
IBM DB2 9.7
for Linux, UNIX, and Windows

Troubleshooting and Tuning Database Performance
Updated September, 2010

Version 9 Release 7

SC27-2461-02

���

IBM DB2 9.7
for Linux, UNIX, and Windows

Troubleshooting and Tuning Database Performance
Updated September, 2010

Version 9 Release 7

SC27-2461-02

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 571.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
How this book is structured. vii

Part 1. Performance overview 1

Chapter 1. Performance tuning tools and
methodology 5
Benchmark testing 5

Benchmark preparation 6
Benchmark test creation 7
Benchmark test execution 8
Benchmark test analysis example 9

Chapter 2. Performance monitoring
tools and methodology. 11
Operational monitoring of system performance . . 11

Basic set of system performance monitor
elements 12
Abnormal values in monitoring data 15

The governor utility 16
Starting and stopping the governor 16
The governor daemon 17
The governor configuration file 18
Governor rule clauses 21
Governor log files 26
Stopping the governor 29

Chapter 3. Factors affecting
performance 31
System architecture 31

DB2 architecture and process overview 31
The DB2 process model 32
Database agents 37

Configuring for good performance 46
Instance configuration 53
Table space design 54

Disk-storage performance factors 54
Table space impact on query optimization . . . 55

Database design 57
Tables 57
Indexes 61
Partitioning and clustering 72
Federated databases 80

Resource utilization. 80
Memory allocation 80
Self-tuning memory overview 87
Buffer pool management 94
Database deactivation behavior in first-user
connection scenarios 107
Tuning sort performance 108

Data organization 110
Table reorganization 110
Index reorganization 120

Determining when to reorganize tables and
indexes 123
Costs of table and index reorganization. . . . 126
Reducing the need to reorganize tables and
indexes 127
Automatic reorganization 128

Application design 129
Application processes, concurrency, and
recovery 129
Concurrency issues 131
Writing and tuning queries for optimal
performance 143
Improving insert performance 154
Efficient SELECT statements 155
Guidelines for restricting SELECT statements 156
Specifying row blocking to reduce overhead . . 159
Data sampling in queries 160
Parallel processing for applications 161

Lock management 162
Locks and concurrency control 163
Lock granularity 164
Lock attributes 165
Factors that affect locking 166
Lock type compatibility 167
Next-key locking 168
Lock modes and access plans for standard
tables 168
Lock modes for MDC table and RID index scans 172
Lock modes for MDC block index scans . . . 177
Locking behavior on partitioned tables 180
Lock conversion 182
Lock waits and timeouts 183
Deadlocks 184

Query optimization 186
The SQL and XQuery compiler process 186
Data-access methods 208
Joins 216
Effects of sorting and grouping on query
optimization. 231
Optimization strategies 233
Improving query optimization with materialized
query tables 242
Explain facility 245
Optimizing query access plans 286
Statistical views 352
Catalog statistics 359
Minimizing runstats impact 401

Data compression and performance 401
Reducing logging overhead to improve DML
performance 402
Inline LOBs improve performance 403

Chapter 4. Establishing a performance
tuning strategy. 405
The Design Advisor 405

© Copyright IBM Corp. 2006, 2010 iii

Using the Design Advisor 408
Defining a workload for the Design Advisor . . 408
Using the Design Advisor to convert from a
single-partition to a multi-partition database . . 410
Design Advisor limitations and restrictions . . 410

Part 2. Troubleshooting a problem 413

Chapter 5. Tools for troubleshooting 417
Overview of the db2dart tool 418

Comparison of INSPECT and db2dart 418
Analyzing db2diag log files using db2diag tool . . 420
Displaying and altering the Global Registry (UNIX)
using db2greg 424
Identifying the version and service level of your
product 424
Mimicking databases using db2look 425
Listing DB2 database products installed on your
system (Linux and UNIX) 428
Monitoring and troubleshooting using db2pd
command 430
Collecting environment information using
db2support command 442
Basic trace diagnostics 445

DB2 traces 446
DRDA trace files 449
Control Center traces 457
JDBC trace files. 457
CLI trace files 459

Platform-specific tools 464
Diagnostic tools (Windows) 464
Diagnostic tools (Linux and UNIX) 465

Chapter 6. Troubleshooting DB2
database 467
Collecting data for DB2 467

Collecting data for data movement problems 468
Collecting data for DAS and instance
management problems 468

Analyzing data for DB2 469
Diagnosing and resolving locking problems . . . 469

Diagnosing a lock wait problem 471
Diagnosing a deadlock problem 474
Diagnosing a lock timeout problem 477
Diagnosing a lock escalation problem 479

Recovering from sustained traps 482
Troubleshooting administrative task scheduler . . 483
Troubleshooting compression 484

Data compression dictionary is not
automatically created 484
Row compression not reducing disk storage
space for temporary tables 485
Data replication process cannot decompress a
compressed row image 485

Troubleshooting global variable problems 488
Troubleshooting high availability 490

Tivoli System Automation for Multiplatforms
(SA MP) Base Component is not installed by
DB2 Version 9.5 GA on AIX 6.1 490

Troubleshooting inconsistencies 491

Troubleshooting data inconsistencies 491
Troubleshooting index to data inconsistencies 491

Troubleshooting installation of DB2 database
systems 492

Collecting data for installation problems . . . 492
Analyzing data for installation problems . . . 493
Known problems and solutions 493

Troubleshooting license issues 495
Analyzing DB2 license compliance reports. . . 495

Troubleshooting optimization guidelines and
profiles 497
Troubleshooting partitioned database environments 499

FCM problems related to 127.0.0.2 (Linux and
UNIX) 499
Creating a database partition on an encrypted
file system (AIX) 499

Troubleshooting scripts 500
Recompile the static section to collect section
actuals after applying Fix Pack 1 500
Troubleshooting storage key support 501

Chapter 7. Troubleshooting DB2
Connect. 503
Diagnostic tools 503
Gathering relevant information 503
Initial connection is not successful 504
Problems encountered after an initial connection 505

Unsupported DDM commands 506
Common DB2 Connect problems 507

Chapter 8. Searching knowledge
bases 511
How to search effectively for known problems . . 511
Troubleshooting resources 511

Chapter 9. Getting DB2 product fixes 513
Getting fixes. 513

Fix packs, interim fix packs and test fixes . . . 513
Applying test fixes 515

Chapter 10. Learning more about
troubleshooting 517
Learning more 517

Diagnostic data directory path. 518
Administration notification log 522
DB2 diagnostic (db2diag) log files 525
Combining DB2 database and OS diagnostics 530
db2cos (callout script) output files 533
Dump files 535
First occurrence data capture information . . . 535
Internal return codes 544
Introduction to messages 545
Platform-specific error log information 548
Trap files 551

Chapter 11. Support 553
DB2 Health Advisor Service 553

How to use the DB2 Health Advisor Service . . 553
Contacting IBM Software Support 556

iv Troubleshooting and Tuning Database Performance

Submitting data to IBM Software Support . . . 557

Part 3. Appendixes 559

Appendix A. Overview of the DB2
technical information 561
DB2 technical library in hardcopy or PDF format 561
Ordering printed DB2 books 564
Displaying SQL state help from the command line
processor 565
Accessing different versions of the DB2
Information Center 565
Displaying topics in your preferred language in the
DB2 Information Center 565

Updating the DB2 Information Center installed on
your computer or intranet server 566
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 567
DB2 tutorials 569
DB2 troubleshooting information 569
Terms and Conditions 570

Appendix B. Notices 571

Index 575

Contents v

vi Troubleshooting and Tuning Database Performance

About this book

This guide provides information about tuning database performance and solving
problems with DB2® database clients and servers.

It helps you to:
v Develop a performance monitoring and tuning strategy
v Develop a troubleshooting strategy for day-to-day operations
v Adjust the configuration of the database server
v Make changes to the applications that use the database server
v Identify problems and errors in a concise manner
v Solve problems based on their symptoms
v Learn about available diagnostic tools

Who should use this book?

This guide is intended for customers, users, system administrators, database
administrators (DBAs), communication specialists, application developers, and
technical support representatives who are interested in tuning database
performance and troubleshooting problems with DB2 database clients and servers.
To use it, you should be familiar with:
v Communications, relational database, and local area network (LAN) concepts
v Hardware and software requirements and options
v The overall configuration of your network
v Application programs and other facilities that run on your network
v Basic DB2 database administrative tasks
v The information on installation and early tasks described in the Quick Beginnings

guides for the products you have installed.

How this book is structured
To assist you in performance monitoring and tuning of the database system, the
information provided here contains the necessary background material to
understand the factors affecting database performance and instructions to help you
tune the performance of your system. To help you understand, isolate, and resolve
problems with your DB2 software, the troubleshooting and support information
contains instructions for using the problem determination resources that are
provided with your DB2 products.

Part 1. Tuning database performance

As a database administrator, you might encounter a situation in which users
anecdotally report that their database applications are running slow. The
information provided here describes how to develop a performance monitoring
strategy to obtain objective assessments of database system performance in
comparison with historical results, how to adjust the configuration of the database
server, and how to make changes to the applications that use the database server;
all with the goal of improving the database system performance without increasing
processing costs and without degrading service to users.

© Copyright IBM Corp. 2006, 2010 vii

v Chapter 1, “Performance tuning tools and methodology,” describes how to
design and implement a benchmark testing program to help you improve
performance.

v Chapter 2, “Performance monitoring tools and methodology,” provides
information about the importance of an operational monitoring strategy that
collects key system performance data on a periodic basis.

v Chapter 3, “Factors affecting performance,” contains information about the
various factors that can affect database system performance. Some of these
factors can be tuned or reconfigured.

v Chapter 4, “Establishing a performance tuning strategy,” describes the DB2
Design Advisor tool that can help you significantly improve your workload
performance.

Part 2. Troubleshooting a problem

To assist you to resolve a problem on your own, the information contained in this
section describes how to identify the source of a problem, how to gather diagnostic
information, where to get fixes, and which knowledge bases to search for
additional information. If you must contact IBM Software Support, there is
information here that describes how to contact support and what diagnostic
information the service technicians require to help you address a problem.
v Chapter 5, “Tools for troubleshooting,” describes the troubleshooting tools that

can be used to help in the systematic approach to solving a problem. The goal is
to determine why something does not work as expected and how to resolve the
problem.

v Chapter 6, “Troubleshooting DB2 database,” provides information about various
known problems that can arise and how to troubleshoot them.

v Chapter 7, “Troubleshooting DB2 Connect™,” provides information about various
known problems that can arise and how to troubleshoot them.

v Chapter 8, “Searching knowledge bases,” provides information about how to
find solutions to problems by searching IBM knowledge bases. This chapter
describes how to optimize your results by using available resources, support
tools, and search methods.

v Chapter 9, “Getting DB2 product fixes,” presents information about obtaining a
product fix that might already be available to resolve your problem. You can get
fixes by following the steps outlined here.

v Chapter 10, “Learning more about troubleshooting,” describes how the following
topics can help you acquire the conceptual information that you require to
effectively troubleshoot problems with DB2 database server.

v Chapter 11, “Contacting IBM Software Support,” provides information about
how to contact IBM Software Support and what information they will require
from you to assist you in resolving product defects and database problems.

Part 3. Appendixes

v Appendix A, “Overview of the DB2 technical information”
v Appendix B, “Notices”

viii Troubleshooting and Tuning Database Performance

Part 1. Performance overview

Performance refers to the way that a computer system behaves in response to a
particular workload. Performance is measured in terms of system response time,
throughput, and resource utilization.

Performance is also affected by:
v The resources that are available on the system
v How well those resources are used and shared

In general, you will want to tune your system to improve its cost-benefit ratio.
Specific goals could include:
v Processing larger, or more demanding, workloads without increasing processing

costs
v Obtaining faster system response times, or higher throughput, without

increasing processing costs
v Reducing processing costs without degrading service to users

Some benefits of performance tuning, such as a more efficient use of resources and
the ability to add more users to the system, are tangible. Other benefits, such as
greater user satisfaction because of quicker response times, are intangible.

Performance tuning guidelines

Keep the following guidelines in mind when developing an overall approach to
performance tuning.
v Remember the law of diminishing returns: The greatest performance benefits

usually come from your initial efforts.
v Do not tune just for the sake of tuning: Tune to relieve identified constraints.

Tuning resources that are not the primary cause of performance problems can
actually make subsequent tuning work more difficult.

v Consider the whole system: You cannot tune one parameter or resource in
isolation. Before you make an adjustment, consider how the change will affect
the system as a whole. Performance tuning requires trade-offs among various
system resources. For example, you might increase buffer pool sizes to achieve
improved I/O performance, but larger buffer pools require more memory, and
that might degrade other aspects of performance.

v Change one parameter at a time: Do not change more than one factor at a time.
Even if you are sure that all the changes will be beneficial, you will have no way
of assessing the contribution of each change.

v Measure and configure by levels: Tune one level of your system at a time.
System levels include:
– Hardware
– Operating system
– Application server and requester
– Database manager
– SQL and XQuery statements
– Application programs

© Copyright IBM Corp. 2006, 2010 1

v Check for hardware as well as software problems: Some performance problems
can be corrected by applying service to your hardware, your software, or both.
Do not spend excessive time monitoring and tuning your system before
applying service to the hardware or software.

v Understand the problem before you upgrade your hardware: Even if it seems
that additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You might
spend money on additional disk storage, only to find that you do not have the
processing power or the channels to exploit it.

v Put fallback procedures in place before you start tuning: If tuning efforts result
in unexpected performance degradation, the changes made should be reversed
before you attempt an alternative approach. Save your original settings so that
you can easily undo changes that you do not want to keep.

Developing a performance improvement process

The performance improvement process is an iterative approach to monitoring and
tuning aspects of performance. Depending on the results of this performance
monitoring, you will adjust the configuration of the database server and make
changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the
kinds of applications that use the data and on your understanding of patterns of
data access. Different kinds of applications have different performance
requirements.

Any performance improvement process includes the following fundamental steps:
1. Define the performance objectives.
2. Establish performance indicators for the major constraints in the system.
3. Develop and execute a performance monitoring plan.
4. Continually analyze monitoring results to determine which resources require

tuning.
5. Make one adjustment at a time.

If, at some point, you can no longer improve performance by tuning the database
server or applications, it might be time to upgrade the hardware.

Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If
you do not have enough time to set performance objectives and to monitor and
tune in a comprehensive manner, you can address performance issues by listening
to your users. Start by asking a few simple questions, such as the following:
v What do you mean by “slow response”? Is it 10% slower than you expect it to

be, or tens of times slower?
v When did you notice the problem? Is it recent, or has it always been there?
v Do other users have the same problem? Are these users one or two individuals

or a whole group?
v If a group of users is experiencing the same problem, are these users connected

to the same local area network?
v Does the problem seem to be related to a specific type of transaction or

application program?

2 Troubleshooting and Tuning Database Performance

v Do you notice any pattern of occurrence? For example, does the problem occur
at a specific time of day, or is it continuous?

Performance tuning limits

The benefits of performance tuning are limited. When considering how much time
and money should be spent on improving system performance, be sure to assess
the degree to which the investment of additional time and money will help the
users of the system.

Tuning can often improve performance if the system is encountering response time
or throughput problems. However, there is a point beyond which additional tuning
cannot help. At this point, consider revising your goals and expectations. For more
significant performance improvements, you might need to add more disk storage,
faster CPUs, additional CPUs, more main memory, faster communication links, or
a combination of these.

Part 1.Performance tuning 3

4 Troubleshooting and Tuning Database Performance

Chapter 1. Performance tuning tools and methodology

Benchmark testing
Benchmark testing is a normal part of the application development life cycle. It is a
team effort that involves both application developers and database administrators
(DBAs).

Benchmark testing is performed against a system to determine current performance
and can be used to improve application performance. If the application code has
been written as efficiently as possible, additional performance gains might be
realized by tuning database and database manager configuration parameters.

Different types of benchmark tests are used to discover specific kinds of
information. For example:
v An infrastructure benchmark determines the throughput capabilities of the

database manager under certain limited laboratory conditions.
v An application benchmark determines the throughput capabilities of the database

manager under conditions that more closely reflect a production environment.

Benchmark testing to tune configuration parameters is based upon controlled
conditions. Such testing involves repeatedly running SQL from your application
and changing the system configuration (and perhaps the SQL) until the application
runs as efficiently as possible.

The same approach can be used to tune other factors that affect performance, such
as indexes, table space configuration, and hardware configuration, to name a few.

Benchmark testing helps you to understand how the database manager responds to
different conditions. You can create scenarios that test deadlock handling, utility
performance, different methods of loading data, transaction rate characteristics as
more users are added, and even the effect on the application of using a new
release of the database product.

Benchmark tests are based on a repeatable environment so that the same test run
under the same conditions will yield results that you can legitimately compare.
You might begin by running the test application in a normal environment. As you
narrow down a performance problem, you can develop specialized test cases that
limit the scope of the function that you are testing. The specialized test cases need
not emulate an entire application to obtain valuable information. Start with simple
measurements, and increase the complexity only if necessary.

Characteristics of good benchmarks include:
v The tests are repeatable
v Each iteration of a test starts in the same system state
v No other functions or applications are unintentionally active in the system
v The hardware and software used for benchmark testing match your production

environment

Note that started applications use memory even when they are idle. This increases
the probability that paging will skew the results of the benchmark and violates the
repeatability criterion.

© Copyright IBM Corp. 2006, 2010 5

Benchmark preparation
There are certain prerequisites that must be satisfied before performance
benchmark testing can be initiated.

Before you start performance benchmark testing:
v Complete both the logical and physical design of the database against which

your application will run
v Create tables, views, and indexes
v Normalize tables, bind application packages, and populate tables with realistic

data; ensure that appropriate statistics are available
v Plan to run against a production-size database, so that the application can test

representative memory requirements; if this is not possible, try to ensure that the
proportions of available system resources to data in the test and production
systems are the same (for example, if the test system has 10% of the data, use
10% of the processor time and 10% of the memory that is available to the
production system)

v Place database objects in their final disk locations, size log files, determine the
location of work files and backup images, and test backup procedures

v Check packages to ensure that performance options, such as row blocking, are
enabled when possible

Although the practical limits of an application might be revealed during
benchmark testing, the purpose of the benchmark is to measure performance, not
to detect defects.

Your benchmark testing program should run in an accurate representation of the
final production environment. Ideally, it should run on the same server model with
the same memory and disk configurations. This is especially important if the
application will ultimately serve large numbers of users and process large amounts
of data. The operating system and any communications or storage facilities used
directly by the benchmark testing program should also have been tuned
previously.

SQL statements to be benchmark tested should be either representative SQL or
worst-case SQL, as described below.

Representative SQL
Representative SQL includes those statements that are executed during
typical operations of the application that is being benchmark tested. Which
statements are selected depends on the nature of the application. For
example, a data-entry application might test an INSERT statement, whereas
a banking transaction might test a FETCH, an UPDATE, and several
INSERT statements.

Worst-case SQL
Statements falling under this category include:
v Statements that are executed frequently
v Statements that are processing high volumes of data
v Statements that are time-critical. For example, statements in an

application that runs to retrieve and update customer information while
the customer is waiting on the telephone.

v Statements with a large number of joins, or the most complex statements
in the application. For example, statements in a banking application that
produces summaries of monthly activity for all of a customer's accounts.

6 Troubleshooting and Tuning Database Performance

A common table might list the customer's address and account numbers;
however, several other tables must be joined to process and integrate all
of the necessary account transaction information.

v Statements that have a poor access path, such as one that is not
supported by an available index

v Statements that have a long execution time
v Statements that are executed only at application initialization time, but

that have disproportionately large resource requirements. For example,
statements in an application that generates a list of account work that
must be processed during the day. When the application starts, the first
major SQL statement causes a seven-way join, which creates a very large
list of all the accounts for which this application user is responsible. This
statement might only run a few times each day, but it takes several
minutes to run if it has not been tuned properly.

Benchmark test creation
You will need to consider a variety of factors when designing and implementing a
benchmark testing program.

Because the main purpose of the testing program is to simulate a user application,
the overall structure of the program will vary. You might use the entire application
as the benchmark and simply introduce a means for timing the SQL statements
that are to be analyzed. For large or complex applications, it might be more
practical to include only blocks that contain the important statements. To test the
performance of specific SQL statements, you can include only those statements in
the benchmark testing program, along with the necessary CONNECT, PREPARE,
OPEN, and other statements, as well as a timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to run a
set of SQL statements repeatedly over a certain time interval. The number of
statements executed over this time interval is a measure of the throughput for the
application. Another option is to simply determine the time required to execute
individual SQL statements.

For all benchmark testing, you need a reliable and appropriate way to measure
elapsed time. To simulate an application in which individual SQL statements
execute in isolation, measuring the time to PREPARE, EXECUTE, or OPEN,
FETCH, or CLOSE for each statement might be best. For other applications,
measuring the transaction time from the first SQL statement to the COMMIT
statement might be more appropriate.

Although the elapsed time for each query is an important factor in performance
analysis, it might not necessarily reveal bottlenecks. For example, information on
CPU usage, locking, and buffer pool I/O might show that the application is I/O
bound and not using the CPU at full capacity. A benchmark testing program
should enable you to obtain this kind of data for a more detailed analysis, if
needed.

Not all applications send the entire set of rows retrieved from a query to some
output device. For example, the result set might be input for another application.
Formatting data for screen output usually has a high CPU cost and might not
reflect user needs. To provide an accurate simulation, a benchmark testing program
should reflect the specific row handling activities of the application. If rows are
sent to an output device, inefficient formatting could consume the majority of CPU
time and misrepresent the actual performance of the SQL statement itself.

Chapter 1. Performance tuning tools and methodology 7

Although it is very easy to use, the DB2 command line processor (CLP) is not
suited to benchmarking because of the processing overhead that it adds. A
benchmark tool (db2batch) is provided in the bin subdirectory of your instance
sqllib directory. This tool can read SQL statements from either a flat file or from
standard input, dynamically prepare and execute the statements, and return a
result set. It also enables you to control the number of rows that are returned to
db2batch and the number of rows that are displayed. You can specify the level of
performance-related information that is returned, including elapsed time, processor
time, buffer pool usage, locking, and other statistics collected from the database
monitor. If you are timing a set of SQL statements, db2batch also summarizes the
performance results and provides both arithmetic and geometric means.

By wrapping db2batch invocations in a Perl or Korn shell script, you can easily
simulate a multiuser environment. Ensure that connection attributes, such as the
isolation level, are the same by selecting the appropriate db2batch options.

Note that in partitioned database environments, db2batch is suitable only for
measuring elapsed time; other information that is returned pertains only to activity
on the coordinator database partition.

You can write a driver program to help you with your benchmark testing. On
Linux® or UNIX® systems, a driver program can be written using shell programs.
A driver program can execute the benchmark program, pass the appropriate
parameters, drive the test through multiple iterations, restore the environment to a
consistent state, set up the next test with new parameter values, and collect and
consolidate the test results. Driver programs can be flexible enough to run an
entire set of benchmark tests, analyze the results, and provide a report of the best
parameter values for a given test.

Benchmark test execution
In the most common type of benchmark testing, you choose a configuration
parameter and run the test with different values for that parameter until the
maximum benefit is achieved.

A single test should include repeated execution of the application (for example,
five or ten iterations) with the same parameter value. This enables you to obtain a
more reliable average performance value against which to compare the results
from other parameter values.

The first run, called a warmup run, should be considered separately from
subsequent runs, which are called normal runs. The warmup run includes some
startup activities, such as initializing the buffer pool, and consequently, takes
somewhat longer to complete than normal runs. The information from a warmup
run is not statistically valid. When calculating averages for a specific set of
parameter values, use only the results from normal runs. It is often a good idea to
drop the high and low values before calculating averages.

For the greatest consistency between runs, ensure that the buffer pool returns to a
known state before each new run. Testing can cause the buffer pool to become
loaded with data, which can make subsequent runs faster because less disk I/O is
required. The buffer pool contents can be forced out by reading other irrelevant
data into the buffer pool, or by de-allocating the buffer pool when all database
connections are temporarily removed.

8 Troubleshooting and Tuning Database Performance

After you complete testing with a single set of parameter values, you can change
the value of one parameter. Between each iteration, perform the following tasks to
restore the benchmark environment to its original state:
v If the catalog statistics were updated for the test, ensure that the same values for

the statistics are used for every iteration.
v The test data must be consistent if it is being updated during testing. This can

be done by:
– Using the restore utility to restore the entire database. The backup copy of the

database contains its previous state, ready for the next test.
– Using the import or load utility to restore an exported copy of the data. This

method enables you to restore only the data that has been affected. The reorg
and runstats utilities should be run against the tables and indexes that contain
this data.

In summary, follow these steps to benchmark test a database application:

Step 1 Leave the DB2 registry, database and database manager configuration
parameters, and buffer pools at their standard recommended values, which
can include:
v Values that are known to be required for proper and error-free

application execution
v Values that provided performance improvements during prior tuning
v Values that were suggested by the AUTOCONFIGURE command
v Default values; however, these might not be appropriate:

– For parameters that are significant to the workload and to the
objectives of the test

– For log sizes, which should be determined during unit and system
testing of your application

– For any parameters that must be changed to enable your application
to run

Run your set of iterations for this initial case and calculate the average
elapsed time, throughput, or processor time. The results should be as
consistent as possible, ideally differing by no more than a few percentage
points from run to run. Performance measurements that vary significantly
from run to run can make tuning very difficult.

Step 2 Select one and only one method or tuning parameter to be tested, and
change its value.

Step 3 Run another set of iterations and calculate the average elapsed time or
processor time.

Step 4 Depending on the results of the benchmark test, do one of the following:
v If performance improves, change the value of the same parameter and

return to Step 3. Keep changing this parameter until the maximum
benefit is shown.

v If performance degrades or remains unchanged, return the parameter to
its previous value, return to Step 2, and select a new parameter. Repeat
this procedure until all parameters have been tested.

Benchmark test analysis example
Output from a benchmark testing program should include an identifier for each
test, iteration numbers, statement numbers, and the elapsed times for each
execution.

Chapter 1. Performance tuning tools and methodology 9

Note that the data in these sample reports is shown for illustrative purposes only.
It does not represent actual measured results.

A summary of benchmark testing results might look like the following:

Analysis shows that the CONNECT (statement 01) took 1.34 seconds to complete,
the OPEN CURSOR (statement 10) took 2 minutes and 8.15 seconds, the FETCH
(statement 15) returned seven rows, with the longest delay being 0.28 seconds, the
CLOSE CURSOR (statement 20) took 0.84 seconds, and the CONNECT RESET
(statement 99) took 0.03 seconds to complete.

If your program can output data in a delimited ASCII format, the data could later
be imported into a database table or a spreadsheet for further statistical analysis.

A summary benchmark report might look like the following:

Test Iter. Stmt Timing SQL Statement
Numbr Numbr Numbr (hh:mm:ss.ss)
002 05 01 00:00:01.34 CONNECT TO SAMPLE
002 05 10 00:02:08.15 OPEN cursor_01
002 05 15 00:00:00.24 FETCH cursor_01
002 05 15 00:00:00.23 FETCH cursor_01
002 05 15 00:00:00.28 FETCH cursor_01
002 05 15 00:00:00.21 FETCH cursor_01
002 05 15 00:00:00.20 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 15 00:00:00.22 FETCH cursor_01
002 05 20 00:00:00.84 CLOSE cursor_01
002 05 99 00:00:00.03 CONNECT RESET

Figure 1. Sample Benchmark Testing Results

PARAMETER VALUES FOR EACH BENCHMARK TEST
TEST NUMBER 001 002 003 004 005
locklist 63 63 63 63 63
maxappls 8 8 8 8 8
applheapsz 48 48 48 48 48
dbheap 128 128 128 128 128
sortheap 256 256 256 256 256
maxlocks 22 22 22 22 22
stmtheap 1024 1024 1024 1024 1024
SQL STMT AVERAGE TIMINGS (seconds)

01 01.34 01.34 01.35 01.35 01.36
10 02.15 02.00 01.55 01.24 01.00
15 00.22 00.22 00.22 00.22 00.22
20 00.84 00.84 00.84 00.84 00.84
99 00.03 00.03 00.03 00.03 00.03

Figure 2. Sample Benchmark Timings Report

10 Troubleshooting and Tuning Database Performance

Chapter 2. Performance monitoring tools and methodology

Operational monitoring of system performance
Operational monitoring refers to collecting key system performance metrics at
periodic intervals over time. This information gives you critical data to refine that
initial configuration to be more tailored to your requirements, and also prepares
you to address new problems that might appear on their own or following
software upgrades, increases in data or user volumes, or new application
deployments.

Operational monitoring considerations

An operational monitoring strategy needs to address several considerations.

Operational monitoring needs to be very light weight (not consuming much of the
system it is measuring) and generic (keeping a broad “eye” out for potential
problems that could appear anywhere in the system).

Because you plan regular collection of operational metrics throughout the life of
the system, it is important to have a way to manage all that data. For many of the
possible uses you have for your data, such as long-term trending of performance,
you want to be able to do comparisons between arbitrary collections of data that
are potentially many months apart. The DB2 product itself facilitates this kind of
data management very well. Analysis and comparison of monitoring data becomes
very straightforward, and you already have a robust infrastructure in place for
long-term data storage and organization.

A DB2 database (“DB2”) system provides some excellent sources of monitoring
data. The primary ones are snapshot monitors and, in DB2 Version 9.5 and later,
workload management (WLM) table functions for data aggregation. Both of these
focus on summary data, where tools like counters, timers, and histograms maintain
running totals of activity in the system. By sampling these monitor elements over
time, you can derive the average activity that has taken place between the start
and end times, which can be very informative.

There is no reason to limit yourself to just metrics that the DB2 product provides.
In fact, non-DB2 data is more than just a nice-to-have. Contextual information is
key for performance problem determination. The users, the application, the
operating system, the storage subsystem, and the network – all of these can
provide valuable information about system performance. Including metrics from
outside of the DB2 database software is an important part of producing a complete
overall picture of system performance.

The trend in recent releases of the DB2 database product has been to make more
and more monitoring data available through SQL interfaces. This makes
management of monitoring data with DB2 very straightforward, because you can
easily redirect the data from the administration views, for example, right back into
DB2 tables. For deeper dives, event and activity monitor data can also be written
to DB2 tables, providing similar benefits. With the vast majority of our monitoring
data so easy to store in DB2, a small investment to store system metrics (such as
CPU utilization from vmstat) in DB2 is manageable as well.

© Copyright IBM Corp. 2006, 2010 11

Types of data to collect for operational monitoring

Several types of data are useful to collect for ongoing operational monitoring.
v A basic set of DB2 system performance monitoring metrics.
v DB2 configuration information

Taking regular copies of database and database manager configuration, DB2
registry variables, and the schema definition helps provide a history of any
changes that have been made, and can help to explain changes that arise in
monitoring data.

v Overall system load
If CPU or I/O utilization is allowed to approach saturation, this can create a
system bottleneck that might be difficult to detect using just DB2 snapshots. As a
result, the best practice is to regularly monitor system load with vmstat and
iostat (and possibly netstat for network issues) on UNIX-based systems, and
perfmon on Windows®. You can also use the administrative views, such as
ENV_SYS_RESOURCES, to retrieve operating system, CPU, memory, and other
information related to the system. Typically you look for changes in what is
normal for your system, rather than for specific one-size-fits-all values.

v Throughput and response time measured at the business logic level
An application view of performance, measured above DB2, at the business logic
level, has the advantage of being most relevant to the end user, plus it typically
includes everything that could create a bottleneck, such as presentation logic,
application servers, web servers, multiple network layers, and so on. This data
can be vital to the process of setting or verifying a service level agreement
(SLA).

The DB2 system performance monitoring elements and system load data are
compact enough that even if they are collected every five to fifteen minutes, the
total data volume over time is irrelevant in most systems. Likewise, the overhead
of collecting this data is typically in the one to three percent range of additional
CPU consumption, which is a small price to pay for a continuous history of
important system metrics. Configuration information typically changes relatively
rarely, so collecting this once a day is usually frequent enough to be useful without
creating an excessive amount of data.

Basic set of system performance monitor elements
About 10 metrics of system performance provide a good basic set to use in an
on-going operational monitoring effort.

There are hundreds of metrics to choose from, but collecting all of them can be
counter-productive due to the sheer volume of data produced. You want metrics
that are:
v Easy to collect – You don't want to have to use complex or expensive tools for

everyday monitoring, and you don't want the act of monitoring to significantly
burden the system.

v Easy to understand – You don't want to have to look up the meaning of the
metric each time you see it.

v Relevant to your system – Not all metrics provide meaningful information in all
environments.

v Sensitive, but not too sensitive – A change in the metric should indicate a real
change in the system; the metric should not fluctuate on its own.

This starter set includes about 10 metrics:

12 Troubleshooting and Tuning Database Performance

v The number of transactions executed:
TOTAL_COMMITS

This provides an excellent base level measurement of system activity.
v Buffer pool hit ratios, measured separately for data, index, and temporary data:

100 * (POOL_DATA_L_READS – POOL_DATA_P_READS) / POOL_DATA_L_READS
100 * (POOL_INDEX_L_READS – POOL_INDEX_P_READS) / POOL_INDEX_L_READS
100 * (POOL_TEMP_DATA_L_READS - POOL_TEMP_DATA_P_READS) / POOL_TEMP_DATA_L_READS
100 * (POOL_TEMP_INDEX_L_READS - POOL_TEMP_INDEX_P_READS)

/ POOL_TEMP_INDEX_L_READS

Buffer pool hit ratios are one of the most fundamental metrics, and give an
important overall measure of how effectively the system is exploiting memory to
avoid disk I/O. Hit ratios of 80-85% or better for data and 90-95% or better for
indexes are generally considered good for an OLTP environment, and of course
these ratios can be calculated for individual buffer pools using data from the
buffer pool snapshot.
Although these metrics are generally useful, for systems such as data
warehouses that frequently perform large table scans, data hit ratios are often
irretrievably low, because data is read into the buffer pool and then not used
again before being evicted to make room for other data.

v Buffer pool physical reads and writes per transaction:
(POOL_DATA_P_READS + POOL_INDEX_P_READS +

POOL_TEMP_DATA_P_READS + POOL_TEMP_INDEX_P_READS)
/ TOTAL_COMMITS

(POOL_DATA_WRITES + POOL_INDEX_WRITES)
/ TOTAL_COMMITS

These metrics are closely related to buffer pool hit ratios, but have a slightly
different purpose. Although you can consider target values for hit ratios, there
are no possible targets for reads and writes per transaction. Why bother with
these calculations? Because disk I/O is such a major factor in database
performance, it is useful to have multiple ways of looking at it. As well, these
calculations include writes, whereas hit ratios only deal with reads. Lastly, in
isolation, it is difficult to know, for example, whether a 94% index hit ratio is
worth trying to improve. If there are only 100 logical index reads per hour, and
94 of them are in the buffer pool, working to keep those last 6 from turning into
physical reads is not a good use of time. However, if a 94% index hit ratio were
accompanied by a statistic that each transaction did twenty physical reads
(which could be further broken down by data and index, regular and
temporary), the buffer pool hit ratios might well deserve some investigation.
The metrics are not just physical reads and writes, but are normalized per
transaction. This trend is followed through many of the metrics. The purpose is
to decouple metrics from the length of time data was collected, and from
whether the system was very busy or less busy at that time. In general, this
helps ensure that similar values for metrics are obtained, regardless of how and
when monitoring data is collected. Some amount of consistency in the timing
and duration of data collection is a good thing; however, normalization reduces
it from being critical to being a good idea.

v The ratio of database rows read to rows selected:
ROWS_READ / ROWS_RETURNED

This calculation gives an indication of the average number of rows that are read
from database tables in order to find the rows that qualify. Low numbers are an
indication of efficiency in locating data, and generally show that indexes are

Chapter 2. Performance monitoring tools and methodology 13

being used effectively. For example, this number can be very high in the case
where the system does many table scans, and millions of rows need to be
inspected to determine if they qualify for the result set. On the other hand, this
statistic can be very low in the case of access to a table through a fully-qualified
unique index. Index-only access plans (where no rows need to be read from the
table) do not cause ROWS_READ to increase.
In an OLTP environment, this metric is generally no higher than 2 or 3,
indicating that most access is through indexes instead of table scans. This metric
is a simple way to monitor plan stability over time – an unexpected increase is
often an indication that an index is no longer being used and should be
investigated.

v The amount of time spent sorting per transaction:
TOTAL_SORT_TIME / TOTAL_COMMITS

This is an efficient way to handle sort statistics, because any extra overhead due
to spilled sorts automatically gets included here. That said, you might also want
to collect TOTAL_SORTS and SORT_OVERFLOWS for ease of analysis,
especially if your system has a history of sorting issues.

v The amount of lock wait time accumulated per thousand transactions:
1000 * LOCK_WAIT_TIME / TOTAL_COMMITS

Excessive lock wait time often translates into poor response time, so it is
important to monitor. The value is normalized to one thousand transactions
because lock wait time on a single transaction is typically quite low. Scaling up
to one thousand transactions simply provides measurements that are easier to
handle.

v The number of deadlocks and lock timeouts per thousand transactions:
1000 * (DEADLOCKS + LOCK_TIMEOUTS) / TOTAL_COMMITS

Although deadlocks are comparatively rare in most production systems, lock
timeouts can be more common. The application usually has to handle them in a
similar way: re-executing the transaction from the beginning. Monitoring the rate
at which this happens helps avoid the case where many deadlocks or lock
timeouts drive significant extra load on the system without the DBA being
aware.

v The number of dirty steal triggers per thousand transactions:
1000 * POOL_DRTY_PG_STEAL_CLNS / TOTAL_COMMITS

A “dirty steal” is the least preferred way to trigger buffer pool cleaning.
Essentially, the processing of an SQL statement that is in need of a new buffer
pool page is interrupted while updates on the victim page are written to disk. If
dirty steals are allowed to happen frequently, they can have a significant impact
on throughput and response time.

v The number of package cache inserts per thousand transactions:
1000 * PKG_CACHE_INSERTS / TOTAL_COMMITS

Package cache insertions are part of normal execution of the system; however, in
large numbers, they can represent a significant consumer of CPU time. In many
well-designed systems, after the system is running at steady-state, very few
package cache inserts occur, because the system is using or reusing static SQL or
previously prepared dynamic SQL statements. In systems with a high traffic of
ad hoc dynamic SQL statements, SQL compilation and package cache inserts are
unavoidable. However, this metric is intended to watch for a third type of

14 Troubleshooting and Tuning Database Performance

situation, one in which applications unintentionally cause package cache churn
by not reusing prepared statements, or by not using parameter markers in their
frequently executed SQL.

v The time an agent waits for log records to be flushed to disk:
LOG_WRITE_TIME

/ TOTAL_COMMITS

The transaction log has significant potential to be a system bottleneck, whether
due to high levels of activity, or to improper configuration, or other causes. By
monitoring log activity, you can detect problems both from the DB2 side
(meaning an increase in number of log requests driven by the application) and
from the system side (often due to a decrease in log subsystem performance
caused by hardware or configuration problems).

v In partitioned database environments, the number of fast communication
manager (FCM) buffers sent and received between partitions:
FCM_SENDS_TOTAL, FCM_RECVS_TOTAL

These give the rate of flow of data between different partitions in the cluster,
and in particular, whether the flow is balanced. Significant differences in the
numbers of buffers received from different partitions might indicate a skew in
the amount of data that has been hashed to each partition.

Cross-partition monitoring in partitioned database environments

Almost all of the individual monitoring element values mentioned above are
reported on a per-partition basis.

In general, you expect most monitoring statistics to be fairly uniform across all
partitions in the same DB2 partition group. Significant differences might indicate
data skew. Sample cross-partition comparisons to track include:
v Logical and physical buffer pool reads for data, indexes, and temporary tables
v Rows read, at the partition level and for large tables
v Sort time and sort overflows
v FCM buffer sends and receives
v CPU and I/O utilization

Abnormal values in monitoring data
Being able to identify abnormal values is key to interpreting system performance
monitoring data when troubleshooting performance problems.

A monitor element provides a clue to the nature of a performance problem when
its value is worse than normal, that is, the value is abnormal. Generally, a worse
value is one that is higher than expected, for example higher lock wait time.
However, an abnormal value can also be lower than expected, such as lower buffer
pool hit ratio. Depending on the situation, you can use one or more methods to
determine if a value is worse than normal.

One approach is to rely on industry rules of thumb or best practices. For example,
a rule of thumb is that buffer pool hit ratios of 80-85% or better for data are
generally considered good for an OLTP environment. Note that this rule of thumb
applies to OLTP environments and would not serve as a useful guide for data
warehouses where data hit ratios are often much lower due to the nature of the
system.

Chapter 2. Performance monitoring tools and methodology 15

Another approach is to compare current values to baseline values collected
previously. This approach is often most definitive and relies on having an adequate
operational monitoring strategy to collect and store key performance metrics
during normal conditions. For example, you might notice that your current buffer
pool hit ratio is 85%. This would be considered normal according to industry
norms but abnormal when compared to the 99% value recorded before the
performance problem was reported.

A final approach is to compare current values with current values on a comparable
system. For example, a current buffer pool hit ratio of 85% would be considered
abnormal if comparable systems have a buffer pool ratio of 99%.

The governor utility
The governor monitors the behavior of applications that run against a database
and can change that behavior, depending on the rules that you specify in the
governor configuration file.

Important: With the new strategic DB2 workload manager features introduced in
DB2 Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and
might be removed in a future release. For more information about the deprecation
of the governor utility, see “DB2 Governor and Query Patroller have been
deprecated”. To learn more about DB2 workload manager and how it replaces the
governor utility, see “Introduction to DB2 workload manager concepts” and
“Frequently asked questions about DB2 workload manager”.

A governor instance consists of a frontend utility and one or more daemons. Each
instance of the governor is specific to an instance of the database manager. By
default, when you start the governor, a governor daemon starts on each database
partition of a partitioned database. However, you can specify that a daemon be
started on a single database partition that you want to monitor.

The governor manages application transactions according to rules in the governor
configuration file. For example, applying a rule might reveal that an application is
using too much of a particular resource. The rule would also specify the action to
take, such as changing the priority of the application, or forcing it to disconnect
from the database.

If the action associated with a rule changes the priority of the application, the
governor changes the priority of agents on the database partition where the
resource violation occurred. In a partitioned database, if the application is forced to
disconnect from the database, the action occurs even if the daemon that detected
the violation is running on the coordinator node of the application.

The governor logs any actions that it takes.

Note: When the governor is active, its snapshot requests might affect database
manager performance. To improve performance, increase the governor wake-up
interval to reduce its CPU usage.

Starting and stopping the governor
The governor utility monitors applications that are connected to a database, and
changes the behavior of those applications according to rules that you specify in a
governor configuration file for that database.

16 Troubleshooting and Tuning Database Performance

Important: With the new workload management features introduced in DB2
Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and might
be removed in a future release. For more information, see the “DB2 Governor and
Query Patroller have been deprecated” topic in the What's New for DB2 Version 9.7
book.

Before you start the governor, you must create a governor configuration file.

To start the governor, you must have sysadm or sysctrl authorization.

To start the governor, use the db2gov command, specifying the following required
parameters:

START database-name
The database name that you specify must match the name of the database in
the governor configuration file.

config-file
The name of the governor configuration file for this database. If the file is not
in the default location, which is the sqllib directory, you must include the file
path as well as the file name.

log-file
The base name of the log file for this governor. For a partitioned database, the
database partition number is added for each database partition on which a
daemon is running for this instance of the governor.

To start the governor on a single database partition of a partitioned database,
specify the dbpartitionnum option.

For example, to start the governor on database partition 3 of a database named
SALES, using a configuration file named salescfg and a log file called saleslog,
enter the following command:
db2gov start sales dbpartitionnum 3 salescfg saleslog

To start the governor on all database partitions, enter the following command:
db2gov start sales salescfg saleslog

The governor daemon
The governor daemon collects information about applications that run against a
database.

The governor daemon runs the following task loop whenever it starts.
1. The daemon checks whether its governor configuration file has changed or has

not yet been read. If either condition is true, the daemon reads the rules in the
file. This allows you to change the behavior of the governor daemon while it is
running.

2. The daemon requests snapshot information about resource use statistics for
each application and agent that is working on the database.

3. The daemon checks the statistics for each application against the rules in the
governor configuration file. If a rule applies, the governor performs the
specified action. The governor compares accumulated information with values
that are defined in the configuration file. This means that if the configuration
file is updated with new values that an application might have already
breached, the rules concerning that breach are applied to the application during
the next governor interval.

Chapter 2. Performance monitoring tools and methodology 17

4. The daemon writes a record in the governor log file for any action that it takes.

When the governor finishes its tasks, it sleeps for an interval that is specified in the
configuration file. When that interval elapses, the governor wakes up and begins
the task loop again.

If the governor encounters an error or stop signal, it performs cleanup processing
before stopping. Using a list of applications whose priorities have been set, cleanup
processing resets all application agent priorities. It then resets the priorities of any
agents that are no longer working on an application. This ensures that agents do
not remain running with non-default priorities after the governor ends. If an error
occurs, the governor writes a message to the administration notification log,
indicating that it ended abnormally.

The governor cannot be used to adjust agent priorities if the value of the agentpri
database manager configuration parameter is not the system default.

Although the governor daemon is not a database application, and therefore does
not maintain a connection to the database, it does have an instance attachment.
Because it can issue snapshot requests, the governor daemon can detect when the
database manager ends.

The governor configuration file
The governor configuration file contains rules governing applications that run
against a database.

The governor evaluates each rule and takes specified actions when a rule evaluates
to true.

The governor configuration file contains general clauses that identify the database
to be monitored (required), the interval at which account records containing CPU
usage statistics are written, and the sleep interval for governor daemons. The
configuration file might also contain one or more optional application monitoring
rule statements. The following guidelines apply to both general clauses and rule
statements:
v Delimit general comments with braces ({ }).
v In most cases, specify values using uppercase, lowercase, or mixed case

characters. The exception is application name (specified following the applname
clause), which is case sensitive.

v Terminate each general clause or rule statement with a semicolon (;).

If a rule needs to be updated, edit the configuration file without stopping the
governor. Each governor daemon detects that the file has changed, and rereads it.

In a partitioned database environment, the governor configuration file must be
created in a directory that is mounted across all database partitions so that the
governor daemon on each database partition can read the same configuration file.

General clauses

The following clauses cannot be specified more than once in a governor
configuration file.

dbname
The name or alias of the database to be monitored. This clause is required.

18 Troubleshooting and Tuning Database Performance

account n
The interval, in minutes, after which account records containing CPU
usage statistics for each connection are written. This option is not available
on Windows operating systems. On some platforms, CPU statistics are not
available from the snapshot monitor. If this is the case, the account clause
is ignored.

If a short session occurs entirely within the account interval, no log record
is written. When log records are written, they contain CPU statistics that
reflect CPU usage since the previous log record for the connection. If the
governor is stopped and then restarted, CPU usage might be reflected in
two log records; these can be identified through the application IDs in the
log records.

interval n
The interval, in seconds, after which the daemon wakes up. If you do not
specify this clause, the default value of 120 seconds is used.

Rule clauses

Rule statements specify how applications are to be governed, and are assembled
from smaller components called rule clauses. If used, rule clauses must appear in a
specific order in the rule statement, as follows:
1. desc: A comment about the rule, enclosed by single or double quotation marks
2. time: The time at which the rule is evaluated
3. authid: One or more authorization IDs under which the application executes

statements
4. applname: The name of the executable or object file that connects to the

database. This name is case sensitive. If the application name contains spaces,
the name must be enclosed by double quotation marks.

5. setlimit: Limits that the governor checks; for example, CPU time, number of
rows returned, or idle time. On some platforms, CPU statistics are not available
from the snapshot monitor. If this is the case, the setlimit clause is ignored.

6. action: The action that is to be taken when a limit is reached. If no action is
specified, the governor reduces the priority of agents working for the
application by 10 when a limit is reached. Actions that can be taken against an
application include reducing its agent priority, forcing it to disconnect from the
database, or setting scheduling options for its operations.

Combine the rule clauses to form a rule statement, using a specific clause no more
than once in each rule statement.
desc "Allow no UOW to run for more than an hour"
setlimit uowtime 3600 action force;

If more than one rule applies to an application, all are applied. Usually, the action
that is associated with the first limit encountered is the action that is applied first.
An exception occurs if you specify a value of -1 for a rule clause: A subsequently
specified value for the same clause can only override the previously specified
value; other clauses in the previous rule statement are still operative.

For example, one rule statement uses the rowssel 100000 and uowtime 3600 clauses
to specify that the priority of an application is decreased if its elapsed time is
greater than 1 hour or if it selects more than 100 000 rows. A subsequent rule uses
the uowtime -1 clause to specify that the same application can have unlimited
elapsed time. In this case, if the application runs for more than 1 hour, its priority

Chapter 2. Performance monitoring tools and methodology 19

is not changed. That is, uowtime -1 overrides uowtime 3600. However, if it selects
more than 100 000 rows, its priority is lowered because rowssel 100000 still
applies.

Order of rule application

The governor processes rules from the top of the configuration file to the bottom.
However, if the setlimit clause in a particular rule statement is more relaxed than
the same clause in a preceding rule statement, the more restrictive rule applies. In
the following example, ADMIN continues to be limited to 5000 rows, because the
first rule is more restrictive.
desc "Force anyone who selects 5000 or more rows."
setlimit rowssel 5000 action force;

desc "Allow user admin to select more rows."
authid admin setlimit rowssel 10000 action force;

To ensure that a less restrictive rule overrides a more restrictive previous rule,
specify -1 to clear the previous rule before applying the new one. For example, in
the following configuration file, the initial rule limits all users to 5000 rows. The
second rule clears this limit for ADMIN, and the third rule resets the limit for
ADMIN to 10000 rows.
desc "Force anyone who selects 5000 or more rows."
setlimit rowssel 5000 action force;

desc "Clear the rowssel limit for admin."
authid admin setlimit rowssel -1;

desc "Now set the higher rowssel limit for admin"
authid admin setlimit rowssel 10000 action force;

Example of a governor configuration file
{ The database name is SAMPLE; do accounting every 30 minutes;

wake up once a second. }
dbname sample; account 30; interval 1;

desc "CPU restrictions apply to everyone 24 hours a day."
setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "Allow no UOW to run for more than an hour."
setlimit uowtime 3600 action force;

desc 'Slow down a subset of applications.'
applname jointA, jointB, jointC, quryA
setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

desc "Have the governor prioritize these 6 long apps in 1 class."
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

desc "Schedule all applications run by the planning department."
authid planid1, planid2, planid3, planid4, planid5
setlimit cpu -1
action schedule;

desc "Schedule all CPU hogs in one class, which will control consumption."
setlimit cpu 3600
action schedule class;

desc "Slow down the use of the DB2 CLP by the novice user."
authid novice

20 Troubleshooting and Tuning Database Performance

applname db2bp.exe
setlimit cpu 5 locks 100 rowssel 250;

desc "During the day, do not let anyone run for more than 10 seconds."
time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of
their applications during the lunch hour."

time 12:00 13:00 authid ming, geoffrey, john, bill
applname tpcc1, tpcc2, tpcA, tpvG
setlimit cpu 600 rowssel 120000 action force;

desc "Increase the priority of an important application so it always
completes quickly."

applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

desc "Some people, such as the database administrator (and others),
should not be limited. Because this is the last specification
in the file, it will override what came before."

authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

Governor rule clauses
Each rule in the governor configuration file is made up of clauses that specify the
conditions for applying the rule and the action that results if the rule evaluates to
true.

The rule clauses must be specified in the order shown.

Optional beginning clauses

desc Specifies a description for the rule. The description must be enclosed by
either single or double quotation marks.

time Specifies the time period during which the rule is to be evaluated. The
time period must be specified in the following format: time hh:mm hh:mm;
for example, time 8:00 18:00. If this clause is not specified, the rule is
evaluated 24 hours a day.

authid Specifies one or more authorization IDs under which the application is
executing. Multiple authorization IDs must be separated by a comma (,);
for example: authid gene, michael, james. If this clause is not specified,
the rule applies to all authorization IDs.

applname
Specifies the name of the executable or object file that is connected to the
database. Multiple application names must be separated by a comma (,);
for example: applname db2bp, batch, geneprog. If this clause is not
specified, the rule applies to all application names.

Note:

1. Application names are case sensitive.
2. The database manager truncates all application names to 20 characters.

You should ensure that the application that you want to govern is
uniquely identified by the first 20 characters of its application name.
Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

Limit clauses

setlimit
Specifies one or more limits for the governor to check. The limits must be

Chapter 2. Performance monitoring tools and methodology 21

-1 or greater than 0 (for example, cpu -1 locks 1000 rowssel 10000). At
least one limit must be specified, and any limit that is not specified in a
rule statement is not limited by that rule. The governor can check the
following limits:

cpu n Specifies the number of CPU seconds that can be consumed by an
application. If you specify -1, the application's CPU usage is not
limited.

idle n Specifies the number of idle seconds that are allowed for a
connection. If you specify -1, the connection's idle time is not
limited.

Note: Some database utilities, such as backup and restore, establish
a connection to the database and then perform work through
engine dispatchable units (EDUs) that are not visible to the
governor. These database connections appear to be idle and might
exceed the idle time limit. To prevent the governor from taking
action against these utilities, specify -1 for them through the
authorization ID that invoked them. For example, to prevent the
governor from taking action against utilities that are running under
authorization ID DB2SYS, specify authid DB2SYS setlimit idle
-1.

locks n
Specifies the number of locks that an application can hold. If you
specify -1, the number of locks held by the application is not
limited.

rowsread n
Specifies the number of rows that an application can select. If you
specify -1, the number of rows the application can select is not
limited. The maximum value that can be specified is
4 294 967 298.

Note: This limit is not the same as rowssel. The difference is that
rowsread is the number of rows that must be read to return the
result set. This number includes engine reads of the catalog tables
and can be reduced when indexes are used.

rowssel n
Specifies the number of rows that can be returned to an
application. This value is non-zero only at the coordinator database
partition. If you specify -1, the number of rows that can be
returned is not limited. The maximum value that can be specified
is 4 294 967 298.

uowtime n
Specifies the number of seconds that can elapse from the time that
a unit of work (UOW) first becomes active. If you specify -1, the
elapsed time is not limited.

Note: If you used the sqlmon API to deactivate the unit of work
monitor switch or the timestamp monitor switch, this will affect
the ability of the governor to govern applications based on the unit
of work elapsed time. The governor uses the monitor to collect
information about the system. If a unit of work (UOW) of the
application has been started before the Governor starts, then the
Governor will not govern that UOW.

22 Troubleshooting and Tuning Database Performance

Action clauses

action Specifies the action that is to be taken if one or more specified limits is
exceeded. If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the application by 10.

force Specifies that the agent servicing the application is to be forced.
(The FORCE APPLICATION command terminates the coordinator
agent.)

Note: In partitioned database environments, the force action is
only carried out when the governor daemon is running on the
application's coordinator database partition. Therefore, if a
governor daemon is running on database partition A and a limit is
exceeded for some application whose coordinator database
partition is database partition B, the force action is skipped.

nice n Specifies a change to the relative priority of agents working for the
application. Valid values range from -20 to +20 on UNIX-based
systems, and from -1 to 6 on Windows platforms.
v On UNIX-based systems, the agentpri database manager

configuration parameter must be set to the default value;
otherwise, it overrides the nice value.

v On Windows platforms, the agentpri database manager
configuration parameter and the nice value can be used
together.

You can use the governor to control the priority of applications
that run in the default user service superclass,
SYSDEFAULTUSERCLASS. If you use the governor to lower the
priority of an application that runs in this service superclass, the
agent disassociates itself from its outbound correlator (if it is
associated with one) and sets its relative priority according to the
agent priority specified by the governor. You cannot use the
governor to alter the priority of agents in user-defined service
superclasses and subclasses. Instead, you must use the agent
priority setting for the service superclass or subclass to control
applications that run in these service classes. You can, however, use
the governor to force connections in any service class.

Note: On AIX® 5.3, the instance owner must have the
CAP_NUMA_ATTACH capability to raise the relative priority of
agents working for the application. To grant this capability, logon
as root and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

On Solaris 10 or higher, the instance owner must have the
proc_priocntl privilege to be able to raise the relative priority of
agents working for the application. To grant this privilege, logon as
root and run the following command:
usermod -K defaultpri=basic,proc_priocntl db2user

In this example, proc_priocntl is added to the default privilege set
of user db2user.

Chapter 2. Performance monitoring tools and methodology 23

Moreover, when DB2 is running in a non-global zone of Solaris, the
proc_priocntl privilege must be added to the zone's limit privilege
set. To grant this privilege to the zone, logon as root and run the
following command:
global# zonecfg -z db2zone
zonecfg:db2zone> set limitpriv="default,proc_priocntl"

In this example, proc_priocntl is added to the limit privilege set of
zone db2zone.

On Solaris 9, there is no facility for DB2 to raise the relative
priority of agents. Upgrade to Solaris 10 or higher to use the
ACTION NICE clause of DB2 governor.

schedule [class]
Scheduling improves the priorities of agents working on
applications. The goal is to minimize the average response time
while maintaining fairness across all applications.

The governor chooses the top applications for scheduling on the
basis of the following criteria:
v The application holding the greatest number of locks (an attempt

to reduce the number of lock waits)
v The oldest application
v The application with the shortest estimated remaining run time

(an attempt to allow as many short-lived statements as possible
to complete during the interval)

The top three applications in each criterion are given higher
priorities than all other applications. That is, the top application in
each criterion group is given the highest priority, the next highest
application is given the second highest priority, and the
third-highest application is given the third highest priority. If a
single application is ranked in the top three for more than one
criterion, it is given the appropriate priority for the criterion in
which it ranked highest, and the next highest application is given
the next highest priority for the other criteria. For example, if
application A holds the most locks but has the third shortest
estimated remaining run time, it is given the highest priority for
the first criterion. The fourth ranked application with the shortest
estimated remaining run time is given the third highest priority for
that criterion.

The applications that are selected by this governor rule are divided
up into three classes. For each class, the governor chooses nine
applications, which are the top three applications from each class,
based on the criteria described above. If you specify the class
option, all applications that are selected by this rule are considered
to be a single class, and nine applications are chosen and given
higher priorities as described above.

If an application is selected in more than one governor rule, it is
governed by the last rule in which is it selected.

Note: If you used the sqlmon API to deactivate the statement
switch, this will affect the ability of the governor to govern
applications based on the statement elapsed time. The governor
uses the monitor to collect information about the system. If you

24 Troubleshooting and Tuning Database Performance

turn off the switches in the database manager configuration file,
they are turned off for the entire instance, and the governor no
longer receives this information.
The schedule action can:
v Ensure that applications in different groups get time, without all

applications splitting time evenly. For example, if 14 applications
(three short, five medium, and six long) are running at the same
time, they might all have poor response times because they are
splitting the CPU. The database administrator can set up two
groups, medium-length applications and long-length
applications. Using priorities, the governor permits all the short
applications to run, and ensures that at most three medium and
three long applications run simultaneously. To achieve this, the
governor configuration file contains one rule for medium-length
applications, and another rule for long applications.
The following example shows a portion of a governor
configuration file that illustrates this point:
desc "Group together medium applications in 1 schedule class."
applname medq1, medq2, medq3, medq4, medq5
setlimit cpu -1
action schedule class;

desc "Group together long applications in 1 schedule class."
applname longq1, longq2, longq3, longq4, longq5, longq6
setlimit cpu -1
action schedule class;

v Ensure that each of several user groups (for example,
organizational departments) gets equal prioritization. If one
group is running a large number of applications, the
administrator can ensure that other groups are still able to obtain
reasonable response times for their applications. For example, in
a case involving three departments (Finance, Inventory, and
Planning), all the Finance users could be put into one group, all
the Inventory users could be put into a second group, and all
the Planning users could be put into a third group. The
processing power would be split more or less evenly among the
three departments.
The following example shows a portion of a governor
configuration file that illustrates this point:
desc "Group together Finance department users."
authid tom, dick, harry, mo, larry, curly
setlimit cpu -1
action schedule class;

desc "Group together Inventory department users."
authid pat, chris, jack, jill
setlimit cpu -1
action schedule class;

desc "Group together Planning department users."
authid tara, dianne, henrietta, maureen, linda, candy
setlimit cpu -1
action schedule class;

v Let the governor schedule all applications.
If the class option is not specified, the governor creates its own
classes based on how many active applications fall under the
schedule action, and puts applications into different classes
based on the query compiler's cost estimate for the query the

Chapter 2. Performance monitoring tools and methodology 25

application is running. The administrator can choose to have all
applications scheduled by not qualifying which applications are
chosen; that is, by not specifying applname, authid, or setlimit
clauses.

Governor log files
Whenever a governor daemon performs an action, it writes a record to its log file.

Actions include the following:
v Starting or stopping the governor
v Reading the governor configuration file
v Changing an application's priority
v Forcing an application
v Encountering an error or warning

Each governor daemon has a separate log file, which prevents file-locking
bottlenecks that might result when many governor daemons try to write to the
same file simultaneously. To query the governor log files, use the db2govlg
command.

The log files are stored in the log subdirectory of the sqllib directory, except on
Windows operating systems, where the log subdirectory is located under the
Common Application Data directory that Windows operating systems use to host
application log files. You provide the base name for the log file when you start the
governor with the db2gov command. Ensure that the log file name contains the
database name to distinguish log files on each database partition that is governed.
To ensure that the file name is unique for each governor in a partitioned database
environment, the number of the database partition on which the governor daemon
runs is automatically appended to the log file name.

Log file record format

Each record in the log file has the following format:
Date Time DBPartitionNum RecType Message

The format of the Date and Time fields is yyyy-mm-dd-hh.mm.ss. You can merge the
log files for each database partition by sorting on this field. The DBPartitionNum
field contains the number of the database partition on which the governor is
running.

The RecType field contains different values, depending on the type of record being
written to the log. The values that can be recorded are:
v ACCOUNT: the application accounting statistics
v ERROR: an error occurred
v FORCE: an application was forced
v NICE: the priority of an application was changed
v READCFG: the governor read the configuration file
v SCHEDGRP: a change in agent priorities occurred
v START: the governor was started
v STOP: the governor was stopped
v WARNING: a warning occurred

26 Troubleshooting and Tuning Database Performance

Some of these values are described in more detail below.

ACCOUNT
An ACCOUNT record is written in the following situations:
v The value of the agent_usr_cpu_time or agent_sys_cpu_time monitor

element for an application has changed since the last ACCOUNT record
was written for this application.

v An application is no longer active.

The ACCOUNT record has the following format:
<auth_id> <appl_id> <applname> <connect_time> <agent_usr_cpu_delta>

<agent_sys_cpu_delta>

ERROR
An ERROR record is written when the governor daemon needs to shut
down.

FORCE
A FORCE record is written when the governor forces an application, based
on rules in the governor configuration file. The FORCE record has the
following format:
<appl_name> <auth_id> <appl_id> <coord_partition> <cfg_line>

<restriction_exceeded>

where:

coord_partition
Specifies the number of the application's coordinator database
partition.

cfg_line
Specifies the line number in the governor configuration file where
the rule causing the application to be forced is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:
v CPU: the total application USR CPU plus SYS CPU time, in

seconds
v Locks: the total number of locks held by the application
v Rowssel: the total number of rows selected by the application
v Rowsread: the total number of rows read by the application
v Idle: the amount of time during which the application was idle
v ET: the elapsed time since the application's current unit of work

started (the uowtime setlimit was exceeded)

NICE A NICE record is written when the governor changes the priority of an
application, based on rules in the governor configuration file. The NICE
record has the following format:
<appl_name> <auth_id> <appl_id> <nice_value> <cfg_line>

<restriction_exceeded>

where:

nice_value
Specifies the increment or decrement that will be made to the
priority value for the application's agent process.

Chapter 2. Performance monitoring tools and methodology 27

cfg_line
Specifies the line number in the governor configuration file where
the rule causing the application's priority to be changed is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:
v CPU: the total application USR CPU plus SYS CPU time, in

seconds
v Locks: the total number of locks held by the application
v Rowssel: the total number of rows selected by the application
v Rowsread: the total number of rows read by the application
v Idle: the amount of time during which the application was idle
v ET: the elapsed time since the application's current unit of work

started (the uowtime setlimit was exceeded)

SCHEDGRP
A SCHEDGRP record is written when an application is added to a
scheduling group or an application is moved from one scheduling group to
another. The SCHEDGRP record has the following format:
<appl_name> <auth_id> <appl_id> <cfg_line> <restriction_exceeded>

where:

cfg_line
Specifies the line number in the governor configuration file where
the rule causing the application to be scheduled is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:
v CPU: the total application USR CPU plus SYS CPU time, in

seconds
v Locks: the total number of locks held by the application
v Rowssel: the total number of rows selected by the application
v Rowsread: the total number of rows read by the application
v Idle: the amount of time during which the application was idle
v ET: the elapsed time since the application's current unit of work

started (the uowtime setlimit was exceeded)

START
A START record is written when the governor starts. The START record
has the following format:
Database = <database_name>

STOP A STOP record is written when the governor stops. It has the following
format:
Database = <database_name>

WARNING
A WARNING record is written in the following situations:
v The sqlefrce API was called to force an application, but it returned a

positive SQLCODE.
v A snapshot call returned a positive SQLCODE that was not 1611

(SQL1611W).

28 Troubleshooting and Tuning Database Performance

v A snapshot call returned a negative SQLCODE that was not -1224
(SQL1224N) or -1032 (SQL1032N). These return codes occur when a
previously active instance has been stopped.

v In a UNIX-based environment, an attempt to install a signal handler has
failed.

Because standard values are written, you can query the log files for different types
of actions. The Message field provides other nonstandard information that depends
on the type of record. For example, a FORCE or NICE record includes application
information in the Message field, whereas an ERROR record includes an error
message.

A governor log file might look like the following example:
2007-12-11-14.54.52 0 START Database = TQTEST
2007-12-11-14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg
2007-12-11-14.54.53 0 ERROR SQLMON Error: SQLCode = -1032
2007-12-11-14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

Stopping the governor
The governor utility monitors applications that are connected to a database, and
changes the behavior of those applications according to rules that you specify in a
governor configuration file for that database.

Important: With the new workload management features introduced in DB2
Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and might
be removed in a future release. For more information, see the “DB2 Governor and
Query Patroller have been deprecated” topic in the What's New for DB2 Version 9.7
book.

To stop the governor, you must have sysadm or sysctrl authorization.

To stop the governor, use the db2gov command, specifying the STOP option.

For example, to stop the governor on all database partitions of the SALES
database, enter the following command:
db2gov STOP sales

To stop the governor on only database partition 3, enter the following command:
db2gov START sales nodenum 3

Chapter 2. Performance monitoring tools and methodology 29

30 Troubleshooting and Tuning Database Performance

Chapter 3. Factors affecting performance

System architecture

DB2 architecture and process overview
On the client side, local or remote applications are linked with the DB2 client
library. Local clients communicate using shared memory and semaphores; remote
clients use a protocol, such as named pipes (NPIPE) or TCP/IP. On the server side,
activity is controlled by engine dispatchable units (EDUs).

Figure 3 shows a general overview of the DB2 architecture and processes.

EDUs are shown as circles or groups of circles.

Figure 3. Client connections and database server components

© Copyright IBM Corp. 2006, 2010 31

EDUs are implemented as threads on all platforms. DB2 agents are the most
common type of EDU. These agents perform most of the SQL and XQuery
processing on behalf of applications. Prefetchers and page cleaners are other
common EDUs.

A set of subagents might be assigned to process client application requests.
Multiple subagents can be assigned if the machine on which the server resides has
multiple processors or is part of a partitioned database environment. For example,
in a symmetric multiprocessing (SMP) environment, multiple SMP subagents can
exploit multiple processors.

All agents and subagents are managed by a pooling algorithm that minimizes the
creation and destruction of EDUs.

Buffer pools are areas of database server memory where pages of user data, index
data, and catalog data are temporarily moved and can be modified. Buffer pools
are a key determinant of database performance, because data can be accessed
much faster from memory than from disk.

The configuration of buffer pools, as well as prefetcher and page cleaner EDUs,
controls how quickly data can be accessed by applications.
v Prefetchers retrieve data from disk and move it into a buffer pool before

applications need the data. For example, applications that need to scan through
large volumes of data would have to wait for data to be moved from disk into a
buffer pool if there were no data prefetchers. Agents of the application send
asynchronous read-ahead requests to a common prefetch queue. As prefetchers
become available, they implement those requests by using big-block or
scatter-read input operations to bring the requested pages from disk into the
buffer pool. If you have multiple disks for data storage, the data can be striped
across those disks. Striping enables the prefetchers to use multiple disks to
retrieve data simultaneously.

v Page cleaners move data from a buffer pool back to disk. Page cleaners are
background EDUs that are independent of the application agents. They look for
pages that have been modified, and write those changed pages out to disk. Page
cleaners ensure that there is room in the buffer pool for pages that are being
retrieved by prefetchers.

Without the independent prefetchers and page cleaner EDUs, the application
agents would have to do all of the reading and writing of data between a buffer
pool and disk storage.

The DB2 process model
Knowledge of the DB2 process model will help you to understand how the
database manager and its associated components interact, and this can help you to
troubleshoot problems that might arise.

The process model that is used by all DB2 database servers facilitates
communication between database servers and clients. It also ensures that database
applications are isolated from resources, such as database control blocks and
critical database files.

The DB2 database server must perform many different tasks, such as processing
database application requests or ensuring that log records are written out to disk.
Each task is typically performed by a separate engine dispatchable unit (EDU).

32 Troubleshooting and Tuning Database Performance

There are many advantages to using a multithreaded architecture for the DB2
database server. A new thread requires less memory and fewer operating system
resources than a process, because some operating system resources can be shared
among all threads within the same process. Moreover, on some platforms, the
context switch time for threads is less than that for processes, which can improve
performance. Using a threaded model on all platforms makes the DB2 database
server easier to configure, because it is simpler to allocate more EDUs when
needed, and it is possible to dynamically allocate memory that must be shared by
multiple EDUs.

For each database being accessed, separate EDUs are started to deal with various
database tasks such as prefetching, communication, and logging. Database agents
are a special class of EDU that are created to handle application requests for a
database.

In general, you can rely on the DB2 database server to manage the set of EDUs.
However, there are DB2 tools that look at the EDUs. For example, you can use the
db2pd command with the -edus option to list all EDU threads that are active.

Each client application connection has a single coordinator agent that operates on a
database. A coordinator agent works on behalf of an application, and communicates
to other agents using private memory, interprocess communication (IPC), or remote
communication protocols, as needed.

The DB2 architecture provides a firewall so that applications run in a different
address space than the DB2 database server (Figure 4 on page 34). The firewall
protects the database and the database manager from applications, stored
procedures, and user-defined functions (UDFs). The firewall maintains the integrity
of the data in the databases, because it prevents application programming errors
from overwriting internal buffers or database manager files. The firewall also
improves reliability, because application errors cannot crash the database manager.

Chapter 3. Factors affecting performance 33

Client programs

Client programs can be remote or local, running on the same machine as the
database server. Client programs make first contact with a database through a
communication listener.

Listeners

Communication listeners start when the DB2 database server starts. There is a
listener for each configured communications protocol, and an interprocess
communications (IPC) listener (db2ipccm) for local client programs. Listeners
include:
v db2ipccm, for local client connections
v db2tcpcm, for TCP/IP connections
v db2tcpdm, for TCP/IP discovery tool requests

Agents

All connection requests from local or remote client programs (applications) are
allocated a corresponding coordinator agent (db2agent). When the coordinator
agent is created, it performs all database requests on behalf of the application.

In partitioned database environments, or systems on which intraquery parallelism
has been enabled, the coordinator agent distributes database requests to subagents
(db2agntp and db2agnts, respectively). Subagents that are associated with an
application but that are currently idle are named db2agnta.

db2pfchr

db2pclnr

db2loggr

db2loggw

db2logts

db2dlock

db2fmp

db2vend

db2ipccm

db2sysc

Remote client
program

Local client
program

Per databasePer connectionPer instance

db2agent

db2agent

db2agntp

db2agntp

db2agntp

db2agntp

and p
Other threads

rocesses

Agent pool

Firewall

db2tcpcm

Figure 4. Process model for DB2 database systems

34 Troubleshooting and Tuning Database Performance

A coordinator agent might be:
v Connected to the database with an alias; for example, db2agent (DATA1) is

connected to the database alias DATA1.
v Attached to an instance; for example, db2agent (user1) is attached to the instance

user1.

The DB2 database server will instantiate other types of agents, such as
independent coordinator agents or subcoordinator agents, to execute specific
operations. For example, the independent coordinator agent db2agnti is used to
run event monitors, and the subcoordinator agent db2agnsc is used to parallelize
database restart operations following an abnormal shutdown.

A gateway agent (db2agentg) is an agent associated to a remote database. It
provides indirect connectivity that allows clients to access the host database.

Idle agents reside in an agent pool. These agents are available for requests from
coordinator agents operating on behalf of client programs, or from subagents
operating on behalf of existing coordinator agents. Having an appropriately-sized
idle agent pool can improve performance when there are significant application
workloads. In this case, idle agents can be used as soon as they are required, and
there is no need to allocate a completely new agent for each application
connection, which involves creating a thread and allocating and initializing
memory and other resources. The DB2 database server automatically manages the
size of the idle agent pool.

A pooled agent can be associated to a remote database or a local database. An
agent pooled on a remote database is referred to as a pooled gateway agent
(db2agntgp). An agent pooled on a local database is referred to as a pooled
database agent (db2agentdp).

db2fmp

The fenced mode process is responsible for executing fenced stored procedures and
user-defined functions outside of the firewall. The db2fmp process is always a
separate process, but might be multithreaded, depending on the types of routines
that it executes.

db2vend

This is a process to execute vendor code on behalf of an EDU; for example, to
execute a user exit program for log archiving (UNIX only).

Database EDUs

The following list includes some of the important EDUs that are used by each
database:
v db2dlock, for deadlock detection. In a partitioned database environment, an

additional thread (db2glock) is used to coordinate the information that is
collected by the db2dlock EDU on each partition; db2glock runs only on the
catalog partition.

v db2fw, the event monitor fast writer; which is used for high volume, parallel
writing of event monitor data to tables, files, or pipes

v db2hadrp, the high availability disaster recovery (HADR) primary server thread
v db2hadrs, the HADR standby server thread

Chapter 3. Factors affecting performance 35

v db2lfr, for log file readers that process individual log files
v db2loggr, for manipulating log files to handle transaction processing and

recovery
v db2loggw, for writing log records to the log files
v db2logmgr, for the log manager. Manages log files for a recoverable database.
v db2logts, for tracking which table spaces have log records in which log files.

This information is recorded in the DB2TSCHG.HIS file in the database directory.
v db2lused, for updating object usage
v db2pfchr, for buffer pool prefetchers
v db2pclnr, for buffer pool page cleaners
v db2redom, for the redo master. During recovery, it processes redo log records

and assigns log records to redo workers for processing.
v db2redow, for the redo workers. During recovery, it processes redo log records at

the request of the redo master.
v db2shred, for processing individual log records within log pages
v db2stmm, for the self-tuning memory management feature
v db2taskd, for the distribution of background database tasks. These tasks are

executed by threads called db2taskp.
v db2wlmd, for automatic collection of workload management statistics
v Event monitor threads are identified as follows:

– db2evm%1%2 (%3)
where %1 can be:
- g - global file event monitor
- gp - global piped event monitor
- l - local file event monitor
- lp - local piped event monitor
- t - table event monitor

and %2 can be:
- i - coordinator
- p - not coordinator

and %3 is the event monitor name
v Backup and restore threads are identified as follows:

– db2bm.%1.%2 (backup and restore buffer manipulator) and db2med.%1.%2
(backup and restore media controller), where:
- %1 is the EDU ID of the agent that controls the backup or restore session
- %2 is a sequential value that is used to distinguish among (possibly many)

threads belonging to a particular backup or restore session

For example: db2bm.13579.2 identifies the second db2bm thread that is
controlled by the db2agent thread with EDU ID 13579.

Database server threads and processes

The system controller (db2sysc on UNIX and db2syscs.exe on Windows operating
systems) must exist if the database server is to function. The following threads and
processes carry out a variety of tasks:

36 Troubleshooting and Tuning Database Performance

v db2acd, an autonomic computing daemon that hosts the health monitor,
automatic maintenance utilities, and the administrative task scheduler. This
process was formerly known as db2hmon.

v db2aiothr, manages asynchronous I/O requests for a database partition (UNIX
only)

v db2alarm, notifies EDUs when their requested timer has expired (UNIX only)
v db2cart, for archiving log files (when the userexit database configuration

parameter is enabled)
v db2disp, the client connection concentrator dispatcher
v db2fcms, the fast communications manager sender daemon
v db2fcmr, the fast communications manager receiver daemon
v db2fmd, the fault monitor daemon
v db2fmtlg, for formatting log files (when the logretain database configuration

parameter is enabled and the userexit database configuration parameter is
disabled)

v db2licc, manages installed DB2 licenses
v db2panic, the panic agent, which handles urgent requests after agent limits have

been reached at a particular database partition (used only in a partitioned
database environment)

v db2pdbc, the parallel system controller, which handles parallel requests from
remote database partitions (used only in a partitioned database environment)

v db2resync, the resync agent that scans the global resync list
v db2sysc, the main system controller EDU; it handles critical DB2 server events
v db2thcln, recycles resources when an EDU terminates (UNIX only)
v db2wdog, the watchdog on UNIX and Linux operating systems that handles

abnormal terminations

Database agents
When an application accesses a database, several processes or threads begin to
perform the various application tasks. These tasks include logging, communication,
and prefetching. Database agents are threads within the database manager that are
used to service application requests. In Version 9.5, agents are run as threads on all
platforms.

The maximum number of application connections is controlled by the
max_connections database manager configuration parameter. The work of each
application connection is coordinated by a single worker agent. A worker agent
carries out application requests but has no permanent attachment to any particular
application. Coordinator agents exhibit the longest association with an application,
because they remain attached to it until the application disconnects. The only
exception to this rule occurs when the engine concentrator is enabled, in which
case a coordinator agent can terminate that association at transaction boundaries
(COMMIT or ROLLBACK).

There are three types of worker agents:
v Idle agents

This is the simplest form of worker agent. It does not have an outbound
connection, and it does not have a local database connection or an instance
attachment.

v Active coordinator agents

Chapter 3. Factors affecting performance 37

Each database connection from a client application has a single active agent that
coordinates its work on the database. After the coordinator agent is created, it
performs all database requests on behalf of its application, and communicates to
other agents using interprocess communication (IPC) or remote communication
protocols. Each agent operates with its own private memory and shares database
manager and database global resources, such as the buffer pool, with other
agents. When a transaction completes, the active coordinator agent might
become an inactive agent. When a client disconnects from a database or detaches
from an instance, its coordinator agent will be:
– An active coordinator agent if other connections are waiting
– Freed and marked as idle if no connections are waiting, and the maximum

number of pool agents is being automatically managed or has not been
reached

– Terminated and its storage freed if no connections are waiting, and the
maximum number of pool agents has been reached

v Subagents
The coordinator agent distributes database requests to subagents, and these
subagents perform the requests for the application. After the coordinator agent is
created, it handles all database requests on behalf of its application by
coordinating the subagents that perform requests against the database. In DB2
Version 9.5, subagents can also exist in nonpartitioned environments and in
environments where intraquery parallelism is not enabled.

Agents that are not performing work for any application and that are waiting to be
assigned are considered to be idle agents and reside in an agent pool. These agents
are available for requests from coordinator agents operating on behalf of client
programs, or for subagents operating on behalf of existing coordinator agents. The
number of available agents depends on the value of the num_poolagents database
manager configuration parameter.

If no idle agents exist when an agent is required, a new agent is created
dynamically. Because creating a new agent requires a certain amount of overhead,
CONNECT and ATTACH performance is better if an idle agent can be activated
for a client.

When a subagent is performing work for an application, it is associated with that
application. After it completes the assigned work, it can be placed in the agent
pool, but it remains associated with the original application. When the application
requests additional work, the database manager first checks the idle pool for
associated agents before it creates a new agent.

Database agent management
Most applications establish a one-to-one relationship between the number of
connected applications and the number of application requests that can be
processed by the database server. Your environment, however, might require a
many-to-one relationship between the number of connected applications and the
number of application requests that can be processed.

Two database manager configuration parameters control these factors separately:
v The max_connections parameter specifies the maximum number of connected

applications
v The max_coordagents parameter specifies the maximum number of application

requests that can be processed concurrently

38 Troubleshooting and Tuning Database Performance

The connection concentrator is enabled when the value of max_connections is
greater than the value of max_coordagents. Because each active coordinating agent
requires global database resource overhead, the greater the number of these agents,
the greater the chance that the upper limits of available global resources will be
reached. To prevent this from occurring, set the value of max_connections to be
higher than the value of max_coordagents, or set both parameters to
AUTOMATIC.

There are two specific scenarios in which setting these parameters to AUTOMATIC
is a good idea:
v If you are confident that your system can handle all of the connections that

might be needed, but you want to limit the amount of global resources that are
used (by limiting the number of coordinating agents), set max_connections to
AUTOMATIC. When max_connections is greater than max_coordagents, the
connection concentrator is enabled.

v If you do not want to limit the maximum number of connections or coordinating
agents, but you know that your system requires or would benefit from a
many-to-one relationship between the number of connected applications and the
number of application requests that are processed, set both parameters to
AUTOMATIC. When both parameters are set to AUTOMATIC, the database
manager uses the values that you specify as an ideal ratio of connections to
coordinating agents. Note that both of these parameters can be configured with
a starting value and an AUTOMATIC setting. For example, the following
command associates both a value of 200 and AUTOMATIC with the
max_coordagents parameter:update dbm config using max_coordagents 200
automatic.

Example

Consider the following scenario:
v The max_connections parameter is set to AUTOMATIC and has a current value

of 300
v The max_coordagents parameter is set to AUTOMATIC and has a current value

of 100

The ratio of max_connections to max_coordagents is 300:100. The database
manager creates new coordinating agents as connections come in, and connection
concentration is applied only when needed. These settings result in the following
actions:
v Connections 1 to 100 create new coordinating agents
v Connections 101 to 300 do not create new coordinating agents; they share the

100 agents that have been created already
v Connections 301 to 400 create new coordinating agents
v Connections 401 to 600 do not create new coordinating agents; they share the

200 agents that have been created already
v and so on...

In this example, it is assumed that the connected applications are driving enough
work to warrant creation of new coordinating agents at each step. After some
period of time, if the connected applications are no longer driving sufficient
amounts of work, coordinating agents will become inactive and might be
terminated.

Chapter 3. Factors affecting performance 39

If the number of connections is reduced, but the amount of work being driven by
the remaining connections is high, the number of coordinating agents might not be
reduced right away. The max_connections and max_coordagents parameters do
not directly affect agent pooling or agent termination. Normal agent termination
rules still apply, meaning that the connections to coordinating agents ratio might
not correspond exactly to the values that you specified. Agents might return to the
agent pool to be reused before they are terminated.

If finer granularity of control is needed, specify a simpler ratio. For example, the
ratio of 300:100 from the previous example can be expressed as 3:1. If
max_connections is set to 3 (AUTOMATIC) and max_coordagents is set to 1
(AUTOMATIC), one coordinating agent can be created for every three connections.

Client-server processing model
Both local and remote application processes can work with the same database. A
remote application is one that initiates a database action from a machine that is
remote from the machine on which the database server resides. Local applications
are directly attached to the database at the server machine.

How client connections are managed depends on whether the connection
concentrator is on or off. The connection concentrator is on whenever the value of
the max_connections database manager configuration parameter is larger than the
value of the max_coordagents configuration parameter.
v If the connection concentrator is off, each client application is assigned a unique

engine dispatchable unit (EDU) called a coordinator agent that coordinates the
processing for that application and communicates with it.

v If the connection concentrator is on, each coordinator agent can manage many
client connections, one at a time, and might coordinate the other worker agents
to do this work. For internet applications with many relatively transient
connections, or applications with many relatively small transactions, the
connection concentrator improves performance by allowing many more client
applications to be connected concurrently. It also reduces system resource use for
each connection.

In Figure 5 on page 41, each circle in the DB2 server represents an EDU that is
implemented using operating system threads.

40 Troubleshooting and Tuning Database Performance

v At A1, a local client establishes communications through db2ipccm.
v At A2, db2ipccm works with a db2agent EDU, which becomes the coordinator

agent for application requests from the local client.
v At A3, the coordinator agent contacts the client application to establish shared

memory communications between the client application and the coordinator.
v At A4, the application at the local client connects to the database.
v At B1, a remote client establishes communications through db2tcpcm. If another

communications protocol was chosen, the appropriate communications manager
is used.

v At B2, db2tcpcm works with a db2agent EDU, which becomes the coordinator
agent for the application and passes the connection to this agent.

v At B4, the coordinator agent contacts the remote client application.
v At B5, the remote client application connects to the database.

Note also that:

A1

Application A

Local client

Application A

EDUs per connectionEDUs per instance

db2agntp

db2agntp

Coordinator
agent

Application B

Active subagents

db2agntp

Idle subagents

db2agntp

Coordinator
agent

db2agent

logical
agents

db2tcpcm

A2

shared memory
and semaphores

Application B

Remote client

B1
B2

db2ipccm

A3

A4

B3

B4

B5

Unassociated
idle agents

db2agent

Server machine

db2agent

Figure 5. Client-server processing model overview

Chapter 3. Factors affecting performance 41

v Worker agents carry out application requests. There are four types of worker
agents: active coordinator agents, active subagents, associated subagents, and
idle agents.

v Each client connection is linked to an active coordinator agent.
v In a partitioned database environment, or an environment in which

intra-partition parallelism is enabled, the coordinator agents distribute database
requests to subagents (db2agntp).

v There is an agent pool (db2agent) where idle agents wait for new work.
v Other EDUs manage client connections, logs, two-phase commit operations,

backup and restore operations, and other tasks.

Figure 6 shows additional EDUs that are part of the server machine environment.
Each active database has its own shared pool of prefetchers (db2pfchr) and page
cleaners (db2pclnr), and its own logger (db2loggr) and deadlock detector
(db2dlock).

Fenced user-defined functions (UDFs) and stored procedures, which are not shown
in the figure, are managed to minimize costs that are associated with their creation
and destruction. The default value of the keepfenced database manager
configuration parameter is YES, which keeps the stored procedure process
available for reuse at the next procedure call.

Figure 6. EDUs in the database server

42 Troubleshooting and Tuning Database Performance

Note: Unfenced UDFs and stored procedures run directly in an agent's address
space for better performance. However, because they have unrestricted access to
the agent's address space, they must be rigorously tested before being used.

Figure 7 shows the similarities and differences between the single database
partition processing model and the multiple database partition processing model.

In a multiple database partition environment, the database partition on which the
CREATE DATABASE command was issued is called the catalog database partition. It
is on this database partition that the system catalog tables are stored. The system
catalog is a repository of all of the information about objects in the database.

As shown in Figure 7, because Application A creates the PROD database on
Node0000, the catalog for the PROD database is also created on this database
partition. Similarly, because Application B creates the TEST database on Node0001,
the catalog for the TEST database is created on this database partition. It is a good
idea to create your databases on different database partitions to balance the extra
activity that is associated with the catalog for each database across the database
partitions in your environment.

DB2 create database TEST
DB2 connect to TEST
DB2 load . . .
DB2 select . . .

App BDB2 create database PROD
2 connect to PROD
2 load . . .
2 select . . .

DB
DB
DB

db2pdbc db2pdbc

db2glock db2glock

db2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

App A

Catalog database partition for PROD Catalog database partition for TEST

Figure 7. Process model for multiple database partitions

Chapter 3. Factors affecting performance 43

There are additional EDUs (db2pdbc and db2fcmd) that are associated with the
instance, and these are found on each database partition in a multiple database
partition environment. These EDUs are needed to coordinate requests across
database partitions and to enable the fast communication manager (FCM).

There is an additional EDU (db2glock) that is associated with the catalog database
partition. This EDU controls global deadlocks across the database partitions on
which the active database is located.

Each connect request from an application is represented by a connection that is
associated with a coordinator agent. The coordinator agent is the agent that
communicates with the application, receiving requests and sending replies. It can
satisfy a request itself or coordinate multiple subagents to work on the request.
The database partition on which the coordinator agent resides is called the
coordinator database partition of that application.

Parts of the database requests from an application are sent by the coordinator
database partition to subagents at the other database partitions. All of the results
are consolidated at the coordinator database partition before being sent back to the
application.

Any number of database partitions can be configured to run on the same machine.
This is known as a multiple logical partition configuration. Such a configuration is
very useful on large symmetric multiprocessor (SMP) machines with very large
main memory. In this environment, communications between database partitions
can be optimized to use shared memory and semaphores.

Connection-concentrator improvements for client connections
The connection concentrator improves the performance of applications that have
frequent but relatively transient connections by enabling many concurrent client
connections to be processed efficiently. It also reduces memory use during each
connection and decreases the number of context switches.

The connection concentrator is enabled when the value of the max_connections
database manager configuration parameter is greater than the value of the
max_coordagents configuration parameter.

In an environment that requires many simultaneous user connections, you can
enable the connection concentrator for more efficient use of system resources. This
feature incorporates advantages that were formerly found only in DB2 Connect
connection pooling. After the first connection, the connection concentrator reduces
the time that is required to connect to a host. When disconnection from a host is
requested, the inbound connection is dropped, but the outbound connection to the
host is kept within a pool. When a new connection request is received, the
database manager attempts to reuse an existing outbound connection from the
pool.

For best performance of applications that use connection pooling or the connection
concentrator, tune the parameters that control the size of the block of data that is
cached. For more information, see the DB2 Connect product documentation.

Examples
v Consider a single-partition database to which, on average, 1000 users are

connected simultaneously. At times, the number of connected users might be
higher. The number of concurrent transactions can be as high as 200, but it is
never higher than 250. Transactions are short.

