 Text Search cannot be incremental; you must migrate the entire database. This restriction arises because you can enable a database for either NSE or DB2 Text Search, but not both. If you are satisfied that DB2 Text Search suits your needs better than NSE, disable NSE on your production database. After NSE is disabled, enable your production database for DB2 Text Search, and re-create the text search indexes on it. # Appendix B. Locales supported for DB2 Text Search The following table lists the locales that DB2 Text Search supports for document processing. Table 19. Supported locales | Locale code | Language | Territory | | |-------------|-------------------|-----------------------------|--| | ar_AA | Arabic | Arabic countries or regions | | | cs_CZ | Czech | Czech Republic | | | da_DK | Danish | Denmark | | | de_CH | German | Switzerland | | | de_DE | German | Germany | | | el_GR | Greek | Greece | | | en_AU | English | Australia | | | en_GB | English | United Kingdom | | | en_US | English | United States | | | es_ES | Spanish | Spain | | | fi_FI | Finnish | Finland | | | fr_CA | French | Canada | | | fr_FR | French | France | | | it_IT | Italian | Italy | | | ja_JP | Japanese | Japan | | | ko_KR | Korean | Korea, Republic of | | | nb_NO | Norwegian Bokmål | Norway | | | nl_NL | Dutch | Netherlands | | | nn_NO | Norwegian Nynorsk | Norway | | | pl_PL | Polish | Poland | | | pt_BR | Portuguese | Brazil | | | pt_PT | Portuguese | Portugal | | | ru_RU | Russian | Russia | | | sv_SE | Swedish | Sweden | | | zh_CN | Chinese | China | | | zh_TW | Chinese | Taiwan | | #### Related concepts "Linguistic processing for DB2 Text Search" on page 9 DB2 Text Searchprovides dictionary packs to support the linguistic processing of documents and queries that are not in English. As an alternative to dictionary-based word segmentation, the search engine uses n-gram segmentation support for languages such as Chinese, Japanese, and Korean. # Related reference "SYSIBMTS.TSDEFAULTS view" on page 165 SYSIBMTS.TSDEFAULTS displays all the default values for all text search indexes in a database. # Appendix C. DB2 commands # db2iupgrade - Upgrade instance The db2iupgrade command upgrades an instance to a DB2 copy of the current release from a DB2 copy of a previous release. The DB2 copy from where you are running the db2iupgrade command must support instance upgrade from the DB2 copy that you want to upgrade. On Linux and UNIX systems, this command is located in the DB2DIR/instance directory, where DB2DIR represents the installation location where the new release of the DB2 database system is installed. This command does not support instance upgrade for a non-root installation. On Windows operating systems, this command is located in the DB2PATH\bin directory, where DB2PATH is the location where the DB2 copy is installed. To move your instance profile from its current location to another location, use the /p option and specify the instance profile path. Otherwise, the instance profile will stay in its original location after the upgrade. The db2iupgrade command calls the db2ckupgrade command with the **-not1** parameter and specifying db2ckupgrade.log as the log file. Verify that local databases are ready for upgrade before upgrading the instance. The **-not1** parameter disables the check for type-1 indexes. The log file is created in the instance home directory for Linux and UNIX operating systems or in the current directory for Windows operating systems. The instance upgrade will not continue if the db2ckupgrade command returns any errors. In a partitioned database environment, the db2iupgrade command runs the db2ckupgrade command on the database partition where you issue the db2iupgrade command. Verify that all database partitions are ready for upgrade before upgrading an instance. #### **Authorization** Root access on Linux and UNIX systems or Local Administrator on Windows operating systems. # **Command syntax** For Linux and UNIX systems #### For Windows operating systems ▶►—db2iupgrade—*InstName*—/u:—*username*,*password*— # **Command parameters** #### For Linux and UNIX systems - **-d** Turns debug mode on. Use this option only when instructed by DB2 Support. - -k Keeps the pre-upgrade instance type if it is supported in the DB2 copy from where you are running the db2iupgrade command. If this parameter is not specified, the instance type is upgraded to the default instance type supported. ## -a AuthType Specifies the authentication type (SERVER, CLIENT or SERVER_ENCRYPT) for the instance. The default is SERVER. #### -u FencedID Specifies the name of the user ID under which fenced user-defined functions and fenced stored procedures will run. This option is required when upgrading a DB2 client instance to a DB2 server instance. #### **InstName** Specifies the name of the instance. #### For Windows operating systems #### *InstName* Specifies the name of the instance. ### /u:username,password Specifies the account name and password for the DB2 service. This option is required when upgrading a partitioned instance. #### **/p:***instance-profile-path* Specifies the new instance profile path for the upgraded instance. /q Issues the db2iupgrade command in quiet mode. ## /a:authType Specifies the authentication type (SERVER, CLIENT, or SERVER_ENCRYPT) for the instance. # /j "TEXT_SEARCH" Configures the DB2 Text Search server using generated default values for service name and TCP/IP port number. This parameter cannot be used if the instance type is *client*. #### /j "TEXT_SEARCH, servicename" Configures the DB2 Text Search server using the provided service name and an automatically generated port number. If the service name has a port number assigned in the services file, it uses the assigned port number. /j "TEXT_SEARCH, servicename, portnumber" Configures the DB2 Text Search server using the provided service name and port number. ### /j "TEXT_SEARCH, portnumber" Configures the DB2 Text Search server using a default service name and the provided port number. Valid port numbers must be within the 1024 - 65535 range. /? Displays usage information for the db2iupgrade command. # **Usage notes** #### For Linux and UNIX systems - The db2iupgrade command removes any symbolic links that exist in /usr/lib and /usr/include in version you are upgrading from. If you have applications that load libdb2 directly from /usr/lib rather than using the operating system's library environment variable to find it, your applications might fail to execute properly after you have run the db2iupgrade command. - If you use the db2iupgrade command to upgrade a DB2 instance from a previous version to the current version of a DB2 database system, the DB2 Global Profile Variables defined in an old DB2 database installation path will not be upgraded over to the new installation location. The DB2 Instance Profile Variables specific to the instance to be upgraded will be carried over after the instance is upgraded. - If you are using the su command instead of the login command to become the root user, you must issue the su command with the option to indicate that the process environment is to be set as if you had logged in to the system using the login command. - You must not source the DB2 instance environment for the root user. Running the db2iupgrade command when you sourced the DB2 instance environment is not supported. - On UNIX and Linux operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 instance is upgraded, the Monitoring Agent for DB2 instance is also created if the following are true: - The DB2 instance type is standalone, wse, or ese. - The DB2 instance is at version 9.5 (or higher). In addition, ITMA must already be installed for the DB2 copy you are updating the instance for. Located in DB2DIR/itma directory, where