44 Troubleshooting and Tuning Database Performance

For this workload, you could set the following database manager configuration
parameters:
– Set max_coordagents to 250 to support the maximum number of concurrent

transactions.
– Set max_connections to AUTOMATIC with a value of 1000 to ensure support

for any number of connections; in this example, any value greater than 250
will ensure that the connection concentrator is enabled.

– Leave num_poolagents at the default value, which should ensure that
database agents are available to service incoming client requests, and that
little overhead will result from the creation of new agents.

v Consider a single-partition database to which, on average, 1000 users are
connected simultaneously. At times, the number of connected users might reach
2000. An average of 500 users are expected to be executing work at any given
time. The number of concurrent transactions is approximately 250. Five hundred
coordinating agents would generally be too many; for 1000 connected users, 250
coordinating agents should suffice.
For this workload, you could update the database manager configuration as
follows:

update dbm cfg using max_connections 1000 automatic
update dbm cfg using max_coordagents 250 automatic

This means that as the number of connections beyond 1000 increases, additional
coordinating agents will be created as needed, with a maximum to be
determined by the total number of connections. As the workload increases, the
database manager attempts to maintain a relatively stable ratio of connections to
coordinating agents.

v Suppose that you do not want to enable the connection concentrator, but you do
want to limit the number of connected users. To limit the number of
simultaneously connected users to 250, for example, you could set the following
database manager configuration parameters:
– Set max_coordagents to 250.
– Set max_connections to 250.

v Suppose that you do not want to enable the connection concentrator, and you do
not want to limit the number of connected users. You could update the database
manager configuration as follows:

update dbm cfg using max_connections automatic
update dbm cfg using max_coordagents automatic

Agents in a partitioned database
In a partitioned database environment, or an environment in which intra-partition
parallelism has been enabled, each database partition has its own pool of agents
from which subagents are drawn.

Because of this pool, subagents do not have to be created and destroyed each time
one is needed or has finished its work. The subagents can remain as associated
agents in the pool and can be used by the database manager for new requests from
the application with which they are associated or from new applications.

The impact on both performance and memory consumption within the system is
strongly related to how your agent pool is tuned. The database manager
configuration parameter for agent pool size (num_poolagents) affects the total
number of agents and subagents that can be kept associated with applications on a
database partition. If the pool size is too small and the pool is full, a subagent

Chapter 3. Factors affecting performance 45

disassociates itself from the application it is working on and terminates. Because
subagents must be constantly created and reassociated with applications,
performance suffers.

By default, num_poolagents is set to AUTOMATIC with a value of 100, and the
database manager automatically manages the number of idle agents to pool.

If the value of num_poolagents is manually set too low, one application could fill
the pool with associated subagents. Then, when another application requires a new
subagent and has no subagents in its agent pool, it will recycle inactive subagents
from the agent pools of other applications. This behavior ensures that resources are
fully utilized.

If the value of num_poolagents is manually set too high, associated subagents
might sit unused in the pool for long periods of time, using database manager
resources that are not available for other tasks.

When the connection concentrator is enabled, the value of num_poolagents does
not necessarily reflect the exact number of agents that might be idle in the pool at
any one time. Agents might be needed temporarily to handle higher workload
activity.

In addition to database agents, other asynchronous database manager activities run
as their own process or thread, including:
v Database I/O servers or I/O prefetchers
v Database asynchronous page cleaners
v Database loggers
v Database deadlock detectors
v Communication and IPC listeners
v Table space container rebalancers

Configuring for good performance
Some types of DB2 deployment, such as the InfoSphere™ Balanced Warehouse®

(BW), or those within SAP systems, have configurations that are highly specified.

In the BW case, hardware factors, such as the number of CPUs, the ratio of
memory to CPU, the number and configuration of disks, and versions are
pre-specified, based on thorough testing to determine the optimal configuration. In
the SAP case, hardware configuration is not as precisely specified; however, there
are a great many sample configurations available. In addition, SAP best practice
provides recommended DB2 configuration settings. If you are using a DB2
deployment for a system that provides well-tested configuration guidelines, you
should generally take advantage of the guidelines in place of more general
rules-of-thumb.

Consider a proposed system for which you do not already have a detailed
hardware configuration. Your goal is to identify a few key configuration decisions
that get the system well on its way to good performance. This step typically occurs
before the system is up and running, so you might have limited knowledge of how
it will actually behave. In a way, you have to make a “best guess,” based on your
knowledge of what the system will be doing.

46 Troubleshooting and Tuning Database Performance

Hardware configuration

CPU capacity is one of the main independent variables in configuring a system for
performance. Because all other hardware configuration typically flows from it, it is
not easy to predict how much CPU capacity is required for a given workload. In
business intelligence (BI) environments, 200-300 GB of active raw data per
processor core is a reasonable estimate. For other environments, a sound approach
is to gauge the amount of CPU required, based on one or more existing DB2
systems. For example, if the new system needs to handle 50% more users, each
running SQL that is at least as complex as that on an existing system, it would be
reasonable to assume that 50% more CPU capacity is required. Likewise, other
factors that predict a change in CPU usage, such as different throughput
requirements or changes in the use of triggers or referential integrity, should be
taken into account as well.

After you have the best idea of CPU requirements (derived from available
information), other aspects of hardware configuration start to fall into place.
Although you must consider the required system disk capacity in gigabytes or
terabytes, the most important factors regarding performance are the capacity in
I/Os per second (IOPS), or in megabytes per second of data transfer. In practical
terms, this is determined by the number of individual disks involved.

Why is that the case? The evolution of CPUs over the past decade has seen
incredible increases in speed, whereas the evolution of disks has been more in
terms of their capacity and cost. There have been improvements in disk seek time
and transfer rate, but they haven't kept pace with CPU speeds. So to achieve the
aggregate performance needed with modern systems, using multiple disks is more
important than ever, especially for systems that will drive a significant amount of
random disk I/O. Often, the temptation is to use close to the minimum number of
disks that can contain the total amount of data in the system, but this generally
leads to very poor performance.

In the case of RAID storage, or for individually addressable drives, a rule-of-thumb
is to configure at least ten to twenty disks per processor core. For storage servers, a
similar number is recommended; however, in this case, a bit of extra caution is
warranted. Allocation of space on storage servers is often done more with an eye
to capacity rather than throughput. It is a very good idea to understand the
physical layout of database storage, to ensure that the inadvertent overlap of
logically separate storage does not occur. For example, a reasonable allocation for a
4-way system might be eight arrays of eight drives each. However, if all eight
arrays share the same eight underlying physical drives, the throughput of the
configuration would be drastically reduced, compared to eight arrays spread over
64 physical drives.

It is good practice to set aside some dedicated (unshared) disk for the DB2
transaction logs. This is because the I/O characteristics of the logs are very
different from DB2 containers, for example, and the competition between log I/O
and other types of I/O can result in a logging bottleneck, especially in systems
with a high degree of write activity.

In general, a RAID-1 pair of disks can provide enough logging throughput for up
to 400 reasonably write-intensive DB2 transactions per second. Greater throughput
rates, or high-volume logging (for example, during bulk inserts), requires greater
log throughput, which can be provided by additional disks in a RAID-10
configuration, connected to the system through a write-caching disk controller.

Chapter 3. Factors affecting performance 47

Because CPUs and disks effectively operate on different time scales – nanoseconds
versus microseconds – you need to decouple them to enable reasonable processing
performance. This is where memory comes into play. In a database system, the
main purpose of memory is to avoid I/O, and so up to a point, the more memory
a system has, the better it can perform. Fortunately, memory costs have dropped
significantly over the last several years, and systems with tens to hundreds of
gigabytes (GB) of RAM are not uncommon. In general, four to eight gigabytes per
processor core should be adequate for most applications.

AIX configuration

There are relatively few AIX parameters that need to be changed to achieve good
performance. For the purpose of these recommendations, assume an AIX level of
5.3 or later. Again, if there are specific settings already in place for your system (for
example, a BW or SAP configuration), those should take precedence over the
following general guidelines.
v The VMO parameter LRU_FILE_REPAGE should be set to 0. This parameter

controls whether AIX victimizes computational pages or file system cache pages.
In addition, minperm should be set to 3. These are both default values in AIX
6.1.

v The AIO parameter maxservers can be initially left at the default value of ten
per CPU. After the system is active, maxservers is tuned as follows:
1. Collect the output of the ps –elfk | grep aio command and determine if all

asynchronous I/O (AIO) kernel processes (aioservers) are consuming the
same amount of CPU time.

2. If they are, maxservers might be set too low. Increase maxservers by 10%,
and repeat step 1.

3. If some aioservers are using less CPU time than others, the system has at
least as many of them as it needs. If more than 10% of aioservers are using
less CPU, reduce maxservers by 10% and repeat step 1.

v The AIO parameter maxreqs should be set to MAX(NUM_IOCLEANERS x 256, 4096
). This parameter controls the maximum number of outstanding AIO requests.

v The hdisk parameter queue_depth should be based on the number of physical
disks in the array. For example, for IBM® disks, the default value for
queue_depth is 3, and the recommended value would be 3 x number-of-devices.
This parameter controls the number of queuable disk requests.

v The disk adapter parameter num_cmd_elems should be set to the sum of
queue_depth for all devices connected to the adapter. This parameter controls
the number of requests that can be queued to the adapter.

Solaris and HP-UX configuration

For DB2 running on Solaris or HP-UX, the db2osconf utility is available to check
and recommend kernel parameters based on the system size. The db2osconf utility
allows you to specify the kernel parameters based on memory and CPU, or with a
general scaling factor that compares the current system configuration to an
expected future configuration. A good approach is to use a scaling factor of 2 or
higher if running large systems, such as SAP applications. In general, db2osconf
gives you a good initial starting point to configure Solaris and HP-UX, but it does
not deliver the optimal value, because it cannot consider current and future
workloads.

48 Troubleshooting and Tuning Database Performance

Linux configuration

When a Linux system is used as a DB2 server, some of the Linux kernel
parameters might have to be changed. Because Linux distributions change, and
because this environment is highly flexible, only some of the most important
settings that need to be validated on the basis of the Linux implementation are
considered.

SHMMAX (maximum size of a shared memory segment) on a 64-bit system must
be set to a minimum of 1 GB – 1 073 741 824 bytes – whereas the parameter
SHMALL should be set to 90% of the available memory on the database server.
SHMALL is 8 GB by default. Other important Linux kernel configuration
parameters and their recommended values for DB2 are:
v kernel.sem (specifying four kernel semaphore settings – SEMMSL, SEMMNS,

SEMOPM, and SEMMNI): 250 256000 32 1024
v kernel.msgmni (number of message queue identifiers): 1024
v kernel.msgmax (maximum size of a message, in bytes): 65536
v kernel.msgmnb (default size of a message queue, in bytes): 65536

DB2 Database Partitioning Feature

The decision to use the DB2 Database Partitioning Feature (DPF) is not generally
made based purely on data volume, but more on the basis of the workload. As a
general guideline, most DPF deployments are in the area of data warehousing and
business intelligence. The DPF is highly recommended for large complex query
environments, because its shared-nothing architecture allows for outstanding
scalability. For smaller data marts (up to about 300 GB), which are unlikely to
grow rapidly, a DB2 Enterprise Server Edition (ESE) configuration is often a good
choice. However, large or fast-growing BI environments benefit greatly from the
DPF.

A typical partitioned database system usually has one processor core per data
partition. For example, a system with n processor cores would likely have the
catalog on partition 0, and have n additional data partitions. If the catalog partition
will be heavily used (for example, to hold single partition dimension tables), it
might be allocated a processor core as well. If the system will support very many
concurrent active users, two cores per partition might be required.

In terms of a general guide, you should plan on about 250 GB of active raw data
per partition.

The InfoSphere Balanced Warehouse documentation contains in-depth information
regarding partitioned database configuration best practices. This documentation
contains useful information for non-Balanced Warehouse deployments as well.

Choice of code page and collation

As well as affecting database behavior, choice of code page or code set and
collating sequence can have a strong impact on performance. The use of Unicode
has become very widespread because it allows you to represent a greater variety of
character strings in your database than has been the case with traditional
single-byte code pages. Unicode is the default for new databases in DB2 Version
9.5. However, because Unicode code sets use multiple bytes to represent some
individual characters, there can be increased disk and memory requirements. For
example, the UTF-8 code set, which is one of the most common Unicode code sets,

Chapter 3. Factors affecting performance 49

uses from one to four bytes per character. An average string expansion factor due
to migration from a single-byte code set to UTF-8 is very difficult to estimate
because it depends on how frequently multibyte characters are used. For typical
North American content, there is usually no expansion. For most western
European languages, the use of accented characters typically introduces an
expansion of around 10%.

On top of this, the use of Unicode can cause extra CPU consumption relative to
single-byte code pages. First, if expansion occurs, the longer strings require more
work to manipulate. Second, and more significantly, the algorithms used by the
more sophisticated Unicode collating sequences, such as UCA500R1_NO, can be
much more expensive than the typical SYSTEM collation used with single-byte
code pages. This increased expense is due to the complexity of sorting Unicode
strings in a culturally-correct way. Operations that are impacted include sorting,
string comparisons, LIKE processing, and index creation.

If Unicode is required to properly represent your data, choose the collating
sequence with care.
v If the database will contain data in multiple languages, and correct sort order of

that data is of paramount importance, use one of the culturally correct collations
(for example, UCA500R1_*). Depending on the data and the application, this
could have a performance overhead of 1.5 to 3 times more, relative to the
IDENTITY sequence.

v There are both normalized and non-normalized varieties of culturally-correct
collation. Normalized collations (for example, UCA500R1_NO) have additional
checks to handle malformed characters, whereas non-normalized collations (for
example, UCA500r1_NX) do not. Unless the handling of malformed characters is
an issue, use the non-normalized version, because there is a performance benefit
in avoiding the normalization code. That said, even non-normalized culturally
correct collations are very expensive.

v If a database is being moved from a single-byte environment to a Unicode
environment, but does not have rigorous requirements about hosting a variety of
languages (most deployments will be in this category), language aware collation
might be appropriate. Language aware collations (for example, SYSTEM_819_BE)
take advantage of the fact that many Unicode databases contain data in only one
language. They use the same lookup table-based collation algorithm as
single-byte collations such as SYSTEM_819, and so are very efficient. As a
general rule, if the collation behavior in the original single-byte database was
acceptable, then as long as the language content does not change significantly
following the move to Unicode, culturally aware collation should be considered.
This can provide very large performance benefits relative to culturally correct
collation.

Physical database design
v In general, file-based database managed storage (DMS) regular table spaces give

better performance than system managed storage (SMS) regular table spaces.
SMS is often used for temporary table spaces, especially when the temporary
tables are very small; however, the performance advantage of SMS in this case is
shrinking over time.

v In the past, DMS raw device table spaces had a fairly substantial performance
advantage over DMS file table spaces; however, with the introduction of direct
I/O (now defaulted through the NO FILE SYSTEM CACHING clause in the
CREATE TABLESPACE and the ALTER TABLESPACE statements), DMS file
table spaces provide virtually the same performance as DMS raw device table
spaces.

50 Troubleshooting and Tuning Database Performance

Initial DB2 configuration settings

The DB2 configuration advisor, also known as the AUTOCONFIGURE command,
takes basic system guidelines that you provide, and determines a good starting set
of DB2 configuration values. The AUTOCONFIGURE command can provide real
improvements over the default configuration settings, and is recommended as a
way to obtain initial configuration values. Some additional fine-tuning of the
recommendations generated by the AUTOCONFIGURE command is often
required, based on the characteristics of the system.

Here are some suggestions for using the AUTOCONFIGURE command:
v Even though, starting in DB2 Version 9.1, the AUTOCONFIGURE command is

run automatically at database creation time, it is still a good idea to run the
AUTOCONFIGURE command explicitly. This is because you then have the
ability to specify keyword/value pairs that help customize the results for your
system.

v Run (or rerun) the AUTOCONFIGURE command after the database is populated
with an appropriate amount of active data. This provides the tool with more
information about the nature of the database. The amount of data that you use
to populate the database is important, because it can affect such things as buffer
pool size calculations, for example. Too much or too little data makes these
calculations less accurate.

v Try different values for important AUTOCONFIGURE command keywords, such
as mem_percent, tpm, and num_stmts to get an idea of which, and to what
degree, configuration values are affected by these changes.

v If you are experimenting with different keywords and values, use the APPLY
NONE option. This gives you a chance to compare the recommendations with
the current settings.

v Specify values for all keywords, because the defaults might not suit your system.
For example, mem_percent defaults to 25%, which is too low for a dedicated
DB2 server; 85% is the recommended value in this case.

DB2 autonomics and automatic parameters

Recent releases of DB2 database products have significantly increased the number
of parameters that are either automatically set at instance or database startup time,
or that are dynamically tuned during operation. For most systems, automatic
settings provide better performance than all but the very carefully hand-tuned
systems. This is particularly due to the DB2 self-tuning memory manager (STMM),
which dynamically tunes total database memory allocation as well as four of the
main memory consumers in a DB2 system: the buffer pools, the lock list, the
package cache, and the sort heap.

Because these parameters apply on a partition-by-partition basis, using the STMM
in a partitioned database environment should be done with some caution. On
partitioned database systems, the STMM continuously measures memory
requirements on a single partition (automatically chosen by the DB2 system, but
that choice can be overridden), and ‘pushes out' heap size updates to all partitions
on which the STMM is enabled. Because the same values are used on all partitions,
the STMM works best in partitioned database environments where the amounts of
data, the memory requirements, and the general levels of activity are very uniform
across partitions. If a small number of partitions have skewed data volumes or
different memory requirements, the STMM should be disabled on those partitions,
and allowed to tune the more uniform ones. For example, the STMM should
generally be disabled on the catalog partition.

Chapter 3. Factors affecting performance 51

For partitioned database environments with skewed data distribution, where
continuous cross-cluster memory tuning is not advised, the STMM can be used
selectively and temporarily during a ‘tuning phase' to help determine good manual
heap settings:
v Enable the STMM on one ‘typical' partition. Other partitions continue to have

the STMM disabled.
v After memory settings have stabilized, disable the STMM and manually ‘harden'

the affected parameters at their tuned values.
v Deploy the tuned values on other database partitions with similar data volumes

and memory requirements (for example, partitions in the same partition group).
v Repeat the process if there are multiple disjointed sets of database partitions

containing similar volumes and types of data and performing similar roles in the
system.

The configuration advisor generally chooses to enable autonomic settings where
applicable. This includes automatic statistics updates from the RUNSTATS
command (very useful), but excludes automatic reorganization and automatic
backup. These can be very useful as well, but need to be configured according to
your environment and schedule for best results. Automatic statistics profiling
should remain disabled by default. It has quite high overhead and is intended to
be used temporarily under controlled conditions and with complex statements.

Explicit configuration settings

Some parameters do not have automatic settings, and are not set by the
configuration advisor. These need to be dealt with explicitly. Only parameters that
have performance implications are considered here.
v logpath or newlogpath determines the location of the transaction log. Even the

configuration advisor cannot decide for you where the logs should go. As
mentioned above, the most important point is that they should not share disk
devices with other DB2 objects, such as table spaces, or be allowed to remain in
the default location, which is under the database path. Ideally, transaction logs
should be placed on dedicated storage with sufficient throughput capacity to
ensure that a bottleneck will not be created.

v logbufsz determines the size of the transaction logger internal buffer, in 4-KB
pages. The default value of only eight pages is far too small for good
performance in a production environment. The configuration advisor always
increases it, but possibly not enough, depending on the input parameters. A
value of 256-1000 pages is a good general range, and represents only a very
small total amount of memory in the overall scheme of a database server.

v mincommit controls group commit, which causes a DB2 system to try to batch
together n committing transactions. With the current transaction logger design,
this is rarely the desired behavior. Leave mincommit at the default value of 1.

v buffpage determines the number of pages allocated to each buffer pool that is
defined with a size of -1. The best practice is to ignore buffpage, and either
explicitly set the size of buffer pools that have an entry in
SYSCAT.BUFFERPOOLS, or let the STMM tune buffer pool sizes automatically.

v diagpath determines the location of various useful DB2 diagnostic files. It
generally has little impact on performance, except possibly in a partitioned
database environment. The default location of diagpath on all partitions is
typically on a shared, NFS-mounted path. The best practice is to override
diagpath to a local, non-NFS directory for each partition. This prevents all
partitions from trying to update the same file with diagnostic messages. Instead,
these are kept local to each partition, and contention is greatly reduced.

52 Troubleshooting and Tuning Database Performance

v DB2_PARALLEL_IO is not a configuration parameter, but a DB2 registry
variable. It is very common for DB2 systems to use storage consisting of arrays
of disks, which are presented to the operating system as a single device, or to
use file systems that span multiple devices. The consequence is that by default, a
DB2 database system makes only one prefetch request at a time to a table space
container. This is done with the understanding that multiple requests to a single
device are serialized anyway. But if a container resides on an array of disks,
there is an opportunity to dispatch multiple prefetch requests to it
simultaneously, without serialization. This is where DB2_PARALLEL_IO comes
in. It tells the DB2 system that prefetch requests can be issued to a single
container in parallel. The simplest setting is DB2_PARALLEL_IO=* (meaning that all
containers reside on multiple – assumed in this case to be seven – disks), but
other settings also control the degree of parallelism and which table spaces are
affected. For example, if you know that your containers reside on a RAID-5
array of four disks, you might set DB2_PARALLEL_IO to *:3. Whether or not
particular values benefit performance also depends on the extent size, the RAID
segment size, and how many containers use the same set of disks.

Considerations for SAP and other ISV environments

If you are running a DB2 database server for an ISV application such as SAP, some
best practice guidelines that take into account the specific application might be
available. The most straightforward mechanism is the DB2 registry variable
DB2_WORKLOAD, which can be set to a value that enables aggregated registry
variables to be optimized for specific environments and workloads. Valid settings
for DB2_WORKLOAD include: 1C, CM, COGNOS_CS, FILENET_CM, MAXIMO,
MDM, SAP, TPM, WAS, WC, and WP .

Other recommendations and best practices might apply, such as the choice of a
code page or code set and collating sequence, because they must be set to a
predetermined value. Refer to the application vendor's documentation for details.

For many ISV applications, such as SAP Business One, the AUTOCONFIGURE
command can be successfully used to define the initial configuration. However, it
should not be used in SAP NetWeaver installations, because an initial set of DB2
configuration parameters is applied during SAP installation. In addition, SAP has a
powerful alternative best practices approach (SAP Notes) that describes the
preferred DB2 parameter settings; for example, SAP Note 1086130 - DB6: DB2 9.5
Standard Parameter Settings.

Pay special attention to SAP applications when using the DB2 DPF feature. SAP
uses DPF mainly in its SAP NetWeaver Business Intelligence (Business Warehouse)
product. The recommended layout has the DB2 system catalog, the dimension and
master tables, plus the SAP base tables on Partition 0. This leads to a different
workload on this partition compared to other DB2 DPF installations. Because the
SAP application server runs on this partition, up to eight processors might be
assigned to just this partition. As the SAP BW workload becomes more highly
parallelized, with many short queries running concurrently, the number of
partitions for SAP BI is typically smaller than for other applications. In other
words, more than one CPU per data partition is required.

Instance configuration
When you start a new DB2 instance, there are a number of steps that you can
follow to establish a basic configuration.

Chapter 3. Factors affecting performance 53

v You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters. To use the Configuration Advisor, specify the
AUTOCONFIGURE command for an existing database, or specify
AUTOCONFIGURE as an option on the CREATE DATABASE command. You
can display the recommended values or apply them by using the APPLY option
on the CREATE DATABASE command. The recommendations are based on
input that you provide and system information that the advisor gathers.

v You can use the Configuration Assistant to configure and maintain your
database objects, add new objects, bind applications, set database manager
configuration parameters, and import and export configuration information. To
open the Configuration Assistant, invoke the db2ca command. For instance
configuration, the Configuration Assistant helps you to set database manager
configuration parameters, set DB2 registry variables, configure another instance,
or reset the configuration.

v Consult the summary tables (see “Configuration parameters summary”) that list
and briefly describe each configuration parameter that is available to the
database manager or a database. These summary tables contain a column that
indicates whether tuning a particular parameter is likely to produce a high,
medium, low, or no performance change. Use these tables to find the parameters
that might help you to realize the largest performance improvements in your
environment.

v Use the ACTIVATE DATABASE command to activate a database and starts up
all necessary database services, so that the database is available for connection
and use by any application. In a partitioned database environment, this
command activates the database on all database partitions and avoids the
startup time that is required to initialize the database when the first application
connects.

Table space design

Disk-storage performance factors
Hardware characteristics, such as disk-storage configuration, can strongly influence
the performance of your system.

Performance can be affected by one or more of the following aspects of
disk-storage configuration:
v Division of storage

How well you divide a limited amount of storage between indexes and data and
among table spaces determines to a large degree how the system will perform in
different situations.

v Distribution of disk I/O
How well you balance the demand for disk I/O across several devices and
controllers can affect the speed with which the database manager is able to
retrieve data from disk.

v Disk subsystem core performance metrics
The number of disk operations per second, or the capacity in megabytes
transferred per second, has a very strong impact on the performance of the
overall system.

54 Troubleshooting and Tuning Database Performance

Table space impact on query optimization
Certain characteristics of your table spaces can affect the access plans that are
chosen by the query compiler.

These characteristics include:
v Container characteristics

Container characteristics can have a significant impact on the I/O cost that is
associated with query execution. When it selects an access plan, the query
optimizer considers these I/O costs, including any cost differences when
accessing data from different table spaces. Two columns in the
SYSCAT.TABLESPACES catalog view are used by the optimizer to help estimate
the I/O costs of accessing data from a table space:
– OVERHEAD provides an estimate of the time (in milliseconds) that is

required by the container before any data is read into memory. This overhead
activity includes the container's I/O controller overhead as well as the disk
latency time, which includes the disk seek time.
You can use the following formula to estimate the overhead cost:

OVERHEAD = average seek time in milliseconds
+ (0.5 * rotational latency)

where:
- 0.5 represents the average overhead of one half rotation
- Rotational latency (in milliseconds) is calculated for each full rotation, as

follows:
(1 / RPM) * 60 * 1000

where:
v You divide by rotations per minute to get minutes per rotation
v You multiply by 60 seconds per minute
v You multiply by 1000 milliseconds per second

For example, assume that a disk performs 7200 rotations per minute. Using
the rotational-latency formula:

(1 / 7200) * 60 * 1000 = 8.328 milliseconds

This value can be used to estimate the overhead as follows, assuming an
average seek time of 11 milliseconds:

OVERHEAD = 11 + (0.5 * 8.328)
= 15.164

– TRANSFERRATE provides an estimate of the time (in milliseconds) that is
required to read one page of data into memory.
If each table space container is a single physical disk, you can use the
following formula to estimate the transfer cost in milliseconds per page:

TRANSFERRATE = (1 / spec_rate) * 1000 / 1024000 * page_size

where:
- You divide by spec_rate, which represents the disk specification for the

transfer rate (in megabytes per second), to get seconds per megabyte
- You multiply by 1000 milliseconds per second
- You divide by 1 024 000 bytes per megabyte
- You multiply by the page size (in bytes); for example, 4096 bytes for a 4-KB

page

Chapter 3. Factors affecting performance 55

For example, suppose that the specification rate for a disk is 3 megabytes per
second. Then:

TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096
= 1.333248

or about 1.3 milliseconds per page.
If the table space containers are not single physical disks, but are arrays of
disks (such as RAID), you must take additional considerations into account
when estimating the TRANSFERRATE.
If the array is relatively small, you can multiply the spec_rate by the number
of disks, assuming that the bottleneck is at the disk level. However, if the
array is large, the bottleneck might not be at the disk level, but at one of the
other I/O subsystem components, such as disk controllers, I/O busses, or the
system bus. In this case, you cannot assume that the I/O throughput capacity
is the product of the spec_rate and the number of disks. Instead, you must
measure the actual I/O rate (in megabytes) during a sequential scan. For
example, a sequential scan resulting from select count(*) from big_table
could be several megabytes in size. In this case, divide the result by the
number of containers that make up the table space in which BIG_TABLE
resides. Use this result as a substitute for spec_rate in the formula given above.
For example, a measured sequential I/O rate of 100 megabytes while
scanning a table in a four-container table space would imply 25 megabytes
per container, or a TRANSFERRATE of (1 / 25) * 1000 / 1 024 000 * 4096 =
0.16 milliseconds per page.

Containers that are assigned to a table space might reside on different physical
disks. For best results, all physical disks that are used for a given table space
should have the same OVERHEAD and TRANSFERRATE characteristics. If these
characteristics are not the same, you should use average values when setting
OVERHEAD and TRANSFERRATE.
You can obtain media-specific values for these columns from hardware
specifications or through experimentation. These values can be specified on the
CREATE TABLESPACE and ALTER TABLESPACE statements.

v Prefetching
When considering the I/O cost of accessing data in a table space, the optimizer
also considers the potential impact that prefetching data and index pages from
disk can have on query performance. Prefetching can reduce the overhead that is
associated with reading data into the buffer pool.
The optimizer uses information from the PREFETCHSIZE and EXTENTSIZE
columns of the SYSCAT.TABLESPACES catalog view to estimate the amount of
prefetching that will occur.
– EXTENTSIZE can only be set when creating a table space. An extent size of 4

or 8 pages is usually sufficient.
– PREFETCHSIZE can be set when you create or alter a table space. The default

prefetch size is determined by the value of the dft_prefetch_sz database
configuration parameter. Review the recommendations for sizing this
parameter and make changes as needed, or set it to AUTOMATIC.

After making changes to your table spaces, consider executing the runstats utility
to collect the latest statistics about indexes and to ensure that the query optimizer
chooses the best possible data-access plans before rebinding your applications.

56 Troubleshooting and Tuning Database Performance

Database design

Tables

Table and index management for standard tables
In standard tables, data is logically organized as a list of data pages. These data
pages are logically grouped together based on the extent size of the table space.

For example, if the extent size is four, pages zero to three are part of the first
extent, pages four to seven are part of the second extent, and so on.

The number of records contained within each data page can vary, based on the size
of the data page and the size of the records. Most pages contain only user records.
However, a small number of pages include special internal records that are used
by the data server to manage the table. For example, in a standard table, there is a
free space control record (FSCR) on every 500th data page (Figure 8). These records
map the free space that is available for new records on each of the following 500
data pages (until the next FSCR).

Logically, index pages are organized as a B-tree that can efficiently locate table
records that have a specific key value. The number of entities on an index page is
not fixed, but depends on the size of the key. For tables in database managed space
(DMS) table spaces, record identifiers (RIDs) in the index pages use table

Logical indexview ofLogical
table view

Physical
table view

. . .

. . .

. . .

. . .

0 4020

4021

4022

4023

252

1

2

3

4

876500

... ...

Data page format
Page Header

3800 -1 3400

Record 2

Record 1

Legend

user records

reserved for system records

FSCR

A
C

K S

K

RID

K
RID

4023,2

C
RID

RID RID

RID

...

RID (record ID) = Page 4023, Slot 2

Figure 8. Logical table, record, and index structure for standard tables

Chapter 3. Factors affecting performance 57

space-relative page numbers, not object-relative page numbers. This enables an
index scan to directly access the data pages without requiring an extent map page
(EMP) for mapping.

Each data page has the same format. A page begins with a page header; this is
followed by a slot directory. Each entry in the slot directory corresponds to a
different record on the page. An entry in the slot directory represents the
byte-offset on the data page where a record begins. Entries of -1 correspond to
deleted records.

Record identifiers and pages

Record identifiers consist of a page number followed by a slot number (Figure 9).
Index records contain an additional field called the ridFlag. The ridFlag stores
information about the status of keys in the index, such as whether they have been
marked deleted. After the index is used to identify a RID, the RID is used to
identify the correct data page and slot number on that page. After a record is
assigned a RID, the RID does not change until the table is reorganized.

When a table page is reorganized, embedded free space that is left on the page
after a record is physically deleted is converted to usable free space.

The DB2 data server supports different page sizes. Use larger page sizes for
workloads that tend to access rows sequentially. For example, sequential access is
commonly used for decision support applications, or when temporary tables are
being used extensively. Use smaller page sizes for workloads that tend to access
rows randomly. For example, random access is often used in online transaction
processing (OLTP) environments.

Index management in standard tables

DB2 indexes use an optimized B-tree implementation that is based on an efficient
and high concurrency index management method using write-ahead logging. A
B-tree index is arranged as a balanced hierarchy of pages that minimizes access
time by realigning data keys as items are inserted or deleted.

Figure 9. Data page and record ID (RID) format

58 Troubleshooting and Tuning Database Performance

The optimized B-tree implementation has bidirectional pointers on the leaf pages
that allow a single index to support scans in either forward or reverse direction.
Index pages are usually split in half, except at the high-key page where a 90/10
split is used, meaning that the highest ten percent of index keys are placed on a
new page. This type of index page split is useful for workloads in which insert
operations are often completed with new high-key values.

Deleted index keys are removed from an index page only if there is an X lock on
the table. If keys cannot be removed immediately, they are marked deleted and
physically removed later.

If you enabled online index defragmentation by specifying a positive value for
MINPCTUSED when the index was created, index leaf pages can be merged
online. MINPCTUSED represents the minimum percentage of used space on an
index leaf page. If the amount of used space on an index page falls below this
value after a key is removed, the database manager attempts to merge the
remaining keys with those of a neighboring page. If there is sufficient room, the
merge is performed and an index leaf page is deleted. Because online
defragmentation occurs only when keys are removed from an index page, this does
not occur if keys are merely marked deleted, but have not been physically
removed from the page. Online index defragmentation can improve space reuse,
but if the MINPCTUSED value is too high, the time that is needed for a merge
increases, and a successful merge becomes less likely. The recommended value for
MINPCTUSED is fifty percent or less.

The INCLUDE clause of the CREATE INDEX statement lets you specify one or
more columns (beyond the key columns) for the index leaf pages. These include
columns, which are not involved in ordering operations against the index B-tree,
can increase the number of queries that are eligible for index-only access. However,
they can also increase index space requirements and, possibly, index maintenance
costs if the included columns are updated frequently. The maintenance cost of
updating include columns is less than the cost of updating key columns, but more
than the cost of updating columns that are not part of an index.

Table and index management for MDC tables
Table and index organization for multidimensional clustering (MDC) tables is
based on the same logical structures as standard table organization.

Like standard tables, MDC tables are organized into pages that contain rows of
data divided into columns. The rows on each page are identified by record IDs
(RIDs). However, the pages for MDC tables are grouped into extent-sized blocks.
For example, Figure 10 on page 60, shows a table with an extent size of four. The
first four pages, numbered 0 through 3, represent the first block in the table. The
next four pages, numbered 4 through 7, represent the second block in the table.

Chapter 3. Factors affecting performance 59

The first block contains special internal records, including the free space control
record (FSCR), that are used by the DB2 server to manage the table. In subsequent
blocks, the first page contains the FSCR. An FSCR maps the free space for new
records that exists on each page of the block. This available free space is used
when inserting records into the table.

As the name implies, MDC tables cluster data on more than one dimension. Each
dimension is determined by a column or set of columns that you specify in the
ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. When you
create an MDC table, the following two indexes are created automatically:
v A dimension-block index, which contains pointers to each occupied block for a

single dimension

Legend

user records

reservedX

U

F

in use

free

Logical view of block map
for first 3 blocks

Logical
index

view of
dimension block

reserved for system records

FSCR

A
C

K S

K

X

0

U

1

F

2 ...

BID

K
BID

252,0

C
BID

BID BID

BID

Logical
table view

Physical
table view

...

0 4020

4021

4022

4023

1

2

3

4 252

253

254

255

5

6

7

1488

1489

1490

1491

8

9

10

11

block 0

block 2

block 1

BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)

Figure 10. Logical table, record, and index structure for MDC tables

60 Troubleshooting and Tuning Database Performance

v A composite-block index, which contains all dimension key columns, and which
is used to maintain clustering during insert and update activity

The optimizer considers access plans that use dimension-block indexes when it
determines the most efficient access plan for a particular query. When queries have
predicates on dimension values, the optimizer can use the dimension-block index
to identify—and fetch from—the extents that contain these values. Because extents
are physically contiguous pages on disk, this minimizes I/O and leads to better
performance.

You can also create specific RID indexes if analysis of data access plans indicates
that such indexes would improve query performance.

Indexes

Index structure
The database manager uses a B+ tree structure for index storage.

A B+ tree has several levels, as shown in Figure 11; “rid” refers to a record ID
(RID).

The top level is known as the root node. The bottom level consists of leaf nodes that
store index key values with pointers to the table rows that contain the
corresponding data. Levels between the root and leaf node levels are known as
intermediate nodes.

'E'

'F'

'N'

'L'

'Z'

'N'

('G',rid)
('I',rid)
('K',rid)

('F',rid) ('M',rid)
('N',rid).

INTERMEDIATE
NODES

ROOT NODE

LEAF
NODES

Figure 11. Structure of a B+ Tree Index

Chapter 3. Factors affecting performance 61

When it looks for a particular index key value, the index manager searches the
index tree, starting at the root node. The root node contains one key for each
(intermediate) node in the next level. The value of each of these keys is the largest
existing key value for the corresponding node at the next level. For example,
suppose that an index has three levels, as shown in the figure. To find a particular
index key value, the index manager searches the root node for the first key value
that is greater than or equal to the search key value. The root node key points to a
specific intermediate node. The index manager follows this procedure through each
intermediate node until it finds the leaf node that contains the index key that it
needs.

Suppose that the key being looked for in Figure 11 on page 61 is “I”. The first key
in the root node that is greater than or equal to “I” is “N”, which points to the
middle node at the next level. The first key in that intermediate node that is
greater than or equal to “I” is “L”, which, in turn, points to a specific leaf node on
which the index key for “I” and its corresponding RID can be found. The RID
identifies the corresponding row in the base table.

The leaf node level can also contain pointers to previous leaf nodes. These pointers
enable the index manager to scan across leaf nodes in either direction to retrieve a
range of values after it finds one value in the range. The ability to scan in either
direction is possible only if the index was created with the ALLOW REVERSE
SCANS option.

In the case of a multidimensional clustering (MDC) table, a block index is created
automatically for each clustering dimension that you specify for the table. A
composite block index is also created; this index contains a key part for each
column that is involved in any dimension of the table. Such indexes contain
pointers to block IDs (BIDs) instead of RIDs, and provide data-access
improvements.

A one-byte ridFlag, stored for each RID on the leaf page of an index, is used to
mark the RID as logically deleted, so that it can be physically removed later. For
each variable-length column in the index, one additional byte stores the actual
length of the column value. After an update or delete operation commits, the keys
that are marked as deleted can be removed.

Index cleanup and maintenance
After you create an index, performance might degrade with time unless you keep
the index compact and well organized.

The following recommendations will help you to keep indexes as small and
efficient as possible:
v Enable online index defragmentation

Create indexes with the MINPCTUSED clause. Drop and recreate existing
indexes, if necessary.

v Perform frequent commits, or acquire table-level X locks, either explicitly or
through lock escalation, if frequent commits are not possible.
Index keys that are marked deleted can be physically removed from the table
after a commit. X locks on tables enable the deleted keys to be physically
removed when they are marked deleted, as explained below.

v Use the REORGCHK command to help determine when to reorganize indexes or
tables, and when to use the REORG INDEXES command with the CLEANUP
ONLY clause.

62 Troubleshooting and Tuning Database Performance

To allow read and write access to the index during reorganization, use the
REORG INDEXES command with the ALLOW WRITE ACCESS option.
To allow read and write access to the index during cleanup, use the REORG
INDEXES command with the ALLOW WRITE ACCESS option. For a partitioned
table, the ALLOW WRITE ACCESS clause on the REORG INDEXES...ALL
command cannot be specified unless the CLEANUP ONLY option or the ON
DATA PARTITION option is specified.
With DB2 Version 9.7 Fix Pack 1 and later releases, issue the REORG INDEXES
command with the ON DATA PARTITION clause on a data partitioned table to
reorganize the partitioned indexes of the specified partition. During index
reorganization, the unaffected partitions remain read and write accessible access
is restricted only to the affected partition.

Index keys that are marked deleted are cleaned up:
v During subsequent insert, update, or delete activity

During key insertion, keys that are marked deleted and that are known to have
been committed are cleaned up if that might avoid the need to perform a page
split and prevent the index from increasing in size.
During key deletion, when all keys on a page have been marked deleted, an
attempt is made to find another index page where all the keys are marked
deleted and all those deletions have committed. If such a page is found, it is
deleted from the index tree. If there is an X lock on the table when a key is
deleted, the key is physically deleted instead of just being marked deleted.
During physical deletion, any deleted keys on the same page are also removed if
they are marked deleted and known to be committed.

v When you execute the REORG INDEXES command with CLEANUP options
The CLEANUP ONLY PAGES option searches for and frees index pages on
which all keys are marked deleted and known to be committed.
The CLEANUP ONLY ALL option frees not only index pages on which all keys
are marked deleted and known to be committed, but it also removes record
identifiers (RIDs) that are marked deleted and known to be committed from
pages that contain some non-deleted RIDs. This option also tries to merge
adjacent leaf pages if doing so results in a merged leaf page that has at least
PCTFREE free space. The PCTFREE value is defined when an index is created.
The default PCTFREE value is ten percent. If two pages can be merged, one of
the pages is freed.
For data partitioned tables, it is recommended that you invoke the RUNSTATS
command after an asynchronous index cleanup has completed. To determine
whether there are detached data partitions in the table, query the STATUS field
in the SYSCAT.DATAPARTITIONS catalog view and look for the value 'L'
(logically detached), 'D' (detached partition having detach dependent tables such
as a materialized query tables) or 'I' (index cleanup).

v When an index is rebuilt (or, in the case of data partitioned indexes, when an
index partition is rebuilt)
Utilities that rebuild indexes include the following:
– REORG INDEXES without any of the CLEANUP options
– REORG INDEXES with the ON DATA PARTITION clause
– REORG TABLE with the ON DATA PARTITION clause
– REORG TABLE without the INPLACE option
– IMPORT with the REPLACE option
– LOAD with the INDEXING MODE REBUILD option

Chapter 3. Factors affecting performance 63

Asynchronous index cleanup
Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with
the application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:

64 Troubleshooting and Tuning Database Performance

ID = 2
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I2
Start Time = 12/15/2005 11:15:01.967939
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.979033

ID = 1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1, and the other is processing index I2. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables
You can enhance the performance of a rollout deletion—an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)
tables—by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing
the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index
cleanup rollout operation, blocks are marked as rolled out without an update to

Chapter 3. Factors affecting performance 65

the RID indexes until after the transaction commits. Block identifier (BID) indexes
are cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if
the CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total
number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
SYSPROC.ADMIN_GET_TAB_INFO_V95 table function or the GET SNAPSHOT
command.

In the following sample output for the LIST UTILITIES SHOW DETAILS
command, progress is indicated by the number of pages in each index that have
been cleaned up. Each phase represents one RID index.
ID = 2
Type = MDC ROLLOUT INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = TABLE.<schema_name>.<table_name>
Start Time = 06/12/2006 08:56:33.390158
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Estimated Percentage Complete = 83
Phase Number = 1

Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391566

Phase Number = 2

66 Troubleshooting and Tuning Database Performance

Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391577

Phase Number = 3
Description = <schema_name>.<index_name>
Total Work = 9 pages
Completed Work = 3 pages
Start Time = 06/12/2006 08:56:33.391587

Online index defragmentation
Online index defragmentation is enabled by the user-definable threshold for the
minimum amount of used space on an index leaf page.

When an index key is deleted from a leaf page and this threshold is exceeded, the
neighboring index leaf pages are checked to determine whether two leaf pages can
be merged. If there is sufficient space on a page, and the merging of two
neighboring pages is possible, the merge occurs immediately in the background,
and the resulting empty index leaf page is deleted.

If existing indexes require the ability to be merged online, they must be dropped
and then recreated with the MINPCTUSED clause specified on the CREATE
INDEX statement. The recommended value for MINPCTUSED is less than 50,
because the goal is to merge two neighboring index leaf pages. A value of zero,
which is the default, disables online defragmentation.

Index nonleaf pages are not merged during online index defragmentation.
However, empty nonleaf pages are deleted and made available for reuse by other
indexes on the same table. To free these nonleaf pages for other objects in a
database managed space (DMS) storage model, or to free disk space in a system
managed space (SMS) storage model, perform a full reorganization of the table and
indexes, which will make the indexes as small as possible. The number of levels in
an index is not reduced during online index defragmentation.

When there is an X lock on a table, keys are physically removed from a page
during key deletion; in this case, online index defragmentation is effective.
However, if there is no X lock on the table during key deletion, keys are marked
deleted but are not physically removed from the index page, and index
defragmentation is not attempted.

To defragment indexes regardless of the value of MINPCTUSED, invoke the
REORG INDEXES command with the CLEANUP ONLY ALL option. Two
neighboring leaf pages are merged if at least PCTFREE free space will be left on
the merged page. PCTFREE can be specified at index creation time; its default
value is 10 (percent).

Using relational indexes to improve performance
Indexes can be used to improve performance when accessing table data. Relational
indexes are used when accessing relational data, and indexes over XML data are
used when accessing XML data.

Although the query optimizer decides whether to use a relational index to access
relational table data, it is up to you to decide which indexes might improve
performance and to create those indexes. The only exceptions to this are the
dimension block indexes and the composite block index that are created
automatically for each dimension when you create a multidimensional clustering
(MDC) table.

Chapter 3. Factors affecting performance 67

Execute the runstats utility to collect new index statistics after you create a
relational index or after you change the prefetch size. You should execute the
runstats utility at regular intervals to keep the statistics current; without up-to-date
statistics about indexes, the optimizer cannot determine the best data-access plan
for queries.

To determine whether a relational index is used in a specific package, use the
explain facility. To get advice about relational indexes that could be exploited by
one or more SQL statements, use the db2advis command to launch the Design
Advisor.

Advantages of a relational index over no index

If no index on a table exists, a table scan must be performed for each table that is
referenced in an SQL query. The larger the table, the longer such a scan will take,
because a table scan requires that each row be accessed sequentially. Although a
table scan might be more efficient for a complex query that requires most of the
rows in a table, an index scan can access table rows more efficiently for a query
that returns only some table rows.

The optimizer chooses an index scan if the relational index columns are referenced
in the SELECT statement and if the optimizer estimates that an index scan will be
faster than a table scan. Index files are generally smaller and require less time to
read than an entire table, especially when the table is large. Moreover, it might not
be necessary to scan an entire index. Any predicates that are applied to the index
will reduce the number of rows that must be read from data pages.

If an ordering requirement on the output can be matched with an index column,
scanning the index in column order will enable the rows to be retrieved in the
correct order without the need for a sort operation. Note that the existence of a
relational index on the table being queried does not guarantee an ordered result
set. Only an ORDER BY clause ensures the order of a result set.

A relational index can also contain include columns, which are non-indexed
columns in an indexed row. Such columns can make it possible for the optimizer
to retrieve required information from the index alone, without having to access the
table itself.

Disadvantages of a relational index over no index

Although indexes can reduce access time significantly, they can also have adverse
effects on performance. Before you create indexes, consider the effects of multiple
indexes on disk space and processing time. Choose indexes carefully to address the
needs of your application programs.
v Each index requires storage space. The exact amount depends on the size of the

table and the size and number of columns in the relational index.
v Each insert or delete operation against a table requires additional updating of

each index on that table. This is also true for each update operation that changes
the value of an index key.

v Each relational index represents another potential access plan for the optimizer
to consider, which increases query compilation time.

Relational index planning tips
A well-designed index can make it easier for queries to access relational data.

68 Troubleshooting and Tuning Database Performance

Use the Design Advisor (db2advis command) to find the best indexes for a specific
query or for the set of queries that defines a workload. This tool can make
performance-enhancing recommendations, such as include columns or indexes that
are enabled for reverse scans.

The following guidelines can also help you to create useful relational indexes.
v Retrieving data efficiently

– To improve data retrieval, add include columns to unique indexes. Good
candidates are columns that:
- Are accessed frequently and would benefit from index-only access
- Are not required to limit the range of index scans
- Do not affect the ordering or uniqueness of the index key

For example:
create unique index idx on employee (workdept) include (lastname)

Specifying LASTNAME as an include column rather than part of the index
key means that LASTNAME is stored only on the leaf pages of the index.

– Create relational indexes on columns that are used in the WHERE clauses of
frequently run queries.
In the following example, the WHERE clause will likely benefit from an index
on WORKDEPT, unless the WORKDEPT column contains many duplicate
values.

where workdept='A01' or workdept='E21'

– Create relational indexes with a compound key that names each column
referenced in a query. When an index is specified in this way, relational data
can be retrieved from the index only, which is more efficient than accessing
the table.
For example, consider the following query:

select lastname
from employee
where workdept in ('A00','D11','D21')

If a relational index is defined on the WORKDEPT and LASTNAME columns
of the EMPLOYEE table, the query might be processed more efficiently by
scanning the index rather than the entire table. Because the predicate
references WORKDEPT, this column should be the first key column of the
relational index.

v Searching tables efficiently
Decide between ascending and descending key order, depending on the order
that will be used most often. Although values can be searched in reverse
direction if you specify the ALLOW REVERSE SCANS option on the CREATE
INDEX statement, scans in the specified index order perform slightly better than
reverse scans.

v Accessing larger tables efficiently
Use relational indexes to optimize frequent queries against tables with more
than a few data pages, as recorded in the NPAGES column of the
SYSCAT.TABLES catalog view. You should:
– Create an index on any column that you will use to join tables.
– Create an index on any column that you will be searching for specific values

on a regular basis.
v Improving the performance of update or delete operations

Chapter 3. Factors affecting performance 69

– To improve the performance of such operations against a parent table, create
relational indexes on foreign keys.

– To improve the performance of such operations against REFRESH
IMMEDIATE and INCREMENTAL materialized query tables (MQTs), create
unique relational indexes on the implied unique key of the MQT, which is
composed of the columns in the GROUP BY clause of the MQT definition.

v Improving join performance
If you have more than one choice for the first key column in a multiple-column
relational index, use the column that is most often specified with an equijoin
predicate (expression1 = expression2) or the column with the greatest number
of distinct values as the first key column.

v Sorting
– For fast sort operations, create relational indexes on columns that are

frequently used to sort the relational data.
– To avoid some sorts, use the CREATE INDEX statement to define primary

keys and unique keys whenever possible.
– Create a relational index to order the rows in whatever sequence is required

by a frequently run query. Ordering is required by the DISTINCT, GROUP BY,
and ORDER BY clauses.
The following example uses the DISTINCT clause:

select distinct workdept
from employee

The database manager can use an index that is defined on the WORKDEPT
column to eliminate duplicate values. The same index could also be used to
group values, as in the following example that uses a GROUP BY clause:

select workdept, average(salary)
from employee
group by workdept

v Keeping newly inserted rows clustered and avoiding page splits
Define a clustering index, which should significantly reduce the need to
reorganize the table. Use the PCTFREE option on the CREATE TABLE statement
to specify how much free space should be left on each page so that rows can be
inserted appropriately. You can also specify the pagefreespace file type modifier
on the LOAD command.

v Saving index maintenance costs and storage space
– Avoid creating indexes that are partial keys of other existing indexes. For

example, if there is an index on columns A, B, and C, another index on
columns A and B is generally not useful.

– Do not create arbitrary indexes on many columns. Unnecessary indexes not
only waste space, but also cause lengthy prepare times.
- For online transaction processing (OLTP) environments, create one or two

indexes per table.
- For read-only query environments, you might create more than five indexes

per table.
- For mixed query and OLTP environments, between two and five indexes

per table is likely appropriate.
v Enabling online index defragmentation

Use the MINPCTUSED option when you create relational indexes.
MINPCTUSED enables online index defragmentation; it specifies the minimum
amount of space that must be in use on an index leaf page.

70 Troubleshooting and Tuning Database Performance

Relational index performance tips
There are a number of actions that you can take to ensure that your relational
indexes perform well.
v Specify a large utility heap

If you expect a lot of update activity against the table on which a relational
index is being created or reorganized, consider configuring a large utility heap
(util_heap_sz database configuration parameter), which will help to speed up
these operations.

v To avoid sort overflows in a symmetric multiprocessor (SMP) environment,
increase the value of the sheapthres database manager configuration parameter

v Create separate table spaces for relational indexes
You can create index table spaces on faster physical devices, or assign index
table spaces to a different buffer pool, which might keep the index pages in the
buffer longer because they do not compete with data pages.
If you use a different table space for indexes, you can optimize the configuration
of that table space for indexes. Because indexes are usually smaller than tables
and are spread over fewer containers, indexes often have smaller extent sizes.
The query optimizer considers the speed of the device that contains a table
space when it chooses an access plan.

v Ensure a high degree of clustering
If your SQL statement requires ordering of the result (for example, if it contains
an ORDER BY, GROUP BY, or DISTINCT clause), the optimizer might not
choose an available index if:
– Index clustering is poor. For information about the degree of clustering in a

specific index, query the CLUSTERRATIO and CLUSTERFACTOR columns of
the SYSCAT.INDEXES catalog view.

– The table is so small that it is cheaper to scan the table and to sort the result
set in memory.

– There are competing indexes for accessing the table.
A clustering index attempts to maintain a particular order of the data, improving
the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by the
runstats utility. After you create a clustering index, perform an offline table reorg
operation. In general, a table can only be clustered on one index. Build
additional indexes after you build the clustering index.
A table's PCTFREE value determines the amount of space on a page that is to
remain empty for future data insertions, so that this inserted data can be
clustered appropriately. If you do not specify a PCTFREE value for a table,
reorganization eliminates all extra space.
Except in the case of range-clustered tables, data clustering is not maintained
during update operations. That is, if you update a record so that its key value in
the clustering index changes, the record is not necessarily moved to a new page
to maintain the clustering order. To maintain clustering, delete the record and
then insert an updated version of the record, instead of using an update
operation.

v Keep table and index statistics up-to-date
After you create a new relational index, execute the runstats utility to collect
index statistics. These statistics help the optimizer to determine whether using
the index can improve data-access performance.

v Enable online index defragmentation
Online index defragmentation is enabled if MINPCTUSED for the relational
index is set to a value that is greater than zero. Online index defragmentation

Chapter 3. Factors affecting performance 71

enables indexes to be compacted through the merging of index leaf pages when
the amount of free space on a page falls below the specified MINPCTUSED
value.

v Reorganize relational indexes as necessary
To get the best performance from your indexes, consider reorganizing them
periodically, because updates to tables can cause index page prefetching to
become less effective.
To reorganize an index, either drop it and recreate it, or use the reorg utility.
To reduce the need for frequent reorganization, specify an appropriate PCTFREE
value on the CREATE INDEX statement to leave sufficient free space on each
index leaf page as it is being created. During future activity, records can be
inserted into the index with less likelihood of index page splitting, which
decreases page contiguity and, therefore, the efficiency of index page
prefetching. The PCTFREE value that is specified when you create a relational
index is preserved when the index is reorganized.

v Analyze explain information about relational index use
Periodically issue EXPLAIN statements against your most frequently used
queries and verify that each of your relational indexes is being used at least
once. If an index is not being used by any query, consider dropping that index.
Explain information also lets you determine whether a large table being scanned
is processed as the inner table of a nested-loop join. If it is, an index on the
join-predicate column is either missing or considered to be ineffective for
applying the join predicate.

v Declare tables that vary widely in size as “volatile”
A volatile table is a table whose cardinality at run time can vary greatly. For this
kind of table, the optimizer might generate an access plan that favors a table
scan instead of an index scan.
Use the ALTER TABLE statement with the VOLATILE clause to declare such a
table as volatile. The optimizer will use an index scan instead of a table scan
against such tables, regardless of statistics, if:
– All referenced columns are part of the index
– The index can apply a predicate during the index scan
In the case of typed tables, the ALTER TABLE...VOLATILE statement is
supported only for the root table of a typed table hierarchy.

Partitioning and clustering

Index behavior on partitioned tables
Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables,
however they are stored using a different storage model, depending on whether
they are partitioned or nonpartitioned indexes.

Whereas the indexes for a regular nonpartitioned table all reside in a shared index
object, a nonpartitioned index on a partitioned table is created in its own index
object in a single table space, even if the data partitions span multiple table spaces.
Both database managed space (DMS) and system managed space (SMS) table
spaces support the use of indexes in a different location than the table data. Each
nonpartitioned index can be placed in its own table space, including large table
spaces. Each index table space must use the same storage mechanism as the data
partitions, either DMS or SMS. Indexes in large table spaces can contain up to 229

pages. All of the table spaces must be in the same database partition group.

72 Troubleshooting and Tuning Database Performance

A partitioned index uses an index organization scheme in which index data is
divided across multiple index partitions, according to the partitioning scheme of the
table. Each index partition only refers to table rows in the corresponding data
partition. All index partitions for a given data partition reside in the same index
object.

Starting in DB2 Version 9.7 Fix Pack 1, user-created indexes over XML data on
XML columns in partitioned tables can be either partitioned or nonpartitioned. The
default is partitioned. System-generated XML region indexes are always
partitioned, and system-generated column path indexes are always nonpartitioned.
In DB2 V9.7, indexes over XML data are nonpartitioned.

Benefits of a nonpartitioned index include:
v The ability to define different table space characteristics for each index (for

example, different page sizes might help to ensure better space utilization)
v The fact that indexes can be reorganized independently of one another
v Improved performance of drop index operations
v Reduced I/O contention, which helps to provide more efficient concurrent access

to the index data
v The fact that when individual indexes are dropped, space becomes immediately

available to the system without the need for index reorganization

Benefits of a partitioned index include:
v Improved data roll-in and roll-out performance
v Less contention on index pages, because the index is partitioned
v An index B-tree structure for each index partition, which can result in:

– Improved insert, update, delete, and scan performance, because the B-tree for
an index partition normally contains fewer levels than an index that
references all data in the table

– Improved scan performance and concurrency when partition elimination is in
effect; although partition elimination can by used for both partitioned and
nonpartitioned index scans, it is more effective for partitioned index scans,
because each index partition contains keys for only the corresponding data
partition. This can result in having to scan fewer keys and fewer index pages
than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a
partitioned index might lose some order across partitions in certain scenarios; for
example, if the partitioning columns do not match the index columns, and more
than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is
permitted. After such an index has been built, changes that were made to the table
during index creation are applied to the new index. Write access to the table is
blocked until index creation completes and the transaction commits. In the case of
partitioned indexes, each data partition is quiesced to read-only access only while
changes that were made to that data partition (during the creation of the index
partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling
data in using the ALTER TABLE...ATTACH PARTITION statement. If
nonpartitioned indexes exist (not including the XML columns path index, if the
table has XML data), issue a SET INTEGRITY statement after partition attachment.

Chapter 3. Factors affecting performance 73

This is necessary for nonpartitioned index maintenance, range validation,
constraints checking, and materialized query table (MQT) maintenance.
Nonpartitioned index maintenance can be time-consuming and require large
amounts of log space. Use partitioned indexes to avoid this maintenance cost.

Figure 12 shows two nonpartitioned indexes on a partitioned table, with each
index residing in a separate table space.

Figure 13 on page 75 shows a partitioned index on a partitioned table spanning
two database partitions and residing in a single table space.

Figure 12. Nonpartitioned indexes on a partitioned table

74 Troubleshooting and Tuning Database Performance

Figure 14 on page 76 shows a mix of partitioned and nonpartitioned indexes on a
partitioned table.

Figure 13. Nonpartitioned index on a table that is both distributed and partitioned

Chapter 3. Factors affecting performance 75

The nonpartitioned index X1 refers to rows in all of the data partitions. By
contrast, the partitioned indexes X2 and X3 only refer to rows in the data partition
with which they are associated. Table space TS3 also shows the index partitions
sharing the table space of the data partitions with which they are associated. This
is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes,
although the way that you do this is different for each. With nonpartitioned
indexes, you can specify a table space when you create the index; for partitioned
indexes, you need to determine which table spaces index partitions will be stored
in when you create the table.

Nonpartitioned indexes

To override the index location for nonpartitioned indexes, use the IN
clause on the CREATE INDEX statement, which enables you to specify an
alternative table space location for the index. You can place different

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 14. Partitioned and nonpartitioned indexes on a partitioned table

76 Troubleshooting and Tuning Database Performance

indexes in different table spaces, as required. If you create a partitioned
table without specifying where to place its nonpartitioned indexes, and
you then create an index using a CREATE INDEX statement that does not
specify a table space, the index is created in the table space of the first
attached or visible data partition. Each of the following three possible cases
is evaluated in order, starting with case 1, to determine where the index is
to be created. This evaluation to determine table space placement for the
index stops when a matching case is found.

Case 1:
When an index table space is specified in the CREATE INDEX...IN
tbspace statement, use the specified table space for this index.

Case 2:
When an index table space is specified in the CREATE TABLE...
INDEX IN tbspace statement, use the specified
table space for this index.

Case 3:
When no table space is specified, choose the table space that is used
by the first attached or visible data partition.

Partitioned indexes
By default, index partitions are placed in the same table space as the data
partitions that they reference. To override this default behavior, you must
use the INDEX IN clause for each data partition that you define using the
CREATE TABLE statement. In other words, if you plan to use partitioned
indexes for a partitioned table, you must anticipate where you want the
index partitions to be stored when you create the table. If you try to use
the INDEX IN clause when creating a partitioned index, you will receive
an error message.

Example 1: Given partitioned table SALES (a int, b int, c int), create a unique index
A_IDX.

create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx will also be created as a
partitioned index.

Example 2: Create index B_IDX.
create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned
index, use the INDEX IN clause for each partition that you define when creating
the partitioned table. In the example that follows, indexes for the table Z are
created in table space TS3.
create table z (a int, b int)

partition by range (a) (starting from (1)
ending at (100) index in ts3)

create index c_idx on z (a) partitioned

Clustering of nonpartitioned indexes on partitioned tables
Clustering indexes offer the same benefits for partitioned tables as they do for
regular tables. However, care must be taken with the table partitioning key
definitions when choosing a clustering index.

Chapter 3. Factors affecting performance 77

You can create a clustering index on a partitioned table using any clustering key.
The database server attempts to use the clustering index to cluster data locally
within each data partition. During a clustered insert operation, an index lookup is
performed to find a suitable record identifier (RID). This RID is used as a starting
point in the table when looking for space in which to insert the record. To achieve
optimal clustering with good performance, there should be a correlation between
the index columns and the table partitioning key columns. One way to ensure such
correlation is to prefix the index columns with the table partitioning key columns,
as shown in the following example:

partition by range (month, region)
create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an
expectation that all keys in the index will be grouped together by partition IDs to
achieve good clustering. For example, suppose that a table is partitioned on
QUARTER and a clustering index is defined on DATE. There is a relationship
between QUARTER and DATE, and optimal clustering of the data with good
performance can be achieved because all keys of any data partition are grouped
together within the index. Figure 15 on page 79 shows that optimal scan
performance is achieved only when clustering correlates with the table partitioning
key.

78 Troubleshooting and Tuning Database Performance

Benefits of clustering include:
v Rows are in key order within each data partition.
v Clustering indexes improve the performance of scans that traverse the table in

key order, because the scanner fetches the first row of the first page, then each
row in that same page before moving on to the next page. This means that only
one page of the table needs to be in the buffer pool at any given time. In

Figure 15. The possible effects of a clustered index on a partitioned table.

Chapter 3. Factors affecting performance 79

contrast, if the table is not clustered, rows are likely fetched from different
pages. Unless the buffer pool can hold the entire table, most pages will likely be
fetched more than once, greatly slowing down the scan.

If the clustering key is not correlated with the table partitioning key, but the data is
locally clustered, you can still achieve the full benefit of the clustered index if there
is enough space in the buffer pool to hold one page of each data partition. This is
because each fetched row from a particular data partition is near the row that was
previously fetched from that same partition (see the second example in Figure 15
on page 79).

Federated databases

Server options that affect federated databases
A federated database system is composed of a DB2 data server (the federated
database) and one or more data sources. You identify the data sources to the
federated database when you issue CREATE SERVER statements. You can also
specify server options that refine and control various aspects of federated system
operation.

You must install the distributed join installation option and set the federated
database manager configuration parameter to YES before you can create servers
and specify server options. To change server options later, use the ALTER SERVER
statement.

The server option values that you specify on the CREATE SERVER statement affect
query pushdown analysis, global optimization, and other aspects of federated
database operations. For example, you can specify performance statistics as server
option values. The cpu_ratio option specifies the relative speeds of the processors at
the data source and the federated server, and the io_ratio option specifies the
relative rates of the data I/O divides at the data source and the federated server.

Server option values are written to the system catalog (SYSCAT.SERVEROPTIONS),
and the optimizer uses this information when it develops access plans for the data
source. If a statistic changes (for example, when a data source processor is
upgraded), use the ALTER SERVER statement to update the catalog with the new
value.

Resource utilization

Memory allocation
Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

Figure 16 on page 81 shows the different memory areas that the database manager
allocates for various uses and the configuration parameters that enable you to
control the size of these memory areas. Note that in a partitioned database
environment, each database partition has its own database manager shared
memory set.

80 Troubleshooting and Tuning Database Performance

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount
of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:
v Buffer pools (using the ALTER BUFFERPOOL statement)
v Database heap (including log buffers)
v Utility heap
v Package cache
v Catalog cache
v Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres
cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 16. Types of memory allocated by the database manager

Chapter 3. Factors affecting performance 81

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the appl_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb
This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxappls and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

The memory tracker, invoked by the db2mtrk command, enables you to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_DBP_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. The GET
SNAPSHOT command enables you to examine current memory usage at the
instance, database, or application level.

82 Troubleshooting and Tuning Database Performance

On Unix and Linux, although the ipcs command can be used to list all the shared
memory segments, it does not accurately reflect the amount of resources
consumed. You can use the db2mtrk command as an alternative to ipcs.

Database manager shared memory
Database manager shared memory is organized into several different memory
areas. Configuration parameters enable you to control the sizes of these areas.

Figure 17 on page 84 shows how database manager shared memory is allocated.

Chapter 3. Factors affecting performance 83

Database Manager Shared Memory
Database Manager Shared Memory is affected by the following
configuration parameters:
v The audit_buf_sz configuration parameter determines the size of the

buffer used in database auditing activities.

Database manager shared memory (including FCM)

Monitor heap ()mon_heap_sz

Database global memory (database_memory)

Lock list ()locklist

Application global memory (appl_memory)

Agent stack
()agent_stack_sz

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application shared memory

Note: Box size does not indicate relative size of memory.

Agent private memory

Application support
layer heap (aslheapsz)

Client I/O block
()rqrioblk (local)

Utility heap
()util_heap_sz

Backup buffer

Package cache
()pckcachesz

Database heap
()dbheap

Log buffer ()logbufsz

Sort heap threshold
for private sort
memory consumers
(sheapthres)

Sort heap ()sortheap

Catalog cache
()catalogcache_sz

Audit buffer size ()audit_buf_sz

Sort heap threshold
for shared sort
memory consumers
(sheapthres_shr)

Sort heap ()sortheap

Buffer pools

Shared application memory Application-specific memory

Application heap (applheapsz)

Statistics heap (stat_heap_sz)

Statement heap (stmtheap)

Figure 17. How memory is used by the database manager

84 Troubleshooting and Tuning Database Performance

v The mon_heap_sz configuration parameter determines the size of the
memory area used for database system monitoring data.

v For partitioned database systems, the Fast Communications Manager
(FCM) requires substantial memory space, especially if the value of
fcm_num_buffers is large. The FCM memory requirements are allocated
from the FCM Buffer Pool.

Database global memory
Database global memory is affected by the size of the buffer pools and by
the following database configuration parameters:
v catalogcache_sz

v database_memory

v dbheap

v locklist

v pckcachesz

v sheapthres_shr

v util_heap_sz

Application global memory
Application global memory can be controlled by the appl_memory
configuration parameter. The following database configuration parameters
can be used to limit the amount of memory that any one application can
consume:
v applheapsz

v stat_heap_sz

v stmtheap

Agent private memory
Each agent requires its own private memory region. The data server creates
as many agents as it needs and in accordance with configured memory
resources. You can control the maximum number of coordinator agents
using the max_coordagents database manager configuration parameter.
The maximum size of each agent's private memory region is determined
by the values of the following configuration parameters:
v agent_stack_sz

v sheapthres and sortheap

Agent/Application shared memory
The total number of agent/application shared memory segments for local
clients is limited by the lesser of the following two values:
v The total value of the maxappls database configuration parameter for all

active databases
v The value of the max_coordagents database configuration parameter

Note: In configurations where engine concentration is enabled
(max_connections > max_coordagents), application memory consumption
is limited by max_connections.

Agent/Application shared memory is also affected by the following
database configuration parameters:
v aslheapsz

v rqrioblk

Chapter 3. Factors affecting performance 85

The FCM buffer pool and memory requirements
In a partitioned database system, the fast communication manager (FCM) buffer
shared memory is allocated from the database manager shared memory.

This is shown in Figure 18.

The number of FCM buffers for each database partition is controlled by the
fcm_num_buffers database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
buff_free and buff_free_bottom system monitor elements.

The number of FCM channels for each database partition is controlled by the
fcm_num_channels database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
ch_free and ch_free_bottom system monitor elements.

The DB2 database manager can automatically manage FCM memory resources by
allocating more FCM buffers and channels as needed. This leads to improved
performance and prevents “out of FCM resource” runtime errors. On the Linux
operating system, the database manager can preallocate a larger amount of system
memory for FCM buffers and channels, up to a maximum default amount of 2 GB.
Memory space is impacted only when additional FCM buffers or channels are
required. To enable this behavior, set the FCM_MAXIMIZE_SET_SIZE option of the
DB2_FCM_SETTINGS registry variable to YES (or TRUE). YES is the default
value.

Guidelines for tuning parameters that affect memory usage
When tuning memory manually (that is, when not using the self-tuning memory
manager), benchmark tests provide the best information about setting appropriate
values for memory parameters.

In benchmark testing, representative and worst-case SQL statements are run
against the server, and the values of memory parameters are changed until a point

Database Manager Shared Memory**

FCM Buffer
Shared Memory*

FCM Buffers ()*fcm_num_buffers

FCM Channels**

Legend

* one shared by all logical partitions
** one for each logical partition

Figure 18. The FCM buffer pool when multiple logical partitions are used

86 Troubleshooting and Tuning Database Performance

of diminishing returns for performance is found. This is the point at which
additional memory allocation provides no further performance value to the
application.

The upper memory allocation limits for several parameters might be beyond the
scope of existing hardware and operating systems. These limits allow for future
growth. It is good practice to not set memory parameters at their highest values
unless those values can be justified. This applies even to systems that have plenty
of available memory. The idea is to prevent the database manager from quickly
taking up all of the available memory on a system. Moreover, managing large
amounts of memory incurs additional overhead.

For most configuration parameters, memory is committed as it is required, and the
parameter settings determine the maximum size of a particular memory heap. For
buffer pools and the following configuration parameters, however, all of the
specified memory is allocated:
v aslheapsz

v fcm_num_buffers

v fcm_num_channels

v locklist

Some operating systems allocate swap space whenever a process allocates memory,
not when that memory needs to be paged out to swap space. For these systems, it
is typically recommended to provide at least twice as much paging space as total
memory on the system.

For valid parameter ranges, refer to the detailed information about each parameter.

Self-tuning memory overview
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

Self-tuning memory is enabled through the self_tuning_mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:
v database_memory - Database shared memory size
v locklist - Maximum storage for lock list
v maxlocks - Maximum percent of lock list before escalation
v pckcachesz - Package cache size
v sheapthres_shr - Sort heap threshold for shared sorts
v sortheap - Sort heap size

Self-tuning memory
Starting in DB2 Version 9, a memory-tuning feature simplifies the task of memory
configuration by automatically setting values for several memory configuration
parameters. When enabled, the memory tuner dynamically distributes available
memory resources among the following memory consumers: buffer pools, locking
memory, package cache, and sort memory.

Chapter 3. Factors affecting performance 87

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,
distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:
v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)
v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)
v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)
v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Enabling self-tuning memory
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.
1. Enable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

88 Troubleshooting and Tuning Database Performance

2. To enable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or
the db2CfgSet API.

3. To enable the self tuning of a buffer pool, set the buffer pool size to
AUTOMATIC using the CREATE BUFFERPOOL statement or the ALTER
BUFFERPOOL statement. In a partitioned database environment, that buffer
pool should not have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Note:

1. Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning_mem database configuration parameter is ON) when one of the
following conditions is true:
v One configuration parameter or buffer pool size is set to AUTOMATIC, and

the database_memory database configuration parameter is set to either a
numeric value or to AUTOMATIC

v Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set to
AUTOMATIC

v The sortheap database configuration parameter is set to AUTOMATIC
2. The value of the locklist database configuration parameter is tuned together

with the maxlocks database configuration parameter. Disabling self tuning of
the locklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

3. Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

4. The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

5. Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary
server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory
Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Chapter 3. Factors affecting performance 89

1. Disable self-tuning memory for the database by setting the self_tuning_mem
database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Note:

v In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the locklist or the
sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self
tuning
You can view the self-tuning memory settings that are controlled by configuration
parameters or that apply to buffer pools.
v To view the settings for configuration parameters from the command line, use

the GET DATABASE CONFIGURATION command, specifying the SHOW
DETAIL option. The memory consumers that can be enabled for self tuning are
grouped together in the output as follows:
Description Parameter Current Value Delayed Value
--
Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

v You can also use the db2CfgGet API to determine whether or not tuning is
enabled. The following values are returned:
SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

To view the self-tuning settings for buffer pools, use one of the following methods.
v To retrieve a list of the buffer pools that are enabled for self tuning from the

command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the buffer
pool.

v To determine the current size of buffer pools that are enabled for self tuning, use
the GET SNAPSHOT command and examine the current size of the buffer pools
(the value of the bp_cur_buffsz monitor element):
GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

90 Troubleshooting and Tuning Database Performance

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC.

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Self-tuning memory in partitioned database environments
When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:
v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database
partitions

v There is a perfect or near-perfect distribution of data
v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Chapter 3. Factors affecting performance 91

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be
configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently = 0
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 4968
Lock escalations = 0
Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Post threshold sorts (shared memory) = 0
Sort overflows = 0

Package cache lookups = 13
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 655360

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0
Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0
Number of OLAP function overflows = 0
Active OLAP functions = 0

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (milliseconds) = 0
Total buffer pool write time (milliseconds)= 0

92 Troubleshooting and Tuning Database Performance

Using self-tuning memory in partitioned database environments
When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.
v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD('get stmm tuning dbpartitionnum')

v To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD('update stmm tuning dbpartitionnum <partitionnum>')

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition
v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database
partitions.

v To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.
An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be
enabled for self tuning:
1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.
2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.
3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 3. Factors affecting performance 93

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

Buffer pool management
A buffer pool provides working memory and cache for database pages.

Buffer pools improve database system performance by allowing data to be
accessed from memory instead of from disk. Because most page data manipulation
takes place in buffer pools, configuring buffer pools is the single most important
tuning area.

When an application accesses a table row, the database manager looks for the page
containing that row in the buffer pool. If the page cannot be found there, the
database manager reads the page from disk and places it in the buffer pool. The
data can then be used to process the query.

Memory is allocated for buffer pools when a database is activated. The first
application to connect might cause an implicit database activation. Buffer pools can
be created, re-sized, or dropped while the database manager is running. The
ALTER BUFFERPOOL statement can be used to increase the size of a buffer pool.
By default, and if sufficient memory is available, the buffer pool is re-sized as soon
as the statement executes. If sufficient memory is unavailable when the statement
executes, memory is allocated when the database reactivates. If you decrease the
size of the buffer pool, memory is deallocated when the transaction commits.
Buffer pool memory is freed when the database deactivates.

To ensure that an appropriate buffer pool is available in all circumstances, DB2
creates small system buffer pools, one with each of the following page sizes: 4 KB,
8 KB, 16 KB, and 32 KB. The size of each buffer pool is 16 pages. These buffer
pools are hidden; they are not in the system catalog or in the buffer pool system
files. You cannot use or alter them directly, but DB2 uses these buffer pools in the
following circumstances:
v When a specified buffer pool is not started because it was created using the

DEFERRED keyword, or when a buffer pool of the required page size is inactive
because insufficient memory is available to create it
A message is written to the administration notification log. If necessary, table
spaces are remapped to a system buffer pool. Performance might be drastically
reduced.

v When buffer pools cannot be brought up during a database connection attempt
This problem is likely to have a serious cause, such as an out-of-memory
condition. Although DB2 will continue to be fully functional because of the

94 Troubleshooting and Tuning Database Performance

system buffer pools, performance will degrade drastically. You should address
this problem immediately. You will receive a warning when this occurs, and a
message is written to the administration notification log.

When you create a buffer pool, the page size will be the one specified when the
database was created, unless you explicitly specify a different page size. Because
pages can be read into a buffer pool only if the table space page size is the same as
the buffer pool page size, the page size of your table spaces should determine the
page size that you specify for buffer pools. You cannot alter the page size of a
buffer pool after you create it.

The memory tracker, which you can invoke by issuing the db2mtrk command,
enables you to view the amount of database memory that has been allocated to
buffer pools. You can also use the GET SNAPSHOT command and examine the
current size of the buffer pools (the value of the bp_cur_buffsz monitor element).

The buffer pool priority for activities can be controlled as part of the larger set of
workload management functionality provided by the DB2 workload manager. For
more information, see “Introduction to DB2 workload manager concepts” and
“Buffer pool priority of service classes”.

Buffer pool management of data pages
Buffer pool pages can be either in-use or not, and dirty or clean.
v In-use pages are pages that are currently being read or updated. If a page is being

updated, it can only be accessed by the updater. However, if the page is not
being updated, there can be numerous concurrent readers.

v Dirty pages contain data that has been changed but not yet written to disk.

Pages remain in the buffer pool until the database shuts down, the space occupied
by a page is required for another page, or the page is explicitly purged from the
buffer pool, for example, as part of dropping an object. The following criteria
determine which page is removed when another page requires its space:
v How recently was the page referenced?
v What is the probability that the page will be referenced again?
v What type of data does the page contain?
v Was the page changed in memory but not written out to disk?

Changed pages are always written out to disk before being overwritten. Changed
pages that are written out to disk are not automatically removed from the buffer
pool unless the space is needed.

Page-cleaner agents

In a well-tuned system, it is usually the page-cleaner agents that write changed or
dirty pages to disk. Page-cleaner agents perform I/O as background processes and
allow applications to run faster because their agents can perform actual transaction
work. Page-cleaner agents are sometimes referred to as asynchronous page cleaners or
asynchronous buffer writers, because they are not coordinated with the work of other
agents and work only when required.

To improve performance for update-intensive workloads, you might want to
enable proactive page cleaning, whereby page cleaners behave more proactively in
choosing which dirty pages get written out at any given point in time. This is
particularly true if snapshots reveal that there are a significant number of

Chapter 3. Factors affecting performance 95

synchronous data-page or index-page writes in relation to the number of
asynchronous data-page or index-page writes.

Figure 19 illustrates how the work of managing the buffer pool can be shared
between page-cleaner agents and database agents.

Page cleaning and fast recovery

Database recovery after a system crash is faster if more pages have been written to
disk, because the database manager can rebuild more of the buffer pool from disk
than by replaying transactions from the database log files.

The size of the log that must be read during recovery is the difference between the
location of the following records in the log:
v The most recently written log record
v The log record that describes the oldest change to data in the buffer pool

Page cleaners write dirty pages to disk in such a manner that the size of the log
that would need to be replayed during recovery never exceeds the following:

logfilsiz * softmax / 100 (in 4-KB pages)

where:
v logfilsiz represents the size of the log files

2

1

2

33

1

2

33

Buffer pool

Without Page Cleaners

Removes
dirty page

No room for
new page

Database
agent

Adds new
page

Asynchronous
page cleaner

Removes
dirty pages

Buffer pool

With Page Cleaners

Database
agent

Writes pages
to hard disk

Adds new
page

Hard drive
disk

Figure 19. Asynchronous page cleaning. Dirty pages are written out to disk.

96 Troubleshooting and Tuning Database Performance

v softmax represents the percentage of log files that are to be recovered following
a database crash; for example, if the value of softmax is 250, then 2.5 log files
will contain the changes that need to be recovered if a crash occurs

To minimize log read time during recovery, use the database system monitor to
track the number of times that page cleaning is performed. The pool_lsn_gap_clns
(buffer pool log space cleaners triggered) monitor element provides this
information if you have not enabled proactive page cleaning for your database. If
you have enabled proactive page cleaning, this condition should not occur, and the
value of pool_lsn_gap_clns is 0.

The log_held_by_dirty_pages monitor element can be used to determine whether
the page cleaners are not cleaning enough pages to meet the recovery criteria set
by the user. If log_held_by_dirty_pages is consistently and significantly greater
than logfilsiz * softmax, then either more page cleaners are required, or softmax
needs to be adjusted.

Management of multiple database buffer pools
Although each database requires at least one buffer pool, you can create several
buffer pools, each of a different size or with a different page size, for a single
database that has table spaces of more than one page size.

You can use the ALTER BUFFERPOOL statement to resize a buffer pool.

A new database has a default buffer pool called IBMDEFAULTBP, with a default
page size that is based on the page size that was specified at database creation
time. The default page size is stored as an informational database configuration
parameter called pagesize. When you create a table space with the default page
size, and if you do not assign it to a specific buffer pool, the table space is assigned
to the default buffer pool. You can resize the default buffer pool and change its
attributes, but you cannot drop it.

Page sizes for buffer pools

After you create or upgrade a database, you can create additional buffer pools. If
you create a database with an 8-KB page size as the default, the default buffer pool
is created with the default page size (in this case, 8 KB). Alternatively, you can
create a buffer pool with an 8-KB page size, as well as one or more table spaces
with the same page size. This method does not require that you change the 4-KB
default page size when you create the database. You cannot assign a table space to
a buffer pool that uses a different page size.

Note: If you create a table space with a page size greater than 4 KB (such as 8 KB,
16 KB, or 32 KB), you need to assign it to a buffer pool that uses the same page
size. If this buffer pool is currently not active, DB2 attempts to assign the table
space temporarily to another active buffer pool that uses the same page size, if one
exists, or to one of the default system buffer pools that DB2 creates when the first
client connects to the database. When the database is activated again, and the
originally specified buffer pool is active, DB2 assigns the table space to that buffer
pool.

If, when you create a buffer pool with the CREATE BUFFERPOOL statement, you
do not specify a size, the buffer pool size is set to AUTOMATIC and is managed
by DB2. To change the bufferpool size later, use the ALTER BUFFERPOOL
statement.

Chapter 3. Factors affecting performance 97

In a partitioned database environment, each buffer pool for a database has the
same default definition on all database partitions, unless it was specified otherwise
in the CREATE BUFFERPOOL statement, or the bufferpool size for a particular
database partition was changed by the ALTER BUFFERPOOL statement.

Advantages of large buffer pools

Large buffer pools provide the following advantages:
v They enable frequently requested data pages to be kept in the buffer pool, which

allows quicker access. Fewer I/O operations can reduce I/O contention, thereby
providing better response time and reducing the processor resource needed for
I/O operations.

v They provide the opportunity to achieve higher transaction rates with the same
response time.

v They prevent I/O contention for frequently used disk storage devices, such as
those that store the catalog tables and frequently referenced user tables and
indexes. Sorts required by queries also benefit from reduced I/O contention on
the disk storage devices that contain temporary table spaces.

Advantages of many buffer pools

Use only a single buffer pool if any of the following conditions apply to your
system:
v The total buffer pool space is less than 10 000 4-KB pages
v Persons with the application knowledge to perform specialized tuning are not

available
v You are working on a test system

In all other circumstances, and for the following reasons, consider using more than
one buffer pool:
v Temporary table spaces can be assigned to a separate buffer pool to provide

better performance for queries (especially sort-intensive queries) that require
temporary storage.

v If data must be accessed repeatedly and quickly by many short
update-transaction applications, consider assigning the table space that contains
the data to a separate buffer pool. If this buffer pool is sized appropriately, its
pages have a better chance of being found, contributing to a lower response time
and a lower transaction cost.

v You can isolate data into separate buffer pools to favor certain applications, data,
and indexes. For example, you might want to put tables and indexes that are
updated frequently into a buffer pool that is separate from those tables and
indexes that are frequently queried but infrequently updated.

v You can use smaller buffer pools for data that is accessed by seldom-used
applications, especially applications that require very random access into a very
large table. In such cases, data need not be kept in the buffer pool for longer
than a single query. It is better to keep a small buffer pool for this type of data,
and to free the extra memory for other buffer pools.

After separating your data into different buffer pools, good and relatively
inexpensive performance diagnosis data can be produced from statistics and
accounting traces.

The self-tuning memory manager (STMM) is ideal for tuning systems that have
multiple buffer pools.

98 Troubleshooting and Tuning Database Performance

Buffer pool memory allocation at startup

When you create a buffer pool or alter a buffer pool, the total memory that is
required by all buffer pools must be available to the database manager so that all
of the buffer pools can be allocated when the database starts. If you create or alter
buffer pools while the database manager is online, additional memory should be
available in database global memory. If you specify the DEFERRED keyword when
you create a new buffer pool or increase the size of an existing buffer pool, and the
required memory is unavailable, the database manager executes the changes the
next time the database is activated.

If this memory is not available when the database starts, the database manager
uses only the system buffer pools (one for each page size) with a minimal size of
16 pages, and a warning is returned. The database continues in this state until its
configuration is changed and the database can be fully restarted. Although
performance might be suboptimal, you can connect to the database, re-configure
the buffer pool sizes, or perform other critical tasks. When these tasks are
complete, restart the database. Do not operate the database for an extended time in
this state.

To avoid starting the database with system buffer pools only, use the
DB2_OVERRIDE_BPF registry variable to optimize use of the available memory.

Proactive page cleaning
Starting in DB2 Version 8.1.4, there is an alternate method of configuring page
cleaning in your system. With this approach, page cleaners behave more
proactively in choosing which dirty pages get written out at any given point in
time.

This proactive page cleaning method differs from the default page cleaning method
in two major ways:
v Page cleaners no longer respond to the value of the chngpgs_thresh database

configuration parameter.
When the number of good victim pages drops below an acceptable value, page
cleaners search the entire buffer pool, writing out potential victim pages and
informing the agents of the location of these pages.

v Page cleaners no longer respond to log sequence number (LSN) gap triggers
issued by the logger.
When the amount of log space between the log record that updated the oldest
page in the buffer pool and the current log position exceeds that allowed by the
softmax database configuration parameter, the database is said to be
experiencing an LSN gap.
Under the default page cleaning method, a logger that detects an LSN gap
triggers the page cleaners to write out all the pages that are contributing to the
LSN gap; that is, the page cleaners write out those pages that are older than
what is allowed by the value of softmax. Page cleaners alternate between
idleness and bursts of activity writing large numbers of pages. This can result in
saturation of the I/O subsystem, which then affects other agents that are reading
or writing pages. Moreover, by the time that an LSN gap is detected, the page
cleaners might not be able to clean fast enough, and DB2 might run out of log
space.
The proactive page cleaning method modulates this behavior by distributing the
same number of writes over a longer period of time. The page cleaners do this

Chapter 3. Factors affecting performance 99

by cleaning not only the pages that are contributing to an LSN gap, but also
pages that are likely to contribute to an impending LSN gap, based on the
current level of activity.

To use the new page cleaning method, set the
DB2_USE_ALTERNATE_PAGE_CLEANING registry variable to on.

Improving update performance
When an agent updates a page, the database manager uses a protocol to minimize
the I/O that is required by the transaction and to ensure recoverability.

This protocol includes the following steps:
1. The page that is to be updated is pinned and latched with an exclusive lock. A

log record is written to the log buffer, describing how to undo and redo the
change. As part of this action, a log sequence number (LSN) is obtained and
stored in the header of the page that is being updated.

2. The update is applied to the page.
3. The page is unlatched. The page is considered to be “dirty”, because changes to

the page have not yet been written to disk.
4. The log buffer is updated. Both data in the log buffer and the dirty data page

are written to disk.

For better performance, these I/O operations are delayed until there is a lull in
system load, or until they are necessary to ensure recoverability or to limit
recovery time. More specifically, a dirty page is written to disk when:
v Another agent chooses it as a victim
v A page cleaner works on the page. This can occur when:

– Another agent chooses the page as a victim
– The chngpgs_thresh database configuration parameter value is exceeded,

causing asynchronous page cleaners to wake up and write changed pages to
disk. If proactive page cleaning is enabled for the database, this value is
irrelevant and does not trigger page cleaning.

– The softmax database configuration parameter value is exceeded, causing
asynchronous page cleaners to wake up and write changed pages to disk. If
proactive page cleaning is enabled for the database, and the number of page
cleaners has been properly configured for the database, this value should
never be exceeded.

– The number of clean pages drops too low. Page cleaners only react to this
condition under proactive page cleaning.

– A dirty page currently contributes to, or is expected to contribute to an LSN
gap condition. Page cleaners only react to this condition under proactive page
cleaning.

v The page is part of a table that was defined with the NOT LOGGED INITIALLY
clause, and the update is followed by a COMMIT statement. When the COMMIT
statement executes, all changed pages are flushed to disk to ensure
recoverability.

Prefetching data into the buffer pool
Prefetching pages means that one or more pages are retrieved from disk in the
expectation that they will be required by an application.

100 Troubleshooting and Tuning Database Performance

Prefetching index and data pages into the buffer pool can help to improve
performance by reducing I/O wait times. In addition, parallel I/O enhances
prefetching efficiency.

There are two categories of prefetching:
v Sequential prefetching reads consecutive pages into the buffer pool before the

pages are required by the application.
v List prefetching (sometimes called list sequential prefetching) prefetches a set of

nonconsecutive data pages efficiently.

Prefetching data pages is different than a database manager agent read, which is
used when one or a few consecutive pages are retrieved, but only one page of data
is transferred to an application.