DB2DIR represents the directory where the DB2 product is installed. On AIX 6.1 (or higher), when running this command from a shared DB2 copy in a system workload partition (WPAR) global environment, this command must be run as the root user. ## For Windows operating systems - On Windows operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 copy instance is updated, the Monitoring Agent for DB2 instance is also created if the following are true: - The DB2 instance type is standalone, wse, or ese. - The default DB2 copy has the ITM agent component installed. - The DB2 instance is at version 9.5 (or higher). - There is no existing ITM for Databases product. In addition, the following are also created after the creation of the Monitoring Agent for DB2 instance: the Monitoring Agent for DB2 instance files, the NT service and the registry entries. #### Related concepts "DB2 servers upgrade" in Upgrading to DB2 Version 9.7 ## Related reference "db2ckupgrade - Check database for upgrade " in Command Reference "dasmigr - Migrate the DB2 administration server " in Command Reference # db2icrt - Create instance Creates DB2 instances. On Linux and UNIX operating systems, this utility is located in the *DB2DIR*/instance directory, where *DB2DIR* represents the installation location where the current version of the DB2 database system is installed. On Windows operating systems, this utility is located under the **DB2PATH**\bin directory where **DB2PATH** is the location where the DB2 copy is installed. The db2icrt command creates DB2 instances in the instance owner's home directory. **Note:** This command is not available for a non-root installation of DB2 database products on Linux and UNIX operating systems. #### **Authorization** Root access on Linux and UNIX operating systems or Local Administrator authority on Windows operating systems. # **Command syntax** For Linux and UNIX operating systems #### For Windows operating systems # Command parameters ### For Linux and UNIX operating systems - -h | -? Displays the usage
information. - Turns debug mode on. Use this option only when instructed by DB2 Support. # -a AuthType Specifies the authentication type (SERVER, CLIENT or SERVER_ENCRYPT) for the instance. The default is SERVER. #### -p PortName Specifies the port name or number used by the instance. This option does not apply to client instances. # -s InstType Specifies the type of instance to create. Use the -s option only when you are creating an instance other than the default associated with the installed product from which you are running db2icrt. Valid values are: client Used to create an instance for a client. This is the default instance type for IBM Data Server Client, IBM Data Server Runtime Client, and DB2[®] Connect[™] Personal Edition. #### standalone Used to create an instance for a database server with local clients. It is the default instance type for DB2 Personal Edition. Used to create an instance for a database server with local and ese remote clients with DPF support. This is the default instance type for DB2 Enterprise Server Edition. Used to create an instance for a database server with local and wse remote clients. This is the default instance type for DB2 Workgroup Server Edition, DB2 Express or Express-C Edition, and DB2 Connect Enterprise Edition. DB2 products support their default instance types and the instance types lower than their default ones. For instance, DB2 Enterprise Server Edition supports the instance types of ese, wse, standalone and client. #### -u Fenced ID Specifies the name of the user ID under which fenced user-defined functions and fenced stored procedures will run. The -u option is required if you are not creating a client instance. #### **InstName** Specifies the name of the instance which is also the name of an existing user in the operating system. This has to be the last argument of the db2icrt command. ### For Windows operating systems #### *InstName* Specifies the name of the instance. ## -s InstType Specifies the type of instance to create. Currently, there are four kinds of DB2 instance types. Valid values are: client Used to create an instance for a client. This is the default instance type for IBM Data Server Client, IBM Data Server Runtime Client, and DB2 Connect Personal Edition. #### standalone Used to create an instance for a database server with local clients. It is the default instance type for DB2 Personal Edition. ese Used to create an instance for a database server with local and remote clients with DPF support. The ``` -s ese -u Username, Password ``` options have to be used with db2icrt to create the ESE instance type and a DPF instance. wse Used to create an instance for a database server with local and remote clients. This is the default instance type for DB2 Workgroup Server Edition, DB2 Express or Express-C Edition, and DB2 Connect Enterprise Edition. DB2 products support their default instance types and the instance types lower than their default ones. For instance, DB2 Enterprise Server Edition supports the instance types of ese, wse, standalone and client. #### -u Username, Password Specifies the account name and password for the DB2 service. This option is required when creating a partitioned database instance. #### -p InstProfPath Specifies the instance profile path. #### -h HostName Overrides the default TCP/IP host name if there is more than one for the current machine. The TCP/IP host name is used when creating the default database partition (database partition 0). This option is only valid for partitioned database instances. #### -r PortRange Specifies a range of TCP/IP ports to be used by the partitioned database instance when running in MPP mode. For example, -r 50000,50007. The services file of the local machine will be updated with the following entries if this option is specified: ``` DB2_InstName baseport/tcp DB2_InstName_END endport/tcp ``` #### /j "TEXT_SEARCH" Configures the DB2 Text Search server using generated default values for service name and TCP/IP port number. This parameter cannot be used if the instance type is *client*. #### /j "TEXT_SEARCH, servicename" Configures the DB2 Text Search server using the provided service name and an automatically generated port number. If the service name has a port number assigned in the services file, it uses the assigned port number. ## /j "TEXT_SEARCH, servicename, portnumber" Configures the DB2 Text Search server using the provided service name and port number. #### /j "TEXT_SEARCH, portnumber" Configures the DB2 Text Search server using a default service name and the provided port number. Valid port numbers must be within the 1024 - 65535 range. -? Displays usage information. # **Examples** On an AIX machine, to create an instance for the user ID db2inst1, issue the following command: On a client machine: DB2DIR/instance/db2icrt db2inst1 On a server machine: DB2DIR/instance/db2icrt -u db2fenc1 db2inst1 where db2fenc1 is the user ID under which fenced user-defined functions and fenced stored procedures will run. ## **Usage notes** - The instance home/sqllib/db2tss/config folder is created by db2icrt on Linux and UNIX operating systems. It is advised that you use a symbolic link to an area outside the sqllib directory. - The -s option is intended for situations in which you want to create an instance that does not use the full functionality of the system. For example, if you are using Enterprise Server Edition (ESE) on a UNIX operating system, but do not want partition capabilities, you could create a Workgroup Server Edition (WSE) instance, using the option -s WSE. - To create a DB2 instance that supports Microsoft Cluster Server, first create an instance, then use the db2mscs command to migrate it to run in a MSCS instance. - On Linux and