Prefetching and intra-partition parallelism

Prefetching has an important influence on the performance of intra-partition
parallelism, which uses multiple subagents when scanning an index or a table.
Such parallel scans result in larger data consumption rates which, in turn, require
higher prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than for serial scans.
If prefetching does not occur during a serial scan, the query runs more slowly
because the agent waits for I/O. If prefetching does not occur during a parallel
scan, all subagents might need to wait while one subagent waits for I/O.

Because of its importance in this context, prefetching under intra-partition
parallelism is performed more aggressively; the sequential detection mechanism
tolerates larger gaps between adjacent pages, so that the pages can be considered
sequential. The width of these gaps increases with the number of subagents
involved in the scan.

Sequential prefetching:

Reading several consecutive pages into the buffer pool using a single I/O
operation can greatly reduce your application overhead.

Prefetching starts when the database manager determines that sequential I/O is
appropriate and that prefetching might improve performance. In cases such as
table scans and table sorts, the database manager automatically chooses sequential
prefetching. The following example, which probably requires a table scan, would
be a good candidate for sequential prefetching:

SELECT NAME FROM EMPLOYEE

Sequential detection

Sometimes, it is not immediately apparent that sequential prefetching will improve
performance. In such cases, the database manager can monitor I/O and activate
prefetching if sequential page reading is occurring. This type of sequential
prefetching, known as sequential detection, applies to both index and data pages.
Use the seqdetect database configuration parameter to control whether the
database manager performs sequential detection.

For example, if sequential detection is enabled, the following SQL statement might
benefit from sequential prefetching:

Chapter 3. Factors affecting performance 101

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer might have started to scan the table using an index
on the EMPNO column. If the table is highly clustered with respect to this index,
the data page reads will be almost sequential, and prefetching might improve
performance. Similarly, if many index pages must be examined, and the database
manager detects that sequential page reading of the index pages is occurring, index
page prefetching is likely.

Implications of the PREFETCHSIZE option for table spaces

The PREFETCHSIZE clause on either the CREATE TABLESPACE or the ALTER
TABLESPACE statement lets you specify the number of prefetched pages that will
be read from the table space when data prefetching is being performed. The value
that you specify (or 'AUTOMATIC') is stored in the PREFETCHSIZE column of the
SYSCAT.TABLESPACES catalog view.

It is good practice to explicitly set the PREFETCHSIZE value as a multiple of the
number of table space containers, the number of physical disks under each
container (if a RAID device is used), and the EXTENTSIZE value (the number of
pages that the database manager writes to a container before it uses a different
container) for your table space. For example, if the extent size is 16 pages and the
table space has two containers, you might set the prefetch size to 32 pages. If there
are five physical disks per container, you might set the prefetch size to 160 pages.

The database manager monitors buffer pool usage to ensure that prefetching does
not remove pages from the buffer pool if another unit of work needs them. To
avoid problems, the database manager can limit the number of prefetched pages to
be fewer than what was specified for the table space.

The prefetch size can have significant performance implications, particularly for
large table scans. Use the database system monitor and other system monitor tools
to help tune the prefetch size for your table spaces. You can gather information
about whether:
v There are I/O waits for your query, using monitoring tools that are available for

your operating system
v Prefetching is occurring, by looking at the pool_async_data_reads (buffer pool

asynchronous data reads) data element provided by the database system
monitor

If there are I/O waits while a query is prefetching data, you can increase the value
of PREFETCHSIZE. If the prefetcher is not the cause of these I/O waits, increasing
the PREFETCHSIZE value will not improve the performance of your query.

In all types of prefetching, multiple I/O operations might be performed in parallel
if the prefetch size is a multiple of the extent size for the table space, and the
extents are in separate containers. For better performance, configure the containers
to use separate physical devices.

Block-based buffer pools for improved sequential prefetching:

Prefetching pages from disk is expensive because of I/O overhead. Throughput
can be significantly improved if processing overlaps with I/O.

102 Troubleshooting and Tuning Database Performance

Most platforms provide high performance primitives that read contiguous pages
from disk into noncontiguous portions of memory. These primitives are usually
called scattered read or vectored I/O. On some platforms, performance of these
primitives cannot compete with doing I/O in large block sizes.

By default, buffer pools are page-based, which means that contiguous pages on
disk are prefetched into noncontiguous pages in memory. Sequential prefetching
can be enhanced if contiguous pages can be read from disk into contiguous pages
within a buffer pool.

You can create block-based buffer pools for this purpose. A block-based buffer pool
consists of both a page area and a block area. The page area is required for
nonsequential prefetching workloads. The block area consist of blocks; each block
contains a specified number of contiguous pages, which is referred to as the block
size.

The optimal use of a block-based buffer pool depends on the specified block size.
The block size is the granularity at which I/O servers doing sequential prefetching
consider doing block-based I/O. The extent is the granularity at which table spaces
are striped across containers. Because multiple table spaces with different extent
sizes can be bound to a buffer pool defined with the same block size, consider how
the extent size and the block size will interact for efficient use of buffer pool
memory. Buffer pool memory can be wasted if:
v The extent size, which determines the prefetch request size, is smaller than the

block size specified for the buffer pool
v Some pages in the prefetch request are already present in the page area of the

buffer pool

The I/O server allows some wasted pages in each buffer pool block, but if too
many pages would be wasted, the I/O server does non-block-based prefetching
into the page area of the buffer pool, resulting in suboptimal performance.

For optimal performance, bind table spaces of the same extent size to a buffer pool
whose block size equals the table space extent size. Good performance can be
achieved if the extent size is larger than the block size, but not if the extent size is
smaller than the block size.

To create block-based buffer pools, use the CREATE BUFFERPOOL or ALTER
BUFFERPOOL statement.

Note: Block-based buffer pools are intended for sequential prefetching. If your
applications do not use sequential prefetching, the block area of the buffer pool is
wasted.

List prefetching:

List prefetching (or list sequential prefetching) is a way to access data pages efficiently,
even when those pages are not contiguous.

List prefetching can be used in conjunction with either single or multiple index
access.

If the optimizer uses an index to access rows, it can defer reading the data pages
until all of the row identifiers (RIDs) have been obtained from the index. For
example, the optimizer could perform an index scan to determine the rows and
data pages to retrieve.

Chapter 3. Factors affecting performance 103

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

And then use the following search criteria:
WHERE NAME BETWEEN 'A' and 'I'

If the data is not clustered according to this index, list prefetching includes a step
that sorts the list of RIDs that were obtained from the index scan.

I/O server configuration for prefetching and parallelism:

To enable prefetching, the database manager starts separate threads of control,
known as I/O servers, to read data pages.

As a result, query processing is divided into two parallel activities: data processing
(CPU) and data page I/O. The I/O servers wait for prefetch requests from the
CPU activity. These prefetch requests contain a description of the I/O that is
needed to satisfy the query.

Configuring enough I/O servers (with the num_ioservers database configuration
parameter) can greatly enhance the performance of queries that can benefit from
prefetching. To maximize the opportunity for parallel I/O, set num_ioservers to at
least the number of physical disks in the database.

It is better to overestimate than to underestimate the number of I/O servers. If you
specify extra I/O servers, these servers are not used, and their memory pages are
paged out with no impact on performance. Each I/O server process is numbered.
The database manager always uses the lowest numbered process, and as a result,
some of the higher numbered processes might never be used.

To estimate the number of I/O servers that you might need, consider the
following:
v The number of database agents that could be writing prefetch requests to the

I/O server queue concurrently
v The highest degree to which the I/O servers can work in parallel

Consider setting the value of num_ioservers to AUTOMATIC so that the database
manager can choose intelligent values based on the system configuration.

Illustration of prefetching with parallel I/O:

I/O servers are used to prefetch data into a buffer pool.

This process is shown in Figure 20 on page 105.

104 Troubleshooting and Tuning Database Performance

�1� The user application passes the request to the database agent that has been
assigned to the user application by the database manager.

�2�, �3�
The database agent determines that prefetching should be used to obtain
the data that is required to satisfy the request, and writes a prefetch
request to the I/O server queue.

�4�, �5�
The first available I/O server reads the prefetch request from the queue
and then reads the data from the table space into the buffer pool. The
number of I/O servers that can simultaneously fetch data from a table
space depends on the number of prefetch requests in the queue and the
number of I/O servers specified by the num_ioservers database
configuration parameter.

�6� The database agent performs the necessary operations on the data pages in
the buffer pool and returns the result to the user application.

Parallel I/O management:

If multiple containers exist for a table space, the database manager can initiate
parallel I/O, whereby the database manager uses multiple I/O servers to process
the I/O requirements of a single query.

1

2

33

4

5

6

Database

Table space

Database

Table space

Database
Agent

Database
Agent

Database
Agent

User
Application

I/O server
queue

I/O ServerI/O Server

Buffer Pool

Big Block
Read

Create
4K pages

Logical Buffer
Read

Asynchronous
Prefetch Request

SQL request SQL request SQL request

User
Application

User
Application

Figure 20. Prefetching data using I/O servers

Chapter 3. Factors affecting performance 105

Each I/O server processes the I/O workload for a separate container, so that
several containers can be read in parallel. Parallel I/O can result in significant
improvements in I/O throughput.

Although a separate I/O server can handle the workload for each container, the
actual number of I/O servers that can perform parallel I/O is limited to the
number of physical devices over which the requested data is spread. For this
reason, you need as many I/O servers as physical devices.

Parallel I/O is initiated differently in the following cases:
v For sequential prefetching, parallel I/O is initiated when the prefetch size is a

multiple of the extent size for a table space. Each prefetch request is divided into
smaller requests along extent boundaries. These small requests are then assigned
to different I/O servers.

v For list prefetching, each list of pages is divided into smaller lists according to the
container in which the data pages are stored. These small lists are then assigned
to different I/O servers.

v For database or table space backup and restore, the number of parallel I/O requests
is equal to the backup buffer size divided by the extent size, up to a maximum
value that is equal to the number of containers.

v For database or table space restore, the parallel I/O requests are initiated and
divided the same way as what is done for sequential prefetching. The data is not
restored into a buffer pool; it moves directly from the restore buffer to disk.

v When you load data, you can specify the level of I/O parallelism with the
DISK_PARALLELISM command option. If you do not specify this option, the
database manager uses a default value that is based on the cumulative number
of table space containers for all table spaces that are associated with the table.

For optimal parallel I/O performance, ensure that:
v There are enough I/O servers. Specify slightly more I/O servers than the

number of containers that are used for all table spaces within the database.
v The extent size and the prefetch size are appropriate for the table space. To

prevent overuse of the buffer pool, the prefetch size should not be too large. An
ideal size is a multiple of the extent size, the number of physical disks under
each container (if a RAID device is used), and the number of table space
containers. The extent size should be fairly small, with a good value being in the
range of 8 to 32 pages.

v The containers reside on separate physical drives.
v All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they reduce the potential
for optimized parallel prefetching. Consider the following examples:
– After a smaller container is filled, additional data is stored in the remaining

containers, causing the containers to become unbalanced. Unbalanced
containers reduce the performance of parallel prefetching, because the number
of containers from which data can be prefetched might be less than the total
number of containers.

– If a smaller container is added at a later date and the data is rebalanced, the
smaller container will contain less data than the other containers. Its small
amount of data relative to the other containers will not optimize parallel
prefetching.

– If one container is larger and all of the other containers fill up, the larger
container is the only container to store additional data. The database manager
cannot use parallel prefetching to access this additional data.

106 Troubleshooting and Tuning Database Performance

v There is adequate I/O capacity when using intra-partition parallelism. On SMP
machines, intra-partition parallelism can reduce the elapsed time for a query by
running the query on multiple processors. Sufficient I/O capacity is required to
keep each processor busy. Additional physical drives are usually required to
provide that I/O capacity.
The prefetch size must be larger for prefetching to occur at higher rates, and to
use I/O capacity effectively.
The number of physical drives required depends on the speed and capacity of
the drives and the I/O bus, and on the speed of the processors.

Configuring IOCP on AIX:

AIX 5.3 TL9 SP2 and AIX 6.1 TL2 have the I/O completion ports (IOCP) file set
included as part of the base installation. However, if the minimum operating
system requirements were applied using an operating system upgrade rather than
using a new operating system installation, you must configure I/O completion
ports (IOCP) separately.
1. Enter the lslpp command to check whether the IOCP module is installed on

your system.
$ lslpp -l bos.iocp.rte

The resulting output should be similar to the following example:
Fileset Level State Description
--
Path: /usr/lib/objrepos

bos.iocp.rte 5.3.9.0 APPLIED I/O Completion Ports API

Path: /etc/objrepos
bos.iocp.rte 5.3.0.50 COMMITTED I/O Completion Ports API

2. Enter the lsdev command to check whether the status of the IOCP port is
Available.
$ lsdev -Cc iocp

The resulting output should match the following example:
iocp0 Available I/O Completion Ports

If the IOCP port status is Defined, change the status to Available.
a. Log in to the server as root and issue the following command:

smitty iocp

b. Select Change / Show Characteristics of I/O Completion Ports.
c. Change the configured state at system restart from Defined to Available.
d. Enter the lsdev command again to confirm that the status of the IOCP port

has changed to Available.

Database deactivation behavior in first-user connection
scenarios

A database is activated when a user first connects to it. In a single-partition
environment, the database is loaded into memory and remains in this state until
the last user disconnects. The same behavior applies to multi-partition
environments, where any first-user connection activates the database on both local
and catalog partitions for that database.

Chapter 3. Factors affecting performance 107

When the last user disconnects, the database shuts down on both local and any
remote partitions where this user is the last active user connection for the database.
This activation and deactivation of the database based on first connection and last
disconnection is known as implicit activation. Activation is initiated by the first user
connection, and the activation remains in effect until the user executes a
CONNECT RESET (or until the user terminates or drops the connection), which
results in the database being implicitly deactivated.

The process of loading a database into memory is very involved. It encompasses
initialization of all database components, including buffer pools, and is the type of
processing that should be minimized, particularly in performance-sensitive
environments. This behavior is of particular importance in multi-partition
environments, where queries that are issued from one database partition reach
other partitions that contain part of the target data set. Those database partitions
are activated or deactivated, depending on the connect and disconnect behavior of
the user applications. When a user issues a query that reaches a database partition
for the first time, the query assumes the cost of first activating that partition. When
that user disconnects, the database is deactivated unless other connections were
previously established against that remote partition. If the next incoming query
needs to access that remote partition, the database on that partition will first have
to be activated. This cost is accrued for each activation and deactivation of the
database (or database partition, where applicable).

The only exception to this behavior occurs if the user chooses to explicitly activate
the database by issuing the ACTIVATE DATABASE command. After this command
completes successfully, the database remains in memory, even if the last user
disconnects. This applies to both single- and multi-partition environments. To
deactivate such a database, issue the DEACTIVATE DATABASE command. Both
commands are global in scope, meaning that they will activate or deactivate the
database on all database partitions, if applicable. Given the processing-intensive
nature of loading a database into memory, consider explicitly activating databases
by using the ACTIVATE DATABASE command, rather than relying on implicit
activation through database connections.

Tuning sort performance
Because queries often require sorted or grouped results, proper configuration of the
sort heap is crucial to good query performance.

Sorting is required when:
v No index that satisfies a requested order exists (for example, a SELECT

statement that uses the ORDER BY clause)
v An index exists, but sorting would be more efficient than using the index
v An index is created
v An index is dropped, which causes index page numbers to be sorted

Elements that affect sorting

The following factors affect sort performance:
v Settings for the following configuration parameters:

– Sort heap size, (sortheap), which specifies the amount of memory to be used
for each sort

– Sort heap threshold (sheapthres) and the sort heap threshold for shared sorts
(sheapthres_shr), which control the total amount of memory that is available
for sorting across the instance

108 Troubleshooting and Tuning Database Performance

v The number of statements in a workload that require a large amount of sorting
v The presence or absence of indexes that could help avoid unnecessary sorting
v The use of application logic that does not minimize the need for sorting
v Parallel sorting, which improves sort performance, but which can only occur if

the statement uses intra-partition parallelism
v Whether or not the sort is overflowed. If the sorted data cannot fit into the sort

heap, which is a block of memory that is allocated each time a sort is performed,
the data overflows into a temporary table that is owned by the database.

v Whether or not the results of the sort are piped. If sorted data can return directly
without requiring a temporary table to store the sorted list, it is a piped sort.
In a piped sort, the sort heap is not freed until the application closes the cursor
that is associated with the sort. A piped sort can continue to use up memory
until the cursor is closed.

Although a sort can be performed entirely in sort memory, this might cause
excessive page swapping. In this case, you lose the advantage of a large sort heap.
For this reason, you should use an operating system monitor to track changes in
system paging whenever you adjust the sorting configuration parameters.

Techniques for managing sort performance

Identify particular applications and statements where sorting is a significant
performance problem:
1. Set up event monitors at the application and statement level to help you

identify applications with the longest total sort time.
2. Within each of these applications, find the statements with the longest total sort

time.
You can also search through the explain tables to identify queries that have sort
operations.

3. Use these statements as input to the Design Advisor, which will identify and
can create indexes to reduce the need for sorting.

You can use the self-tuning memory manager (STMM) to automatically and
dynamically allocate and deallocate memory resources required for sorting. To use
this feature:
v Enable self-tuning memory for the database by setting the self_tuning_mem

configuration parameter to ON.
v Set the sortheap and sheapthres_shr configuration parameters to AUTOMATIC.
v Set the sheapthres configuration parameter to 0.

You can also use the database system monitor and benchmarking techniques to
help set the sortheap, sheapthres_shr, and sheapthres configuration parameters.
For each database manager and for each database:
1. Set up and run a representative workload.
2. For each applicable database, collect average values for the following

performance variables over the benchmark workload period:
v Total sort heap in use (the value of the sort_heap_allocated monitor element)
v Active sorts and active hash joins (the values of the active_sorts and

active_hash_joins monitor elements)
3. Set sortheap to the average total sort heap in use for each database.

Chapter 3. Factors affecting performance 109

Note: If long keys are used for sorts, you might need to increase the value of
the sortheap configuration parameter.

4. Set the sheapthres. To estimate an appropriate size:
a. Determine which database in the instance has the largest sortheap value.
b. Determine the average size of the sort heap for this database.

If this is too difficult to determine, use 80% of the maximum sort heap.
c. Set sheapthres to the average number of active sorts, times the average size

of the sort heap computed above. This is a recommended initial setting. You
can then use benchmark techniques to refine this value.

Data organization
Over time, data in your tables can become fragmented, increasing the size of tables
and indexes as records become distributed over more and more data pages. This
can increase the number of pages that need to be read during query execution.
Reorganization of tables and indexes compacts your data, reclaiming wasted space
and improving data access.

The steps to perform a table or index reorganization are as follows:
1. Determine whether you need to reorganize any tables or indexes.
2. Choose a reorganization method.
3. Perform the reorganization of identified objects.
4. Optional: Monitor the progress of reorganization.
5. Determine whether or not the reorganization was successful. For offline table

reorganization and any index reorganization, the operation is synchronous, and
the outcome is apparent upon completion of the operation. For online table
reorganization, the operation is asynchronous, and details are available from
the history file.

6. Collect statistics on reorganized objects.
7. Rebind applications that access reorganized objects.

Table reorganization
After many changes to table data, logically sequential data might reside on
nonsequential data pages, so that the database manager must perform additional
read operations to access data. Also, if many rows have been deleted, additional
read operations are also required. In this case, you might consider reorganizing the
table to match the index and to reclaim space.

You can also reorganize the system catalog tables.

Because reorganizing a table usually takes more time than updating statistics, you
could execute the RUNSTATS command to refresh the current statistics for your
data, and then rebind your applications. If refreshed statistics do not improve
performance, reorganization might help.

The following factors can indicate a need for table reorganization:
v There has been a high volume of insert, update, and delete activity against

tables that are accessed by queries.
v There have been significant changes in the performance of queries that use an

index with a high cluster ratio.
v Executing the RUNSTATS command to refresh table statistics does not improve

performance.

110 Troubleshooting and Tuning Database Performance

v Output from the REORGCHK command indicates a need for table
reorganization.

Note: With DB2 V9.7 Fix Pack 1 and later releases, higher data availability for a
data partitioned table with only partitioned indexes (except system-generated XML
path indexes) is achieved by reorganizing data for a specific data partition.
Partition-level reorganization performs a table reorganization on a specified data
partition while the remaining data partitions of the table remain accessible. The
output from the REORGCHK command for a partitioned table contains statistics
and recommendations for performing partition-level reorganizations.

REORG TABLE commands and REORG INDEXES ALL commands can be issued
on a data partitioned table to concurrently reorganize different data partitions or
partitioned indexes on a partition. When concurrently reorganizing data partitions
or the partitioned indexes on a partition, users can access the unaffected partitions
but cannot access the affected partitions. All the following criteria must be met to
issue REORG commands that operate concurrently on the same table:
v Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
v Each REORG command must use the ALLOW NO ACCESS mode to restrict

access to the data partitions.
v The partitioned table must have only partitioned indexes if issuing REORG

TABLE commands. No nonpartitioned indexes (except system-generated XML
path indexes) can be defined on the table.

Choosing a table reorganization method
There are two approaches to table reorganization: classic reorganization (offline) and
inplace reorganization (online).

Offline reorganization is the default behavior. To specify an online reorganization
operation, use the INPLACE option on the REORG TABLE command.

An alternative approach to inplace reorganization, using online table move stored
procedures, is also available. See “Moving tables online by using the
ADMIN_MOVE_TABLE procedure”.

Each approach has its advantages and drawbacks, which are summarized below.
When choosing a reorganization method, consider which approach offers
advantages that align with your priorities. For example, if recoverability in case of
failure is more important than performance, online reorganization might be
preferable.

Advantages of offline reorganization

This approach offers:
v The fastest table reorganization operations, especially if large object (LOB) or

long field data is not included
v Perfectly clustered tables and indexes upon completion
v Indexes that are automatically rebuilt after a table has been reorganized; there is

no separate step for rebuilding indexes
v The use of a temporary table space for building a shadow copy; this reduces the

space requirements for the table space that contains the target table or index
v The use of an index other than the clustering index to re-cluster the data

Chapter 3. Factors affecting performance 111

Disadvantages of offline reorganization

This approach is characterized by:
v Limited table access; read access only during the sort and build phase of a reorg

operation
v A large space requirement for the shadow copy of the table that is being

reorganized
v Less control over the reorg process; an offline reorg operation cannot be paused

and restarted

Advantages of online reorganization

This approach offers:
v Full table access, except during the truncation phase of a reorg operation
v More control over the reorg process, which runs asynchronously in the

background, and which can be paused, resumed, or stopped; for example, you
can pause an in-progress reorg operation if a large number of update or delete
operations are running against the table

v A recoverable process in the event of a failure
v A reduced requirement for working storage, because a table is processed

incrementally
v Immediate benefits of reorganization, even before a reorg operation completes

Disadvantages of online reorganization

This approach is characterized by:
v Imperfect data or index clustering, depending on the type of transactions that

access the table during a reorg operation
v Poorer performance than an offline reorg operation
v Potentially high logging requirements, depending on the number of rows being

moved, the number of indexes that are defined on the table, and the size of
those indexes

v A potential need for subsequent index reorganization, because indexes are
maintained, not rebuilt

Table 1. Comparison of online and offline reorganization

Characteristic Offline reorganization Online reorganization

Performance Fast Slow

Clustering factor of data at
completion

Good Not perfectly clustered

Concurrency (access to the
table)

Ranges from no access to
read-only

Ranges from read-only to full
access

Data storage space
requirement

Significant Not significant

Logging storage space
requirement

Not significant Could be significant

User control (ability to
pause, restart process)

Less control More control

Recoverability Not recoverable Recoverable

Index rebuilding Done Not done

112 Troubleshooting and Tuning Database Performance

Table 1. Comparison of online and offline reorganization (continued)

Characteristic Offline reorganization Online reorganization

Supported for all types of
tables

Yes No

Ability to specify an index
other than the clustering
index

Yes No

Use of a temporary table
space

Yes No

Table 2. Table types that are supported for online and offline reorganization

Table type
Offline reorganization
supported

Online reorganization
supported

Multidimensional clustering
tables (MDC)

Yes1 No

Range-clustered tables (RCT) No2 No

Append mode tables No No3

Tables with long field or large
object (LOB) data

Yes4 No

System catalog tables:
SYSIBM.SYSDBAUTH,
SYSIBM.SYSROUTINEAUTH,
SYSIBM.SYSSEQUENCES,
SYSIBM.SYSTABLES

Yes No

Notes:

1. Because clustering is automatically maintained through MDC block indexes,
reorganization of an MDC table involves space reclamation only. No indexes can be
specified.

2. The range area of an RCT always remains clustered.

3. Online reorganization can be performed after append mode is disabled.

4. Reorganizing long field or large object (LOB) data can take a significant amount of
time, and does not improve query performance; it should only be done for space
reclamation.

Monitoring the progress of table reorganization

Information about the progress of a current table reorg operation is written to the
history file. The history file contains a record for each reorganization event. To
view this file, execute the LIST HISTORY command against the database that
contains the table being reorganized.

You can also use table snapshots to monitor the progress of table reorg operations.
Table reorganization monitoring data is recorded, regardless of the setting for the
database system monitor table switch.

If an error occurs, an SQLCA message is written to the history file. In the case of
an inplace table reorg operation, the status is recorded as PAUSED.

Classic (offline) table reorganization
Classic table reorganization uses a shadow copy approach, building a full copy of
the table that is being reorganized.

Chapter 3. Factors affecting performance 113

There are four phases in a classic or offline table reorganization operation:
1. SORT - During this phase, if an index was specified on the REORG TABLE

command, or a clustering index was defined on the table, the rows of the table
are first sorted according to that index. If the INDEXSCAN option is specified,
an index scan is used to sort the table; otherwise, a table scan sort is used. This
phase applies only to a clustering table reorg operation. Space reclaiming reorg
operations begin at the build phase.

2. BUILD - During this phase, a reorganized copy of the entire table is built,
either in its table space or in a temporary table space that was specified on the
REORG TABLE command.

3. REPLACE - During this phase, the original table object is replaced by a copy
from the temporary table space, or a pointer is created to the newly built object
within the table space of the table that is being reorganized.

4. RECREATE ALL INDEXES - During this phase, all indexes that were defined
on the table are recreated.

You can monitor the progress of the table reorg operation and identify the current
phase using the snapshot monitor or snapshot administrative views.

The locking conditions are more restrictive in offline mode than in online mode.
Read access to the table is available while the copy is being built. However,
exclusive access to the table is required when the original table is being replaced
by the reorganized copy, or when indexes are being rebuilt.

An IX table space lock is required during the entire table reorg process. During the
build phase, a U lock is acquired and held on the table. A U lock allows the lock
owner to update the data in the table. Although no other application can update
the data, read access is permitted. The U lock is upgraded to a Z lock after the
replace phase starts. During this phase, no other applications can access the data.
This lock is held until the table reorg operation completes.

A number of files are created by the offline reorganization process. These files are
stored in your database directory. Their names are prefixed with the table space
and object IDs; for example, 0030002.ROR is the state file for a table reorg operation
whose table space ID is 3 and table ID is 2.

The following list shows the temporary files that are created in a system managed
space (SMS) table space during an offline table reorg operation:
v .DTR - Data shadow copy file
v .LFR - Long field file
v .LAR - Long field allocation file
v .RLB - LOB data file
v .RBA - LOB allocation file
v .BMR - Block object file for multidimensional clustering (MDC) tables

The following temporary file is created during an index reorg operation:
v .IN1 - Shadow copy file

The following list shows the temporary files that are created in the system
temporary table space during the sort phase:
v .TDA - Data file
v .TIX - Index file

114 Troubleshooting and Tuning Database Performance

v .TLF - Long field file
v .TLA - Long field allocation file
v .TLB - LOB file
v .TBA - LOB allocation file
v .TBM - Block object file

The files that are associated with the reorganization process should not be
manually removed from your system.

Reorganizing tables offline:

Reorganizing tables offline is the fastest way to defragment your tables.
Reorganization reduces the amount of space that is required for a table and
improves data access and query performance.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.
1. To reorganize a table using the REORG TABLE command, simply specify the

name of the table. For example:
reorg table employee

You can reorganize a table using a specific temporary table space. For example:
reorg table employee use mytemp

You can reorganize a table and have the rows reordered according to a specific
index. For example:

reorg table employee index myindex

2. To reorganize a table using an SQL CALL statement, specify the REORG
TABLE command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd ('reorg table employee')

3. To reorganize a table using the administrative application programming
interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Recovery of an offline table reorganization:

An offline table reorganization is an all-or-nothing process until the beginning of
the replace phase. If your system crashes during the sort or build phase, the reorg
operation is rolled back and will not be redone during crash recovery.

If your system crashes after the beginning of the replace phase, the reorg operation
must complete, because all of the reorganization work has been done and the
original table might no longer be available. During crash recovery, the temporary
file for the reorganized table object is required, but not the temporary table space
that is used for the sort. Recovery will restart the replace phase from the
beginning, and all of the data in the copy object is required for recovery. There is a
difference between system managed space (SMS) and database managed space

Chapter 3. Factors affecting performance 115

(DMS) table spaces in this case: the reorganized table object in SMS must be copied
from one object to the other, but the reorganized table object in DMS is simply
pointed to, and the original table is dropped, if the reorganization was done in the
same table space. Indexes are not rebuilt, but are marked invalid during crash
recovery, and the database will follow the usual rules to determine when they are
rebuilt, either at database restart or upon first index access.

If a crash occurs during the index rebuild phase, nothing is redone because the
new table object already exists. Indexes are handled as described previously.

During rollforward recovery, the reorg operation is redone if the old version of the
table is on disk. The rollforward utility uses the record IDs (RIDs) that are logged
during the build phase to reapply the operations that created the reorganized table,
repeating the build and replace phases. Indexes are handled as described
previously. A temporary table space is required for a copy of the reorganized object
only if a temporary table space was used originally. During rollforward recovery,
multiple reorg operations can be redone concurrently (parallel recovery).

Improving the performance of offline table reorganization:

The performance of an offline table reorganization is largely determined by the
characteristics of the database environment.

There is almost no difference in performance between a reorg operation that is
running in ALLOW NO ACCESS mode and one that is running in ALLOW READ
ACCESS mode. The difference is that during a reorg operation in ALLOW READ
ACCESS mode, the utility might have to wait for other applications to complete
their scans and release their locks before replacing the table. The table is
unavailable during the index rebuild phase of a reorg operation that is running in
either mode.

Tips for improving performance

v If there is enough space to do so, use the same table space for both the original
table and the reorganized copy of the table, instead of using a temporary table
space. This saves the time that is needed to copy the reorganized table from the
temporary table space.

v Consider dropping unnecessary indexes before reorganizing a table so that fewer
indexes need to be maintained during the reorg operation.

v Ensure that the prefetch size of the table spaces on which the reorganized table
resides is set properly.

v Tune the sortheap and sheapthres database configuration parameters to control
the space that is available for sorts. Because each processor will perform a
private sort, the value of sheapthres should be at least sortheap x
number-of-processors.

v Adjust the number of page cleaners to ensure that dirty index pages in the
buffer pool are cleaned as soon as possible.

Inplace (online) table reorganization
Inplace table reorganization enables you to reorganize a table while you have full
access to its data. The cost of this uninterrupted access to the data is a slower table
reorg operation.

116 Troubleshooting and Tuning Database Performance

During an inplace or online table reorg operation, portions of a table are
reorganized sequentially. Data is not copied to a temporary table space; instead,
rows are moved within the existing table object to reestablish clustering, reclaim
free space, and eliminate overflow rows.

There are four main phases in an online table reorg operation:
1. SELECT n pages

During this phase, the database manager selects a range of n pages, where n is
the size of an extent with a minimum of 32 sequential pages for reorg
processing.

2. Vacate the range
The reorg utility moves all rows within this range to free pages in the table.
Each row that is moved leaves behind a reorg table pointer (RP) record that
contains the record ID (RID) of the row’s new location. The row is placed on a
free page in the table as a reorg table overflow (RO) record that contains the
data. After the utility has finished moving a set of rows, it waits until all
applications that are accessing data in the table are finished. These “old
scanners” use old RIDs when accessing the table data. Any table access that
starts during this waiting period (a “new scanner”) uses new RIDs to access the
data. After all of the old scanners have completed, the reorg utility cleans up
the moved rows, deleting RP records and converting RO records into regular
records.

3. Fill the range
After all rows in a specific range have been vacated, they are written back in a
reorganized format, sorted according to any indexes that were used, and
obeying any PCTFREE restrictions that were defined. When all of the pages in
the range have been rewritten, the next n sequential pages in the table are
selected, and the process is repeated.

4. Truncate the table
By default, when all pages in the table have been reorganized, the table is
truncated to reclaim space. If the NOTRUNCATE option has been specified, the
reorganized table is not truncated.

Files created during an online table reorg operation

During an online table reorg operation, an .OLR state file is created for each
database partition. This binary file has a name whose format is xxxxyyyy.OLR,
where xxxx is the table space ID and yyyy is the object ID in hexadecimal format.
This file contains the following information that is required to resume an online
reorg operation from the paused state:
v The type of reorg operation
v The life log sequence number (LSN) of the table being reorganized
v The next range to be vacated
v Whether the reorg operation is clustering the data or just reclaiming space
v The ID of the index that is being used to cluster the data

A checksum is performed on the .OLR file. If the file becomes corrupted, causing
checksum errors, or if the table LSN does not match the life LSN, a new reorg
operation is initiated, and a new state file is created.

If the .OLR state file is deleted, the reorg process cannot resume, SQL2219N is
returned, and a new reorg operation must be initiated.

Chapter 3. Factors affecting performance 117

The files that are associated with the reorganization process should not be
manually removed from your system.

Reorganizing tables online:

An online or inplace table reorganization allows users to access a table while it is
being reorganized.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.
1. To reorganize a table online using the REORG TABLE command, simply specify

the name of the table and the INPLACE option. For example:
reorg table employee inplace

2. To reorganize a table online using an SQL CALL statement, specify the REORG
TABLE command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd ('reorg table employee inplace')

3. To reorganize a table online using the administrative application programming
interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Recovery of an online table reorganization:

The failure of an online table reorganization is often due to processing errors, such
as disk full or logging errors. If an online table reorganization fails, an SQLCA
message is written to the history file.

If a failure occurs during run time, the online table reorg operation is paused and
then rolled back during crash recovery. You can subsequently resume the reorg
operation by specifying the RESUME option on the REORG TABLE command.
Because the process is fully logged, online table reorganization is guaranteed to be
recoverable.

Under some circumstances, an online table reorg operation might exceed the limit
that is set by the value of the num_log_span database configuration parameter. In
this case, the database manager will force the reorg utility and put it into PAUSE
state. In snapshot monitor output, the state of the reorg utility will appear as
PAUSED.

The online table reorg pause is interrupt-driven, which means that it can be
triggered either by a user (using the PAUSE option on the REORG TABLE
command, or the FORCE APPLICATION command) or by the database manager in
certain circumstances; for example, in the event of a system crash.

If one or more database partitions in a partitioned database environment
encounters an error, the SQLCODE that is returned will be the one from the first
database partition that reports an error.

Pausing and restarting an online table reorganization:

118 Troubleshooting and Tuning Database Performance

An online table reorganization that is in progress can be paused and restarted by
the user.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table whose online reorganization is to be paused or
restarted. You must also have a database connection to pause or restart an online
table reorganization.
1. To pause an online table reorganization using the REORG TABLE command,

specify the name of the table, the INPLACE option, and the PAUSE option. For
example:

reorg table employee inplace pause

2. To restart a paused online table reorganization, specify the RESUME option. For
example:

reorg table employee inplace resume

When an online table reorg operation is paused, you cannot begin a new
reorganization of that table. You must either resume or stop the paused
operation before beginning a new reorganization process.
Following a RESUME request, the reorganization process respects whatever
truncation option is specified on the current RESUME request. For example, if
the NOTRUNCATE option is not specified on the current RESUME request, a
NOTRUNCATE option specified on the original REORG TABLE command—or
with any previous RESUME requests—is ignored.
A table reorg operation cannot resume after a restore and rollforward operation.

Locking and concurrency considerations for online table reorganization:

One of the most important aspects of online table reorganization—because it is so
crucial to application concurrency—is how locking is controlled.

An online table reorg operation can hold the following locks:
v To ensure write access to table spaces, an IX lock is acquired on the table spaces

that are affected by the reorg operation.
v A table lock is acquired and held during the entire reorg operation. The level of

locking is dependent on the access mode that is in effect during reorganization:
– If ALLOW WRITE ACCESS was specified, an IS table lock is acquired.
– If ALLOW READ ACCESS was specified, an S table lock is acquired.

v An S lock on the table is requested during the truncation phase. Until the S lock
is acquired, rows can be inserted by concurrent transactions. These inserted rows
might not be seen by the reorg utility, and could prevent the table from being
truncated. After the S table lock is acquired, rows that prevent the table from
being truncated are moved to compact the table. After the table is compacted, it
is truncated, but only after all transactions that are accessing the table at the
time the truncation point is determined have completed.

v A row lock might be acquired, depending on the type of table lock:
– If an S lock is held on the table, there is no need for individual row-level S

locks, and further locking is unnecessary.
– If an IS lock is held on the table, an NS row lock is acquired before the row is

moved, and then released after the move is complete.
v Certain internal locks might also be acquired during an online table reorg

operation.

Chapter 3. Factors affecting performance 119

Locking has an impact on the performance of both online table reorg operations
and concurrent user applications. You can use lock snapshot data to help you to
understand the locking activity that occurs during online table reorganizations.

Monitoring a table reorganization
You can use the GET SNAPSHOT command, the SNAPTAB_REORG
administrative view, or the SNAP_GET_TAB_REORG table function to obtain
information about the status of your table reorganization operations.
v To access information about reorganization operations using SQL, use the

SNAPTAB_REORG administrative view. For example, the following query
returns details about table reorganization operations on all database partitions
for the currently connected database. If no tables have been reorganized, no
rows are returned.

select
substr(tabname, 1, 15) as tab_name,
substr(tabschema, 1, 15) as tab_schema,
reorg_phase,
substr(reorg_type, 1, 20) as reorg_type,
reorg_status,
reorg_completion,
dbpartitionnum

from sysibmadm.snaptab_reorg
order by dbpartitionnum

v To access information about reorganization operations using the snapshot
monitor, use the GET SNAPSHOT FOR TABLES command and examine the
values of the table reorganization monitor elements.

Because offline table reorg operations are synchronous, errors are returned to the
caller of the utility (an application or the command line processor). And because
online table reorg operations are asynchronous, error messages in this case are not
returned to the CLP. To view SQL error messages that are returned during an
online table reorg operation, use the LIST HISTORY REORG command.

An online table reorg operation runs in the background as the db2Reorg process.
This process continues running even if the calling application terminates its
database connection.

Index reorganization
As tables are updated, index performance can degrade.

The degradation can occur in the following ways:
v Leaf pages become fragmented. When leaf pages are fragmented, I/O costs

increase because more leaf pages must be read to fetch table pages.
v The physical index page order no longer matches the sequence of keys on those

pages, resulting in a badly clustered index. When leaf pages are badly clustered,
sequential prefetching is inefficient and the number of I/O waits increases.

v The index develops too many levels. In this case, the index should be
reorganized.

Index reorganization requires:
v SYSADM, SYSMAINT, SYSCTRL, DBADM, or SQLADM authority, or

CONTROL privilege on the table and its indexes
v An amount of free space in the table space where the indexes are stored that is

equal to the current size of the indexes. Consider placing indexes in a large table
space when you issue the CREATE TABLE statement.

120 Troubleshooting and Tuning Database Performance

v Additional log space. The index reorg utility logs its activities.

If you specify the MINPCTUSED option on the CREATE INDEX statement, the
database server automatically merges index leaf pages if a key is deleted and the
free space becomes less than the specified value. This process is called online index
defragmentation.

To restore index clustering, free up space, and reduce leaf levels, you can use one
of the following methods:
v Drop and recreate the index.
v Use the REORG TABLE command with options that allow you to reorganize

both the table and its indexes offline.
v Use the REORG INDEXES command to reorganize indexes online. You might

choose this method in a production environment, because it allows users to read
from and write to the table while its indexes are being rebuilt.

Online index reorganization

When you use the REORG INDEXES command with the ALLOW WRITE ACCESS
option, all indexes on the specified table are rebuilt while read and write access to
the table continues. During reorganization, any changes to the underlying table
that would affect the indexes are logged. The reorg operation processes these
logged changes while rebuilding the indexes.

Changes to the underlying table that would affect the indexes are also written to
an internal memory buffer, if such space is available for use. The internal buffer is
a designated memory area that is allocated on demand from the utility heap. The
use of a memory buffer space enables the index reorg utility to process the changes
by reading directly from memory first, and then reading through the logs, if
necessary, but at a much later time. The allocated memory is freed after the reorg
operation completes.

Online index reorganization in ALLOW WRITE ACCESS mode (with or without
the CLEANUP ONLY option) is not supported for spatial indexes or
multidimensional clustering (MDC) tables.

With DB2 V9.7 Fix Pack 1 and later releases, using the REORG INDEXES ALL
command on a data partitioned table and specifying a partition with the ON
DATA PARTITION clause reorganizes the partitioned indexes for single data
partition. During index reorganization, the unaffected partitions remain read and
write accessible access is restricted only to the affected partition.

REORG TABLE commands and REORG INDEXES ALL commands can be issued
on a data partitioned table to concurrently reorganize different data partitions or
partitioned indexes on a partition. When concurrently reorganizing data partitions
or the partitioned indexes on a partition, users can access the unaffected partitions.
All the following criteria must be met to issue REORG commands that operate
concurrently on the same table:
v Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
v Each REORG command must use the ALLOW NO ACCESS mode to restrict

access to the data partitions.

Chapter 3. Factors affecting performance 121

v The partitioned table must have only partitioned indexes if issuing REORG
TABLE commands. No nonpartitioned indexes (except system-generated XML
path indexes) can be defined on the table.

Note: The output from the REORGCHK command contains statistics and
recommendations for reorganizing indexes. For a partitioned table, the output
contains statistics and recommendations for reorganizing partitioned and
nonpartitioned indexes.

Locking and concurrency considerations for online index
reorganization
Online index reorganization is a term applied to index reorg that is executed with
the ALLOW READ ACCESS or ALLOW WRITE ACCESS option. These options
allow users to access the table while its indexes are being reorganized. During
online index reorganization, new indexes are built as additional copies while the
original indexes remain intact. Concurrent transactions use the original indexes
while the new indexes are created. At the end of the reorg operation, the original
indexes are replaced by the new indexes. Transactions that are committed in the
meantime are reflected in the new indexes after the replacement of the original
indexes. If the reorg operation fails and the transaction is rolled back, the original
indexes remain intact.

An online table reorg operation can hold the following locks:
v To ensure access to table spaces, an IX-lock is acquired on the table spaces

affected by the reorg operation. This includes table spaces that hold the table, as
well as partition, and index objects.

v To prevent the affected table from being altered during reorg, an X alter table
lock is acquired.

v A table lock is acquired and held throughout the reorg operation. The type of
lock depends on the table type, access mode and reorg option:
– For nonpartitioned tables:

- If ALLOW READ ACCESS is specified, a U-lock is acquired on the table.
- If ALLOW WRITE ACCESS is specified, an IN-lock is acquired on the table.
- If CLEANUP ONLY is specified, an S-lock is acquired on the table for

READ access, and IX-lock for WRITE access.
– For partitioned tables, reorg with ALLOW READ or WRITE ACCESS is

supported at partition level only:
- If ALLOW READ ACCESS is specified, a U-lock is acquired on the

partition.
- If ALLOW WRITE ACCESS is specified, an IS-lock is acquired on the

partition.
- If CLEANUP ONLY is specified, an S-lock is acquired on the partition for

READ access, and an IX-lock for WRITE access.
- An IS-lock is acquired on the table regardless of which access mode or

option is specified.
v An exclusive Z-lock on the table or partition is requested at the end of index

reorg. If a partitioned table contains nonpartitioned indexes, then the Z-lock is
acquired on the table as well as the partition. This lock suspends table and
partition access to allow for the replacement of the original indexes by the new
indexes. This lock is held until transactions that are committed during reorg are
reflected in the new indexes.

v The IS table lock and NS row lock are acquired on the system catalog table
SYSIBM.SYSTABLES.

122 Troubleshooting and Tuning Database Performance

v For a partition level reorg, IS table lock and NS row lock are also acquired on
the system catalog table SYSIBM.SYSDATAPARTITIONS.

v Certain internal locks might also be acquired during an online index reorg
operation.

v Online index reorganization may have impact on concurrency if the reorg
operation fails. For example, the reorg could fail due to insufficient memory, lack
of disk space, or a lock timeout. The reorg transaction performs certain updates
before aborting. To perform updates, reorg must wait on existing transaction to
be committed. This might block other transactions in the process. Starting in
DB2 Version 9.7 Fix Pack 1, reorg requests a special drain lock on the index
object. Reorg operations will wait for existing transactions to finish; however,
new requests to access the index object are allowed.

Determining when to reorganize tables and indexes
After many changes to table data, logically sequential data might be located on
nonsequential physical data pages, especially if many update operations have
created overflow records. When the data is organized in this way, the database
manager must perform additional read operations to access required data.
Additional read operations are also required if many rows have been deleted.

Table reorganization defragments the data, eliminating wasted space. It also
reorders the rows to incorporate overflow records, improving data access and,
ultimately, query performance. You can specify that the data should be reordered
according to a particular index, so that queries can access the data with a minimal
number of read operations.

Many changes to table data can cause index performance to degrade. Index leaf
pages can become fragmented or badly clustered, and the index could develop
more levels than necessary for optimal performance. All of these issues cause more
I/Os and can degrade performance.

Any one of the following factors might indicate that you should reorganize a table
or index:
v A high volume of insert, update, and delete activity against a table since the

table was last reorganized
v Significant changes in the performance of queries that use an index with a high

cluster ratio
v Executing the RUNSTATS command to refresh statistical information does not

improve performance
v Output from the REORGCHK command suggests that performance can be

improved by reorganizing a table or its indexes
In some cases, the reorgchk utility will always recommend table reorganization,
even after a table reorg operation has been performed. For example, using a
32-KB page size with an average record length of 15 bytes and a maximum of
253 records per page means that each page has 32 700 - (15 x 253) = 28 905
unusable bytes. This means that approximately 88% of the page is free space.
You should analyze reorgchk utility recommendations and assess the potential
benefits against the costs of performing a reorganization.

The REORGCHK command returns statistical information about data organization
and can advise you about whether particular tables or indexes need to be
reorganized. However, running specific queries against the SYSSTAT views at
regular intervals or at specific times can build a history that will help you to
identify trends that have potentially significant performance implications.

Chapter 3. Factors affecting performance 123

To determine whether there is a need to reorganize your tables or indexes, query
the SYSSTAT views and monitor the following statistics:
v Overflow of rows

Query the OVERFLOW column in the SYSSTAT.TABLES view to monitor the
overflow value. The value represents the number of rows that do not fit on their
original pages. Row data can overflow when variable length columns cause the
record length to expand to the point that a row no longer fits into its assigned
location on the data page. Length changes can also occur if a column is added to
the table. In this case, a pointer is kept at the original location in the row and
the actual value is stored in another location that is indicated by the pointer.
This can impact performance because the database manager must follow the
pointer to find the contents of the column. This two-step process increases the
processing time and might also increase the number of I/Os that are required.
Reorganizing the table data will eliminate any row overflows.

v Fetch statistics
Query the following columns in the SYSSTAT.INDEXES catalog view to
determine the effectiveness of the prefetchers when the table is accessed in index
order. These statistics characterize the average performance of the prefetchers
against the underlying table.
– The AVERAGE_SEQUENCE_FETCH_PAGES column stores the average

number of pages that can be accessed in sequence. Pages that can be accessed
in sequence are eligible for prefetching. A small number indicates that the
prefetchers are not as effective as they could be, because they cannot read in
the full number of pages that is specified by the PREFETCHSIZE value for
the table space. A large number indicates that the prefetchers are performing
effectively. For a clustered index and table, this number should approach the
value of NPAGES, the number of pages that contain rows.

– The AVERAGE_RANDOM_FETCH_PAGES column stores the average
number of random table pages that are fetched between sequential page
accesses when fetching table rows using an index. The prefetchers ignore
small numbers of random pages when most pages are in sequence, and
continue to prefetch to the configured prefetch size. As the table becomes
more disorganized, the number of random fetch pages increases.
Disorganization is usually caused by insertions that occur out of sequence,
either at the end of the table or in overflow pages, and query performance is
impacted when an index is used to access a range of values.

– The AVERAGE_SEQUENCE_FETCH_GAP column stores the average gap
between table page sequences when fetching table rows using an index.
Detected through a scan of index leaf pages, each gap represents the average
number of table pages that must be randomly fetched between sequences of
table pages. This occurs when many pages are accessed randomly, which
interrupts the prefetchers. A large number indicates that the table is
disorganized or poorly clustered to the index.

v Number of index leaf pages containing record identifiers (RIDs) that are marked
deleted but that have not yet been removed
RIDs are not usually physically deleted when they are marked deleted. This
means that useful space might be occupied by these logically deleted RIDs. To
retrieve the number of leaf pages on which every RID is marked deleted, query
the NUM_EMPTY_LEAFS column of the SYSSTAT.INDEXES view. For leaf pages
on which not all RIDs are marked deleted, the total number of logically deleted
RIDs is stored in the NUMRIDS_DELETED column.
Use this information to estimate how much space might be reclaimed by
invoking the REORG INDEXES command with the CLEANUP ALL option. To

124 Troubleshooting and Tuning Database Performance

reclaim only the space in pages on which all RIDs are marked deleted, invoke
the REORG INDEXES command with the CLEANUP ONLY PAGES option.

v Cluster-ratio and cluster-factor statistics for indexes
In general, only one of the indexes for a table can have a high degree of
clustering. A cluster-ratio statistic is stored in the CLUSTERRATIO column of the
SYSCAT.INDEXES catalog view. This value, between 0 and 100, represents the
degree of data clustering in the index. If you collect detailed index statistics, a
finer cluster-factor statistic between 0 and 1 is stored in the CLUSTERFACTOR
column instead, and the value of CLUSTERRATIO is -1. Only one of these two
clustering statistics can be recorded in the SYSCAT.INDEXES catalog view. To
compare CLUSTERFACTOR values with CLUSTERRATIO values, multiply the
CLUSTERFACTOR value by 100 to obtain a percentage value.
Index scans that are not index-only access might perform better with higher
cluster ratios. A low cluster ratio leads to more I/O for this type of scan, because
a data page is less likely to remain in the buffer pool until it is accessed again.
Increasing the buffer size might improve the performance of a less clustered
index.
If table data was initially clustered on a certain index, and the clustering
statistics indicate that the data is now poorly clustered on that same index, you
might want to reorganize the table to re-cluster the data.

v Number of leaf pages
Query the NLEAF column in the SYSCAT.INDEXES view to determine the
number of leaf pages that are occupied by an index. This number tells you how
many index page I/Os are needed for a complete scan of the index.
Ideally, an index should occupy as little space as possible to reduce the number
of I/Os that are required for an index scan. Random update activity can cause
page splits that increase the size of an index. During a table reorg operation,
each index can be rebuilt with the least amount of space.
By default, ten percent of free space is left on each index page when an index is
built. To increase the free space amount, specify the PCTFREE option when you
create the index. The specified PCTFREE value is used whenever you reorganize
the index. A free space value that is greater than ten percent might reduce the
frequency of index reorganization, because the extra space can accommodate
additional index insertions.

v Number of empty data pages
To calculate the number of empty pages in a table, query the FPAGES and
NPAGES columns in the SYSCAT.TABLES view and then subtract the NPAGES
value (the number of pages that contain rows) from the FPAGES value (the total
number of pages in use). Empty pages can occur when entire ranges of rows are
deleted.
As the number of empty pages increases, so does the need for table
reorganization. Reorganizing a table reclaims empty pages and reduces the
amount of space that a table uses. In addition, because empty pages are read
into the buffer pool during a table scan, reclaiming unused pages can improve
scan performance.
If the total number of in-use pages (FPAGES) in a table is less than or equal to
(NPARTITIONS * 1 extent size), table reorganization is not recommended.
NPARTITIONS represents the number of data partitions if the table is a
partitioned table; otherwise, its value is 1. In a partitioned database
environment, table reorganization is not recommended if FPAGES <= (the
number of database partitions in a database partition group of the table) *
(NPARTITIONS * 1 extent size).

Chapter 3. Factors affecting performance 125

Before reorganizing tables or indexes, consider the trade-off between the cost of
increasingly degraded query performance and the cost of table or index
reorganization, which includes processing time, elapsed time, and reduced
concurrency.

Costs of table and index reorganization
Performing a table or index reorganization incurs a certain amount of overhead
that must be considered when deciding whether to reorganize an object.

The costs of reorganizing tables and indexes include:
v Processing time of the executing utility
v Reduced concurrency (because of locking) while running the reorg utility.
v Extra storage requirements.

– Offline table reorganization requires more storage space to hold a shadow
copy of the table.

– Online or inplace table reorganization requires more log space.
– Offline index reorganization requires less log space and does not involve a

shadow copy.
– Online index reorganization requires more log space and more storage space

to hold a shadow copy of the index.

In some cases, a reorganized table might be larger than the original table. A table
might grow after reorganization in the following situations:
v In a clustering reorg table operation in which an index is used to determine the

order of the rows, more space might be required if the table records are of a
variable length, because some pages in the reorganized table might contain
fewer rows than in the original table.

v The amount of free space left on each page (represented by the PCTFREE value)
might have increased since the last reorganization.

Space requirements for an offline table reorganization

Because offline reorganization uses a shadow copy approach, you need enough
additional storage to accommodate another copy of the table. The shadow copy is
built either in the table space in which the original table resides or in a
user-specified temporary table space.

Additional temporary table space storage might be required for sort processing if a
table scan sort is used. The additional space required could be as large as the size
of the table being reorganized. If the clustering index is of system managed space
(SMS) type or unique database managed space (DMS) type, the recreation of this
index does not require a sort. Instead, this index is rebuilt by scanning the newly
reorganized data. Any other indexes that are recreated will require a sort,
potentially involving temporary space up to the size of the table being reorganized.

Offline table reorg operations generate few control log records, and therefore
consume a relatively small amount of log space. If the reorg utility does not use an
index, only table data log records are created. If an index is specified, or if there is
a clustering index on the table, record IDs (RIDs) are logged in the order in which
they are placed into the new version of the table. Each RID log record holds a
maximum of 8000 RIDs, with each RID consuming 4 bytes. This can contribute to
log space problems during an offline table reorg operation. Note that RIDs are only
logged if the database is recoverable.

126 Troubleshooting and Tuning Database Performance

Log space requirements for an online table reorganization

The log space that is required for an online table reorg operation is typically larger
than what is required for an offline table reorg. The amount of space that is
required is determined by the number of rows being reorganized, the number of
indexes, the size of the index keys, and how poorly organized the table is at the
outset. It is a good idea to establish a typical benchmark for log space consumption
associated with your tables.

Every row in a table will likely be moved twice during an online table reorg
operation. For each index, each table row must update the index key to reflect the
new location, and after all accesses to the old location have completed, the index
key is updated again to remove references to the old RID. When the row is moved
back, updates to the index key are performed again. All of this activity is logged to
make online table reorganization fully recoverable. There is a minimum of two
data log records (each including the row data) and four index log records (each
including the key data) for each row (assuming one index). Clustering indexes, in
particular, are prone to filling up the index pages, causing index splits and merges
which must also be logged.

Because the online table reorg utility issues frequent internal COMMIT statements,
it usually does not hold a large number of active logs. An exception can occur
during the truncation phase, when the utility requests an S table lock. If the utility
cannot acquire the lock, it waits, and other transactions might quickly fill up the
logs in the meantime.

Reducing the need to reorganize tables and indexes
You can use different strategies to reduce the need for (and the costs associated
with) table and index reorganization.

Reducing the need to reorganize tables

To reduce the need for table reorganization:
v Use multi-partition tables.
v Create multidimensional clustering (MDC) tables. For MDC tables, clustering is

maintained on the columns that you specify with the ORGANIZE BY
DIMENSIONS clause of the CREATE TABLE statement. However, the reorgchk
utility might still recommend reorganization of an MDC table if it determines
that there are too many unused blocks or that blocks should be compacted.

v Enable the APPEND mode on your tables. If the index key values for new rows
are always new high key values, for example, the clustering attribute of the table
will attempt to place them at the end of the table. In this case, enabling the
APPEND mode might be a better choice than using a clustering index.

To further reduce the need for table reorganization, perform these tasks after you
create a table:
v Alter the table to specify the percentage of each page that is to be left as free

space during a load or a table reorganization operation (PCTFREE)
v Create a clustering index, specifying the PCTFREE option
v Sort the data before loading it into the table

After you have performed these tasks, the clustering index and the PCTFREE
setting on the table help to preserve the original sorted order. If there is enough
space on the table pages, new data can be inserted on the correct pages to maintain

Chapter 3. Factors affecting performance 127

the clustering characteristics of the index. However, as more data is inserted and
the table pages become full, records are appended to the end of the table, which
gradually becomes unclustered.

If you perform a table reorg operation or a sort and load operation after you create
a clustering index, the index attempts to maintain the order of the data, which
improves the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by
the runstats utility.

Reducing the need to reorganize indexes

To reduce the need for index reorganization:
v Create clustering indexes, specifying the PCTFREE or the LEVEL2 PCTFREE

option.
v Create indexes with the MINPCTUSED option. Alternatively, consider using the

CLEANUP ONLY ALL option of the REORG INDEXES command to merge leaf
pages.

Automatic reorganization
After many changes to table data, the table and its indexes can become
fragmented. Logically sequential data might reside on nonsequential pages, forcing
the database manager to perform additional read operations to access data.

The statistical information that is collected by the runstats utility shows the
distribution of data within a table. Analysis of these statistics can indicate when
and what kind of reorganization is necessary.

The automatic reorganization process determines the need for table or index
reorganization by using formulas that are part of the reorgchk utility. It
periodically evaluates tables and indexes that have had their statistics updated to
see if reorganization is required, and schedules such operations whenever they are
necessary.

The automatic reorganization feature can be enabled or disabled through the
auto_reorg, auto_tbl_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the initiation of automatic reorganization is
done on the catalog database partition, and these configuration parameters need
only be enabled on that partition. The reorg operation, however, runs on all of the
database partitions on which the target tables reside.

If you are unsure about when and how to reorganize your tables and indexes, you
can incorporate automatic reorganization as part of your overall database
maintenance plan.

You can also reorganize multidimensional clustering (MDC) tables to reclaim space.
The freeing of extents from an MDC table is only supported for MDC tables in
DMS table spaces. Freeing extents from your MDC tables can be part of the
automatic maintenance activities for your database.

Automatic reorganization on data partitioned tables

For DB2 Version 9.7 Fix Pack 1 and earlier releases, automatic reorganization
supports reorganization of a data partitioned table for the entire table. For DB2

128 Troubleshooting and Tuning Database Performance

V9.7 Fix Pack 1 and later releases, automatic reorganization supports reorganizing
data partitions of a partitioned table and reorganizing the partitioned indexes on a
data partition of a partitioned table.

To avoid placing an entire data partitioned table into ALLOW NO ACCESS mode,
automatic reorganization performs REORG INDEXES ALL operations at the data
partition level on partitioned indexes that need to be reorganized. Automatic
reorganization performs REORG INDEX operations on any nonpartitioned index
that needs to be reorganized.

Automatic reorganization performs the following REORG TABLE operations on
data partitioned tables:
v If any nonpartitioned indexes (except system-generated XML path indexes) are

defined on the table and there is only one partition that needs to be reorganized,
automatic reorganization performs a REORG TABLE operation using the ON
DATA PARTITION clause to specify the partition that needs to be reorganized.
Otherwise, automatic reorganization performs aREORG TABLE on the entire
table without the ON DATA PARTITION clause.

v If no nonpartitioned indexes (except system-generated XML path indexes) are
defined on the table, automatic reorganization performs a REORG TABLE
operation using the ON DATA PARTITION clause on each partition that needs
to be reorganized.

Enabling automatic table and index reorganization
Use automatic table and index reorganization so that you don't have to worry
about when and how to reorganize your data.

Having well-organized table and index data is critical to efficient data access and
optimal workload performance. After many insert, update, and delete operations,
logically sequential table data might reside on nonsequential data pages, so that
the database manager must perform additional read operations to access data.
Additional read operations are also required when accessing data in a table from
which a significant number of rows have been deleted. You can enable the DB2
server to reorganize the system catalog tables as well as user tables.

To enable your database for automatic reorganization, set each of the following
configuration parameters to ON:
v auto_maint

v auto_tbl_maint

v auto_reorg

Application design
Database application design is one of the factors that affect application
performance. Review this section for details about application design
considerations that can help you to maximize the performance of database
applications.

Application processes, concurrency, and recovery
All SQL programs execute as part of an application process or agent. An application
process involves the execution of one or more programs, and is the unit to which
the database manager allocates resources and locks. Different application processes
might involve the execution of different programs, or different executions of the
same program.

Chapter 3. Factors affecting performance 129

More than one application process can request access to the same data at the same
time. Locking is the mechanism that is used to maintain data integrity under such
conditions, preventing, for example, two application processes from updating the
same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made by
one application process from being accidentally perceived by any other process.
The database manager releases all locks it has acquired and retained on behalf of
an application process when that process ends. However, an application process
can explicitly request that locks be released sooner. This is done using a commit
operation, which releases locks that were acquired during a unit of work and also
commits database changes that were made during the unit of work.

A unit of work (UOW) is a recoverable sequence of operations within an application
process. A unit of work is initiated when an application process starts, or when the
previous UOW ends because of something other than the termination of the
application process. A unit of work ends with a commit operation, a rollback
operation, or the end of an application process. A commit or rollback operation
affects only the database changes that were made within the UOW that is ending.

The database manager provides a means of backing out of uncommitted changes
that were made by an application process. This might be necessary in the event of
a failure on the part of an application process, or in the case of a deadlock or lock
timeout situation. An application process can explicitly request that its database
changes be cancelled. This is done using a rollback operation.

As long as these changes remain uncommitted, other application processes are
unable to see them, and the changes can be rolled back. This is not true, however,
if the prevailing isolation level is uncommitted read (UR). After they are
committed, these database changes are accessible to other application processes
and can no longer be rolled back.

Both DB2 call level interface (CLI) and embedded SQL allow for a connection
mode called concurrent transactions, which supports multiple connections, each of
which is an independent transaction. An application can have multiple concurrent
connections to the same database.

Locks that are acquired by the database manager on behalf of an application
process are held until the end of a UOW, except when the isolation level is cursor
stability (CS, in which the lock is released as the cursor moves from row to row) or
uncommitted read (UR).

An application process is never prevented from performing operations because of
its own locks. However, if an application uses concurrent transactions, the locks
from one transaction might affect the operation of a concurrent transaction.

The initiation and the termination of a UOW define points of consistency within an
application process. For example, a banking transaction might involve the transfer
of funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and then added to the second account.
Following the subtraction step, the data is inconsistent. Only after the funds have
been added to the second account is consistency reestablished. When both steps
are complete, the commit operation can be used to end the UOW, thereby making
the changes available to other application processes. If a failure occurs before the
UOW ends, the database manager will roll back any uncommitted changes to

130 Troubleshooting and Tuning Database Performance

restore data consistency.

Concurrency issues
Because many users access and change data in a relational database, the database
manager must allow users to make these changes while ensuring that data
integrity is preserved.

Concurrency refers to the sharing of resources by multiple interactive users or
application programs at the same time. The database manager controls this access
to prevent undesirable effects, such as:
v Lost updates. Two applications, A and B, might both read the same row and

calculate new values for one of the columns based on the data that these
applications read. If A updates the row and then B also updates the row, A's
update lost.

v Access to uncommitted data. Application A might update a value, and B might
read that value before it is committed. Then, if A backs out of that update, the
calculations performed by B might be based on invalid data.

v Non-repeatable reads. Application A might read a row before processing other
requests. In the meantime, B modifies or deletes the row and commits the
change. Later, if A attempts to read the original row again, it sees the modified
row or discovers that the original row has been deleted.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 21. Unit of work with a COMMIT statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 22. Unit of work with a ROLLBACK statement

Chapter 3. Factors affecting performance 131

v Phantom reads. Application A might execute a query that reads a set of rows
based on some search criterion. Application B inserts new data or updates
existing data that would satisfy application A's query. Application A executes its
query again, within the same unit of work, and some additional (“phantom”)
values are returned.

Concurrency is not an issue for global temporary tables, because they are available
only to the application that declares or creates them.

Concurrency control in federated database systems

A federated database system supports applications and users submitting SQL
statements that reference two or more database management systems (DBMSs) in a
single statement. To reference such data sources (each consisting of a DBMS and
data), the DB2 server uses nicknames. Nicknames are aliases for objects in other
DBMSs. In a federated system, the DB2 server relies on the concurrency control
protocols of the database manager that hosts the requested data.

A DB2 federated system provides location transparency for database objects. For
example, if information about tables and views is moved, references to that
information (through nicknames) can be updated without changing the
applications that request this information. When an application accesses data
through nicknames, the DB2 server relies on concurrency control protocols at the
data source to ensure that isolation levels are enforced. Although the DB2 server
tries to match the isolation level that is requested at the data source with a logical
equivalent, results can vary, depending on data source capabilities.

Isolation levels
The isolation level that is associated with an application process determines the
degree to which the data that is being accessed by that process is locked or
isolated from other concurrently executing processes. The isolation level is in effect
for the duration of a unit of work.

The isolation level of an application process therefore specifies:
v The degree to which rows that are read or updated by the application are

available to other concurrently executing application processes
v The degree to which the update activity of other concurrently executing

application processes can affect the application

The isolation level for static SQL statements is specified as an attribute of a
package and applies to the application processes that use that package. The
isolation level is specified during the program preparation process by setting the
ISOLATION bind or precompile option. For dynamic SQL statements, the default
isolation level is the isolation level that was specified for the package preparing the
statement. Use the SET CURRENT ISOLATION statement to specify a different
isolation level for dynamic SQL statements that are issued within a session. For
more information, see “CURRENT ISOLATION special register”. For both static
SQL statements and dynamic SQL statements, the isolation-clause in a
select-statement overrides both the special register (if set) and the bind option value.
For more information, see “Select-statement”.

Isolation levels are enforced by locks, and the type of lock that is used limits or
prevents access to the data by concurrent application processes. Declared
temporary tables and their rows cannot be locked because they are only accessible
to the application that declared them.

132 Troubleshooting and Tuning Database Performance

The database manager supports three general categories of locks:

Share (S)
Under an S lock, concurrent application processes are limited to read-only
operations on the data.

Update (U)
Under a U lock, concurrent application processes are limited to read-only
operations on the data, if these processes have not declared that they might
update a row. The database manager assumes that the process currently
looking at a row might update it.

Exclusive (X)
Under an X lock, concurrent application processes are prevented from
accessing the data in any way. This does not apply to application processes
with an isolation level of uncommitted read (UR), which can read but not
modify the data.

Regardless of the isolation level, the database manager places exclusive locks on
every row that is inserted, updated, or deleted. Thus, all isolation levels ensure
that any row that is changed by an application process during a unit of work is
not changed by any other application process until the unit of work is complete.

The database manager supports four isolation levels.
v “Repeatable read (RR)”
v “Read stability (RS)” on page 134
v “Cursor stability (CS)” on page 134
v “Uncommitted read (UR)” on page 135

Note: Some host database servers support the no commit (NC) isolation level. On
other database servers, this isolation level behaves like the uncommitted read
isolation level.

A detailed description of each isolation level follows, in decreasing order of
performance impact, but in increasing order of the care that is required when
accessing or updating data.

Repeatable read (RR)

The repeatable read isolation level locks all the rows that an application references
during a unit of work (UOW). If an application issues a SELECT statement twice
within the same unit of work, the same result is returned each time. Under RR,
lost updates, access to uncommitted data, non-repeatable reads, and phantom
reads are not possible.

Under RR, an application can retrieve and operate on the rows as many times as
necessary until the UOW completes. However, no other application can update,
delete, or insert a row that would affect the result set until the UOW completes.
Applications running under the RR isolation level cannot see the uncommitted
changes of other applications. This isolation level ensures that all returned data
remains unchanged until the time the application sees the data, even when
temporary tables or row blocking is used.

Every referenced row is locked, not just the rows that are retrieved. For example, if
you scan 10 000 rows and apply predicates to them, locks are held on all 10 000
rows, even if, say, only 10 rows qualify. Another application cannot insert or

Chapter 3. Factors affecting performance 133

update a row that would be added to the list of rows referenced by a query if that
query were to be executed again. This prevents phantom reads.

Because RR can acquire a considerable number of locks, this number might exceed
limits specified by the locklist and maxlocks database configuration parameters.
To avoid lock escalation, the optimizer might elect to acquire a single table-level
lock for an index scan, if it appears that lock escalation is likely. If you do not want
table-level locking, use the read stability isolation level.

While evaluating referential constraints, the DB2 server might occasionally upgrade
the isolation level used on scans of the foreign table to RR, regardless of the
isolation level that was previously set by the user. This results in additional locks
being held until commit time, which increases the likelihood of a deadlock or a
lock timeout. To avoid these problems, create an index that contains only the
foreign key columns, and which the referential integrity scan can use instead.

Read stability (RS)

The read stability isolation level locks only those rows that an application retrieves
during a unit of work. RS ensures that any qualifying row read during a UOW
cannot be changed by other application processes until the UOW completes, and
that any row changed by another application process cannot be read until the
change is committed by that process. Under RS, access to uncommitted data and
non-repeatable reads are not possible. However, phantom reads are possible.

This isolation level ensures that all returned data remains unchanged until the time
the application sees the data, even when temporary tables or row blocking is used.

The RS isolation level provides both a high degree of concurrency and a stable
view of the data. To that end, the optimizer ensures that table-level locks are not
obtained until lock escalation occurs.

The RS isolation level is suitable for an application that:
v Operates in a concurrent environment
v Requires qualifying rows to remain stable for the duration of a unit of work
v Does not issue the same query more than once during a unit of work, or does

not require the same result set when a query is issued more than once during a
unit of work

Cursor stability (CS)

The cursor stability isolation level locks any row being accessed during a
transaction while the cursor is positioned on that row. This lock remains in effect
until the next row is fetched or the transaction terminates. However, if any data in
the row was changed, the lock is held until the change is committed.

Under this isolation level, no other application can update or delete a row while an
updatable cursor is positioned on that row. Under CS, access to the uncommitted
data of other applications is not possible. However, non-repeatable reads and
phantom reads are possible.

CS is the default isolation level. It is suitable when you want maximum
concurrency and need to see only committed data.

134 Troubleshooting and Tuning Database Performance

Note: Under the currently committed semantics introduced in Version 9.7, only
committed data is returned, as was the case previously, but now readers do not
wait for updaters to release row locks. Instead, readers return data that is based on
the currently committed version; that is, data prior to the start of the write
operation.

Uncommitted read (UR)

The uncommitted read isolation level allows an application to access the
uncommitted changes of other transactions. Moreover, UR does not prevent
another application from accessing a row that is being read, unless that application
is attempting to alter or drop the table.

Under UR, access to uncommitted data, non-repeatable reads, and phantom reads
are possible. This isolation level is suitable if you run queries against read-only
tables, or if you issue SELECT statements only, and seeing data that has not been
committed by other applications is not a problem.

UR works differently for read-only and updatable cursors.
v Read-only cursors can access most of the uncommitted changes of other

transactions.
v Tables, views, and indexes that are being created or dropped by other

transactions are not available while the transaction is processing. Any other
changes by other transactions can be read before they are committed or rolled
back. Updatable cursors operating under UR behave as though the isolation
level were CS.

If an uncommitted read application uses ambiguous cursors, it might use the CS
isolation level when it runs. The ambiguous cursors can be escalated to CS if the
value of the BLOCKING option on the PREP or BIND command is UNAMBIG (the
default). To prevent this escalation:
v Modify the cursors in the application program to be unambiguous. Change the

SELECT statements to include the FOR READ ONLY clause.
v Let the cursors in the application program remain ambiguous, but precompile

the program or bind it with the BLOCKING ALL and STATICREADONLY YES
options to enable the ambiguous cursors to be treated as read-only when the
program runs.

Comparison of isolation levels

Table 3 summarizes the supported isolation levels.

Table 3. Comparison of isolation levels

UR CS RS RR

Can an application see uncommitted changes
made by other application processes?

Yes No No No

Can an application update uncommitted
changes made by other application processes?

No No No No

Can the re-execution of a statement be affected
by other application processes? 1

Yes Yes Yes No 2

Can updated rows be updated by other
application processes? 3

No No No No

Chapter 3. Factors affecting performance 135

Table 3. Comparison of isolation levels (continued)

UR CS RS RR

Can updated rows be read by other application
processes that are running at an isolation level
other than UR?

No No No No

Can updated rows be read by other application
processes that are running at the UR isolation
level?

Yes Yes Yes Yes

Can accessed rows be updated by other
application processes? 4

Yes Yes No No

Can accessed rows be read by other application
processes?

Yes Yes Yes Yes

Can the current row be updated or deleted by
other application processes? 5

Yes/No 6 Yes/No 6 No No

Note:

1. An example of the phantom read phenomenon is as follows: Unit of work UW1 reads the
set of n rows that satisfies some search condition. Unit of work UW2 inserts one or more
rows that satisfy the same search condition and then commits. If UW1 subsequently
repeats its read with the same search condition, it sees a different result set: the rows
that were read originally plus the rows that were inserted by UW2.

2. If your label-based access control (LBAC) credentials change between reads, results for
the second read might be different because you have access to different rows.

3. The isolation level offers no protection to the application if the application is both
reading from and writing to a table. For example, an application opens a cursor on a
table and then performs an insert, update, or delete operation on the same table. The
application might see inconsistent data when more rows are fetched from the open
cursor.

4. An example of the non-repeatable read phenomenon is as follows: Unit of work UW1 reads
a row. Unit of work UW2 modifies that row and commits. If UW1 subsequently reads
that row again, it might see a different value.

5. An example of the dirty read phenomenon is as follows: Unit of work UW1 modifies a row.
Unit of work UW2 reads that row before UW1 commits. If UW1 subsequently rolls the
changes back, UW2 has read nonexisting data.

6. Under UR or CS, if the cursor is not updatable, the current row can be updated or
deleted by other application processes in some cases. For example, buffering might cause
the current row at the client to be different from the current row at the server. Moreover,
when using currently committed semantics under CS, a row that is being read might
have uncommitted updates pending. In this case, the currently committed version of the
row is always returned to the application.

Summary of isolation levels

Table 4 lists the concurrency issues that are associated with different isolation
levels.

Table 4. Summary of isolation levels

Isolation level
Access to
uncommitted data

Non-repeatable
reads Phantom reads

Repeatable read (RR) Not possible Not possible Not possible

Read stability (RS) Not possible Not possible Possible

Cursor stability (CS) Not possible Possible Possible

Uncommitted read (UR) Possible Possible Possible

136 Troubleshooting and Tuning Database Performance

The isolation level affects not only the degree of isolation among applications but
also the performance characteristics of an individual application, because the
processing and memory resources that are required to obtain and free locks vary
with the isolation level. The potential for deadlocks also varies with the isolation
level. Table 5 provides a simple heuristic to help you choose an initial isolation
level for your application.

Table 5. Guidelines for choosing an isolation level

Application type High data stability required
High data stability not
required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Specifying the isolation level
Because the isolation level determines how data is isolated from other processes
while the data is being accessed, you should select an isolation level that balances
the requirements of concurrency and data integrity.

The isolation level that you specify is in effect for the duration of the unit of work
(UOW). The following heuristics are used to determine which isolation level will
be used when compiling an SQL or XQuery statement:
v For static SQL:

– If an isolation-clause is specified in the statement, the value of that clause is
used.

– If an isolation-clause is not specified in the statement, the isolation level that
was specified for the package when the package was bound to the database is
used.

v For dynamic SQL:
– If an isolation-clause is specified in the statement, the value of that clause is

used.
– If an isolation-clause is not specified in the statement, and a SET CURRENT

ISOLATION statement has been issued within the current session, the value
of the CURRENT ISOLATION special register is used.

– If an isolation-clause is not specified in the statement, and a SET CURRENT
ISOLATION statement has not been issued within the current session, the
isolation level that was specified for the package when the package was
bound to the database is used.

v For static or dynamic XQuery statements, the isolation level of the environment
determines the isolation level that is used when the XQuery expression is
evaluated.

Note: Many commercially-written applications provide a method for choosing the
isolation level. Refer to the application documentation for information.

The isolation level can be specified in several different ways.
v At the statement level:

Note: Isolation levels for XQuery statements cannot be specified at the statement
level.
Use the WITH clause. The WITH clause cannot be used on subqueries. The
WITH UR option applies to read-only operations only. In other cases, the
statement is automatically changed from UR to CS.

Chapter 3. Factors affecting performance 137

This isolation level overrides the isolation level that is specified for the package
in which the statement appears. You can specify an isolation level for the
following SQL statements:
– DECLARE CURSOR
– Searched DELETE
– INSERT
– SELECT
– SELECT INTO
– Searched UPDATE

v For dynamic SQL within the current session:

Use the SET CURRENT ISOLATION statement to set the isolation level for
dynamic SQL issued within a session. Issuing this statement sets the CURRENT
ISOLATION special register to a value that specifies the isolation level for any
dynamic SQL statements that are issued within the current session. Once set, the
CURRENT ISOLATION special register provides the isolation level for any
subsequent dynamic SQL statement that is compiled within the session,
regardless of which package issued the statement. This isolation level is in effect
until the session ends or until the SET CURRENT ISOLATION...RESET
statement is issued.

v At precompile or bind time:

For an application written in a supported compiled language, use the
ISOLATION option of the PREP or BIND commands. You can also use the
sqlaprep or sqlabndx API to specify the isolation level.
– If you create a bind file at precompile time, the isolation level is stored in the

bind file. If you do not specify an isolation level at bind time, the default is
the isolation level that was used during precompilation.

– If you do not specify an isolation level, the default level of cursor stability
(CS) is used.

To determine the isolation level of a package, execute the following query:
select isolation from syscat.packages

where pkgname = 'pkgname'
and pkgschema = 'pkgschema'

where pkgname is the unqualified name of the package and pkgschema is the
schema name of the package. Both of these names must be specified in
uppercase characters.

v When working with JDBC or SQLJ at run time:

Note: JDBC and SQLJ are implemented with CLI on DB2 servers, which means
that the db2cli.ini settings might affect what is written and run using JDBC
and SQLJ.
To create a package (and specify its isolation level) in SQLJ, use the SQLJ profile
customizer (db2sqljcustomize command).

v From CLI or ODBC at run time:

Use the CHANGE ISOLATION LEVEL command. With DB2 Call-level Interface
(CLI), you can change the isolation level as part of the CLI configuration. At run
time, use the SQLSetConnectAttr function with the
SQL_ATTR_TXN_ISOLATION attribute to set the transaction isolation level for
the current connection referenced by the ConnectionHandle argument. You can
also use the TXNISOLATION keyword in the db2cli.ini file.

v On database servers that support REXX:

138 Troubleshooting and Tuning Database Performance

When a database is created, multiple bind files that support the different
isolation levels for SQL in REXX are bound to the database. Other command line
processor (CLP) packages are also bound to the database when a database is
created.
REXX and the CLP connect to a database using the default CS isolation level.
Changing this isolation level does not change the connection state.
To determine the isolation level that is being used by a REXX application, check
the value of the SQLISL predefined REXX variable. The value is updated each
time that the CHANGE ISOLATION LEVEL command executes.

Currently committed semantics improve concurrency
Lock timeouts and deadlocks can occur under the CS isolation level with row-level
locking, especially with applications that are not designed to prevent such
problems. Some high throughput database applications cannot tolerate waiting on
locks that are issued during transaction processing, and some applications cannot
tolerate processing uncommitted data, but still require non-blocking behavior for
read transactions.

Under the new currently committed semantics, only committed data is returned, as
was the case previously, but now readers do not wait for writers to release row
locks. Instead, readers return data that is based on the currently committed
version; that is, data prior to the start of the write operation.

Currently committed semantics are turned on by default for new databases. This
allows any application to take advantage of the new behavior, and no changes to
the application itself are required. The new database configuration parameter
cur_commit can be used to override this behavior. This might be useful, for
example, in the case of applications that require blocking on writers to synchronize
internal logic.

Similarly, upgraded databases have cur_commit disabled by default in case
applications require blocking writers to synchronize their internal logic, and this
parameter can be turned on later, if so desired.

Currently committed semantics apply only to read-only scans that do not involve
catalog tables or the internal scans that are used to evaluate or enforce constraints.
Note that, because currently committed is decided at the scan level, a writer's
access plan might include currently committed scans. For example, the scan for a
read-only subquery can involve currently committed semantics. Because currently
committed semantics obey isolation level semantics, applications running under
currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space for writers. Additional
space is required for logging the first update of a data row during a transaction.
This data is required for retrieving the currently committed image of the row.
Depending on the workload, this can have an insignificant or measurable impact
on the total log space used. The requirement for additional log space does not
apply when cur_commit is disabled.

Restrictions

The following restrictions apply to currently committed semantics:
v The target table object in a section that is to be used for data update or deletion

operations does not use currently committed semantics. Rows that are to be

Chapter 3. Factors affecting performance 139

modified must be lock protected to ensure that they do not change after they
have satisfied any query predicates that are part of the update operation.

v A transaction that has made an uncommitted modification to a row forces the
currently committed reader to access appropriate log records to determine the
currently committed version of the row. Although log records that are no longer
in the log buffer can be physically read, currently committed semantics do not
support the retrieval of log files from the log archive. This only affects databases
that are configured to use infinite logging.

v The following scans do not use currently committed semantics:
– Catalog table scans
– Scans that are used to enforce referential integrity constraints
– Scans that reference LONG VARCHAR or LONG VARGRAPHIC columns
– Range-clustered table (RCT) scans
– Scans that use spatial or extended indexes

Example

Consider the following scenario, in which deadlocks are avoided under the
currently committed semantics. In this scenario, two applications update two
separate tables, but do not yet commit. Each application then attempts to read
(with a read-only cursor) from the table that the other application has updated.

Step Application A Application B

1 update T1 set col1 = ? where
col2 = ?

update T2 set col1 = ? where
col2 = ?

2 select col1, col3, col4 from T2
where col2 >= ?

select col1, col5, from T1
where col5 = ? and col2 = ?

3 commit commit

Without currently committed semantics, these applications running under the
cursor stability isolation level might create a deadlock, causing one of the
applications to fail. This happens when each application needs to read data that is
being updated by the other application.

Under currently committed semantics, if the query in step 2 (for either application)
happens to require the data currently being updated by the other application, that
application does not wait for the lock to be released, making a deadlock
impossible. The previously committed version of the data is located and used
instead.

Option to disregard uncommitted insertions
The DB2_SKIPINSERTED registry variable controls whether or not uncommitted
data insertions can be ignored for statements that use the cursor stability (CS) or
the read stability (RS) isolation level.

Uncommitted insertions are handled in one of two ways, depending on the value
of the DB2_SKIPINSERTED registry variable.
v When the value is ON, the DB2 server ignores uncommitted insertions, which in

many cases can improve concurrency and is the preferred behavior for most
applications. Uncommitted insertions are treated as though they had not yet
occurred.

v When the value is OFF (the default), the DB2 server waits until the insert
operation completes (commits or rolls back) and then processes the data
accordingly. This is appropriate in certain cases. For example:

140 Troubleshooting and Tuning Database Performance

– Suppose that two applications use a table to pass data between themselves,
with the first application inserting data into the table and the second one
reading it. The data must be processed by the second application in the order
presented, such that if the next row to be read is being inserted by the first
application, the second application must wait until the insert operation
commits.

– An application avoids UPDATE statements by deleting data and then
inserting a new image of the data.

Evaluate uncommitted data through lock deferral
To improve concurrency, the database manager in some situations permits the
deferral of row locks for CS or RS isolation scans until a row is known to satisfy
the predicates of a query.

By default, when row-level locking is performed during a table or index scan, the
database manager locks each scanned row whose commitment status is unknown
before determining whether the row satisfies the predicates of the query.

To improve the concurrency of such scans, enable the
DB2_EVALUNCOMMITTED registry variable so that predicate evaluation can
occur on uncommitted data. A row that contains an uncommitted update might
not satisfy the query, but if predicate evaluation is deferred until after the
transaction completes, the row might indeed satisfy the query.

Uncommitted deleted rows are skipped during table scans, and the database
manager skips deleted keys during index scans if the DB2_SKIPDELETED registry
variable is enabled.

The DB2_EVALUNCOMMITTED registry variable setting applies at compile time
for dynamic SQL or XQuery statements, and at bind time for static SQL or XQuery
statements. This means that even if the registry variable is enabled at run time, the
lock avoidance strategy is not deployed unless DB2_EVALUNCOMMITTED was
enabled at bind time. If the registry variable is enabled at bind time but not
enabled at run time, the lock avoidance strategy is still in effect. For static SQL or
XQuery statements, if a package is rebound, the registry variable setting that is in
effect at bind time is the setting that applies. An implicit rebind of static SQL or
XQuery statements will use the current setting of the DB2_EVALUNCOMMITTED
registry variable.

Applicability of evaluate uncommitted for different access plans

Table 6. RID Index Only Access

Predicates Evaluate Uncommitted

None No

SARGable Yes

Table 7. Data Only Access (relational or deferred RID list)

Predicates Evaluate Uncommitted

None No

SARGable Yes

Chapter 3. Factors affecting performance 141

Table 8. RID Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No No

SARGable None Yes No

SARGable SARGable Yes No

Table 9. Block Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No Yes

SARGable None Yes No

SARGable SARGable Yes Yes

Example

The following example provides a comparison between the default locking
behavior and the evaluate uncommitted behavior. The table is the ORG table from
the SAMPLE database.
DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION
-------- -------------- ------- ---------- -------------

10 Head Office 160 Corporate New York
15 New England 50 Eastern Boston
20 Mid Atlantic 10 Eastern Washington
38 South Atlantic 30 Eastern Atlanta
42 Great Lakes 100 Midwest Chicago
51 Plains 140 Midwest Dallas
66 Pacific 270 Western San Francisco
84 Mountain 290 Western Denver

The following transactions occur under the default cursor stability (CS) isolation
level.

Table 10. Transactions against the ORG table under the CS isolation level

SESSION 1 SESSION 2

connect to sample connect to sample

+c update org set deptnumb=5 where
manager=160

select * from org where deptnumb >= 10

The uncommitted UPDATE statement in Session 1 holds an exclusive lock on the
first row in the table, preventing the query in Session 2 from returning a result set,
even though the row being updated in Session 1 does not currently satisfy the
query in Session 2. The CS isolation level specifies that any row that is accessed by
a query must be locked while the cursor is positioned on that row. Session 2
cannot obtain a lock on the first row until Session 1 releases its lock.

142 Troubleshooting and Tuning Database Performance

Waiting for a lock in Session 2 can be avoided by using the evaluate uncommitted
feature, which first evaluates the predicate and then locks the row. As such, the
query in Session 2 would not attempt to lock the first row in the table, thereby
increasing application concurrency. Note that this also means that predicate
evaluation in Session 2 would occur with respect to the uncommitted value of
deptnumb=5 in Session 1. The query in Session 2 would omit the first row in its
result set, despite the fact that a rollback of the update in Session 1 would satisfy
the query in Session 2.

If the order of operations were reversed, concurrency could still be improved with
the evaluate uncommitted feature. Under default locking behavior, Session 2 would
first acquire a row lock prohibiting the searched UPDATE in Session 1 from
executing, even though the Session 1 UPDATE statement would not change the
row that is locked by the Session 2 query. If the searched UPDATE in Session 1
first attempted to examine rows and then locked them only if they qualified, the
Session 1 query would be non-blocking.

Restrictions
v The DB2_EVALUNCOMMITTED registry variable must be enabled.
v The isolation level must be CS or RS.
v Row-level locking is in effect.
v SARGable evaluation predicates exist.
v Evaluate uncommitted is not applicable to scans on the system catalog tables.
v For multidimensional clustering (MDC) tables, block-level locking can be

deferred for an index scan; however, block-level locking cannot be deferred for
table scans.

v Lock deferral will not occur on a table that is executing an inplace table
reorganization.

v For Iscan-Fetch plans, row-level locking is not deferred to the data access; rather,
the row is locked during index access before moving to the row in the table.

v Deleted rows are unconditionally skipped during table scans, but deleted index
keys are skipped only if the DB2_SKIPDELETED registry variable is enabled.

Writing and tuning queries for optimal performance
There are several ways in which you can minimize the impact of SQL statements
on DB2 database performance.

You can minimize this impact by:
v Writing SQL statements that the DB2 optimizer can more easily optimize. The

DB2 optimizer might not be able to efficiently run SQL statements that contain
non-equality join predicates, data type mismatches on join columns, unnecessary
outer joins, and other complex search conditions.

v Correctly configuring the DB2 database to take advantage of DB2 optimization
functionality. The DB2 optimizer can select the optimal query access plan if you
have accurate catalog statistics and choose the best optimization class for your
workload.

v Using the DB2 explain functionality to review potential query access plans and
determine how to tune queries for best performance.

Best practices apply to general workloads, warehouse workloads, and SAP
workloads.

Chapter 3. Factors affecting performance 143

Although there are a number of ways to deal with specific query performance
issues after an application is written, good fundamental writing and tuning
practices can be widely applied early on to help improve DB2 database
performance.

Query performance is not a one-time consideration. You should consider it
throughout the design, development, and production phases of the application
development life cycle.

SQL is a very flexible language, which means that there are many ways to get the
same correct result. This flexibility also means that some queries are better than
others in taking advantage of the DB2 optimizer's strengths.

During query execution, the DB2 optimizer chooses a query access plan for each
SQL statement. The optimizer models the execution cost of many alternative access
plans and chooses the one with the minimum estimated cost. If a query contains
many complex search conditions, the DB2 optimizer can rewrite the predicate in
some cases, but there are some cases where it cannot.

The time to prepare or compile an SQL statement can be long for complex queries,
such as those used in business intelligence (BI) applications. You can help
minimize statement compilation time by correctly designing and configuring your
database. This includes choosing the correct optimization class and setting other
registry variables correctly.

The optimizer also requires accurate inputs to make accurate access plan decisions.
This means that you need to gather accurate statistics, and potentially use
advanced statistical features, such as statistical views and column group statistics.

You can use the DB2 tools, especially the DB2 explain facility, to tune queries. The
DB2 compiler can capture information about the access plans and environments of
static or dynamic queries. Use this captured information to understand how
individual statements are run so that you can tune them and your database
manager configuration to improve performance.

Writing SQL statements
SQL is a powerful language that enables you to specify relational expressions in
syntactically different but semantically equivalent ways. However, some
semantically equivalent variations are easier to optimize than others. Although the
DB2 optimizer has a powerful query rewrite capability, it might not always be able
to rewrite an SQL statement into the most optimal form.

Certain SQL constructs can limit the access plans that are considered by the query
optimizer, and these constructs should be avoided or replaced whenever possible.

Avoiding complex expressions in search conditions:

Avoid using complex expressions in search conditions where the expressions
prevent the optimizer from using the catalog statistics to estimate an accurate
selectivity.

The expressions might also limit the choices of access plans that can be used to
apply the predicate. During the query rewrite phase of optimization, the optimizer
can rewrite a number of expressions to allow the optimizer to estimate an accurate
selectivity; it cannot handle all possibilities.

144 Troubleshooting and Tuning Database Performance

Avoiding join predicates on expressions:

Using join predicates on expressions limits the join method to nested loops.

Additionally, the cardinality estimate might be inaccurate. Some examples of joins
with expressions are as follows:
WHERE SALES.PRICE * SALES.DISCOUNT = TRANS.FINAL_PRICE
WHERE UPPER(CUST.LASTNAME) = TRANS.NAME

Avoiding expressions over columns in local predicates:

Instead of applying an expression over columns in a local predicate, use the
inverse of the expression.

Consider the following examples:
XPRESSN(C) = 'constant'
INTEGER(TRANS_DATE)/100 = 200802

You can rewrite these statements as follows:
C = INVERSEXPRESSN('constant')
TRANS_DATE BETWEEN 20080201 AND 20080229

Applying expressions over columns prevents the use of index start and stop keys,
leads to inaccurate selectivity estimates, and requires extra processing at query
execution time.

These expressions also prevent query rewrite optimizations such as recognizing
when columns are equivalent, replacing columns with constants, and recognizing
when at most one row will be returned. Further optimizations are possible after it
can be proven that at most one row will be returned, so the lost optimization
opportunities are further compounded. Consider the following query:
SELECT LASTNAME, CUST_ID, CUST_CODE FROM CUST
WHERE (CUST_ID * 100) + INT(CUST_CODE) = 123456 ORDER BY 1,2,3

You can rewrite it as follows:
SELECT LASTNAME, CUST_ID, CUST_CODE FROM CUST
WHERE CUST_ID = 1234 AND CUST_CODE = '56' ORDER BY 1,2,3

If there is a unique index defined on CUST_ID, the rewritten version of the query
enables the query optimizer to recognize that at most one row will be returned.
This avoids introducing an unnecessary SORT operation. It also enables the
CUST_ID and CUST_CODE columns to be replaced by 1234 and ‘56', avoiding
copying values from the data or index pages. Finally, it enables the predicate on
CUST_ID to be applied as an index start or stop key.

It might not always be apparent when an expression is present in a predicate. This
can often occur with queries that reference views when the view columns are
defined by expressions. For example, consider the following view definition and
query:
CREATE VIEW CUST_V AS

(SELECT LASTNAME, (CUST_ID * 100) + INT(CUST_CODE) AS CUST_KEY
FROM CUST)

SELECT LASTNAME FROM CUST_V WHERE CUST_KEY = 123456

The query optimizer merges the query with the view definition, resulting in the
following query:

Chapter 3. Factors affecting performance 145

SELECT LASTNAME FROM CUST
WHERE (CUST_ID * 100) + INT(CUST_CODE) = 123456

This is the same problematic predicate described in a previous example. You can
observe the result of view merging by using the explain facility to display the
optimized SQL.

If the inverse function is difficult to express, consider using a generated column.
For example, if you want to find a last name that fits the criteria expressed by
LASTNAME IN ('Woo', 'woo', 'WOO', 'WOo',...), you can create a generated
column UCASE(LASTNAME) = 'WOO' as follows:
CREATE TABLE CUSTOMER (

LASTNAME VARCHAR(100),
U_LASTNAME VARCHAR(100) GENERATED ALWAYS AS (UCASE(LASTNAME))

)

CREATE INDEX CUST_U_LASTNAME ON CUSTOMER(U_LASTNAME)

Support for case-insensitive search in DB2 Database for Linux, UNIX, and
Windows Version 9.5 Fix Pack 1 is designed to resolve the situation in this
particular example. You can use _Sx attribute on the UCA500R1 collation name to
control the strength of the collations. For example, UCA500R1_LFR_S1 is a French
collation that ignores case and accent.

Avoiding data type mismatches on join columns:

In some cases, data type mismatches prevent the use of hash joins.

Hash join has some extra restrictions on the join predicates beyond other join
methods. In particular, the data types of the join columns must be exactly the
same. For example, if one join column is FLOAT and the other is REAL, hash join
is not supported. Additionally, if the join column data type is CHAR, GRAPHIC,
DECIMAL, or DECFLOAT the lengths must be the same.

Avoiding no-op expressions in predicates to change the optimizer estimate:

A "no-op" coalesce() predicate of the form COALESCE(X, X) = X introduces an
estimation error into the planning of any query that uses it. Currently the DB2
query compiler does not have the capability of dissecting that predicate and
determining that all rows actually satisfy it.

As a result, the predicate artificially reduces the estimated number of rows coming
from some part of a query plan. This smaller row estimate usually reduces the row
and cost estimates for the rest of query planning, and sometimes results in a
different plan being chosen, because relative estimates between different candidate
plans have changed.

Why can this do-nothing predicate sometimes improve query performance? The
addition of the “no-op” coalesce() predicate introduces an error that masks
something else that is preventing optimal performance.

What some performance enhancement tools do is a brute-force test: the tool
repeatedly introduces the predicate into different places in a query, operating on
different columns, to try to find a case where, by introducing an error, it stumbles
onto a better-performing plan. This is also true of a query developer hand-coding
the "no-op" predicate into a query. Typically, the developer will have some insight
on the data to guide the placement of the predicate.

146 Troubleshooting and Tuning Database Performance

Using this method to improve query performance is a short-term solution that
does not address root cause and might have the following implications:
v Potential areas for performance improvements are hidden.
v There are no guarantees that this workaround will provide permanent

performance improvements, because the DB2 query compiler might eventually
handle the predicate better, or other random factors might affect it.

v There might be other queries that are affected by the same root cause and the
performance of your system in general might suffer as a result.

If you have followed best practices recommendations, but you believe that you are
still getting less than optimal performance, you can provide explicit optimization
guidelines to the DB2 optimizer, rather than introducing a “no-op” predicate. See
“Optimization profiles and guidelines”.

Avoiding non-equality join predicates:

Join predicates that use comparison operators other than equality should be
avoided because the join method is limited to nested loop.

Additionally, the optimizer might not be able to compute an accurate selectivity
estimate for the join predicate. However, non-equality join predicates cannot
always be avoided. When they are necessary, ensure that an appropriate index
exists on either table, because the join predicates will be applied to the inner table
of the nested-loop join.

One common example of non-equality join predicates is the case in which
dimension data in a star schema must be versioned to accurately reflect the state of
a dimension at different points in time. This is often referred to as a slowly changing
dimension. One type of slowly changing dimension involves including effective
start and end dates for each dimension row. A join between the fact table and the
dimension table requires checking that a date associated with the fact falls within
the dimension's start and end date, in addition to joining on the dimension
primary key. This is often referred to as a type 6 slowly changing dimension. The
range join back to the fact table to further qualify the dimension version by some
fact transaction date can be expensive. For example:
SELECT...

FROM PRODUCT P, SALES F
WHERE

P.PROD_KEY = F.PROD_KEY AND
F.SALE_DATE BETWEEN P.START_DATE AND
P.END_DATE

In this situation, ensure that there is an index on (F.PROD_KEY, F.SALE_DATE).

Consider creating a statistical view to help the optimizer compute a better
selectivity estimate for this scenario. For example:
CREATE STATISTICAL VIEW V_PROD_FACT AS

SELECT P.*
FROM PRODUCT P, SALES F
WHERE

P.PROD_KEY = F.PROD_KEY AND
F.SALE_DATE BETWEEN P.START_DATE AND
P.END_DATE

ALTER VIEW V_PROD_FACT ENABLE QUERY OPTIMIZATION

RUNSTATS ON TABLE DB2USER.V_PROD_FACT WITH DISTRIBUTION

Chapter 3. Factors affecting performance 147

Specialized star schema joins, such as star join with index ANDing and hub joins,
are not considered if there are any non-equality join predicates in the query block.
(See “Ensuring that queries fit the required criteria for the star schema join”.)

Avoiding multiple aggregations with the DISTINCT keyword:

Avoid using queries that perform multiple DISTINCT aggregations in the same
subselect, which are expensive to run.

Consider the following example:
SELECT SUM(DISTINCT REBATE), AVG(DISTINCT DISCOUNT)

FROM DAILY_SALES
GROUP BY PROD_KEY

To determine the set of distinct REBATE values and distinct DISCOUNT values,
the input stream from the PROD_KEY table might need to be sorted twice. The
query access plan for this query might look like this:

The optimizer rewrites the original query into separate aggregations, specifying the
DISTINCT keyword for each, and then combines the multiple aggregations using a
UNION keyword. The internally rewritten statement is:
SELECT Q8.MAXC0, (Q8.MAXC1 / Q8.MAXC2)
FROM

(SELECT MAX(Q7.C0) AS MAXC0, MAX(Q7.C1) AS MAXC1, MAX(Q7.C2) AS MAXC2
FROM

(SELECT SUM(DISTINCT Q2.REBATE) AS C0, CAST(NULL AS INTEGER) AS C1,
0 AS C2, Q2.PROD_KEY

FROM
(SELECT Q1.PROD_KEY, Q1.REBATE

FROM DB2USER.DAILY_SALES AS Q1) AS Q2
GROUP BY Q2.PROD_KEY
UNION ALL
SELECT CAST(NULL AS INTEGER) AS C0, SUM(DISTINCT Q5.DISCOUNT) AS C1,

COUNT(DISTINCT Q5.DISCOUNT) AS C2, Q5.PROD_KEY
FROM

DAILY_SALESDAILY_SALES

SCANSCAN

SORTSORT

GRPBYGRPBY

UNION

GRPBY

148 Troubleshooting and Tuning Database Performance

(SELECT Q4.PROD_KEY, Q4.DISCOUNT
FROM DB2USER.DAILY_SALES AS Q4) AS Q5

GROUP BY Q5.PROD_KEY) AS Q7
GROUP BY Q7.PROD_KEY) AS Q8

If you cannot avoid multiple DISTINCT aggregations, consider using the
DB2_EXTENDED_OPTIMIZATION registry variable with the
ENHANCED_MULTIPLE_DISTINCT option. This option will result in the input
stream to the multiple distinct aggregates being read once and then reused for each
arm of the UNION. This option might improve the performance of these types of
queries, where the ratio of processors to the number of database partitions is low
(for example, the ratio is less than or equal to 1). This setting should be used in
partitioned database environments without symmetric multiprocessors (SMPs).
This optimization extension might not improve query performance in all
environments. Testing should be done to determine individual query performance
improvements.

Avoiding unnecessary outer joins:

The semantics of certain queries require outer joins (either left, right, or full).
However, if the query semantics do not require an outer join, and the query is
being used to deal with inconsistent data, it is best to deal with the inconsistent
data problems at their root cause.

For example, in a data mart with a star schema, the fact table might contain rows
for transactions but no matching parent dimension rows for some dimensions, due
to data consistency problems. This could occur because the extract, transform, and
load (ETL) process could not reconcile some business keys for some reason. In this
scenario, the fact table rows are left outer joined with the dimensions to ensure
that they are returned, even when they do not have a parent. For example:
SELECT...

FROM DAILY_SALES F
LEFT OUTER JOIN CUSTOMER C ON F.CUST_KEY = C.CUST_KEY
LEFT OUTER JOIN STORE S ON F.STORE_KEY = S.STORE_KEY

WHERE
C.CUST_NAME = 'SMITH'

The left outer join can prevent a number of optimizations, including the use of
specialized star-schema join access methods. However, in some cases the left outer
join can be automatically rewritten to an inner join by the query optimizer. In this
example, the left outer join between CUSTOMER and DAILY_SALES can be
converted to an inner join because the predicate C.CUST_NAME = 'SMITH' will
remove any rows with null values in this column, making a left outer join
semantically unnecessary. So the loss of some optimizations due to the presence of
outer joins might not adversely affect all queries. However, it is important to be
aware of these limitations and to avoid outer joins unless they are absolutely
required.

Using the OPTIMIZE FOR N ROWS clause with the FETCH FIRST N ROWS
ONLY clause:

The OPTIMIZE FOR n ROWS clause indicates to the optimizer that the application
intends to retrieve only n rows, but the query will return the complete result set.
The FETCH FIRST n ROWS ONLY clause indicates that the query should return
only n rows.

Chapter 3. Factors affecting performance 149

The DB2 data server does not automatically assume OPTIMIZE FOR n ROWS
when FETCH FIRST n ROWS ONLY is specified for the outer subselect. Try
specifying OPTIMIZE FOR n ROWS along with FETCH FIRST n ROWS ONLY, to
encourage query access plans that return rows directly from the referenced tables,
without first performing a buffering operation such as inserting into a temporary
table, sorting, or inserting into a hash join hash table.

Applications that specify OPTIMIZE FOR n ROWS to encourage query access plans
that avoid buffering operations, yet retrieve the entire result set, might experience
poor performance. This is because the query access plan that returns the first n
rows fastest might not be the best query access plan if the entire result set is being
retrieved.

Ensuring that queries fit the required criteria for the star schema join:

The optimizer considers two specialized join methods for star schemas, called a
star join or a hub join, which can help to significantly improve performance.

However, the query must meet the following criteria.
v For each query block

– At least three different tables must be joined
– All join predicates must be equality predicates
– No subqueries can exist
– No correlations or dependencies can exist between tables or outside of the

query block
– For index ANDing, there must be no non-deterministic functions, because fact

table predicates must be applied by indexes to facilitate semi-joins
– A fact table

- Is the largest table in the query block
- Has at least 10 000 rows
- Is considered to be only one table
- Must be joined to at least two dimension tables or to groups called

snowflakes
– A dimension table

- Is not the fact table
- Can be joined individually to the fact table or in snowflakes

– A dimension table or a snowflake
- Must filter the fact table (Filtering is based on the optimizer's estimates.)
- Must have a join predicate to the fact table that uses a leading column in a

fact table index. This criterion must be met in order for either star join or
hub join to be considered, although a hub join will only need to use a
single fact table index.

A query block representing a left or right outer join can reference only two tables,
so a star-schema join does not qualify.

Explicitly declaring referential integrity is not required for the optimizer to
recognize a star-schema join.

Avoiding redundant predicates:

150 Troubleshooting and Tuning Database Performance

Avoid redundant predicates, especially when they occur across different tables. In
some cases, the optimizer cannot detect that the predicates are redundant. This
might result in cardinality underestimation.

For example, within SAP business intelligence (BI) applications, the snowflake
schema with fact and dimension tables is used as a query optimized data structure.
In some cases, there is a redundant time characteristic column
(“SID_0CALMONTH” for month or “SID_0FISCPER" for year) defined on the fact
and dimension tables.

The SAP BI online analytical processing (OLAP) processor generates redundant
predicates on the time characteristics column of the dimension and fact tables.

These redundant predicates might result in longer query run time.

The following section provides an example with two redundant predicates that are
defined in the WHERE condition of a SAP BI query. Identical predicates are
defined on the time dimension (DT) and fact (F) table:

AND ("DT"."SID_0CALMONTH" = 199605
AND "F". "SID_0CALMONTH" = 199605
OR "DT"."SID_0CALMONTH" = 199705
AND "F". "SID_0CALMONTH" = 199705)

AND NOT ("DT"."SID_0CALMONTH" = 199803
AND "F". "SID_0CALMONTH" = 199803)

The DB2 optimizer does not recognize the predicates as identical, and treats them
as independent. This leads to underestimation of cardinalities, suboptimal query
access plans, and longer query run times.

For that reason, the redundant predicates are removed by the DB2 database
platform-specific software layer.

The above predicates are transferred to the ones shown below. Only the predicates
on the fact table column “SID_0CALMONTH” remain:

AND ("F". "SID_0CALMONTH" = 199605
OR "F". "SID_0CALMONTH" = 199705)

AND NOT ("F". "SID_0CALMONTH" = 199803)

Apply the instructions in SAP notes 957070 and 1144883 to remove the redundant
predicates.

Using constraints to improve query optimization
Consider defining unique, check, and referential integrity constraints. These
constraints provide semantic information that allows the DB2 optimizer to rewrite
queries to eliminate joins, push aggregation down through joins, push FETCH
FIRST n ROWS down through joins, remove unnecessary DISTINCT operations,
and perform a number of other optimizations.

Informational constraints can also be used for both check constraints and
referential integrity constraints when the application itself can guarantee the
relationships. The same optimizations are possible. Constraints that are enforced by
the database manager when rows are inserted, updated, or deleted can lead to
high system overhead, especially when updating a large number of rows that have
referential integrity constraints. If an application has already verified information
before updating a row, it might be more efficient to use informational constraints,
rather than regular constraints.

Chapter 3. Factors affecting performance 151

For example, consider two tables, DAILY_SALES and CUSTOMER. Each row in the
CUSTOMER table has a unique customer key (CUST_KEY). DAILY_SALES
contains a CUST_KEY column and each row references a customer key in the
CUSTOMER table. A referential integrity constraint could be created to represent
this 1:N relationship between CUSTOMER and DAILY_SALES. If the application
were to enforce the relationship, the constraint could be defined as informational.
The following query could then avoid performing the join between CUSTOMER
and DAILY_SALES, because no columns are retrieved from CUSTOMER, and
every row from DAILY_SALES will find a match in CUSTOMER. The query
optimizer will automatically remove the join.
SELECT AMT_SOLD, SALE PRICE, PROD_DESC

FROM DAILY_SALES, PRODUCT, CUSTOMER
WHERE

DAILY_SALES.PROD_KEY = PRODUCT.PRODKEY AND
DAILY_SALES.CUST_KEY = CUSTOMER.CUST_KEY

The application must enforce informational constraints, otherwise queries might
return incorrect results. In this example, if any rows in DAILY_SALES do not have
a corresponding customer key in the CUSTOMER table, the query would
incorrectly return those rows.

Using the REOPT bind option with input variables in complex
queries
Input variables are essential for good statement preparation times in an online
transaction processing (OLTP) environment, where statements tend to be simpler
and query access plan selection is more straightforward.

Multiple executions of the same query with different input variable values can
reuse the compiled access section in the dynamic statement cache, avoiding
expensive SQL statement compilations whenever the input values change.

However, input variables can cause problems for complex query workloads, where
query access plan selection is more complex and the optimizer needs more
information to make good decisions. Moreover, statement compilation time is
usually a small component of total execution time, and business intelligence (BI)
queries, which do not tend to be repeated, do not benefit from the dynamic
statement cache.

If input variables need to be used in a complex query workload, consider using the
REOPT(ALWAYS) bind option. The REOPT bind option defers statement
compilation from PREPARE to OPEN or EXECUTE time, when the input variable
values are known. The values are passed to the SQL compiler so that the optimizer
can use the values to compute a more accurate selectivity estimate.
REOPT(ALWAYS) specifies that the statement should be recompiled for every
execution. REOPT(ALWAYS) can also be used for complex queries that reference
special registers, such as WHERE TRANS_DATE = CURRENT DATE - 30 DAYS, for
example. If input variables lead to poor access plan selection for OLTP workloads,
and REOPT(ALWAYS) results in excessive overhead due to statement compilation,
consider using REOPT(ONCE) for selected queries. REOPT(ONCE) defers
statement compilation until the first input variable value is bound. The SQL
statement is compiled and optimized using this first input variable value.
Subsequent executions of the statement with different values reuse the access
section that was compiled on the basis of the first input value. This can be a good
approach if the first input variable value is representative of subsequent values,
and it provides a better query access plan than one that is based on default values
when the input variable values are unknown.

152 Troubleshooting and Tuning Database Performance

There a number of ways that REOPT can be specified:
v For embedded SQL in C/C++ applications, use the REOPT bind option. This

bind option affects re-optimization behavior for both static and dynamic SQL.
v For CLP packages, rebind the CLP package with the REOPT bind option. For

example, to rebind the CLP package used for isolation level CS with REOPT
ALWAYS, specify the following command:
rebind nullid.SQLC2G13 reopt always

v For CLI applications or JDBC applications using the legacy JDBC driver, use the
REOPT keyword setting in the db2cli.ini configuration file. The values and
corresponding options are:
– 2 - NONE
– 3 - ONCE
– 4 - ALWAYS

v For JDBC applications using the JCC Universal Driver, use one of the following
approaches:
– Use the SQL_ATTR_REOPT connection or statement attribute.
– Use the SQL_ATTR_CURRENT_PACKAGE_SET connection or statement

attribute to specify either the NULLID, NULLIDR1, or NULLIDRA package
sets. NULLIDR1 and NULLIDRA are reserved package set names. When
used, REOPT ONCE or REOPT ALWAYS are implied, respectively. These
package sets have to be explicitly created with the following commands:
db2 bind db2clipk.bnd collection NULLIDR1
db2 bind db2clipk.bnd collection NULLIDRA

v For SQL PL procedures, use one of the following approaches:
– Use the SET_ROUTINE_OPTS stored procedure to set the bind options that

are to be used for the creation of SQL PL procedures within the current
session. For example, call:
sysproc.set_routine_opts('reopt always')

– Use the DB2_SQLROUTINE_PREPOPTS registry variable to set the SQL PL
procedure options at the instance level. Values set using the
SET_ROUTINE_OPTS stored procedure will override those specified with
DB2_SQLROUTINE_PREPOPTS.

You can also use optimization profiles to set REOPT for static and dynamic
statements, as shown in the following example:
<STMTPROFILE ID="REOPT example ">

<STMTKEY>
<![CDATA[select acct_no from customer where name = ?]]>

</STMTKEY>
<OPTGUIDELINES>

<REOPT VALUE='ALWAYS'/>
</OPTGUIDELINES>

</STMTPROFILE>

Using parameter markers to reduce compilation time for dynamic
queries
The DB2 data server can avoid recompiling a dynamic SQL statement that has
been run previously by storing the access section and statement text in the
dynamic statement cache.

A subsequent prepare request for this statement will attempt to find the access
section in the dynamic statement cache, avoiding compilation. However, statements

Chapter 3. Factors affecting performance 153

that differ only in the literals that are used in predicates will not match. For
example, the following two statements are considered different in the dynamic
statement cache:
SELECT AGE FROM EMPLOYEE WHERE EMP_ID = 26790
SELECT AGE FROM EMPLOYEE WHERE EMP_ID = 77543

Even relatively simple SQL statements can result in excessive system CPU usage
due to statement compilation, if they are run very frequently. If your system
experiences this type of performance problem, consider changing the application to
use parameter markers to pass predicate values to the DB2 compiler, rather than
explicitly including them in the SQL statement. However, the access plan might not
be optimal for complex queries that use parameter markers in predicates. For more
information, see “Using the REOPT bind option with input variables in complex
queries”.

Setting the DB2_REDUCED_OPTIMIZATION registry variable
If setting the optimization class does not reduce the compilation time sufficiently
for your application, try setting the DB2_REDUCED_OPTIMIZATION registry
variable.

This registry variable provides more control over the optimizer's search space than
setting the optimization class. This registry variable lets you request either reduced
optimization features or rigid use of optimization features at the specified
optimization class. If you reduce the number of optimization techniques used, you
also reduce time and resource use during optimization.

Although optimization time and resource use might be reduced, there is increased
risk of producing a less than optimal query access plan.

First, try setting the registry variable to YES. If the optimization class is 5 (the
default) or lower, the optimizer disables some optimization techniques that might
consume significant prepare time and resources but that do not usually produce a
better query access plan. If the optimization class is exactly 5, the optimizer
reduces or disables some additional techniques, which might further reduce
optimization time and resource use, but also further increase the risk of a less than
optimal query access plan. For optimization classes lower than 5, some of these
techniques might not be in effect in any case. If they are, however, they remain in
effect.

If the YES setting does not provide a sufficient reduction in compilation time, try
setting the registry variable to an integer value. The effect is the same as YES, with
the following additional behavior for dynamically prepared queries optimized at
class 5. If the total number of joins in any query block exceeds the setting, the
optimizer switches to greedy join enumeration instead of disabling additional
optimization techniques. The result is that the query will be optimized at a level
that is similar to optimization class 2.

Improving insert performance
Before data is inserted into a table, an insert search algorithm examines the free
space control records (FSCRs) to find a page with enough space for the new data.

However, even when an FSCR indicates that a page has enough free space, that
space might not be usable if it has been reserved by an uncommitted delete
operation from another transaction.

154 Troubleshooting and Tuning Database Performance

The DB2MAXFSCRSEARCH registry variable specifies the number of FSCRs to
search when adding a record to a table. The default is to search five FSCRs.
Modifying this value enables you to balance insert speed with space reuse. Use
large values to optimize for space reuse. Use small values to optimize for insert
speed. Setting the value to -1 forces the database manager to search all FSCRs. If
sufficient space is not found while searching FSCRs, the data is appended to the
end of the table.

The APPEND ON option on the ALTER TABLE statement specifies that table data
will be appended and that information about free space on pages will not be kept.
Such tables must not have a clustering index. This option can improve
performance for tables that only grow.

If a clustering index is defined on the table, the database manager attempts to
insert records on the same page as other records with similar index key values. If
there is no space on that page, surrounding pages are considered. If those pages
are unsuitable, the FSCRs are searched, as described above. In this case, however, a
“worst-fit” approach is used instead of a “first-fit” approach. The worst-fit
approach tends to choose pages with more free space. This method establishes a
new clustering area for rows with similar key values.

If you have defined a clustering index on a table, use the PCTFREE clause on the
ALTER TABLE statement before loading or reorganizing the table. The PCTFREE
clause specifies the percentage of free space that should remain on a data page
after a load or reorg operation. This increases the probability that the cluster index
operation will find free space on the appropriate page.

Efficient SELECT statements
Because SQL is a flexible high-level language, you can write several different
SELECT statements to retrieve the same data. However, performance might vary
for different forms of the statement, as well as for different optimization classes.

Consider the following guidelines for creating efficient SELECT statements:
v Specify only columns that you need. Specifying all columns with an asterisk (*)

results in unnecessary processing.
v Use predicates that restrict the answer set to only those rows that you need.
v When you need significantly fewer than the total number of rows that might be

returned, specify the OPTIMIZE FOR clause. This clause affects both the choice
of access plan and the number of rows that are blocked in the communication
buffer.

v To take advantage of row blocking and improve performance, specify the FOR
READ ONLY or FOR FETCH ONLY clause. Concurrency improves as well,
because exclusive locks are never held on the rows that are retrieved. Additional
query rewrites can also occur. Specifying these clauses, as well as the
BLOCKING ALL bind option, can similarly improve the performance of queries
running against nicknames in a federated database system.

v For cursors that will be used with positioned updates, specify the FOR UPDATE
OF clause to enable the database manager to choose more appropriate locking
levels initially and to avoid potential deadlocks. Note that FOR UPDATE cursors
cannot take advantage of row blocking.

v For cursors that will be used with searched updates, specify the FOR READ
ONLY and the USE AND KEEP UPDATE LOCKS clauses to avoid deadlocks
and still allow row blocking by forcing U locks on affected rows.

Chapter 3. Factors affecting performance 155

v Avoid numeric data type conversions whenever possible. When comparing
values, try to use items that have the same data type. If conversions are
necessary, inaccuracies due to limited precision, and performance costs due to
runtime conversions might result.
If possible, use the following data types:
– Character instead of varying character for short columns
– Integer instead of float, decimal, or DECFLOAT
– DECFLOAT instead of decimal
– Datetime instead of character
– Numeric instead of character

v To decrease the probability that a sort operation will occur, omit clauses such as
DISTINCT or ORDER BY if such operations are not required.

v To check for the existence of rows in a table, select a single row. Either open a
cursor and fetch one row, or perform a single-row SELECT INTO operation.
Remember to check for the SQLCODE -811 error if more than one row is found.
Unless you know that the table is very small, do not use the following statement
to check for a non-zero value:

select count(*) from <table-name>

For large tables, counting all the rows impacts performance.
v If update activity is low and tables are large, define indexes on columns that are

frequently used in predicates.
v Consider using an IN list if the same column appears in multiple predicates. For

large IN lists that are used with host variables, looping a subset of the host
variables might improve performance.

The following suggestions apply specifically to SELECT statements that access
several tables.
v Use join predicates to join tables. A join predicate is a comparison between two

columns from different tables in a join.
v Define indexes on the columns in a join predicate to enable the join to be

processed more efficiently. Indexes also benefit UPDATE and DELETE
statements containing SELECT statements that access several tables.

v If possible, avoid using OR clauses or expressions with join predicates.
v In a partitioned database environment, it is recommended that tables being

joined are partitioned on the join column.

Guidelines for restricting SELECT statements
The optimizer assumes that an application must retrieve all of the rows that are
identified by a SELECT statement. This assumption is most appropriate in online
transaction processing (OLTP) and batch environments.

However, in “browse” applications, queries often define a large potential answer
set, but they retrieve only the first few rows, usually the number of rows that are
required for a particular display format.

To improve performance for such applications, you can modify the SELECT
statement in the following ways:
v Use the FOR UPDATE clause to specify the columns that could be updated by a

subsequent positioned UPDATE statement.

156 Troubleshooting and Tuning Database Performance

v Use the FOR READ or FETCH ONLY clause to make the returned columns
read-only.

v Use the OPTIMIZE FOR n ROWS clause to give priority to retrieving the first n
rows from the full result set.

v Use the FETCH FIRST n ROWS ONLY clause to retrieve only a specified number
of rows.

v Use the DECLARE CURSOR WITH HOLD statement to retrieve rows one at a
time.

The following sections describe the performance advantages of each method.

FOR UPDATE clause

The FOR UPDATE clause limits the result set by including only those columns that
can be updated by a subsequent positioned UPDATE statement. If you specify the
FOR UPDATE clause without column names, all columns that can be updated in
the table or view are included. If you specify column names, each name must be
unqualified and must identify a column of the table or view.

You cannot use the FOR UPDATE clause if:
v The cursor that is associated with the SELECT statement cannot be deleted
v At least one of the selected columns is a column that cannot be updated in a

catalog table and that has not been excluded in the FOR UPDATE clause.

In DB2 CLI applications, you can use the CLI connection attribute
SQL_ATTR_ACCESS_MODE for the same purpose.

FOR READ or FETCH ONLY clause

The FOR READ ONLY clause or the FOR FETCH ONLY clause ensures that
read-only results are returned. For result tables where updates and deletions are
allowed, specifying the FOR READ ONLY clause can improve the performance of
fetch operations if the database manager can retrieve blocks of data instead of
using exclusive locks. Do not specify the FOR READ ONLY clause in queries that
are used in positioned UPDATE or DELETE statements.

In DB2 CLI applications, you can use the CLI connection attribute
SQL_ATTR_ACCESS_MODE for the same purpose.

OPTIMIZE FOR n ROWS clause

The OPTIMIZE FOR clause declares the intent to retrieve only a subset of the
result or to give priority to retrieving only the first few rows. The optimizer can
then choose access plans that minimize the response time for retrieving the first
few rows. In addition, the number of rows that are sent to the client as a single
block are limited by the value of n. Thus the OPTIMIZE FOR clause affects how
the server retrieves qualifying rows from the database, and how it returns those
rows to the client.

For example, suppose you regularly query the EMPLOYEE table to determine
which employees have the highest salary:

select lastname, firstnme, empno, salary
from employee
order by salary desc

Chapter 3. Factors affecting performance 157

Although you have previously defined a descending index on the SALARY
column, this index is likely to be poorly clustered, because employees are ordered
by employee number. To avoid many random synchronous I/Os, the optimizer
would probably choose the list prefetch access method, which requires sorting the
row identifiers of all rows that qualify. This sort causes a delay before the first
qualifying rows can be returned to the application. To prevent this delay, add the
OPTIMIZE FOR clause to the statement as follows:

select lastname, firstnme, empno, salary
from employee
order by salary desc
optimize for 20 rows

In this case, the optimizer will likely choose to use the SALARY index directly,
because only the 20 employees with the highest salaries are retrieved. Regardless
of how many rows might be blocked, a block of rows is returned to the client
every twenty rows.

With the OPTIMIZE FOR clause, the optimizer favors access plans that avoid bulk
operations or flow interruptions, such as those that are caused by sort operations.
You are most likely to influence an access path by using the OPTIMIZE FOR 1
ROW clause. Using this clause might have the following effects:
v Join sequences with composite inner tables are less likely, because they require a

temporary table.
v The join method might change. A nested loop join is the most likely choice,

because it has low overhead cost and is usually more efficient when retrieving a
few rows.

v An index that matches the ORDER BY clause is more likely, because no sort is
required for the ORDER BY.

v List prefetching is less likely, because this access method requires a sort.
v Sequential prefetching is less likely, because only a small number of rows is

required.
v In a join query, the table with columns in the ORDER BY clause is likely to be

chosen as the outer table if an index on the outer table provides the ordering
that is needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization levels, it works
best for optimization class 3 and higher, because classes below 3 use the greedy join
enumeration search strategy. This method sometimes results in access plans for
multi-table joins that do not lend themselves to quick retrieval of the first few
rows.

If a packaged application uses the call-level interface (DB2 CLI or ODBC), you can
use the OPTIMIZEFORNROWS keyword in the db2cli.ini configuration file to
have DB2 CLI automatically append an OPTIMIZE FOR clause to the end of each
query statement.

When data is selected from nicknames, results can vary depending on data source
support. If the data source that is referenced by a nickname supports the
OPTIMIZE FOR clause, and the DB2 optimizer pushes the entire query down to
the data source, then the clause is generated in the remote SQL that is sent to the
data source. If the data source does not support this clause, or if the optimizer
decides that the least costly plan is local execution, the OPTIMIZE FOR clause is
applied locally. In this case, the DB2 optimizer prefers access plans that minimize
the response time for retrieving the first few rows of a query, but the options that

158 Troubleshooting and Tuning Database Performance

are available to the optimizer for generating plans are slightly limited, and
performance gains from the OPTIMIZE FOR clause might be negligible.

If the OPTIMIZE FOR clause and the FETCH FIRST clause are both specified, the
lower of the two n values affects the communications buffer size. The two values
are considered independent of each other for optimization purposes.

FETCH FIRST n ROWS ONLY clause

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows that
can be retrieved. Limiting the result table to the first several rows can improve
performance. Only n rows are retrieved, regardless of the number of rows that the
result set might otherwise contain.

If the FETCH FIRST clause and the OPTIMIZE FOR clause are both specified, the
lower of the two n values affects the communications buffer size. The two values
are considered independent of each other for optimization purposes.

DECLARE CURSOR WITH HOLD statement

When you declare a cursor using a DECLARE CURSOR statement that includes
the WITH HOLD clause, open cursors remain open when the transaction commits,
and all locks are released, except those locks that protect the current cursor
position. If the transaction is rolled back, all open cursors are closed, all locks are
released, and any LOB locators are freed.

In DB2 CLI applications, you can use the CLI connection attribute
SQL_ATTR_CURSOR_HOLD for the same purpose. If a packaged application uses
the call level interface (DB2 CLI or ODBC), use the CURSORHOLD keyword in
the db2cli.ini configuration file to have DB2 CLI automatically assume the WITH
HOLD clause for every declared cursor.

Specifying row blocking to reduce overhead
Row blocking, which is supported for all statements and data types (including
LOB data types), reduces database manager overhead for cursors by retrieving a
block of rows in a single operation.

This block of rows represents a number of pages in memory. It is not a
multidimensional (MDC) table block, which is physically mapped to an extent on
disk.

Row blocking is specified by the following options on the BIND or PREP
command:

BLOCKING ALL
Cursors that are declared with the FOR READ ONLY clause or that are not
specified as FOR UPDATE will be blocked.

BLOCKING NO
Cursors will not be blocked.

BLOCKING UNAMBIG
Cursors that are declared with the FOR READ ONLY clause will be
blocked. Cursors that are not declared with the FOR READ ONLY clause
or the FOR UPDATE clause, that are not ambiguous, or that are read-only,
will be blocked. Ambiguous cursors will not be blocked.

Chapter 3. Factors affecting performance 159

The following database manager configuration parameters are used during
block-size calculations.
v The aslheapsz parameter specifies the size of the application support layer heap

for local applications. It is used to determine the I/O block size when a blocking
cursor is opened.

v The rqrioblk parameter specifies the size of the communication buffer between
remote applications and their database agents on the database server. It is also
used to determine the I/O block size at the data server runtime client when a
blocking cursor is opened.

Before enabling the blocking of row data for LOB data types, it is important to
understand the impact on system resources. More shared memory will be
consumed on the server to store the references to LOB values in each block of data
when LOB columns are returned. The number of such references will vary
according to the value of the rqrioblk configuration parameter.

To increase the amount of memory allocated to the heap, modify the
database_memory database configuration parameter by:
v Setting its value to AUTOMATIC
v Increasing its value by 256 pages if the parameter is currently set to a

user-defined numeric value

To increase the performance of an existing embedded SQL application that
references LOB values, rebind the application using the BIND command and
specifying either the BLOCKING ALL clause or the BLOCKING UNAMBIG clause
to request blocking. Embedded applications will retrieve the LOB values, one row
at a time, after a block of rows has been retrieved from the server. User-defined
functions (UDFs) returning LOB results might cause the DB2 server to revert to
single-row retrieval of LOB data when large amounts of memory are being
consumed on the server.

To specify row blocking:
1. Use the values of the aslheapsz and rqrioblk configuration parameters to

estimate how many rows are returned for each block. In both formulas, orl is
the output row length, in bytes.
v Use the following formula for local applications:

Rows per block = aslheapsz * 4096 / orl

The number of bytes per page is 4096.
v Use the following formula for remote applications:

Rows per block = rqrioblk / orl

2. To enable row blocking, specify an appropriate value for the BLOCKING
option on the BIND or PREP command.
If you do not specify the BLOCKING option, the default row blocking type is
UNAMBIG. For the command line processor (CLP) and the call-level interface
(CLI), the default row blocking type is ALL.

Data sampling in queries
It is often impractical and sometimes unnecessary to access all of the data that is
relevant to a query. In some cases, finding overall trends or patterns in a subset of
the data will suffice. One way to do this is to run a query against a random
sample from the database.

160 Troubleshooting and Tuning Database Performance

The DB2 product enables you to efficiently sample data for SQL and XQuery
queries, potentially improving the performance of large queries by orders of
magnitude, while maintaining a high degree of accuracy.

Sampling is commonly used for aggregate queries, such as AVG, COUNT, and
SUM, where reasonably accurate values for the aggregates can be obtained from a
sample of the data. Sampling can also be used to obtain a random subset of the
rows in a table for auditing purposes or to speed up data mining and analysis.

Two methods of sampling are available: row-level sampling and page-level
sampling.

Row-level Bernoulli sampling

Row-level Bernoulli sampling obtains a sample of P percent of the table rows by
means of a SARGable predicate that includes each row in the sample with a
probability of P/100 and excludes it with a probability of 1-P/100.

Row-level Bernoulli sampling always produces a valid, random sample regardless
of the degree of data clustering. However, the performance of this type of
sampling is very poor if no index is available, because every row must be retrieved
and the sampling predicate must be applied to it. If there is no index, there are no
I/O savings over executing the query without sampling. If an index is available,
performance is improved, because the sampling predicate is applied to the RIDS
inside of the index leaf pages. In the usual case, this requires one I/O per selected
RID, and one I/O per index leaf page.

System page-level sampling

System page-level sampling is similar to row-level sampling, except that pages (not
rows) are sampled. The probability of a page being included in the sample is
P/100. If a page is included, all of the rows on that page are included.

The performance of system page-level sampling is excellent, because only one I/O
is required for each page that is included in the sample. Compared with no
sampling, page-level sampling improves performance by orders of magnitude.
However, the accuracy of aggregate estimates tends to be worse under page-level
sampling than row-level sampling. This difference is most pronounced when there
are many rows per page, or when the columns that are referenced in the query
exhibit a high degree of clustering within pages.

Specifying the sampling method

Use the TABLESAMPLE clause to execute a query against a random sample of
data from a table. TABLESAMPLE BERNOULLI specifies that row-level Bernoulli
sampling is to be performed. TABLESAMPLE SYSTEM specifies that system
page-level sampling is to be performed, unless the optimizer determines that it is
more efficient to perform row-level Bernoulli sampling instead.

Parallel processing for applications
The DB2 product supports parallel environments, specifically on symmetric
multiprocessor (SMP) machines.

In SMP machines, more than one processor can access the database, allowing the
execution of complex SQL requests to be divided among the processors. This

Chapter 3. Factors affecting performance 161

intra-partition parallelism is the subdivision of a single database operation (for
example, index creation) into multiple parts, which are then executed in parallel
within a single database partition.

To specify the degree of parallelism when you compile an application, use the
CURRENT DEGREE special register, or the DEGREE bind option. Degree refers to
the number of query parts that can execute concurrently. There is no strict
relationship between the number of processors and the value that you select for
the degree of parallelism. You can specify a value that is more or less than the
number of processors on the machine. Even for uniprocessor machines, you can set
the degree to be higher than one to improve performance. Note, however, that
each degree of parallelism adds to the system memory and processor overhead.

Some configuration parameters must be modified to optimize performance when
you use parallel execution of queries. In an environment with a high degree of
parallelism, you should review and modify configuration parameters that control
the amount of shared memory and prefetching.

The following configuration parameters control and manage parallel processing.
v The intra_parallel database manager configuration parameter enables or disables

parallelism.
v The max_querydegree database manager configuration parameter sets an upper

limit on the degree of parallelism for any query in the database. This value
overrides the CURRENT DEGREE special register and the DEGREE bind option.

v The dft_degree database configuration parameter sets the default value for the
CURRENT DEGREE special register and the DEGREE bind option.

If a query is compiled with DEGREE = ANY, the database manager chooses the
degree of intra-partition parallelism on the basis of a number of factors, including
the number of processors and the characteristics of the query. The actual degree
used at run time might be lower than the number of processors, depending on
these factors and the amount of activity on the system. The degree of parallelism
might be reduced before query execution if the system is busy.

Use the DB2 explain facility to display information about the degree of parallelism
chosen by the optimizer. Use the database system monitor to display information
about the degree of parallelism actually being used at run time.

Parallelism in non-SMP environments

You can specify a degree of parallelism without having an SMP machine. For
example, I/O-bound queries on a uniprocessor machine might benefit from
declaring a degree of 2 or more. In this case, the processor might not have to wait
for I/O tasks to complete before starting to process a new query. Utilities such as
load can control I/O parallelism independently.

Lock management
Lock management is one of the factors that affect application performance. Review
this section for details about lock management considerations that can help you to
maximize the performance of database applications.

162 Troubleshooting and Tuning Database Performance

Locks and concurrency control
To provide concurrency control and prevent uncontrolled data access, the database
manager places locks on buffer pools, tables, data partitions, table blocks, or table
rows.

A lock associates a database manager resource with an application, called the lock
owner, to control how other applications access the same resource.

The database manager uses row-level locking or table-level locking, as appropriate,
based on:
v The isolation level specified at precompile time or when an application is bound

to the database. The isolation level can be one of the following:
– Uncommitted read (UR)
– Cursor stability (CS)
– Read stability (RS)
– Repeatable read (RR)

The different isolation levels are used to control access to uncommitted data,
prevent lost updates, allow non-repeatable reads of data, and prevent phantom
reads. To minimize performance impact, use the minimum isolation level that
satisfies your application needs.

v The access plan selected by the optimizer. Table scans, index scans, and other
methods of data access each require different types of access to the data.

v The LOCKSIZE attribute for the table. The LOCKSIZE clause on the ALTER
TABLE statement indicates the granularity of the locks that are used when the
table is accessed. The choices are: ROW for row locks, TABLE for table locks, or
BLOCKINSERT for block locks on multidimensional clustering (MDC) tables
only. When the BLOCKINSERT clause is used on an MDC table, row-level
locking is performed, except during an insert operation, when block-level
locking is done instead. Use the ALTER TABLE...LOCKSIZE BLOCKINSERT
statement for MDC tables when transactions will be performing large inserts
into disjointed cells. Use the ALTER TABLE...LOCKSIZE TABLE statement for
read-only tables. This reduces the number of locks that are required for database
activity. For partitioned tables, table locks are first acquired and then data
partition locks are acquired, as dictated by the data that will be accessed.

v The amount of memory devoted to locking, which is controlled by the locklist
database configuration parameter. If the lock list fills up, performance can
degrade because of lock escalations and reduced concurrency among shared
objects in the database. If lock escalations occur frequently, increase the value of
locklist, maxlocks, or both. To reduce the number of locks that are held at one
time, ensure that transactions commit frequently.

A buffer pool lock (exclusive) is set whenever a buffer pool is created, altered, or
dropped. You might encounter this type of lock when collecting system monitoring
data. The name of the lock is the identifier (ID) for the buffer pool itself.

In general, row-level locking is used unless one of the following is true:
v The isolation level is uncommitted read
v The isolation level is repeatable read and the access plan requires a scan with no

index range predicates
v The table LOCKSIZE attribute is TABLE
v The lock list fills up, causing lock escalation

Chapter 3. Factors affecting performance 163

v An explicit table lock has been acquired through the LOCK TABLE statement,
which prevents concurrent application processes from changing or using a table

In the case of an MDC table, block-level locking is used instead of row-level
locking when:
v The table LOCKSIZE attribute is BLOCKINSERT
v The isolation level is repeatable read and the access plan involves predicates
v A searched update or delete operation involves predicates on dimension

columns only

The duration of row locking varies with the isolation level being used:
v UR scans: No row locks are held unless row data is changing.
v CS scans: Row locks are generally held only while the cursor is positioned on

the row. Note that in some cases, locks might not be held at all during a CS
scan.

v RS scans: Qualifying row locks are held only for the duration of the transaction.
v RR scans: All row locks are held for the duration of the transaction.

Lock granularity
If one application holds a lock on a database object, another application might not
be able to access that object. For this reason, row-level locks, which minimize the
amount of data that is locked and therefore inaccessible, are better for maximum
concurrency than block-level, data partition-level, or table-level locks.

However, locks require storage and processing time, so a single table lock
minimizes lock overhead.

The LOCKSIZE clause of the ALTER TABLE statement specifies the granularity of
locks at the row, data partition, block, or table level. Row locks are used by default.
Use of this option in the table definition does not prevent normal lock escalation
from occurring.

The ALTER TABLE statement specifies locks globally, affecting all applications and
users that access that table. Individual applications might use the LOCK TABLE
statement to specify table locks at an application level instead.

A permanent table lock defined by the ALTER TABLE statement might be
preferable to a single-transaction table lock using the LOCK TABLE statement if:
v The table is read-only, and will always need only S locks. Other users can also

obtain S locks on the table.
v The table is usually accessed by read-only applications, but is sometimes

accessed by a single user for brief maintenance, and that user requires an X lock.
While the maintenance program is running, read-only applications are locked
out, but in other circumstances, read-only applications can access the table
concurrently with a minimum of locking overhead.

For a multidimensional clustering (MDC) table, you can specify BLOCKINSERT
with the LOCKSIZE clause in order to use block-level locking during insert
operations only. When BLOCKINSERT is specified, row-level locking is performed
for all other operations, but only minimally for insert operations. That is,
block-level locking is used during the insertion of rows, but row-level locking is

164 Troubleshooting and Tuning Database Performance

used to lock the next key if repeatable read (RR) scans are encountered in the
record ID (RID) indexes as they are being updated. BLOCKINSERT locking might
be beneficial when:
v There are multiple transactions doing mass insertions into separate cells
v Concurrent insertions into the same cell by multiple transactions is not

occurring, or it is occurring with enough data inserted per cell by each of the
transactions that the user is not concerned that each transaction will insert into
separate blocks

Lock attributes
Database manager locks have several basic attributes.

These attributes include the following:

Mode The type of access allowed for the lock owner, as well as the type of access
allowed for concurrent users of the locked object. It is sometimes referred
to as the state of the lock.

Object
The resource being locked. The only type of object that you can lock
explicitly is a table. The database manager also sets locks on other types of
resources, such as rows and table spaces. Block locks can also be set for
multidimensional clustering (MDC) tables, and data partition locks can be
set for partitioned tables. The object being locked determines the
granularity of the lock.

Lock count
The length of time during which a lock is held. The isolation level under
which a query runs affects the lock count.

Table 11 lists the lock modes and describes their effects, in order of increasing
control over resources.

Table 11. Lock Mode Summary

Lock Mode
Applicable Object
Type Description

IN (Intent None) Table spaces, blocks,
tables, data partitions

The lock owner can read any data in the object, including
uncommitted data, but cannot update any of it. Other concurrent
applications can read or update the table.

IS (Intent Share) Table spaces, blocks,
tables, data partitions

The lock owner can read data in the locked table, but cannot update
this data. Other applications can read or update the table.

IX (Intent Exclusive) Table spaces, blocks,
tables, data partitions

The lock owner and concurrent applications can read and update
data. Other concurrent applications can both read and update the
table.

NS (Scan Share) Rows The lock owner and all concurrent applications can read, but not
update, the locked row. This lock is acquired on rows of a table,
instead of an S lock, where the isolation level of the application is
either RS or CS.

NW (Next Key Weak
Exclusive)

Rows When a row is inserted into an index, an NW lock is acquired on
the next row. This occurs only if the next row is currently locked by
an RR scan. The lock owner can read but not update the locked row.
This lock mode is similar to an X lock, except that it is also
compatible with NS locks.

S (Share) Rows, blocks, tables,
data partitions

The lock owner and all concurrent applications can read, but not
update, the locked data.

Chapter 3. Factors affecting performance 165

Table 11. Lock Mode Summary (continued)

Lock Mode
Applicable Object
Type Description

SIX (Share with
Intent Exclusive)

Tables, blocks, data
partitions

The lock owner can read and update data. Other concurrent
applications can read the table.

U (Update) Rows, blocks, tables,
data partitions

The lock owner can update data. Other units of work can read the
data in the locked object, but cannot update it.

X (Exclusive) Rows, blocks, tables,
buffer pools, data
partitions

The lock owner can both read and update data in the locked object.
Only uncommitted read (UR) applications can access the locked
object.

Z (Super Exclusive) Table spaces, tables,
data partitions

This lock is acquired on a table under certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or for some types of table reorganization. No
other concurrent application can read or update the table.

Factors that affect locking
Several factors affect the mode and granularity of database manager locks.

These factors include:
v The type of processing that the application performs
v The data access method
v The values of various configuration parameters

Locks and types of application processing
For the purpose of determining lock attributes, application processing can be
classified as one of the following types: read-only, intent to change, change, and
cursor controlled.
v Read-only

This processing type includes all SELECT statements that are intrinsically
read-only, have an explicit FOR READ ONLY clause, or are ambiguous, but the
query compiler assumes that they are read-only because of the BLOCKING
option value that the PREP or BIND command specifies. This type requires only
share locks (IS, NS, or S).

v Intent to change
This processing type includes all SELECT statements that have a FOR UPDATE
clause, a USE AND KEEP UPDATE LOCKS clause, a USE AND KEEP
EXCLUSIVE LOCKS clause, or are ambiguous, but the query compiler assumes
that change is intended. This type uses share and update locks (S, U, or X for
rows; IX, S, U, or X for blocks; and IX, U, or X for tables).

v Change
This processing type includes UPDATE, INSERT, and DELETE statements, but
not UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF. This
type requires exclusive locks (IX or X).

v Cursor controlled
This processing type includes UPDATE WHERE CURRENT OF and DELETE
WHERE CURRENT OF. This type requires exclusive locks (IX or X).

A statement that inserts, updates, or deletes data in a target table, based on the
result from a subselect statement, does two types of processing. The rules for

166 Troubleshooting and Tuning Database Performance

read-only processing determine the locks for the tables that return data in the
subselect statement. The rules for change processing determine the locks for the
target table.

Locks and data-access methods
An access plan is the method that the optimizer selects to retrieve data from a
specific table. The access plan can have a significant effect on lock modes.

If an index scan is used to locate a specific row, the optimizer will usually choose
row-level locking (IS) for the table. For example, if the EMPLOYEE table has an
index on employee number (EMPNO), access through that index might be used to
select information for a single employee:

select * from employee
where empno = '000310'

If an index is not used, the entire table must be scanned in sequence to find the
required rows, and the optimizer will likely choose a single table-level lock (S). For
example, if there is no index on the column SEX, a table scan might be used to
select all male employees, as follows:

select * from employee
where sex = 'M'

Note: Cursor-controlled processing uses the lock mode of the underlying cursor
until the application finds a row to update or delete. For this type of processing,
no matter what the lock mode of the cursor might be, an exclusive lock is always
obtained to perform the update or delete operation.

Locking in range-clustered tables works slightly differently from standard key
locking. When accessing a range of rows in a range-clustered table, all rows in the
range are locked, even when some of those rows are empty. In standard key
locking, only rows with existing data are locked.

Deferred access to data pages implies that access to a row occurs in two steps,
which results in more complex locking scenarios. The timing of lock acquisition
and the persistence of locks depend on the isolation level. Because the repeatable
read (RR) isolation level retains all locks until the end of a transaction, the locks
acquired in the first step are held, and there is no need to acquire further locks
during the second step. For the read stability (RS) and cursor stability (CS)
isolation levels, locks must be acquired during the second step. To maximize
concurrency, locks are not acquired during the first step, and the reapplication of
all predicates ensures that only qualifying rows are returned.

Lock type compatibility
Lock compatibility becomes an issue when one application holds a lock on an
object and another application requests a lock on the same object. When the two
lock modes are compatible, the request for a second lock on the object can be
granted.

If the lock mode of the requested lock is not compatible with the lock that is
already held, the lock request cannot be granted. Instead, the request must wait
until the first application releases its lock, and all other existing incompatible locks
are released.

Table 12 on page 168 shows which lock types are compatible (indicated by a yes)
and which types are not (indicated by a no). Note that a timeout can occur when a
requestor is waiting for a lock.

Chapter 3. Factors affecting performance 167

Table 12. Lock Type Compatibility

State of Held Resource

State Being
Requested None IN IS NS S IX SIX U X Z NW

None yes yes yes yes yes yes yes yes yes yes yes

IN (Intent None) yes yes yes yes yes yes yes yes yes no yes

IS (Intent Share) yes yes yes yes yes yes yes yes no no no

NS (Scan Share) yes yes yes yes yes no no yes no no yes

S (Share) yes yes yes yes yes no no yes no no no

IX (Intent Exclusive) yes yes yes no no yes no no no no no

SIX (Share with
Intent Exclusive)

yes yes yes no no no no no no no no

U (Update) yes yes yes yes yes no no no no no no

X (Exclusive) yes yes no no no no no no no no no

Z (Super Exclusive) yes no no no no no no no no no no

NW (Next Key Weak
Exclusive)

yes yes no yes no no no no no no no

Next-key locking
During insertion of a key into an index, the row that corresponds to the key that
will follow the new key in the index is locked only if that row is currently locked
by a repeatable read (RR) index scan. When this occurs, insertion of the new index
key is deferred until the transaction that performed the RR scan completes.

The lock mode that is used for the next-key lock is NW (next key weak exclusive).
This next-key lock is released before key insertion occurs; that is, before a row is
inserted into the table.

Key insertion also occurs when updates to a row result in a change to the value of
the index key for that row, because the original key value is marked deleted and
the new key value is inserted into the index. For updates that affect only the
include columns of an index, the key can be updated in place, and no next-key
locking occurs.

During RR scans, the row that corresponds to the key that follows the end of the
scan range is locked in S mode. If no keys follow the end of the scan range, an
end-of-table lock is acquired to lock the end of the index. In the case of partitioned
indexes for partitioned tables, locks are acquired to lock the end of each index
partition, instead of just one lock for the end of the index. If the key that follows
the end of the scan range is marked deleted, one of the following actions occurs:
v The scan continues to lock the corresponding rows until it finds a key that is not

marked deleted
v The scan locks the corresponding row for that key
v The scan locks the end of the index

Lock modes and access plans for standard tables
The type of lock that a standard table obtains depends on the isolation level that is
in effect and on the data access plan that is being used.

168 Troubleshooting and Tuning Database Performance

The following tables show the types of locks that are obtained for standard tables
under each isolation level for different access plans. Each entry has two parts: the
table lock and the row lock. A hyphen indicates that a particular lock granularity is
not available.

Tables 7-12 show the types of locks that are obtained when the reading of data
pages is deferred to allow the list of rows to be further qualified using multiple
indexes, or sorted for efficient prefetching.
v Table 1. Lock Modes for Table Scans with No Predicates
v Table 2. Lock Modes for Table Scans with Predicates
v Table 3. Lock Modes for RID Index Scans with No Predicates
v Table 4. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 5. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 6. Lock Modes for RID Index Scans with Index and Other Predicates

(sargs, resids) Only
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note:

1. Block-level locks are also available for multidimensional clustering (MDC)
tables.

2. Lock modes can be changed explicitly with the lock-request-clause of a SELECT
statement.

Table 13. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Chapter 3. Factors affecting performance 169

Table 14. Lock Modes for Table Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- U/- SIX/X U/- SIX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Note: Under the UR isolation level, if there are predicates on include columns in the index,
the isolation level is upgraded to CS and the locks are upgraded to an IS table lock or NS
row locks.

Table 15. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 16. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/U IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 17. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

170 Troubleshooting and Tuning Database Performance

Table 18. Lock Modes for RID Index Scans with Index and Other Predicates (sargs, resids)
Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 19. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S X/-

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 20. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Table 21. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/S

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Chapter 3. Factors affecting performance 171

Table 22. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Table 23. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S IX/S IX/X

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

Table 24. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operations Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/- IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IS/- IX/U IX/X IX/U IX/X

Lock modes for MDC table and RID index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
table or RID index scan depends on the isolation level that is in effect and on the
data access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the
reading of data pages is deferred. Under the UR isolation level, if there are
predicates on include columns in the index, the isolation level is upgraded to CS
and the locks are upgraded to an IS table lock, an IS block lock, or NS row locks.
v Table 1. Lock Modes for Table Scans with No Predicates

172 Troubleshooting and Tuning Database Performance

v Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns
Only

v Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)
v Table 4. Lock Modes for RID Index Scans with No Predicates
v Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row
v Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only
v Table 7. Lock Modes for RID Index Scans with Index Predicates Only
v Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)
v Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only
v Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 25. Lock Modes for Table Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 26. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

Table 27. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

Chapter 3. Factors affecting performance 173

Table 27. Lock Modes for Table Scans with Other Predicates (sargs, resids) (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or delete

Scan Where current
of

Scan Update or
delete

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 28. Lock Modes for RID Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 29. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

Table 30. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Table 31. Lock Modes for RID Index Scans with Index Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

174 Troubleshooting and Tuning Database Performance

Table 31. Lock Modes for RID Index Scans with Index Predicates Only (continued)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 32. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 33. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 34. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Chapter 3. Factors affecting performance 175

Table 35. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 36. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 37. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan
with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Table 38. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

176 Troubleshooting and Tuning Database Performance

Lock modes for MDC block index scans
The type of lock that a multidimensional clustering (MDC) table obtains during a
block index scan depends on the isolation level that is in effect and on the data
access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables
under each isolation level for different access plans. Each entry has three parts: the
table lock, the block lock, and the row lock. A hyphen indicates that a particular
lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when
the reading of data pages is deferred.
v Table 1. Lock Modes for Index Scans with No Predicates
v Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns

Only
v Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only
v Table 4. Lock Modes for Index Scans with Predicates
v Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with No Predicates
v Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with No Predicates
v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Predicates on Dimension Columns Only
v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Predicates on Dimension Columns Only
v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Start and Stop Predicates Only
v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Start and Stop Predicates Only
v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Other Predicates (sargs, resids)
v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a
SELECT statement.

Table 39. Lock Modes for Index Scans with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

Chapter 3. Factors affecting performance 177

Table 40. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

Table 41. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

Table 42. Lock Modes for Index Scans with Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Table 43. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

178 Troubleshooting and Tuning Database Performance

Table 44. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with No Predicates

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

Table 45. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

Table 46. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Predicates on Dimension Columns Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

Table 47. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Chapter 3. Factors affecting performance 179

Table 48. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Start and Stop Predicates Only

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

Table 49. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index
Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

Table 50. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block
Index Scan with Other Predicates (sargs, resids)

Isolation
level

Read-only and
ambiguous scans

Cursored operation Searched update or
delete

Scan Where current
of

Scan Update or
delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Locking behavior on partitioned tables
In addition to an overall table lock, there is a lock for each data partition of a
partitioned table.

This allows for finer granularity and increased concurrency compared to a
nonpartitioned table. The data partition lock is identified in output from the db2pd
command, event monitors, administrative views, and table functions.

When a table is accessed, a table lock is obtained first, and then data partition
locks are obtained as required. Access methods and isolation levels might require
the locking of data partitions that are not represented in the result set. After these
data partition locks are acquired, they might be held as long as the table lock. For
example, a cursor stability (CS) scan over an index might keep the locks on
previously accessed data partitions to reduce the cost of reacquiring data partition
locks later.

180 Troubleshooting and Tuning Database Performance

Data partition locks also carry the cost of ensuring access to table spaces. For
nonpartitioned tables, table space access is handled by table locks. Data partition
locking occurs even if there is an exclusive or share lock at the table level.

Finer granularity allows one transaction to have exclusive access to a specific data
partition and to avoid row locking while other transactions are accessing other
data partitions. This can be the result of the plan that is chosen for a mass update,
or because of the escalation of locks to the data partition level. The table lock for
many access methods is normally an intent lock, even if the data partitions are
locked in share or exclusive mode. This allows for increased concurrency. However,
if non-intent locks are required at the data partition level, and the plan indicates
that all data partitions might be accessed, then a non-intent lock might be chosen
at the table level to prevent data partition deadlocks between concurrent
transactions.

LOCK TABLE statements

For partitioned tables, the only lock acquired by the LOCK TABLE statement is a
table-level lock. This prevents row locking by subsequent data manipulation
language (DML) statements, and avoids deadlocks at the row, block, or data
partition level. The IN EXCLUSIVE MODE option can be used to guarantee
exclusive access when updating indexes, which is useful in limiting the growth of
indexes during a large update.

Effect of the LOCKSIZE TABLE option on the ALTER TABLE
statement

The LOCKSIZE TABLE option ensures that a table is locked in share or exclusive
mode with no intent locks. For a partitioned table, this locking strategy is applied
to both the table lock and to data partition locks.

Row- and block-level lock escalation

Row- and block-level locks in partitioned tables can be escalated to the data
partition level. When this occurs, a table is more accessible to other transactions,
even if a data partition is escalated to share, exclusive, or super exclusive mode,
because other data partitions remain unaffected. The notification log entry for an
escalation includes the impacted data partition and the name of the table.

Exclusive access to a nonpartitioned index cannot be ensured by lock escalation.
For exclusive access, one of the following conditions must be true:
v The statement must use an exclusive table-level lock
v An explicit LOCK TABLE IN EXCLUSIVE MODE statement must be issued
v The table must have the LOCKSIZE TABLE attribute

In the case of partitioned indexes, exclusive access to an index partition is ensured
by lock escalation of the data partition to an exclusive or super exclusive access
mode.

Interpreting lock information

The SNAPLOCK administrative view can help you to interpret lock information
that is returned for a partitioned table. The following SNAPLOCK administrative
view was captured during an offline index reorganization.

Chapter 3. Factors affecting performance 181

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15) TBSP_NAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE,
LOCK_MODE, LOCK_ESCALATION FROM SYSIBMADM.SNAPLOCK where TABNAME like 'TP1' and LOCK_OBJECT_TYPE like 'TABLE_%'
ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_ESCALATION
--------------- -------------------- --------------- ----------------- ------------------ ---------- ---------------
TP1 32768 - -1 TABLE_LOCK Z 0
TP1 4 USERSPACE1 0 TABLE_PART_LOCK Z 0
TP1 5 USERSPACE1 1 TABLE_PART_LOCK Z 0
TP1 6 USERSPACE1 2 TABLE_PART_LOCK Z 0
TP1 7 USERSPACE1 3 TABLE_PART_LOCK Z 0
TP1 8 USERSPACE1 4 TABLE_PART_LOCK Z 0
TP1 9 USERSPACE1 5 TABLE_PART_LOCK Z 0
TP1 10 USERSPACE1 6 TABLE_PART_LOCK Z 0
TP1 11 USERSPACE1 7 TABLE_PART_LOCK Z 0
TP1 12 USERSPACE1 8 TABLE_PART_LOCK Z 0
TP1 13 USERSPACE1 9 TABLE_PART_LOCK Z 0
TP1 14 USERSPACE1 10 TABLE_PART_LOCK Z 0
TP1 15 USERSPACE1 11 TABLE_PART_LOCK Z 0
TP1 4 USERSPACE1 - TABLE_LOCK Z 0
TP1 5 USERSPACE1 - TABLE_LOCK Z 0
TP1 6 USERSPACE1 - TABLE_LOCK Z 0
TP1 7 USERSPACE1 - TABLE_LOCK Z 0
TP1 8 USERSPACE1 - TABLE_LOCK Z 0
TP1 9 USERSPACE1 - TABLE_LOCK Z 0
TP1 10 USERSPACE1 - TABLE_LOCK Z 0
TP1 11 USERSPACE1 - TABLE_LOCK Z 0
TP1 12 USERSPACE1 - TABLE_LOCK Z 0
TP1 13 USERSPACE1 - TABLE_LOCK Z 0
TP1 14 USERSPACE1 - TABLE_LOCK Z 0
TP1 15 USERSPACE1 - TABLE_LOCK Z 0
TP1 16 USERSPACE1 - TABLE_LOCK Z 0

26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID
of -1 are used to control access to and concurrency on the partitioned table TP1.
The lock objects of type TABLE_PART_LOCK are used to control most access to
and concurrency on each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output
(TAB_FILE_ID 4 through 16) that do not have a value for DATA_PARTITION_ID.
A lock of this type, where an object with a TAB_FILE_ID and a TBSP_NAME
correspond to a data partition or index on the partitioned table, might be used to
control concurrency with the online backup utility.

Lock conversion
Changing the mode of a lock that is already held is called lock conversion.

Lock conversion occurs when a process accesses a data object on which it already
holds a lock, and the access mode requires a more restrictive lock than the one
already held. A process can hold only one lock on a data object at any given time,
although it can request a lock on the same data object many times indirectly
through a query.

Some lock modes apply only to tables, others only to rows, blocks, or data
partitions. For rows or blocks, conversion usually occurs if an X lock is needed and
an S or U lock is held.

IX and S locks are special cases with regard to lock conversion. Neither is
considered to be more restrictive than the other, so if one of these locks is held and
the other is required, the conversion results in a SIX (Share with Intent Exclusive)
lock. All other conversions result in the requested lock mode becoming the held
lock mode if the requested mode is more restrictive.

182 Troubleshooting and Tuning Database Performance

A dual conversion might also occur when a query updates a row. If the row is read
through index access and locked as S, the table that contains the row has a
covering intention lock. But if the lock type is IS instead of IX, and the row is
subsequently changed, the table lock is converted to an IX and the row lock is
converted to an X.

Lock conversion usually takes place implicitly as a query executes. The system
monitor elements lock_current_mode and lock_mode can provide information
about lock conversions occurring in your database.

Lock waits and timeouts
Lock timeout detection is a database manager feature that prevents applications
from waiting indefinitely for a lock to be released.

For example, a transaction might be waiting for a lock that is held by another
user's application, but the other user has left the workstation without allowing the
application to commit the transaction, which would release the lock. To avoid
stalling an application in such a case, set the locktimeout database configuration
parameter to the maximum time that any application should have to wait to obtain
a lock.

Setting this parameter helps to avoid global deadlocks, especially in distributed
unit of work (DUOW) applications. If the time during which a lock request is
pending is greater than the locktimeout value, an error is returned to the
requesting application and its transaction is rolled back. For example, if APPL1
tries to acquire a lock that is already held by APPL2, APPL1 receives SQLCODE
-911 (SQLSTATE 40001) with reason code 68 if the timeout period expires. The
default value for locktimeout is -1, which means that lock timeout detection is
disabled.

For table, row, data partition, and multidimensional clustering (MDC) block locks,
an application can override the locktimeout value by changing the value of the
CURRENT LOCK TIMEOUT special register.

To generate a report file about lock timeouts, set the
DB2_CAPTURE_LOCKTIMEOUT registry variable to ON. The lock timeout
report includes information about the key applications that were involved in lock
contentions that resulted in lock timeouts, as well as details about the locks, such
as lock name, lock type, row ID, table space ID, and table ID. Note that this
variable is deprecated and might be removed in a future release because there are
new methods to collect lock timeout events using the CREATE EVENT MONITOR
FOR LOCKING statement.

To log more information about lock-request timeouts in the db2diag log files, set
the value of the diaglevel database manager configuration parameter to 4. The
logged information includes the name of the locked object, the lock mode, and the
application that is holding the lock. The current dynamic SQL or XQuery statement
or static package name might also be logged. A dynamic SQL or XQuery statement
is logged only at diaglevel 4.

You can get additional information about lock waits and lock timeouts from the
lock wait information system monitor elements, or from the
db.apps_waiting_locks health indicator.

Chapter 3. Factors affecting performance 183

Specifying a lock wait mode strategy
An session can specify a lock wait mode strategy, which is used when the session
requires a lock that it cannot obtain immediately.

The strategy indicates whether the session will:
v Return an SQLCODE and SQLSTATE when it cannot obtain a lock
v Wait indefinitely for a lock
v Wait a specified amount of time for a lock
v Use the value of the locktimeout database configuration parameter when

waiting for a lock

The lock wait mode strategy is specified through the SET CURRENT LOCK
TIMEOUT statement, which changes the value of the CURRENT LOCK TIMEOUT
special register. This special register specifies the number of seconds to wait for a
lock before returning an error indicating that a lock cannot be obtained.

Traditional locking approaches can result in applications blocking each other. This
happens when one application must wait for another application to release its lock.
Strategies to deal with the impact of such blocking usually provide a mechanism to
specify the maximum acceptable duration of the block. That is the amount of time
that an application will wait prior to returning without a lock. Previously, this was
only possible at the database level by changing the value of the locktimeout
database configuration parameter.

The value of locktimeout applies to all locks, but the lock types that are impacted
by the lock wait mode strategy include row, table, index key, and multidimensional
clustering (MDC) block locks.

Deadlocks
A deadlock is created when two applications lock data that is needed by the other,
resulting in a situation in which neither application can continue executing.

For example, in Figure 23 on page 185, there are two applications running
concurrently: Application A and Application B. The first transaction for Application
A is to update the first row in Table 1, and the second transaction is to update the
second row in Table 2. Application B updates the second row in Table 2 first, and
then the first row in Table 1. At time T1, Application A locks the first row in Table
1. At the same time, Application B locks the second row in Table 2. At time T2,
Application A requests a lock on the second row in Table 2. However, at the same
time, Application B tries to lock the first row in Table 1. Because Application A will
not release its lock on the first row in Table 1 until it can complete an update to
the second row in Table 2, and Application B will not release its lock on the second
row in Table 2 until it can complete an update to the first row in Table 1, a
deadlock occurs. The applications wait until one of them releases its lock on the
data.

184 Troubleshooting and Tuning Database Performance

Because applications do not voluntarily release locks on data that they need, a
deadlock detector process is required to break deadlocks. The deadlock detector
monitors information about agents that are waiting on locks, and awakens at
intervals that are specified by the dlchktime database configuration parameter.

If it finds a deadlock, the deadlock detector arbitrarily selects one deadlocked
process as the victim process to roll back. The victim process is awakened, and
returns SQLCODE -911 (SQLSTATE 40001), with reason code 2, to the calling
application. The database manager rolls back uncommitted transactions from the
selected process automatically. When the rollback operation is complete, locks that
belonged to the victim process are released, and the other processes involved in
the deadlock can continue.

To ensure good performance, select an appropriate value for dlchktime. An
interval that is too short causes unnecessary overhead, and an interval that is too
long allows deadlocks to linger.

In a partitioned database environment, the value of dlchktime is applied only at
the catalog database partition. If a large number of deadlocks are occurring,
increase the value of dlchktime to account for lock waits and communication
waits.

To avoid deadlocks when applications read data that they intend to subsequently
update:
v Use the FOR UPDATE clause when performing a select operation. This clause

ensures that a U lock is set when a process attempts to read data, and it does
not allow row blocking.

v Use the WITH RR or WITH RS and USE AND KEEP UPDATE LOCKS clauses
in queries. These clauses ensure that a U lock is set when a process attempts to
read data, and they allow row blocking.

In a federated system, the data that is requested by an application might not be
available because of a deadlock at the data source. When this happens, the DB2
server relies on the deadlock handling facilities at the data source. If deadlocks
occur across more than one data source, the DB2 server relies on data source
timeout mechanisms to break the deadlocks.

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 23. Deadlock between applications

Chapter 3. Factors affecting performance 185

To log more information about deadlocks, set the value of the diaglevel database
manager configuration parameter to 4. The logged information includes the name
of the locked object, the lock mode, and the application that is holding the lock.
The current dynamic SQL and XQuery statement or static package name might
also be logged.

Query optimization
Query optimization is one of the factors that affect application performance.
Review this section for details about query optimization considerations that can
help you to maximize the performance of database applications.

The SQL and XQuery compiler process
The SQL and XQuery compiler performs several steps to produce an access plan
that can be executed.

The query graph model is an internal, in-memory database that represents the query
as it is processed through these steps, which are shown in Figure 24 on page 187
and described below. Note that some steps occur only for queries that will run
against a federated database.

186 Troubleshooting and Tuning Database Performance

1. Parse query
The SQL and XQuery compiler analyzes the query to validate the syntax. If any
syntax errors are detected, the query compiler stops processing and returns an
appropriate error to the application that submitted the query. When parsing is
complete, an internal representation of the query is created and stored in the
query graph model.

2. Check semantics
The compiler ensures that there are no inconsistencies among parts of the
statement. For example, the compiler verifies that a column specified for the
YEAR scalar function has been defined with a datetime data type.

Figure 24. Steps performed by the SQL and XQuery compiler

Chapter 3. Factors affecting performance 187

The compiler also adds behavioral semantics to the query graph model,
including the effects of referential constraints, table check constraints, triggers,
and views. The query graph model contains all of the semantics for the query,
including query blocks, subqueries, correlations, derived tables, expressions,
data types, data type conversions, code page conversions, and distribution
keys.

3. Rewrite query
The compiler uses the global semantics that are stored in the query graph
model to transform the query into a form that can be optimized more easily. It
then stores the result in the query graph model.
For example, the compiler might move a predicate, altering the level at which it
is applied, thereby potentially improving query performance. This type of
operation movement is called general predicate pushdown. In a partitioned
database environment, the following query operations are more
computationally intensive:
v Aggregation
v Redistribution of rows
v Correlated subqueries, which are subqueries that contain a reference to a

column in a table that is outside of the subquery
For some queries in a partitioned database environment, decorrelation might
occur as part of rewriting the query.

4. Pushdown analysis (federated databases only)
The major task in this step is to recommend to the optimizer whether an
operation can be remotely evaluated or pushed down at a data source. This type
of pushdown activity is specific to data source queries and represents an
extension to general predicate pushdown operations.

5. Optimize access plan
Using the query graph model as input, the optimizer portion of the compiler
generates many alternative execution plans for satisfying the query. To estimate
the execution cost of each of these plans, the optimizer uses statistics for tables,
indexes, columns and functions. It then chooses the plan with the smallest
estimated execution cost. The optimizer uses the query graph model to analyze
the query semantics and to obtain information about a wide variety of factors,
including indexes, base tables, derived tables, subqueries, correlations, and
recursion.
The optimizer can also consider another type of pushdown operation,
aggregation and sort, which can improve performance by pushing the evaluation
of these operations to the Data Management Services (DMS) component.
The optimizer also considers whether there are buffer pools of different sizes
when determining page size selection. It considers whether the database is
partitioned, or whether intraquery parallelism in a symmetric multiprocessor
(SMP) environment is an option. This information is used by the optimizer to
help select the best access plan for the query.
The output of this step is an access plan, and details about this access plan are
captured in the explain tables. The information that is used to generate an
access plan can be captured by an explain snapshot.

6. Remote SQL generation (federated databases only)
The final plan that is selected by the optimizer might consist of a set of steps
that operate on a remote data source. The remote SQL generation step creates
an efficient SQL statement for operations that are performed by each data
source, based on the SQL dialect at that data source.

7. Generate executable code

188 Troubleshooting and Tuning Database Performance

In the final step, the compiler uses the access plan and the query graph model
to create an executable access plan, or section, for the query. This code
generation step uses information from the query graph model to avoid
repetitive execution of expressions that need to be computed only once. This
type of optimization is possible for code page conversions and when host
variables are used.
To enable query optimization or reoptimization of static or dynamic SQL or
XQuery statements that have host variables, special registers, or parameter
markers, bind the package with the REOPT bind option. The access path for a
statement belonging to such a package, and containing host variables, special
registers, or parameter markers, will be optimized using the values of these
variables rather than default estimates that are chosen by the compiler. This
optimization takes place at query execution time when the values are available.
Information about access plans for static SQL and XQuery statements is stored
in the system catalog tables. When a package is executed, the database manager
uses the information that is stored in the system catalog to determine how to
access the data and provide results for the query. This information is used by
the db2expln tool.

Note: Execute the RUNSTATS command at appropriate intervals against tables
that change often. The optimizer needs up-to-date statistical information about
tables and their data to create the most efficient access plans. Rebind your
application to take advantage of updated statistics. If RUNSTATS is not executed,
or the optimizer assumes that this command was executed against empty or nearly
empty tables, it might use default values or attempt to derive certain statistics
based on the number of file pages that are used to store the table on disk. See also
“Automatic statistics collection”.

Query rewriting methods and examples
During the query rewrite stage, the query compiler transforms SQL and XQuery
statements into forms that can be optimized more easily; this can improve the
possible access plans. Rewriting queries is particularly important for very complex
queries, including those queries that have many subqueries or many joins. Query
generator tools often create these types of very complex queries.

To influence the number of query rewrite rules that are applied to an SQL or
XQuery statement, change the optimization class. To see some of the results of the
query rewrite process, use the explain facility or Visual Explain.

Queries might be rewritten in any one of the following ways:
v Operation merging

To construct a query so that it has the fewest number of operations, especially
SELECT operations, the SQL and XQuery compiler rewrites queries to merge
query operations. The following examples illustrate some of the operations that
can be merged:
– Example - View merges

A SELECT statement that uses views can restrict the join order of the table
and can also introduce redundant joining of tables. If the views are merged
during query rewrite, these restrictions can be lifted.

– Example - Subquery to join transforms
If a SELECT statement contains a subquery, selection of order processing of
the tables might be restricted.

– Example - Redundant join elimination

Chapter 3. Factors affecting performance 189

During query rewrite, redundant joins can be removed to simplify the
SELECT statement.

– Example - Shared aggregation
When a query uses different functions, rewriting can reduce the number of
calculations that need to be done.

v Operation movement
To construct a query with the minimum number of operations and predicates,
the compiler rewrites the query to move query operations. The following
examples illustrate some of the operations that can be moved:
– Example - DISTINCT elimination

During query rewrite, the optimizer can move the point at which the
DISTINCT operation is performed, to reduce the cost of this operation. In
some cases, the DISTINCT operation can be removed completely.

– Example - General predicate pushdown
During query rewrite, the optimizer can change the order in which predicates
are applied, so that more selective predicates are applied to the query as early
as possible.

– Example - Decorrelation
In a partitioned database environment, the movement of result sets among
database partitions is costly. Reducing the size of what must be broadcast to
other database partitions, or reducing the number of broadcasts, or both, is an
objective of the query rewriting process.

v Predicate translation
The SQL and XQuery compiler rewrites queries to translate existing predicates
into more optimal forms. The following examples illustrate some of the
predicates that might be translated:
– Example - Addition of implied predicates

During query rewrite, predicates can be added to a query to enable the
optimizer to consider additional table joins when selecting the best access
plan for the query.

– Example - OR to IN transformations
During query rewrite, an OR predicate can be translated into an IN predicate
for a more efficient access plan. The SQL and XQuery compiler can also
translate an IN predicate into an OR predicate if this transformation would
create a more efficient access plan.

Compiler rewrite example: View merges:

A SELECT statement that uses views can restrict the join order of the table and can
also introduce redundant joining of tables. If the views are merged during query
rewrite, these restrictions can be lifted.

Suppose you have access to the following two views that are based on the
EMPLOYEE table: one showing employees that have a high level of education and
the other showing employees that earn more than $35,000 per year:

create view emp_education (empno, firstnme, lastname, edlevel) as
select empno, firstnme, lastname, edlevel

from employee
where edlevel > 17

190 Troubleshooting and Tuning Database Performance

create view emp_salaries (empno, firstname, lastname, salary) as
select empno, firstnme, lastname, salary

from employee
where salary > 35000

The following user-written query lists those employees who have a high level of
education and who earn more than $35,000 per year:

select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary
from emp_education e1, emp_salaries e2
where e1.empno = e2.empno

During query rewrite, these two views could be merged to create the following
query:

select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary
from employee e1, employee e2
where

e1.empno = e2.empno and
e1.edlevel > 17 and
e2.salary > 35000

By merging the SELECT statements from the two views with the user-written
SELECT statement, the optimizer can consider more choices when selecting an
access plan. In addition, if the two views that have been merged use the same base
table, additional rewriting might be performed.

Example - Subquery to join transformations

The SQL and XQuery compiler will take a query containing a subquery, such as:
select empno, firstnme, lastname, phoneno

from employee
where workdept in

(select deptno
from department
where deptname = 'OPERATIONS')

and convert it to a join query of the form:
select distinct empno, firstnme, lastname, phoneno

from employee emp, department dept
where

emp.workdept = dept.deptno and
dept.deptname = 'OPERATIONS'

A join is generally much more efficient to execute than a subquery.

Example - Redundant join elimination

Queries sometimes have unnecessary joins.
select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary

from employee e1,
employee e2

where e1.empno = e2.empno
and e1.edlevel > 17
and e2.salary > 35000

The SQL and XQuery compiler can eliminate the join and simplify the query to:
select empno, firstnme, lastname, edlevel, salary

from employee
where

edlevel > 17 and
salary > 35000

Chapter 3. Factors affecting performance 191

The following example assumes that a referential constraint exists between the
EMPLOYEE and DEPARTMENT tables on the department number. First, a view is
created.

create view peplview as
select firstnme, lastname, salary, deptno, deptname, mgrno

from employee e department d
where e.workdept = d.deptno

Then a query such as the following:
select lastname, salary

from peplview

becomes:
select lastname, salary

from employee
where workdept not null

Note that in this situation, even if you know that the query can be rewritten, you
might not be able to do so because you do not have access to the underlying
tables. You might only have access to the view (shown above). Therefore, this type
of optimization has to be performed by the database manager.

Redundancy in referential integrity joins likely occurs when:
v Views are defined with joins
v Queries are automatically generated

Example - Shared aggregation

Using multiple functions within a query can generate several calculations that take
time. Reducing the number of required calculations improves the plan. The
compiler takes a query that uses multiple functions, such as the following:

select sum(salary+bonus+comm) as osum,
avg(salary+bonus+comm) as oavg,
count(*) as ocount

from employee

and transforms it:
select osum, osum/ocount ocount

from (
select sum(salary+bonus+comm) as osum,

count(*) as ocount
from employee

) as shared_agg

This rewrite halves the required number of sums and counts.

Compiler rewrite example: DISTINCT elimination:

During query rewrite, the optimizer can move the point at which the DISTINCT
operation is performed, to reduce the cost of this operation. In some cases, the
DISTINCT operation can be removed completely.

For example, if the EMPNO column of the EMPLOYEE table were defined as the
primary key, the following query:

select distinct empno, firstnme, lastname
from employee

192 Troubleshooting and Tuning Database Performance

could be rewritten by removing the DISTINCT clause:
select empno, firstnme, lastname

from employee

In this example, because the primary key is being selected, the compiler knows
that each returned row is unique. In this case, the DISTINCT keyword is
redundant. If the query is not rewritten, the optimizer must build a plan with
necessary processing (such as a sort) to ensure that the column values are unique.

Example - General predicate pushdown

Altering the level at which a predicate is normally applied can result in improved
performance. For example, the following view provides a list of all employees in
department D11:

create view d11_employee
(empno, firstnme, lastname, phoneno, salary, bonus, comm) as

select empno, firstnme, lastname, phoneno, salary, bonus, comm
from employee
where workdept = 'D11'

The following query against this view is not as efficient as it could be:
select firstnme, phoneno

from d11_employee
where lastname = 'BROWN'

During query rewrite, the compiler pushes the lastname = 'BROWN' predicate down
into the D11_EMPLOYEE view. This allows the predicate to be applied sooner and
potentially more efficiently. The actual query that could be executed in this
example is as follows:

select firstnme, phoneno
from employee
where

lastname = 'BROWN' and
workdept = 'D11'

Predicate pushdown is not limited to views. Other situations in which predicates
can be pushed down include UNION, GROUP BY, and derived tables (nested table
expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the compiler can rewrite the following
query, which is designed to find all of the employees who are working on
programming projects and who are underpaid.

select p.projno, e.empno, e.lastname, e.firstname,
e.salary+e.bonus+e.comm as compensation

from employee e, project p
where

p.empno = e.empno and
p.projname like '%PROGRAMMING%' and
e.salary+e.bonus+e.comm <

(select avg(e1.salary+e1.bonus+e1.comm)
from employee e1, project p1
where

p1.projname like '%PROGRAMMING%' and
p1.projno = a.projno and
e1.empno = p1.empno)

Chapter 3. Factors affecting performance 193

Because this query is correlated, and because both PROJECT and EMPLOYEE are
unlikely to be partitioned on PROJNO, the broadcasting of each project to each
database partition is possible. In addition, the subquery would have to be
evaluated many times.

The compiler can rewrite the query as follows:
v Determine the distinct list of employees working on programming projects and

call it DIST_PROJS. It must be distinct to ensure that aggregation is done only
once for each project:

with dist_projs(projno, empno) as
(select distinct projno, empno

from project p1
where p1.projname like '%PROGRAMMING%')

v Join DIST_PROJS with the EMPLOYEE table to get the average compensation
per project, AVG_PER_PROJ:

avg_per_proj(projno, avg_comp) as
(select p2.projno, avg(e1.salary+e1.bonus+e1.comm)

from employee e1, dist_projs p2
where e1.empno = p2.empno
group by p2.projno)

v The rewritten query is:
select p.projno, e.empno, e.lastname, e.firstname,

e.salary+e.bonus+e.comm as compensation
from project p, employee e, avg_per_prog a
where

p.empno = e.empno and
p.projname like '%PROGRAMMING%' and
p.projno = a.projno and
e.salary+e.bonus+e.comm < a.avg_comp

This query computes the avg_comp per project (avg_per_proj). The result can then
be broadcast to all database partitions that contain the EMPLOYEE table.

Compiler rewrite example: Predicate pushdown for combined SQL/XQuery
statements:

One fundamental technique for the optimization of relational SQL queries is to
move predicates in the WHERE clause of an enclosing query block into an
enclosed lower query block (for example, a view), thereby enabling early data
filtering and potentially better index usage.

This is even more important in partitioned database environments, because early
filtering potentially reduces the amount of data that must be shipped between
database partitions.

Similar techniques can be used to move predicates or XPath filters inside of an
XQuery. The basic strategy is always to move filtering expressions as close to the
data source as possible. This optimization technique is called predicate pushdown in
SQL and extraction pushdown (for filters and XPath extractions) in XQuery.

Because the data models employed by SQL and XQuery are different, you must
move predicates, filters, or extractions across the boundary between the two
languages. Data mapping and casting rules have to be considered when
transforming an SQL predicate into a semantically equivalent filter and pushing it
down into the XPath extraction. The following examples address the pushdown of
relation predicates into XQuery query blocks.

194 Troubleshooting and Tuning Database Performance

Consider the following two XML documents containing customer information:
Document 1 Document 2

<customer> <customer>
<name>John</name> <name>Michael</name>
<lastname>Doe</lastname> <lastname>Miller </lastname>
<date_of_birth> <date_of_birth>
1976-10-10 1975-01-01
</date_of_birth> </date_of_birth>
<address> <address>

<zip>95141.0</zip> <zip>95142.0</zip>
</address> </address>

<volume>80000.0</volume> <volume>100000.00</volume>
</customer> </customer>
<customer> <customer>

<name>Jane</name> <name>Michaela</name>
<lastname>Doe</lastname> <lastname>Miller</lastname>
<date_of_birth> <date_of_birth>

1975-01-01 1980-12-23
</date_of_birth> </date_of_birth>
<address> <address>

<zip>95141.4</zip> <zip>95140.5</zip>
</address> </address>

<volume>50000.00</volume> <volume>100000</volume>
</customer> </customer>

Example - Pushing integer predicates

Consider the following query:
select temp.name, temp.zip

from xmltable('db2-fn:xmlcolumn("T.XMLDOC")'
columns name varchar(20) path 'customer/name',
zip integer path 'customer/zip'
) as temp

where zip = 95141

To use possible indexes on T.XMLDOC and to filter unwanted persons early on,
the zip = 95141 predicate will be internally converted into the following
equivalent XPATH filtering expression:
T.XMLCOL/customer/zip[. >= 95141.0 and . < 95142.0]

Because schema information for XML fragments is not used by the compiler, it
cannot be assumed that ZIP contains integers only. It is possible that there are
other numeric values with a fractional part and a corresponding double XML index
on this specific XPath extraction. The XML2SQL cast would handle this
transformation by truncating the fractional part before casting the value to
INTEGER. This behavior must be reflected in the pushdown procedure, and the
predicate must be changed to remain semantically correct.