UNIX operating systems, only one instance can be created under a user name. If you want to create an instance under a user name that already has an instance, you must drop the existing instance before creating the new one. - When creating DB2 instances, consider the following restrictions: - If existing IDs are used to create DB2 instances, make sure that the IDs are not locked and do not have passwords expired. - You can also use the db2isetup command to create and update DB2 instances using a graphical interface on all supported Linux and UNIX operating systems. - · On Linux and UNIX systems, if you are using the su command instead of the login command to become the root user, you must issue the su command with the - option to indicate that the process environment is to be set as if you had logged in to the system using the login command. - On Linux and UNIX operating systems, you must not source the DB2 instance environment for the root user. Running db2icrt when you sourced the DB2 instance environment is not supported. - On AIX 6.1 (or higher), when running this command from a shared DB2 copy in a system workload partition (WPAR) global environment, this command must be run as the root user. - On Windows operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 instance is created, the Monitoring Agent for DB2 instance is also created if the following are true: - The DB2 instance type is standalone, wse, or ese. - The default DB2 copy has the ITM agent component installed. - The DB2 instance is at version 9.5 (or higher). - There is no existing ITM for Databases product. In addition, the following are also created after the creation of the Monitoring Agent for DB2 instance: the Monitoring Agent for DB2 instance files, the NT service and the registry entries. #### Related concepts "User, user ID and group naming rules" in Database Administration Concepts and Configuration Reference #### Related reference "db2isetup - Start instance creation interface " in Command Reference "db2iclus - Microsoft cluster server " in Command Reference # db2idrop - Remove instance Removes a DB2 instance that was created by db2icrt. You can only drop instances that are listed by db2ilist for the same DB2 copy where you are issuing db2idrop from. On Linux and UNIX operating systems, this utility is located in the DB2DIR/instance directory, where DB2DIR represents the installation location where the current version of the DB2 database system is installed. On Windows operating systems, this utility is located under the DB2PATH\bin directory where **DB2PATH** is the location where the DB2 copy is installed. Note: A non-root-installed DB2 instance, on Linux and UNIX operating systems, cannot be dropped using this command. The only option is to uninstall the non-root DB2 copy. See *Usage notes* below for more details. #### Authorization Root access on Linux and UNIX operating systems or Local Administrator on Windows operating systems. #### Command syntax For Linux and UNIX operating systems For Windows operating systems # **Command parameters** For Linux and UNIX operating systems #### **InstName** - Specifies the name of the instance. - **-d** Enters debug mode, for use by DB2 Service. - -f This parameter is deprecated. Specifies the force applications flag. If this flag is specified all the applications using the instance will be forced to terminate. - -h | -? Displays the usage information. #### For Windows operating systems *InstName* - Specifies the name of the instance. - -f Specifies the force applications flag. If this flag is specified all the applications using the instance will be forced to terminate. - -h Displays usage information. # **Examples** • If you created db2inst1 on a Linux or UNIX operating system by issuing the following command: /opt/IBM/db2/copy1/instance/db2icrt -u db2fenc1 db2inst1 To drop db2inst1, you must run the following command: /opt/IBM/db2/copy1/instance/db2idrop db2inst1 # **Usage notes** - Before an instance is dropped, ensure that the DB2 database manager has been stopped and that DB2 database applications accessing the instance are disconnected and terminated. DB2 databases associated with the
instance can be backed up, and configuration data saved for future reference if needed. - The db2idrop command does not remove any databases. Remove the databases first if they are no longer required. If the databases are not removed, they can always be catalogued under another DB2 copy of the same release and continued to be used. - If you wish to save DB2 Text Search configurations and plan to reuse instance databases, you need to take the extra step of saving the config directory (on UNIX: <code>instance_home/sqllib/db2tss/config</code> and on Windows: <code>instance_profile_path\instance_name\db2tss\config</code>) or config directory contents before issuing the db2idrop command. After the new instance is created, the config directory can be restored. However, restoring the config directory is only applicable if the new instance created is of the same release and fix pack level. - A non-root-installed instance cannot be dropped on Linux and UNIX operating systems. To remove this DB2 instance, the only option available to the user is to uninstall the non-root copy of DB2 by running db2_deinstall -a. - On Linux and UNIX operating systems, if you are using the su command instead of the login command to become the root user, you must issue the su command with the - option to indicate that the process environment is to be set as if you had logged in to the system using the login command. - On Linux and UNIX operating systems, you must not source the DB2 instance environment for the root user. Running db2idrop when you sourced the DB2 instance environment is not supported. - On AIX 6.1 (or higher), when running this command from a shared DB2 copy in a system workload partition (WPAR) global environment, this command must be run as the root user. - On Windows operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 instance is dropped, the Monitoring Agent for DB2 is stopped. All files, services and registry entries created for the Monitoring Agent for DB2 instance are also deleted. #### Related reference "db2icrt - Create instance " in Command Reference "db2_deinstall - Uninstall DB2 products, features, or languages " in Command Reference # db2iupdt - Update instances This command updates an instance to run on a DB2 copy that has a new DB2 database product or feature installed, to run on a DB2 copy of the same version as the DB2 copy associated with the instance, or to upgrade the instance type to a higher level instance type. The db2iupdt command can be issued against instances of the same version that are associated with the same or a different DB2 copy. In all cases, it will update the instance so that it runs against the code located in the same DB2 copy as where you issued the db2iupdt command. You should issue this command: - if you install a fix pack and the automatic instance update fails. - if you install a new DB2 database product or feature to the DB2 copy associated to the DB2 instance. - if you want to update a DB2 instance from one DB2 copy to another DB2 copy of the same version of DB2 database product. After a fix pack is installed on Linux and UNIX operating systems, the db2iupdt command is executed automatically. To update an instance with db2iupdt, you must first stop all processes that are running for the instance. #### Authorization Root access on UNIX and Linux operating systems or Local Administrator on Windows operating systems. #### Command syntax For UNIX and Linux operating systems For Windows operating systems # Command parameters #### For UNIX and Linux operating systems - **-h** | **-?