Example - Pushing VARCHAR(n) predicates

Consider the following query:
select temp.name, temp.lastname

from xmltable('db2-fn:xmlcolumn("T.XMLDOC")'
columns name varchar(20) path 'customer/name',
lastname varchar(20) path 'customer/lastname'
) as temp

where lastname = 'Miller'

Chapter 3. Factors affecting performance 195

To use possible indexes on T.XMLDOC and to filter unwanted persons early on,
the lastname = 'Miller' predicate will be internally converted into the equivalent
XPATH filtering expression:
T.XMLCOL/customer/lastname[. > rtrim("Miller") and . < blank_padd("Miller",

max(20,length("Miller"))]

Trailing blanks are treated differently in SQL than in XPath or XQuery. The original
SQL predicate will not distinguish between the two customers whose last name is
“Miller”, even if one of them (Michael) has a trailing blank. Consequently, both
customers are returned, which would not be the case if an unchanged predicate
were pushed down.

The solution is to transform the predicate into a range filter.
v The first boundary is created by truncating all trailing blanks from the

comparison value, using the RTRIM() function.
v The second boundary must be greater than or equal to all possible “Miller”

strings that contain trailing blanks. The original string is padded with blanks to
the maximum column length, or to the length of the comparison string, if that is
longer.

Example - Pushing DECIMAL(x,y) predicates

Consider the following query:
select temp.name, temp.volume

from xmltable('db2-fn:xmlcolumn("T.XMLDOC")'
columns name varchar(20) path 'customer/name',
volume decimal(10,2) path 'customer/volume'
) as temp

where volume = 100000.00

To use possible double indexes on T.XMLDOC and to filter unwanted persons
early on, the volume = 100000.00 predicate will be internally converted into the
following equivalent XPATH filtering expression:
T.XMLCOL/customer/volume[.=100000.00]

The predicate does not have to be transformed into a range filter, because casting
restrictions force XML values to have the same precision and length of the
fractional part as the target SQL type. Any violation of this constraint returns an
error. Precision is not reduced when DOUBLE values are cast to DECIMAL(x,y).
Rounding or truncation of the comparative values is not necessary.

Compiler rewrite example: Implied predicates:

During query rewrite, predicates can be added to a query to enable the optimizer
to consider additional table joins when selecting the best access plan for the query.

The following query returns a list of the managers whose departments report to
department E01, and the projects for which those managers are responsible:

select dept.deptname dept.mgrno, emp.lastname, proj.projname
from department dept, employee emp, project proj
where

dept.admrdept = 'E01' and
dept.mgrno = emp.empno and
emp.empno = proj.respemp

This query can be rewritten with the following implied predicate, known as a
predicate for transitive closure:

196 Troubleshooting and Tuning Database Performance

dept.mgrno = proj.respemp

The optimizer can now consider additional joins when it tries to select the best
access plan for the query.

During the query rewrite stage, additional local predicates are derived on the basis
of the transitivity that is implied by equality predicates. For example, the following
query returns the names of the departments whose department number is greater
than E00, and the employees who work in those departments.

select empno, lastname, firstname, deptno, deptname
from employee emp, department dept
where

emp.workdept = dept.deptno and
dept.deptno > 'E00'

This query can be rewritten with the following implied predicate:
emp.workdept > 'E00'

This rewrite reduces the number of rows that need to be joined.

Example - OR to IN transformations

Suppose that an OR clause connects two or more simple equality predicates on the
same column, as in the following example:

select *
from employee
where

deptno = 'D11' or
deptno = 'D21' or
deptno = 'E21'

If there is no index on the DEPTNO column, using an IN predicate in place of OR
causes the query to be processed more efficiently:

select *
from employee
where deptno in ('D11', 'D21', 'E21')

In some cases, the database manager might convert an IN predicate into a set of
OR clauses so that index ORing can be performed.

Predicate typology and access plans
A predicate is an element of a search condition that expresses or implies a
comparison operation. Predicates, which usually appear in the WHERE clause of a
query, are used to reduce the scope of the result set that is returned by the query.

Predicates can be grouped into four categories, depending on how and when they
are used in the evaluation process. These categories are listed below, in order of
best to worst performance:
1. Range-delimiting predicates
2. Index SARGable predicates
3. Data SARGable predicates
4. Residual predicates

A SARGable term is a term that can be used as a search argument.

Table 51 on page 198 summarizes the characteristics of these predicate categories.

Chapter 3. Factors affecting performance 197

Table 51. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range-
delimiting

Index-
SARGable

Data-SARGable Residual

Reduce index
I/O

Yes No No No

Reduce data
page I/O

Yes Yes No No

Reduce the
number of rows
that are passed
internally

Yes Yes Yes No

Reduce the
number of
qualifying rows

Yes Yes Yes Yes

Range-delimiting and index-SARGable predicates

Range-delimiting predicates limit the scope of an index scan. They provide start
and stop key values for the index search. Index-SARGable predicates cannot limit
the scope of a search, but can be evaluated from the index, because the columns
that are referenced in the predicate are part of the index key. For example, consider
the following index:

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

Consider also a query that contains the following WHERE clause:
where

name = :hv1 and
dept = :hv2 and
years > :hv5

The first two predicates (name = :hv1 and dept = :hv2) are range-delimiting
predicates, and years > :hv5 is an index-SARGable predicate.

The optimizer uses index data instead of reading the base table when it evaluates
these predicates. Index-SARGable predicates reduce the number of rows that need
to be read from the table, but they do not affect the number of index pages that are
accessed.

Data SARGable predicates

Predicates that cannot be evaluated by the index manager, but that can be
evaluated by Data Management Services (DMS), are called data-SARGable
predicates. These predicates usually require access to individual rows in a table. If
required, DMS retrieves the columns that are needed to evaluate a predicate, as
well as any other columns that are needed for the SELECT list, but that could not
be obtained from the index.

For example, consider the following index that is defined on the PROJECT table:
INDEX IX0: PROJNO ASC

198 Troubleshooting and Tuning Database Performance

In the following query, deptno = 'D11' is considered to be a data-SARGable
predicate.

select projno, projname, respemp
from project
where deptno = 'D11'
order by projno

Residual predicates

Residual predicates are more expensive, in terms of I/O cost, than accessing a
table. Such predicates might:
v Use correlated subqueries
v Use quantified subqueries, which contain ANY, ALL, SOME, or IN clauses
v Read LONG VARCHAR or LOB data, which is stored in a file that is separate

from the table

Such predicates are evaluated by Relational Data Services (RDS).

Some predicates that are applied only to an index must be reapplied when the data
page is accessed. For example, access plans that use index ORing or index ANDing
always reapply the predicates as residual predicates when the data page is
accessed.

Federated database query-compiler phases

Federated database pushdown analysis:

For queries that are to run against federated databases, the optimizer performs
pushdown analysis to determine whether a particular operation can be performed
at a remote data source.

An operation might be a function, such as a relational operator, or a system or user
function; or it might be an SQL operator, such as, for example, ORDER BY or
GROUP BY.

Be sure to update local catalog information regularly, so that the DB2 query
compiler has access to accurate information about SQL support at remote data
sources. Use DB2 data definition language (DDL) statements (such as CREATE
FUNCTION MAPPING or ALTER SERVER, for example) to update the catalog.

If functions cannot be pushed down to the remote data source, they can
significantly impact query performance. Consider the effect of forcing a selective
predicate to be evaluated locally instead of at the data source. Such evaluation
could require the DB2 server to retrieve the entire table from the remote data
source and then filter it locally against the predicate. Network constraints and a
large table could cause performance to suffer.

Operators that are not pushed down can also significantly affect query
performance. For example, having a GROUP BY operator aggregate remote data
locally could also require the DB2 server to retrieve an entire table from the remote
data source.

For example, consider nickname N1, which references the data source table
EMPLOYEE in a DB2 for z/OS data source. The table has 10 000 rows, one of the
columns contains the last names of employees, and one of the columns contains

Chapter 3. Factors affecting performance 199

salaries. The optimizer has several options when processing the following
statement, depending on whether the local and remote collating sequences are the
same:

select lastname, count(*) from n1
where

lastname > 'B' and
salary > 50000

group by lastname

v If the collating sequences are the same, the query predicates can probably be
pushed down to DB2 for z/OS. Filtering and grouping results at the data source
is usually more efficient than copying the entire table and performing the
operations locally. For this query, the predicates and the GROUP BY operation
can take place at the data source.

v If the collating sequences are not the same, both predicates cannot be evaluated
at the data source. However, the optimizer might decide to push down the
salary > 50000 predicate. The range comparison must still be done locally.

v If the collating sequences are the same, and the optimizer knows that the local
DB2 server is very fast, the optimizer might decide that performing the GROUP
BY operation locally is the least expensive approach. The predicate is evaluated
at the data source. This is an example of pushdown analysis combined with
global optimization.

In general, the goal is to ensure that the optimizer evaluates functions and
operators at remote data sources. Many factors affect whether a function or an SQL
operator can be evaluated at a remote data source, including the following:
v Server characteristics
v Nickname characteristics
v Query characteristics

Server characteristics that affect pushdown opportunities

Certain data source-specific factors can affect pushdown opportunities. In general,
these factors exist because of the rich SQL dialect that is supported by the DB2
product. The DB2 data server can compensate for the lack of function that is
available at another data server, but doing so might require that the operation take
place at the DB2 server.
v SQL capabilities

Each data source supports a variation of the SQL dialect and different levels of
functionality. For example, most data sources support the GROUP BY operator,
but some limit the number of items on the GROUP BY list, or have restrictions
on whether an expression is allowed on the GROUP BY list. If there is a
restriction at the remote data source, the DB2 server might have to perform a
GROUP BY operation locally.

v SQL restrictions
Each data source might have different SQL restrictions. For example, some data
sources require parameter markers to bind values to remote SQL statements.
Therefore, parameter marker restrictions must be checked to ensure that each
data source can support such a bind mechanism. If the DB2 server cannot
determine a good method to bind a value for a function, this function must be
evaluated locally.

v SQL limits
Although the DB2 server might allow the use of larger integers than those that
are permitted on remote data sources, values that exceed remote limits cannot be

200 Troubleshooting and Tuning Database Performance

embedded in statements that are sent to data sources, and any impacted
functions or operators must be evaluated locally.

v Server specifics
Several factors fall into this category. For example, if null values at a data source
are sorted differently from how the DB2 server would sort them, ORDER BY
operations on a nullable expression cannot be remotely evaluated.

v Collating sequence
Retrieving data for local sorts and comparisons usually decreases performance.
If you configure a federated database to use the same collating sequence that a
data source uses and then set the COLLATING_SEQUENCE server option to Y,
the optimizer can consider pushing down many query operations. The following
operations might be pushed down if collating sequences are the same:
– Comparisons of character or numeric data
– Character range comparison predicates
– Sorts
You might get unusual results, however, if the weighting of null characters is
different between the federated database and the data source. Comparisons
might return unexpected results if you submit statements to a case-insensitive
data source. The weights that are assigned to the characters “I” and “i” in a
case-insensitive data source are the same. The DB2 server, by default, is case
sensitive and assigns different weights to these characters.
To improve performance, the federated server allows sorts and comparisons to
take place at data sources. For example, in DB2 for z/OS, sorts that are defined
by ORDER BY clauses are implemented by a collating sequence that is based on
an EBCDIC code page. To use the federated server to retrieve DB2 for z/OS data
that is sorted in accordance with ORDER BY clauses, configure the federated
database so that it uses a predefined collating sequence based on the EBCDIC
code page.
If the collating sequences of the federated database and the data source differ,
the DB2 server retrieves the data to the federated database. Because users expect
to see query results ordered by the collating sequence that is defined for the
federated server, ordering the data locally ensures that this expectation is
fulfilled. Submit your query in passthrough mode, or define the query in a data
source view if you need to see the data ordered in the collating sequence of the
data source.

v Server options
Several server options can affect pushdown opportunities, including
COLLATING_SEQUENCE, VARCHAR_NO_TRAILING_BLANKS, and
PUSHDOWN.

v DB2 type mapping and function mapping factors
The default local data type mappings on the DB2 server are designed to provide
sufficient buffer space for each data source data type, which avoids loss of data.
You can customize the type mapping for a specific data source to suit specific
applications. For example, if you are accessing an Oracle data source column
with a DATE data type, which by default is mapped to the DB2 TIMESTAMP
data type, you might change the local data type to the DB2 DATE data type.

In the following three cases, the DB2 server can compensate for functions that a
data source does not support:
v The function does not exist at the remote data source.
v The function exists, but the characteristics of the operand violate function

restrictions. The IS NULL relational operator is an example of this situation.

Chapter 3. Factors affecting performance 201

Most data sources support it, but some might have restrictions, such as allowing
a column name to appear only on the left hand side of the IS NULL operator.

v The function might return a different result if it is evaluated remotely. An
example of this situation is the greater than ('>') operator. For data sources with
different collating sequences, the greater than operator might return different
results if it is evaluated locally by the DB2 server.

Nickname characteristics that affect pushdown opportunities

The following nickname-specific factors can affect pushdown opportunities.
v Local data type of a nickname column

Ensure that the local data type of a column does not prevent a predicate from
being evaluated at the data source. Use the default data type mappings to avoid
possible overflow. However, a joining predicate between two columns of
different lengths might not be considered at a data source whose joining column
is shorter, depending on how DB2 binds the longer column. This situation can
affect the number of possibilities that the DB2 optimizer can evaluate in a
joining sequence. For example, Oracle data source columns that were created
using the INTEGER or INT data type are given the type NUMBER(38). A
nickname column for this Oracle data type is given the local data type FLOAT,
because the range of a DB2 integer is from 2**31 to (-2**31)-1, which is roughly
equivalent to NUMBER(9). In this case, joins between a DB2 integer column and
an Oracle integer column cannot take place at the DB2 data source (because of
the shorter joining column); however, if the domain of this Oracle integer
column can be accommodated by the DB2 INTEGER data type, change its local
data type with the ALTER NICKNAME statement so that the join can take place
at the DB2 data source.

v Column options
Use the ALTER NICKNAME statement to add or change column options for
nicknames.
Use the VARCHAR_NO_TRAILING_BLANKS option to identify a column that
contains no trailing blanks. The compiler pushdown analysis step will then take
this information into account when checking all operations that are performed
on such columns. The DB2 server might generate a different but equivalent form
of a predicate to be used in the SQL statement that is sent to a data source. You
might see a different predicate being evaluated against the data source, but the
net result should be equivalent.
Use the NUMERIC_STRING option to indicate whether the values in that
column are always numbers without trailing blanks.
Table 52 on page 203 describes these options.

202 Troubleshooting and Tuning Database Performance

Table 52. Column Options and Their Settings

Option Valid Settings Default
Setting

NUMERIC_STRING
Y: Specifies that this column contains only strings of
numeric data. It does not contain blank characters that
could interfere with sorting of the column data. This
option is useful when the collating sequence of a data
source is different from that of the DB2 server. Columns
that are marked with this option are not excluded from
local (data source) evaluation because of a different
collating sequence. If the column contains only numeric
strings that are followed by trailing blank characters, do
not specify Y.

N: Specifies that this column is not limited to strings of
numeric data.

N

VARCHAR_NO_
TRAILING_BLANKS Y: Specifies that this data source uses non-blank-padded

VARCHAR comparison semantics, similar to the DB2
data server. For variable-length character strings that
contain no trailing blank characters, non-blank-padded
comparison semantics of some data servers return the
same results as DB2 comparison semantics. Specify this
value if you are certain that all VARCHAR table or
view columns at a data source contain no trailing blank
characters

N: Specifies that this data source does not use
non-blank-padded VARCHAR comparison semantics,
similar to the DB2 data server.

N

Query characteristics that affect pushdown opportunities

A query can reference an SQL operator that might involve nicknames from
multiple data sources. The operation must take place on the DB2 server to combine
the results from two referenced data sources that use one operator, such as a set
operator (for example, UNION). The operator cannot be evaluated at a remote data
source directly.

Guidelines for determining where a federated query is evaluated:

The DB2 explain utility, which you can start by invoking the db2expln command,
shows where queries are evaluated. The execution location for each operator is
included in the command output.
v If a query is pushed down, you should see a RETURN operator, which is a

standard DB2 operator. If a SELECT statement retrieves data from a nickname,
you also see a SHIP operator, which is unique to federated database operations:
it changes the server property of the data flow and separates local operators
from remote operators. The SELECT statement is generated using the SQL
dialect that is supported by the data source.

v If an INSERT, UPDATE, or DELETE statement can be entirely pushed down to
the remote data source, you might not see a SHIP operator in the access plan.
All remotely executed INSERT, UPDATE, or DELETE statements are shown for
the RETURN operator. However, if a query cannot be pushed down in its
entirety, the SHIP operator shows which operations were performed remotely.

Chapter 3. Factors affecting performance 203

Understanding why a query is evaluated at a data source instead of by the DB2
server

Consider the following key questions when you investigate ways to increase
pushdown opportunities:
v Why isn't this predicate being evaluated remotely?

This question arises when a very selective predicate could be used to filter rows
and reduce network traffic. Remote predicate evaluation also affects whether a
join between two tables of the same data source can be evaluated remotely.
Areas to examine include:
– Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery that involves an
SQL operator that is not supported by this data source? Not all data sources
support set operators in a subquery predicate.

– Predicate functions. Does this predicate contain a function that cannot be
evaluated by this remote data source? Relational operators are classified as
functions.

– Predicate bind requirements. If it is remotely evaluated, does this predicate
require bind-in of some value? Would that violate SQL restrictions at this data
source?

– Global optimization. The optimizer might have decided that local processing
is more cost effective.

v Why isn't the GROUP BY operator evaluated remotely?
Areas to examine include:
– Is the input to the GROUP BY operator evaluated remotely? If the answer is

no, examine the input.
– Does the data source have any restrictions on this operator? Examples

include:
- A limited number of GROUP BY items
- Limited byte counts for combined GROUP BY items
- Column specifications only on the GROUP BY list

– Does the data source support this SQL operator?
– Global optimization. The optimizer might have decided that local processing

is more cost effective.
– Does the GROUP BY clause contain a character expression? If it does, verify

that the remote data source and the DB2 server have the same case sensitivity.
v Why isn't the set operator evaluated remotely?

Areas to examine include:
– Are both of its operands evaluated in their entirety at the same remote data

source? If the answer is no, and it should be yes, examine each operand.
– Does the data source have any restrictions on this set operator? For example,

are large objects (LOBs) or LONG field data valid input for this specific set
operator?

v Why isn't the ORDER BY operation evaluated remotely?
Areas to examine include:
– Is the input to the ORDER BY operation evaluated remotely? If the answer is

no, examine the input.
– Does the ORDER BY clause contain a character expression? If yes, do the

remote data source and the DB2 server have different collating sequences or
case sensitivities?

204 Troubleshooting and Tuning Database Performance

– Does the remote data source have any restrictions on this operator? For
example, is there a limit to the number of ORDER BY items? Does the remote
data source restrict column specification to the ORDER BY list?

Remote SQL generation and global optimization in federated databases:

For a federated database query that uses relational nicknames, the access strategy
might involve breaking down the original query into a set of remote query units
and then combining the results. Such remote SQL generation helps to produce a
globally optimized access strategy for a query.

The optimizer uses the output of pushdown analysis to decide whether each
operation is to be evaluated locally at the DB2 server or remotely at a data source.
It bases its decision on the output of its cost model, which includes not only the
cost of evaluating the operation, but also the cost of shipping the data and
messages between the DB2 server and the remote data source.

Although the goal is to produce an optimized query, the following factors
significantly affect global optimization, and thereby query performance.
v Server characteristics
v Nickname characteristics

Server options that affect global optimization

The following data source server options can affect global optimization:
v Relative ratio of processing speed

Use the CPU_RATIO server option to specify how fast or slow the processing
speed at the data source should be relative to the processing speed at the DB2
server. A low ratio indicates that the processing speed at the data source is faster
than the processing speed at the DB2 server; in this case, the DB2 optimizer is
more likely to consider pushing processor-intensive operations down to the data
source.

v Relative ratio of I/O speed
Use the IO_RATIO server option to specify how fast or slow the system I/O
speed at the data source should be relative to the system I/O speed at the DB2
server. A low ratio indicates that the I/O speed at the data source is faster than
the I/O speed at the DB2 server; in this case, the DB2 optimizer is more likely to
consider pushing I/O-intensive operations down to the data source.

v Communication rate between the DB2 server and the data source
Use the COMM_RATE server option to specify network capacity. Low rates,
which indicate slow network communication between the DB2 server and a data
source, encourage the DB2 optimizer to reduce the number of messages that are
sent to or from this data source. If the rate is set to 0, the optimizer creates an
access plan that requires minimal network traffic.

v Data source collating sequence
Use the COLLATING_SEQUENCE server option to specify whether a data
source collating sequence matches the local DB2 database collating sequence. If
this option is not set to Y, the DB2 optimizer considers any data that is retrieved
from this data source as being unordered.

v Remote plan hints
Use the PLAN_HINTS server option to specify that plan hints should be
generated or used at a data source. By default, the DB2 server does not send any
plan hints to the data source.

Chapter 3. Factors affecting performance 205

Plan hints are statement fragments that provide extra information to the
optimizer at a data source. For some queries, this information can improve
performance. The plan hints can help the optimizer at a data source to decide
whether to use an index, which index to use, or which table join sequence to
use.
If plan hints are enabled, the query that is sent to the data source contains
additional information. For example, a statement with plan hints that is sent to
an Oracle optimizer might look like this:

select /*+ INDEX (table1, t1index)*/
col1

from table1

The plan hint is the string: /*+ INDEX (table1, t1index)*/

v Information in the DB2 optimizer knowledge base
The DB2 server has an optimizer knowledge base that contains data about native
data sources. The DB2 optimizer does not generate remote access plans that
cannot be generated by specific database management systems (DBMSs). In
other words, the DB2 server avoids generating plans that optimizers at remote
data sources cannot understand or accept.

Nickname characteristics that affect global optimization

The following nickname-specific factors can affect global optimization.
v Index considerations

To optimize queries, the DB2 server can use information about indexes at data
sources. For this reason, it is important that the available index information be
current. Index information for a nickname is initially acquired when the
nickname is created. Index information is not collected for view nicknames.

v Creating index specifications on nicknames
You can create an index specification for a nickname. Index specifications build
an index definition (not an actual index) in the catalog for the DB2 optimizer to
use. Use the CREATE INDEX SPECIFICATION ONLY statement to create index
specifications. The syntax for creating an index specification on a nickname is
similar to the syntax for creating an index on a local table. Consider creating
index specifications in the following circumstances:
– When the DB2 server cannot retrieve any index information from a data

source during nickname creation
– When you want an index for a view nickname
– When you want to encourage the DB2 optimizer to use a specific nickname as

the inner table of a nested-loop join. You can create an index on the joining
column, if none exists.

Before you issue CREATE INDEX statements against a nickname for a view,
consider whether you need one. If the view is a simple SELECT on a table with
an index, creating local indexes on the nickname to match the indexes on the
table at the data source can significantly improve query performance. However,
if indexes are created locally over a view that is not a simple SELECT statement,
such as a view that is created by joining two tables, query performance might
suffer. For example, if you create an index over a view that is a join between
two tables, the optimizer might choose that view as the inner element in a
nested-loop join. The query will perform poorly, because the join is evaluated
several times. An alternate approach is to create nicknames for each of the tables
that are referenced in the data source view, and then to create a local view at the
DB2 server that references both nicknames.

206 Troubleshooting and Tuning Database Performance

v Catalog statistics considerations
System catalog statistics describe the overall size of nicknames and the range of
values in associated columns. The optimizer uses these statistics when it
calculates the least-cost path for processing queries that contain nicknames.
Nickname statistics are stored in the same catalog views as table statistics.
Although the DB2 server can retrieve the statistical data that is stored at a data
source, it cannot automatically detect updates to that data. Furthermore, the DB2
server cannot automatically detect changes to the definition of objects at a data
source. If the statistical data for—or the definition of—an object has changed,
you can:
– Run the equivalent of a RUNSTATS command at the data source, drop the

current nickname, and then recreate it. Use this approach if an object's
definition has changed.

– Manually update the statistics in the SYSSTAT.TABLES catalog view. This
approach requires fewer steps, but it does not work if an object's definition
has changed.

Global analysis of federated database queries:

The DB2 explain utility, which you can start by invoking the db2expln command,
shows the access plan that is generated by the remote optimizer for those data
sources that are supported by the remote explain function. The execution location
for each operator is included in the command output.

You can also find the remote SQL statement that was generated for each data
source in the SHIP or RETURN operator, depending on the type of query. By
examining the details for each operator, you can see the number of rows that were
estimated by the DB2 optimizer as input to and output from each operator.

Understanding DB2 optimization decisions

Consider the following key questions when you investigate ways to increase
performance:
v Why isn't a join between two nicknames of the same data source being

evaluated remotely?
Areas to examine include:
– Join operations. Can the remote data source support them?
– Join predicates. Can the join predicate be evaluated at the remote data source?

If the answer is no, examine the join predicate.
v Why isn't the GROUP BY operator being evaluated remotely?

Examine the operator syntax, and verify that the operator can be evaluated at
the remote data source.

v Why is the statement not being completely evaluated by the remote data source?
The DB2 optimizer performs cost-based optimization. Even if pushdown analysis
indicates that every operator can be evaluated at the remote data source, the
optimizer relies on its cost estimate to generate a global optimization plan. There
are a great many factors that can contribute to that plan. For example, even
though the remote data source can process every operation in the original query,
its processing speed might be much slower than the processing speed of the DB2
server, and it might turn out to be more beneficial to perform the operations at
the DB2 server instead. If results are not satisfactory, verify your server statistics
in the SYSCAT.SERVEROPTIONS catalog view.

Chapter 3. Factors affecting performance 207

v Why does a plan that is generated by the optimizer, and that is completely
evaluated at a remote data source, perform much more poorly than the original
query executed directly at the remote data source?
Areas to examine include:
– The remote SQL statement that is generated by the DB2 optimizer. Ensure

that this statement is identical to the original query. Check for changes in
predicate order. A good query optimizer should not be sensitive to the order
of predicates in a query. The optimizer at the remote data source might
generate a different plan, based on the order of input predicates. Consider
either modifying the order of predicates in the input to the DB2 server, or
contacting the service organization of the remote data source for assistance.
You can also check for predicate replacements. A good query optimizer
should not be sensitive to equivalent predicate replacements. The optimizer at
the remote data source might generate a different plan, based on the input
predicates. For example, some optimizers cannot generate transitive closure
statements for predicates.

– Additional functions. Does the remote SQL statement contain functions that
are not present in the original query? Some of these functions might be used
to convert data types; be sure to verify that they are necessary.

Data-access methods
When it compiles an SQL or XQuery statement, the query optimizer estimates the
execution cost of different ways of satisfying the query.

Based on these estimates, the optimizer selects an optimal access plan. An access
plan specifies the order of operations that are required to resolve an SQL or
XQuery statement. When an application program is bound, a package is created.
This package contains access plans for all of the static SQL and XQuery statements
in that application program. Access plans for dynamic SQL and XQuery statements
are created at run time.

There are three ways to access data in a table:
v By scanning the entire table sequentially
v By accessing an index on the table to locate specific rows
v By scan sharing

Rows might be filtered according to conditions that are defined in predicates,
which are usually stated in a WHERE clause. The selected rows in accessed tables
are joined to produce the result set, and this data might be further processed by
grouping or sorting of the output.

Starting with DB2 9.7, scan sharing, which is the ability of a scan to use the buffer
pool pages of another scan, is default behavior. Scan sharing increases workload
concurrency and performance. With scan sharing, the system can support a larger
number of concurrent applications, queries can perform better, and system
throughput can increase, benefiting even queries that do not participate in scan
sharing. Scan sharing is particularly effective in environments with applications
that perform scans such as table scans or multidimensional clustering (MDC) block
index scans of large tables. The compiler determines whether a scan is eligible to
participate in scan sharing based on the type of scan, its purpose, the isolation
level, how much work is done per record, and so on.

208 Troubleshooting and Tuning Database Performance

Data access through index scans
An index scan occurs when the database manager accesses an index to narrow the
set of qualifying rows (by scanning the rows in a specified range of the index)
before accessing the base table; to order the output; or to retrieve the requested
column data directly (index-only access).

When scanning the rows in a specified range of the index, the index scan range (the
start and stop points of the scan) is determined by the values in the query against
which index columns are being compared. In the case of index-only access, because
all of the requested data is in the index, the indexed table does not need to be
accessed.

If indexes are created with the ALLOW REVERSE SCANS option, scans can also be
performed in a direction that is opposite to that with which they were defined.

The optimizer chooses a table scan if no appropriate index has been created, or if
an index scan would be more costly. An index scan might be more costly if the
table is small, the index-clustering ratio is low, the query requires most of the table
rows, or additional sorts are required when a partitioned index (which cannot
preserve the order in certain cases) is used. To determine whether the access plan
uses a table scan or an index scan, use the DB2 explain facility.

Index scans to limit a range

To determine whether an index can be used for a particular query, the optimizer
evaluates each column of the index, starting with the first column, to see if it can
be used to satisfy equality and other predicates in the WHERE clause. A predicate is
an element of a search condition in a WHERE clause that expresses or implies a
comparison operation. Predicates can be used to limit the scope of an index scan in
the following cases:
v Tests for IS NULL or IS NOT NULL
v Tests for strict and inclusive inequality
v Tests for equality against a constant, a host variable, an expression that evaluates

to a constant, or a keyword
v Tests for equality against a basic subquery, which is a subquery that does not

contain ANY, ALL, or SOME; this subquery must not have a correlated column
reference to its immediate parent query block (that is, the select for which this
subquery is a subselect).

The following examples show how an index could be used to limit the range of a
scan.
v Consider an index with the following definition:

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

The following predicates could be used to limit the range of a scan that uses
index IX1:

where
name = :hv1 and
dept = :hv2

or

Chapter 3. Factors affecting performance 209

where
mgr = :hv1 and
name = :hv2 and
dept = :hv3

The second WHERE clause demonstrates that the predicates do not have to be
specified in the order in which the key columns appear in the index. Although
the examples use host variables, other variables, such as parameter markers,
expressions, or constants, could be used instead.
In the following WHERE clause, only the predicates that reference NAME and
DEPT would be used for limiting the range of the index scan:

where
name = :hv1 and
dept = :hv2 and
salary = :hv4 and
years = :hv5

Because there is a key column (MGR) separating these columns from the last
two index key columns, the ordering would be off. However, after the range is
determined by the name = :hv1 and dept = :hv2 predicates, the other predicates
can be evaluated against the remaining index key columns.

v Consider an index that was created using the ALLOW REVERSE SCANS option:
create index iname on tname (cname desc) allow reverse scans

In this case, the index (INAME) is based on descending values in the CNAME
column. Although the index is defined for scans running in descending order, a
scan can be done in ascending order. Use of the index is controlled by the
optimizer when creating and considering access plans.

Index scans to test inequality

Certain inequality predicates can limit the range of an index scan. There are two
types of inequality predicates:
v Strict inequality predicates

The strict inequality operators that are used for range-limiting predicates are
greater than (>) and less than (<).
Only one column with strict inequality predicates is considered for limiting the
range of an index scan. In the following example, predicates on the NAME and
DEPT columns can be used to limit the range, but the predicate on the MGR
column cannot be used for that purpose.

where
name = :hv1 and
dept > :hv2 and
dept < :hv3 and
mgr < :hv4

v Inclusive inequality predicates
The inclusive inequality operators that are used for range-limiting predicates are:
– >= and <=
– BETWEEN
– LIKE
Multiple columns with inclusive inequality predicates can be considered for
limiting the range of an index scan. In the following example, all of the
predicates can be used to limit the range.

210 Troubleshooting and Tuning Database Performance

where
name = :hv1 and
dept >= :hv2 and
dept <= :hv3 and
mgr <= :hv4

Suppose that :hv2 = 404, :hv3 = 406, and :hv4 = 12345. The database manager
will scan the index for departments 404 and 405, but it will stop scanning
department 406 when it reaches the first manager whose employee number
(MGR column) is greater than 12345.

Index scans to order data

If a query requires sorted output, an index can be used to order the data if the
ordering columns appear consecutively in the index, starting from the first index
key column. Ordering or sorting can result from operations such as ORDER BY,
DISTINCT, GROUP BY, an “= ANY” subquery, a “> ALL” subquery, a “< ALL”
subquery, INTERSECT or EXCEPT, and UNION. Exceptions to this are as follows:
v If the index is partitioned, it can be used to order the data only if the index key

columns are prefixed by the table-partitioning key columns, or if partition
elimination eliminations all but one partition.

v Ordering columns can be different from the first index key columns when index
key columns are tested for equality against “constant values” or any expression
that evaluates to a constant.

Consider the following query:
where

name = 'JONES' and
dept = 'D93'

order by mgr

For this query, the index might be used to order the rows, because NAME and
DEPT will always be the same values and will therefore be ordered. That is, the
preceding WHERE and ORDER BY clauses are equivalent to:

where
name = 'JONES' and
dept = 'D93'

order by name, dept, mgr

A unique index can also be used to truncate a sort-order requirement. Consider the
following index definition and ORDER BY clause:

UNIQUE INDEX IX0: PROJNO ASC

select projno, projname, deptno
from project
order by projno, projname

Additional ordering on the PROJNAME column is not required, because the IX0
index ensures that PROJNO is unique: There is only one PROJNAME value for
each PROJNO value.

Types of index access
In some cases, the optimizer might find that all of the data that a query requires
can be retrieved from an index on the table. In other cases, the optimizer might use
more than one index to access tables. In the case of range-clustered tables, data can
be accessed through a “virtual” index, which computes the location of data
records.

Chapter 3. Factors affecting performance 211

Index-only access

In some cases, all of the required data can be retrieved from an index without
accessing the table. This is known as index-only access. For example, consider the
following index definition:

INDEX IX1: NAME ASC,
DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

The following query can be satisfied by accessing only the index, without reading
the base table:

select name, dept, mgr, salary
from employee
where name = 'SMITH'

Often, however, required columns do not appear in an index. To retrieve the data
from these columns, table rows must be read. To enable the optimizer to choose
index-only access, create a unique index with include columns. For example,
consider the following index definition:

create unique index ix1 on employee
(name asc)
include (dept, mgr, salary, years)

This index enforces the uniqueness of the NAME column and also stores and
maintains data for the DEPT, MGR, SALARY, and YEARS columns. In this way, the
following query can be satisfied by accessing only the index:

select name, dept, mgr, salary
from employee
where name = 'SMITH'

Be sure to consider whether the additional storage space and maintenance costs of
include columns are justified. If queries that exploit include columns are rarely
executed, the costs might not be justified.

Multiple-index access

The optimizer can choose to scan multiple indexes on the same table to satisfy the
predicates of a WHERE clause. For example, consider the following two index
definitions:

INDEX IX2: DEPT ASC
INDEX IX3: JOB ASC,

YEARS ASC

The following predicates can be satisfied by using these two indexes:
where

dept = :hv1 or
(job = :hv2 and
years >= :hv3)

Scanning index IX2 produces a list of record IDs (RIDs) that satisfy the dept =
:hv1 predicate. Scanning index IX3 produces a list of RIDs that satisfy the job =
:hv2 and years >= :hv3 predicate. These two lists of RIDs are combined, and
duplicates are removed before the table is accessed. This is known as index ORing.

212 Troubleshooting and Tuning Database Performance

Index ORing can also be used for predicates that are specified by an IN clause, as
in the following example:

where
dept in (:hv1, :hv2, :hv3)

Although the purpose of index ORing is to eliminate duplicate RIDs, the objective
of index ANDing is to find common RIDs. Index ANDing might occur when
applications that create multiple indexes on corresponding columns in the same
table run a query with multiple AND predicates against that table. Multiple index
scans against each indexed column produce values that are hashed to create
bitmaps. The second bitmap is used to probe the first bitmap to generate the
qualifying rows for the final result set. For example, the following indexes:

INDEX IX4: SALARY ASC
INDEX IX5: COMM ASC

can be used to resolve the following predicates:
where

salary between 20000 and 30000 and
comm between 1000 and 3000

In this example, scanning index IX4 produces a bitmap that satisfies the salary
between 20000 and 30000 predicate. Scanning IX5 and probing the bitmap for IX4
produces a list of qualifying RIDs that satisfy both predicates. This is known as
dynamic bitmap ANDing. It occurs only if the table has sufficient cardinality, its
columns have sufficient values within the qualifying range, or there is sufficient
duplication if equality predicates are used.

To realize the performance benefits of dynamic bitmaps when scanning multiple
indexes, it might be necessary to change the value of the sortheap database
configuration parameter and the sheapthres database manager configuration
parameter. Additional sort heap space is required when dynamic bitmaps are used
in access plans. When sheapthres is set to be relatively close to sortheap (that is,
less than a factor of two or three times per concurrent query), dynamic bitmaps
with multiple index access must work with much less memory than the optimizer
anticipated. The solution is to increase the value of sheapthres relative to sortheap.

The optimizer does not combine index ANDing and index ORing when accessing a
single table.

Index access in range-clustered tables

Unlike standard tables, a range-clustered table does not require a physical index
(like a traditional B-tree index) that maps a key value to a row. Instead, it leverages
the sequential nature of the column domain and uses a functional mapping to
generate the location of a specific row in a table. In the simplest example of this
type of mapping, the first key value in the range is the first row in the table, the
second value in the range is the second row in the table, and so on.

The optimizer uses the range-clustered property of the table to generate access
plans that are based on a perfectly clustered index whose only cost is computing
the range clustering function. The clustering of rows within the table is guaranteed,
because range-clustered tables retain their original key value order.

Index access and cluster ratios
When it chooses an access plan, the optimizer estimates the number of I/Os that
are required to fetch pages from disk to the buffer pool. This estimate includes a

Chapter 3. Factors affecting performance 213

prediction of buffer pool usage, because additional I/Os are not required to read
rows from a page that is already in the buffer pool.

For index scans, information from the system catalog helps the optimizer to
estimate the I/O cost of reading data pages into a buffer pool. It uses information
from the following columns in the SYSCAT.INDEXES view:
v CLUSTERRATIO information indicates the degree to which the table data is

clustered in relation to this index. The higher the number, the better the rows are
ordered in index key sequence. If table rows are in close to index-key sequence,
rows can be read from a data page while the page is in the buffer. If the value of
this column is -1, the optimizer uses PAGE_FETCH_PAIRS and
CLUSTERFACTOR information, if it is available.

v The PAGE_FETCH_PAIRS column contains pairs of numbers that model the
number of I/Os required to read the data pages into buffer pools of various
sizes, together with CLUSTERFACTOR information. Data is collected for these
columns only if you invoke the RUNSTATS command against the index,
specifying the DETAILED clause.

If index clustering statistics are not available, the optimizer uses default values,
which assume poor clustering of the data with respect to the index. The degree to
which the data is clustered can have a significant impact on performance, and you
should try to keep one of the indexes that are defined on the table close to 100
percent clustered. In general, only one index can be one hundred percent clustered,
except when the keys for an index represent a superset of the keys for the
clustering index, or when there is an actual correlation between the key columns of
the two indexes.

When you reorganize a table, you can specify an index that will be used to cluster
the rows and keep them clustered during insert processing. Because update and
insert operations can make a table less clustered in relation to the index, you might
need to periodically reorganize the table. To reduce the number of reorganizations
for a table that experiences frequent insert, update, or delete operations, specify the
PCTFREE clause on the ALTER TABLE statement.

Scan sharing
Scan sharing refers to the ability of one scan to exploit the work done by another
scan. Examples of shared work include disk page reads, disk seeks, buffer pool
content reuse, decompression, and so on.

Heavy scans, such as table scans or multidimensional clustering (MDC) block
index scans of large tables, are sometimes eligible for sharing page reads with
other scans. Such shared scans can start at an arbitrary point in the table, to take
advantage of pages that are already in the buffer pool. When a sharing scan
reaches the end of the table, it continues at the beginning and finishes when it
reaches the point at which it started. This is called a wrapping scan. Figure 25 on
page 215 shows the difference between regular scans and wrapping scans for both
tables and indexes.

214 Troubleshooting and Tuning Database Performance

The scan sharing feature is enabled by default, and eligibility for scan sharing and
for wrapping are determined automatically by the SQL compiler. At run time, an
eligible scan might or might not participate in sharing or wrapping, based on
factors that were not known at compile time.

Shared scanners are managed in share groups. These groups keep their members
together as long as possible, so that the benefits of sharing are maximized. If one
scan is faster than another scan, the benefits of page sharing can be lost. In this
situation, buffer pool pages that are accessed by the first scan might be cleared
from the buffer pool before another scan in the share group can access them. The
data server measures the distance between two scans in the same share group by
the number of buffer pool pages that lies between them. The data server also
monitors the speed of the scans. If the distance between two scans in the same
share group grows too large, they might not be able to share buffer pool pages. To
reduce this effect, faster scans can be throttled to allow slower scans to access the
data pages before they are cleared. Figure 26 on page 216 shows two sharing sets,
one for a table and one for a block index. A sharing set is a collection of share
groups that are accessing the same object (for example, a table) through the same
access mechanism (for example, a table scan or a block index scan). For table scans,
the page read order increases by page ID; for block index scans, the page read

Scan
direction

Scan
direction

Smallest keySmallest key
Largest

key
Largest

key

Scanner
starts here

Start keyScanner
starts here
(start key) Post-wrap

phase

End keyScanner
ends here
(end key)

Pre-wrap
phase

Wrapping index scanRegular index scan

Scan
direction

Scan
direction

First pageFirst page
Last

page

Scanner
starts here

Scanner
starts here

Post-wrap
phase

Pre-wrap
phase

Wrapping table scanRegular table scan

Last
page

Figure 25. Conceptual view of regular and wrapping scans

Chapter 3. Factors affecting performance 215

order increases by key value.

The figure also shows how buffer pool content is reused within groups. Consider
scan C, which is the leading scan of group 1. The following scans (A and B) are
grouped with C, because they are close and can likely reuse the pages that C has
brought into the buffer pool.

A high-priority scanner is never throttled by a lower priority one, and might move
to another share group instead. A high priority scanner might be placed in a group
where it can benefit from the work being done by the lower priority scanners in
the group. It will stay in that group for as long as that benefit is available. By
either throttling the fast scanner, or moving it to a faster share group (if the
scanner encounters one), the data server adjusts the share groups to ensure that
sharing remains optimized.

You can use the db2pd command to view information about scan sharing. For
example, for an individual shared scan, the db2pd output will show data such as
the scan speed and the amount of time that the scan was throttled. For a sharing
group, the command output shows the number of scans in the group and the
number of pages shared by the group.

The EXPLAIN_ARGUMENT table has new rows to contain scan-sharing
information about table scans and index scans (you can use the db2exfmt
command to format and view the contents of this table).

You can use optimizer profiles to override decisions that the compiler makes about
scan sharing (see “Access types”). Such overrides are for use only when a special
need arises; for example, the wrapping hint can be useful when a repeatable order
of records in a result set is needed, but an ORDER BY clause (which might trigger
a sort) is to be avoided. Otherwise, it is recommended that you not use these
optimization profiles unless requested to do so by DB2 Service.

Joins
A join is the process of combining data from two or more tables based on some
common domain of information. Rows from one table are paired with rows from
another table when information in the corresponding rows match on the basis of
the joining criterion (the join predicate).

Scan
direction

Scan
direction

First page (lowest key value)
based on index I

First page of table T
Scan

group 3

Scan
group 1

Scan A

Scan
group 2

Sharing set for Block Index ISharing set for Table T

Scan B

Scan C

Scan
group 2 Scan group 1

Figure 26. Sharing sets for table and block index scan sharing

216 Troubleshooting and Tuning Database Performance

For example, consider the following two tables:

TABLE1 TABLE2
PROJ PROJ_ID PROJ_ID NAME

A 1 1 Sam
B 2 3 Joe
C 3 4 Mary
D 4 1 Sue

2 Mike

To join TABLE1 and TABLE2, such that the PROJ_ID columns have the same
values, use the following SQL statement:

select proj, x.proj_id, name
from table1 x, table2 y
where x.proj_id = y.proj_id

In this case, the appropriate join predicate is: where x.proj_id = y.proj_id.

The query yields the following result set:

PROJ PROJ_ID NAME
A 1 Sam
A 1 Sue
B 2 Mike
C 3 Joe
D 4 Mary

Depending on the nature of any join predicates, as well as any costs determined on
the basis of table and index statistics, the optimizer chooses one of the following
join methods:
v Nested-loop join
v Merge join
v Hash join

When two tables are joined, one table is selected as the outer table and the other
table is regarded as the inner table of the join. The outer table is accessed first and
is scanned only once. Whether the inner table is scanned multiple times depends
on the type of join and the indexes that are available. Even if a query joins more
than two tables, the optimizer joins only two tables at a time. If necessary,
temporary tables are created to hold intermediate results.

You can provide explicit join operators, such as INNER or LEFT OUTER JOIN, to
determine how tables are used in the join. Before you alter a query in this way,
however, you should allow the optimizer to determine how to join the tables, and
then analyze query performance to decide whether to add join operators.

Join methods
The optimizer can choose one of three basic join strategies when queries require
tables to be joined: nested-loop join, merge join, or hash join.

Nested-loop join

A nested-loop join is performed in one of the following two ways:
v Scanning the inner table for each accessed row of the outer table

Chapter 3. Factors affecting performance 217

For example, column A in table T1 and column A in table T2 have the following
values:

Outer table T1: Column A Inner table T2: Column A
2 3
3 2
3 2

3
1

To complete a nested-loop join between tables T1 and T2, the database manager
performs the following steps:
1. Read the first row in T1. The value for A is 2.
2. Scan T2 until a match (2) is found, and then join the two rows.
3. Repeat Step 2 until the end of the table is reached.
4. Go back to T1 and read the next row (3).
5. Scan T2 (starting at the first row) until a match (3) is found, and then join the

two rows.
6. Repeat Step 5 until the end of the table is reached.
7. Go back to T1 and read the next row (3).
8. Scan T2 as before, joining all rows that match (3).

v Performing an index lookup on the inner table for each accessed row of the
outer table
This method can be used if there is a predicate of the form:

expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and expr is a
valid expression on the outer table. For example:

outer.c1 + outer.c2 <= inner.c1
outer.c4 < inner.c3

This method might significantly reduce the number of rows that are accessed in
the inner table for each access of the outer table; the degree of benefit depends
on a number of factors, including the selectivity of the join predicate.

When it evaluates a nested-loop join, the optimizer also decides whether to sort the
outer table before performing the join. If it sorts the outer table, based on the join
columns, the number of read operations against the inner table to access pages on
disk might be reduced, because they are more likely to be in the buffer pool
already. If the join uses a highly clustered index to access the inner table, and the
outer table has been sorted, the number of accessed index pages might be
minimized.

If the optimizer expects that the join will make a later sort more expensive, it
might also choose to perform the sort before the join. A later sort might be
required to support a GROUP BY, DISTINCT, ORDER BY, or merge join operation.

Merge join

A merge join, sometimes known as a merge scan join or a sort merge join, requires a
predicate of the form table1.column = table2.column. This is called an equality join
predicate. A merge join requires ordered input on the joining columns, either
through index access or by sorting. A merge join cannot be used if the join column
is a LONG field column or a large object (LOB) column.

218 Troubleshooting and Tuning Database Performance

In a merge join, the joined tables are scanned at the same time. The outer table of
the merge join is scanned only once. The inner table is also scanned once, unless
repeated values occur in the outer table. If repeated values occur, a group of rows
in the inner table might be scanned again.

For example, column A in table T1 and column A in table T2 have the following
values:

Outer table T1: Column A Inner table T2: Column A
2 1
3 2
3 2

3
3

To complete a merge join between tables T1 and T2, the database manager
performs the following steps:
1. Read the first row in T1. The value for A is 2.
2. Scan T2 until a match (2) is found, and then join the two rows.
3. Keep scanning T2 while the columns match, joining rows.
4. When the 3 in T2 is read, go back to T1 and read the next row.
5. The next value in T1 is 3, which matches T2, so join the rows.
6. Keep scanning T2 while the columns match, joining rows.
7. When the end of T2 is reached, go back to T1 to get the next row. Note that the

next value in T1 is the same as the previous value from T1, so T2 is scanned
again, starting at the first 3 in T2. The database manager remembers this
position.

Hash join

A hash join requires one or more predicates of the form table1.columnX =
table2.columnY, for which the column types are the same. For columns of type
CHAR, the length must be the same. For columns of type DECIMAL, the precision
and scale must be the same. For columns of type DECFLOAT, the precision must
be the same. The column cannot be a LONG field column or a LOB column.

First, the designated inner table is scanned and rows are copied into memory
buffers that are drawn from the sort heap specified by the sortheap database
configuration parameter. The memory buffers are divided into sections, based on a
hash value that is computed on the columns of the join predicates. If the size of the
inner table exceeds the available sort heap space, buffers from selected sections are
written to temporary tables.

When the inner table has been processed, the second (or outer) table is scanned
and its rows are matched with rows from the inner table by first comparing the
hash value that was computed for the columns of the join predicates. If the hash
value for the outer row column matches the hash value for the inner row column,
the actual join predicate column values are compared.

Outer table rows that correspond to portions of the table that are not written to a
temporary table are matched immediately with inner table rows in memory. If the
corresponding portion of the inner table was written to a temporary table, the
outer row is also written to a temporary table. Finally, matching pairs of table

Chapter 3. Factors affecting performance 219

portions from temporary tables are read, the hash values of their rows are
matched, and the join predicates are checked.

For the full performance benefit of hash joins, you might need to change the value
of the sortheap database configuration parameter and the sheapthres database
manager configuration parameter.

Hash join performance is best if you can avoid hash loops and overflow to disk. To
tune hash join performance, estimate the maximum amount of memory that is
available for sheapthres, and then tune the sortheap parameter. Increase its setting
until you avoid as many hash loops and disk overflows as possible, but do not
reach the limit that is specified by the sheapthres parameter.

Increasing the sortheap value should also improve the performance of queries that
have multiple sorts.

Strategies for selecting optimal joins
The optimizer uses various methods to select an optimal join strategy for a query.
Among these methods, which are determined by the optimization class of the
query, are several search strategies, star-schema joins, early out joins, and
composite tables.

The join-enumeration algorithm is an important determinant of the number of plan
combinations that the optimizer explores.
v Greedy join enumeration

– Is efficient with respect to space and time requirements
– Uses single direction enumeration; that is, once a join method is selected for

two tables, it is not changed during further optimization
– Might miss the best access plan when joining many tables. If your query joins

only two or three tables, the access plan that is chosen by greedy join
enumeration is the same as the access plan that is chosen by dynamic
programming join enumeration. This is particularly true if the query has
many join predicates on the same column that are either explicitly specified,
or implicitly generated through predicate transitive closure.

v Dynamic programming join enumeration
– Is not efficient with respect to space and time requirements, which increase

exponentially as the number of joined tables increases
– Is efficient and exhaustive when searching for the best access plan
– Is similar to the strategy that is used by DB2 for z/OS

Star-schema joins

The tables that are referenced in a query are almost always related by join
predicates. If two tables are joined without a join predicate, the Cartesian product
of the two tables is formed. In a Cartesian product, every qualifying row of the
first table is joined with every qualifying row of the second table. This creates a
result table that is usually very large, because its size is the cross product of the
size of the two source tables. Because such a plan is unlikely to perform well, the
optimizer avoids even determining the cost of this type of access plan.

The only exceptions occur when the optimization class is set to 9, or in the special
case of star schemas. A star schema contains a central table called the fact table, and
other tables called dimension tables. The dimension tables have only a single join
that attaches them to the fact table, regardless of the query. Each dimension table

220 Troubleshooting and Tuning Database Performance

contains additional values that expand information about a particular column in
the fact table. A typical query consists of multiple local predicates that reference
values in the dimension tables and contains join predicates connecting the
dimension tables to the fact table. For these queries, it might be beneficial to
compute the Cartesian product of multiple small dimension tables before accessing
the large fact table. This technique is useful when multiple join predicates match a
multicolumn index.

The DB2 data server can recognize queries against databases that were designed
with star schemas having at least two dimension tables, and can increase the
search space to include possible plans that compute the Cartesian product of
dimension tables. If the plan that computes the Cartesian product has the lowest
estimated cost, it is selected by the optimizer.

This star schema join strategy assumes that primary key indexes are used in the
join. Another scenario involves foreign key indexes. If the foreign key columns in
the fact table are single-column indexes, and there is relatively high selectivity
across all dimension tables, the following star-schema join technique can be used:
1. Process each dimension table by:
v Performing a semi-join between the dimension table and the foreign key

index on the fact table
v Hashing the record ID (RID) values to dynamically create a bitmap

2. For each bitmap, use AND predicates against the previous bitmap.
3. Determine the surviving RIDs after processing the last bitmap.
4. Optionally sort these RIDs.
5. Fetch a base table row.
6. Rejoin the fact table with each of its dimension tables, accessing the columns in

dimension tables that are needed for the SELECT clause.
7. Reapply the residual predicates.

This technique does not require multicolumn indexes. Explicit referential integrity
constraints between the fact table and the dimension tables are not required, but
are recommended.

The dynamic bitmaps that are created and used by star-schema join techniques
require sort heap memory, the size of which is specified by the sortheap database
configuration parameter.

Early out joins

The optimizer might select an early out join when it detects that each row from
one of the tables only needs to be joined with at most one row from the other
table.

An early out join is possible when there is a join predicate on the key column or
columns of one of the tables. For example, consider the following query that
returns the names of employees and their immediate managers.

select employee.name as employee_name,
manager.name as manager_name

from employee as employee, employee as manager
where employee.manager_id = manager.id

Chapter 3. Factors affecting performance 221

Assuming that the ID column is a key in the EMPLOYEE table and that every
employee has at most one manager, this join avoids having to search for a
subsequent matching row in the MANAGER table.

An early out join is also possible when there is a DISTINCT clause in the query.
For example, consider the following query that returns the names of car makers
with models that sell for more than $30000.

select distinct make.name
from make, model
where

make.make_id = model.make_id and
model.price > 30000

For each car maker, we only need to determine whether any one of its
manufactured models sells for more than $30000. Joining a car maker with all of its
manufactured models selling for more than $30000 is unnecessary, because it does
not contribute towards the accuracy of the query result.

An early out join is also possible when the join feeds a GROUP BY clause with a
MIN or MAX aggregate function. For example, consider the following query that
returns stock symbols with the most recent date before the year 2000, for which a
particular stock's closing price is at least 10% higher than its opening price:

select dailystockdata.symbol, max(dailystockdata.date) as date
from sp500, dailystockdata
where

sp500.symbol = dailystockdata.symbol and
dailystockdata.date < '01/01/2000' and
dailystockdata.close / dailystockdata.open >= 1.1

group by dailystockdata.symbol

The qualifying set is the set of rows from the DAILYSTOCKDATA table that satisfies
the date and price requirements and joins with a particular stock symbol from the
SP500 table. If the qualifying set from the DAILYSTOCKDATA table (for each stock
symbol row from the SP500 table) is ordered as descending on DATE, it is only
necessary to return the first row from the qualifying set for each symbol, because
that first row represents the most recent date for a particular symbol. The other
rows in the qualifying set are not required.

Composite tables

When the result of joining a pair of tables is a new table (known as a composite
table), this table usually becomes the outer table of a join with another inner table.
This is known as a composite outer join. In some cases, particularly when using the
greedy join enumeration technique, it is useful to make the result of joining two
tables the inner table of a later join. When the inner table of a join consists of the
result of joining two or more tables, this plan is known as a composite inner join.
For example, consider the following query:

select count(*)
from t1, t2, t3, t4
where

t1.a = t2.a and
t3.a = t4.a and
t2.z = t3.z

It might be beneficial to join table T1 and T2 (T1xT2), then join T3 and T4 (T3xT4),
and finally, to select the first join result as the outer table and the second join result
as the inner table. In the final plan ((T1xT2) x (T3xT4)), the join result (T3xT4) is
known as a composite inner join. Depending on the query optimization class, the

222 Troubleshooting and Tuning Database Performance

optimizer places different constraints on the maximum number of tables that can
be the inner table of a join. Composite inner joins are allowed with optimization
classes 5, 7, and 9.

Replicated materialized query tables in partitioned database
environments
Replicated materialized query tables (MQTs) improve the performance of
frequently executed joins in a partitioned database environment by allowing the
database to manage precomputed values of the table data.

Note that a replicated MQT in this context pertains to intra-database replication.
Inter-database replication is concerned with subscriptions, control tables, and data
that is located in different databases and on different operating systems.

In the following example:
v The SALES table is in a multi-partition table space named

REGIONTABLESPACE, and is split on the REGION column.
v The EMPLOYEE and DEPARTMENT tables are in a single-partition database

partition group.

Create a replicated MQT based on information in the EMPLOYEE table.
create table r_employee as (

select empno, firstnme, midinit, lastname, workdept
from employee

)
data initially deferred refresh immediate
in regiontablespace
replicated

Update the content of the replicated MQT:
refresh table r_employee

After using the REFRESH statement, you should invoke the runstats utility against
the replicated table, as you would against any other table.

The following query calculates sales by employee, the total for the department, and
the grand total:

select d.mgrno, e.empno, sum(s.sales)
from department as d, employee as e, sales as s
where

s.sales_person = e.lastname and
e.workdept = d.deptno

group by rollup(d.mgrno, e.empno)
order by d.mgrno, e.empno

Instead of using the EMPLOYEE table, which resides on only one database
partition, the database manager uses R_EMPLOYEE, the MQT that is replicated on
each of the database partitions on which the SALES table is stored. The
performance enhancement occurs because the employee information does not have
to be moved across the network to each database partition when performing the
join.

Replicated materialized query tables in collocated joins

Replicated MQTs can also assist in the collocation of joins. For example, if a star
schema contains a large fact table that is spread across twenty database partitions,
the joins between the fact table and the dimension tables are most efficient if these

Chapter 3. Factors affecting performance 223

tables are collocated. If all of the tables are in the same database partition group, at
most one dimension table is partitioned correctly for a collocated join. The other
dimension tables cannot be used in a collocated join, because the join columns in
the fact table do not correspond to the distribution key for the fact table.

Consider a table named FACT (C1, C2, C3, ...), split on C1; a table named DIM1
(C1, dim1a, dim1b, ...), split on C1; a table named DIM2 (C2, dim2a, dim2b, ...),
split on C2; and so on. In this case, the join between FACT and DIM1 is perfect,
because the predicate dim1.c1 = fact.c1 is collocated. Both of these tables are split
on column C1.

However, the join involving DIM2 and the predicate dim2.c2 = fact.c2 cannot be
collocated, because FACT is split on column C1, not on column C2. In this case,
you could replicate DIM2 in the database partition group of the fact table so that
the join occurs locally on each database partition.

When you create a replicated MQT, the source table can be a single-partition table
or a multi-partition table in a database partition group. In most cases, the
replicated table is small and can be placed in a single-partition database partition
group. You can limit the data that is to be replicated by specifying only a subset of
the columns from the table, or by restricting the number of qualifying rows
through predicates.

A replicated MQT can also be created in a multi-partition database partition group,
so that copies of the source table are created on all of the database partitions. Joins
between a large fact table and the dimension tables are more likely to occur locally
in this environment, than if you broadcast the source table to all database
partitions.

Indexes on replicated tables are not created automatically. You can create indexes
that are different from those on the source table. However, to prevent constraints
violations that are not present in the source table, you cannot create unique
indexes or define constraints on replicated tables, even if the same constraints
occur on the source table.

Replicated tables can be referenced directly in a query, but you cannot use the
DBPARTITIONNUM scalar function with a replicated table to see the table data on
a particular database partition.

Use the DB2 explain facility to determine whether a replicated MQT was used by
the access plan for a query. Whether or not the access plan that is chosen by the
optimizer uses a replicated MQT depends on the data that is to be joined. A
replicated MQT might not be used if the optimizer determines that it would be
cheaper to broadcast the original source table to the other database partitions in
the database partition group.

Join strategies for partitioned databases
Join strategies for a partitioned database environment can be different than
strategies for a nonpartitioned database environment. Additional techniques can be
applied to standard join methods to improve performance.

Table collocation should be considered for tables that are frequently joined. In a
partitioned database environment, table collocation refers to a state that occurs when
two tables that have the same number of compatible partitioning keys are stored in
the same database partition group. When this happens, join processing can be

224 Troubleshooting and Tuning Database Performance

performed at the database partition where the data is stored, and only the result
set needs to be moved to the coordinator database partition.

Table queues

Descriptions of join techniques in a partitioned database environment use the
following terminology:
v Table queue (sometimes referred to as TQ) is a mechanism for transferring rows

between database partitions, or between processors in a single-partition
database.

v Directed table queue (sometimes referred to as DTQ) is a table queue in which
rows are hashed to one of the receiving database partitions.

v Broadcast table queue (sometimes referred to as BTQ) is a table queue in which
rows are sent to all of the receiving database partitions, but are not hashed.

A table queue is used to pass table data:
v From one database partition to another when using inter-partition parallelism
v Within a database partition when using intra-partition parallelism
v Within a database partition when using a single-partition database

Each table queue passes the data in a single direction. The compiler decides where
table queues are required, and includes them in the plan. When the plan is
executed, connections between the database partitions initiate the table queues. The
table queues close as processes end.

There are several types of table queues:
v Asynchronous table queues

These table queues are known as asynchronous, because they read rows in
advance of any fetch requests from an application. When a FETCH statement is
issued, the row is retrieved from the table queue.
Asynchronous table queues are used when you specify the FOR FETCH ONLY
clause on the SELECT statement. If you are only fetching rows, the
asynchronous table queue is faster.

v Synchronous table queues
These table queues are known as synchronous, because they read one row for
each FETCH statement that is issued by an application. At each database
partition, the cursor is positioned on the next row to be read from that database
partition.
Synchronous table queues are used when you do not specify the FOR FETCH
ONLY clause on the SELECT statement. In a partitioned database environment,
if you are updating rows, the database manager will use synchronous table
queues.

v Merging table queues
These table queues preserve order.

v Non-merging table queues
These table queues, also known as regular table queues, do not preserve order.

v Listener table queues (sometimes referred to as LTQ)
These table queues are used with correlated subqueries. Correlation values are
passed down to the subquery, and the results are passed back up to the parent
query block using this type of table queue.

Chapter 3. Factors affecting performance 225

Join methods for partitioned databases
Several join methods are available for partitioned database environments,
including: collocated joins, broadcast outer-table joins, directed outer-table joins,
directed inner-table and outer-table joins, broadcast inner-table joins, and directed
inner-table joins.

In the following diagrams, q1, q2, and q3 refer to table queues. The referenced
tables are divided across two database partitions, and the arrows indicate the
direction in which the table queues are sent. The coordinator database partition is
database partition 0.

Collocated joins

A collocated join occurs locally on the database partition on which the data resides.
The database partition sends the data to the other database partitions after the join
is complete. For the optimizer to consider a collocated join, the joined tables must
be collocated, and all pairs of the corresponding distribution keys must participate
in the equality join predicates. Figure 27 provides an example.

The LINEITEM and ORDERS tables are both partitioned on the ORDERKEY
column. The join is performed locally at each database partition. In this example,
the join predicate is assumed to be: orders.orderkey = lineitem.orderkey.

Replicated materialized query tables (MQTs) enhance the likelihood of collocated
joins.

Broadcast outer-table joins

Broadcast outer-table joins represent a parallel join strategy that can be used if
there are no equality join predicates between the joined tables. It can also be used
in other situations in which it proves to be the most cost-effective join method. For

-

-

Scan
ORDERS
Apply
predicates

-

-

-
-

Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-

-

-

-

-
-

Scan
ORDERS
Apply
predicates
Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-
-
-

Read q1
Process
Return
RESULTS

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q1

q1

Figure 27. Collocated Join Example

226 Troubleshooting and Tuning Database Performance

example, a broadcast outer-table join might occur when there is one very large
table and one very small table, neither of which is split on the join predicate
columns. Instead of splitting both tables, it might be cheaper to broadcast the
smaller table to the larger table. Figure 28 provides an example.

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

Directed outer-table joins

In the directed outer-table join strategy, each row of the outer table is sent to one
portion of the inner table, based on the splitting attributes of the inner table. The
join occurs on this database partition. Figure 29 on page 228 provides an example.

-

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2

Insert q1
- Join

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert q1

-
-

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2
q2

q1

q1

q2

Figure 28. Broadcast Outer-Table Join Example

Chapter 3. Factors affecting performance 227

Directed inner-table and outer-table joins

In the directed inner-table and outer-table join strategy, rows of both the outer and
inner tables are directed to a set of database partitions, based on the values of the
joining columns. The join occurs on these database partitions. Figure 30 on page
229 provides an example.

-

-

-

-

Scan

Apply
predicates
Read q2

Insert into q1

LINEITEM

Join-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

Write q2
ORDERKEY

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert into q1

-
-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash
ORDERKEY
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2 q2

q1

q1

q2

The LINEITEM table is partitioned on the ORDERKEY column. The ORDERS table is
partitioned on a different column. The ORDERS table is hashed and sent to the correct
database partition of the LINEITEM table. In this example, the join predicate is assumed to
be: orders.orderkey = lineitem.orderkey.
Figure 29. Directed Outer-Table Join Example

228 Troubleshooting and Tuning Database Performance

Neither table is partitioned on the ORDERKEY column. Both tables are hashed and
sent to new database partitions, where they are joined. Both table queue q2 and q3
are directed. In this example, the join predicate is assumed to be: orders.orderkey
= lineitem.orderkey.

Broadcast inner-table joins

In the broadcast inner-table join strategy, the inner table is broadcast to all the
database partitions of the outer table. Figure 31 on page 230 provides an example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

-

Scan

Apply
predicates
Hash

Write q2

ORDERS

ORDERKEY

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash

Write q3
ORDERKEY

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

KEY
Write q2
ORDER

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2

q3

q2

q3

q2

q3

q1

q1

q2

q3

Figure 30. Directed Inner-Table and Outer-Table Join Example

Chapter 3. Factors affecting performance 229

Directed inner-table joins

In the directed inner-table join strategy, each row of the inner table is sent to one
database partition of the outer table, based on the splitting attributes of the outer
table. The join occurs on this database partition. Figure 32 on page 231 provides an
example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table. Table
queue q3 is broadcast to all database partitions of the outer table.
Figure 31. Broadcast Inner-Table Join Example

230 Troubleshooting and Tuning Database Performance

Effects of sorting and grouping on query optimization
When the optimizer chooses an access plan, it considers the performance impact of
sorting data. Sorting occurs when no index satisfies the requested ordering of
fetched rows. Sorting might also occur when the optimizer determines that a sort
is less expensive than an index scan.

The optimizer handles sorted data in one of the following ways:
v It pipes the results of the sort when the query executes
v It lets the database manager handle the sort internally

Piped and non-piped sorts

If the final sorted list of data can be read in a single sequential pass, the results can
be piped. Piping is quicker than non-piped ways of communicating the results of a
sort. The optimizer chooses to pipe the results of a sort whenever possible.

Whether or not a sort is piped, the sort time depends on a number of factors,
including the number of rows to be sorted, the key size and the row width. If the

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

Scan

Apply
predicates
Write q2

ORDERS

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash
ORDERKEY
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The ORDERS table is partitioned on the ORDERKEY column. The LINEITEM table is
partitioned on a different column. The LINEITEM table is hashed and sent to the correct
database partition of the ORDERS table. In this example, the join predicate is assumed to be:
orders.orderkey = lineitem.orderkey.
Figure 32. Directed Inner-Table Join Example

Chapter 3. Factors affecting performance 231

rows to be sorted occupy more than the space that is available in the sort heap,
several sort passes are performed. A subset of the entire set of rows is sorted
during each pass. Each pass is stored in a temporary table in the buffer pool. If
there is not enough space in the buffer pool, pages from this temporary table
might be written to disk. When all of the sort passes are complete, these sorted
subsets are merged into a single sorted set of rows. If the sort is piped, the rows
are passed directly to Relational Data Services (RDS) as they are merged. (RDS is
the DB2 component that processes requests to access or manipulate the contents of
a database.)

Group and sort pushdown operators

In some cases, the optimizer can choose to push down a sort or aggregation
operation to Data Management Services (DMS) from RDS. (DMS is the DB2
component that controls creating, removing, maintaining, and accessing the tables
and table data in a database.) Pushing down these operations improves
performance by allowing DMS to pass data directly to a sort or aggregation
routine. Without this pushdown, DMS first passes this data to RDS, which then
interfaces with the sort or aggregation routines. For example, the following query
benefits from this type of optimization:

select workdept, avg(salary) as avg_dept_salary
from employee
group by workdept

Group operations in sorts

When sorting produces the order that is required for a GROUP BY operation, the
optimizer can perform some or all of the GROUP BY aggregations while doing the
sort. This is advantageous if the number of rows in each group is large. It is even
more advantageous if doing some of the grouping during the sort reduces or
eliminates the need for the sort to spill to disk.

Aggregation during sorting requires one or more of the following three stages of
aggregation to ensure that proper results are returned.
v The first stage of aggregation, partial aggregation, calculates the aggregate values

until the sort heap is filled. During partial aggregation, non-aggregated data is
taken in and partial aggregates are produced. If the sort heap is filled, the rest of
the data spills to disk, including all of the partial aggregations that have been
calculated in the current sort heap. After the sort heap is reset, new aggregations
are started.

v The second stage of aggregation, intermediate aggregation, takes all of the spilled
sort runs and aggregates further on the grouping keys. The aggregation cannot
be completed, because the grouping key columns are a subset of the distribution
key columns. Intermediate aggregation uses existing partial aggregates to
produce new partial aggregates. This stage does not always occur. It is used for
both intra-partition and inter-partition parallelism. In intra-partition parallelism,
the grouping is finished when a global grouping key is available. In
inter-partition parallelism, this occurs when the grouping key is a subset of the
distribution key dividing groups across database partitions, and thus requires
redistribution to complete the aggregation. A similar case exists in intra-partition
parallelism, when each agent finishes merging its spilled sort runs before
reducing to a single agent to complete the aggregation.

v The last stage of aggregation, final aggregation, uses all of the partial aggregates
and produces final aggregates. This step always takes place in a GROUP BY
operator. Sorting cannot perform complete aggregation, because it cannot be

232 Troubleshooting and Tuning Database Performance

guaranteed that the sort will not split. Complete aggregation takes in
non-aggregated data and produces final aggregates. This method of aggregation
is usually used to group data that is already in the correct order.

Optimization strategies

Optimization strategies for intra-partition parallelism
The optimizer can choose an access plan to execute a query in parallel within a
single database partition if a degree of parallelism is specified when the SQL
statement is compiled.

At run time, multiple database agents called subagents are created to execute the
query. The number of subagents is less than or equal to the degree of parallelism
that was specified when the SQL statement was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by
each subagent and a portion that is run by the coordinating agent. The subagents
pass data through table queues to the coordinating agent or to other subagents. In
a partitioned database environment, subagents can send or receive data through
table queues from subagents in other database partitions.

Intra-partition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or
index. For parallel relational scans, the table is divided into ranges of pages or
rows, which are assigned to subagents. A subagent scans its assigned range and is
assigned another range when it has completed work on the current range.

For parallel index scans, the index is divided into ranges of records based on index
key values and the number of index entries for a key value. The parallel index
scan proceeds like a parallel table scan, with subagents being assigned a range of
records. A subagent is assigned a new range when it has completed work on the
current range.

The optimizer determines the scan unit (either a page or a row) and the scan
granularity.

Parallel scans provide an even distribution of work among the subagents. The goal
of a parallel scan is to balance the load among the subagents and to keep them
equally busy. If the number of busy subagents equals the number of available
processors, and the disks are not overworked with I/O requests, the machine
resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The
optimizer chooses parallel strategies that maintain data balance among subagents.

Intra-partition parallel sort strategies

The optimizer can choose one of the following parallel sort strategies:
v Round-robin sort

This is also known as a redistribution sort. This method uses shared memory to
efficiently redistribute the data as evenly as possible to all subagents. It uses a
round-robin algorithm to provide the even distribution. It first creates an

Chapter 3. Factors affecting performance 233

individual sort for each subagent. During the insert phase, subagents insert into
each of the individual sorts in a round-robin fashion to achieve a more even
distribution of data.

v Partitioned sort
This is similar to the round-robin sort in that a sort is created for each subagent.
The subagents apply a hash function to the sort columns to determine into
which sort a row should be inserted. For example, if the inner and outer tables
of a merge join are a partitioned sort, a subagent can use merge join to join the
corresponding table portions and execute in parallel.

v Replicated sort
This sort is used if each subagent requires all of the sort output. One sort is
created and subagents are synchronized as rows are inserted into the sort. When
the sort is complete, each subagent reads the entire sort. If the number of rows is
small, this sort can be used to rebalance the data stream.

v Shared sort
This sort is the same as a replicated sort, except that subagents open a parallel
scan on the sorted result to distribute the data among the subagents in a way
that is similar to a round-robin sort.

Intra-partition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the
same table. This is called a shared temporary table. The subagents can open private
scans or parallel scans on the shared temporary table, depending on whether the
data stream is to be replicated or split.

Intra-partition parallel aggregation strategies

Aggregation operations can be performed by subagents in parallel. An aggregation
operation requires the data to be ordered on the grouping columns. If a subagent
can be guaranteed to receive all the rows for a set of grouping column values, it
can perform a complete aggregation. This can happen if the stream is already split
on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another
strategy to complete the aggregation. Some of these strategies are:
v Send the partially aggregated data to the coordinator agent through a merging

table queue. The coordinator agent completes the aggregation.
v Insert the partially aggregated data into a partitioned sort. The sort is split on

the grouping columns and guarantees that all rows for a set of grouping
columns are contained in one sort partition.

v If the stream needs to be replicated to balance processing, the partially
aggregated data can be inserted into a replicated sort. Each subagent completes
the aggregation using the replicated sort, and receives an identical copy of the
aggregation result.

Intra-partition parallel join strategies

Join operations can be performed by subagents in parallel. Parallel join strategies
are determined by the characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the
inner and outer tables of the join, or both. For example, a nested-loop join can be
parallelized if its outer stream is partitioned for a parallel scan and the inner

234 Troubleshooting and Tuning Database Performance

stream is again evaluated independently by each subagent. A merged join can be
parallelized if its inner and outer streams are value-partitioned for partitioned
sorts.

Optimization strategies for MDC tables
If you create multidimensional clustering (MDC) tables, the performance of many
queries might improve, because the optimizer can apply additional optimization
strategies. These strategies are primarily based on the improved efficiency of block
indexes, but the advantage of clustering on more than one dimension also permits
faster data retrieval.

MDC table optimization strategies can also exploit the performance advantages of
intra-partition parallelism and inter-partition parallelism. Consider the following
specific advantages of MDC tables:
v Dimension block index lookups can identify the required portions of the table

and quickly scan only the required blocks.
v Because block indexes are smaller than record identifier (RID) indexes, lookups

are faster.
v Index ANDing and ORing can be performed at the block level and combined

with RIDs.
v Data is guaranteed to be clustered on extents, which makes retrieval faster.
v Rows can be deleted faster when rollout can be used.

Consider the following simple example for an MDC table named SALES with
dimensions defined on the REGION and MONTH columns:

select * from sales
where month = 'March' and region = 'SE'

For this query, the optimizer can perform a dimension block index lookup to find
blocks in which the month of March and the SE region occur. Then it can scan only
those blocks to quickly fetch the result set.

Rollout deletion

When conditions permit delete using rollout, this more efficient way to delete rows
from MDC tables is used. The required conditions are:
v The DELETE statement is a searched DELETE, not a positioned DELETE (the

statement does not use the WHERE CURRENT OF clause).
v There is no WHERE clause (all rows are to be deleted), or the only conditions in

the WHERE clause apply to dimensions.
v The table is not defined with the DATA CAPTURE CHANGES clause.
v The table is not the parent in a referential integrity relationship.
v The table does not have ON DELETE triggers defined.
v The table is not used in any MQTs that are refreshed immediately.
v A cascaded delete operation might qualify for rollout if its foreign key is a

subset of the table's dimension columns.
v The DELETE statement cannot appear in a SELECT statement executing against

the temporary table that identifies the set of affected rows prior to a triggering
SQL operation (specified by the OLD TABLE AS clause on the CREATE
TRIGGER statement).

Chapter 3. Factors affecting performance 235

During a rollout deletion, the deleted records are not logged. Instead, the pages
that contain the records are made to look empty by reformatting parts of the
pages. The changes to the reformatted parts are logged, but the records themselves
are not logged.

The default behavior, immediate cleanup rollout, is to clean up RID indexes at delete
time. This mode can also be specified by setting the DB2_MDC_ROLLOUT
registry variable to IMMEDIATE, or by specifying IMMEDIATE on the SET
CURRENT MDC ROLLOUT MODE statement. There is no change in the logging
of index updates, compared to a standard delete operation, so the performance
improvement depends on how many RID indexes there are. The fewer RID
indexes, the better the improvement, as a percentage of the total time and log
space.

An estimate of the amount of log space that is saved can be made with the
following formula:

S + 38*N - 50*P

where N is the number of records deleted, S is total size of the records deleted,
including overhead such as null indicators and VARCHAR lengths, and P is the
number of pages in the blocks that contain the deleted records. This figure is the
reduction in actual log data. The savings on active log space required is double
that value, due to the saving of space that was reserved for rollback.

Alternatively, you can have the RID indexes updated after the transaction commits,
using deferred cleanup rollout. This mode can also be specified by setting the
DB2_MDC_ROLLOUT registry variable to DEFER, or by specifying DEFERRED
on the SET CURRENT MDC ROLLOUT MODE statement. In a deferred rollout,
RID indexes are cleaned up asynchronously in the background after the delete
commits. This method of rollout can result in significantly faster deletion times for
very large deletes, or when a number of RID indexes exist on the table. The speed
of the overall cleanup operation is increased, because during a deferred index
cleanup, the indexes are cleaned up in parallel, whereas in an immediate index
cleanup, each row in the index is cleaned up one by one. Moreover, the
transactional log space requirement for the DELETE statement is significantly
reduced, because the asynchronous index cleanup logs the index updates by index
page instead of by index key.

Note: Deferred cleanup rollout requires additional memory resources, which are
taken from the database heap. If the database manager is unable to allocate the
memory structures it requires, the deferred cleanup rollout fails, and a message is
written to the administration notification log.

When to use a deferred cleanup rollout

If delete performance is the most important factor, and there are RID indexes
defined on the table, use deferred cleanup rollout. Note that prior to index
cleanup, index-based scans of the rolled-out blocks suffer a small performance
penalty, depending on the amount of rolled-out data. The following issues should
also be considered when deciding between immediate index cleanup and deferred
index cleanup:
v Size of the delete operation

Choose deferred cleanup rollout for very large deletions. In cases where
dimensional DELETE statements are frequently issued on many small MDC

236 Troubleshooting and Tuning Database Performance

tables, the overhead to asynchronously clean index objects might outweigh the
benefit of time saved during the delete operation.

v Number and type of indexes
If the table contains a number of RID indexes, which require row-level
processing, use deferred cleanup rollout.

v Block availability
If you want the block space freed by the delete operation to be available
immediately after the DELETE statement commits, use immediate cleanup
rollout.

v Log space
If log space is limited, use deferred cleanup rollout for large deletions.

v Memory constraints
Deferred cleanup rollout consumes additional database heap space on all tables
that have deferred cleanup pending.

To disable rollout behavior during deletions, set the DB2_MDC_ROLLOUT
registry variable to OFF or specify NONE on the SET CURRENT MDC ROLLOUT
MODE statement.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if
the CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported.

Optimization strategies for partitioned tables
Data partition elimination refers to the database server's ability to determine, based
on query predicates, that only a subset of the data partitions in a table need to be
accessed to answer a query. Data partition elimination is particularly useful when
running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided
across multiple storage objects, called data partitions or ranges, according to values
in one or more table partitioning key columns of the table. Data from a table is
partitioned into multiple storage objects based on specifications provided in the
PARTITION BY clause of the CREATE TABLE statement. These storage objects can
be in different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition
elimination.

create table custlist(
subsdate date, province char(2), accountid int)
partition by range(subsdate) (

starting from '1/1/1990' in ts1,
starting from '1/1/1991' in ts1,
starting from '1/1/1992' in ts1,
starting from '1/1/1993' in ts2,
starting from '1/1/1994' in ts2,
starting from '1/1/1995' in ts2,
starting from '1/1/1996' in ts3,
starting from '1/1/1997' in ts3,
starting from '1/1/1998' in ts3,

Chapter 3. Factors affecting performance 237

starting from '1/1/1999' in ts4,
starting from '1/1/2000' in ts4,
starting from '1/1/2001'
ending '12/31/2001' in ts4)

Assume that you are only interested in customer information for the year 2000.
select * from custlist

where subsdate between '1/1/2000' and '12/31/2000'

As Figure 33 shows, the database server determines that only one data partition in
table space TS4 must be accessed to resolve this query.

Another example of data partition elimination is based on the following scheme:
create table multi (

sale_date date, region char(2))
partition by (sale_date) (

starting '01/01/2005'
ending '12/31/2005'
every 1 month)

create index sx on multi(sale_date)

create index rx on multi(region)

Assume that you issue the following query:
select * from multi

where sale_date between '6/1/2005'
and '7/31/2005' and region = 'NW'

Without table partitioning, one likely plan is index ANDing. Index ANDing
performs the following tasks:
v Reads all relevant index entries from each index
v Saves both sets of row identifiers (RIDs)
v Matches RIDs to determine which occur in both indexes
v Uses the RIDs to fetch the rows

Figure 33. The performance benefits of data partition elimination

238 Troubleshooting and Tuning Database Performance

As Figure 34 demonstrates, with table partitioning, the index is read to find
matches for both REGION and SALE_DATE, resulting in the fast retrieval of
matching rows.

DB2 Explain

You can also use the explain facility to determine the data partition elimination
plan that was chosen by the query optimizer. The “DP Elim Predicates”
information shows which data partitions are scanned to resolve the following
query:

select * from custlist
where subsdate between '12/31/1999' and '1/1/2001'

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

FALSE
DPLSTPRT: (List of data partitions accessed)

9-11
DPNUMPRT: (Number of data partitions accessed)

3

DP Elim Predicates:

Range 1)

Stop Predicate: (Q1.A <= '01/01/2001')
Start Predicate: ('12/31/1999' <= Q1.A)

Objects Used in Access Plan:

Schema: MRSRINI
Name: CUSTLIST
Type: Data Partitioned Table
Time of creation: 2005-11-30-14.21.33.857039
Last statistics update: 2005-11-30-14.21.34.339392
Number of columns: 3
Number of rows: 100000
Width of rows: 19

Figure 34. Optimizer decision path for both table partitioning and index ANDing

Chapter 3. Factors affecting performance 239

Number of buffer pool pages: 1200
Number of data partitions: 12
Distinct row values: No
Tablespace name: <VARIOUS>

Multi-column support

Data partition elimination works in cases where multiple columns are used as the
table partitioning key. For example:

create table sales (
year int, month int)
partition by range(year, month) (

starting from (2001,1)
ending at (2001,3) in ts1,
ending at (2001,6) in ts2,
ending at (2001,9) in ts3,
ending at (2001,12) in ts4,
ending at (2002,3) in ts5,
ending at (2002,6) in ts6,
ending at (2002,9) in ts7,
ending at (2002,12) in ts8)

select * from sales where year = 2001 and month < 8

The query optimizer deduces that only data partitions in TS1, TS2, and TS3 must
be accessed to resolve this query.

Note: In the case where multiple columns make up the table partitioning key, data
partition elimination is only possible when you have predicates on the leading
columns of the composite key, because the non-leading columns that are used for
the table partitioning key are not independent.

Multi-range support

It is possible to obtain data partition elimination with data partitions that have
multiple ranges (that is, those that are ORed together). Using the SALES table that
was created in the previous example, execute the following query:

select * from sales
where (year = 2001 and month <= 3)

or (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last
quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys. For example:
create table sales (

a int, b int generated always as (a / 5))
in ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10
partition by range(b) (

starting from (0)
ending at (1000) every (50))

In this case, predicates on the generated column are used for data partition
elimination. In addition, when the expression that is used to generate the columns
is monotonic, the database server translates predicates on the source columns into
predicates on the generated columns, which enables data partition elimination on
the generated columns. For example:

240 Troubleshooting and Tuning Database Performance

select * from sales where a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus
allowing data partition elimination.

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate
is pushed down to the table access level. The join predicate is only pushed down
to the table access level on the inner join of a nested loop join (NLJN).

Consider the following tables:
create table t1 (a int, b int)

partition by range(a,b) (
starting from (1,1)
ending (1,10) in ts1,
ending (1,20) in ts2,
ending (2,10) in ts3,
ending (2,20) in ts4,
ending (3,10) in ts5,
ending (3,20) in ts6,
ending (4,10) in ts7,
ending (4,20) in ts8)

create table t2 (a int, b int)

The following two predicates will be used:
P1: T1.A = T2.A
P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time
cannot be determined, due to unknown outer values of the join. In this case, as
well as cases where host variables or parameter markers are used, data partition
elimination occurs at run time when the necessary values are bound.

During run time, when T1 is the inner of an NLJN, data partition elimination
occurs dynamically, based on the predicates, for every outer value of T2.A. During
run time, the predicates T1.A = 3 and T1.B > 15 are applied for the outer value
T2.A = 3, which qualifies the data partitions in table space TS6 to be accessed.

Suppose that column A in tables T1 and T2 have the following values:

Outer table T2:
column A

Inner table T1:
column A

Inner table T1:
column B

Inner table T1: data
partition location

2 3 20 TS6
3 2 10 TS3
3 2 18 TS4

3 15 TS6
1 40 TS3

To perform a nested loop join (assuming a table scan for the inner table), the
database manager performs the following steps:
1. Reads the first row from T2. The value for A is 2.
2. Binds the T2.A value (which is 2) to the column T2.A in the join predicate T1.A

= T2.A. The predicate becomes T1.A = 2.
3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15.

This qualifies data partitions in table space TS4.

Chapter 3. Factors affecting performance 241

4. After applying T1.A = 2 and T1.B > 15, scans the data partitions in table space
TS4 of table T1 until a row is found. The first qualifying row found is row 3 of
T1.

5. Joins the matching row.
6. Scans the data partitions in table space TS4 of table T1 until the next match

(T1.A = 2 and T1.B > 15) is found. No more rows are found.
7. Repeats steps 1 through 6 for the next row of T2 (replacing the value of A with

3) until all the rows of T2 have been processed.

Indexes over XML data

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.

Partitioned and nonpartitioned XML indexes are maintained by the database
manager during table insert, update, and delete operations in the same way as any
other relational indexes on a partitioned table are maintained. Nonpartitioned
indexes over XML data on a partitioned table are used in the same way as indexes
over XML data on a nonpartitioned table to speed up query processing. Using the
query predicate, it is possible to determine that only a subset of the data partitions
in the partitioned table need to be accessed to answer the query.

Data partition elimination and indexes over XML columns can work together to
enhance query performance. Consider the following partitioned table:

create table employee (a int, b xml, c xml)
index in tbspx
partition by (a) (

starting 0 ending 10,
ending 20,
ending 30,
ending 40)

Now consider the following query:
select * from employee

where a > 21
and xmlexist('$doc/Person/Name/First[.="Eric"]'

passing "EMPLOYEE"."B" as "doc")

The optimizer can immediately eliminate the first two partitions based on the
predicate a > 21. If the nonpartitioned index over XML data on column B is
chosen by the optimizer in the query plan, an index scan using the index over
XML data will be able to take advantage of the data partition elimination result
from the optimizer and only return results belonging to partitions that were not
eliminated by the relational data partition elimination predicates.

Improving query optimization with materialized query tables
Materialized query tables (MQTs) are a powerful way to improve response time for
complex queries.

This is especially true for queries that might require one or more of the following
operations:
v Aggregate data over one or more dimensions
v Joins and aggregate data over a group of tables

242 Troubleshooting and Tuning Database Performance

v Data from a commonly accessed subset of data; that is, from a “hot” horizontal
or vertical database partition

v Re-partitioned data from a table, or part of a table, in a partitioned database
environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. In the
compiler, the query rewrite phase and the optimizer match queries with MQTs and
determine whether to substitute an MQT in a query that accesses the base tables. If
an MQT is used, the explain facility can provide information about which MQT
was selected. In this case, users need access privileges against the base tables, not
rerouted MQTs.

Because MQTs behave like regular tables in many ways, the same guidelines for
optimizing data access using table space definitions and indexes, and by invoking
the runstats utility, apply to MQTs.

To help you to understand the power of MQTs, the following example shows how
a multidimensional analysis query can take advantage of MQTs. Consider a
database warehouse that contains a set of customers and a set of credit card
accounts. The warehouse records the set of transactions that are made with the
credit cards. Each transaction contains a set of items that are purchased together.
This schema is classified as a multi-star schema, because it has two large tables,
one containing transaction items, and the other identifying the purchase
transactions.

Three hierarchical dimensions describe a transaction: product, location, and time.
The product hierarchy is stored in two normalized tables representing the product
group and the product line. The location hierarchy contains city, state, and country,
region, or territory information, and is stored in a single denormalized table. The
time hierarchy contains day, month, and year information, and is encoded in a
single date field. The date dimensions are extracted from the date field of the
transaction using built-in functions. Other tables in this schema represent account
information for customers, and customer information.

An MQT is created for sales at each level of the following hierarchies:
v Product
v Location
v Time, composed of year, month, and day

Many queries can be satisfied by this stored aggregate data. The following example
shows how to create an MQT that computes the sum and count of sales data along
the product group and line dimensions; along the city, state, and country, region,
or territory dimensions; and along the time dimension. It also includes several
other columns in its GROUP BY clause.

create table dba.pg_salessum
as (

select l.id as prodline, pg.id as pgroup,
loc.country, loc.state, loc.city,
l.name as linename, pg.name as pgname,
year(pdate) as year, month(pdate) as month,
t.status,
sum(ti.amount) as amount,
count(*) as count

from cube.transitem as ti, cube.trans as t,
cube.loc as loc, cube.pgroup as pg, cube.prodline as l

where
ti.transid = t.id and

Chapter 3. Factors affecting performance 243

ti.pgid = pg.id and
pg.lineid = l.id and
t.locid = loc.id and
year(pdate) > 1990

group by l.id, pg.id, loc.country, loc.state, loc.city,
year(pdate), month(pdate), t.status, l.name, pg.name

)
data initially deferred refresh deferred;

refresh table dba.pg_salessum;

Queries that can take advantage of such precomputed sums include the following:
v Sales by month and product group
v Total sales for the years after 1990
v Sales for 1995 or 1996
v The sum of sales for a specific product group or product line
v The sum of sales for a specific product group or product line in 1995 and 1996
v The sum of sales for a specific country, region, or territory

Although the precise answer for any of these queries is not included in the MQT,
the cost of computing the answer by MQT could be significantly less than the cost
of using a large base table, because a portion of the answer is already computed.
MQTs can reduce the need for expensive joins, sorts, and aggregation of base data.

The following sample queries obtain significant performance improvements
because they can use the already computed results in the example MQT.

The first query returns the total sales for 1995 and 1996:
set current refresh age=any

select year(pdate) as year, sum(ti.amount) as amount
from cube.transitem as ti, cube.trans as t,

cube.loc as loc, cube.pgroup as pg, cube.prodline as l
where

ti.transid = t.id and
ti.pgid = pg.id and
pg.lineid = l.id and
t.locid = loc.id and
year(pdate) in (1995, 1996)

group by year(pdate);

The second query returns the total sales by product group for 1995 and 1996:
set current refresh age=any

select pg.id as "PRODUCT GROUP", sum(ti.amount) as amount
from cube.transitem as ti, cube.trans as t,

cube.loc as loc, cube.pgroup as pg, cube.prodline as l
where

ti.transid = t.id and
ti.pgid = pg.id and
pg.lineid = l.id and
t.locid = loc.id and
year(pdate) in (1995, 1996)

group by pg.id;

The larger the base tables, the more significant are the potential improvements in
response time when using MQTs. MQTs can effectively eliminate overlapping work

244 Troubleshooting and Tuning Database Performance

among queries. Computations are performed only once when MQTs are built, and
once each time that they are refreshed, and their content can be reused during the
execution of many queries.

Explain facility
The DB2 explain facility provides detailed information about the access plan that
the optimizer chooses for an SQL or XQuery statement.

The information describes the decision criteria that are used to choose the access
plan, and can help you to tune the statement or your instance configuration to
improve performance. More specifically, explain information can help you:
v To understand how the database manager accesses tables and indexes to satisfy

your query
v To evaluate your performance-tuning actions. After altering a statement or

making a configuration change, examine the new explain information to
determine how your action has affected performance.

The captured information includes:
v The sequence of operations that were used to process the query
v Cost information
v Predicates and selectivity estimates for each predicate
v Statistics for all objects that were referenced in the SQL or XQuery statement at

the time that the explain information was captured
v Values for host variables, parameter markers, or special registers that were used

to re-optimize the SQL or XQuery statement

The explain facility is invoked by issuing the EXPLAIN statement, which captures
information about the access plan chosen for a specific explainable statement and
writes this information to explain tables. You must create the explain tables prior to
issuing the EXPLAIN statement. You can also set CURRENT EXPLAIN MODE or
CURRENT EXPLAIN SNAPSHOT, special registers that control the behavior of the
explain facility.

For privileges and authorities that are required to use the explain utility, see the
description of the EXPLAIN statement. The EXPLAIN authority can be granted to
an individual who requires access to explain information but not to the data that is
stored in the database. This authority is a subset of the database administrator
authority and has no inherent privilege to access data stored in tables.

To display explain information, you can use either a command-line tool or Visual
Explain. The tool that you use determines how you set the special registers that
control the behavior of the explain facility. For example, if you expect to use Visual
Explain only, you need only capture snapshot information. If you expect to
perform detailed analysis with one of the command-line utilities or with custom
SQL or XQuery statements against the explain tables, you should capture all
explain information.

Tuning SQL statements using the explain facility
The explain facility is used to display the query access plan that was chosen by the
query optimizer to run an SQL statement.

It contains extensive details about the relational operations used to run the SQL
statement, such as the plan operators, their arguments, order of execution, and

Chapter 3. Factors affecting performance 245

costs. Because the query access plan is one of the most critical factors in query
performance, it is important to understand explain facility output when diagnosing
query performance problems.

Explain information is typically used to:
v Understand why application performance has changed
v Evaluate performance tuning efforts

Analyzing performance changes

To help you understand the reasons for changes in query performance, perform the
following steps to obtain “before and after” explain information:
1. Capture explain information for the query before you make any changes, and

save the resulting explain tables. Alternatively, you can save output from the
db2exfmt utility. However, having explain information in the explain tables
makes it easy to query them with SQL, and facilitates more sophisticated
analysis. As well, it provides all of the obvious maintenance benefits of having
data in a relational DBMS. The db2exfmt tool can be run at any time.

2. Save or print the current catalog statistics if you cannot access Visual Explain to
view this information. You can also use the db2look command to help perform
this task. In DB2 Version 9.7, you can collect an explain snapshot when the
explain tables are populated. The explain snapshot contains all of the relevant
statistics at the time that the statement is explained. The db2exfmt utility will
automatically format the statistics that are contained in the snapshot. This is
especially important when using automatic or real-time statistics collection,
because the statistics used for query optimization might not yet be in the
system catalog tables, or they might have changed between the time that the
statement was explained and when the statistics were retrieved from the system
catalog.

3. Save or print the data definition language (DDL) statements, including those
for CREATE TABLE, CREATE VIEW, CREATE INDEX, and CREATE
TABLESPACE. The db2look command will also perform this task.

The information that you collect in this way provides a reference point for future
analysis. For dynamic SQL statements, you can collect this information when you
run your application for the first time. For static SQL statements, you can also
collect this information at bind time. It is especially important to collect this
information before a major system change, such as the installation of a new service
level or DB2 release, or before a significant configuration change, such as adding
or dropping database partitions and redistributing data. This is because these types
of system changes might result in an adverse change to access plans. Although
access plan regression should be a rare occurrence, having this information
available will help you to resolve performance regressions faster. To analyze a
performance change, compare the information that you collected previously with
information about the query and environment that you collect when you start your
analysis.

As a simple example, your analysis might show that an index is no longer being
used as part of an access plan. Using the catalog statistics information displayed by
Visual Explain or db2exfmt, you might notice that the number of index levels
(NLEVELS column) is now substantially higher than when the query was first
bound to the database. You might then choose to perform one of the following
actions:
v Reorganize the index
v Collect new statistics for your table and indexes

246 Troubleshooting and Tuning Database Performance

v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index
is being used once again, query performance might no longer be a problem. If the
index is still not being used, or if performance is still a problem, try a second
action and examine the results. Repeat these steps until the problem is resolved.

Evaluating performance tuning efforts

You can take a number of actions to help improve query performance, such as
adjusting configuration parameters, adding containers, or collecting fresh catalog
statistics.

After you make a change in any of these areas, you can use the explain facility to
determine the impact, if any, that the change has had on the chosen access plan.
For example, if you add an index or materialized query table (MQT) based on
index guidelines, the explain data can help you to determine whether the index or
materialized query table is actually being used as expected.

Although the explain output provides information that allows you to determine
the access plan that was chosen and its relative cost, the only way to accurately
measure the performance improvement for a query is to use benchmark testing
techniques.

Guidelines for capturing explain information
Explain data can be captured by request when an SQL or XQuery statement is
compiled.

If incremental bind SQL or XQuery statements are compiled at run time, data is
placed in the explain tables at run time, not at bind time. For these statements, the
inserted explain table qualifier and authorization ID are that of the package owner,
not of the user running the package.

Explain information is captured only when an SQL or XQuery statement is
compiled. After initial compilation, dynamic query statements are recompiled
when a change to the environment requires it, or when the explain facility is
active. If you issue the same PREPARE statement for the same query statement, the
query is compiled and explain data is captured every time that this statement is
prepared or executed.

If a package is bound using the REOPT ONCE or ALWAYS bind option, SQL or
XQuery statements containing host variables, parameter markers, global variables,
or special registers are compiled, and the access path is created using real values
for these variables if they are known, or default estimates if the values are not
known at compilation time.

If the REOPT ONCE option is used, an attempt is made to match the specified
SQL or XQuery statement with the same statement in the package cache. Values for
this already re-optimized and cached query statement will be used to re-optimize
the specified query statement. If the user has the required access privileges, the
explain tables will contain the newly re-optimized access plan and the values that
were used for re-optimization.

In a multi-partition database system, the statement should be explained on the
same database partition on which it was originally compiled and re-optimized
using REOPT ONCE; otherwise, an error is returned.

Chapter 3. Factors affecting performance 247

Capturing information in the explain tables
v Static or incremental bind SQL and XQuery statements

Specify either EXPLAIN ALL or EXPLAIN YES options on the BIND or the
PREP command, or include a static EXPLAIN statement in the source program.

v Dynamic SQL and XQuery statements
Explain table information is captured in any of the following cases.
– If the CURRENT EXPLAIN MODE special register is set to:

- YES: The SQL and XQuery compiler captures explain data and executes the
query statement.

- EXPLAIN: The SQL and XQuery compiler captures explain data, but does
not execute the query statement.

- RECOMMEND INDEXES: The SQL and XQuery compiler captures explain
data, and recommended indexes are placed in the ADVISE_INDEX table,
but the query statement is not executed.

- EVALUATE INDEXES: The SQL and XQuery compiler uses indexes that
were placed by the user in the ADVISE_INDEX table for evaluation. In this
mode, all dynamic statements are explained as though these virtual indexes
were available. The query compiler then chooses to use the virtual indexes
if they improve the performance of the statements. Otherwise, the indexes
are ignored. To find out if proposed indexes are useful, review the
EXPLAIN results.

- REOPT: The query compiler captures explain data for static or dynamic
SQL or XQuery statements during statement re-optimization at execution
time, when actual values for host variables, parameter markers, global
variables, or special registers are available.

v If the EXPLAIN ALL option has been specified on the BIND or PREP command,
the query compiler captures explain data for dynamic SQL and XQuery
statements at run time, even if the CURRENT EXPLAIN MODE special register
is set to NO.

Capturing explain snapshot information

When an explain snapshot is requested, explain information is stored in the
SNAPSHOT column of the EXPLAIN_STATEMENT table in a format that is
required by Visual Explain. This format is not usable by other applications.
Additional information about the explain snapshot, including information about
data objects and data operators, is available from Visual Explain itself.

Explain snapshot data is captured when an SQL or XQuery statement is compiled
and explain data has been requested, as follows:
v Static or incremental bind SQL and XQuery statements

An explain snapshot is captured when either the EXPLSNAP ALL or the
EXPLSNAP YES clause is specified on the BIND or the PREP command, or when
the source program includes a static EXPLAIN statement that uses a FOR
SNAPSHOT or a WITH SNAPSHOT clause.

v Dynamic SQL and XQuery statements
An explain snapshot is captured in any of the following cases.
– You issue an EXPLAIN statement with a FOR SNAPSHOT or a WITH

SNAPSHOT clause. With the former, only explain snapshot information is
captured; with the latter, all explain information is captured.

– If the CURRENT EXPLAIN SNAPSHOT special register is set to:

248 Troubleshooting and Tuning Database Performance

- YES: The SQL and XQuery compiler captures explain snapshot data and
executes the query statement.

- EXPLAIN: The SQL and XQuery compiler captures explain snapshot data,
but does not execute the query statement.

– You specify the EXPLSNAP ALL option on the BIND or PREP command. The
query compiler captures explain snapshot data at run time, even if the
CURRENT EXPLAIN SNAPSHOT special register is set to NO.

Guidelines for capturing section explain information
The section explain functionality captures (either directly or via tooling) explain
information about a statement using only the contents of the runtime section. The
section explain is similar to the functionality provided by the db2expln command,
but the section explain gives a level of detail approaching that which is provided
by the explain facility.

By explaining a statement using the contents of the runtime section, you can obtain
information and diagnostics about what will actually be run (or was run, if the
section was captured after execution), as opposed to issuing an EXPLAIN
statement which might produce a different access plan (for example, in the case of
dynamic SQL, the statistics might have been updated since the last execution of the
statement resulting in a different access plan being chosen when the EXPLAIN
statement compiles the statement being explained).

The section explain interfaces will populate the explain tables with information
that is similar to what is produced by an EXPLAIN statement. However, there are
some differences. After the data has been written to the explain tables, it may be
processed by any of the existing explain tools you want to use (for example, the
db2exfmt command).

Section explain interfaces

There are four interface procedures, in the following list, that can perform a section
explain. The procedures differ by only the input that is provided (that is, the
means by which the section is located):

EXPLAIN_FROM_ACTIVITY
Takes application ID, activity ID, uow ID, and activity event monitor name
as input. The procedure searches for the section corresponding to this
activity in the activity event monitor (an SQL activity is a specific
execution of a section). A section explain using this interface contains
section actuals because a specific execution of the section is being
performed.

EXPLAIN_FROM_CATALOG
Takes package name, package schema, unique ID, and section number as
input. The procedure searches the catalog tables for the specific section.

EXPLAIN_FROM_DATA
Takes executable ID, section, and statement text as input.

EXPLAIN_FROM_SECTION
Takes executable ID and location as input, where location is specified by
using one of the following:
v In-memory package cache
v Package cache event monitor name

The procedure searches for the section in the given location.

Chapter 3. Factors affecting performance 249

An executable ID uniquely and consistently identifies a section. The executable ID
is an opaque, binary token generated at the data server for each section that has
been executed. The executable ID is used as input to query monitoring data for the
section, and to perform a section explain.

In each case, the procedure performs an explain, using the information contained
in the identified runtime section, and writes the explain information to the explain
tables identified by an explain_schema input parameter. It is the responsibility of the
caller to perform a commit after invoking the procedure.

Differences between section explain and EXPLAIN statement output:

The results obtained after issuing a section explain are similar to those collected
after running the EXPLAIN statement. There are slight differences which are
described per affected explain table and by the implications, if any, to the output
generated by the db2exfmt utility.

The stored procedure output parameters EXPLAIN_REQUESTER, EXPLAIN_TIME,
SOURCE_NAME, SOURCE_SCHEMA, and SOURCE_VERSION comprise the key
used to look up the information for the section in the explain tables. Use these
parameters with any existing explain tools (for example, db2exfmt) to format the
explain information retrieved from the section.

EXPLAIN_INSTANCE table

The following columns are set differently for the row generated by a section
explain:
v EXPLAIN_OPTION is set to value S

v SNAPSHOT_TAKEN is always set to N

v REMARKS is always NULL

EXPLAIN_STATEMENT table

When a section explain has generated an explain output, the EXPLAIN_LEVEL
column is set to value S. It is important to note that the EXPLAIN_LEVEL column
is part of the primary key of the table and part of the foreign key of most other
EXPLAIN tables; hence, this EXPLAIN_LEVEL value will also be present in those
other tables.

In the EXPLAIN_STATEMENT table, the remaining column values that are usually
associated with a row with EXPLAIN_LEVEL = P, are instead present when
EXPLAIN_LEVEL = S, with the exception of SNAPSHOT. SNAPSHOT is always
NULL when EXPLAIN_LEVEL is S.

If the original statement was not available at the time the section explain was
generated (for example, if the statement text was not provided to the
EXPLAIN_FROM_DATA procedure), STATEMENT_TEXT is set to the string
UNKNOWN when EXPLAIN_LEVEL is set to O.

In the db2exfmt output for a section explain, the following extra line is shown after
the optimized statement:
Explain level: Explain from section

250 Troubleshooting and Tuning Database Performance

EXPLAIN_OPERATOR table

Considering all of the columns recording a cost, only the TOTAL_COST and
FIRST_ROW_COST columns are populated with a value after a section explain. All
the other columns recording cost have a value of -1.

In the db2exfmt output for a section explain, the following differences are
obtained:
v In the access plan graph, the I/O cost is shown as NA

v In the details for each operator, the only costs shown are Cumulative Total Cost
and Cumulative First Row Cost

EXPLAIN_PREDICATE table

No differences.

EXPLAIN_ARGUMENT table

A small number of argument types are not written to the EXPLAIN_ARGUMENT
table when a section explain is issued.

EXPLAIN_STREAM table

The following columns do not have values after a section explain:
v SINGLE_NODE
v PARTITION_COLUMNS
v SEQUENCE_SIZES

The following column always has a value of -1 after a section explain:
v PREDICATE_ID

The following columns will have values only for streams originating from a base
table object or default to no value and -1 respectively after a section explain:
v COLUMN_NAMES
v COLUMN_COUNT

In the db2exfmt output for a section explain, the information from these listed
columns is omitted from the Input Streams and Output Streams section for each
operator when they do not have values, or have a value of -1.

EXPLAIN_OBJECT table

After issuing a section explain, the STATS_SRC column is always set to an empty
string and the CREATE_TIME column is set to NULL.

The following columns always have values of -1 after a section explain:
v COLUMN_COUNT
v WIDTH
v FIRSTKEYCARD
v FIRST2KEYCARD
v FIRST3KEYCARD
v FIRST4KEYCARD

Chapter 3. Factors affecting performance 251

v SEQUENTIAL_PAGES
v DENSITY
v AVERAGE_SEQUENCE_GAP
v AVERAGE_SEQUENCE_FETCH_GAP
v AVERAGE_SEQUENCE_PAGES
v AVERAGE_SEQUENCE_FETCH_PAGES
v AVERAGE_RANDOM_PAGES
v AVERAGE_RANDOM_FETCH_PAGES
v NUMRIDS
v NUMRIDS_DELETED
v NUM_EMPTY_LEAFS
v ACTIVE_BLOCKS
v NUM_DATA_PART

In the db2exfmt output for a section explain, the information from these listed
columns is omitted from the per-table and per-index statistical information found
near the bottom of the output.

Section explain does not include compiler-referenced objects in its output (that is,
rows where OBJECT_TYPE starts with a +). These objects are not shown in the
db2exfmt output.

Capturing and accessing section actuals:

Section actuals are runtime statistics collected during the execution of the section
for an access plan. To capture a section with actuals, you use the activity event
monitor. To access the section actuals, you perform a section explain using the
EXPLAIN_FROM_ACTIVITY stored procedure.

To be able to view section actuals, you must perform a section explain on a section
for which section actuals were captured (that is, both the section and the section
actuals are the inputs to the explain facility). Information about enabling,
capturing, and accessing section actuals is provided here.

Enabling section actuals

Section actuals will only be updated at runtime if they have been enabled. Enable
section actuals for the entire database using the section_actuals database
configuration parameter or for a specific application using the
WLM_SET_CONN_ENV procedure.

To enable section actuals, set the parameter to BASE (the default value is NONE).
For example:
db2 update database configuration using section_actuals base

To enable section actuals for a specific application, use the WLM_SET_CONN_ENV
procedure and specify BASE for the section_actuals element. For example:
CALL WLM_SET_CONN_ENV(NULL, '<collectactdata>WITH DETAILS, SECTION</collectactsata> <collectsectionactuals>BASE</collectsectionactuals>')

Note:

1. The setting of the section_actuals database configuration parameter that was in
effect at the start of the unit of work is applied to all statements in that unit of

252 Troubleshooting and Tuning Database Performance

work. When the section_actuals database configuration parameter is changed
dynamically, the new value will not be seen by an application until the next
unit of work.

2. The section_actuals setting specified by the WLM_SET_CONN_ENV procedure
for an application takes effect immediately. Section actuals will be collected for
the next statement issued by the application.

3. Section actuals cannot be enabled if automatic statistics profile generation is
enabled (SQLCODE -5153).

Capturing section actuals

The mechanism for capturing a section, with section actuals, is the activity event
monitor. An activity event monitor writes out details of an activity when the
activity completes execution, if collection of activity information is enabled.
Activity information collection is enabled using the COLLECT ACTIVITY DATA
clause on a workload, service class, threshold, or work action. To specify collection
of a section and actuals (if the latter is enabled), the SECTION option of the
COLLECT ACTIVITY DATA clause is used. For example, the following statement
indicates that any SQL statement, issued by a connection associated with the WL1
workload, will have information (including section and actuals) collected by any
active activity event monitor when the statement completes:
ALTER WORKLOAD WL1 COLLECT ACTIVITY DATA WITH DETAILS,SECTION

In a partitioned database environment, section actuals are captured by an activity
event monitor on all partitions where the activity was executed, if the statement
being executed has a COLLECT ACTIVITY DATA clause applied to it and the
COLLECT ACTIVITY DATA clause specifies both the SECTION keyword and the
ON ALL DATABASE PARTITIONS clause. If the ON ALL DATABASE
PARTITIONS clause is not specified, then actuals are captured on only the
coordinator partition. In addition, besides the COLLECT ACTIVITY DATA clause
on a workload, service class, threshold, or work action, activity collection can be
enabled (for an individual application) using the WLM_SET_CONN_ENV
procedure with a second argument that includes the collectactdata tag with a value
of "WITH DETAILS, SECTION".

Limitations
The limitations, with respect to the capture of section actuals, are the
following:
v Section actuals will not be captured when the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure is used to
send information about a currently executing activity to an activity event
monitor. Any activity event monitor record generated by the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure will have
a value of 1 in its partial_record column.

v When a reactive threshold has been violated, section actuals will be
captured on only the coordinator partition.

v Explain tables must be migrated to DB2 Version 9.7 Fix Pack 1, or later,
before section actuals can be accessed using a section explain. If the
explain tables have not been migrated, the section explain will work, but
section actuals information will not be populated in the explain tables.
In this case, an entry will be written to the EXPLAIN_DIAGNOSTIC
table.

v Existing DB2 V9.7 activity event monitor tables (in particular, the activity
table) must be recreated before section actuals data can be captured by
the activity event monitor. If the activity logical group does not contain

Chapter 3. Factors affecting performance 253

the SECTION_ACTUALS column, a section explain may still be
performed using a section captured by the activity event monitor, but
the explain will not contain any section actuals data.

Accessing section actuals

Section actuals can be accessed using the EXPLAIN_FROM_ACTIVITY procedure.
When you perform a section explain on an activity for which section actuals were
captured, the EXPLAIN_ACTUALS explain table will be populated with the
actuals information.

Note: Section actuals are only available when a section explain is performed using
the EXPLAIN_FROM_ACTIVITY procedure.

The EXPLAIN_ACTUALS table is the child table of the existing
EXPLAIN_OPERATOR explain table. When EXPLAIN_FROM_ACTIVITY is
invoked, if the section actuals are available, the EXPLAIN_ACTUALS table will be
populated with the actuals data. If the section actuals are collected on multiple
database partitions, there is one row per database partition for each operator in the
EXPLAIN_ACTUALS table.

Obtaining a section explain with actuals to investigate poor query performance:

To resolve a SQL query performance slow down, you can begin by obtaining a
section explain that includes section actuals information. The section actuals values
can then be compared with the estimated access plan values generated by the
optimizer to assess the validity of the access plan. This task takes you through the
process of obtaining section actuals to investigate poor query performance.

You have completed the diagnosis phase of your investigation and determined that
indeed you have a SQL query performance slow down and you have determined
which statement is suspected to be involved in the performance slow down.

This task takes you through the process of obtaining section actuals to investigate
poor query performance. The information contained in the sections actuals, when
compared with the estimated values generated by the optimizer, can help to
resolve the query performance slow down.

Restrictions

See the limitations in “Capturing and accessing section actuals”.

To investigate poor query performance for a query executed by the myApp.exe
application, complete the following steps:
1. Enable section actuals:

DB2 UPDATE DATABASE CONFIGURATION USING SECTION_ACTUALS BASE

2. Create the EXPLAIN tables in the MYSCHEMA schema using the
SYSINSTALLOBJECTS procedure:
CALL SYSINSTALLOBJECTS('EXPLAIN', 'C', NULL, 'MYSCHEMA')

Note: This step can be skipped if you have already created the EXPLAIN
tables.

3. Create a workload MYCOLLECTWL to collect activities submitted by the
myApp.exe application and enable collection of section data for those activities
by issuing the following:

254 Troubleshooting and Tuning Database Performance

CREATE WORKLOAD MYCOLLECTWL APPLNAME('MYAPP.EXE')
COLLECT ACTIVITY DATA WITH DETAILS,SECTION
GRANT USAGE ON WORKLOAD MYCOLLECTWL TO PUBLIC

Note: Choosing to use a separate workload limits the amount of information
captured by the activity event monitor

4. Create an activity event monitor, called ACTEVMON, by issuing the following
statement:
CREATE EVENT MONITOR ACTEVMON FOR ACTIVITIES WRITE TO TABLE

5. Activate the activity event monitor ACTEVMON by executing the following
statement:
SET EVENT MONITOR ACTEVMON STATE 1

6. Run the myApp.exe application. All statements, issued by the application, are
captured by the activity event monitor.

7. Query the activity event monitor tables to find the identifier information for
the statement of interest by issuing the following statement:
SELECT APPL_ID,

UOW_ID,
ACTIIVTY_ID,
STMT_TEXT

FROM ACTIVITYSTMT_ACTEVMON

The following is an example of the output that was generated as a result of
the issued select statement:
APPL_ID UOW_ID ACTIVITY_ID STMT_TEXT
------------------------- -------- -------------- ---------------
*N2.DB2INST1.0B5A12222841 1 1 SELECT * FROM ...

8. Use the activity identifier information as input to the
EXPLAIN_FROM_ACTIVITY procedure to obtain a section explain with
actuals, as shown in the following call statement:
CALL EXPLAIN_FROM_ACTIVITY('*N2.DB2INST1.0B5A12222841', 1, 1, 'ACTEVMON',
'MYSCHEMA', ?, ?, ?, ?, ?)

The following is a sample output resulting from the
EXPLAIN_FROM_ACTIVITY call:
Value of output parameters

Parameter Name : EXPLAIN_SCHEMA
Parameter Value : MYSCHEMA

Parameter Name : EXPLAIN_REQUESTER
Parameter Value : SWALKTY

Parameter Name : EXPLAIN_TIME
Parameter Value : 2009-08-24-12.33.57.525703

Parameter Name : SOURCE_NAME
Parameter Value : SQLC2H20

Parameter Name : SOURCE_SCHEMA
Parameter Value : NULLID

Parameter Name : SOURCE_VERSION
Parameter Value :

Return Status = 0

9. Format the explain data using the db2exfmt command and specifying, as
input, the explain instance key that was returned as output from the
EXPLAIN_FROM_ACTIVITY procedure, such as the following:

Chapter 3. Factors affecting performance 255

db2exfmt -d test -w 2009-08-24-12.33.57.525703 -n SQLC2H20 -s NULLID -# 0 -t

The explain instance output was the following:
******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 09.07.1
SOURCE_NAME: SQLC2H20
SOURCE_SCHEMA: NULLID
SOURCE_VERSION:
EXPLAIN_TIME: 2009-08-24-12.33.57.525703
EXPLAIN_REQUESTER: SWALKTY

Database Context:

Parallelism: None
CPU Speed: 4.000000e-05
Comm Speed: 0
Buffer Pool size: 198224
Sort Heap size: 1278
Database Heap size: 2512
Lock List size: 6200
Maximum Lock List: 60
Average Applications: 1
Locks Available: 119040

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 201 ----------------
QUERYNO: 0
QUERYTAG: CLP
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

select *
from syscat.tables

Optimized Statement:

SELECT Q10.$C67 AS "TABSCHEMA", Q10.$C66 AS "TABNAME", Q10.$C65 AS "OWNER",

Q10.$C64 AS "OWNERTYPE", Q10.$C63 AS "TYPE", Q10.$C62 AS "STATUS",
Q10.$C61 AS "BASE_TABSCHEMA", Q10.$C60 AS "BASE_TABNAME", Q10.$C59 AS
"ROWTYPESCHEMA", Q10.$C58 AS "ROWTYPENAME", Q10.$C57 AS "CREATE_TIME",
Q10.$C56 AS "ALTER_TIME", Q10.$C55 AS "INVALIDATE_TIME", Q10.$C54 AS
"STATS_TIME", Q10.$C53 AS "COLCOUNT", Q10.$C52 AS "TABLEID", Q10.$C51
AS "TBSPACEID", Q10.$C50 AS "CARD", Q10.$C49 AS "NPAGES", Q10.$C48 AS
"FPAGES", Q10.$C47 AS "OVERFLOW", Q10.$C46 AS "TBSPACE", Q10.$C45 AS
"INDEX_TBSPACE", Q10.$C44 AS "LONG_TBSPACE", Q10.$C43 AS "PARENTS",
Q10.$C42 AS "CHILDREN", Q10.$C41 AS "SELFREFS", Q10.$C40 AS
"KEYCOLUMNS", Q10.$C39 AS "KEYINDEXID", Q10.$C38 AS "KEYUNIQUE",
Q10.$C37 AS "CHECKCOUNT", Q10.$C36 AS "DATACAPTURE", Q10.$C35 AS
"CONST_CHECKED", Q10.$C34 AS "PMAP_ID", Q10.$C33 AS "PARTITION_MODE",
'0' AS "LOG_ATTRIBUTE", Q10.$C32 AS "PCTFREE", Q10.$C31 AS
"APPEND_MODE", Q10.$C30 AS "REFRESH", Q10.$C29 AS "REFRESH_TIME",

...

Explain level: Explain from section

256 Troubleshooting and Tuning Database Performance

Access Plan:

Total Cost: 154.035
Query Degree: 1

Rows
Rows Actual

RETURN
(1)
Cost
I/O
|
54
396

>^HSJOIN
(2)
153.056

NA
/----------+-----------\

54 20
396 0

>^HSJOIN TBSCAN
(3) (12)
140.872 11.0302

NA NA
/---------+----------\ |

54 6 20
396 0 NA

>^HSJOIN IXSCAN TABLE: SYSIBM
(4) (11) SYSAUDITPOLICIES
138.033 2.01136

NA NA
/---------+---------\ |

54 6 -1
396 0 NA

>^HSJOIN IXSCAN INDEX: SYSIBM
(5) (10) INDCOLLATIONS04
135.193 2.01136

NA NA
/-------+--------\ |

54 6 -1
396 0 NA

>^HSJOIN IXSCAN INDEX: SYSIBM
(6) (9) INDCOLLATIONS04
132.354 2.01136

NA NA
/-----+-----\ |

54 6 -1
396 0 NA

TBSCAN IXSCAN INDEX: SYSIBM
(7) (8) INDCOLLATIONS04
129.57 2.01136

NA NA
| |
54 -1
NA NA

TABLE: SYSIBM INDEX: SYSIBM
SYSTABLES INDCOLLATIONS04

...

10. Examine the section actuals information in the explain output. Compare the
section actuals values with the estimated values of the access plan generated
by the optimizer. If a discrepancy occurs between the section actuals and
estimated values for the access plan, ascertain what is causing the discrepancy

Chapter 3. Factors affecting performance 257

and take the appropriate action. As an example for the purposes of discussion,
you ascertain that the table statistics are out of date for one of the tables being
queried. This leads the optimizer to select an incorrect access plan which
might account for the query performance slow down. The course of action to
take, in this case, is to run the RUNSTATS command on the table to update
the table statistics.

11. Retry the application to determine if the query slow down persists.

Analyzing section actuals information in explain output:

Section actuals, when available, are displayed in different parts of the explain
output. Where to find section actuals information and operator details, in explain
output, is described here.

Section actuals in db2exfmt graph output

If the explain actuals are available, the actuals will be displayed in the graph under
the estimated rows. Explain only supports actuals on operators, not on objects. NA
(not applicable) is displayed for the objects in the graph. The following is an
example db2exfmt graph output:

Rows
Rows Actual

RETURN
(1)
Cost
I/O
|

3.21948 << The estimated rows used by optimizer
301 << The actuals rows collected in runtime
DTQ
(2)
75.3961

NA
|

3.21948
130

HSJOIN
(3)
72.5927

NA
/--+---\

674 260
220 130

TBSCAN TBSCAN
(4) (5)
40.7052 26.447

NA NA
| |
337 130
NA NA << Explain does not support actuals for objects

TABLE: FF TABLE: FF
T1 T2

In a partitioned database environment, the cardinality displayed in the graph is the
average cardinality over the database partitions where the actuals are collected.
The average is displayed because that is the value estimated by the optimizer.
Providing the actual average gives a meaningful value to compare against the
estimated average. In a partitioned database environment, a per-database partition
breakdown of section actuals is provided in the operator details output. A user can
examine these details to determine other information, such as total (across all
partitions), min, max, and so forth.

258 Troubleshooting and Tuning Database Performance

Operator details in db2exfmt output

The actual cardinality for an operator will be displayed in the stream section
following the line containing Estimated number of rows (Actual number of rows in
the explain output). The actual cardinality displayed will be the average cardinality
for a partitioned database environment, if the operator is running on more than
one database member. The per-database partition values will be displayed under a
separate section Explain Actuals. The section Explain Actuals will only show in
the partitioned database environment, but not in the serial mode. If the actuals are
not available for a particular database partition, NA will be displayed in the
per-database partition values list next to the partition number. Actual number of
rows in the section Output Streams will also be NA. The following is an example of
the operator details in the db2exfmt output:

9) UNION : (Union)
Cumulative Total Cost: 10.6858
Cumulative First Row Cost: 9.6526

Arguments:

UNIONALL: (UnionAll Parameterized Base Table)

DISJOINT

Input Streams:

5) From Operator #10

Estimated number of rows: 30
Actual number of rows: 63
Partition Map ID: 3

7) From Operator #11

Estimated number of rows: 16
Actual number of rows: 99
Partition Map ID: 3

Output Streams:

8) To Operator #8

Estimated number of rows: 30
Actual number of rows: 162
Partition Map ID: 3

Explain Actuals: << This section will only show in a partitioned database environment

DB Partition number Cardinality
------------------- -----------

1 193
2 131

Guidelines for using explain information
You can use explain information to understand why application performance has
changed or to evaluate performance tuning efforts.

Analysis of performance changes

To help you understand the reasons for changes in query performance, you need
“before and after” explain information, which you can obtain by performing the
following steps:

Chapter 3. Factors affecting performance 259

1. Capture explain information for the query before you make any changes and
save the resulting explain tables. Alternatively, save output from the db2exfmt
explain tool.

2. Save or print the current catalog statistics if you cannot access Visual Explain to
view this information. You could use the db2look productivity tool to help you
perform this task.

3. Save or print the data definition language (DDL) statements, including
CREATE TABLE, CREATE VIEW, CREATE INDEX, or CREATE TABLESPACE.

The information that you collect in this way provides a reference point for future
analysis. For dynamic SQL or XQuery statements, you can collect this information
when you run your application for the first time. For static SQL and XQuery
statements, you can collect this information at bind time. To analyze a performance
change, compare the information that you collect with this reference information
that was collected previously.

For example, your analysis might show that an index is no longer being used
when determining an access path. Using the catalog statistics information in Visual
Explain, you might notice that the number of index levels (the NLEVELS column)
is now substantially higher than when the query was first bound to the database.
You might then choose to perform one of the following actions:
v Reorganize the index
v Collect new statistics for your table and indexes
v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index
is being used, query performance might no longer be a problem. If the index is still
not being used, or if performance is still a problem, choose another action from
this list and examine the results. Repeat these steps until the problem is resolved.

Evaluation of performance tuning efforts

You can take a number of actions to help improve query performance, such as
updating configuration parameters, adding containers, collecting fresh catalog
statistics, and so on.

After you make a change in any of these areas, use the explain facility to
determine what impact, if any, the change has had on the chosen access plan. For
example, if you add an index or materialized query table (MQT) based on the
index guidelines, the explain data can help you to determine whether or not the
index or MQT is actually being used as expected.

Although the explain output enables you to determine the access plan that was
chosen and its relative cost, the only way to accurately measure the performance
improvement for a specific query is to use benchmark testing techniques.

Guidelines for analyzing explain information
The primary use for explain information is the analysis of access paths for query
statements. There are a number of ways in which analyzing the explain data can
help you to tune your queries and environment.

Consider the following kinds of analysis:
v Index use

260 Troubleshooting and Tuning Database Performance

The proper indexes can significantly benefit performance. Using explain output,
you can determine whether the indexes that you have created to help a specific
set of queries are being used. Look for index usage in the following areas:
– Join predicates
– Local predicates
– GROUP BY clause
– ORDER BY clause
– WHERE XMLEXISTS clause
– The select list
You can also use the explain facility to evaluate whether a different index or no
index at all might be better. After you create a new index, use the RUNSTATS
command to collect statistics for that index, and then recompile your query.
Over time, you might notice (through explain data) that a table scan is being
used instead of an index scan. This can result from a change in the clustering of
the table data. If the index that was previously being used now has a low cluster
ratio, you might want to:
– Reorganize the table to cluster its data according to that index
– Use the RUNSTATS command to collect statistics for both index and table
– Recompile the query

To determine whether reorganizing the table has improved the access plan,
examine explain output for the recompiled query.

v Access type
Analyze the explain output, and look for data access types that are not usually
optimal for the type of application that you are running. For example:
– Online transaction processing (OLTP) queries

OLTP applications are prime candidates for index scans with range-delimiting
predicates, because they tend to return only a few rows that are qualified by
an equality predicate against a key column. If your OLTP queries are using a
table scan, you might want to analyze the explain data to determine why an
index scan is not being used.

– Browse-only queries
The search criteria for a “browse” type query can be very vague, resulting in
a large number of qualifying rows. If users usually look at only a few screens
of output data, you might specify that the entire answer set need not be
computed before some results are returned. In this case, the goals of the user
are different than the basic operating principle of the optimizer, which
attempts to minimize resource consumption for the entire query, not just the
first few screens of data.
For example, if the explain output shows that both merge scan join and sort
operators were used in the access plan, the entire answer set will be
materialized in a temporary table before any rows are returned to the
application. In this case, you can attempt to change the access plan by using
the OPTIMIZE FOR clause on the SELECT statement. If you specify this
option, the optimizer can attempt to choose an access plan that does not
produce the entire answer set in a temporary table before returning the first
rows to the application.

v Join methods
If a query joins two tables, check the type of join being used. Joins that involve
more rows, such as those in decision-support queries, usually run faster with a
hash join or a merge join. Joins that involve only a few rows, such as those in
OLTP queries, typically run faster with nested-loop joins. However, there might

Chapter 3. Factors affecting performance 261

be extenuating circumstances in either case—such as the use of local predicates
or indexes—that could change how these typical joins work.

Using access plans to self-diagnose performance problems with
REFRESH TABLE and SET INTEGRITY statements
Invoking the explain utility against REFRESH TABLE or SET INTEGRITY
statements enables you to generate access plans that can be used to self-diagnose
performance problems with these statements. This can help you to better maintain
your materialized query tables (MQTs).

To get the access plan for a REFRESH TABLE or a SET INTEGRITY statement, use
either of the following methods:
v Use the EXPLAIN PLAN FOR REFRESH TABLE or EXPLAIN PLAN FOR SET

INTEGRITY option on the EXPLAIN statement.
v Set the CURRENT EXPLAIN MODE special register to EXPLAIN before issuing

the REFRESH TABLE or SET INTEGRITY statement, and then set the CURRENT
EXPLAIN MODE special register to NO afterwards.

Restrictions
v The REFRESH TABLE and SET INTEGRITY statements do not qualify for

re-optimization; therefore, the REOPT explain mode (or explain snapshot) is not
applicable to these two statements.

v The WITH REOPT ONCE clause of the EXPLAIN statement, which indicates
that the specified explainable statement is to be re-optimized, is not applicable to
the REFRESH TABLE and SET INTEGRITY statements.

Scenario

This scenario shows how you can generate and use access plans from EXPLAIN
and REFRESH TABLE statements to self-diagnose the cause of your performance
problems.
1. Create and populate your tables. For example:

create table t (
i1 int not null,
i2 int not null,
primary key (i1)

);

insert into t values (1,1), (2,1), (3,2), (4,2);

create table mqt as (
select i2, count(*) as cnt from t group by i2

)
data initially deferred
refresh deferred;

2. Issue the EXPLAIN and REFRESH TABLE statements, as follows:
explain plan for refresh table mqt;

This step can be replaced by setting the EXPLAIN mode on the SET CURRENT
EXPLAIN MODE special register, as follows:

set current explain mode explain;
refresh table mqt;
set current explain mode no;

3. Use the db2exfmt command to format the contents of the explain tables and
obtain the access plan. This tool is located in the misc subdirectory of the
instance sqllib directory.

262 Troubleshooting and Tuning Database Performance

db2exfmt –d dbname -o refresh.exp -1

4. Analyze the access plan to determine the cause of the performance problem. In
the previous example, if T is a large table, a table scan would be very
expensive. Creating an index might improve the performance of the query.

Tools for collecting and analyzing explain information
The DB2 database server has a comprehensive explain facility that provides
detailed information about the access plan that the optimizer chooses for an SQL
or XQuery statement.

The tables that store explain data are accessible on all supported platforms and
contain information for both static and dynamic SQL and XQuery statements.
Several tools are available to give you the flexibility that you need to capture,
display, and analyze explain information.

Detailed query optimizer information that enables the in-depth analysis of an
access plan is stored in explain tables that are separate from the actual access plan
itself. Use one or more of the following methods to get information from the
explain tables:
v Use the db2exfmt tool to display explain information in formatted output.
v Write your own queries against the explain tables. Writing your own queries

enables the easy manipulation of output, comparisons among different queries,
or comparisons among executions of the same query over time.

Use the db2expln tool to see the access plan information that is available for one or
more packages of static SQL or XQuery statements. This utility shows the actual
implementation of the chosen access plan; it does not show optimizer information.
By examining the generated access plan, the db2expln tool provides a relatively
compact, verbal overview of the operations that will occur at run time.

The command line explain tools can be found in the misc subdirectory of the
sqllib directory.

The following table summarizes the different tools that are available with the DB2
explain facility. Use this table to select the tool that is most suitable for your
environment and needs.

Table 53. Explain Facility Tools

Desired characteristics Explain tables db2expln db2exfmt

Text output Yes Yes

“Quick and dirty” static SQL and XQuery
analysis

Yes

Static SQL and XQuery support Yes Yes Yes

Dynamic SQL and XQuery support Yes Yes Yes

CLI application support Yes Yes

Available to DRDA® Application
Requesters

Yes

Detailed optimizer information Yes Yes

Suited for analysis of multiple statements Yes Yes Yes

Information is accessible from within an
application

Yes

Chapter 3. Factors affecting performance 263

Displaying catalog statistics that are in effect at explain time

The explain facility captures the statistics that are in effect when a statement is
explained. These statistics might be different than those that are stored in the
system catalog, especially if real-time statistics gathering is enabled. If the explain
tables are populated, but an explain snapshot was not created, only some statistics
are recorded in the EXPLAIN_OBJECT table.

To capture all catalog statistics that are relevant to the statement being explained,
create an explain snapshot at the same time that explain tables are being
populated, then use the SYSPROC.EXPLAIN_FORMAT_STATS scalar function to
format the catalog statistics in the snapshot.

If the db2exfmt tool is used to format the explain information, and an explain
snapshot was collected, the tool automatically uses the
SYSPROC.EXPLAIN_FORMAT_STATS function to display the catalog statistics.

The explain tables and organization of explain information
All explain information is organized around the concept of an explain instance. An
explain instance represents one invocation of the explain facility for one or more
SQL or XQuery statements. The explain information captured in one explain
instance includes the compilation environment as well as the access plan chosen to
satisfy the SQL or XQuery statement being compiled.

For example, an explain instance might consist of any one of the following:
v All eligible SQL or XQuery statements in one package, for static query

statements. For SQL statements (including those that query XML data), you can
capture explain information for CALL, Compound SQL (Dynamic), DELETE,
INSERT, MERGE, REFRESH TABLE, SELECT, SET INTEGRITY, SELECT INTO,
UPDATE, VALUES, and VALUES INTO statements. In the case of XQuery
statements, you can obtain explain information for XQUERY db2-fn:xmlcolumn
and XQUERY db2-fn:sqlquery statements.

Note: REFRESH TABLE and SET INTEGRITY statements are only compiled
dynamically.

v One particular SQL statement, for incremental bind SQL statements
v One particular SQL statement, for dynamic SQL statements
v Each EXPLAIN statement (dynamic or static)

The explain facility, invoked by issuing the EXPLAIN statement or by using the
section explain interfaces, captures information about the access plan chosen for a
specific explainable statement and writes this information to explain tables. You
must create the explain tables prior to issuing the EXPLAIN statement. To create
them, run the EXPLAIN.DDL script that you can find in the misc subdirectory of the
sqllib subdirectory.

You can also create, drop, and validate explain tables using the
SYSPROC.SYSINSTALLOBJECTS procedure. The tables can be created under a
specific schema and table space. You can find an example in the EXPLAIN.DDL file.

Explain tables can be common to more than one user. The tables can be defined for
one user, and then aliases pointing to the defined tables can be created for each
additional user. Alternatively, the explain tables can be defined under the
SYSTOOLS schema. The explain facility defaults to the SYSTOOLS schema if no
other explain tables or aliases are found under the user's session ID for dynamic

264 Troubleshooting and Tuning Database Performance

SQL or XQuery statements, or under the statement authorization ID for static SQL
or XQuery statements. Each user sharing the common explain tables must hold the
INSERT privilege on those tables.

Table 54. Summary of the explain tables

Table Name Description

ADVISE_INDEX Stores information about recommended indexes.
The table can be populated by the query compiler,
the db2advis command, or a user. This table is
used:

v To get recommended indexes

v To evaluate indexes based on input about
proposed indexes

ADVISE_INSTANCE Contains information about db2advis execution,
including start time. Contains one row for each
execution of db2advis.

ADVISE_MQT Contains the query that defines each recommended
materialized query table (MQT), the column
statistics for each MQT, such as COLSTATS (in XML
form), NUMROWS, and so on, as well as the
sampling query to obtain detailed statistics for each
MQT.

ADVISE_PARTITION Stores virtual database partitions that are generated
and evaluated by db2advis.

ADVISE_TABLE Stores the data definition language (DDL) for table
creation, using the final Design Advisor
recommendations for MQTs, multidimensional
clustering tables (MDCs), and database partitioning.

ADVISE_WORKLOAD Each row in the table represents an SQL or XQuery
statement in a workload. The db2advis command
uses this table to collect and store workload
information.

EXPLAIN_ACTUALS Contains the explain section actuals information.

EXPLAIN_ARGUMENT Contains information about the unique
characteristics of each individual operator, if any.

EXPLAIN_DIAGNOSTIC Contains an entry for each diagnostic message that
is produced for a particular instance of an explained
statement in the EXPLAIN_STATEMENT table.

EXPLAIN_DIAGNOSTIC_DATA Contains message tokens for specific diagnostic
messages that are recorded in the
EXPLAIN_DIAGNOSTIC table. The message tokens
provide additional information that is specific to the
execution of the SQL statement that generated the
message.

EXPLAIN_INSTANCE The main control table for all explain information.
Each row in the explain tables is explicitly linked to
one unique row in this table. Basic information
about the source of the SQL or XQuery statements
being explained, as well as environmental
information, are kept in this table.

EXPLAIN_OBJECT Identifies the data objects that are required by the
access plan generated to satisfy an SQL or XQuery
statement.

Chapter 3. Factors affecting performance 265

Table 54. Summary of the explain tables (continued)

Table Name Description

EXPLAIN_OPERATOR Contains all of the operators that the query
compiler needs to satisfy an SQL or XQuery
statement.

EXPLAIN_PREDICATE Identifies the predicates that are applied by a
specific operator.

EXPLAIN_STATEMENT Contains the text of the SQL or XQuery statement
as it exists for the different levels of explain
information. The original SQL or XQuery statement,
as entered by the user, is stored in this table with
the version that is used by the optimizer to choose
an access plan.

When an explain snapshot is requested, additional
explain information is recorded to describe the
access plan that was selected by the query
optimizer. This information is stored in the
SNAPSHOT column of the EXPLAIN_STATEMENT
table in the format that is required by Visual
Explain. This format is not usable by other
applications.

EXPLAIN_STREAM Represents the input and output data streams
between individual operators and data objects. The
data objects themselves are represented in the
EXPLAIN_OBJECT table. The operators involved in
a data stream are represented in the
EXPLAIN_OPERATOR table.

Explain information for data objects:

A single access plan might use one or more data objects to satisfy an SQL or
XQuery statement.

Object statistics

The explain facility records information about each object, such as the following:
v The creation time
v The last time that statistics were collected for the object
v Whether or not the data in the object is sorted (only table or index objects)
v The number of columns in the object (only table or index objects)
v The estimated number of rows in the object (only table or index objects)
v The number of pages that the object occupies in the buffer pool
v The total estimated overhead, in milliseconds, for a single random I/O to the

specified table space where the object is stored
v The estimated transfer rate, in milliseconds, to read a 4-KB page from the

specified table space
v Prefetch and extent sizes, in 4-KB pages
v The degree of data clustering within the index
v The number of leaf pages that are used by the index for this object, and the

number of levels in the tree
v The number of distinct full key values in the index for this object

266 Troubleshooting and Tuning Database Performance

v The total number of overflow records in the table

Explain information for data operators:

A single access plan can perform several operations on the data to satisfy the SQL
or XQuery statement and provide results back to you. The query compiler
determines the operations that are required, such as a table scan, an index scan, a
nested loop join, or a group-by operator.

In addition to showing information about each operator that is used in an access
plan, explain output also shows the cumulative effects of the access plan.

Estimated cost information

The following cumulative cost estimates for operators are recorded. These costs are
for the chosen access plan, up to and including the operator for which the
information is captured.
v The total cost (in timerons)
v The number of page I/Os
v The number of processing instructions
v The cost (in timerons) of fetching the first row, including any required initial

overhead
v The communication cost (in frames)

A timeron is an invented relative unit of measurement. Timeron values are
determined by the optimizer, based on internal values such as statistics that change
as the database is used. As a result, the timeron values for an SQL or XQuery
statement are not guaranteed to be the same every time an estimated cost in
timerons is determined.

Operator properties

The following information that describes the properties of each operator is
recorded by the explain facility:
v The set of tables that have been accessed
v The set of columns that have been accessed
v The columns on which the data is ordered, if the optimizer has determined that

this ordering can be used by subsequent operators
v The set of predicates that have been applied
v The estimated number of rows that will be returned (cardinality)

Explain information for instances:

Explain instance information is stored in the EXPLAIN_INSTANCE table.
Additional specific information about each query statement in an instance is stored
in the EXPLAIN_STATEMENT table.

Explain instance identification

The following information helps you to identify a specific explain instance and to
associate the information about certain statements with a specific invocation of the
explain facility:
v The user who requested the explain information

Chapter 3. Factors affecting performance 267

v When the explain request began
v The name of the package that contains the explained statement
v The SQL schema of the package that contains the explained statement
v The version of the package that contains the statement
v Whether snapshot information was collected

Environmental settings

Information about the database manager environment in which the query compiler
optimized your queries is captured. The environmental information includes the
following:
v The version and release number of the DB2 product
v The degree of parallelism under which the query was compiled

The CURRENT DEGREE special register, the DEGREE bind option, the SET
RUNTIME DEGREE command, and the dft_degree database configuration
parameter determine the degree of parallelism under which a particular query is
compiled.

v Whether the statement is dynamic or static
v The query optimization class used to compile the query
v The type of row blocking for cursors that occurs when compiling the query
v The isolation level under which the query runs
v The values of various configuration parameters when the query was compiled.

Values for the following parameters are recorded when an explain snapshot is
taken:
– Sort heap size (sortheap)
– Average number of active applications (avg_appls)
– Database heap (dbheap)
– Maximum storage for lock list (locklist)
– Maximum percent of lock list before escalation (maxlocks)
– CPU speed (cpuspeed)
– Communications bandwidth (comm_bandwidth)

Statement identification

More than one statement might have been explained for each explain instance. In
addition to information that uniquely identifies the explain instance, the following
information helps to identify individual query statements:
v The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned

DELETE, positioned UPDATE, or SET INTEGRITY
v The statement and section number of the package issuing the statement, as

recorded in the SYSCAT.STATEMENTS catalog view

The QUERYTAG and QUERYNO fields in the EXPLAIN_STATEMENT table
contain identifiers that are set as part of the explain process. When EXPLAIN
MODE or EXPLAIN SNAPSHOT is active, and dynamic explain statements are
submitted during a command line processor (CLP) or call-level interface (CLI)
session, the QUERYTAG value is set to “CLP” or “CLI”, respectively. In this case,
the QUERYNO value defaults to a number that is incremented by one or more for
each statement. For all other dynamic explain statements that are not from the CLP
or CLI, or that do not use the EXPLAIN statement, the QUERYTAG value is set to
blanks and QUERYNO is always 1.

268 Troubleshooting and Tuning Database Performance

Cost estimation

For each explained statement, the optimizer records an estimate of the relative cost
of executing the chosen access plan. This cost is stated in an invented relative unit
of measure called a timeron. No estimate of elapsed times is provided, for the
following reasons:
v The query optimizer does not estimate elapsed time but only resource

consumption.
v The optimizer does not model all factors that can affect elapsed time. It ignores

factors that do not affect the efficiency of the access plan. A number of runtime
factors affect the elapsed time, including the system workload, the amount of
resource contention, the amount of parallel processing and I/O, the cost of
returning rows to the user, and the communication time between the client and
server.

Statement text

Two versions of the statement text are recorded for each explained statement. One
version is the code that the query compiler receives from the application. The other
version is reverse-translated from the internal (compiler) representation of the
query. Although this translation looks similar to other query statements, it does not
necessarily follow correct query language syntax, nor does it necessarily reflect the
actual content of the internal representation as a whole. This translation is
provided only to enable you to understand the context in which the optimizer
chose the access plan. To understand how the compiler has rewritten your query
for better optimization, compare the user-written statement text to the internal
representation of the query statement. The rewritten statement also shows you
other factors that affect your statement, such as triggers or constraints. Some
keywords that are used in this “optimized” text include the following:

$Cn The name of a derived column, where n represents an integer value.

$CONSTRAINT$
This tag identifies a constraint that was added to the original statement
during compilation, and is seen in conjunction with the
$WITH_CONTEXT$ prefix.

$DERIVED.Tn
The name of a derived table, where n represents an integer value.

$INTERNAL_FUNC$
This tag indicates the presence of a function that is used by the compiler
for the explained query but that is not available for general use.

$INTERNAL_PRED$
This tag indicates the presence of a predicate that was added during
compilation of the explained query but that is not available for general use.
An internal predicate is used by the compiler to satisfy additional context
that is added to the original statement because of triggers or constraints.

$INTERNAL_XPATH$
This tag indicates the presence of an internal table function that takes a
single annotated XPath pattern as an input parameter and returns a table
with one or more columns that match that pattern.

RID This tag identifies the row identifier (RID) column for a particular row.

Chapter 3. Factors affecting performance 269

$TRIGGER$
This tag identifies a trigger that was added to the original statement
during compilation, and is seen in conjunction with the
$WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...)
This prefix appears at the beginning of the text when additional triggers or
constraints have been added to the original query statement. A list of the
names of any triggers or constraints that affect the compilation and
resolution of the statement appears after this prefix.

SQL and XQuery explain tool
The db2expln command describes the access plan selected for SQL or XQuery
statements.

You can use this tool to obtain a quick explanation of the chosen access plan when
explain data was not captured. For static SQL and XQuery statements, db2expln
examines the packages that are stored in the system catalog. For dynamic SQL and
XQuery statements, db2expln examines the sections in the query cache.

The explain tool is located in the bin subdirectory of your instance sqllib
directory. If db2expln is not in your current directory, it must be in a directory that
appears in your PATH environment variable.

The db2expln command uses the db2expln.bnd, db2exsrv.bnd, and db2exdyn.bnd
files to bind itself to a database the first time the database is accessed.

Description of db2expln output:

Explain output from the db2expln command includes both package information
and section information for each package.
v Package information includes the date of the bind operation and relevant bind

options
v Section information includes the section number and the SQL or XQuery

statement being explained

Explain output pertaining to the chosen access plan for the SQL or XQuery
statement appears below the section information.

The steps of an access plan, or section, are presented in the order that the database
manager executes them. Each major step is shown as a left-justified heading with
information about that step indented below it. Indentation bars appear in the left
margin of the explain output for an access plan. These bars also mark the scope of
each operation. Operations at a lower level of indentation, farther to the right, are
processed before those that appear in the previous level of indentation.

The chosen access plan is based on an augmented version of the original SQL
statement, the effective SQL statement if statement concentrator is enabled, or the
XQuery statement that is shown in the output. Because the query rewrite
component of the compiler might convert the SQL or XQuery statement into an
equivalent but more efficient format, the access plan shown in explain output
might differ substantially from what you expect. The explain facility, which
includes the explain tables, the SET CURRENT EXPLAIN MODE statement, and
Visual Explain, shows the actual SQL or XQuery statement that was used for
optimization in the form of an SQL- or XQuery-like statement that is created by
reverse-translating the internal representation of the query.

270 Troubleshooting and Tuning Database Performance

When you compare output from db2expln to output from the explain facility, the
operator ID option (-opids) can be very useful. Each time that db2expln begins
processing a new operator from the explain facility, the operator ID number is
printed to the left of the explained plan. The operator IDs can be used to compare
steps in the different representations of the access plan. Note that there is not
always a one-to-one correspondence between the operators in explain facility
output and the operations shown by db2expln.

Table access information:

A statement in db2expln output provides the name and type of table being
accessed.

Information about regular tables includes one of the following table access
statements:

Access Table Name = schema.name ID = ts,n
Access Hierarchy Table Name = schema.name ID = ts,n
Access Materialized Query Table Name = schema.name ID = ts,n

where:
v schema.name is the fully-qualified name of the table being accessed
v ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog view entry for the table

Information about temporary tables includes one of the following table access
statements:

Access Temp Table ID = tn
Access Global Temp Table ID = ts,tn

where ID is the corresponding TABLESPACEID from the SYSCAT.TABLES catalog
view entry for the table (ts) or the corresponding identifier assigned by db2expln
(tn).

After the table access statement, the following additional statements are provided
to further describe the access.
v Number of columns
v Block access
v Parallel scan
v Scan direction
v Row access
v Lock intent
v Predicate
v Miscellaneous

Number of columns statement

The following statement indicates the number of columns that are being used from
each row of the table:

#Columns = n

Block access statement

The following statement indicates that the table has one or more dimension block
indexes defined on it:

Chapter 3. Factors affecting performance 271

Clustered by Dimension for Block Index Access

If this statement does not appear, the table was created without the ORGANIZE
BY DIMENSIONS clause.

Parallel scan statement

The following statement indicates that the database manager will use several
subagents to read the table in parallel:

Parallel Scan

If this statement does not appear, the table will be read by only one agent (or
subagent).

Scan direction statement

The following statement indicates that the database manager will read rows in
reverse order:

Scan Direction = Reverse

If this statement does not appear, the scan direction is forward, which is the
default.

Row access statements

One of the following statements will indicate how qualifying rows in the table are
being accessed.
v The Relation Scan statement indicates that the table is being sequentially

scanned for qualifying rows.
– The following statement indicates that no prefetching of data will be done:

Relation Scan
| Prefetch: None

– The following statement indicates that the optimizer has determined the
number of pages that will be prefetched:

Relation Scan
| Prefetch: n Pages

– The following statement indicates that data should be prefetched:
Relation Scan
| Prefetch: Eligible

v The following statement indicates that qualifying rows are being identified and
accessed through an index:

Index Scan: Name = schema.name ID = xx
| Index type
| Index Columns:

where:
– schema.name is the fully-qualified name of the index that is being scanned
– ID is the corresponding IID column in the SYSCAT.INDEXES catalog view
– Index type is one of:

Regular index (not clustered)
Regular index (clustered)
Dimension block index
Composite dimension block index
Index over XML data

272 Troubleshooting and Tuning Database Performance

This is followed by one line of output for each column in the index. Valid
formats for this information are as follows:

n: column_name (Ascending)
n: column_name (Descending)
n: column_name (Include Column)

The following statements are provided to clarify the type of index scan.
– The range-delimiting predicates for the index are shown by the following

statements:
#Key Columns = n
| Start Key: xxxxx
| Stop Key: xxxxx

where xxxxx is one of:
- Start of Index

- End of Index

- Inclusive Value: or Exclusive Value:

An inclusive key value will be included in the index scan. An exclusive key
value will not be included in the scan. The value of the key is determined
by one of the following items for each part of the key:

n: 'string'
n: nnn
n: yyyy-mm-dd
n: hh:mm:ss
n: yyyy-mm-dd hh:mm:ss.uuuuuu
n: NULL
n: ?

Only the first 20 characters of a literal string are displayed. If the string is
longer than 20 characters, this is indicated by an ellipsis (...) at the end of
the string. Some keys cannot be determined until the section is executed.
This is indicated by a question mark (?) as the value.

– Index-Only Access

If all of the needed columns can be obtained from the index key, this
statement displays and no table data will be accessed.

– The following statement indicates that no prefetching of index pages will be
done:

Index Prefetch: None

– The following statement indicates that index pages should be prefetched:
Index Prefetch: Eligible

– The following statement indicates that no prefetching of data pages will be
done:

Data Prefetch: None

– The following statement indicates that data pages should be prefetched:
Data Prefetch: Eligible

– If there are predicates that can be passed to the index manager to help qualify
index entries, the following statement is used to show the number of these
predicates:

Sargable Index Predicate(s)
| #Predicates = n

v If the qualifying rows are being accessed through row IDs (RIDs) that were
prepared earlier in the access plan, this will be indicated by the following
statement:

Fetch Direct Using Row IDs

Chapter 3. Factors affecting performance 273

If the table has one or more block indexes defined on it, rows can be accessed by
either block or row IDs. This is indicated by the following statement:

Fetch Direct Using Block or Row IOs

Lock intent statements

For each table access, the type of lock that will be acquired at the table and row
levels is shown with the following statement:

Lock Intents
| Table: xxxx
| Row : xxxx

Possible values for a table lock are:
v Exclusive
v Intent Exclusive
v Intent None
v Intent Share
v Share
v Share Intent Exclusive
v Super Exclusive
v Update

Possible values for a row lock are:
v Exclusive
v Next Key Weak Exclusive
v None
v Share
v Update

Predicate statements

There are three types of statement that provide information about the predicates
that are used in an access plan.
v The following statement indicates the number of predicates that will be

evaluated for each block of data that is retrieved from a blocked index:
Block Predicates(s)
| #Predicates = n

v The following statement indicates the number of predicates that will be
evaluated while the data is being accessed. This number does not include
pushdown operations, such as aggregation or sort:

Sargable Predicate(s)
| #Predicates = n

v The following statement indicates the number of predicates that will be
evaluated after the data has been returned:

Residual Predicate(s)
| #Predicates = n

The number of predicates shown in these statements might not reflect the number
of predicates that are provided in the query statement, because predicates can be:
v Applied more than once within the same query
v Transformed and extended with the addition of implicit predicates during the

query optimization process

274 Troubleshooting and Tuning Database Performance

v Transformed and condensed into fewer predicates during the query optimization
process

Miscellaneous table statements

v The following statement indicates that only one row will be accessed:
Single Record

v The following statement appears when the isolation level that is used for table
access is different than the isolation level for the statement:

Isolation Level: xxxx

There are a number of possible reasons for this. For example:
– A package that was bound with the repeatable read (RR) isolation level is

impacting certain referential integrity constraints; access to the parent table
for the purpose of checking these constraints is downgraded to the cursor
stability (CS) isolation level to avoid holding unnecessary locks on this table.

– A package that was bound with the uncommitted read (UR) isolation level
includes a DELETE statement; access to the table for the delete operation is
upgraded to CS.

v The following statement indicates that some or all of the rows that are read from
a temporary table will be cached outside of the buffer pool if sufficient sortheap
memory is available:

Keep Rows In Private Memory

v The following statement indicates that the table has the volatile cardinality
attribute set:

Volatile Cardinality

Temporary table information:

A temporary table is used as a work table during access plan execution. Generally,
temporary tables are used when subqueries need to be evaluated early in the
access plan, or when intermediate results will not fit into the available memory.

If a temporary table is needed, one of the following statements will appear in
db2expln command output.

Insert Into Temp Table ID = tn --> ordinary temporary table
Insert Into Shared Temp Table ID = tn --> ordinary temporary table will be created

by multiple subagents in parallel
Insert Into Sorted Temp Table ID = tn --> sorted temporary table
Insert Into Sorted Shared Temp Table ID = tn --> sorted temporary table will be created

by multiple subagents in parallel

Insert Into Global Temp Table ID = ts,tn --> declared global temporary table
Insert Into Shared Global Temp Table ID = ts,tn --> declared global temporary table

will be created by multiple subagents
in parallel

Insert Into Sorted Global Temp Table ID = ts,tn --> sorted declared global temporary table
Insert Into Sorted Shared Global Temp Table ID = ts,tn --> sorted declared global temporary

table will be created by
multiple subagents in parallel

The ID is an identifier that is assigned by db2expln for convenience when referring
to the temporary table. This ID is prefixed with the letter 't' to indicate that the
table is a temporary table.

Each of these statements is followed by:
#Columns = n

which indicates how many columns there are in each row that is being inserted
into the temporary table.

Chapter 3. Factors affecting performance 275

Sorted temporary tables

Sorted temporary tables can result from such operations as:
v ORDER BY
v DISTINCT
v GROUP BY
v Merge join
v '= ANY' subquery
v '<> ALL' subquery
v INTERSECT or EXCEPT
v UNION (without the ALL keyword)

A number of statements that are associated with a sorted temporary table can
appear in db2expln command output.
v The following statement indicates the number of key columns that are used in

the sort:
#Sort Key Columns = n

One of the following lines is displayed for each column in the sort key:
Key n: column_name (Ascending)
Key n: column_name (Descending)
Key n: (Ascending)
Key n: (Descending)

v The following statements provide estimates of the number of rows and the row
size so that the optimal sort heap can be allocated at run time:

Sortheap Allocation Parameters:
| #Rows = n
| Row Width = n

v The following statement is displayed if only the first rows of the sorted result
are needed:

Sort Limited To Estimated Row Count

v For sorts that are performed in a symmetric multiprocessor (SMP) environment,
the type of sort that is to be performed is indicated by one of the following
statements:

Use Partitioned Sort
Use Shared Sort
Use Replicated Sort
Use Round-Robin Sort

v The following statements indicate whether or not the sorted result will be left in
the sort heap:

Piped
Not Piped

If a piped sort is indicated, the database manager will keep the sorted output in
memory, rather than placing it in another temporary table.

v The following statement indicates that duplicate values will be removed during
the sort operation:

Duplicate Elimination

v If aggregation is being performed during the sort operation, one of the following
statements is displayed:

276 Troubleshooting and Tuning Database Performance

Partial Aggregation
Intermediate Aggregation
Buffered Partial Aggregation
Buffered Intermediate Aggregation

Temporary table completion

A completion statement is displayed whenever a temporary table is created within
the scope of a table access. This statement can be one of the following:

Temp Table Completion ID = tn
Shared Temp Table Completion ID = tn
Sorted Temp Table Completion ID = tn
Sorted Shared Temp Table Completion ID = tn

Table functions

Table functions are user-defined functions (UDFs) that return data to the statement
in the form of a table. A table function is indicated by the following statements,
which detail the attributes of the function. The specific name uniquely identifies
the table function that is invoked.

Access User Defined Table Function
| Name = schema.funcname
| Specific Name = specificname
| SQL Access Level = accesslevel
| Language = lang
| Parameter Style = parmstyle
| Fenced Not Deterministic
| Called on NULL Input Disallow Parallel
| Not Federated Not Threadsafe

Join information:

Output from the db2expln command can contain information about joins in an
explained statement.

Whenever a join is performed, one of the following statements is displayed:
Hash Join
Merge Join
Nested Loop Join

A left outer join is indicated by one of the following statements:
Left Outer Hash Join
Left Outer Merge Join
Left Outer Nested Loop Join

In the case of a merge or nested loop join, the outer table of the join is the table
that was referenced in the previous access statement (shown in the output). The
inner table of the join is the table that was referenced in the access statement that
is contained within the scope of the join statement. In the case of a hash join, the
access statements are reversed: the outer table is contained within the scope of the
join, and the inner table appears before the join.

In the case of a hash or merge join, the following additional statements might
appear:
v Early Out: Single Match Per Outer Row

In some circumstances, a join simply needs to determine whether any row in the
inner table matches the current row in the outer table.

Chapter 3. Factors affecting performance 277

v Residual Predicate(s)
| #Predicates = n

It is possible to apply predicates after a join has completed. This statement
displays the number of predicates being applied.

In the case of a hash join, the following additional statements might appear:
v Process Hash Table For Join

The hash table is built from the inner table. This statement displays if the
building of the hash table was pushed down into a predicate during access to
the inner table.

v Process Probe Table For Hash Join

While accessing the outer table, a probe table can be built to improve the
performance of the join. This statement displays if a probe table was built
during access to the outer table.

v Estimated Build Size: n

This statement displays the estimated number of bytes that are needed to build
the hash table.

v Estimated Probe Size: n

This statement displays the estimated number of bytes that are needed to build
the probe table.

In the case of a nested loop join, the following statement might appear
immediately after the join statement:

Piped Inner

This statement indicates that the inner table of the join is the result of another
series of operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from top
to bottom. For example, suppose the explain output has the following flow:

Access W
Join
| Access X
Join
| Access Y
Join
| Access Z

The steps of execution would be:
1. Take a qualifying row from table W.
2. Join a row from W with the next row from table X and call the result P1 (for

partial join result number 1).
3. Join P1 with the next row from table Y to create P2.
4. Join P2 with the next row from table Z to create one complete result row.
5. If there are more rows in Z, go to step 4.
6. If there are more rows in Y, go to step 3.
7. If there are more rows in X, go to step 2.
8. If there are more rows in W, go to step 1.

Data stream information:

278 Troubleshooting and Tuning Database Performance

Within an access plan, there is often a need to control the creation and flow of data
from one series of operations to another. The data stream concept enables a group
of operations within an access plan to be controlled as a unit.

The start of a data stream is indicated by the following statement in db2expln
output:

Data Stream n

where n is a unique identifier assigned by db2expln for ease of reference.

The end of a data stream is indicated by:
End of Data Stream n

All operations between these statements are considered to be part of the same data
stream.

A data stream has a number of characteristics, and one or more statements can
follow the initial data stream statement to describe these characteristics:
v If the operation of the data stream depends on a value that is generated earlier

in the access plan, the data stream is marked with:
Correlated

v Similar to a sorted temporary table, the following statements indicate whether or
not the results of the data stream will be kept in memory:

Piped
Not Piped

A piped data stream might be written to disk if there is insufficient memory at
execution time. The access plan provides for both possibilities.

v The following statement indicates that only a single record is required from this
data stream:

Single Record

When a data stream is accessed, the following statement will appear in the output:
Access Data Stream n

Insert, update, and delete information:

The explain text for the INSERT, UPDATE, or DELETE statement is
self-explanatory.

Statement text for these SQL operations in db2expln output can be:
Insert: Table Name = schema.name ID = ts,n
Update: Table Name = schema.name ID = ts,n
Delete: Table Name = schema.name ID = ts,n
Insert: Hierarchy Table Name = schema.name ID = ts,n
Update: Hierarchy Table Name = schema.name ID = ts,n
Delete: Hierarchy Table Name = schema.name ID = ts,n
Insert: Materialized Query Table = schema.name ID = ts,n
Update: Materialized Query Table = schema.name ID = ts,n
Delete: Materialized Query Table = schema.name ID = ts,n
Insert: Global Temporary Table ID = ts, tn
Update: Global Temporary Table ID = ts, tn
Delete: Global Temporary Table ID = ts, tn

Block and row identifier preparation information:

Chapter 3. Factors affecting performance 279

For some access plans, it is more efficient if the qualifying row and block
identifiers are sorted and duplicates are removed (in the case of index ORing), or if
a technique is used to determine which identifiers appear in all of the indexes
being accessed (in the case of index ANDing) before the table is accessed.

There are three main uses of the identifier preparation information that is shown in
explain output:
v Either of the following statements indicates that Index ORing was used to

prepare the list of qualifying identifiers:
Index ORing Preparation
Block Index ORing Preparation

Index ORing refers to the technique of accessing more than one index and
combining the results to include the distinct identifiers that appear in any of the
indexes. The optimizer considers index ORing when predicates are connected by
OR keywords or there is an IN predicate.

v Either of the following statements indicates that input data was prepared for use
during list prefetching:

List Prefetch Preparation
Block List Prefetch RID Preparation

v Index ANDing refers to the technique of accessing more than one index and
combining the results to include the identifiers that appear in all of the accessed
indexes. Index ANDing begins with either of the following statements:

Index ANDing
Block Index ANDing

If the optimizer has estimated the size of the result set, the estimate is shown
with the following statement:

Optimizer Estimate of Set Size: n

Index ANDing filter operations process identifiers and use bit filter techniques to
determine the identifiers that appear in every accessed index. The following
statements indicate that identifiers were processed for index ANDing:

Index ANDing Bitmap Build Using Row IDs
Index ANDing Bitmap Probe Using Row IDs
Index ANDing Bitmap Build and Probe Using Row IDs
Block Index ANDing Bitmap Build Using Block IDs
Block Index ANDing Bitmap Build and Probe Using Block IDs
Block Index ANDing Bitmap Build and Probe Using Row IDs
Block Index ANDing Bitmap Probe Using Block IDs and Build Using Row IDs
Block Index ANDing Bitmap Probe Using Block IDs
Block Index ANDing Bitmap Probe Using Row IDs

If the optimizer has estimated the size of the result set for a bitmap, the estimate
is shown with the following statement:

Optimizer Estimate of Set Size: n

If list prefetching can be performed for any type of identifier preparation, it will be
so indicated with the following statement:

Prefetch: Enabled

Aggregation information:

Aggregation is performed on rows satisfying criteria that are represented by
predicates in an SQL statement.

280 Troubleshooting and Tuning Database Performance

If an aggregate function executes, one of the following statements appears in
db2expln output:

Aggregation
Predicate Aggregation
Partial Aggregation
Partial Predicate Aggregation
Intermediate Aggregation
Intermediate Predicate Aggregation
Final Aggregation
Final Predicate Aggregation

Predicate aggregation means that the aggregation operation was processed as a
predicate when the data was accessed.

The aggregation statement is followed by another statement that identifies the type
of aggregate function that was performed:

Group By
Column Function(s)
Single Record

The specific column function can be derived from the original SQL statement. A
single record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation has been performed, there is an aggregation completion
operation and corresponding output:

Aggregation Completion
Partial Aggregation Completion
Intermediate Aggregation Completion
Final Aggregation Completion

Parallel processing information:

Executing an SQL statement in parallel (using either intra-partition or
inter-partition parallelism) requires some special access plan operations.
v When running an intra-partition parallel plan, portions of the plan are executed

simultaneously using several subagents. The creation of these subagents is
indicated by the statement in output from the db2expln command:

Process Using n Subagents

v When running an inter-partition parallel plan, the section is broken into several
subsections. Each subsection is sent to one or more database partitions to be run.
An important subsection is the coordinator subsection. The coordinator subsection
is the first subsection in every plan. It acquires control first, and is responsible
for distributing the other subsections and returning results to the calling
application.
– The distribution of subsections is indicated by the following statement:

Distribute Subsection #n

– The following statement indicates that the subsection will be sent to a
database partition within the database partition group, based on the value of
the columns.

Directed by Hash
| #Columns = n
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following statement indicates that the subsection will be sent to a
predetermined database partition. (This is common when the statement uses
the DBPARTITIONNUM() scalar function.)

Directed by Node Number

Chapter 3. Factors affecting performance 281

– The following statement indicates that the subsection will be sent to the
database partition that corresponds to a predetermined database partition
number in the database partition group. (This is common when the statement
uses the HASHEDVALUE scalar function.)

Directed by Partition Number
| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following statement indicates that the subsection will be sent to the
database partition that provided the current row for the application's cursor.

Directed by Position

– The following statement indicates that only one database partition,
determined when the statement was compiled, will receive the subsection.

Directed to Single Node
| Node Number = n

– Either of the following statements indicates that the subsection will be
executed on the coordinator database partition.

Directed to Application Coordinator Node
Directed to Local Coordinator Node

– The following statement indicates that the subsection will be sent to all of the
listed database partitions.

Broadcast to Node List
| Nodes = n1, n2, n3, ...

– The following statement indicates that only one database partition,
determined as the statement is executing, will receive the subsection.

Directed to Any Node

v Table queues are used to move data between subsections in a partitioned
database environment or between subagents in a symmetric multiprocessor
(SMP) environment.
– The following statements indicate that data is being inserted into a table

queue:
Insert Into Synchronous Table Queue ID = qn
Insert Into Asynchronous Table Queue ID = qn
Insert Into Synchronous Local Table Queue ID = qn
Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows that are inserted
into the table queue is described by one of the following statements:
Each row is sent to the coordinator database partition:

Broadcast to Coordinator Node

Each row is sent to every database partition on which the given subsection is
running:

Broadcast to All Nodes of Subsection n

Each row is sent to a database partition that is based on the values in the
row:

Hash to Specific Node

Each row is sent to a database partition that is determined while the
statement is executing:

Send to Specific Node

Each row is sent to a randomly determined database partition:
Send to Random Node

282 Troubleshooting and Tuning Database Performance

– In some situations, a database partition table queue will have to overflow
some rows to a temporary table. This possibility is identified by the following
statement:

Rows Can Overflow to Temporary Table

– After a table access that includes a pushdown operation to insert rows into a
table queue, there is a "completion" statement that handles rows that could
not be sent immediately. In this case, one of the following lines is displayed:

Insert Into Synchronous Table Queue Completion ID = qn
Insert Into Asynchronous Table Queue Completion ID = qn
Insert Into Synchronous Local Table Queue Completion ID = qn
Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a table
queue:

Access Table Queue ID = qn
Access Local Table Queue ID = qn

These statements are always followed by the number of columns being
retrieved.

#Columns = n

– If the table queue sorts the rows at the receiving end, one of the following
statements appears:

Output Sorted
Output Sorted and Unique

These statements are followed by the number of keys being used for the sort
operation.

#Key Columns = n

For each column in the sort key, one of the following statements is displayed:
Key n: (Ascending)
Key n: (Descending)

– If predicates will be applied to rows at the receiving end of the table queue,
the following statement appears:

Residual Predicate(s)
| #Predicates = n

v Some subsections in a partitioned database environment explicitly loop back to
the start of the subsection, and the following statement is displayed:

Jump Back to Start of Subsection

Federated query information:

Executing an SQL statement in a federated database requires the ability to perform
portions of the statement on other data sources.

The following output from the db2expln command indicates that a data source will
be read:

Ship Distributed Subquery #n
| #Columns = n

If predicates are applied to data that is returned from a distributed subquery, the
number of predicates being applied is indicated by the following statements:

Residual Predicate(s)
| #Predicates = n

Chapter 3. Factors affecting performance 283

An insert, update, or delete operation that occurs at a data source is indicated by
one of the following statements:

Ship Distributed Insert #n
Ship Distributed Update #n
Ship Distributed Delete #n

If a table is explicitly locked at a data source, the following statement appears:
Ship Distributed Lock Table #n

Data definition language (DDL) statements against a data source are split into two
parts. The part that is invoked at the data source is indicated by the following
statement:

Ship Distributed DDL Statement #n

If the federated server is a partitioned database, part of the DDL statement must be
run at the catalog database partition. This is indicated by the following statement:

Distributed DDL Statement #n Completion

The details for each distributed sub-statement are displayed separately.
v The data source for the subquery is indicated by one of the following

statements:
Server: server_name (type, version)
Server: server_name (type)
Server: server_name

v If the data source is relational, the SQL for the sub-statement is displayed as
follows:

SQL Statement:
statement

Non-relational data sources are indicated with:
Non-Relational Data Source

v Nicknames that are referenced in the sub-statement are listed as follows:
Nicknames Referenced:

schema.nickname ID = n

If the data source is relational, the base table for the nickname is displayed as
follows:

Base = baseschema.basetable

If the data source is non-relational, the source file for the nickname is displayed
as follows:

Source File = filename

v If values are passed from the federated server to the data source before
executing the sub-statement, the number of values is indicated by the following
statement:

#Input Columns: n

v If values are passed from the data source to the federated server after executing
the sub-statement, the number of values is indicated by the following statement:

#Output Columns: n

Miscellaneous explain information:

Output from the db2expln command contains additional useful information that
cannot be readily classified.

284 Troubleshooting and Tuning Database Performance

v Sections for data definition language (DDL) statements are indicated in the
output with the following statement:

DDL Statement

No additional explain output is provided for DDL statements.
v Sections for SET statements pertaining to updatable special registers, such as

CURRENT EXPLAIN SNAPSHOT, are indicated in the output with the
following statement:

SET Statement

No additional explain output is provided for SET statements.
v If the SQL statement contains a DISTINCT clause, the following statement might

appear in the output:
Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To
retrieve distinct row values, the rows must first be sorted to eliminate
duplicates. This statement will not appear if the database manager does not
have to explicitly eliminate duplicates, as in the following cases:
– A unique index exists and all of the columns in the index key are part of the

DISTINCT operation
– Duplicates can be eliminated during sorting

v The following statement appears if the next operation is dependent on a specific
record identifier:

Positioned Operation

If the positioned operation is against a federated data source, the statement
becomes:

Distributed Positioned Operation

This statement appears for any SQL statement that uses the WHERE CURRENT
OF syntax.

v The following statement appears if there are predicates that must be applied to
the result but that could not be applied as part of another operation:

Residual Predicate Application
| #Predicates = n

v The following statement appears if the SQL statement contains a UNION
operator:

UNION

v The following statement appears if there is an operation in the access plan
whose sole purpose is to produce row values for use by subsequent operations:

Table Constructor
| n-Row(s)

Table constructors can be used for transforming values in a set into a series of
rows that are then passed to subsequent operations. When a table constructor is
prompted for the next row, the following statement appears:

Access Table Constructor

v The following statement appears if there is an operation that is only processed
under certain conditions:

Chapter 3. Factors affecting performance 285

Conditional Evaluation
| Condition #n:
| #Predicates = n
| Action #n:

Conditional evaluation is used to implement such activities as the CASE
statement, or internal mechanisms such as referential integrity constraints or
triggers. If no action is shown, then only data manipulation operations are
processed when the condition is true.

v One of the following statements appears if an ALL, ANY, or EXISTS subquery is
being processed in the access plan:

ANY/ALL Subquery
EXISTS Subquery
EXISTS SINGLE Subquery

v Prior to certain update or delete operations, it is necessary to establish the
position of a specific row within the table. This is indicated by the following
statement:

Establish Row Position

v One of the following statements appears for delete operations on
multidimensional clustering tables that qualify for rollout optimization:

CELL DELETE with deferred cleanup
CELL DELETE with immediate cleanup

v The following statement appears if rows are being returned to the application:
Return Data to Application
| #Columns = n

If the operation was pushed down into a table access, a completion phase
statement appears in the output:

Return Data Completion

v The following statements appear if a stored procedure is being invoked:
Call Stored Procedure
| Name = schema.funcname
| Specific Name = specificname
| SQL Access Level = accesslevel
| Language = lang
| Parameter Style = parmstyle
| Expected Result Sets = n
| Fenced Not Deterministic
| Called on NULL Input Disallow Parallel
| Not Federated Not Threadsafe

v The following statement appears if one or more large object (LOB) locators are
being freed:

Free LOB Locators

Optimizing query access plans

Statement concentrator reduces compilation overhead
The statement concentrator modifies dynamic SQL statements at the database
server so that similar, but not identical, SQL statements can share the same access
plan.

In online transaction processing (OLTP), simple statements might repeatedly be
generated with different literal values. In such workloads, the cost of recompiling
the statements can add significant overhead. The statement concentrator avoids
this overhead by allowing compiled statements to be reused, regardless of the
values of the literals.

286 Troubleshooting and Tuning Database Performance

The statement concentrator is disabled by default. It can be enabled for all
dynamic statements in a database by setting the stmt_conc database configuration
parameter to LITERALS.

The statement concentrator improves performance by modifying incoming
dynamic SQL statements. In a workload that is suitable for the statement
concentrator, the overhead that is associated with modifying the incoming SQL
statements is minor compared to the savings that are realized by reusing
statements that are already in the package cache.

If a dynamic statement is modified as a result of statement concentration, both the
original statement and the modified statement are displayed in the explain output.
The event monitor logical monitor elements, as well as output from the
MON_GET_ACTIVITY_DETAILS table function show the original statement if the
statement concentrator has modified the original statement text. Other monitor
interfaces show only the modified statement text.

Consider the following example, in which the stmt_conc database configuration
parameter is set to LITERALS and the following two statements are executed:

select firstnme, lastname from employee where empno='000020'
select firstnme, lastname from employee where empno='000070'

These statements share the same entry in the package cache, and that entry uses
the following statement:

select firstnme, lastname from employee where empno=:L0

The data server provides a value for :L0 (either '000020' or '000070'), based on the
literal that was used in the original statements.

Because statement concentration alters the statement text, it has an impact on
access plan selection. The statement concentrator should be used when similar
statements in the package cache have similar access plans. If different literal values
in a statement result in significantly different access plans, the statement
concentrator should not be enabled for that statement.

Access plan reuse
You can request that the access plans that are chosen for static SQL statements in a
package stay the same as, or be very similar to, existing access plans across several
bind or rebind operations.

Access plan reuse can prevent significant plan changes from occurring without
your explicit approval. Although this can mean that your queries do not benefit
from potential access plan improvements, the control that access plan reuse
provides will give you the ability to test and implement those improvements when
you are ready to do so. Until then, you can continue to use existing access plans
for stable and predictable performance.

Enable access plan reuse through the ALTER PACKAGE statement, or by using the
APREUSE option on the BIND, REBIND, or PRECOMPILE command. Packages
that are subject to access plan reuse have the value Y in the APREUSE column of
the SYSCAT.PACKAGES catalog view.

The ALTER_ROUTINE_PACKAGE procedure is a convenient way to enable access
plan reuse for compiled SQL objects, such as SQL procedures. However, access
plans cannot be reused during compiled object revalidation, because the object is

Chapter 3. Factors affecting performance 287

dropped before being rebound. In this case, APREUSE will only take effect the next
time that the package is bound or rebound.

Access plan reuse is most effective when changes to the schema and compilation
environment are kept to a minimum. If significant changes are made, it might not
be possible to recreate the previous access plan. Examples of such significant
changes include dropping an index that is being used in an access plan, or
recompiling an SQL statement at a different optimization level. Significant changes
to the query compiler's analysis of the statement can also result in the previous
access plan no longer being reusable.

You can combine access plan reuse with optimization guidelines. A statement-level
guideline takes precedence over access plan reuse for the static SQL statement to
which it applies. Access plans for static statements that do not have statement-level
guidelines can be reused if they do not conflict with any general optimization
guidelines that have been specified. A statement profile with an empty guideline
can be used to disable access plan reuse for a specific statement, while leaving plan
reuse available for the other static statements in the package.

Note: Access plans from packages that were produced by releases prior to Version
9.7 cannot be reused.

If an access plan cannot be reused, compilation continues, but a warning
(SQL20516W) is returned with a reason code that indicates why the attempt to
reuse the access plan was not successful. Additional information is sometimes
provided in the diagnostic messages that are available through the explain facility.

Optimization classes
When you compile an SQL or XQuery statement, you can specify an optimization
class that determines how the optimizer chooses the most efficient access plan for
that statement.

The optimization classes differ in the number and type of optimization strategies
that are considered during the compilation of a query. Although you can specify
optimization techniques individually to improve runtime performance for the
query, the more optimization techniques that you specify, the more time and
system resources query compilation will require.

You can specify one of the following optimization classes when you compile an
SQL or XQuery statement.

0 This class directs the optimizer to use minimal optimization when
generating an access plan, and has the following characteristics:
v Frequent-value statistics are not considered by the optimizer.
v Only basic query rewrite rules are applied.
v Greedy join enumeration is used.
v Only nested loop join and index scan access methods are enabled.
v List prefetch is not used in generated access methods.
v The star-join strategy is not considered.

This class should only be used in circumstances that require the lowest
possible query compilation overhead. Query optimization class 0 is
appropriate for an application that consists entirely of very simple dynamic
SQL or XQuery statements that access well-indexed tables.

1 This optimization class has the following characteristics:

288 Troubleshooting and Tuning Database Performance

v Frequent-value statistics are not considered by the optimizer.
v Only a subset of query rewrite rules are applied.
v Greedy join enumeration is used.
v List prefetch is not used in generated access methods.

Optimization class 1 is similar to class 0, except that merge scan joins and
table scans are also available.