** Displays the usage information. - **-d** Turns debug mode on. - **-k** Keeps the current instance type during the update. - **-D** Moves an instance from a higher code level on one path to a lower code level installed on another path. - **-s** Ignores the existing SPM log directory. - -a AuthType Specifies the authentication type (SERVER, SERVER_ENCRYPT or CLIENT) for the instance. The default is SERVER. ## -u Fenced ID Specifies the name of the user ID under which fenced user defined functions and fenced stored procedures will run. This option is only needed when converting an instance from a client instance to a non-client instance type. To determine the current instance type, refer to the node type parameter in the output from a GET DBM CFG command. If an instance is already a non-client instance, or if an instance is a client instance and is staying as a client instance (for example, by using the **-k** option), the **-u** option is not needed. The **-u** option cannot change the fenced user for an existing instance. #### InstName Specifies the name of the instance. **-e** Updates every instance. #### For Windows operating systems *InstName* Specifies the name of the instance. **/u:**username,password Specifies the account name and password for the DB2 service. **/p:***instance-profile-path* Specifies the new instance profile path for the updated instance. /r:baseport,endport Specifies the range of TCP/IP ports to be used by the partitioned database instance when running in MPP mode. When this option is specified, the services file on the local machine will be updated with the following entries: DB2_InstName baseport/tcp DB2_InstName END endport/tcp #### /h:hostname Overrides the default TCP/IP host name if there are more than one TCP/IP host names for the current machine. - **/s** Updates the instance to a partitioned instance. - /q Issues the db2iupdt command in quiet mode. #### /a:authType Specifies *authType*, the authentication type (SERVER, CLIENT, or SERVER_ENCRYPT) for the instance. #### /i "TEXT SEARCH" Configures the DB2 Text Search server using generated default values for service name and TCP/IP port number. This parameter cannot be used if the instance type is *client*. ## /j "TEXT_SEARCH, servicename" Configures the DB2 Text Search server using the provided service name and an automatically generated port number. If the service name has a port number assigned in the services file, it uses the assigned port number. ## /j "TEXT_SEARCH, servicename, portnumber" Configures the DB2 Text Search server using the provided service name and port number. # /j "TEXT_SEARCH, portnumber" Configures the DB2 Text Search server using a default service name and the provided port number. Valid port numbers must be within the 1024 - 65535 range. /? Displays usage information for the db2iupdt command. # **Examples (UNIX and Linux)** An instance, db2inst2, is associated to a DB2 copy of DB2 database product installed at DB2DIR1. You have another DB2 copy of DB2 database product on the same computer at DB2DIR2 for the same version of the DB2 database product as that installed on DB2DIR1. To update the instance to run from the DB2 copy installed at DB2DIR1 to the DB2 copy installed at DB2DIR2, issue the following command: DB2DIR2/instance/db2iupdt db2inst2 If the DB2 copy installed at *DB2DIR2* is at level lower than the DB2 copy installed at *DB2DIR1*, issue: DB2DIR2/instance/db2iupdt -D db2inst2 ## **Usage notes** #### For all supported operating systems If you use the db2iupdt command to update a DB2 instance from one DB2 copy to another DB2 copy of the same version of DB2 database product, the DB2 Global Profile Variables defined in an old DB2 copy installation path will not be updated over to the new installation location. The DB2 Instance Profile Variables specific to the instance will be carried over after the instance is updated. ## For UNIX and Linux operating systems - The db2iupdt command is located in the DB2DIR/instance directory, where DB2DIR is the location where the current version of the DB2 database product is installed. - If you want to update a non-root instance, refer to the db2nrupdt non-root-installed instance update command. The db2iupdt does not support updating of non-root instances. - If you are using the su command instead of the login command to become the root user, you must issue the su command with the - option to indicate that the process environment is to be set as if you had logged in to the system using the login command. - You must not source the DB2 instance environment for the root user. Running db2iupdt when you sourced the DB2 instance environment is not supported. - On UNIX and Linux operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 instance is updated, the Monitoring Agent for DB2 instance is also created if the following are - The DB2 instance type is standalone, wse, or ese. - The DB2 instance is at version 9.5 (or higher). In addition, ITMA must already be installed for the DB2 copy you are updating the instance. Located in DB2DIR/itma directory, where DB2DIR represents the directory where the DB2 product is installed. On AIX 6.1 (or higher), when running this command from a shared DB2 copy in a system workload partition (WPAR) global environment, this command must be run as the root user. #### For Windows operating systems - The db2iupdt command is located in the DB2PATH\bin directory, where DB2PATH is the location where the current version of the DB2 database product is installed. - The instance is updated to the DB2 copy from which you issue the db2iupdt command. However, to move your instance profile from its current location to another location, use the /p option and specify the instance profile path. Otherwise, the instance profile will stay in its original location after the instance update. Use the db2iupgrade command instead to upgrade to the current release from a previous release. - On Windows operating systems, if the IBM Tivoli Monitoring for Databases: DB2 Agent is installed and the DB2 copy instance is updated, the Monitoring Agent for DB2 instance is also created if the following are true: - The DB2 instance type is standalone, wse, or ese. - The default DB2 copy has the ITM agent component installed. - The DB2 instance is at version 9.5 (or higher). -
There is no existing ITM for Databases product. In addition, the following are also created after the creation of the Monitoring Agent for DB2 instance: the Monitoring Agent for DB2 instance files, the NT service and the registry entries. #### Related tasks "Updating the instance configuration (${\rm Linux}$, ${\rm UNIX}$)" in Database Administration Concepts and Configuration Reference "Updating the instance configuration (Windows)" in Database Administration Concepts and Configuration Reference ### Related reference "db2ilist - List instances " in Command Reference "db2isetup - Start instance creation interface " in Command Reference # Appendix D. Overview of the DB2 technical information DB2 technical information is available through the following tools and methods: - DB2 Information Center - Topics (Task, concept and reference topics) - Help for DB2 tools - Sample programs - Tutorials - DB2 books - PDF files (downloadable) - PDF files (from the DB2 PDF DVD) - printed books - Command line help - Command help - Message help **Note:** The DB2 Information Center topics are updated more frequently than either the PDF or the hardcopy books. To get the most current information, install the documentation updates as they become available, or refer to the DB2 Information Center at ibm.com. You can access additional DB2 technical information such as technotes, white papers, and IBM Redbooks® publications online at ibm.com. Access the DB2 Information Management software library site at http://www.ibm.com/software/data/sw-library/. #### **Documentation