2 This class directs the optimizer to use a degree of optimization that is
significantly higher than class 1, while keeping compilation costs for
complex queries significantly lower than class 3 or higher. This
optimization class has the following characteristics:
v All available statistics, including frequent-value and quantile statistics,

are used.
v All query rewrite rules (including materialized query table routing) are

applied, except computationally intensive rules that are applicable only
in very rare cases.

v Greedy join enumeration is used.
v A wide range of access methods is considered, including list prefetch

and materialized query table routing.
v The star-join strategy is considered, if applicable.

Optimization class 2 is similar to class 5, except that it uses greedy join
enumeration instead of dynamic programming join enumeration. This class
has the most optimization of all classes that use the greedy join
enumeration algorithm, which considers fewer alternatives for complex
queries, and therefore consumes less compilation time than class 3 or
higher. Class 2 is recommended for very complex queries in a decision
support or online analytic processing (OLAP) environment. In such
environments, a specific query is not likely to be repeated in exactly the
same way, so that an access plan is unlikely to remain in the cache until
the next occurrence of the query.

3 This class represents a moderate amount of optimization, and comes
closest to matching the query optimization characteristics of DB2 for z/OS.
This optimization class has the following characteristics:
v Frequent-value statistics are used, if available.
v Most query rewrite rules are applied, including subquery-to-join

transformations.
v Dynamic programming join enumeration is used, with:

– Limited use of composite inner tables
– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and star joins.

This class is suitable for a broad range of applications, and improves access
plans for queries with four or more joins.

5 This class directs the optimizer to use a significant amount of optimization
to generate an access plan, and has the following characteristics:
v All available statistics, including frequent-value and quantile statistics,

are used.

Chapter 3. Factors affecting performance 289

v All query rewrite rules (including materialized query table routing) are
applied, except computationally intensive rules that are applicable only
in very rare cases.

v Dynamic programming join enumeration is used, with:
– Limited use of composite inner tables
– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and materialized query table routing.

Optimization class 5 (the default) is an excellent choice for a mixed
environment with both transaction processing and complex queries. This
optimization class is designed to apply the most valuable query
transformations and other query optimization techniques in an efficient
manner.

If the optimizer detects that additional resources and processing time for
complex dynamic SQL or XQuery statements are not warranted,
optimization is reduced. The extent of the reduction depends on the
machine size and the number of predicates. When the optimizer reduces
the amount of query optimization, it continues to apply all of the query
rewrite rules that would normally be applied. However, it uses greedy join
enumeration and it reduces the number of access plan combinations that
are considered.

7 This class directs the optimizer to use a significant amount of optimization
to generate an access plan. It is similar to optimization class 5, except that
in this case, the optimizer never considers reducing the amount of query
optimization for complex dynamic SQL or XQuery statements.

9 This class directs the optimizer to use all available optimization techniques.
These include:
v All available statistics
v All query rewrite rules
v All possibilities for join enumeration, including Cartesian products and

unlimited composite inners
v All access methods

This class increases the number of possible access plans that are considered
by the optimizer. You might use this class to determine whether more
comprehensive optimization would generate a better access plan for very
complex or very long-running queries that use large tables. Use explain
and performance measurements to verify that a better plan has actually
been found.

Choosing an optimization class:

Setting the optimization class can provide some of the advantages of explicitly
specifying optimization techniques.

This is true, particularly when:
v Managing very small databases or very simple dynamic queries
v Accommodating memory limitations on your database server at compile time
v Reducing query compilation time; for example, during statement preparation

290 Troubleshooting and Tuning Database Performance

Most statements can be adequately optimized with a reasonable amount of
resource by using the default optimization class 5. Query compilation time and
resource consumption are primarily influenced by the complexity of a query; in
particular, by the number of joins and subqueries. However, compilation time and
resource consumption are also affected by the amount of optimization that is
performed.

Query optimization classes 1, 2, 3, 5, and 7 are all suitable for general use.
Consider class 0 only if you require further reductions in query compilation time,
and the SQL and XQuery statements are very simple.

Tip: To analyze a long-running query, run the query with db2batch to determine
how much time is spent compiling and executing the query. If compilation time is
excessive, reduce the optimization class. If execution time is a problem, consider a
higher optimization class.

When you select an optimization class, consider the following general guidelines:
v Start by using the default query optimization class 5.
v When choosing a class other than the default, try class 1, 2, or 3 first. Classes 0,

1, and 2 use the greedy join enumeration algorithm.
v Use optimization class 1 or 2 if you have many tables with many join predicates

on the same column, and if compilation time is a concern.
v Use a low optimization class (0 or 1) for queries that have very short run times

of less than one second. Such queries tend to:
– Access a single table or only a few tables
– Fetch a single row or only a few rows
– Use fully qualified and unique indexes
– Be involved in online transaction processing (OLTP)

v Use a higher optimization class (3, 5, or 7) for queries that have longer run times
of more than 30 seconds.

v Class 3 or higher uses the dynamic programming join enumeration algorithm,
which considers many more alternative plans, and might incur significantly
more compilation time than classes 0, 1, or 2, especially as the number of tables
increases.

v Use optimization class 9 only if you have extraordinary optimization
requirements for a query.

Complex queries might require different amounts of optimization to select the best
access plan. Consider using higher optimization classes for queries that have:
v Access to large tables
v A large number of views
v A large number of predicates
v Many subqueries
v Many joins
v Many set operators, such as UNION or INTERSECT
v Many qualifying rows
v GROUP BY and HAVING operations
v Nested table expressions

Chapter 3. Factors affecting performance 291

Decision support queries or month-end reporting queries against fully normalized
databases are good examples of complex queries for which at least the default
query optimization class should be used.

Use higher query optimization classes for SQL and XQuery statements that were
produced by a query generator. Many query generators create inefficient queries.
Poorly written queries require additional optimization to select a good access plan.
Using query optimization class 2 or higher can improve such queries.

For SAP applications, always use optimization class 5. This optimization class
enables many DB2 features optimized for SAP, such as setting the
DB2_REDUCED_OPTIMIZATION registry variable.

In a federated database, the optimization class does not apply to the remote
optimizer.

Setting the optimization class:

When you specify an optimization level, consider whether a query uses static or
dynamic SQL and XQuery statements, and whether the same dynamic query is
repeatedly executed.

For static SQL and XQuery statements, the query compilation time and resources
are expended only once, and the resulting plan can be used many times. In
general, static SQL and XQuery statements should always use the default query
optimization class (5). Because dynamic statements are bound and executed at run
time, consider whether the overhead of additional optimization for dynamic
statements improves overall performance. However, if the same dynamic SQL or
XQuery statement is executed repeatedly, the selected access plan is cached. Such
statements can use the same optimization levels as static SQL and XQuery
statements.

If you are not sure whether a query might benefit from additional optimization, or
you are concerned about compilation time and resource consumption, consider
benchmark testing.

To specify a query optimization class, follow these steps:
1. Analyze performance factors.
v For a dynamic query statement, tests should compare the average run time

for the statement. Use the following formula to estimate the average run
time:

compilation time + sum of execution times for all iterations
--

number of iterations

The number of iterations represents the number of times that you expect the
statement might be executed each time that it is compiled.

Note: After initial compilation, dynamic SQL and XQuery statements are
recompiled whenever a change to the environment requires it. If the
environment does not change after a statement is cached, subsequent
PREPARE statements reuse the cached statement.

v For static SQL and XQuery statements, compare the statement run times.
Although you might also be interested in the compilation time of static SQL
and XQuery statements, the total compilation and execution time for a static
statement is difficult to assess in any meaningful context. Comparing the

292 Troubleshooting and Tuning Database Performance

total times does not recognize the fact that a static statement can be executed
many times whenever it is bound, and that such a statement is generally not
bound during run time.

2. Specify the optimization class.
v Dynamic SQL and XQuery statements use the optimization class that is

specified by the CURRENT QUERY OPTIMIZATION special register. For
example, the following statement sets the optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL or XQuery statement always uses the same
optimization class, include a SET statement in the application program.
If the CURRENT QUERY OPTIMIZATION special register has not been set,
dynamic statements are bound using the default query optimization class.
The default value for both dynamic and static queries is determined by the
value of the dft_queryopt database configuration parameter, whose default
value is 5. The default values for the bind option and the special register are
also read from the dft_queryopt database configuration parameter.

v Static SQL and XQuery statements use the optimization class that is specified
on the PREP and BIND commands. The QUERYOPT column in the
SYSCAT.PACKAGES catalog view records the optimization class that is used
to bind a package. If the package is rebound, either implicitly or by using the
REBIND PACKAGE command, this same optimization class is used for static
statements. To change the optimization class for such static SQL and XQuery
statements, use the BIND command. If you do not specify the optimization
class, the data server uses the default optimization class, as specified by the
dft_queryopt database configuration parameter.

Using optimization profiles if other tuning options do not
produce acceptable results
If you have followed best practices recommendations, but you believe that you are
still getting less than optimal performance, you can provide explicit optimization
guidelines to the DB2 optimizer.

These optimization guidelines are contained in an XML document called the
optimization profile. The profile defines SQL statements and their associated
optimization guidelines.

If you use optimization profiles extensively, they require a lot of effort to maintain.
More importantly, you can only use optimization profiles to improve performance
for existing SQL statements. Following best practices consistently can help you to
achieve query performance stability for all queries, including future ones.

Optimization profiles and guidelines
An optimization profile is an XML document that can contain optimization
guidelines for one or more SQL statements. The correspondence between each SQL
statement and its associated optimization guidelines is established using the SQL
text and other information that is needed to unambiguously identify an SQL
statement.

The DB2 optimizer is one of the most sophisticated cost-based optimizers in the
industry. However, in rare cases the optimizer might select a less than optimal
execution plan. As a DBA familiar with the database, you can use utilities such as
db2advis, runstats, and db2expln, as well as the optimization class setting to help
you tune the optimizer for better database performance. If you do not receive
expected results after all tuning options have been exhausted, you can provide
explicit optimization guidelines to the DB2 optimizer.

Chapter 3. Factors affecting performance 293

For example, suppose that even after you had updated the database statistics and
performed all other tuning steps, the optimizer still did not choose the I_SUPPKEY
index to access the SUPPLIERS table in the following subquery:

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P.P_SIZE = 39
AND P.P_TYPE = 'BRASS'
AND S.S_NATION = 'MOROCCO'
AND S.S_NATION IN ('MOROCCO', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION))

In this case, an explicit optimization guideline can be used to influence the
optimizer. For example:
<OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

Optimization guidelines are specified using a simple XML specification. Each
element within the OPTGUIDELINES element is interpreted as an optimization
guideline by the DB2 optimizer. There is one optimization guideline element in this
example. The IXSCAN element requests that the optimizer use index access. The
TABLE attribute of the IXSCAN element indicates the target table reference (using
the exposed name of the table reference) and the INDEX attribute specifies the
index.

The following example is based on the previous query, and shows how an
optimization guideline can be passed to the DB2 optimizer using an optimization
profile.
<?xml version="1.0" encoding="UTF-8">

<OPTPROFILE VERSION="9.1.0.0">
<STMTPROFILE ID="Guidelines for TPCD Q9">

<STMTKEY SCHEMA="TPCD">
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P.P_SIZE = 39
AND P.P_TYPE = 'BRASS'
AND S.S_NATION = 'MOROCCO'
AND S.S_NATION IN ('MOROCCO', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION))

</STMTKEY>
<OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

</STMTPROFILE>
</OPTPROFILE>

Each STMTPROFILE element provides a set of optimization guidelines for one
application statement. The targeted statement is identified by the STMTKEY
subelement. The optimization profile is then given a schema-qualified name and
inserted into the database. The optimization profile is put into effect for the
statement by specifying this name on the BIND or PRECOMPILE command.

Optimization profiles allow optimization guidelines to be provided to the
optimizer without application or database configuration changes. You simply
compose the simple XML document, insert it into the database, and specify the
name of the optimization profile on the BIND or PRECOMPILE command. The
optimizer automatically matches optimization guidelines to the appropriate
statement.

294 Troubleshooting and Tuning Database Performance

Optimization guidelines do not need to be comprehensive, but should be targeted
to a desired execution plan. The DB2 optimizer still considers other possible access
plans using the existing cost-based methods. Optimization guidelines targeting
specific table references cannot override general optimization settings. For example,
an optimization guideline specifying the merge join between tables A and B is not
valid at optimization class 0.

The optimizer ignores invalid or inapplicable optimization guidelines. If any
optimization guidelines are ignored, an execution plan is created and SQL0437W
with reason code 13 is returned. You can then use the EXPLAIN statement to get
detailed diagnostic information regarding optimization guidelines processing.

Optimization profiles:

Anatomy of an optimization profile:

An optimization profile can contain global guidelines, which apply to all data
manipulation language (DML) statements that are executed while the profile is in
effect, and it can contain specific guidelines that apply to individual DML
statements in a package.

For example:
v You could write a global optimization guideline requesting that the optimizer

refer to the materialized query tables (MQTs) Test.SumSales and Test.AvgSales
whenever a statement is processed while the current optimization profile is
active.

v You could write a statement-level optimization guideline requesting that the
I_SUPPKEY index be used to access the SUPPLIERS table whenever the
optimizer encounters the specified statement.

An optimization profile contains two major sections where you can specify these
two types of guidelines: a global optimization guidelines section can contain one
OPTGUIDELINES element, and a statement profile section can contain any number
of STMTPROFILE elements. An optimization profile must also contain an
OPTPROFILE element, which includes metadata and processing directives.

The following code is an example of a valid optimization profile for DB2 Version
9.1, containing a global optimization guidelines section and a statement profile
section with one STMTPROFILE element.
<?xml version="1.0" encoding="UTF-8"?>
<OPTPROFILE VERSION="9.1.0.0">

<!--
Global optimization guidelines section.
Optional but at most one.

-->
<OPTGUIDELINES>

<MQT NAME="Test.AvgSales"/>
<MQT NAME="Test.SumSales"/>

</OPTGUIDELINES>

<!--
Statement profile section.
Zero or more.

-->
<STMTPROFILE ID="Guidelines for TPCD Q9">

<STMTKEY SCHEMA="TPCD">
<![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

S.S_COMMENT FROM PARTS P, SUPPLIERS S, PARTSUPP PS

Chapter 3. Factors affecting performance 295

WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P.P_SIZE = 39 AND P.P_TYPE = 'BRASS'
AND S.S_NATION = 'MOROCCO' AND S.S_NATION IN ('MOROCCO', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)
FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION)]]>

</STMTKEY>
<OPTGUIDELINES>

<IXSCAN TABID="Q1" INDEX="I_SUPPKEY"/>
</OPTGUIDELINES>

</STMTPROFILE>

</OPTPROFILE>

The OPTPROFILE element

An optimization profile begins with the OPTPROFILE element. In the preceding
example, this element consists of a VERSION attribute specifying that the
optimization profile version is 9.1.

The global optimization guidelines section

Global optimization guidelines apply to all statements for which the optimization
profile is in effect. The global optimization guidelines section is represented by the
global OPTGUIDELINES element. In the preceding example, this section contains a
single global optimization guideline specifying that the MQTs Test.AvgSales and
Test.SumSales should be considered when processing any statements for which the
optimization profile is in effect.

The statement profile section

A statement profile defines optimization guidelines that apply to a specific
statement. There can be zero or more statement profiles in an optimization profile.
The statement profile section is represented by the STMTPROFILE element. In the
preceding example, this section contains guidelines for a specific statement for
which the optimization profile is in effect.

Each statement profile contains a statement key and statement-level optimization
guidelines, represented by the STMTKEY and OPTGUIDELINES elements,
respectively.
v The statement key identifies the statement to which the statement-level

optimization guidelines apply. In this example, the STMTKEY element contains
the original statement text and other information that is needed to
unambiguously identify the statement. Using the statement key, the optimizer
matches a statement profile with the appropriate statement. This relationship
enables you to provide optimization guidelines for a statement without having
to modify the application.

v The statement-level optimization guidelines section of the statement profile is
represented by the OPTGUIDELINES element. This section is made up of one or
more access or join requests, which specify methods for accessing or joining
tables in the statement. After a successful match with the statement key in a
statement profile, the optimizer refers to the associated statement-level
optimization guidelines when optimizing the statement. The example contains
one access request, which specifies that the SUPPLIERS table referenced in the
nested subselect use an index named I_SUPPKEY.

Creating an optimization profile:

296 Troubleshooting and Tuning Database Performance

An optimization profile is an XML document that contains optimization guidelines
for one or more data manipulation language (DML) statements.

Because an optimization profile can contain many combinations of guidelines, the
following information specifies only those steps that are common to creating any
optimization profile.

To create an optimization profile:
1. Launch an XML editor. If possible, use one that has schema validation

capability. The optimizer does not perform XML validation. An optimization
profile must be valid according to the current optimization profile schema.

2. Create a new XML document using a name that makes sense to you. You might
want to give it a name that describes the scope of statements to which it will
apply. For example: inventory_db.xml

3. Add the XML declaration to the document. If you do not specify an encoding
format, UTF-8 is assumed. Save the document with UTF-16 encoding, if
possible. The data server is more efficient when processing this encoding.

<?xml version="1.0" encoding="UTF-16"?>

4. Add an optimization profile section to the document.
<OPTPROFILE VERSION="9.1.0.0">
</OPTPROFILE>

5. Within the OPTPROFILE element, create global or statement-level optimization
guidelines, as appropriate, and save the file.

Configuring the data server to use an optimization profile:

After an optimization profile has been created and its contents validated against
the current optimization profile schema (COPS), the contents must be associated
with a unique schema-qualified name and stored in the SYSTOOLS.OPT_PROFILE
table.

To configure the data server to use an optimization profile:
1. Create the optimization profile table. Each row of the table can contain one

optimization profile: the SCHEMA and NAME columns identify the
optimization profile, and the PROFILE column contains the text of the
optimization profile.

2. Optional: You can grant any authority or privilege on the table that satisfies
your database security requirements. This has no effect on the optimizer's
ability to read the table.

3. Insert any optimization profiles that you want to use into the table.

STMTKEY field in optimization profiles:

Within a STMTPROFILE, the targeted statement is identified by the STMTKEY
sub-element. The statement defined in the STMTKEY field must match exactly to
the statement being executed by the application, allowing DB2 to unambiguously
identify the targeted statement. However, ‘whitespace' within the statement is
tolerated.

Once DB2 finds a statement key that matches the current compilation key it stops
looking; therefore, if there were multiple statement profiles in an optimization
profile whose statement key matches the current compilation key, only the first
such statement profile is used (based on document order). Moreover, no error or
warning is issued in this case.

Chapter 3. Factors affecting performance 297

The statement key will match the statement �select * from orders where
foo(orderkey)>20," provided the compilation key has a default schema of
�COLLEGE� and a function path of SYSIBM,SYSFUN,SYSPROC,DAVE.
<STMTKEY SCHEMA='COLLEGE' FUNCPATH='SYSIBM,SYSFUN,SYSPROC,DAVE'>
<![CDATA[select * from orders where foo(orderkey)>20[[>
</stmtkey>

Specifying which optimization profile the optimizer is to use:

Use the OPTPROFILE bind option to specify that an optimization profile is to be
used at the package level, or use the CURRENT OPTIMIZATION PROFILE special
register to specify that an optimization profile is to be used at the statement level.

This special register contains the qualified name of the optimization profile used
by statements that are dynamically prepared for optimization. For CLI
applications, you can use the CURRENTOPTIMIZATIONPROFILE client
configuration option to set this special register for each connection.

The OPTPROFILE bind option setting also specifies the default optimization profile
for the CURRENT OPTIMIZATION PROFILE special register. The order of
precedence for defaults is as follows:
v The OPTPROFILE bind option applies to all static statements, regardless of any

other settings.
v For dynamic statements, the value of the CURRENT OPTIMIZATION PROFILE

special register is determined by the following, in order of lowest to highest
precedence:
– The OPTPROFILE bind option
– The CURRENTOPTIMIZATIONPROFILE client configuration option
– The most recent SET CURRENT OPTIMIZATION PROFILE statement in the

application

Setting an optimization profile within an application:

You can control the setting of the current optimization profile for dynamic
statements in an application by using the SET CURRENT OPTIMIZATION
PROFILE statement.

The optimization profile name that you provide in the statement must be a
schema-qualified name. If you do not provide a schema name, the value of the
CURRENT SCHEMA special register is used as the implicit schema qualifier.

The optimization profile that you specify applies to all subsequent dynamic
statements until another SET CURRENT OPTIMIZATION PROFILE statement is
encountered. Static statements are not affected, because they are preprocessed and
packaged before this setting is evaluated.

To set an optimization profile within an application:
v Use the SET CURRENT OPTIMIZATION PROFILE statement anywhere within

your application. For example, the last statement in the following sequence is
optimized according to the JON.SALES optimization profile.

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = 'NEWTON.INVENTDB';

/* The following statements are both optimized with 'NEWTON.INVENTDB' */
EXEC SQL PREPARE stmt FROM SELECT ... ;
EXEC SQL EXECUTE stmt;

EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

298 Troubleshooting and Tuning Database Performance

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = 'JON.SALES';

/* This statement is optimized with 'JON.SALES' */
EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

v If you want the optimizer to use the default optimization profile that was in
effect when the application started running, specify the null value. For example:

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = NULL;

v If you don't want the optimizer to use optimization profiles, specify the empty
string. For example:

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = '';

v If you are using a call level interface (CLI) application, you can add the
CURRENTOPTIMIZATIONPROFILE parameter to the db2cli.ini file, using the
configuration assistant or the UPDATE CLI CONFIGURATION command. For
example:

update cli cfg for section sanfran using currentoptimizationprofile jon.sales

This results in the following entry in the db2cli.ini file:
[SANFRAN]
CURRENTOPTIMIZATIONPROFILE=JON.SALES

Note: Any SET CURRENT OPTIMIZATION PROFILE statements in the
application override this setting.

Binding an optimization profile to a package:

When you prepare a package by using the BIND or PRECOMPILE command, you
can use the OPTPROFILE option to specify the optimization profile for the
package.

This method is the only way to apply an optimization profile to static statements,
and the specified profile applies to all static statements in the package. An
optimization profile that is specified in this manner is also the default optimization
profile that is used for dynamic statements within the package.

You can bind an optimization profile in SQLJ or embedded SQL using APIs (for
example, sqlaprep) or the command line processor (CLP).
For example, the following code shows how to bind an inventory database
optimization profile to an inventory application from the CLP:

db2 prep inventapp.sqc bindfile optprofile newton.inventdb
db2 bind inventapp.bnd
db2 connect reset
db2 terminate
xlc -I$HOME/sqllib/include -c inventapp.c -o inventapp.o
xlc -o inventapp inventapp.o -ldb2 -L$HOME/sqllib/lib

If you do not specify a schema name for the optimization profile, the QUALIFIER
option is used as the implicit qualifier.

Modifying an optimization profile:

You can modify an optimization profile by editing the document, validating it
against the current optimization profile schema (COPS), and replacing the original
document in the SYSTOOLS.OPT_PROFILE table with the new version.

When an optimization profile is referenced, it is compiled and cached in memory;
therefore, these references must also be removed. Use the FLUSH OPTIMIZATION

Chapter 3. Factors affecting performance 299

PROFILE CACHE statement to remove the old profile from the optimization
profile cache and to invalidate any statement in the dynamic plan cache that was
prepared using the old profile (logical invalidation). To modify an optimization
profile:
1. Edit the optimization profile, applying the necessary changes, and validate the

XML.
2. Update the SYSTOOLS.OPT_PROFILE table with the new profile.
3. If you did not create triggers to flush the optimization profile cache, issue the

FLUSH OPTIMIZATION PROFILE CACHE statement to remove any versions
of the optimization profile that might be contained in the optimization profile
cache.

Note: When you flush the optimization profile cache, any dynamic statements
that were prepared with the old optimization profile are also invalidated in the
dynamic plan cache.

Any subsequent reference to the optimization profile causes the optimizer to read
the new profile and to reload it into the optimization profile cache. Also, because
of the logical invalidation of statements that were prepared under the old
optimization profile, any calls made to those statements will be prepared under the
new optimization profile and re-cached in the dynamic plan cache.

Deleting an optimization profile:

You can remove an optimization profile that is no longer needed by deleting it
from the SYSTOOLS.OPT_PROFILE table. When an optimization profile is
referenced, it is compiled and cached in memory; therefore, if the original profile
has already been used, you must also flush the deleted optimization profile from
the optimization profile cache.

To delete an optimization profile:
1. Delete the optimization profile from the SYSTOOLS.OPT_PROFILE table. For

example:
delete from systools.opt_profile

where schema = 'NEWTON' and name = 'INVENTDB'

2. If you did not create triggers to flush the optimization profile cache, issue the
FLUSH OPTIMIZATION PROFILE CACHE statement to remove any versions
of the optimization profile that might be contained in the optimization profile
cache.

Note: When you flush the optimization profile cache, any dynamic statements
that were prepared with the old optimization profile are also invalidated in the
dynamic plan cache.

Any subsequent reference to the optimization profile causes the optimizer to return
SQL0437W with reason code 13.

Optimization guidelines:

Types of optimization guidelines:

The DB2 optimizer processes a statement in two phases: the query rewrite
optimization phase and the plan optimization phase.

300 Troubleshooting and Tuning Database Performance

The optimized statement is determined by the query rewrite optimization phase,
which transforms the original statement into a semantically equivalent statement
that can be more easily optimized in the plan optimization phase. The plan
optimization phase determines the optimal access methods, join methods, and join
orders for the optimized statement by enumerating a number of alternatives and
choosing the alternative that minimizes an execution cost estimate.

The query transformations, access methods, join methods, join orders, and other
optimization alternatives that are considered during the two optimization phases
are governed by various DB2 parameters, such as the CURRENT QUERY
OPTIMIZATION special register, the REOPT bind option, and the
DB2_REDUCED_OPTIMIZATION registry variable. The set of optimization
alternatives is known as the search space.

The following types of statement optimization guidelines are supported:
v General optimization guidelines, which can be used to affect the setting of general

optimization parameters, are applied first, because they can affect the search
space.

v Query rewrite guidelines, which can be used to affect the transformations that are
considered during the query rewrite optimization phase, are applied next,
because they can affect the statement that is optimized during the plan
optimization phase.

v Plan optimization guidelines, which can be used to affect the access methods, join
methods, and join orders that are considered during the plan optimization
phase, are applied last.

General optimization guidelines:

General optimization guidelines can be used to set general optimization
parameters.

Each of these guidelines has statement-level scope.

Query rewrite optimization guidelines:

Query rewrite guidelines can be used to affect the transformations that are
considered during the query rewrite optimization phase, which transforms the
original statement into a semantically equivalent optimized statement.

The optimal execution plan for the optimized statement is determined during the
plan optimization phase. Consequently, query rewrite optimization guidelines can
affect the applicability of plan optimization guidelines.

Each query rewrite optimization guideline corresponds to one of the optimizer's
query transformation rules. The following query transformation rules can be
affected by query rewrite optimization guidelines:
v IN-LIST-to-join
v Subquery-to-join
v NOT-EXISTS-subquery-to-antijoin
v NOT-IN-subquery-to-antijoin

Query rewrite optimization guidelines are not always applicable. Query rewrite
rules are enforced one at a time. Consequently, query rewrite rules that are
enforced before a subsequent rule can affect the query rewrite optimization

Chapter 3. Factors affecting performance 301

guideline that is associated with that rule. The environment configuration can
affect the behavior of some rewrite rules which, in turn, affects the applicability of
a query rewrite optimization guideline to a specific rule.

To get the same results each time, query rewrite rules have certain conditions that
are applied before the rules are enforced. If the conditions that are associated with
a rule are not satisfied when the query rewrite component attempts to apply the
rule to the query, the query rewrite optimization guideline for the rule is ignored.
If the query rewrite optimization guideline is not applicable, and the guideline is
an enabling guideline, SQL0437W with reason code 13 is returned. If the query
rewrite optimization guideline is not applicable, and the guideline is a disabling
guideline, no message is returned. The query rewrite rule is not applied in this
case, because the rule is treated as if it were disabled.

Query rewrite optimization guidelines can be divided into two categories:
statement-level guidelines and predicate-level guidelines. All of the query rewrite
optimization guidelines support the statement-level category. Only INLIST2JOIN
supports the predicate-level category. The statement-level query rewrite
optimization guidelines apply to the entire query. The predicate-level query rewrite
optimization guideline applies to the specific predicate only. If both statement-level
and predicate-level query rewrite optimization guidelines are specified, the
predicate-level guideline overrides the statement-level guideline for the specific
predicate.

Each query rewrite optimization guideline is represented by a corresponding
rewrite request element in the optimization guideline schema.

The following example illustrates an IN-LIST-to-join query rewrite optimization
guideline, as represented by the INLIST2JOIN rewrite request element.
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P_SIZE IN (35, 36, 39, 40)
AND S.S_NATION IN ('INDIA', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME
<OPTGUIDELINES><INLIST2JOIN TABLE='P'/></OPTGUIDELINES>;

This particular query rewrite optimization guideline specifies that the list of
constants in the predicate P_SIZE IN (35, 36, 39, 40) should be transformed into
a table expression. This table expression would then be eligible to drive an indexed
nested-loop join access to the PARTS table in the main subselect. The TABLE
attribute is used to identify the target IN-LIST predicate by indicating the table
reference to which this predicate applies. If there are multiple IN-LIST predicates
for the identified table reference, the INLIST2JOIN rewrite request element is
considered ambiguous and is ignored.

In such cases, a COLUMN attribute can be added to further qualify the target
IN-LIST predicate. For example:
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY

302 Troubleshooting and Tuning Database Performance

AND P_SIZE IN (35, 36, 39, 40)
AND P_TYPE IN ('BRASS', 'COPPER')
AND S.S_NATION IN ('INDIA', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME
<OPTGUIDELINES><INLIST2JOIN TABLE='P' COLUMN='P_SIZE'/></OPTGUIDELINES>;

The TABLE attribute of the INLIST2JOIN element identifies the PARTS table
reference in the main subselect. The COLUMN attribute is used to identify the
IN-LIST predicate on the P_SIZE column as the target. In general, the value of the
COLUMN attribute can contain the unqualified name of the column referenced in
the target IN-LIST predicate. If the COLUMN attribute is provided without the
TABLE attribute, the query rewrite optimization guideline is considered invalid
and is ignored.

The OPTION attribute can be used to enable or disable a particular query rewrite
optimization guideline. Because the OPTION attribute is set to DISABLE in the
following example, the list of constants in the predicate P_SIZE IN (35, 36, 39,
40) will not be transformed into a table expression. The default value of the
OPTION attribute is ENABLE. ENABLE and DISABLE must be specified in
uppercase characters.
<OPTGUIDELINES>

<INLIST2JOIN TABLE='P' COLUMN='P_SIZE' OPTION='DISABLE'/>
</OPTGUIDELINES>

In the following example, the INLIST2JOIN rewrite request element does not have
a TABLE attribute. The optimizer interprets this as a request to disable the
IN-LIST-to-join query transformation for all IN-LIST predicates in the statement.
<OPTGUIDELINES><INLIST2JOIN OPTION='DISABLE'/></OPTGUIDELINES>

The following example illustrates a subquery-to-join query rewrite optimization
guideline, as represented by the SUBQ2JOIN rewrite request element. A
subquery-to-join transformation converts a subquery into an equivalent table
expression. The transformation applies to subquery predicates that are quantified
by EXISTS, IN, =SOME, =ANY, <>SOME, or <>ANY. The subquery-to-join query
rewrite optimization guideline does not ensure that a subquery will be merged. A
particular subquery cannot be targeted by this query rewrite optimization
guideline. The transformation can only be enabled or disabled at the statement
level.
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P_SIZE IN (35, 36, 39, 40)
AND P_TYPE = 'BRASS'
AND S.S_NATION IN ('INDIA', 'SPAIN')
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY

AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME
<OPTGUIDELINES><SUBQ2JOIN OPTION='DISABLE'/></OPTGUIDELINES>;

The following example illustrates a NOT-EXISTS-to-anti-join query rewrite
optimization guideline, as represented by the NOTEX2AJ rewrite request element.

Chapter 3. Factors affecting performance 303

A NOT-EXISTS-to-anti-join transformation converts a subquery into a table
expression that is joined to other tables using anti-join semantics (only
nonmatching rows are returned). The NOT-EXISTS-to-anti-join query rewrite
optimization guideline applies to subquery predicates that are quantified by NOT
EXISTS. The NOT-EXISTS-to-anti-join query rewrite optimization guideline does
not ensure that a subquery will be merged. A particular subquery cannot be
targeted by this query rewrite optimization guideline. The transformation can only
be enabled or disabled at the statement level.
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P_SIZE IN (35, 36, 39, 40)
AND P_TYPE = 'BRASS'
AND S.S_NATION IN ('INDIA', 'SPAIN')
AND NOT EXISTS (SELECT 1

FROM "Tpcd".SUPPLIERS S1
WHERE S1.S_SUPPKEY = PS.PS_SUPPKEY)

ORDER BY S.S_NAME
<OPTGUIDELINES><NOTEX2AJ OPTION='ENABLE'/></OPTGUIDELINES>;

Note: The enablement of a query transformation rule at the statement level does
not ensure that the rule will be applied to a particular part of the statement. The
usual criteria are used to determine whether query transformation will take place.
For example, if there are multiple NOT EXISTS predicates in the query block, the
optimizer will not consider converting any of them into anti-joins. Explicitly
enabling query transformation at the statement level does not change this behavior.

The following example illustrates a NOT-IN-to-anti-join query rewrite optimization
guideline, as represented by the NOTIN2AJ rewrite request element. A
NOT-IN-to-anti-join transformation converts a subquery into a table expression that
is joined to other tables using anti-join semantics (only nonmatching rows are
returned). The NOT-IN-to-anti-join query rewrite optimization guideline applies to
subquery predicates that are quantified by NOT IN. The NOT-IN-to-anti-join query
rewrite optimization guideline does not ensure that a subquery will be merged. A
particular subquery cannot be targeted by this query rewrite optimization
guideline. The transformation can only be enabled or disabled at the statement
level.
SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT
FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY

AND S.S_SUPPKEY = PS.PS_SUPPKEY
AND P_SIZE IN (35, 36, 39, 40)
AND P_TYPE = 'BRASS'
AND S.S_NATION IN ('INDIA', 'SPAIN')
AND PS.PS_SUPPKEY NOT IN (SELECT S1.S_SUPPKEY

FROM "Tpcd".SUPPLIERS S1
WHERE S1.S_NATION = 'CANADA')

ORDER BY S.S_NAME
<OPTGUIDELINES><NOTIN2AJ OPTION='ENABLE'/></OPTGUIDELINES>

A particular query rewrite optimization guideline might not be applicable when
considered within the context of other query rewrite transformations being applied
to the statement. That is, if a guideline request to enable a transform cannot be
applied, a warning is returned. For example, an INLIST2JOIN rewrite enable
request element targeting a predicate that is eliminated from the query by another
query transformation would not be applicable. Moreover, the successful application
of a query rewrite optimization guideline might change the applicability of other
query rewrite transformation rules. For example, a request to transform an IN-LIST

304 Troubleshooting and Tuning Database Performance

to a table expression might prevent a different IN-LIST from being transformed to
a table expression, because the optimizer will only apply a single IN-LIST-to-join
transformation per query block.

Plan optimization guidelines:

Plan optimization guidelines are applied during the cost-based phase of
optimization, where access methods, join methods, join order, and other details of
the execution plan for the statement are determined.

Plan optimization guidelines need not specify all aspects of an execution plan.
Unspecified aspects of the execution plan are determined by the optimizer in a
cost-based fashion.

There are two categories of plan optimization guidelines:
v accessRequest – An access request specifies an access method for satisfying a

table reference in a statement.
v joinRequest – A join request specifies a method and sequence for performing a

join operation. Join requests are composed of access or other join requests.

Access request optimization guidelines correspond to the optimizer's data access
methods, such as table scan, index scan, and list prefetch. Join request guidelines
correspond to the optimizer's join methods, such as nested-loop join, hash join, and
merge join. Each access request and join request is represented by a corresponding
access request element and join request element in the statement optimization
guideline schema.

The following example illustrates an index scan access request, as represented by
the IXSCAN access request element. This particular request specifies that the
optimizer is to use the I_SUPPKEY index to access the SUPPLIERS table in the
main subselect of the statement. The optional INDEX attribute identifies the
desired index. The TABLE attribute identifies the table reference to which the
access request is applied. A TABLE attribute must identify the target table reference
using its exposed name, which in this example is the correlation name S.
SQL statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from "Tpcd".partsupp ps1, "Tpcd".suppliers s1
where "Tpcd".parts.p_partkey = ps1.ps_partkey and
s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

order by s.s_name

Optimization guideline:

<OPTGUIDELINES>
<IXSCAN TABLE='S' INDEX='I_SUPPKEY'/>

</OPTGUIDELINES>

The following index scan access request element specifies that the optimizer is to
use index access to the PARTS table in the main subselect of the statement. The
optimizer will choose the index in a cost-based fashion, because there is no INDEX

Chapter 3. Factors affecting performance 305

attribute. The TABLE attribute uses the qualified table name to refer to the target
table reference, because there is no associated correlation name.

<OPTGUIDELINES>
<IXSCAN TABLE='"Tpcd".PARTS'/>

</OPTGUIDELINES>

The following list prefetch access request is represented by the LPREFETCH access
request element. This particular request specifies that the optimizer is to use the
I_SNATION index to access the SUPPLIERS table in the nested subselect of the
statement. The TABLE attribute uses the correlation name S1, because that is the
exposed name identifying the SUPPLIERS table reference in the nested subselect.

<OPTGUIDELINES>
<LPREFETCH TABLE='S1' INDEX='I_SNATION'/>

</OPTGUIDELINES>

The following index scan access request element specifies that the optimizer is to
use the I_SNAME index to access the SUPPLIERS table in the main subselect. The
FIRST attribute specifies that this table is to be the first table that is accessed in the
join sequence chosen for the corresponding FROM clause. The FIRST attribute can
be added to any access or join request; however, there can be at most one access or
join request with the FIRST attribute referring to tables in the same FROM clause.
SQL statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps
where p_partkey = ps.ps_partkey

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from "Tpcd".partsupp ps1, "Tpcd".suppliers s1
where "Tpcd".parts.p_partkey = ps1.ps_partkey and

s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

order by s.s_name
optimize for 1 row

Optimization guidelines:

<OPTGUIDELINES>
<IXSCAN TABLE='S' INDEX='I_SNAME' FIRST='TRUE'/>

</OPTGUIDELINES>

The following example illustrates how multiple access requests are passed in a
single statement optimization guideline. The TBSCAN access request element
represents a table scan access request. This particular request specifies that the
SUPPLIERS table in the nested subselect is to be accessed using a full table scan.
The LPREFETCH access request element specifies that the optimizer is to use the
I_SUPPKEY index during list prefetch index access to the SUPPLIERS table in the
main subselect.

<OPTGUIDELINES>
<TBSCAN TABLE='S1'/>
<LPREFETCH TABLE='S' INDEX='I_SUPPKEY'/>

</OPTGUIDELINES>

The following example illustrates a nested-loop join request, as represented by the
NLJOIN join request element. In general, a join request element contains two child
elements. The first child element represents the desired outer input to the join
operation, and the second child element represents the desired inner input to the

306 Troubleshooting and Tuning Database Performance

join operation. The child elements can be access requests, other join requests, or
combinations of access and join requests. In this example, the first IXSCAN access
request element specifies that the PARTS table in the main subselect is to be the
outer table of the join operation. It also specifies that PARTS table access be
performed using an index scan. The second IXSCAN access request element
specifies that the PARTSUPP table in the main subselect is to be the inner table of
the join operation. It, too, specifies that the table is to be accessed using an index
scan.

<OPTGUIDELINES>
<NLJOIN>

<IXSCAN TABLE='"Tpcd".Parts'/>
<IXSCAN TABLE="PS"/>

</NLJOIN>
</OPTGUIDELINES>

The following example illustrates a hash join request, as represented by the
HSJOIN join request element. The ACCESS access request element specifies that
the SUPPLIERS table in the nested subselect is to be the outer table of the join
operation. This access request element is useful in cases where specifying the join
order is the primary objective. The IXSCAN access request element specifies that
the PARTSUPP table in the nested subselect is to be the inner table of the join
operation, and that the optimizer is to choose an index scan to access that table.

<OPTGUIDELINES>
<HSJOIN>

<ACCESS TABLE='S1'/>
<IXSCAN TABLE='PS1'/>

</HSJOIN>
</OPTGUIDELINES>

The following example illustrates how larger join requests can be constructed by
nesting join requests. The example includes a merge join request, as represented by
the MSJOIN join request element. The outer input of the join operation is the result
of joining the PARTS and PARTSUPP tables of the main subselect, as represented
by the NLJOIN join request element. The inner input of the join request element is
the SUPPLIERS table in the main subselect, as represented by the IXSCAN access
request element.

<OPTGUIDELINES>
<MSJOIN>

<NLJOIN>
<IXSCAN TABLE='"Tpcd".Parts'/>
<IXSCAN TABLE="PS"/>

</NLJOIN>
<IXSCAN TABLE='S'/>

</MSJOIN>
</OPTGUIDELINES>

If a join request is to be valid, all access request elements that are nested either
directly or indirectly inside of it must reference tables in the same FROM clause of
the optimized statement.

Optimization guidelines for MQT matching

Users can override the optimizer's decision and force it to choose specific
materialized query tables (MQTs) with the MQTENFORCE element. The
MQTENFORCE element, can be specified at both the global and statement profile
level, is used with one of the following attributes:

NAME
specifies the partial or fully qualified name of MQT to choose

Chapter 3. Factors affecting performance 307

TYPE specifies a group of MQTs by their types. Possible values are:
v NORMAL: all non-replicated MQTs
v REPLICATED: all replicated MQTs
v ALL: all MQTs

The following example illustrates an example of a guideline that enforces all
replicated MQTs, as well as, the TPCD.PARTSMQT:
<OPTGUIDELINES>
<MQTENFORCE NAME='TPCD.PARTSMQT'/>
<MQTENFORCE TYPE='REPLICATED'/>
</OPTGUIDELINES>

Note: If you specify more than one attribute at a time, only the first one will be
used. So in the following example
<MQTENFORCE NAME='TPCD.PARTSMQT' TYPE='REPLICATED'/>

Only PARTSMQT MQT will be enforced

Creating statement-level optimization guidelines:

The statement-level optimization guidelines section of the statement profile is
made up of one or more access or join requests, which specify methods for
accessing or joining tables in the statement.

Exhaust all other tuning options. For example:
1. Ensure that the data distribution statistics have been recently updated by the

runstats utility.
2. Ensure that the data server is running with the proper optimization class

setting for the workload.
3. Ensure that the optimizer has the appropriate indexes to access tables that are

referenced in the query.

To create statement-level optimization guidelines:
1. Create the optimization profile in which you want to insert the statement-level

guidelines.
2. Run the explain facility against the statement to determine whether

optimization guidelines would be helpful. Proceed if that appears to be the
case.

3. Obtain the original statement by running a query that is similar to the
following:

select statement_text
from explain_statement
where explain_level = '0' and

explain_requester = 'SIMMEN' and
explain_time = '2003-09-08-16.01.04.108161' and
source_name = 'SQLC2E03' and
source_version = '' and
queryno = 1

4. Edit the optimization profile and create a statement profile, inserting the
statement text into the statement key. For example:

<STMTPROFILE ID="Guidelines for TPCD Q9">
<STMTKEY SCHEMA="TPCD"><![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

S.S_COMMENT
FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY

308 Troubleshooting and Tuning Database Performance

AND P.P_SIZE = 39 AND P.P_TYPE = 'BRASS' AND S.S_NATION
= 'MOROCCO' AND
PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)
FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY
AND S1.S_NATION = S.S_NATION)]]>

</STMTKEY>
</STMTPROFILE>

5. Insert statement-level optimization guidelines after the statement key. Use
exposed names to identify the objects that are referenced in access and join
requests. The following is an example of a join request:

<OPTGUIDELINES>
<HSJOIN>

<TBSCAN TABLE='PS1'/>
<IXSCAN TABLE='S1'

INDEX='I1'/>
</HSJOIN>

</OPTGUIDELINES>

6. Validate the file and save it.

If expected results are not achieved, make changes to the guidelines or create
additional guidelines, and update the optimization profile, as appropriate.

Forming table references in optimization guidelines:

The term table reference is used to mean any table, view, table expression, or the
table which an alias references in an SQL statement or view definition. An
optimization guideline can identify a table reference using either its exposed name
in the original statement or the unique correlation name that is associated with the
table reference in the optimized statement.

Extended names, which are sequences of exposed names, help to uniquely identify
table references that are embedded in views. An alias name cannot be used as a
table reference in an optimization guideline, in such a case any guideline targeting
the table reference will be ignored. Optimization guidelines that identify exposed
or extended names that are not unique within the context of the entire statement
are considered ambiguous and are not applied. Moreover, if more than one
optimization guideline identifies the same table reference, all optimization
guidelines identifying that table reference are considered conflicting and are not
applied. The potential for query transformations makes it impossible to guarantee
that an exposed or extended name will still exist during optimization; therefore,
any guideline that identifies such table references is ignored.

Using exposed names in the original statement to identify table references

A table reference is identified by using the exposed name of the table. The exposed
name is specified in the same way that a table would be qualified in an SQL
statement.

The rules for specifying SQL identifiers also apply to the TABLE attribute value of
an optimization guideline. The TABLE attribute value is compared to each exposed
name in the statement. Only a single match is permitted in this DB2 release. If the
TABLE attribute value is schema-qualified, it matches any equivalent exposed
qualified table name. If the TABLE attribute value is unqualified, it matches any
equivalent correlation name or exposed table name. The TABLE attribute value is
therefore considered to be implicitly qualified by the default schema that is in
effect for the statement. These concepts are illustrated by the following example.
Assume that the statement is optimized using the default schema Tpcd.

Chapter 3. Factors affecting performance 309

select s_name, s_address, s_phone, s_comment
from parts, suppliers, partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS'

TABLE attribute values that identify a table reference in the statement include
'"Tpcd".PARTS', 'PARTS', 'Parts' (because the identifier is not delimited, it is
converted to uppercase characters). TABLE attribute values that fail to identify a
table reference in the statement include '"Tpcd2".SUPPLIERS', 'PARTSUPP' (not an
exposed name), and 'Tpcd.PARTS' (the identifier Tpcd must be delimited;
otherwise, it is converted to uppercase characters).

The exposed name can be used to target any table reference in the original
statement, view, SQL function, or trigger.

Using exposed names in the original statement to identify table references in
views

Optimization guidelines can use extended syntax to identify table references that
are embedded in views, as shown in the following example:

create view "Rick".v1 as
(select * from employee a where salary > 50000)

create view "Gustavo".v2 as
(select * from "Rick".v1

where deptno in ('52', '53', '54')

select * from "Gustavo".v2 a
where v2.hire_date > '01/01/2004'

<OPTGUIDELINES>
<IXSCAN TABLE='A/"Rick".V1/A'/>

</OPTGUIDELINES>

The IXSCAN access request element specifies that an index scan is to be used for
the EMPLOYEE table reference that is embedded in the views "Gustavo".V2 and
"Rick".V1. The extended syntax for identifying table references in views is a series
of exposed names separated by a slash character. The value of the TABLE attribute
A/"Rick".V1/A illustrates the extended syntax. The last exposed name in the
sequence (A) identifies the table reference that is a target of the optimization
guideline. The first exposed name in the sequence (A) identifies the view that is
directly referenced in the original statement. The exposed name or names in the
middle ("Rick".V1) pertain to the view references along the path from the direct
view reference to the target table reference. The rules for referring to exposed
names from optimization guidelines, described in the previous section, apply to
each step of the extended syntax.

Had the exposed name of the EMPLOYEE table reference in the view been unique
with respect to all tables that are referenced either directly or indirectly by the
statement, the extended name syntax would not be necessary.

Extended syntax can be used to target any table reference in the original statement,
SQL function, or trigger.

310 Troubleshooting and Tuning Database Performance

Identifying table references using correlation names in the optimized statement

An optimization guideline can also identify a table reference using the unique
correlation names that are associated with the table reference in the optimized
statement. The optimized statement is a semantically equivalent version of the
original statement, as determined during the query rewrite phase of optimization.
The optimized statement can be retrieved from the explain tables. The TABID
attribute of an optimization guideline is used to identify table references in the
optimized statement. For example:
Original statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from sm_tpcd.parts p, sm_tpcd.suppliers s, sm_tpcd.partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p.p_size = 39 and
p.p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from sm_tpcd.partsupp ps1, sm_tpcd.suppliers s1
where p.p_partkey = ps1.ps_partkey and

s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

<OPTGUIDELINES>
<HSJOIN>

<TBSCAN TABLE='S1'/>
<IXSCAN TABID='Q2'/>

</HSJOIN>
</OPTGUIDELINES>

Optimized statement:

select q6.s_name as "S_NAME", q6.s_address as "S_ADDRESS",
q6.s_phone as "S_PHONE", q6.s_comment as "S_COMMENT"

from (select min(q4.$c0)
from (select q2.ps_supplycost

from sm_tpcd.suppliers as q1, sm_tpcd.partsupp as q2
where q1.s_nation = 'MOROCCO' and

q1.s_suppkey = q2.ps_suppkey and
q7.p_partkey = q2.ps_partkey

) as q3
) as q4, sm_tpcd.partsupp as q5, sm_tpcd.suppliers as q6,

sm_tpcd.parts as q7
where p_size = 39 and

q5.ps_supplycost = q4.$c0 and
q6.s_nation in ('MOROCCO', 'SPAIN') and
q7.p_type = 'BRASS' and
q6.s_suppkey = q5.ps_suppkey and
q7.p_partkey = q5.ps_partkey

This optimization guideline shows a hash join request, where the SUPPLIERS table
in the nested subselect is the outer table, as specified by the TBSCAN access
request element, and where the PARTSUPP table in the nested subselect is the
inner table, as specified by the IXSCAN access request element. The TBSCAN
access request element uses the TABLE attribute to identify the SUPPLIERS table
reference using the corresponding exposed name in the original statement. The
IXSCAN access request element, on the other hand, uses the TABID attribute to
identify the PARTSUPP table reference using the unique correlation name that is
associated with that table reference in the optimized statement.

Chapter 3. Factors affecting performance 311

If a single optimization guideline specifies both the TABLE and TABID attributes,
they must identify the same table reference, or the optimization guideline is
ignored.

Note: There is currently no guarantee that correlation names in the optimized
statement will be stable when upgrading to a new release of the DB2 product.

Ambiguous table references

An optimization guideline is considered invalid and is not applied if it matches
multiple exposed or extended names. For example:

create view v1 as
(select * from employee

where salary > (select avg(salary) from employee)

select * from v1
where deptno in ('M62', 'M63')

<OPTGUIDE>
<IXSCAN TABLE='V1/EMPLOYEE'/>

</OPTGUIDE>

The optimizer considers the IXSCAN access request ambiguous, because the
exposed name EMPLOYEE is not unique within the definition of view V1.

To eliminate the ambiguity, the view can be rewritten to use unique correlation
names, or the TABID attribute can be used. Table references that are identified by
the TABID attribute are never ambiguous, because all correlation names in the
optimized statement are unique.

Conflicting optimization guidelines

Multiple optimization guidelines cannot identify the same table reference. For
example:

<OPTGUIDELINES>
<IXSCAN TABLE='"Tpcd".PARTS' INDEX='I_PTYPE'/>
<IXSCAN TABLE='"Tpcd".PARTS' INDEX='I_SIZE'/>

</OPTGUIDELINES>

Each of the IXSCAN elements references the "Tpcd".PARTS table in the main
subselect.

When two or more guidelines refer to the same table, only the first is applied; all
other guidelines are ignored, and an error is returned.

Only one INLIST2JOIN query rewrite request element at the predicate level per
query can be enabled. The following example illustrates an unsupported query
rewrite optimization guideline, where two IN-LIST predicates are enabled at the
predicate level. Both guidelines are ignored, and a warning is returned.

<OPTGUIDELINES>
<INLIST2JOIN TABLE='P' COLUMN='P_SIZE'/>
<INLIST2JOIN TABLE='P' COLUMN='P_TYPE'/>
</OPTGUIDELINES>

Verifying that optimization guidelines have been used:

312 Troubleshooting and Tuning Database Performance

The optimizer makes every attempt to adhere to the optimization guidelines that
are specified in an optimization profile; however, the optimizer can reject invalid or
inapplicable guidelines.

Explain tables must exist before you can use the explain facility. The data
definition language (DDL) for creating the explain tables is contained in
EXPLAIN.DDL, which can be found in the misc subdirectory of the sqllib directory.

To verify that a valid optimization guideline has been used:
1. Issue the EXPLAIN statement against the statement to which the guidelines

apply. If an optimization guideline was in effect for the statement using an
optimization profile, the optimization profile name appears as a RETURN
operator argument in the EXPLAIN_ARGUMENT table. And if the
optimization guideline contained an SQL embedded optimization guideline or
statement profile that matched the current statement, the name of the statement
profile appears as a RETURN operator argument. The types of these two new
argument values are OPT_PROF and STMTPROF.

2. Examine the results of the explained statement. The following query against the
explain tables can be modified to return the optimization profile name and the
statement profile name for your particular combination of
EXPLAIN_REQUESTER, EXPLAIN_TIME, SOURCE_NAME,
SOURCE_VERSION, and QUERYNO:

SELECT VARCHAR(B.ARGUMENT_TYPE, 9) as TYPE,
VARCHAR(B.ARGUMENT_VALUE, 24) as VALUE

FROM EXPLAIN_STATEMENT A, EXPLAIN_ARGUMENT B

WHERE A.EXPLAIN_REQUESTER = 'SIMMEN'
AND A.EXPLAIN_TIME = '2003-09-08-16.01.04.108161'
AND A.SOURCE_NAME = 'SQLC2E03'
AND A.SOURCE_VERSION = ''
AND A.QUERYNO = 1

AND A.EXPLAIN_REQUESTER = B.EXPLAIN_REQUESTER
AND A.EXPLAIN_TIME = B.EXPLAIN_TIME
AND A.SOURCE_NAME = B.SOURCE_NAME
AND A.SOURCE_SCHEMA = B.SOURCE_SCHEMA
AND A.SOURCE_VERSION = B.SOURCE_VERSION
AND A.EXPLAIN_LEVEL = B.EXPLAIN_LEVEL
AND A.STMTNO = B.STMTNO
AND A.SECTNO = B.SECTNO

AND A.EXPLAIN_LEVEL = 'P'

AND (B.ARGUMENT_TYPE = 'OPT_PROF' OR ARGUMENT_TYPE = 'STMTPROF')
AND B.OPERATOR_ID = 1

If the optimization guideline is active and the explained statement matches the
statement that is contained in the STMTKEY element of the optimization
guideline, a query that is similar to the previous example produces output that
is similar to the following output. The value of the STMTPROF argument is the
same as the ID attribute in the STMTPROFILE element.

TYPE VALUE
--------- --------------------------
OPT_PROF NEWTON.PROFILE1
STMTPROF Guidelines for TPCD Q9

XML schema for optimization profiles and guidelines:

Current optimization profile schema:

Chapter 3. Factors affecting performance 313

The valid optimization profile contents for a given DB2 release is described by an
XML schema that is known as the current optimization profile schema (COPS). An
optimization profile applies only to DB2 Database for Linux, UNIX, and Windows
servers.

The following listing represents the COPS for the current release of the DB2
product. The COPS can also be found in DB2OptProfile.xsd, which is located in
the misc subdirectory of the sqllib directory.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" version="1.0">
<!--***-->
<!-- Licensed Materials - Property of IBM -->
<!-- (C) Copyright International Business Machines Corporation 2009. All rights reserved. -->
<!-- U.S. Government Users Restricted Rights; Use, duplication or disclosure restricted by -->
<!-- GSA ADP Schedule Contract with IBM Corp. -->
<!--***-->
<!--***-->
<!-- Definition of the current optimization profile schema for V9.7.0.0 -->
<!-- -->
<!-- An optimization profile is composed of the following sections: -->
<!-- -->
<!-- + A global optimization guidelines section (at most one) which defines optimization -->
<!-- guidelines affecting any statement for which the optimization profile is in effect. -->
<!-- -->
<!-- + Zero or more statement profile sections, each of which defines optimization -->
<!-- guidelines for a particular statement for which the optimization profile -->
<!-- is in effect. -->
<!-- -->
<!-- The VERSION attribute indicates the version of this optimization profile -->
<!-- schema. -->
<!--***-->
<xs:element name="OPTPROFILE">

<xs:complexType>
<xs:sequence>

<!-- Global optimization guidelines section. At most one can be specified. -->
<xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType" minOccurs="0"/>
<!-- Statement profile section. Zero or more can be specified -->
<xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- Version attribute is currently optional -->
<xs:attribute name="VERSION" use="optional"/>

</xs:complexType>
</xs:element>

<!--***-->
<!-- Global optimization guidelines supported in this version: -->
<!-- + MQTOptimizationChoices elements influence the MQTs considered by the optimizer. -->
<!-- + computationalPartitionGroupOptimizationsChoices elements can affect repartitioning -->
<!-- optimizations involving nicknames. -->
<!-- + General requests affect the search space which defines the alternative query -->
<!-- transformations, access methods, join methods, join orders, and other optimizations, -->
<!-- considered by the compiler and optimizer. -->
<!-- + MQT enforcement requests specify semantically matchable MQTs whose usage in access -->
<!-- plans should be enforced regardless of cost estimates. -->
<!-- **-->
<xs:complexType name="globalOptimizationGuidelinesType">

<xs:sequence>
<xs:group ref="MQTOptimizationChoices" />
<xs:group ref="computationalPartitionGroupOptimizationChoices" />
<xs:group ref="generalRequest"/>
<xs:group ref="mqtEnforcementRequest" />

</xs:sequence>
</xs:complexType>
<!-- **-->
<!-- Elements for affecting materialized query table (MQT) optimization. -->
<!-- -->
<!-- + MQTOPT - can be used to disable materialized query table (MQT) optimization. -->
<!-- If disabled, the optimizer will not consider MQTs to optimize the statement. -->
<!-- -->
<!-- + MQT - multiple of these can be specified. Each specifies an MQT that should be -->
<!-- considered for optimizing the statement. Only specified MQTs will be considered. -->
<!-- -->
<!--***-->
<xs:group name="MQTOptimizationChoices">

<xs:choice>

314 Troubleshooting and Tuning Database Performance

<xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">
<xs:complexType>

<xs:attribute name="OPTION" type="optionType" use="optional"/>
</xs:complexType>

</xs:element>
<xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="NAME" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:group>
<!-- ***-->
<!-- Elements for affecting computational partition group (CPG) optimization. -->
<!-- -->
<!-- + PARTOPT - can be used disable the computational partition group (CPG) optimization -->
<!-- which is used to dynamically redistributes inputs to join, aggregation, -->
<!-- and union operations when those inputs are results of remote queries. -->
<!-- -->
<!-- + PART - Define the partition groups to be used in CPG optimizations. -->
<!-- -->
<!-- ***-->
<xs:group name="computationalPartitionGroupOptimizationChoices">

<xs:choice>
<xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="OPTION" type="optionType" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="PART" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="NAME" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:group>
<!-- **-->
<!-- Definition of a statement profile. -->
<!-- Comprised of a statement key and optimization guidelines. -->
<!-- The statement key specifies semantic information used to identify the statement to -->
<!-- which optimization guidelines apply. The optional ID attribute provides the statement -->
<!-- profile with a name for use in EXPLAIN output. -->
<!-- **-->
<xs:complexType name="statementProfileType">

<xs:sequence>
<!-- Statement key element -->
<xs:element name="STMTKEY" type="statementKeyType"/>
<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

</xs:sequence>
<!-- ID attribute.Used in explain output to indicate the statement profile was used. -->
<xs:attribute name="ID" type="xs:string" use="optional"/>

</xs:complexType>
<!--**-->
<!-- Definition of the statement key. The statement key provides semantic information used -->
<!-- to identify the statement to which the optimization guidelines apply. -->
<!-- The statement key is comprised of: -->
<!-- + statement text (as written in the application) -->
<!-- + default schema (for resolving unqualified table names in the statement) -->
<!-- + function path (for resolving unqualified types and functions in the statement) -->
<!-- The statement text is provided as element data whereas the default schema and function -->
<!-- path are provided via the SCHEMA and FUNCPATH elements, respectively. -->
<!--**-->
<xs:complexType name="statementKeyType" mixed="true">

<xs:attribute name="SCHEMA" type="xs:string" use="optional"/>
<xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->
<!-- -->
<!-- Optimization guideline elements can be chosen from general requests, rewrite -->
<!-- requests access requests, or join requests. -->
<!-- -->
<!-- General requests affect the search space which defines the alternative query -->
<!-- transformations, access methods, join methods, join orders, and other optimizations, -->
<!-- considered by the optimizer. -->
<!-- -->
<!-- Rewrite requests affect the query transformations used in determining the optimized -->
<!-- statement. -->
<!-- -->

Chapter 3. Factors affecting performance 315

<!-- Access requests affect the access methods considered by the cost-based optimizer, -->
<!-- and join requests affect the join methods and join order used in the execution plan. -->
<!-- -->
<!-- MQT enforcement requests specify semantically matchable MQTs whose usage in access -->
<!-- plans should be enforced regardless of cost estimates. -->
<!-- -->
<!--**-->
<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>
<xs:complexType name="optGuidelinesType">

<xs:sequence>
<xs:group ref="generalRequest" minOccurs="0" maxOccurs="1"/>
<xs:choice maxOccurs="unbounded">

<xs:group ref="rewriteRequest" />
<xs:group ref="accessRequest"/>
<xs:group ref="joinRequest"/>
<xs:group ref="mqtEnforcementRequest"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
<!--*** -->
<!-- Choices of general request elements. -->
<!-- REOPT can be used to override the setting of the REOPT bind option. -->
<!-- DPFXMLMOVEMENT can be used to affect the optimizer's plan when moving XML documents -->
<!-- between database partitions. The value can be NONE, REFERENCE or COMBINATION. The -->
<!-- default value is NONE. -->
<!--*** -->
<xs:group name="generalRequest">

<xs:sequence>
<xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>
<xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>
<xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>
<xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>
<xs:element name="DPFXMLMOVEMENT" type="dpfXMLMovementType" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>
<!--***-->
<!-- Choices of rewrite request elements. -->
<!--***-->
<xs:group name="rewriteRequest">

<xs:sequence>
<xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>
<xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>
<xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>
<xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

</xs:sequence>
</xs:group>
<!--*** -->
<!-- Choices for access request elements. -->
<!-- TBSCAN - table scan access request element -->
<!-- IXSCAN - index scan access request element -->
<!-- LPREFETCH - list prefetch access request element -->
<!-- IXAND - index ANDing access request element -->
<!-- IXOR - index ORing access request element -->
<!-- XISCAN - xml index access request element -->
<!-- XANDOR - XANDOR access request element -->
<!-- ACCESS - indicates the optimizer should choose the access method for the table -->
<!--*** -->
<xs:group name="accessRequest">

<xs:choice>
<xs:element name="TBSCAN" type="tableScanType"/>
<xs:element name="IXSCAN" type="indexScanType"/>
<xs:element name="LPREFETCH" type="listPrefetchType"/>
<xs:element name="IXAND" type="indexAndingType"/>
<xs:element name="IXOR" type="indexOringType"/>
<xs:element name="XISCAN" type="indexScanType"/>
<xs:element name="XANDOR" type="XANDORType"/>
<xs:element name="ACCESS" type="anyAccessType"/>

</xs:choice>
</xs:group>
<!--*** -->
<!-- Choices for join request elements. -->
<!-- NLJOIN - nested-loops join request element -->
<!-- MSJOIN - sort-merge join request element -->
<!-- HSJOIN - hash join request element -->
<!-- JOIN - indicates that the optimizer is to choose the join method. -->
<!--*** -->
<xs:group name="joinRequest">

<xs:choice>
<xs:element name="NLJOIN" type="nestedLoopJoinType"/>

316 Troubleshooting and Tuning Database Performance

<xs:element name="HSJOIN" type="hashJoinType"/>
<xs:element name="MSJOIN" type="mergeJoinType"/>
<xs:element name="JOIN" type="anyJoinType"/>

</xs:choice>
</xs:group>
<!--***-->
<!-- MQT enforcement request element. -->
<!-- MQTENFORCE - This element can be used to specify semantically matchable MQTs whose -->
<!-- usage in access plans should be enforced regardless of Optimizer cost estimates. -->
<!-- MQTs can be specified either directly with the NAME attribute or generally using -->
<!-- the TYPE attribute. -->
<!-- Only the first valid attribute found is used and all subsequent ones are ignored. -->
<!-- Since this element can be specified multiple times, more than one MQT can be -->
<!-- enforced at a time. -->
<!-- Note however, that if there is a conflict when matching two enforced MQTs to the -->
<!-- same data source (base-table or derived) an MQT will be picked based on existing -->
<!-- tie-breaking rules, i.e., either heuristic or cost-based. -->
<!-- Finally, this request overrides any other MQT optimization options specified in -->
<!-- a profile, i.e., enforcement will take place even if MQTOPT is set to DISABLE or -->
<!-- if the specified MQT or MQTs do not exist in the eligibility list specified by -->
<!-- any MQT elements. -->
<!--***-->
<xs:group name="mqtEnforcementRequest">

<xs:sequence>
<xs:element name="MQTENFORCE" type="mqtEnforcementType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:group>
<!--*** -->
<!-- REOPT general request element. Can override REOPT setting at the package, db, -->
<!-- dbm level. -->
<!--*** -->
<xs:complexType name="reoptType">

<xs:attribute name="VALUE" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="ONCE"/>
<xs:enumeration value="ALWAYS"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<!--***-->
<!-- RTS general request element to enable, disable or provide a time budget for -->
<!-- real-time statistics collection. -->
<!-- OPTION attribute allows enabling or disabling real-time statistics. -->
<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.-->
<!--***-->
<xs:complexType name="rtsType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>
<!--**-->
<!-- Definition of an "IN list to join" rewrite request -->
<!-- OPTION attribute allows enabling or disabling the alternative. -->
<!-- TABLE attribute allows request to target IN list predicates applied to a -->
<!-- specific table reference. COLUMN attribute allows request to target a specific IN list -->
<!-- predicate. -->
<!--**-->
<xs:complexType name="inListToJoinType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="TABLE" type="xs:string" use="optional"/>
<xs:attribute name="COLUMN" type="xs:string" use="optional"/>

</xs:complexType>
<!--**-->
<!-- Definition of a "subquery to join" rewrite request -->
<!-- The OPTION attribute allows enabling or disabling the alternative. -->
<!--**-->
<xs:complexType name="subqueryToJoinType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
</xs:complexType>
<!--**-->
<!-- Definition of a "not exists to anti-join" rewrite request -->
<!-- The OPTION attribute allows enabling or disabling the alternative. -->
<!--**-->
<xs:complexType name="notExistsToAntiJoinType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
</xs:complexType>
<!--**-->
<!-- Definition of a "not IN to anti-join" rewrite request -->

Chapter 3. Factors affecting performance 317

<!-- The OPTION attribute allows enabling or disabling the alternative. -->
<!--**-->
<xs:complexType name="notInToAntiJoinType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
</xs:complexType>
<!--**-->
<!-- Effectively the superclass from which all access request elements inherit. -->
<!-- This type currently defines TABLE and TABID attributes, which can be used to tie an -->
<!-- access request to a table reference in the query. -->
<!-- The TABLE attribute value is used to identify a table reference using identifiers -->
<!-- in the original SQL statement. The TABID attribute value is used to identify a table -->
<!-- referece using the unique correlation name provided via the -->
<!-- optimized statement. If both the TABLE and TABID attributes are specified, the TABID -->
<!-- field is ignored. The FIRST attribute indicates that the access should be the first -->
<!-- access in the join sequence for the FROM clause. -->
<!-- The SHARING attribute indicates that the access should be visible to other concurrent -->
<!-- similar accesses that may therefore share bufferpool pages. The WRAPPING attribute -->
<!-- indicates that the access should be allowed to perform wrapping, thereby allowing it to -->
<!-- start in the middle for better sharing with other concurrent accesses. The THROTTLE -->
<!-- attribute indicates that the access should be allowed to be throttled if this may -->
<!-- benefit other concurrent accesses. The SHARESPEED attribute is used to indicate whether -->
<!-- the access should be considered fast or slow for better grouping of concurrent accesses. -->
<!--*** -->
<xs:complexType name="accessType" abstract="true">

<xs:attribute name="TABLE" type="xs:string" use="optional"/>
<xs:attribute name="TABID" type="xs:string" use="optional"/>
<xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>
<xs:attribute name="SHARING" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="WRAPPING" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="THROTTLE" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="SHARESPEED" type="shareSpeed" use="optional"/>

</xs:complexType>
<!--**-->
<!-- Definition of an table scan access request method. -->
<!--**-->
<xs:complexType name="tableScanType">

<xs:complexContent>
<xs:extension base="accessType"/>

</xs:complexContent>
</xs:complexType>
<!-- ***-->
<!-- Definition of an index scan access request element. The index name is optional. -->
<!--*** -->
<xs:complexType name="indexScanType">

<xs:complexContent>
<xs:extension base="accessType">

<xs:attribute name="INDEX" type="xs:string" use="optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Definition of a list prefetch access request element. The index name is optional. -->
<!--*** -->
<xs:complexType name="listPrefetchType">

<xs:complexContent>
<xs:extension base="accessType">

<xs:attribute name="INDEX" type="xs:string" use="optional"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Definition of an extended access element which will be used by IXAND and ACCESS -->
<!-- requests. -->
<!-- A single index scan be specified via the INDEX attribute. Multiple indexes -->
<!-- can be specified via INDEX elements. The index element specification supersedes the -->
<!-- attribute specification. If a single index is specified, the optimizer will use the -->
<!-- index as the first index of the index ANDing access method and will choose addi- -->
<!-- tional indexes using cost. If multiple indexes are specified the optimizer will -->
<!-- use exactly those indexes in the specified order. If no indexes are specified -->
<!-- via either the INDEX attribute or INDEX elements, then the optimizer will choose -->
<!-- all indexes based upon cost. -->
<!-- Extension for XML support: -->
<!-- TYPE: Optional attribute. The allowed value is XMLINDEX. When the type is not -->
<!-- specified, the optimizer makes a cost based decision. -->
<!-- ALLINDEXES: Optional attribute. The allowed value is TRUE. The default -->
<!-- value is FALSE. -->
<!--*** -->
<xs:complexType name="extendedAccessType">

<xs:complexContent>

318 Troubleshooting and Tuning Database Performance

<xs:extension base="accessType">
<xs:sequence minOccurs="0">

<xs:element name="INDEX" type="indexType" minOccurs="2" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="INDEX" type="xs:string" use="optional"/>
<xs:attribute name="TYPE" type="xs:string" use="optional" fixed="XMLINDEX"/>
<xs:attribute name="ALLINDEXES" type="boolType" use="optional" fixed="TRUE"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<!--**-->
<!-- Definition of an index ANDing access request element. -->
<!-- Extension for XML support: -->
<!-- All attributes and elements in extendedAccessType are included. -->
<!-- Note that ALLINDEXES is a valid option only if TYPE is XMLINDEX. -->
<!-- STARJOIN index ANDing: Specifying STARJOIN='TRUE' or one or more NLJOIN elements -->
<!-- identifies the index ANDing request as a star join index ANDing request. When that -->
<!-- is the case: -->
<!-- TYPE cannot be XMLINDEX (and therefore ALLINDEXES cannot be specified). -->
<!-- Neither the INDEX attribute nor INDEX elements can be specified. -->
<!-- The TABLE or TABID attribute identifies the fact table. -->
<!-- Zero or more semijoins can be specified using NLJOIN elements. -->
<!-- If no semijoins are specified, the optimizer will choose them. -->
<!-- If a single semijoin is specified, the optimizer will use it as the first semijoin -->
<!-- and will choose the rest itself. -->
<!-- If multiple semijoins are specified the optimizer will use exactly those semijoins -->
<!-- in the specified order. -->
<!--*** -->
<xs:complexType name="indexAndingType">

<xs:complexContent>
<xs:extension base="extendedAccessType">

<xs:sequence minOccurs="0">
<xs:element name="NLJOIN" type="nestedLoopJoinType" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="STARJOIN" type="boolType" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<!--**-->
<!-- Definition of an INDEX element method. Index set is optional. If specified, -->
<!-- at least 2 are required. -->
<!--*** -->
<xs:complexType name="indexType">

<xs:attribute name="IXNAME" type="xs:string" use="optional"/>
</xs:complexType>
<!--**-->
<!-- Definition of an XANDOR access request method. -->
<!--**-->
<xs:complexType name="XANDORType">

<xs:complexContent>
<xs:extension base="accessType"/>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Use for derived table access or other cases where the access method is not of -->
<!-- consequence. -->
<!-- Extension for XML support: -->
<!-- All attributes and elements in extendedAccessType are included. -->
<!-- Note that INDEX attribute/elements and ALLINDEXES are valid options only if TYPE -->
<!-- is XMLINDEX. -->
<!--**-->
<xs:complexType name="anyAccessType">

<xs:complexContent>
<xs:extension base="extendedAccessType"/>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Definition of an index ORing access -->
<!-- Cannot specify more details (e.g indexes). Optimizer will choose the details based -->
<!-- upon cost. -->
<!--*** -->
<xs:complexType name="indexOringType">

<xs:complexContent>
<xs:extension base="accessType"/>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Effectively the super class from which join request elements inherit. -->
<!-- This type currently defines join element inputs and also the FIRST attribute. -->

Chapter 3. Factors affecting performance 319

<!-- A join request must have exactly two nested sub-elements. The sub-elements can be -->
<!-- either an access request or another join request. The first sub-element represents -->
<!-- outer table of the join operation while the second element represents the inner -->
<!-- table. The FIRST attribute indicates that the join result should be the first join -->
<!-- relative to other tables in the same FROM clause. -->
<!--*** -->
<xs:complexType name="joinType" abstract="true">

<xs:choice minOccurs="2" maxOccurs="2">
<xs:group ref="accessRequest"/>
<xs:group ref="joinRequest"/>

</xs:choice>
<xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

</xs:complexType>
<!--*** -->
<!-- Definition of nested loop join access request. Subclass of joinType. -->
<!-- Does not add any elements or attributes. -->
<!--*** -->
<xs:complexType name="nestedLoopJoinType">

<xs:complexContent>
<xs:extension base="joinType"/>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- Definition of merge join access request. Subclass of joinType. -->
<!-- Does not add any elements or attributes. -->
<!--*** -->
<xs:complexType name="mergeJoinType">

<xs:complexContent>
<xs:extension base="joinType"/>

</xs:complexContent>
</xs:complexType>
<!--*** -->
<!-- Definition of hash join access request. Subclass of joinType. -->
<!-- Does not add any elements or attributes. -->
<!--*** -->
<xs:complexType name="hashJoinType">

<xs:complexContent>
<xs:extension base="joinType"/>

</xs:complexContent>
</xs:complexType>
<!--*** -->
<!-- Any join is a subclass of binary join. Does not extend it in any way. -->
<!-- Does not add any elements or attributes. -->
<!--*** -->
<xs:complexType name="anyJoinType">

<xs:complexContent>
<xs:extension base="joinType"/>

</xs:complexContent>
</xs:complexType>
<!--**-->
<!-- The MQTENFORCE element can be specified with one of two attributes: -->
<!-- NAME: Specify the MQT name directly as a value to this attribute. -->
<!-- TYPE: Specify the type of the MQTs that should be enforced with this attribute. -->
<!-- Note that only the value of the first valid attribute found will be used. All -->
<!-- subsequent attributes will be ignored. -->
<!--**-->
<xs:complexType name="mqtEnforcementType">

<xs:attribute name="NAME" type="xs:string"/>
<xs:attribute name="TYPE" type="mqtEnforcementTypeType"/>

</xs:complexType>
<!--**-->
<!-- Allowable values for the TYPE attribute of an MQTENFORCE element: -->
<!-- NORMAL: Enforce usage of all semantically matchable MQTs, except replicated MQTs. -->
<!-- REPLICATED: Enforce usage of all semantically matchable replicated MQTs only. -->
<!-- ALL: Enforce usage of all semantically matchable MQTs. -->
<!--*** -->
<xs:simpleType name="mqtEnforcementTypeType">

<xs:restriction base="xs:string">
<xs:enumeration value="NORMAL"/>
<xs:enumeration value="REPLICATED"/>
<xs:enumeration value="ALL"/>

</xs:restriction>
</xs:simpleType>
<!--**-->
<!-- Allowable values for a boolean attribute. -->
<!--*** -->
<xs:simpleType name="boolType">

<xs:restriction base="xs:string">
<xs:enumeration value="TRUE"/>

320 Troubleshooting and Tuning Database Performance

<xs:enumeration value="FALSE"/>
</xs:restriction>

</xs:simpleType>
<!--**-->
<!-- Allowable values for an OPTION attribute. -->
<!--*** -->
<xs:simpleType name="optionType">

<xs:restriction base="xs:string">
<xs:enumeration value="ENABLE"/>
<xs:enumeration value="DISABLE"/>

</xs:restriction>
</xs:simpleType>
<!--**-->
<!-- Allowable values for a SHARESPEED attribute. -->
<!--*** -->
<xs:simpleType name="shareSpeed">

<xs:restriction base="xs:string">
<xs:enumeration value="FAST"/>
<xs:enumeration value="SLOW"/>

</xs:restriction>
</xs:simpleType>
<!--***-->
<!-- Definition of the qryopt type: the only values allowed are 0, 1, 2, 3, 5, 7 and 9 -->
<!--***-->
<xs:complexType name="qryoptType">

<xs:attribute name="VALUE" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="5"/>
<xs:enumeration value="7"/>
<xs:enumeration value="9"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>
<!--***-->
<!-- Definition of the degree type: any number between 1 and 32767 or the strings ANY or -1 -->
<!--** -->
<xs:simpleType name="intStringType">

<xs:union>
<xs:simpleType>

<xs:restriction base="xs:integer">
<xs:minInclusive value="1"></xs:minInclusive>
<xs:maxInclusive value="32767"></xs:maxInclusive>

</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="ANY"/>
<xs:enumeration value="-1"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

<xs:complexType name="degreeType">
<xs:attribute name="VALUE" type="intStringType"></xs:attribute>

</xs:complexType>
<!--***-->
<!-- Definition of DPF XML movement types -->
<!--** -->
<xs:complexType name="dpfXMLMovementType">

<xs:attribute name="VALUE" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="REFERENCE"/>
<xs:enumeration value="COMBINATION"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

</xs:schema>

Chapter 3. Factors affecting performance 321

XML schema for the OPTPROFILE element:

The OPTPROFILE element is the root of an optimization profile.

This element is defined as follows:
XML Schema

<xs:element name="OPTPROFILE">
<xs:complexType>

<xs:sequence>
<!-- Global optimization guidelines section. At most one can be specified. -->
<xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType" minOccurs="0"/>
<!-- Statement profile section. Zero or more can be specified -->
<xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<!-- Version attribute is currently optional -->
<xs:attribute name="VERSION" use="optional"/>

</xs:complexType>
</xs:element>

Description

The optional OPTGUIDELINES sub-element defines the global optimization
guidelines for the optimization profile. Each STMTPROFILE sub-element defines a
statement profile. The VERSION attribute identifies the current optimization profile
schema against which a specific optimization profile was created and validated.

XML schema for the global OPTGUIDELINES element:

The OPTGUIDELINES element defines the global optimization guidelines for the
optimization profile.

It is defined by the complex type globalOptimizationGuidelinesType.
XML Schema

<xs:complexType name="globalOptimizationGuidelinesType">
<xs:sequence>

<xs:group ref="MQTOptimizationChoices"/>
<xs:group ref="computationalPartitionGroupOptimizationChoices"/>
<xs:group ref="generalRequest"/>
<xs:group ref="mqtEnforcementRequest"/>

</xs:sequence>
</xs:complexType>

Description

Global optimization guidelines can be defined with elements from the groups
MQTOptimizationChoices, computationalPartitionGroupChoices, or
generalRequest.
v MQTOptimizationChoices group elements can be used to influence MQT

substitution.
v computationalPartitionGroupOptimizationChoices group elements can be used

to influence computational partition group optimization, which involves the
dynamic redistribution of data read from remote data sources. It applies only to
partitioned federated database configurations.

v The generalRequest group elements are not specific to a particular phase of the
optimization process, and can be used to change the optimizer's search space.
They can be specified globally or at the statement level.

322 Troubleshooting and Tuning Database Performance

v MQT enforcement requests specify semantically matchable materialized query
tables (MQTs) whose use in access plans should be enforced regardless of cost
estimates.

MQT optimization choices:

The MQTOptimizationChoices group defines a set of elements that can be used to
influence materialized query table (MQT) optimization. In particular, these
elements can be used to enable or disable consideration of MQT substitution, or to
specify the complete set of MQTs that are to be considered by the optimizer.
XML Schema

<xs:group name="MQTOptimizationChoices">
<xs:choice>

<xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">
<xs:complexType>

<xs:attribute name="OPTION" type="optionType" use="optional"/>
</xs:complexType>

</xs:element>
<xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="NAME" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:group>

Description

The MQTOPT element is used to enable or disable consideration of MQT
optimization. The OPTION attribute can take the value ENABLE (default) or
DISABLE.

The NAME attribute of an MQT element identifies an MQT that is to be
considered by the optimizer. The rules for forming a reference to an MQT in the
NAME attribute are the same as those for forming references to exposed table
names. If one or more MQT elements are specified, only those MQTs are
considered by the optimizer. The decision to perform MQT substitution using one
or more of the specified MQTs remains a cost-based decision.

Examples

The following example shows how to disable MQT optimization.
<OPTGUIDELINES>

<MQTOPT OPTION='DISABLE'/>
</OPTGUIDELINES>

The following example shows how to limit MQT optimization to the
Tpcd.PARTSMQT table and the COLLEGE.STUDENTS table.

<OPTGUIDELINES>
<MQT NAME='Tpcd.PARTSMQT'/>
<MQT NAME='COLLEGE.STUDENTS'/>

<OPTGUIDELINES>

Computational partition group optimization choices:

The computationalPartitionGroupOptimizationChoices group defines a set of
elements that can be used to influence computational partition group optimization.

Chapter 3. Factors affecting performance 323

In particular, these elements can be used to enable or disable computational group
optimization, or to specify the partition group that is to be used for computational
partition group optimization.
XML Schema

<xs:group name="computationalPartitionGroupOptimizationChoices">
<xs:choice>

<xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">
<xs:complexType>

<xs:attribute name="OPTION" type="optionType" use="optional"/>
</xs:complexType>

</xs:element>
<xs:element name="PART" minOccurs="0" maxOccurs="1">

<xs:complexType>
<xs:attribute name="NAME" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:group>

Description

The PARTOPT element is used to enable or disable consideration of computational
partition group optimization. The OPTION attribute can take the value ENABLE
(default) or DISABLE.

The PART element can be used to specify the partition group that is to be used for
computational partition group optimization. The NAME attribute must identify an
existing partition group. The decision to perform dynamic redistribution using the
specified partition group remains a cost-based decision.

Examples

The following example shows how to disable computational partition group
optimization.

<OPTGUIDELINES>
<PARTOPT OPTION='DISABLE'/>

</OPTGUIDELINES>

The following example shows how to specify that the WORKPART partition group
is to be used for computational partition group optimization.

<OPTGUIDELINES>
<MQT NAME='Tpcd.PARTSMQT'/>
<PART NAME='WORKPART'/>

<OPTGUIDELINES>

General optimization guidelines as global requests:

The generalRequest group defines guidelines that are not specific to a particular
phase of the optimization process, and can be used to change the optimizer's
search space.

General optimization guidelines can be specified at both the global and statement
levels. The description and syntax of general optimization guideline elements is the
same for both global optimization guidelines and statement-level optimization
guidelines. For more information, see “XML schema for general optimization
guidelines”.

XML schema for the STMTPROFILE element:

324 Troubleshooting and Tuning Database Performance

The STMTPROFILE element defines a statement profile within an optimization
profile.

It is defined by the complex type statementProfileType.
XML Schema

<xs:complexType name="statementProfileType">
<xs:sequence>

<xs:element name="STMTKEY" type="statementKeyType"/>
<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

</xs:sequence>
<xs:attribute name="ID" type="xs:string" use="optional"/>

</xs:complexType>

Description

A statement profile specifies optimization guidelines for a particular statement, and
includes the following parts.
v Statement key

An optimization profile can be in effect for more than one statement in an
application. Using the statement key, the optimizer automatically matches each
statement profile to a corresponding statement in the application. This enables
you to provide optimization guidelines for a statement without editing the
application. The statement key includes the text of the statement (as written in
the application), as well as other information that is needed to unambiguously
identify the correct statement. The STMTKEY sub-element represents the
statement key.

v Statement-level optimization guidelines
This part of the statement profile specifies the optimization guidelines in effect
for the statement that is identified by the statement key. For information, see
“XML schema for the statement-level OPTGUIDELINES element”.

v Statement profile name
A user-specified name that appears in diagnostic output to identify a particular
statement profile.

XML schema for the STMTKEY element:

The STMTKEY element enables the optimizer to match a statement profile to a
corresponding statement in an application.

It is defined by the complex type statementKeyType.
XML Schema

<xs:complexType name="statementKeyType" mixed="true">
<xs:attribute name="SCHEMA" type="xs:string" use="optional"/>
<xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

</xs:complexType>
</xs:schema>

Description

The optional SCHEMA attribute can be used to specify the default schema part of
the statement key.

The optional FUNCPATH attribute can be used to specify the function path part of
the statement key. Multiple paths must be separated by commas, and the specified

Chapter 3. Factors affecting performance 325

function paths must match exactly the function paths that are specified in the
compilation key.

Example

The following example shows a statement key definition that associates a
particular statement with a default schema of 'COLLEGE' and a function path of
'SYSIBM,SYSFUN,SYSPROC,DAVE'.

<STMTKEY SCHEMA='COLLEGE' FUNCPATH='SYSIBM,SYSFUN,SYSPROC,DAVE'>
<![CDATA[select * from orders" where foo(orderkey) > 20]]>

</STMTKEY>

CDATA tagging (starting with <![CDATA[and ending with]]>) is necessary
because the statement text contains the special XML character '>'.

Statement key and compilation key matching:

The statement key is used to identify the application statement to which
statement-level optimization guidelines apply.

When an SQL statement is compiled, various factors influence how the statement is
interpreted semantically by the compiler. The SQL statement and the settings of
SQL compiler parameters together form the compilation key. Each part of a
statement key corresponds to some part of a compilation key.

A statement key is comprised of the following parts:
v Statement text, which is the text of the statement as written in the application
v Default schema, which is the schema name that is used as the implicit qualifier

for unqualified table names; this part is optional, but should be provided if there
are unqualified table names in the statement

v Function path, which is the function path that is used when resolving
unqualified function and data type references; this part is optional, but should
be provided if there are unqualified user-defined functions or user-defined types
in the statement

When the data server compiles an SQL statement and finds an active optimization
profile, it attempts to match each statement key in the optimization profile with the
current compilation key. A statement key and compilation key are said to match if
each specified part of the statement key matches the corresponding part of the
compilation key. If a part of the statement key is not specified, the omitted part is
considered matched by default. Each unspecified part of the statement key is
treated as a wild card that matches the corresponding part of any compilation key.

After the data server finds a statement key that matches the current compilation
key, it stops searching. If there are multiple statement profiles whose statement
keys match the current compilation key, only the first such statement profile (based
on document order) is used.

XML schema for the statement-level OPTGUIDELINES element:

The OPTGUIDELINES element of a statement profile defines the optimization
guidelines in effect for the statement that is identified by the associated statement
key. It is defined by the type optGuidelinesType.
XML Schema

<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

326 Troubleshooting and Tuning Database Performance

<xs:complexType name="optGuidelinesType">
<xs:sequence>

<xs:group ref="general request" minOccurs="0" maxOccurs="1"/>
<xs:choice maxOccurs="unbounded">

<xs:group ref="rewriteRequest"/>
<xs:group ref="accessRequest"/>
<xs:group ref="joinRequest"/>
<xs:group ref="mqtEnforcementRequest"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

Description

The optGuidelinesType group defines the set of valid sub-elements of the
OPTGUIDELINES element. Each sub-element is interpreted as an optimization
guideline by the DB2 optimizer. Sub-elements can be categorized as either general
request elements, rewrite request elements, access request elements, or join request
elements.
v General request elements are used to specify general optimization guidelines,

which can be used to change the optimizer's search space.
v Rewrite request elements are used to specify query rewrite optimization guidelines,

which can be used to affect the query transformations that are applied when the
optimized statement is being determined.

v Access request elements and join request elements are plan optimization guidelines,
which can be used to affect access methods, join methods, and join orders that
are used in the execution plan for the optimized statement.

v MQT enforcement request elements specify semantically matchable materialized
query tables (MQTs) whose use in access plans should be enforced regardless of
cost estimates.

Note: Optimization guidelines that are specified in a statement profile take
precedence over those that are specified in the global section of an optimization
profile.

XML schema for general optimization guidelines:

The generalRequest group defines guidelines that are not specific to a particular
phase of the optimization process, and can be used to change the optimizer's
search space.
<!--*** --> \
<!-- Choices of general request elements. --> \
<!-- REOPT can be used to override the setting of the REOPT bind option. --> \
<!-- DPFXMLMOVEMENT can be used to affect the optimizer's plan when moving XML documents --> \
<!-- between database partitions. The allowed value can be REFERENCE or COMBINATION. The --> \
<!-- default value is NONE. --> \
<!--*** --> \
<xs:group name="generalRequest">

<xs:sequence>
<xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>
<xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>
<xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>
<xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>
<xs:element name="DPFXMLMOVEMENT" type="dpfXMLMovementType" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>

Note: General optimization guidelines can be specified at both the global and
statement levels. The description and syntax of general optimization guideline
elements is the same for both global optimization guidelines and statement-level
optimization guidelines.