feedback** We value your feedback on the DB2 documentation. If you have suggestions for how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com. The DB2 documentation team reads all of your feedback, but cannot respond to you directly. Provide specific examples wherever possible so that we can better understand your concerns. If you are providing feedback on a specific topic or help file, include the topic title and URL. Do not use this e-mail address to contact DB2 Customer Support. If you have a DB2 technical issue that the documentation does not resolve, contact your local IBM service center for assistance. # DB2 technical library in hardcopy or PDF format The following tables describe the DB2 library available from the IBM Publications Center at www.ibm.com/shop/publications/order. English and translated DB2 Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947. Although the tables identify books available in print, the books might not be available in your country or region. The form number increases each time a manual is updated. Ensure that you are reading the most recent version of the manuals, as listed below. Note: The DB2 Information Center is updated more frequently than either the PDF or the hard-copy books. Table 20. DB2 technical information | Name | Form Number | Available in print | Last updated | |--|--------------|--------------------|--------------| | Administrative API
Reference | SC27-2435-00 | Yes | August, 2009 | | Administrative Routines and Views | SC27-2436-00 | No | August, 2009 | | Call Level Interface
Guide and Reference,
Volume 1 | SC27-2437-00 | Yes | August, 2009 | | Call Level Interface
Guide and Reference,
Volume 2 | SC27-2438-00 | Yes | August, 2009 | | Command Reference | SC27-2439-00 | Yes | August, 2009 | | Data Movement Utilities
Guide and Reference | SC27-2440-00 | Yes | August, 2009 | | Data Recovery and High
Availability Guide and
Reference | SC27-2441-00 | Yes | August, 2009 | | Database Administration
Concepts and
Configuration Reference | SC27-2442-00 | Yes | August, 2009 | | Database Monitoring
Guide and Reference | SC27-2458-00 | Yes | August, 2009 | | Database Security Guide | SC27-2443-00 | Yes | August, 2009 | | DB2 Text Search Guide | SC27-2459-00 | Yes | August, 2009 | | Developing ADO.NET
and OLE DB
Applications | SC27-2444-00 | Yes | August, 2009 | | Developing Embedded
SQL Applications | SC27-2445-00 | Yes | August, 2009 | | Developing Java
Applications | SC27-2446-00 | Yes | August, 2009 | | Developing Perl, PHP,
Python, and Ruby on
Rails Applications | SC27-2447-00 | No | August, 2009 | | Developing User-defined
Routines (SQL and
External) | SC27-2448-00 | Yes | August, 2009 | | Getting Started with
Database Application
Development | GI11-9410-00 | Yes | August, 2009 | | Getting Started with
DB2 Installation and
Administration on Linux
and Windows | GI11-9411-00 | Yes | August, 2009 | Table 20. DB2 technical information (continued) | Name | Form Number | Available in print | Last updated | |--|--------------|--------------------|--------------| | Globalization Guide | SC27-2449-00 | Yes | August, 2009 | | Installing DB2 Servers | GC27-2455-00 | Yes | August, 2009 | | Installing IBM Data
Server Clients | GC27-2454-00 | No | August, 2009 | | Message Reference
Volume 1 | SC27-2450-00 | No | August, 2009 | | Message Reference
Volume 2 | SC27-2451-00 | No | August, 2009 | | Net Search Extender
Administration and
User's Guide | SC27-2469-00 | No | August, 2009 | | Partitioning and
Clustering Guide | SC27-2453-00 | Yes | August, 2009 | | pureXML Guide | SC27-2465-00 | Yes | August, 2009 | | Query Patroller
Administration and
User's Guide | SC27-2467-00 | No | August, 2009 | | Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference | SC27-2468-00 | No | August, 2009 | | SQL Procedural
Languages: Application
Enablement and Support | SC27-2470-00 | Yes | August, 2009 | | SQL Reference, Volume 1 | SC27-2456-00 | Yes | August, 2009 | | SQL Reference, Volume 2 | SC27-2457-00 | Yes | August, 2009 | | Troubleshooting and
Tuning Database
Performance | SC27-2461-00 | Yes | August, 2009 | | Upgrading to DB2
Version 9.7 | SC27-2452-00 | Yes | August, 2009 | | Visual Explain Tutorial | SC27-2462-00 | No | August, 2009 | | What's New for DB2
Version 9.7 | SC27-2463-00 | Yes | August, 2009 | | Workload Manager
Guide and Reference | SC27-2464-00 | Yes | August, 2009 | | XQuery Reference | SC27-2466-00 | No | August, 2009 | Table 21. DB2 Connect-specific technical information | Name | Form Number | Available in print | Last updated | |---|--------------|--------------------|--------------| | Installing and Configuring DB2 Connect Personal Edition | SC27-2432-00 | Yes | August, 2009 | | Installing and Configuring DB2 Connect Servers | SC27-2433-00 | Yes | August, 2009 | Table 21. DB2 Connect-specific technical information (continued) | Name | Form Number | Available in print | Last updated | |-----------------------------|--------------|--------------------|--------------| | DB2 Connect User's
Guide | SC27-2434-00 | Yes | August, 2009 | Table 22. Information Integration technical information | Name | Form Number | Available in print | Last updated | |---|--------------|--------------------|--------------| | Information Integration:
Administration Guide for
Federated Systems | SC19-1020-02 | Yes | August, 2009 | | Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing | SC19-1018-04 | Yes | August, 2009 | | Information Integration:
Configuration Guide for
Federated Data Sources | SC19-1034-02 | No | August, 2009 | | Information Integration:
SQL Replication Guide
and Reference | SC19-1030-02 | Yes | August, 2009 | | Information Integration:
Introduction to
Replication and Event
Publishing | GC19-1028-02 | Yes | August, 2009 | # **Ordering printed DB2 books** If you require printed DB2 books, you can buy them online in many but not all countries or regions. You can always order printed DB2 books from your local IBM representative. Keep in mind that some softcopy books on the DB2 PDF Documentation DVD are unavailable in print. For example, neither volume of the DB2 Message Reference is available as a printed book. Printed versions of many of the DB2 books available on the DB2 PDF Documentation DVD can be ordered for a fee from IBM. Depending on where you are placing your order from, you may be able to order books online, from the IBM Publications Center. If online ordering is not available in your country or region, you can always order printed DB2 books from your local IBM representative. Note that not all books on the DB2 PDF Documentation DVD are available in print. Note: The most up-to-date and complete DB2 documentation is maintained in the DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/ v9r7. To order printed DB2 books: - To find out whether you can order printed DB2 books online in your country or region, check the IBM Publications Center at http://www.ibm.com/shop/ publications/order. You must select a country, region, or language to access publication ordering information and then follow the ordering instructions for your location. - To order printed DB2 books from your local IBM representative: - 1. Locate the contact information for your local representative from one of the following Web sites: - The IBM directory of world wide contacts at www.ibm.com/planetwide - The IBM Publications Web site at http://www.ibm.com/shop/publications/order. You will need to select your country, region, or language to the access appropriate publications home page for your location. From this page, follow the "About this site" link. - 2. When you call, specify that you want to order a DB2 publication. - 3. Provide your representative with the titles and form numbers of the books that you want to order.
For titles and form numbers, see "DB2 technical library in hardcopy or PDF format" on page 199. # Displaying SQL state help from the command line processor DB2 products return an SQLSTATE value for conditions that can be the result of an SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state class codes. To start SQL state help, open the command line processor and enter: ? sqlstate or ? class code where *sqlstate* represents a valid five-digit SQL state and *class code* represents the first two digits of the SQL state. For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help for the 08 class code. # Accessing different versions of the DB2 Information Center For DB2 Version 9.7 topics, the DB2 Information Center URL is http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/ For DB2 Version 9.5 topics, the DB2 Information Center URL is http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/ For DB2 Version 9 topics, the DB2 Information Center URL is http://publib.boulder.ibm.com/infocenter/db2luw/v9/ For DB2 Version 8 topics, go to the Version 8 Information Center URL at: http://publib.boulder.ibm.com/infocenter/db2luw/v8/ # Displaying topics in your preferred language in the DB2 Information Center The DB2 Information Center attempts to display topics in the language specified in your browser preferences. If a topic has not been translated into your preferred language, the DB2 Information Center displays the topic in English. - To display topics in your preferred language in the Internet Explorer browser: - 1. In Internet Explorer, click the Tools —> Internet Options —> Languages... button. The Language Preferences window opens. - 2. Ensure your preferred language is specified as the first entry in the list of languages. - To add a new language to the list, click the **Add...** button. - **Note:** Adding a language does not guarantee that the computer has the fonts required to display the topics in the preferred language. - To move a language to the top of the list, select the language and click the **Move Up** button until the language is first in the list of languages. - 3. Clear the browser cache and then refresh the page to display the DB2 Information Center in your preferred language. - To display topics in your preferred language in a Firefox or Mozilla browser: - 1. Select the button in the **Languages** section of the **Tools** —> **Options** —> **Advanced** dialog. The Languages panel is displayed in the Preferences window. - 2. Ensure your preferred language is specified as the first entry in the list of languages. - To add a new language to the list, click the Add... button to select a language from the Add Languages window. - To move a language to the top of the list, select the language and click the Move Up button until the language is first in the list of languages. - 3. Clear the browser cache and then refresh the page to display the DB2 Information Center in your preferred language. On some browser and operating system combinations, you must also change the regional settings of your operating system to the locale and language of your choice. # Updating the DB2 Information Center installed on your computer or intranet server A locally installed DB2 Information Center must be updated periodically. ## Before you begin A DB2 Version 9.7 Information Center must already be installed. For details, see the "Installing the DB2 Information Center using the DB2 Setup wizard" topic in Installing DB2 Servers. All prerequisites and restrictions that applied to installing the Information Center also apply to updating the Information Center. #### About this task An existing DB2 Information Center can be updated automatically or manually: - Automatic updates updates existing Information Center features and languages. An additional benefit of automatic updates is that the Information Center is unavailable for a minimal period of time during the update. In addition, automatic updates can be set to run as part of other batch jobs that run periodically. - Manual updates should be used when you want to add features or languages during the update process. For example, a local Information Center was originally installed with both English and French languages, and now you want to also install the German language; a manual update will install German, as well as, update the existing Information Center features and languages. However, a manual update requires you to manually stop, update, and restart the Information Center. The Information Center is unavailable during the entire update process. #### Procedure This topic details the process for automatic updates. For manual update instructions, see the "Manually updating the DB2 Information Center installed on your computer or intranet server" topic. To automatically update the DB2 Information Center installed on your computer or intranet server: - 1. On Linux operating systems, - a. Navigate to the path where the Information Center is installed. By default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7 directory. - b. Navigate from the installation directory to the doc/bin directory. - **c.** Run the ic-update script: ic-update - 2. On Windows operating systems, - a. Open a command window. - b. Navigate to the path where the Information Center is installed. By default, the DB2 Information Center is installed in the <Program Files>\IBM\DB2 Information Center\Version 9.7 directory, where <Program Files> represents the location of the Program Files directory. - c. Navigate from the installation directory to the doc\bin directory. - d. Run the ic-update.bat file: ic-update.bat #### Results The DB2 Information Center restarts automatically. If updates were available, the Information Center displays the new and updated topics. If Information Center updates were not available, a message is added to the log. The log file is located in doc\eclipse\configuration directory. The log file name is a randomly generated number. For example, 1239053440785.log. # Manually updating the DB2 Information Center installed on your computer or intranet server If you have installed the DB2 Information Center locally, you can obtain and install documentation updates from IBM. Updating your locally-installed DB2 Information Center manually requires that you: - 1. Stop the DB2 Information Center on your computer, and restart the Information Center in stand-alone mode. Running the Information Center in stand-alone mode prevents other users on your network from accessing the Information Center, and allows you to apply updates. The Workstation version of the DB2 Information Center always runs in stand-alone mode. - 2. Use the Update feature to see what updates are available. If there are updates that you must install, you can use the Update feature to obtain and install them **Note:** If your environment requires installing the DB2 Information Center updates on a machine that is not connected to the internet, mirror the update site to a local file system using a machine that is connected to the internet and has the DB2 Information Center installed. If many users on your network will be installing the documentation updates, you can reduce the time required for individuals to perform the updates by also mirroring the update site locally and creating a proxy for the update site. If update packages are available, use the Update feature to get the packages. However, the Update feature is only available in stand-alone mode. 3. Stop the stand-alone Information Center, and restart the DB2 Information Center on your computer. **Note:** On Windows 2008, Windows Vista (and higher), the commands listed later in this section must be run as an administrator. To open a command prompt or graphical tool with full administrator privileges, right-click the shortcut and then select **Run as administrator**. To update the DB2 Information Center installed on your computer or intranet server: - 1. Stop the DB2 Information Center. - On Windows, click Start → Control Panel → Administrative Tools → Services. Then right-click DB2 Information Center service and select Stop. - On Linux, enter the following command: /etc/init.d/db2icdv97 stop - 2. Start the Information Center in stand-alone mode. - On Windows: - a. Open a command window. - b. Navigate to the path where the Information Center is installed. By default, the DB2 Information Center is installed in the <Program Files>\IBM\DB2 Information Center\Version 9.7 directory, where <Program Files> represents the location of the Program Files directory. - c. Navigate from the installation directory to the doc\bin directory. - d. Run the help_start.bat file: help_start.bat - · On Linux: - a. Navigate to the path where the Information Center is installed. By default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7 directory. - b. Navigate from the installation directory to the doc/bin directory. - c. Run the help_start script: help_start The systems default Web browser opens to display the stand-alone Information Center. - 3. Click the **Update** button (🐑). (JavaScript[™] must be enabled in your browser.) On the right panel of the Information Center, click **Find Updates**. A list of updates for existing documentation displays. - 4. To initiate the installation process, check the selections you want to install, then click **Install Updates**. - 5. After the installation process has completed, click **Finish**. - 6. Stop the stand-alone Information Center: - On Windows, navigate to the installation directory's doc\bin directory, and run the help_end.bat file: help_end.bat **Note:** The help_end batch file contains the commands required to safely stop the processes that were started with the help_start batch file. Do not use Ctrl-C or any other method to stop help_start.bat. • On Linux, navigate to the installation directory's doc/bin directory, and run the help_end script: help end **Note:** The
help_end script contains the commands required to safely stop the processes that were started with the help_start script. Do not use any other method to stop the help_start script. - 7. Restart the DB2 Information Center. - On Windows, click Start → Control Panel → Administrative Tools → Services. Then right-click DB2 Information Center service and select Start. - On Linux, enter the following command: /etc/init.d/db2icdv97 start The updated DB2 Information Center displays the new and updated topics. ## **DB2 tutorials** The DB2 tutorials help you learn about various aspects of DB2 products. Lessons provide step-by-step instructions. # Before you begin You can view the XHTML version of the tutorial from the Information Center at http://publib.boulder.ibm.com/infocenter/db2help/. Some lessons use sample data or code. See the tutorial for a description of any prerequisites for its specific tasks. #### **DB2 tutorials** To view the tutorial, click the title. "pureXML" in pureXML Guide Set up a DB2 database to store XML data and to perform basic operations with the native XML data store. "Visual Explain" in Visual Explain Tutorial Analyze, optimize, and tune SQL statements for better performance using Visual Explain. # **DB2** troubleshooting information A wide variety of troubleshooting and problem determination information is available to assist you in using DB2 database products. #### DB2 documentation Troubleshooting information can be found in the *DB2 Troubleshooting Guide* or the Database fundamentals section of the *DB2 Information Center*. There you will find information about how to isolate and identify problems using DB2 diagnostic tools and utilities, solutions to some of the most common problems, and other advice on how to solve problems you might encounter with your DB2 database products. ### DB2 Technical Support Web site Refer to the DB2 Technical Support Web site if you are experiencing problems and want help finding possible causes and solutions. The Technical Support site has links to the latest DB2 publications, TechNotes, Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and other resources. You can search through this knowledge base to find possible solutions to your problems. Access the DB2 Technical Support Web site at http://www.ibm.com/software/data/db2/support/db2_9/ # **Terms and Conditions** Permissions for the use of these publications is granted subject to the following terms and conditions. **Personal use:** You may reproduce these Publications for your personal, non commercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these Publications, or any portion thereof, without the express consent of IBM. **Commercial use:** You may reproduce, distribute and display these Publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these Publications, or reproduce, distribute or display these Publications or any portion thereof outside your enterprise, without the express consent of IBM. Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the Publications or any information, data, software or other intellectual property contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed. You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations. IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. # **Appendix E. Notices** This information was developed for products and services offered in the U.S.A. Information about non-IBM products is based on information available at the time of first publication of this document and is subject to change. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to: IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 U.S.A. For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to: Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan, Ltd. 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan The following paragraph does not apply to the United Kingdom or any other country/region where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply to you. This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you. Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information that has been exchanged, should contact: IBM Canada Limited Office of the Lab Director 8200 Warden Avenue Markham, Ontario L6G 1C7 **CANADA** Such information may be available, subject to appropriate terms and conditions, including, in some cases, payment of a fee. The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us. Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems, and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements, or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only. This information may contain examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious, and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. #### COPYRIGHT LICENSE: This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs. Each copy or any portion of these sample programs or any derivative work must include
a copyright notice as follows: © (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved. ### **Trademarks** IBM, the IBM logo, and ibm.com[®] are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml. The following terms are trademarks or registered trademarks of other companies - Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. - Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. - UNIX is a registered trademark of The Open Group in the United States and other countries. - Intel[®], Intel logo, Intel Inside[®], Intel Inside logo, Intel[®] Centrino[®], Intel Centrino logo, Celeron[®], Intel[®] Xeon[®], Intel SpeedStep[®], Itanium[®], and Pentium[®] are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. - Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others. # Index | Α | DB2 servers | |--|-----------------------------------| | Accessories Suite 49 | installing | | | Windows 23 | | Administration Tool | DB2 Setup wizard | | text search 77 | installing DB2 servers | | | Linux 26 | | D | UNIX 26 | | В | installing DB2 servers on UNIX 26 | | books | DB2 Text Search 49 | | | DB2 XQuery functions | | printed | xmlcolumn-contains 110 | | ordering 202 | db2 install command | | | installing DB2 product 35 | | ^ | db2icrt command | | C | description 188 | | cataloging | | | TCP/IP node 41 | db2idrop command | | command | description 192 | | UPDATE INDEX 69 | db2iupdt command | | command line tools | description 194 | | Administration Tool 10 | db2iupgrade command | | | description 185 | | Configuration Tool 10 | db2ts commands | | Log Formatter Tool 10 | ALTER INDEX 131 | | Synonym Tool 10 | CLEANUP FOR TEXT 117 | | commands | CLEAR COMMAND LOCKS 122 | | ALTER INDEX 71 | CLEAR EVENTS FOR INDEX 136 | | calling from a procedure 141 | CREATE INDEX 124 | | CLEAR EVENTS FOR INDEX 79 | DISABLE DATABASE FOR TEXT 120 | | db2icrt 188 | DROP INDEX 129 | | db2idrop 192 | ENABLE DATABASE FOR TEXT 118 | | db2iupdt 194 | HELP 138 | | db2iupgrade 185 | START FOR TEXT 116 | | db2ts ALTER INDEX 131 | STOP FOR TEXT 116 | | db2ts CLEANUP FOR TEXT 117 | UPDATE INDEX 134 | | db2ts CLEAR COMMAND LOCKS 122 | disabling 61 | | db2ts CLEAR EVENTS FOR INDEX 136 | doce_install command | | db2ts CREATE INDEX 124 | procedure 35 | | db2ts DISABLE DATABASE FOR TEXT 120 | documentation | | db2ts DROP INDEX 129 | overview 199 | | db2ts ENABLE DATABASE FOR TEXT 118 | PDF 199 | | db2ts HELP 138 | | | db2ts START FOR TEXT 116 | printed 199 | | db2ts STOP FOR TEXT 116 | terms and conditions of use 208 | | db2ts UPDATE INDEX 134 | | | DISABLE DATABASE FOR TEXT 59 | - | | DROP INDEX 72 | E | | ENABLE DATABASE FOR TEXT 47 | enabling 55 | | | charming of | | text search 115 | | | configuring 53, 55, 61 | F | | CONTAINS function | Г | | searching text search indexes with 105 | filter 49 | | create instance command 188 | functions | | | DB2 XQuery | | _ | xmlcolumn-contains 110 | | D | stored procedures | | DB2 Information Center | SYSTS_ALTER 154 | | languages 203 | SYSTS_CLEAR_COMMANDLOCKS 162 | | 0 0 | SYSTS_CLEAR_EVENTS 160 | | updating 204, 205 | SYSTS_DROP 152 | | versions 203 | SYSTS_ENABLE 143 | | viewing in different languages 203 | SYSTS_UPDATE 157 | | | 01010_01 DATE 10/ | | Н | services file | |--|--| | help | updating | | configuring language 203 | TCP/IP communications 41 setting-up 53 | | SQL statements 203 | SQL administrative routines 146 | | | SQL statements | | | displaying help 203 | | | synonym dictionaries | | installing | overview 75 | | DB2 Text Search 35 | removing 175 | | manually | synonym dictionary
adding 75 | | db2_install 35 | removing 76 | | doce_install 35
methods | syntax 116, 117, 118, 120, 122, 124, 129, 131, 134, 136, 138 | | db2_install 35 | SYSTS_ADMIN_CMD procedure 141 | | doce_install 35 | SYSTS_ALTER stored procedure 154 | | | SYSTS_CLEAR_COMMANDLOCKS stored procedure 162 | | | SYSTS_CLEAR_EVENTS stored procedure 160 | | L | SYSTS_CREATE 146 | | linguistic processing | SYSTS_CREATE procedure 146 SYSTS_DISABLE 144 | | using n-gram segmentation. 9 | SYSTS_DISABLE procedure 144 | | Linux | SYSTS_DROP stored procedure 152 | | installing | SYSTS_ENABLE stored procedure 143 | | DB2 Setup wizard 26 | SYSTS_UPDATE stored procedure 157 | | response file installation
root 32 | | | | Т | | N.I. | TCP/IP | | N | communications | | Net Search Extender (NSE) | updating the services file 41 | | comparison with Text Search 179 | terms and conditions | | notices 209 | use of publications 208 | | | text search 11, 49, 53, 55, 61, 116, 118, 120, 122, 124, 129, 131, | | 0 | 134, 136, 138 | | | adding a synonym dictionary 175 | | ordering DB2 books 202 | adding a synonym dictionary for 75 administration commands 115 | | orphaned text search collections deleting 77 | Administration Tool 173 | | identifying 77 | administrative routines 141 | | identifying 77 | administrative views | | | database level 165, 166 | | P | event table 168 | | problem determination | index level 166, 167, 168, 169 | | information available 207 | Index level 165
log table 169 | | tutorials 207 | staging table 169 | | procedures | SYSIBMTS.TSCOLLECTIONNAMES 166 | | SYSTS_ADMIN_CMD 141 | SYSIBMTS.TSCONFIGURATION 167 | | | SYSIBMTS.TSDEFAULTS 165 | | D | SYSIBMTS.TSEVENT 168 | | R | SYSIBMTS.TSINDEXES 166 | | Remove Instance command 192 | SYSIBMTS.TSLOCKS 166 SYSIBMTS TSSTACING 160 | | response files | SYSIBMTS.TSSTAGING 169
altering an index 71 | | installation Linux and UNIX 32 | asynchronous indexing 15 | | running setup 31 | authorizations 13 | | rich text 11, 49, 53, 55, 61 | database administrator 14 | | | instance owner 13 | | | user performing text search queries 15 | | S | user table owner 14 | | SCORE function | changing update characteristics 71 | | searching text search indexes with 108 | code pages supported 17 commands | | searching | ALTER INDEX 131 | | using SQL statements 89 | CLEANUP FOR TEXT 117 | | | CLEAR COMMAND LOCKS 122 | | text search (continued) | text search (continued) | |--|---------------------------------------| | commands (continued) | searching with the SCORE function 90 | | CLEAR EVENTS FOR INDEX 136 | security considerations 13 | | CREATE INDEX 124 | SQL search functions 105 | | DISABLE DATABASE FOR TEXT 120 | starting 45 | | DROP INDEX 129 | stopping 57 | | ENABLE DATABASE FOR TEXT 118 | synonym dictionaries | | HELP 138 | overview 75 | | START FOR TEXT 116 | removing 175 | | STOP FOR TEXT 116 | Synonym Tool 175 | | UPDATE INDEX 134 | tracing problems 79 | | Configuration Tool 171 | triggers 15, 63 | | configuring 21, 39, 40, 171 | troubleshooting tips 80 | | using a response file 31 | user roles 13 | | using the Setup Wizard 23 | using SQL with 89 | | CONTAINS function 85 | using the Configuration Tool 40 | | data types | using the CONTAINS function 105 | | converting unsupported 17 | using the SCORE function 108 | | supported 16 | using unsupported data types 66 | | disabling a for database 59 | using XQuery with 89 | | document formats | viewing index status 71 | | converting unsupported 17 | XML documents 95, 97 | | supported 16 | XML search functions 105 | | document truncation 18 | xmlcolumn-contains function 85 | | dropping an index 72 | text search index | | | creating 64 | | enabling a database for 47 | O | | enhancing performance during indexing 67 | creating on unsupported data types 66 | | event tables | text search index creation | | overview 63 | enhancing performance 67 | | removing messages 79 | text search indexes | | features 85, 179 | binary data typestext search | | functions 85 | specifying the code page 66 | | improving search performance 91 | creating | | index alterations 7 | binary data types 66 | | index creation 7 | maintaining 69 | | index updates 7 | populating 69 | | indexes | searching 89 | | creating 63 | updating 69 | | installing 21 | text search on XML columns 110 | | using a response file 31 | text search queries | | using db2_install 35 | case sensitivity 87 | | using the Setup Wizard 23 | dynamic scoring 87 | | issuing commands 11 | resultlimit considerations 87 | | key concepts 13 | searching with XML namespaces 87 | | languages supported 17 | word stemming 87 | | linguistic processing 9 | troubleshooting | | Log Formatter Tool 176 | online information 207 | | log tables 63 | tutorials 207 | | migrating | tutorials | | issues 80 | problem determination 207 | | Net Search Extender to DB2 Text Search 80, 181 | troubleshooting 207 | | Net Search Extender and DB2 Text Search comparison 179 | Visual Explain 207 | | overview 1, 3 | · · · · · · · · · · · · · · · · · · · | | planning queries 87 | | | problem determination 79, 176 | U | | reconfiguring 39, 40 | U | | removing a synonym dictionary 76, 175 | UNIX | | roles | installing | | database administrator 14 | using the DB2 Setup wizard 26 | | | response file installation 32 | | instance owner 13 | update instances command 194 | | user performing searches 15 | updates | | user table owner 14 | DB2 Information Center 204, 205 | | scenario 5 | updating text search indexes | | SCORE
function 85 | automatically 69 | | search argument syntax 92 | manually 69 | | search functions 85 | upgrade instance command 185 | | searching indexes 85 | -roman mountee communica 100 | # V views for text search database level 165 SYSIBMTS.TSDEFAULTS 165 SYSIBMTS.TSLOCKS 166 index level SYSIBMTS.TSCOLLECTIONNAMES 166 SYSIBMTS.TSCONFIGURATION 167 SYSIBMTS.TSEVENT 168 SYSIBMTS.TSINDEXES 166 SYSIBMTS.TSSTAGING 169 Index level 165 Visual Explain tutorial 207 # W Windows operating systems installing DB2 servers (with DB2 Setup wizard) 23 response file method 31 # X XML columns, text search 110 XML search syntax used with DB2 text searches 97 XML text search EBNF grammar 95 xmlcolumn-contains function 110 # Printed in USA SC27-2459-00