Chapter 3. Factors affecting performance 327

Description

General request elements can be used to define general optimization guidelines,
which affect the optimization search space and hence, can affect the applicability of
rewrite and cost-based optimization guidelines.

DEGREE requests:

The DEGREE general request element can be used to override the setting of the
DEGREE bind option, the value of the dft_degree database configuration
parameter, or the result of a previous SET CURRENT DEGREE statement.

The DEGREE general request element is only considered if the instance is
configured for intra-partition parallelism; otherwise, a warning is returned. It is
defined by the complex type degreeType.
XML Schema

<xs:simpleType name="intStringType">
<xs:union>

<xs:simpleType>
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"></xs:minInclusive>
<xs:maxInclusive value="32767"></xs:maxInclusive>

</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="ANY"/>
<xs:enumeration value="-1"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

<xs:complexType name="degreeType">
<xs:attribute name="VALUE"

type="intStringType"></xs:attribute>
</xs:complexType>

Description

The DEGREE general request element has a required VALUE attribute that
specifies the setting of the DEGREE option. The attribute can take an integer value
from 1 to 32 767 or the string value -1 or ANY. The value -1 (or ANY) specifies that
the degree of parallelism is to be determined by the data server. A value of 1
specifies that the query should not use intra-partition parallelism.

DPFXMLMOVEMENT requests:

The DPFXMLMOVEMENT general request element can be used in partitioned
database environments to override the optimizer's decision to choose a plan in
which either a column of type XML is moved or only a reference to that column is
moved between database partitions. It is defined by the complex type
dpfXMLMovementType.
<xs:complexType name="dpfXMLMovementType">

<xs:attribute name="VALUE" use="required">
<xs:simpleType>

<xs:restriction base="xs:string"
<xs:enumeration value="REFERENCE"/>
<xs:enumeration value="COMBINATION"/>

328 Troubleshooting and Tuning Database Performance

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

Description

In partitioned database environments, data must sometimes be moved between
database partitions during statement execution. In the case of XML columns, the
optimizer can choose to move the actual documents that are contained in those
columns or merely a reference to the source documents on the original database
partitions.

The DPFXMLMOVEMENT general request element has a required VALUE
attribute with the following possible values: REFERENCE or COMBINATION. If a
row that contains an XML column needs to be moved from one database partition
to another:
v REFERENCE specifies that references to the XML documents are to be moved

through the table queue (TQ) operator. The documents themselves remain on the
source database partition.

v COMBINATION specifies that some XML documents are moved, and that only
references to the remaining XML documents are moved through the TQ
operator.

The decision of whether the documents or merely references to those documents
are moved depends on the conditions that prevail when the query runs. If the
DPFXMLMOVEMENT general request element has not been specified, the
optimizer makes cost-based decisions that are intended to maximize performance.

QRYOPT requests:

The QRYOPT general request element can be used to override the setting of the
QUERYOPT bind option, the value of the dft_queryopt database configuration
parameter, or the result of a previous SET CURRENT QUERY OPTIMIZATION
statement. It is defined by the complex type qryoptType.
XML Schema

<xs:complexType name="qryoptType">
<xs:attribute name="VALUE" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="0"/>
<xs:enumeration value="1"/>
<xs:enumeration value="2"/>
<xs:enumeration value="3"/>
<xs:enumeration value="5"/>
<xs:enumeration value="7"/>
<xs:enumeration value="9"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

Description

The QRYOPT general request element has a required VALUE attribute that
specifies the setting of the QUERYOPT option. The attribute can take any of the
following values: 0, 1, 2, 3, 5, 7, or 9. For detailed information about what these
values represent, see “Optimization classes”.

Chapter 3. Factors affecting performance 329

REOPT requests:

The REOPT general request element can be used to override the setting of the
REOPT bind option, which affects the optimization of statements that contain
parameter markers or host variables. It is defined by the complex type reoptType.
XML Schema

<xs:complexType name="reoptType">
<xs:attribute name="VALUE" use="required">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="ONCE"/>
<xs:enumeration value="ALWAYS"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:complexType>

Description

The REOPT general request element has a required VALUE attribute that specifies
the setting of the REOPT option. The attribute can take the value ONCE or
ALWAYS. ONCE specifies that the statement should be optimized for the first set
of host variable or parameter marker values. ALWAYS specifies that the statement
should be optimized for each set of host variable or parameter marker values.

RTS requests:

The RTS general request element can be used to enable or disable real-time
statistics collection. It can also be used to limit the amount of time taken by
real-time statistics collection.

For certain queries or workloads, it might be good practice to limit real-time
statistics collection so that extra overhead at statement compilation time can be
avoided. The RTS general request element is defined by the complex type rtsType.
<!--**--> \
<!-- RTS general request element to enable, disable or provide a time budget for --> \
<!-- real-time statistics collection. --> \
<!-- OPTION attribute allows enabling or disabling real-time statistics. --> \
<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.--> \
<!--*** --> \
<xs:complexType name="rtsType">

<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

Description

The RTS general request element has two optional attributes.
v The OPTION attribute is used to enable or disable real-time statistics collection.

It can take the value ENABLE (default) or DISABLE.
v The TIME attribute specifies the maximum amount of time (in milliseconds) that

can be spent (per statement) on real-time statistics collection at statement
compilation time.

If ENABLE is specified for the OPTION attribute, automatic statistics collection
and real-time statistics must be enabled through their corresponding configuration
parameters. Otherwise, the optimization guideline will not be applied, and
SQL0437W with reason code 13 is returned.

XML schema for query rewrite optimization guidelines:

330 Troubleshooting and Tuning Database Performance

The rewriteRequest group defines guidelines that impact the query rewrite phase
of the optimization process.
XML Schema

<xs:group name="rewriteRequest">
<xs:sequence>

<xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>
<xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>
<xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>
<xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

</xs:sequence>
</xs:group>

Description

If the INLIST2JOIN element is used to specify both statement-level and
predicate-level optimization guidelines, the predicate-level guidelines override the
statement-level guidelines.

IN-LIST-to-join query rewrite requests:

A INLIST2JOIN query rewrite request element can be used to enable or disable the
IN-LIST predicate-to-join rewrite transformation. It can be specified as a
statement-level optimization guideline or a predicate-level optimization guideline.
In the latter case, only one guideline per query can be enabled. The INLIST2JOIN
request element is defined by the complex type inListToJoinType.
XML Schema

<xs:complexType name="inListToJoinType">
<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>
<xs:attribute name="TABLE" type="xs:string" use="optional"/>
<xs:attribute name="COLUMN" type="xs:string" use="optional"/>

</xs:complexType>

Description

The INLIST2JOIN query rewrite request element has three optional attributes and
no sub-elements. The OPTION attribute can take the value ENABLE (default) or
DISABLE. The TABLE and COLUMN attributes are used to specify an IN-LIST
predicate. If these attributes are not specified, or are specified with an empty string
(“”) value, the guideline is handled as a statement-level guideline. If one or both of
these attributes are specified, it is handled as a predicate-level guideline. If the
TABLE attribute is not specified, or is specified with an empty string value, but the
COLUMN attribute is specified, the optimization guideline is ignored and
SQL0437W with reason code 13 is returned.

NOT-EXISTS-to-anti-join query rewrite requests:

The NOTEX2AJ query rewrite request element can be used to enable or disable the
NOT-EXISTS predicate-to-anti-join rewrite transformation. It can be specified as a
statement-level optimization guideline only. The NOTEX2AJ request element is
defined by the complex type notExistsToAntiJoinType.
XML Schema

<xs:complexType name="notExistsToAntiJoinType">
<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

Chapter 3. Factors affecting performance 331

Description

The NOTEX2AJ query rewrite request element has one optional attribute and no
sub-elements. The OPTION attribute can take the value ENABLE (default) or
DISABLE.

NOT-IN-to-anti-join query rewrite requests:

The NOTIN2AJ query rewrite request element can be used to enable or disable the
NOT-IN predicate-to-anti-join rewrite transformation. It can be specified as a
statement-level optimization guideline only. The NOTIN2AJ request element is
defined by the complex type notInToAntiJoinType.
XML Schema

<xs:complexType name="notInToAntiJoinType">
<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

Description

The NOTIN2AJ query rewrite request element has one optional attribute and no
sub-elements. The OPTION attribute can take the value ENABLE (default) or
DISABLE.

Subquery-to-join query rewrite requests:

The SUBQ2JOIN query rewrite request element can be used to enable or disable
the subquery-to-join rewrite transformation. It can be specified as a statement-level
optimization guideline only. The SUBQ2JOIN request element is defined by the
complex type subqueryToJoinType.
XML Schema

<xs:complexType name="subqueryToJoinType">
<xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

Description

The SUBQ2JOIN query rewrite request element has one optional attribute and no
sub-elements. The OPTION attribute can take the value ENABLE (default) or
DISABLE.

XML schema for plan optimization guidelines:

Plan optimization guidelines can consist of access requests or join requests.
v An access request specifies an access method for a table reference.
v A join request specifies a method and sequence for performing a join operation.

Join requests are composed of other access or join requests.

Most of the available access requests correspond to the optimizer's data access
methods, such as table scan, index scan, and list prefetch, for example. Most of the
available join requests correspond to the optimizer's join methods, such as
nested-loop join, hash join, and merge join. Each access request or join request
element can be used to influence plan optimization.

Access requests:

332 Troubleshooting and Tuning Database Performance

The accessRequest group defines the set of valid access request elements. An access
request specifies an access method for a table reference.
XML Schema

<xs:group name="accessRequest">
<xs:choice>

<xs:element name="TBSCAN" type="tableScanType"/>
<xs:element name="IXSCAN" type="indexScanType"/>
<xs:element name="LPREFETCH" type="listPrefetchType"/>
<xs:element name="IXAND" type="indexAndingType"/>
<xs:element name="IXOR" type="indexOringType"/>
<xs:element name="XISCAN" type="indexScanType"/>
<xs:element name="XANDOR" type="XANDORType"/>
<xs:element name="ACCESS" type="anyAccessType"/>

</xs:choice>
</xs:group>

Description

v TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN, and XANDOR
These elements correspond to DB2 data access methods, and can only be applied
to local tables that are referenced in a statement. They cannot refer to nicknames
(remote tables) or derived tables (the result of a subselect).

v ACCESS
This element, which causes the optimizer to choose the access method, can be
used when the join order (not the access method) is of primary concern. The
ACCESS element must be used when the target table reference is a derived
table. For XML queries, this element can also be used with attribute TYPE =
XMLINDEX to specify that the optimizer is to choose XML index access plans.

Access types:

Common aspects of the TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN,
XANDOR, and ACCESS elements are defined by the abstract type accessType.
XML Schema

<xs:complexType name="accessType" abstract="true">
<xs:attribute name="TABLE" type="xs:string" use="optional"/>
<xs:attribute name="TABID" type="xs:string" use="optional"/>
<xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>
<xs:attribute name="SHARING" type="optionType" use="optional"

default="ENABLE"/>
<xs:attribute name="WRAPPING" type="optionType" use="optional"

default="ENABLE"/>
<xs:attribute name="THROTTLE" type="optionType" use="optional"/>
<xs:attribute name="SHARESPEED" type="shareSpeed" use="optional"/>

</xs:complexType>

<xs:complexType name="extendedAccessType">
<xs:complexContent>

<xs:extension base="accessType">
<xs:sequence minOccurs="0">

<xs:element name="INDEX" type="indexType" minOccurs="2"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="INDEX" type="xs:string" use="optional"/>
<xs:attribute name="TYPE" type="xs:string" use="optional"

fixed="XMLINDEX"/>
<xs:attribute name="ALLINDEXES" type="boolType" use="optional"

fixed="TRUE"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Chapter 3. Factors affecting performance 333

Description

All access request elements extend the complex type accessType. Each such
element must specify the target table reference using either the TABLE or TABID
attribute. For information on how to form proper table references from an access
request element, see “Forming table references in optimization guidelines”.

Access request elements can also specify an optional FIRST attribute. If the FIRST
attribute is specified, it must have the value TRUE. Adding the FIRST attribute to
an access request element indicates that the execution plan should include the
specified table as the first table in the join sequence of the corresponding FROM
clause. Only one access or join request per FROM clause can specify the FIRST
attribute. If multiple access or join requests targeting tables of the same FROM
clause specify the FIRST attribute, all but the first such request is ignored and a
warning (SQL0437W with reason code 13) is returned.

New optimizer guidelines enable you to influence the compiler's scan sharing
decisions. In cases where the compiler would have allowed sharing scans,
wrapping scans, or throttling, specifying the appropriate guideline will prevent
sharing scans, wrapping scans, or throttling. A sharing scan can be seen by other
scans that are participating in scan sharing, and those scans can base certain
decisions on that information. A wrapping scan is able to start at an arbitrary point
in the table to take advantage of pages that are already in the buffer pool. A
throttled scan has been delayed to increase the overall level of sharing.

Valid optionType values (for the SHARING, WRAPPING, and THROTTLE
attributes) are DISABLE and ENABLE (the default). SHARING and WRAPPING
cannot be enabled when the compiler chooses to disable them. Using ENABLE will
have no effect in those cases. THROTTLE can be either enabled or disabled. Valid
SHARESPEED values (to override the compiler's estimate of scan speed) are FAST
and SLOW. The default is to allow the compiler to determine values, based on its
estimate.

The only supported value for the TYPE attribute is XMLINDEX, which indicates to
the optimizer that the table must be accessed using one of the XML index access
methods, such as IXAND, IXOR, XANDOR, or XISCAN. If this attribute is not
specified, the optimizer makes a cost-based decision when selecting an access plan
for the specified table.

The optional INDEX attribute can be used to specify an index name.

The optional INDEX element can be used to specify two or more names of indexes
as index elements. If the INDEX attribute and the INDEX element are both
specified, the INDEX attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can
only be specified if the TYPE attribute has a value of XMLINDEX. If the
ALLINDEXES attribute is specified, the optimizer must use all applicable relational
indexes and indexes over XML data to access the specified table, regardless of cost.

Any access requests:

The ACCESS access request element can be used to specify that the optimizer is to
choose an appropriate method for accessing a table, based on cost, and must be

334 Troubleshooting and Tuning Database Performance

used when referencing a derived table. A derived table is the result of another
subselect. This access request element is defined by the complex type
anyAccessType.
XML Schema

<xs:complexType name="anyAccessType">
<xs:complexContent>

<xs:extension base="extendedAccessType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type anyAccessType is a simple extension of the abstract type
extendedAccessType. No new elements or attributes are added.

The TYPE attribute, whose only supported value is XMLINDEX, indicates to the
optimizer that the table must be accessed using one of the XML index access
methods, such as IXAND, IXOR, XANDOR, or XISCAN. If this attribute is not
specified, the optimizer makes a cost-based decision when selecting an access plan
for the specified table.

The optional INDEX attribute can be used to specify an index name only if the
TYPE attribute has a value of XMLINDEX. If this attribute is specified, the
optimizer might choose one of the following plans:
v An XISCAN plan using the specified index over XML data
v An XANDOR plan, such that the specified index over XML data is one of the

indexes under XANDOR; the optimizer will use all applicable indexes over XML
data in the XANDOR plan

v An IXAND plan, such that the specified index is the leading index of IXAND;
the optimizer will add more indexes to the IXAND plan in a cost-based fashion

v A cost-based IXOR plan

The optional INDEX element can be used to specify two or more names of indexes
as index elements only if the TYPE attribute has a value of XMLINDEX. If this
element is specified, the optimizer might choose one of the following plans:
v An XANDOR plan, such that the specified indexes over XML data appear under

XANDOR; the optimizer will use all applicable indexes over XML data in the
XANDOR plan

v An IXAND plan, such that the specified indexes are the indexes of IXAND, in
the specified order

v A cost-based IXOR plan

If the INDEX attribute and the INDEX element are both specified, the INDEX
attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can
only be specified if the TYPE attribute has a value of XMLINDEX. If this attribute
is specified, the optimizer must use all applicable relational indexes and indexes
over XML data to access the specified table, regardless of cost. The optimizer
chooses one of the following plans:
v An XANDOR plan with all applicable indexes over XML data appearing under

the XANDOR operator
v An IXAND plan with all applicable relational indexes and indexes over XML

data appearing under the IXAND operator

Chapter 3. Factors affecting performance 335

v An IXOR plan
v An XISCAN plan if only a single index is defined on the table and that index is

of type XML

Examples

The following guideline is an example of an any access request:
<OPTGUIDELINES>

<HSJOIN>
<ACCESS TABLE='S1'/>
<IXSCAN TABLE='PS1'/>

</HSJOIN>
</OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that some XML
index access to the SECURITY table should be used. The optimizer might pick any
XML index plan, such as an XISCAN, IXAND, XANDOR, or IXOR plan.
SELECT * FROM security

WHERE XMLEXISTS('$SDOC/Security/SecurityInformation/
StockInformation[Industry= "OfficeSupplies"]')

<OPTGUIDELINES>
<ACCESS TABLE='SECURITY' TYPE='XMLINDEX'/>

</OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that all possible
index access to the SECURITY table should be used. The choice of method is left to
the optimizer. Assume that two XML indexes, SEC_INDUSTRY and SEC_SYMBOL,
match the two XML predicates. The optimizer chooses either the XANDOR or the
IXAND access method using a cost-based decision.
SELECT * FROM security

WHERE XMLEXISTS('$SDOC/Security/SecurityInformation/
StockInformation[Industry= "Software"]') AND

XMLEXISTS('$SDOC/Security/Symbol[.="IBM"]')

<OPTGUIDELINES>
<ACCESS TABLE='SECURITY' TYPE='XMLINDEX' ALLINDEXES='TRUE'/>

</OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that the SECURITY
table should be accessed using at least the SEC_INDUSTRY XML index. The
optimizer chooses one of the following access plans in a cost-based fashion:
v An XISCAN plan using the SEC_INDUSTRY XML index
v An IXAND plan with the SEC_INDUSTRY index as the first leg of the IXAND.

The optimizer is free to use more relational or XML indexes in the IXAND plan
following cost-based analysis. If a relational index were available on the
TRANS_DATE column, for example, that index might appear as an additional
leg of the IXAND if that were deemed to be beneficial by the optimizer.

v A XANDOR plan using the SEC_INDUSTRY index and other applicable XML
indexes

SELECT * FROM security
WHERE trans_date = CURRENT DATE AND

XMLEXISTS('$SDOC/Security/SecurityInformation/
StockInformation[Industry= "Software"]') AND

XMLEXISTS('$SDOC/Security/Symbol[.="IBM"]')

<OPTGUIDELINES>
<ACCESS TABLE='SECURITY' TYPE='XMLINDEX' INDEX='SEC_INDUSTRY'/>

</OPTGUIDELINES>

336 Troubleshooting and Tuning Database Performance

Index ANDing access requests:

The IXAND access request element can be used to specify that the optimizer is to
use the index ANDing data access method to access a local table. It is defined by
the complex type indexAndingType.
XML Schema

<xs:complexType name="indexAndingType">
<xs:complexContent>

<xs:extension base="extendedAccessType">
<xs:sequence minOccurs="0">

<xs:element name="NLJOIN" type="nestedLoopJoinType" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="STARJOIN" type="boolType" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Description

The complex type indexAndingType is an extension of extendedAccessType. When
the STARJOIN attribute and NLJOIN elements are not specified, indexAndingType
becomes a simple extension of extendedAccessType. The extendedAccessType type
extends the abstract type accessType by adding an optional INDEX attribute,
optional INDEX sub-elements, an optional TYPE attribute, and an optional
ALLINDEXES attribute. The INDEX attribute can be used to specify the first index
that is to be used in the index ANDing operation. If the INDEX attribute is used,
the optimizer chooses additional indexes and the access sequence in a cost-based
fashion. The INDEX sub-elements can be used to specify the exact set of indexes
and access sequence. The order in which the INDEX sub-elements appear indicates
the order in which the individual index scans should be performed. The
specification of INDEX sub-elements supersedes the specification of the INDEX
attribute.
v If no indexes are specified, the optimizer chooses both the indexes and the

access sequence in a cost-based fashion.
v If indexes are specified using either the attribute or sub-elements, these indexes

must be defined on the table that is identified by the TABLE or TABID attribute.
v If there are no indexes defined on the table, the access request is ignored and

SQL0437W with reason code 13 is returned.

The TYPE attribute, whose only supported value is XMLINDEX, indicates to the
optimizer that the table must be accessed using one or more indexes over XML
data.

The optional INDEX attribute can be used to specify an XML index name only if
the TYPE attribute has a value of XMLINDEX. A relational index can be specified
in the optional INDEX attribute regardless of the TYPE attribute specification. The
specified index is used by the optimizer as the leading index of an IXAND plan.
The optimizer will add more indexes to the IXAND plan in a cost-based fashion.

The optional INDEX element can be used to specify two or more names of indexes
over XML data as index elements only if the TYPE attribute has a value of
XMLINDEX. Relational indexes can be specified in the optional INDEX elements
regardless of the TYPE attribute specification. The specified indexes are used by
the optimizer as the indexes of an IXAND plan in the specified order.

If the TYPE attribute is not present, INDEX attributes and INDEX elements are still
valid for relational indexes.

Chapter 3. Factors affecting performance 337

If the INDEX attribute and the INDEX element are both specified, the INDEX
attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can
only be specified if the TYPE attribute has a value of XMLINDEX. If this attribute
is specified, the optimizer must use all applicable relational indexes and indexes
over XML data in an IXAND plan to access the specified table, regardless of cost.

If the TYPE attribute is specified, but neither INDEX attribute, INDEX element, nor
ALLINDEXES attribute is specified, the optimizer will choose an IXAND plan with
at least one index over XML data. Other indexes in the plan can be either relational
indexes or indexes over XML data. The order and choice of indexes is determined
by the optimizer in a cost-based fashion.

Block indexes must appear before record indexes in an index ANDing access
request. If this requirement is not met, SQL0437W with reason code 13 is returned.
The index ANDing access method requires that at least one predicate is able to be
indexed for each index. If index ANDing is not eligible because the required
predicate does not exist, the access request is ignored and SQL0437W with reason
code 13 is returned. If the index ANDing data access method is not in the search
space that is in effect for the statement, the access request is ignored and
SQL0437W with reason code 13 is returned.

You can use the IXAND access request element to request a star join index
ANDing plan. The optional STARJOIN attribute on the IXAND element specifies
that the IXAND is for a star join index ANDing plan. NLJOINs can be
sub-elements of the IXAND, and must be properly constructed star join semi-joins.
STARJOIN="FALSE" specifies a request for a regular base access index ANDing plan.
STARJOIN="TRUE" specifies a request for a star join index ANDing plan. The default
value is determined by context: If the IXAND has one or more semi-join child
elements, the default is TRUE; otherwise, the default is FALSE. If STARJOIN="TRUE"
is specified:
v The INDEX, TYPE, and ALLINDEXES attributes cannot be specified
v INDEX elements cannot be specified

If NLJOIN elements are specified:
v The INDEX, TYPE, and ALLINDEXES attributes cannot be specified
v INDEX elements cannot be specified
v The only supported value for the STARJOIN attribute is TRUE

The following example illustrates an index ANDing access request:
SQL statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from "Tpcd".partsupp ps1, "Tpcd".suppliers s1
where "Tpcd".parts.p_partkey = ps1.ps_partkey and

s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

order by s.s_name
optimize for 1 row

338 Troubleshooting and Tuning Database Performance

Optimization guideline:

<OPTGUIDELINES>
<IXAND TABLE='"Tpcd".PARTS' FIRST='TRUE'>

<INDEX IXNAME='ISIZE'/>
<INDEX IXNAME='ITYPE'/>

</IXAND>
</OPTGUIDELINES>

The index ANDing request specifies that the PARTS table in the main subselect is
to be satisfied using an index ANDing data access method. The first index scan
will use the ISIZE index, and the second index scan will use the ITYPE index. The
indexes are specified by the IXNAME attribute of the INDEX element. The FIRST
attribute setting specifies that the PARTS table is to be the first table in the join
sequence with the SUPPLIERS, PARTSUPP, and derived tables in the same FROM
clause.

The following example illustrates a star join index ANDing guideline that specifies
the first semi-join but lets the optimizer choose the remaining ones. It also lets the
optimizer choose the specific access method for the outer table and the index for
the inner table in the specified semi-join.

<IXAND TABLE="F">
<NLJOIN>

<ACCESS TABLE="D1"/>
<IXSCAN TABLE="F"/>

</NLJOIN>
</IXAND>

The following guideline specifies all of the semi-joins, including details, leaving the
optimizer with no choices for the plan at and below the IXAND.

<IXAND TABLE="F" STARJOIN="TRUE">
<NLJOIN>

<TBSCAN TABLE="D1"/>
<IXSCAN TABLE="F" INDEX="FX1"/>

</NLJOIN>
<NLJOIN>

<TBSCAN TABLE="D4"/>
<IXSCAN TABLE="F" INDEX="FX4"/>

</NLJOIN>
<NLJOIN>

<TBSCAN TABLE="D3"/>
<IXSCAN TABLE="F" INDEX="FX3"/>

</NLJOIN>
</IXAND>

Index ORing access requests:

The IXOR access request element can be used to specify that the optimizer is to
use the index ORing data access method to access a local table. It is defined by the
complex type indexOringType.
XML Schema

<xs:complexType name="indexOringType">
<xs:complexContent>

<xs:extension base="accessType"/>
</xs:complexContent>

</xs:complexType>

Chapter 3. Factors affecting performance 339

Description

The complex type indexOringType is a simple extension of the abstract type
accessType. No new elements or attributes are added. If the index ORing access
method is not in the search space that is in effect for the statement, the access
request is ignored and SQL0437W with reason code 13 is returned. The optimizer
chooses the predicates and indexes that are used in the index ORing operation in a
cost-based fashion. The index ORing access method requires that at least one IN
predicate is able to be indexed or that a predicate with terms is able to be indexed
and connected by a logical OR operation. If index ORing is not eligible because the
required predicate or indexes do not exist, the request is ignored and SQL0437W
with reason code 13 is returned.

The following example illustrates an index ORing access request:
SQL statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from "Tpcd".partsupp ps1, "Tpcd".suppliers s1
where "Tpcd".parts.p_partkey = ps1.ps_partkey and

s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

order by s.s_name
optimize for 1 row

Optimization guideline:

<OPTGUIDELINES>
<IXOR TABLE='S'/>

</OPTGUIDELINES>

This index ORing access request specifies that an index ORing data access method
is to be used to access the SUPPLIERS table that is referenced in the main
subselect. The optimizer will choose the appropriate predicates and indexes for the
index ORing operation in a cost-based fashion.

Index scan access requests:

The IXSCAN access request element can be used to specify that the optimizer is to
use an index scan to access a local table. It is defined by the complex type
indexScanType.
XML Schema

<xs:complexType name="indexScanType">
<xs:complexContent>

<xs:extension base="accessType">
<xs:attribute name="INDEX" type="xs:string" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

340 Troubleshooting and Tuning Database Performance

Description

The complex type indexScanType extends the abstract accessType by adding an
optional INDEX attribute. The INDEX attribute specifies the name of the index that
is to be used to access the table.
v If the index scan access method is not in the search space that is in effect for the

statement, the access request is ignored and SQL0437W with reason code 13 is
returned.

v If the INDEX attribute is specified, it must identify an index defined on the table
that is identified by the TABLE or TABID attribute. If the index does not exist,
the access request is ignored and SQL0437W with reason code 13 is returned.

v If the INDEX attribute is not specified, the optimizer chooses an index in a
cost-based fashion. If no indexes are defined on the target table, the access
request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of an index scan access request:
<OPTGUIDELINES>

<IXSCAN TABLE='S' INDEX='I_SUPPKEY'/>
</OPTGUIDELINES>

List prefetch access requests:

The LPREFETCH access request element can be used to specify that the optimizer
is to use a list prefetch index scan to access a local table. It is defined by the
complex type listPrefetchType.
XML Schema

<xs:complexType name="listPrefetchType">
<xs:complexContent>

<xs:extension base="accessType">
<xs:attribute name="INDEX" type="xs:string" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Description

The complex type listPrefetchType extends the abstract type accessType by adding
an optional INDEX attribute. The INDEX attribute specifies the name of the index
that is to be used to access the table.
v If the list prefetch access method is not in the search space that is in effect for

the statement, the access request is ignored and SQL0437W with reason code 13
is returned.

v The list prefetch access method requires that at least one predicate is able to be
indexed. If the list prefetch access method is not eligible because the required
predicate does not exist, the access request is ignored and SQL0437W with
reason code 13 is returned.

v If the INDEX attribute is specified, it must identify an index defined on the table
that is specified by the TABLE or TABID attribute. If the index does not exist,
the access request is ignored and SQL0437W with reason code 13 is returned.

v If the INDEX attribute is not specified, the optimizer chooses an index in a
cost-based fashion. If no indexes are defined on the target table, the access
request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a list prefetch access request:

Chapter 3. Factors affecting performance 341

<OPTGUIDELINES>
<LPREFETCH TABLE='S1' INDEX='I_SNATION'/>

</OPTGUIDELINES>

Table scan access requests:

The TBSCAN access request element can be used to specify that the optimizer is to
use a sequential table scan to access a local table. It is defined by the complex type
tableScanType.
XML Schema

<xs:complexType name="tableScanType">
<xs:complexContent>

<xs:extension base="accessType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type tableScanType is a simple extension of the abstract type
accessType. No new elements or attributes are added. If the table scan access
method is not in the search space that is in effect for the statement, the access
request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a table scan access request:
<OPTGUIDELINES>

<TBSCAN TABLE='S1'/>
</OPTGUIDELINES>

XML index ANDing and ORing access requests:

The XANDOR access request element can be used to specify that the optimizer is
to use multiple XANDORed index over XML data scans to access a local table. It is
defined by the complex type XANDORType.
XML Schema

<xs:complexType name="XANDORType">
<xs:complexContent>

<xs:extension base="accessType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type XANDORType is a simple extension of the abstract type
accessType. No new elements or attributes are added.

Example

Given the following query:
SELECT * FROM security

WHERE trans_date = CURRENT DATE AND
XMLEXISTS('$SDOC/Security/SecurityInformation/

StockInformation[Industry = "Software"]') AND
XMLEXISTS('$SDOC/Security/Symbol[.="IBM"]')

The following XANDOR guideline specifies that the SECURITY table should be
accessed using a XANDOR operation against all applicable XML indexes. Any

342 Troubleshooting and Tuning Database Performance

relational indexes on the SECURITY table will not be considered, because a
relational index cannot be used with a XANDOR operator.
<OPTGUIDELINES>

<XANDOR TABLE='SECURITY'/>
</OPTGUIDELINES>

XML index scan access requests:

The XISCAN access request element can be used to specify that the optimizer is to
use an index over XML data scan to access a local table. It is defined by the
complex type indexScanType.
XML Schema

<xs:complexType name="indexScanType">
<xs:complexContent>

<xs:extension base="accessType"/>
<xs:attribute name="INDEX" type="xs:string" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Description

The complex type indexScanType extends the abstract accessType by adding an
optional INDEX attribute. The INDEX attribute specifies the name of the index
over XML data that is to be used to access the table.
v If the index over XML data scan access method is not in the search space that is

in effect for the statement, the access request is ignored and SQL0437W with
reason code 13 is returned.

v If the INDEX attribute is specified, it must identify an index over XML data
defined on the table that is identified by the TABLE or TABID attribute. If the
index does not exist, the access request is ignored and SQL0437W with reason
code 13 is returned.

v If the INDEX attribute is not specified, the optimizer chooses an index over XML
data in a cost-based fashion. If no indexes over XML data are defined on the
target table, the access request is ignored and SQL0437W with reason code 13 is
returned.

Example

Given the following query:
SELECT * FROM security

WHERE XMLEXISTS('$SDOC/Security/SecurityInformation/
StockInformation[Industry = "OfficeSupplies"]')

The following XISCAN guideline specifies that the SECURITY table should be
accessed using an XML index named SEC_INDUSTRY.
<OPTGUIDELINES>

<XISCAN TABLE='SECURITY' INDEX='SEC_INDUSTRY'/>
</OPTGUIDELINES>

Join requests:

The joinRequest group defines the set of valid join request elements. A join request
specifies a method for joining two tables.

Chapter 3. Factors affecting performance 343

XML Schema

<xs:group name="joinRequest">
<xs:choice>

<xs:element name="NLJOIN" type="nestedLoopJoinType"/>
<xs:element name="HSJOIN" type="hashJoinType"/>
<xs:element name="MSJOIN" type="mergeJoinType"/>
<xs:element name="JOIN" type="anyJoinType"/>

</xs:choice>
</xs:group>

Description

v NLJOIN, MSJOIN, and HSJOIN
These elements correspond to the nested-loop, merge, and hash join methods,
respectively.

v JOIN
This element, which causes the optimizer to choose the join method, can be used
when the join order is not of primary concern.

All join request elements contain two sub-elements that represent the input tables
of the join operation. Join requests can also specify an optional FIRST attribute.

The following guideline is an example of a join request:
<OPTGUIDELINES>

<HSJOIN>
<ACCESS TABLE='S1'/>
<IXSCAN TABLE='PS1'/>

</HSJOIN>
</OPTGUIDELINES>

The nesting order ultimately determines the join order. The following example
illustrates how larger join requests can be constructed from smaller join requests:

<OPTGUIDELINES>
<MSJOIN>

<NLJOIN>
<IXSCAN TABLE='"Tpcd".Parts'/>
<IXSCAN TABLE="PS"/>

</NLJOIN>
<IXSCAN TABLE='S'/>

</MSJOIN>
</OPTGUIDELINES>

Join types:

Common aspects of all join request elements are defined by the abstract type
joinType.
XML Schema

<xs:complexType name="joinType" abstract="true">
<xs:choice minOccurs="2" maxOccurs="2">

<xs:group ref="accessRequest"/>
<xs:group ref="joinRequest"/>

</xs:choice>
<xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

</xs:complexType>

Description

Join request elements that extend the complex type joinType must have exactly two
sub-elements. Either sub-element can be an access request element chosen from the

344 Troubleshooting and Tuning Database Performance

accessRequest group, or another join request element chosen from the joinRequest
group. The first sub-element appearing in the join request specifies the outer table
of the join operation, and the second element specifies the inner table.

If the FIRST attribute is specified, it must have the value TRUE. Adding the FIRST
attribute to a join request element indicates that you want an execution plan in
which the tables that are targeted by the join request are the outermost tables in
the join sequence for the corresponding FROM clause. Only one access or join
request per FROM clause can specify the FIRST attribute. If multiple access or join
requests that target tables of the same FROM clause specify the FIRST attribute, all
but the initial request are ignored and SQL0437W with reason code 13 is returned.

Any join requests:

The JOIN join request element can be used to specify that the optimizer is to
choose an appropriate method for joining two tables in a particular order.

Either table can be local or derived, as specified by an access request sub-element,
or it can be the result of a join operation, as specified by a join request
sub-element. A derived table is the result of another subselect. This join request
element is defined by the complex type anyJoinType.
XML Schema

<xs:complexType name="anyJoinType">
<xs:complexContent>

<xs:extension base="joinType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type anyJoinType is a simple extension of the abstract type joinType.
No new elements or attributes are added.

The following example illustrates the use of the JOIN join request element to force
a particular join order for a set of tables:
SQL statement:

select s.s_name, s.s_address, s.s_phone, s.s_comment
from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps
where p_partkey = ps.ps_partkey and

s.s_suppkey = ps.ps_suppkey and
p_size = 39 and
p_type = 'BRASS' and
s.s_nation in ('MOROCCO', 'SPAIN') and
ps.ps_supplycost = (select min(ps1.ps_supplycost)

from "Tpcd".partsupp ps1, "Tpcd".suppliers s1
where "Tpcd".parts.p_partkey = ps1.ps_partkey and

s1.s_suppkey = ps1.ps_suppkey and
s1.s_nation = s.s_nation)

order by s.s_name

Optimization guideline:

<OPTGUIDELINES>
<JOIN>

<JOIN>
<ACCESS TABLE='Tpcd".PARTS'/>
<ACCESS TABLE='S'/>

Chapter 3. Factors affecting performance 345

</JOIN>
<ACCESS TABLE='PS'>

</JOIN>
</OPTGUIDELINES>

The JOIN join request elements specify that the PARTS table in the main subselect
is to be joined with the SUPPLIERS table, and that this result is to be joined to the
PARTSUPP table. The optimizer will choose the join methods for this particular
sequence of joins in a cost-based fashion.

Hash join requests:

The HSJOIN join request element can be used to specify that the optimizer is to
join two tables using a hash join method.

Either table can be local or derived, as specified by an access request sub-element,
or it can be the result of a join operation, as specified by a join request
sub-element. A derived table is the result of another subselect. This join request
element is defined by the complex type hashJoinType.
XML Schema

<xs:complexType name="hashJoinType">
<xs:complexContent>

<xs:extension base="joinType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type hashJoinType is a simple extension of the abstract type joinType.
No new elements or attributes are added. If the hash join method is not in the
search space that is in effect for the statement, the join request is ignored and
SQL0437W with reason code 13 is returned.

The following guideline is an example of a hash join request:
<OPTGUIDELINES>

<HSJOIN>
<ACCESS TABLE='S1'/>
<IXSCAN TABLE='PS1'/>

</HSJOIN>
</OPTGUIDELINES>

Merge join requests:

The MSJOIN join request element can be used to specify that the optimizer is to
join two tables using a merge join method.

Either table can be local or derived, as specified by an access request sub-element,
or it can be the result of a join operation, as specified by a join request
sub-element. A derived table is the result of another subselect. This join request
element is defined by the complex type mergeJoinType.
XML Schema

<xs:complexType name="mergeJoinType">
<xs:complexContent>

<xs:extension base="joinType"/>
</xs:complexContent>

</xs:complexType>

346 Troubleshooting and Tuning Database Performance

Description

The complex type mergeJoinType is a simple extension of the abstract type
joinType. No new elements or attributes are added. If the merge join method is not
in the search space that is in effect for the statement, the join request is ignored
and SQL0437W with reason code 13 is returned.

The following guideline is an example of a merge join request:
<OPTGUIDELINES>

<MSJOIN>
<NLJOIN>

<IXSCAN TABLE='"Tpcd".Parts'/>
<IXSCAN TABLE="PS"/>

</NLJOIN>
<IXSCAN TABLE='S'/>

</MSJOIN>
</OPTGUIDELINES>

Nested-loop join requests:

The NLJOIN join request element can be used to specify that the optimizer is to
join two tables using a nested-loop join method.

Either table can be local or derived, as specified by an access request sub-element,
or it can be the result of a join operation, as specified by a join request
sub-element. A derived table is the result of another subselect. This join request
element is defined by the complex type nestedLoopJoinType.
XML Schema

<xs:complexType name="nestedLoopJoinType">
<xs:complexContent>

<xs:extension base="joinType"/>
</xs:complexContent>

</xs:complexType>

Description

The complex type nestedLoopJoinType is a simple extension of the abstract type
joinType. No new elements or attributes are added. If the nested-loop join method
is not in the search space that is in effect for the statement, the join request is
ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a nested-loop join request:
<OPTGUIDELINES>

<NLJOIN>
<IXSCAN TABLE='"Tpcd".Parts'/>
<IXSCAN TABLE="PS"/>

</NLJOIN>
</OPTGUIDELINES>

SYSTOOLS.OPT_PROFILE table:

The SYSTOOLS.OPT_PROFILE table contains all of the optimization profiles.

There are two methods to create this table:
v Call the SYSINSTALLOBJECTS procedure:

db2 "call sysinstallobjects('opt_profiles', 'c', '', '')"

v Issue the CREATE TABLE statement:

Chapter 3. Factors affecting performance 347

create table systools.opt_profile (
schema varchar(128) not null,
name varchar(128) not null,
profile blob (2m) not null,
primary key (schema, name)

)

The columns in the SYSTOOLS.OPT_PROFILE table are defined as follows:

SCHEMA
Specifies the schema name for an optimization profile. The name can
include up to 30 alphanumeric or underscore characters, but define it as
VARCHAR(128), as shown.

NAME
Specifies the base name for an optimization profile. The name can include
up to 128 alphanumeric or underscore characters.

PROFILE
Specifies an XML document that defines the optimization profile.

Triggers to flush the optimization profile cache:

The optimization profile cache is automatically flushed whenever an entry in the
SYSTOOLS.OPT_PROFILE table is updated or deleted.

The following SQL procedure and triggers must be created before automatic
flushing of the profile cache can occur.

CREATE PROCEDURE SYSTOOLS.OPT_FLUSH_CACHE(IN SCHEMA VARCHAR(128),
IN NAME VARCHAR(128))

LANGUAGE SQL
MODIFIES SQL DATA
BEGIN ATOMIC
-- FLUSH stmt (33) + quoted schema (130) + dot (1) + quoted name (130) = 294
DECLARE FSTMT VARCHAR(294) DEFAULT 'FLUSH OPTIMIZATION PROFILE CACHE '; --

IF NAME IS NOT NULL THEN
IF SCHEMA IS NOT NULL THEN

SET FSTMT = FSTMT || '"' || SCHEMA || '".'; --
END IF; --

SET FSTMT = FSTMT || '"' || NAME || '"'; --

EXECUTE IMMEDIATE FSTMT; --
END IF; --
END;

CREATE TRIGGER SYSTOOLS.OPT_PROFILE_UTRIG AFTER UPDATE ON SYSTOOLS.OPT_PROFILE
REFERENCING OLD AS O
FOR EACH ROW

CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

CREATE TRIGGER SYSTOOLS.OPT_PROFILE_DTRIG AFTER DELETE ON SYSTOOLS.OPT_PROFILE
REFERENCING OLD AS O
FOR EACH ROW

CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

Managing the SYSTOOLS.OPT_PROFILE table:

Optimization profiles must be associated with a unique schema-qualified name and
stored in the SYSTOOLS.OPT_PROFILE table. You can use the LOAD, IMPORT,
and EXPORT commands to manage the files in that table.

348 Troubleshooting and Tuning Database Performance

For example, the IMPORT command can be used from any DB2 client to insert or
update data in the SYSTOOLS.OPT_PROFILE table. The EXPORT command can be
used to copy a profile from the SYSTOOLS.OPT_PROFILE table into a file.

The following example shows how to insert three new profiles into the
SYSTOOLS.OPT_PROFILE table. Assume that the files are in the current directory.
1. Create an input file (for example, profiledata) with the schema, name, and file

name for each profile on a separate line:
"ROBERT","PROF1","ROBERT.PROF1.xml"
"ROBERT","PROF2","ROBERT.PROF2.xml"
"DAVID", "PROF1","DAVID.PROF1.xml"

2. Execute the IMPORT command:
import from profiledata of del

modified by lobsinfile
insert into systools.opt_profile

To update existing rows, use the INSERT_UPDATE option on the IMPORT
command:

import from profiledata of del
modified by lobsinfile
insert_update into systools.opt_profile

To copy the ROBERT.PROF1 profile into ROBERT.PROF1.xml, assuming that the
profile is less than 32 700 bytes long, use the EXPORT command:

export to robert.prof1.xml of del
select profile from systools.opt_profile

where schema='ROBERT' and name='PROF1'

For more information, including how to export more than 32 700 bytes of data, see
“EXPORT command”.

Database partition group impact on query optimization
In partitioned database environments, the optimizer recognizes and uses the
collocation of tables when it determines the best access plan for a query.

If tables are frequently involved in join queries, they should be divided among
database partitions in such a way that the rows from each table being joined are
located on the same database partition. During the join operation, the collocation
of data from both joined tables prevents the movement of data from one database
partition to another. Place both tables in the same database partition group to
ensure that the data is collocated.

Depending on the size of the table, spreading data over more database partitions
reduces the estimated time to execute a query. The number of tables, the size of the
tables, the location of the data in those tables, and the type of query (such as
whether a join is required) all affect the cost of the query.

Collecting accurate catalog statistics, including advanced
statistics features
Accurate database statistics are critical for query optimization. Perform runstats
operations regularly on any tables that are critical to query performance.

You might also want to collect statistics on system catalog tables, if an application
queries these tables directly and if there is significant catalog update activity, such
as that resulting from the execution of data definition language (DDL) statements.
Automatic statistics collection can be enabled to allow the DB2 data server to

Chapter 3. Factors affecting performance 349

automatically perform a runstats operation. Real time statistics collection can be
enabled to allow the DB2 data server to provide even more timely statistics by
collecting them immediately before queries are optimized.

If you are collecting statistics manually using the RUNSTATS command, you
should use the following options at a minimum:
RUNSTATS ON TABLE DB2USER.DAILY_SALES

WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL

Distribution statistics make the optimizer aware of data skew. Detailed index
statistics provide more details about the I/O required to fetch data pages when the
table is accessed using a particular index. Collecting detailed index statistics
consumes considerable processing time and memory for large tables. The
SAMPLED option provides detailed index statistics with nearly the same accuracy
but requires a fraction of the CPU and memory. These defaults are also used by
automatic statistics collection when a statistical profile has not been provided for a
table.

To improve query performance, consider collecting more advanced statistics, such
as column group statistics or LIKE statistics, or creating statistical views.

Column group statistics
If your query has more than one join predicate joining two tables, the DB2
optimizer calculates how selective each of the predicates is before choosing a plan
for executing the query.

For example, consider a manufacturer who makes products from raw material of
various colors, elasticities, and qualities. The finished product has the same color
and elasticity as the raw material from which it is made. The manufacturer issues
the query:
SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY

FROM PRODUCT, RAWMATERIAL
WHERE

PRODUCT.COLOR = RAWMATERIAL.COLOR AND
PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

This query returns the names and raw material quality of all products. There are
two join predicates:
PRODUCT.COLOR = RAWMATERIAL.COLOR
PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

The optimizer assumes that the two predicates are independent, which means that
all variations of elasticity occur for each color. It then estimates the overall
selectivity of the pair of predicates by using catalog statistics information for each
table based on the number of levels of elasticity and the number of different colors.
Based on this estimate, it might choose, for example, a nested loop join in
preference to a merge join, or the reverse.

However, these two predicates might not be independent. For example, highly
elastic materials might be available in only a few colors, and the very inelastic
materials might be available in a few other colors that are different from the elastic
ones. In that case, the combined selectivity of the predicates eliminates fewer rows
and the query returns more rows. Without this information, the optimizer might no
longer choose the best plan.

To collect the column group statistics on PRODUCT.COLOR and
PRODUCT.ELASTICITY, issue the following RUNSTATS command:

350 Troubleshooting and Tuning Database Performance

RUNSTATS ON TABLE PRODUCT ON COLUMNS ((COLOR, ELASTICITY))

The optimizer uses these statistics to detect cases of correlation and to dynamically
adjust the combined selectivities of correlated predicates, thus obtaining a more
accurate estimate of the join size and cost.

When a query groups data by using keywords such as GROUP BY or DISTINCT,
column group statistics also enable the optimizer to compute the number of
distinct groupings.

Consider the following query:
SELECT DEPTNO, YEARS, AVG(SALARY)

FROM EMPLOYEE
GROUP BY DEPTNO, MGR, YEAR_HIRED

Without any index or column group statistics, the optimizer estimates the number
of groupings (and, in this case, the number of rows returned) as the product of the
number of distinct values in DEPTNO, MGR, and YEAR_HIRED. This estimate
assumes that the grouping key columns are independent. However, this
assumption could be incorrect if each manager manages exactly one department.
Moreover, it is unlikely that each department hires employees every year. Thus, the
product of distinct values of DEPTNO, MGR, and YEAR_HIRED could be an
overestimate of the actual number of distinct groups.

Column group statistics collected on DEPTNO, MGR, and YEAR_HIRED provide
the optimizer with the exact number of distinct groupings for the previous query:
RUNSTATS ON TABLE EMPLOYEE ON COLUMNS ((DEPTNO, MGR, YEAR_HIRED))

In addition to JOIN predicate correlation, the optimizer manages correlation with
simple equality predicates, such as:
DEPTNO = 'Sales' AND MGR = 'John'

In this example, predicates on the DEPTNO column in the EMPLOYEE table are
likely to be independent of predicates on the YEAR column. However, the
predicates on DEPTNO and MGR are certainly not independent, because each
department would usually be managed by one manager at a time. The optimizer
uses statistical information about columns to determine the combined number of
distinct values and then adjusts the cardinality estimate to account for correlation
between columns.

Correlation of simple equality predicates
In addition to join predicate correlation, the optimizer manages correlation with
simple equality predicates of the type COL =.

For example, consider a table of different types of cars, each having a MAKE (that
is, a manufacturer), MODEL, YEAR, COLOR, and STYLE, such as sedan, station
wagon, or sports-utility vehicle. Because almost every manufacturer makes the
same standard colors available for each of their models and styles, year after year,
predicates on COLOR are likely to be independent of those on MAKE, MODEL,
STYLE, or YEAR. However, predicates based on MAKE and MODEL are not
independent, because only a single car maker would make a model with a
particular name. Identical model names used by two or more car makers is very
unlikely.

If an index on the two columns MAKE and MODEL exists, or column group
statistics are collected, the optimizer uses statistical information about the index or

Chapter 3. Factors affecting performance 351

columns to determine the combined number of distinct values and to adjust the
selectivity or cardinality estimates for the correlation between these two columns.
If the predicates are local equality predicates, the optimizer does not need a unique
index to make an adjustment.

Statistical views
The DB2 cost-based optimizer uses an estimate of the number of rows – or
cardinality – processed by an access plan operator to accurately cost that operator.
This cardinality estimate is the single most important input to the optimizer's cost
model, and its accuracy largely depends upon the statistics that the runstats utility
collects from the database.

More sophisticated statistics are required to represent more complex relationships,
such as comparisons involving expressions (for example, price > MSRP +
Dealer_markup), relationships spanning multiple tables (for example, product.name
= 'Alloy wheels' and product.key = sales.product_key), or anything other than
predicates involving independent attributes and simple comparison operations.
Statistical views are able to represent these types of complex relationships, because
statistics are collected on the result set returned by the view, rather than the base
tables referenced by the view.

When a query is compiled, the optimizer matches the query to the available
statistical views. When the optimizer computes cardinality estimates for
intermediate result sets, it uses the statistics from the view to compute a better
estimate.

Queries do not need to reference the statistical view directly in order for the
optimizer to use the statistical view. The optimizer uses the same matching
mechanism that is used for materialized query tables (MQTs) to match queries to
statistical views. In this respect, statistical views are very similar to MQTs, except
that they are not stored permanently, do not consume disk space, and do not have
to be maintained.

A statistical view is created by first creating a view and then enabling it for
optimization using the ALTER VIEW statement. The RUNSTATS command is then
run against the statistical view, populating the system catalog tables with statistics
for the view. For example, to create a statistical view that represents the join
between the TIME dimension table and the fact table in a star schema, do the
following:
CREATE VIEW SV_TIME_FACT AS (

SELECT T.* FROM TIME T, SALES S
WHERE T.TIME_KEY = S.TIME_KEY)

ALTER VIEW SV_TIME_FACT ENABLE QUERY OPTIMIZATION

RUNSTATS ON TABLE DB2DBA.SV_TIME_FACT WITH DISTRIBUTION

This statistical view can be used to improve the cardinality estimate and,
consequently, the access plan and query performance for queries such as:
SELECT SUM(S.PRICE)

FROM SALES S, TIME T, PRODUCT P
WHERE

T.TIME_KEY = S.TIME_KEY AND
T.YEAR_MON = 200712 AND
P.PROD_KEY = S.PROD_KEY AND
P.PROD_DESC = 'Power drill'

352 Troubleshooting and Tuning Database Performance

Without a statistical view, the optimizer assumes that all fact table TIME_KEY
values corresponding to a particular TIME dimension YEAR_MON value occur
uniformly within the fact table. However, sales might have been particularly strong
in December, resulting in many more sales transactions than during other months.

Automatic statistics collection is not currently available for statistical views. Collect
statistics on such views whenever base tables that are referenced by statistical
views have been updated significantly.

Using statistical views
A view must be enabled for optimization before its statistics can be used to
optimize a query. A view that is enabled for optimization is known as a statistical
view.

A view that is not a statistical view is said to be disabled for optimization and is
known as a regular view. A view is disabled for optimization when it is first
created. Use the ALTER VIEW statement to enable a view for optimization. For
privileges and authorities that are required to perform this task, see the description
of the ALTER VIEW statement. For privileges and authorities that are required to
use the runstats utility against a view, see the description of the RUNSTATS
command.

A view cannot be enabled for optimization if any one of the following conditions is
true:
v The view directly or indirectly references a materialized query table (MQT). (An

MQT or statistical view can reference a statistical view.)
v The view is inoperative.
v The view is a typed view.
v There is another view alteration request in the same ALTER VIEW statement.

If the definition of a view that is being altered to enable optimization contains any
of the following items, a warning is returned, and the optimizer will not exploit
the view's statistics:
v Aggregation or distinct operations
v Union, except, or intersect operations
v OLAP specification
1. Enable the view for optimization.

A view can be enabled for optimization using the ENABLE OPTIMIZATION
clause on the ALTER VIEW statement. A view that has been enabled for
optimization can subsequently be disabled for optimization using the DISABLE
OPTIMIZATION clause. For example, to enable MYVIEW for optimization,
enter the following:

alter view myview enable query optimization

2. Invoke the RUNSTATS command. For example, to collect statistics on MYVIEW,
enter the following:

runstats on table db2dba.myview

To use row-level sampling of 10 percent of the rows while collecting view
statistics, including distribution statistics, enter the following:

runstats on table db2dba.myview with distribution tablesample bernoulli (10)

To use page-level sampling of 10 percent of the pages while collecting view
statistics, including distribution statistics, enter the following:

Chapter 3. Factors affecting performance 353

runstats on table db2dba.myview with distribution tablesample system (10)

3. Optional: If queries that are impacted by the view definition are part of static
SQL packages, rebind those packages to take advantage of changes to access
plans resulting from the new statistics.

View statistics that are relevant to optimization
Only statistics that characterize the data distribution of the query that defines a
statistical view, such as CARD and COLCARD, are considered during query
optimization.

The following statistics that are associated with view records can be collected for
use by the optimizer.
v Table statistics (SYSCAT.TABLES, SYSSTAT.TABLES)

– CARD - Number of rows in the view result
v Column statistics (SYSCAT.COLUMNS, SYSSTAT.COLUMNS)

– COLCARD - Number of distinct values of a column in the view result
– AVGCOLLEN - Average length of a column in the view result
– HIGH2KEY - Second highest value of a column in the view result
– LOW2KEY - Second lowest value of a column in the view result
– NUMNULLS - Number of null values in a column in the view result
– SUB_COUNT - Average number of sub-elements in a column in the view

result
– SUB_DELIM_LENGTH - Average length of each delimiter separating

sub-elements
v Column distribution statistics (SYSCAT.COLDIST, SYSSTAT.COLDIST)

– DISTCOUNT - Number of distinct quantile values that are less than or equal
to COLVALUE statistics

– SEQNO - Frequency ranking of a sequence number to help uniquely identify
a row in the table

– COLVALUE - Data value for which frequency or quantile statistics are
collected

– VALCOUNT - Frequency with which a data value occurs in a view column;
or for quantiles, the number of values that are less than or equal to the data
value (COLVALUE)

Statistics that do not describe data distribution (such as NPAGES and FPAGES) can
be collected, but are ignored by the optimizer.

Scenario: Improving cardinality estimates using statistical views
In a data warehouse, fact table information often changes quite dynamically,
whereas dimension table data is static. This means that dimension attribute data
might be positively or negatively correlated with fact table attribute data.

Traditional base table statistics currently available to the optimizer do not allow it
to discern relationships across tables. Column and table distribution statistics on
statistical views (and MQTs) can be used to give the optimizer the necessary
information to correct these types of cardinality estimation errors.

Consider the following query that computes annual sales revenue for golf clubs
sold during July of each year:

354 Troubleshooting and Tuning Database Performance

select sum(f.sales_price), d2.year
from product d1, period d2, daily_sales f
where d1.prodkey = f.prodkey

and d2.perkey = f.perkey
and d1.item_desc = 'golf club'
and d2.month = 'JUL'

group by d2.year

A star join query execution plan can be an excellent choice for this query, provided
that the optimizer can determine whether the semi-join involving PRODUCT and
DAILY_SALES, or the semi-join involving PERIOD and DAILY_SALES, is the most
selective. To generate an efficient star join plan, the optimizer must be able to
choose the most selective semi-join for the outer leg of the index ANDing
operation.

Data warehouses often contain records for products that are no longer on store
shelves. This can cause the distribution of PRODUCT columns after the join to
appear dramatically different than their distribution before the join. Because the
optimizer, for lack of better information, will determine the selectivity of local
predicates based solely on base table statistics, the optimizer might become overly
optimistic regarding the selectivity of the predicate item_desc = 'golf club'

For example, if golf clubs historically represent 1% of the products manufactured,
but now account for 20% of sales, the optimizer would likely overestimate the
selectivity of item_desc = 'golf club', because there are no statistics describing
the distribution of item_desc after the join. And if sales in all twelve months are
equally likely, the selectivity of the predicate month = 'JUL' would be around 8%,
and thus the error in estimating the selectivity of the predicate item_desc = 'golf
club' would mistakenly cause the optimizer to perform the seemingly more
selective semi-join between PRODUCT and DAILY_SALES as the outer leg of the
star join plan's index ANDing operation.

The following example provides a step-by-step illustration of how to set up
statistical views to solve this type of problem.

Consider a database from a typical data warehouse, where STORE, CUSTOMER,
PRODUCT, PROMOTION, and PERIOD are the dimension tables, and
DAILY_SALES is the fact table. The following tables provide the definitions for
these tables.

Table 55. STORE (63 rows)

Column storekey store_number city state district ...

Attribute integer
not null
primary key

char(2) char(20) char(5) char(14) ...

Table 56. CUSTOMER (1 000 000 rows)

Column custkey name address age gender ...

Attribute integer
not null
primary key

char(30) char(40) smallint char(1) ...

Chapter 3. Factors affecting performance 355

Table 57. PRODUCT (19 450 rows)

Column prodkey category item_desc price cost ...

Attribute integer
not null
primary key

integer char(30) decimal(11) decimal(11) ...

Table 58. PROMOTION (35 rows)

Column promokey promotype promodesc promovalue ...

Attribute integer
not null
primary key

integer char(30) decimal(5) ...

Table 59. PERIOD (2922 rows)

Column perkey calendar_date month period year ...

Attribute integer
not null
primary key

date char(3) smallint smallint ...

Table 60. DAILY_SALES (754 069 426 rows)

Column storekey custkey prodkey promokey perkey sales_price ...

Attribute integer integer integer integer integer decimal(11) ...

Suppose the company managers want to determine whether or not consumers will
buy a product again if they are offered a discount on a return visit. Moreover,
suppose this study is done only for store '01', which has 18 locations nationwide.
Table 61 shows information about the different categories of promotion that are
available.

Table 61. PROMOTION (35 rows)

promotype promodesc COUNT (promotype) percentage of total

1 Return customers 1 2.86%

2 Coupon 15 42.86%

3 Advertisement 5 14.29%

4 Manager's special 3 8.57%

5 Overstocked items 4 11.43%

6 End aisle display 7 20.00%

The table indicates that discounts for return customers represents only 2.86% of the
35 kinds of promotions that were offered.

The following query returns a count of 12 889 514:
select count(*)

from store d1, promotion d2, daily_sales f
where d1.storekey = f.storekey

and d2.promokey = f.promokey
and d1.store_number = '01'
and d2.promotype = 1

This query executes according to the following plan that is generated by the
optimizer. In each node of this diagram, the first row is the cardinality estimate,
the second row is the operator type, and the third row (the number in parentheses)
is the operator ID.

356 Troubleshooting and Tuning Database Performance

6.15567e+06
IXAND
(8)

/------------------+------------------\
2.15448e+07 2.15448e+08
NLJOIN NLJOIN
(9) (13)

/---------+--------\ /---------+--------\
1 2.15448e+07 18 1.19694e+07

FETCH IXSCAN FETCH IXSCAN
(10) (12) (14) (16)
/---+---\ | /---+---\ |

35 35 7.54069e+08 18 63 7.54069e+08
IXSCAN TABLE: DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA
(11) PROMOTION PROMO_FK_IDX (15) STORE STORE_FK_IDX
| |
35 63

INDEX: DB2DBA INDEX: DB2DBA
PROMOTION_PK_IDX STOREX1

At the nested loop join (number 9), the optimizer estimates that around 2.86% of
the product sold resulted from customers coming back to buy the same products at
a discounted price (2.15448e+07 ÷ 7.54069e+08 ≈ 0.0286). Note that this is the same
value before and after joining the PROMOTION table with the DAILY_SALES
table. Table 62 summarizes the cardinality estimates and their percentage (the
filtering effect) before and after the join.

Table 62. Cardinality estimates before and after joining with DAILY_SALES.

Before Join After Join

Predicate count
percentage of
rows qualified count

percentage of
rows qualified

store_number =
'01'

18 28.57% 2.15448e+08 28.57%

promotype = 1 1 2.86% 2.15448e+07 2.86%

Because the probability of promotype = 1 is less than that of store_number = '01',
the optimizer chooses the semi-join between PROMOTION and DAILY_SALES as
the outer leg of the star join plan's index ANDing operation. This leads to an
estimated count of approximately 6 155 670 products sold using promotion type 1
— an incorrect cardinality estimate that is off by a factor of 2.09 (12 889 514 ÷ 6 155
670 ≈ 2.09).

What causes the optimizer to only estimate half of the actual number of records
satisfying the two predicates? Store '01' represents about 28.57% of all the stores.
What if other stores had more sales than store '01' (less than 28.57%)? Or what if
store '01' actually sold most of the product (more than 28.57%)? Likewise, the
2.86% of products sold using promotion type 1 shown in Table 62 can be
misleading. The actual percentage in DAILY_SALES could very well be a different
figure than the projected one.

We can use statistical views to help the optimizer correct its estimates. First, we
need to create two statistical views representing each semi-join in the previous
query. The first statistical view provides the distribution of stores for all daily sales.
The second statistical view represents the distribution of promotion types for all
daily sales. Note that each statistical view can provide the distribution information
for any particular store number or promotion type. In this example, we use a 10%
sample rate to retrieve the records in DAILY_SALES for the respective views and

Chapter 3. Factors affecting performance 357

save them in global temporary tables. We then query those tables to collect the
necessary statistics to update the two statistical views.
1. Create a view representing the join of STORE with DAILY_SALES.

create view sv_store_dailysales as
(select s.*

from store s, daily_sales ds
where s.storekey = ds.storekey)

2. Create a view representing the join of PROMOTION with DAILY_SALES.
create view sv_promotion_dailysales as

(select p.*
from promotion.p, daily_sales ds
where p.promokey = ds.promokey)

3. Make the views statistical views by enabling them for query optimization:
alter view sv_store_dailysales enable query optimization
alter view sv_promotion_dailysales enable query optimization

4. Execute the RUNSTATS command to collect statistics on the views:
runstats on table db2dba.sv_store_dailysales with distribution
runstats on table db2dba.sv_promotion_dailysales with distribution

5. Run the query again so that it can be re-optimized. Upon reoptimization, the
optimizer will match SV_STORE_DAILYSALES and
SV_PROMOTION_DAILYSALES with the query, and will use the view statistics
to adjust the cardinality estimate of the semi-joins between the fact and
dimension tables, causing a reversal of the original order of the semi-joins
chosen without these statistics. The new plan is as follows:

1.04627e+07
IXAND
(8)

/------------------+------------------\
6.99152e+07 1.12845e+08
NLJOIN NLJOIN
(9) (13)

/---------+--------\ /---------+--------\
18 3.88418e+06 1 1.12845e+08

FETCH IXSCAN FETCH IXSCAN
(10) (12) (14) (16)

/---+---\ | /---+---\ |
18 63 7.54069e+08 35 35 7.54069e+08

IXSCAN TABLE:DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA DB2DBA
(11) STORE STORE_FK_IDX (15) PROMOTION PROMO_FK_IDX

| |
63 35

INDEX: DB2DBA INDEX: DB2DBA
STOREX1 PROMOTION_PK_IDX

Table 63 summarizes the cardinality estimates and their percentage (the filtering
effect) before and after the join for each semi-join.

Table 63. Cardinality estimates before and after joining with DAILY_SALES.

Before Join After Join (no statistical views)
After Join (with statistical

views)

Predicate count

percentage
of rows
qualified count

percentage of
rows qualified count

percentage of
rows qualified

store_number
= '01'

18 28.57% 2.15448e+08 28.57% 6.99152e+07 9.27%

promotype = 1 1 2.86% 2.15448e+07 2.86% 1.12845e+08 14.96%

Note that this time, the semi-join between STORE and DAILY_SALES is performed
on the outer leg of the index ANDing plan. This is because the two statistical

358 Troubleshooting and Tuning Database Performance

views essentially tell the optimizer that the predicate store_number = '01' will
filter more rows than promotype = 1. This time, the optimizer estimates that there
are approximately 10 462 700 products sold. This estimate is off by a factor of 1.23
(12 889 514 ÷ 10 462 700 ≈ 1.23), which is a significant improvement over the
estimate without statistical views (in Table 62 on page 357).

Catalog statistics
When the query compiler optimizes query plans, its decisions are heavily
influenced by statistical information about the size of the database tables, indexes,
and statistical views. This information is stored in system catalog tables.

The optimizer also uses information about the distribution of data in specific
columns of tables, indexes, and statistical views if these columns are used to select
rows or to join tables. The optimizer uses this information to estimate the costs of
alternative access plans for each query.

Statistical information about the cluster ratio of indexes, the number of leaf pages
in indexes, the number of table rows that overflow their original pages, and the
number of filled and empty pages in a table can also be collected. You can use this
information to decide when to reorganize tables or indexes.

Table statistics in a partitioned database environment are collected only for that
portion of the table that resides on the database partition on which the utility is
running, or for the first database partition in the database partition group that
contains the table. Information about statistical views is collected for all database
partitions.

Statistics that are updated by the runstats utility

Catalog statistics are updated by the runstats utility, which can be started by
issuing the RUNSTATS command, calling the ADMIN_CMD procedure, or calling
the db2Runstats API. Updates can be initiated either manually or automatically.

Statistics about declared temporary tables are not stored in the system catalog, but
are stored in memory structures that represent the catalog information for declared
temporary tables. It is possible (and in some cases, it might be useful) to perform
runstats on a declared temporary table.

The runstats utility collects the following information about tables and indexes:
v The number of pages that contain rows
v The number of pages that are in use
v The number of rows in the table (the cardinality)
v The number of rows that overflow
v For multidimensional clustering (MDC) tables, the number of blocks that contain

data
v For partitioned tables, the degree of data clustering within a single data partition
v Data distribution statistics, which are used by the optimizer to estimate efficient

access plans for tables and statistical views whose data is not evenly distributed
and whose columns have a significant number of duplicate values

v Detailed index statistics, which are used by the optimizer to determine how
efficient it is to access table data through an index

Chapter 3. Factors affecting performance 359

v Subelement statistics for LIKE predicates, especially those that search for
patterns within strings (for example, LIKE %disk%), are also used by the
optimizer

The runstats utility collects the following statistics for each data partition in a table.
These statistics are only used for determining whether a partition needs to be
reorganized:
v The number of pages that contain rows
v The number of pages that are in use
v The number of rows in the table (the cardinality)
v The number of rows that overflow
v For MDC tables, the number of blocks that contain data

Distribution statistics are not collected:
v When the num_freqvalues and num_quantiles database configuration

parameters are set to 0
v When the distribution of data is known, such as when each data value is unique
v When the column contains a LONG, LOB, or structured data type
v For row types in sub-tables (the table-level statistics NPAGES, FPAGES, and

OVERFLOW are not collected)
v If quantile distributions are requested, but there is only one non-null value in

the column
v For extended indexes or declared temporary tables

The runstats utility collects the following information about each column in a table
or statistical view, and the first column in an index key:
v The cardinality of the column
v The average length of the column (the average space, in bytes, that is required

when the column is stored in database memory or in a temporary table)
v The second highest value in the column
v The second lowest value in the column
v The number of null values in the column

For columns that contain large object (LOB) or LONG data types, the runstats
utility collects only the average length of the column and the number of null
values in the column. The average length of the column represents the length of
the data descriptor, except when LOB data is located inline on the data page. The
average amount of space that is required to store the column on disk might be
different than the value of this statistic.

The runstats utility collects the following information about each XML column:
v The number of NULL XML documents
v The number of non-NULL XML documents
v The number of distinct paths
v The sum of the node count for each distinct path
v The sum of the document count for each distinct path
v The k pairs of (path, node count) with the largest node count
v The k pairs of (path, document count) with the largest document count
v The k triples of (path, value, node count) with the largest node count
v The k triples of (path, value, document count) with the largest document count

360 Troubleshooting and Tuning Database Performance

v For each distinct path that leads to a text or attribute value:
– The number of distinct values that this path can take
– The highest value
– The lowest value
– The number of text or attribute nodes
– The number of documents that contain the text or attribute nodes

Each row in an XML column stores an XML document. The node count for a path
or path-value pair refers to the number of nodes that are reachable by that path or
path-value pair. The document count for a path or path-value pair refers to the
number of documents that contain that path or path-value pair.

For DB2 V9.7 Fix Pack 1 and later releases, the following apply to the collection of
distribution statistics on an XML column:
v Distribution statistics are collected for each index over XML data specified on an

XML column.
v The runstats utility must collect both distribution statistics and table statistics to

collect distribution statistics for an index over XML data. Table statistics must be
gathered in order for distribution statistics to be collected since XML distribution
statistics are stored with table statistics.
Collecting only index statistics, or collecting index statistics during index
creation, will not collect distribution statistics for an index over XML data.
As the default, the runstats utility collects a maximum of 250 quantiles for
distribution statistics for each index over XML data. The maximum number of
quantiles for a column can be specified when executing the runstats utility.

v Distribution statistics are collected for indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. XML distribution statistics are
not collected for indexes over XML data of type VARCHAR HASHED.

v XML distribution statistics are collected when automatic table runstats
operations are performed.

v XML distribution statistics are not created when loading data with the
STATISTICS option.

v XML distribution statistics are not collected for partitioned indexes over XML
data defined on a partitioned table.

The runstats utility collects the following information about column groups:
v A timestamp-based name for the column group
v The cardinality of the column group

The runstats utility collects the following information about indexes:
v The number of index entries (the index cardinality)
v The number of leaf pages
v The number of index levels
v The degree of clustering of the table data to the index
v The degree of clustering of the index keys with regard to data partitions
v The ratio of leaf pages located on disk in index key order to the number of

pages in the range of pages occupied by the index
v The number of distinct values in the first column of the index
v The number of distinct values in the first two, three, and four columns of the

index

Chapter 3. Factors affecting performance 361

v The number of distinct values in all columns of the index
v The number of leaf pages located on disk in index key order, with few or no

large gaps between them
v The average leaf key size, without include columns
v The average leaf key size, with include columns
v The number of pages on which all record identifiers (RIDs) are marked deleted
v The number of RIDs that are marked deleted on pages where not all RIDs are

marked deleted

If you request detailed index statistics, additional information about the degree of
clustering of the table data to the index, and the page fetch estimates for different
buffer sizes, is collected.

For a partitioned index, these statistics are representative of a single index
partition, with the exception of the distinct values in the first column of the index;
the first two, three, and four columns of the index; and in all columns of the index.
Per-index partition statistics are also collected for the purpose of determining
whether an index partition needs to be reorganized.

Catalog statistics tables
Statistical information about the size of database tables, indexes, and statistical
views is stored in system catalog tables.

The following tables provide a brief description of this statistical information and
show where it is stored.
v The “Table” column indicates whether or not a particular statistic is collected if

the FOR INDEXES or AND INDEXES option on the RUNSTATS command has
not been specified.

v The “Indexes” column indicates whether or not a particular statistic is collected
if the FOR INDEXES or AND INDEXES option has been specified.

Some statistics can only be provided by the table, some can only be provided by
the indexes, and some can be provided by both.
v Table 1. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)
v Table 2. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)
v Table 3. Multi-column Statistics (SYSCAT.COLGROUPS and

SYSSTAT.COLGROUPS)
v Table 4. Multi-column Distribution Statistics (SYSCAT.COLGROUPDIST and

SYSSTAT.COLGROUPDIST)
v Table 5. Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS

and SYSSTAT.COLGROUPDISTCOUNTS)
v Table 6. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)
v Table 7. Column Distribution Statistics (SYSCAT.COLDIST and

SYSSTAT.COLDIST)

The multi-column distribution statistics listed in Table 4. Multi-column Distribution
Statistics (SYSCAT.COLGROUPDIST and SYSSTAT.COLGROUPDIST) and Table 5.
Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS and
SYSSTAT.COLGROUPDISTCOUNTS) are not collected by the runstats utility. You
cannot update them manually.

362 Troubleshooting and Tuning Database Performance

Table 64. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES Number of pages
being used by a table

Yes Yes

NPAGES Number of pages
containing rows

Yes Yes

OVERFLOW Number of rows that
overflow

Yes No

CARD Number of rows in a
table (cardinality)

Yes Yes (Note 1)

ACTIVE_BLOCKS For MDC tables, the
total number of
occupied blocks

Yes No

Note:

1. If the table has no indexes defined and you request statistics for indexes, no CARD
statistics are updated. The previous CARD statistics are retained.

Table 65. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD Column cardinality Yes Yes (Note 1)

AVGCOLLEN Average length of a
column

Yes Yes (Note 1)

HIGH2KEY Second highest value in
a column

Yes Yes (Note 1)

LOW2KEY Second lowest value in
a column

Yes Yes (Note 1)

NUMNULLS The number of null
values in a column

Yes Yes (Note 1)

SUB_COUNT The average number of
sub-elements

Yes No (Note 2)

SUB_DELIM_LENGTH The average length of
each delimiter
separating
sub-elements

Yes No (Note 2)

Note:

1. Column statistics are collected for the first column in the index key.

2. These statistics provide information about data in columns that contain a series of
sub-fields or sub-elements that are delimited by blanks. The SUB_COUNT and
SUB_DELIM_LENGTH statistics are collected only for columns of type CHAR and
VARCHAR with a code page attribute of single-byte character set (SBCS), FOR BIT
DATA, or UTF-8.

Table 66. Multi-column Statistics (SYSCAT.COLGROUPS and SYSSTAT.COLGROUPS)

Statistic Description RUNSTATS Option

Table Indexes

COLGROUPCARD Cardinality of the
column group

Yes No

Chapter 3. Factors affecting performance 363

Table 67. Multi-column Distribution Statistics (SYSCAT.COLGROUPDIST and
SYSSTAT.COLGROUPDIST)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = Frequency value
Q = Quantile value

Yes No

ORDINAL Ordinal number of
the column in the
group

Yes No

SEQNO Sequence number n
that represents the
nth TYPE value

Yes No

COLVALUE The data value as a
character literal or a
null value

Yes No

Table 68. Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS and
SYSSTAT.COLGROUPDISTCOUNTS)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = Frequency value
Q = Quantile value

Yes No

SEQNO Sequence number n
that represents the
nth TYPE value

Yes No

VALCOUNT If TYPE = F,
VALCOUNT is the
number of
occurrences of
COLVALUE for the
column group with
this SEQNO. If TYPE
= Q, VALCOUNT is
the number of rows
whose value is less
than or equal to
COLVALUE for the
column group with
this SEQNO.

Yes No

DISTCOUNT If TYPE = Q, this
column contains the
number of distinct
values that are less
than or equal to
COLVALUE for the
column group with
this SEQNO. Null if
unavailable.

Yes No

364 Troubleshooting and Tuning Database Performance

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF Number of index leaf
pages

No Yes

NLEVELS Number of index
levels

No Yes

CLUSTERRATIO Degree of clustering
of table data

No Yes (Note
2)

CLUSTERFACTOR Finer degree of
clustering

No Detailed
(Notes
1,2)

DENSITY Ratio (percentage) of
SEQUENTIAL_PAGES
to number of pages in
the range of pages
that is occupied by
the index (Note 3)

No Yes

FIRSTKEYCARD Number of distinct
values in the first
column of the index

No Yes

FIRST2KEYCARD Number of distinct
values in the first two
columns of the index

No Yes

FIRST3KEYCARD Number of distinct
values in the first
three columns of the
index

No Yes

FIRST4KEYCARD Number of distinct
values in the first four
columns of the index

No Yes

FULLKEYCARD Number of distinct
values in all columns
of the index,
excluding any key
value in an index for
which all record
identifiers (RIDs) are
marked deleted

No Yes

PAGE_FETCH_PAIRS Page fetch estimates
for different buffer
sizes

No Detailed
(Notes
1,2)

AVGPARTITION_CLUSTERRATIO Degree of data
clustering within a
single data partition

No Yes (Note
2)

AVGPARTITION_CLUSTERFACTOR Finer measurement of
degree of clustering
within a single data
partition

No Detailed
(Notes
1,2)

Chapter 3. Factors affecting performance 365

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

AVGPARTITION_PAGE_FETCH_PAIRS Page fetch estimates
for different buffer
sizes, generated on
the basis of a single
data partition

No Detailed
(Notes
1,2)

DATAPARTITION_CLUSTERFACTOR Number of data
partition references
during an index scan

No (Note 6) Yes (Note
6)

SEQUENTIAL_PAGES Number of leaf pages
located on disk in
index key order, with
few or no large gaps
between them

No Yes

AVERAGE_SEQUENCE_PAGES Average number of
index pages that are
accessible in sequence;
this is the number of
index pages that the
prefetchers can detect
as being in sequence

No Yes

AVERAGE_RANDOM_PAGES Average number of
random index pages
between sequential
page accesses

No Yes

AVERAGE_SEQUENCE_GAP Gap between
sequences

No Yes

AVERAGE_SEQUENCE_FETCH_PAGES Average number of
table pages that are
accessible in sequence;
this is the number of
table pages that the
prefetchers can detect
as being in sequence
when they fetch table
rows using the index

No Yes (Note
4)

AVERAGE_RANDOM_FETCH_PAGES Average number of
random table pages
between sequential
page accesses when
fetching table rows
using the index

No Yes (Note
4)

AVERAGE_SEQUENCE_FETCH_GAP Gap between
sequences when
fetching table rows
using the index

No Yes (Note
4)

NUMRIDS The number of RIDs
in the index,
including deleted
RIDs

No Yes

366 Troubleshooting and Tuning Database Performance

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

NUMRIDS_DELETED The total number of
RIDs in the index that
are marked deleted,
except RIDs on those
leaf pages where all
RIDs are marked
deleted

No Yes

NUM_EMPTY_LEAFS The total number of
leaf pages on which
all RIDs are marked
deleted

No Yes

INDCARD Number of index
entries (index
cardinality)

No Yes

Note:

1. Detailed index statistics are collected by specifying the DETAILED clause on the
RUNSTATS command.

2. CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED
clause unless the table is of sufficient size (greater than about 25 pages). In this case,
CLUSTERRATIO is -1 (not collected). If the table is relatively small, only
CLUSTERRATIO is collected by the runstats utility; CLUSTERFACTOR and
PAGE_FETCH_PAIRS are not collected. If the DETAILED clause is not specified, only
CLUSTERRATIO is collected.

3. This statistic measures the percentage of pages in the file containing the index that
belongs to that table. For a table with only one index defined on it, DENSITY should be
100. DENSITY is used by the optimizer to estimate how many irrelevant pages from
other indexes might be read, on average, if the index pages were prefetched.

4. This statistic cannot be computed when the table is in a DMS table space.

5. Prefetch statistics are not collected during a load or create index operation, even if
statistics collection is specified when the command is invoked. Prefetch statistics are
also not collected if the seqdetect database configuration parameter is set to NO.

6. When runstats options for table is “No”, statistics are not collected when table statistics
are collected; when runstats options for indexes is “Yes”, statistics are collected when
the RUNSTATS command is used with the INDEXES options.

Table 70. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE = Q,
DISTCOUNT is the
number of distinct
values that are less
than or equal to
COLVALUE statistics

Distribution (Note 2) No

TYPE Indicator of whether
the row provides
frequent-value or
quantile statistics

Distribution No

Chapter 3. Factors affecting performance 367

Table 70. Column Distribution Statistics (SYSCAT.COLDIST and
SYSSTAT.COLDIST) (continued)

Statistic Description RUNSTATS Option

Table Indexes

SEQNO Frequency ranking of
a sequence number
to help uniquely
identify the row in
the table

Distribution No

COLVALUE Data value for which
a frequency or
quantile statistic is
collected

Distribution No

VALCOUNT Frequency with
which the data value
occurs in a column;
for quantiles, the
number of values
that are less than or
equal to the data
value (COLVALUE)

Distribution No

Note:

1. Column distribution statistics are collected by specifying the WITH DISTRIBUTION
clause on the RUNSTATS command. Distribution statistics cannot be collected unless
there is a sufficient lack of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

Automatic statistics collection
The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for a query. Out-of-date or incomplete table or index statistics might lead the
optimizer to select a suboptimal plan, thereby slowing down query execution.
However, deciding which statistics to collect for a given workload is complex, and
keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the database manager determine whether statistics need to be
updated. Automatic statistics collection can occur synchronously at statement
compilation time using the real-time statistics (RTS) feature, or the runstats utility
can be enabled to simply run in the background for asynchronous collection.
Although background statistics collection can be enabled while real-time statistics
collection is disabled, background statistics collection must be enabled for real-time
statistics collection to occur. Automatic background statistics collection
auto_runstats and automatic real-time statistics collection auto_stmt_stats are
enabled by default when you create a new database.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated using
certain meta-data. Fabrication means deriving or creating statistics, rather than
collecting them as part of normal runstats activity. For example, the number of
rows in a table can be derived from knowing the number of pages in the table, the
page size, and the average row width. In some cases, statistics are not actually
derived, but are maintained by the index and data manager and can be stored

368 Troubleshooting and Tuning Database Performance

directly in the catalog. For example, the index manager maintains a count of the
number of leaf pages and levels in each index.

The query optimizer determines how statistics should be collected, based on the
needs of the query and the amount of table update activity (the number of update,
insert, or delete operations).

Real-time statistics collection provides more timely and more accurate statistics.
Accurate statistics can result in better query execution plans and improved
performance. When real-time statistics collection is not enabled, asynchronous
statistics collection occurs at two-hour intervals. This might not be frequent enough
to provide accurate statistics for some applications.

When real-time statistics collection is enabled, asynchronous statistics collection
checking still occurs at two-hour intervals. Real-time statistics collection also
initiates asynchronous collection requests when:
v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection
v Synchronous statistics collection used sampling because the table was large
v Synchronous statistics were fabricated
v Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request must have been initiated by real-time statistics
collection, and the other must have been initiated by asynchronous statistics
collection checking.

The performance impact of automatic statistics collection is minimized in several
ways:
v Asynchronous statistics collection is performed using a throttled runstats utility.

Throttling controls the amount of resource that is consumed by the runstats
utility, based on current database activity: as database activity increases, the
utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to five seconds per query. This value
can be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This avoids the overhead
and possible lock contention involved when updating the system catalog.
Statistics in the statistics cache are available for subsequent SQL compilation
requests.

v Only one synchronous statistics collection operation will occur per table. Other
agents requiring synchronous statistics collection will fabricate statistics, if
possible, and continue with statement compilation. This behavior is also
enforced in a partitioned database environment, where agents on different
database partitions might require synchronous statistics.

v You can customize the type of statistics that are collected by enabling statistics
profiling, which uses information about previous database activity to determine
which statistics are required by the database workload, or by creating your own
statistics profile for a particular table.

v Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics

Chapter 3. Factors affecting performance 369

collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (those with more
than 4000 pages) are sampled to determine whether high table activity has
changed the statistics. Statistics for such large tables are collected only if
warranted.

v For asynchronous statistics collection, the runstats utility is automatically
scheduled to run during the optimal maintenance window that is specified in
your maintenance policy. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the optimal
maintenance window that is specified in your maintenance policy, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

v Real-time statistics (synchronous or fabricated) are not collected for nicknames.
To refresh nickname statistics in the system catalog automatically (for
asynchronous statistics collection), call the SYSPROC.NNSTAT procedure.

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and global temporary tables. Asynchronous
statistics are not collected for global temporary tables.

Automatic statistics collection (synchronous or asynchronous) does not occur for:
v Statistical views
v Tables that are marked VOLATILE (tables that have the VOLATILE field set in

the SYSCAT.TABLES catalog view)
v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views
When you modify table statistics manually, the database manager assumes that
you are now responsible for maintaining their statistics. To induce the database
manager to maintain statistics for a table that has had its statistics manually
updated, collect statistics using the RUNSTATS command or specify statistics
collection when using the LOAD command. Tables created prior to Version 9.5
that had their statistics updated manually prior to upgrading are not affected,
and their statistics are automatically maintained by the database manager until
they are manually updated.

Statistics fabrication does not occur for:
v Statistical views
v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views. Note that if real-time
statistics collection is not enabled, some statistics fabrication will still occur for
tables that have had their statistics manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

370 Troubleshooting and Tuning Database Performance

No real-time statistics collection activity will occur until at least five minutes after
database activation.

When real-time statistics are enabled, you should schedule a defined maintenance
window; the maintenance window is undefined by default. If there is no defined
maintenance window, only synchronous statistics collection will occur. In this case,
the collected statistics are only in-memory, and are typically collected using
sampling (except in the case of small tables).

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically
recognized as having stale statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics have been
collected. This is done so that cached dynamic statements can be re-optimized with
the latest statistics.

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)
using the explain facility. The following table summarizes the behavior under
different values of the CURRENT EXPLAIN MODE special register.

Table 71. Real-time statistics collection as a function of the value of the CURRENT
EXPLAIN MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously-
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, this cache resides only on the catalog database
partition. The catalog cache can store multiple entries for the same SYSTABLES
object, which increases the size of the catalog cache on all database partitions.
Consider increasing the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases. The Configuration Advisor
recommends that the auto_stmt_stats database configuration parameter be set to
ON.

Chapter 3. Factors affecting performance 371

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:
v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics using sampling. In this case, the sampling rate
and method might be different than those that are specified in the statistical
profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics that are specified in the statistical profile.
For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in
the statistical profile, an asynchronous collection request is submitted.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative
performance impact. This might be the case in some online transaction processing
(OLTP) scenarios, especially if there is an upper boundary for how long a query
can run.

Enabling automatic statistics collection:

Having accurate and complete database statistics is critical to efficient data access
and optimal workload performance. Use the automatic statistics collection feature
of the automated table maintenance functionality to update and maintain relevant
database statistics.

You can enhance this functionality in environments where a single database
partition operates on a single processor by collecting query data and generating
statistics profiles that help the DB2 server to automatically collect the exact set of
statistics that is required by your workload. This option is not available in
partitioned database environments, certain federated database environments, or
environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection, you must first configure your database by
setting the auto_maint and the auto_tbl_maint database configuration parameters
to ON. You then have the following options.
1. To enable background statistics collection, set the auto_runstats database

configuration parameter to ON.
2. To enable real-time statistics collection, set both auto_stmt_stats and

auto_runstats database configuration parameters to ON.
3. To enable automatic statistics profile generation, set both auto_stats_prof and

auto_prof_upd database configuration parameters to ON. If the auto_runstats
database configuration parameter is also set to ON, statistics are collected
automatically using the generated profiles. Note that auto_stats_prof cannot be
enabled if the section_actuals database configuration parameter is enabled
(SQLCODE -5153).

Collecting statistics using a statistics profile:

The runstats utility provides the option to register and use a statistics profile,
which specifies the type of statistics that are to be collected for a particular table;

372 Troubleshooting and Tuning Database Performance

for example, table statistics, index statistics, or distribution statistics. This feature
simplifies statistics collection by enabling you to store runstats options for
convenient future use.

To register a profile and collect statistics at the same time, issue the RUNSTATS
command with the SET PROFILE option. To register a profile only, issue the
RUNSTATS command with the SET PROFILE ONLY option. To collect statistics
using a profile that has already been registered, issue the RUNSTATS command
with the USE PROFILE option.

To see what options are currently specified in the statistics profile for a particular
table, query the SYSCAT.TABLES catalog view. For example:
SELECT STATISTICS_PROFILE FROM SYSCAT.TABLES WHERE TABNAME = 'EMPLOYEE'

Automatic statistics profiling

Statistics profiles can also be generated automatically with the DB2 automatic
statistics profiling feature. When this feature is enabled, information about
database activity is collected and stored in the query feedback warehouse. A
statistics profile is then generated on the basis of this data. Enabling this feature
can alleviate the uncertainty about which statistics are relevant to a particular
workload.

Automatic statistics profiling can be used with automatic statistics collection, which
schedules statistics maintenance operations based on information contained in the
automatically generated statistics profile.

To enable automatic statistics profiling, ensure that automatic table maintenance
has already been enabled by setting the appropriate database configuration
parameters. For more information, see “auto_maint - Automatic maintenance
configuration parameter”. The auto_stats_prof configuration parameter activates
the collection of query feedback data, and the auto_prof_upd configuration
parameter activates the generation of a statistics profile for use by automatic
statistics collection.

Automatic statistics profile generation is not supported in partitioned database
environments, in certain federated database environments, and when
intra-partition parallelism is enabled. Automatic statistics profile generation cannot
be enabled if section actuals are enabled on the database (SQLCODE -5153).

Automatic statistics profiling is best suited to systems running large complex
queries that have many predicates, use large joins, or specify extensive grouping. It
is less suited to systems with primarily transactional workloads.

In a development environment, where the performance overhead of runtime
monitoring can easily be tolerated, set the auto_stats_prof and
auto_prof_updconfiguration parameters to ON. When a test system uses realistic
data and queries, appropriate statistics profiles can be transferred to the production
system, where queries can benefit without incurring additional monitoring
overhead.

In a production environment, if performance problems with a particular set of
queries (problems that can be attributed to faulty statistics) are detected, you can
set theauto_stats_prof configuration parameter to ON and execute the target
workload for a period of time. Automatic statistics profiling will analyze the query
feedback and create recommendations in the

Chapter 3. Factors affecting performance 373

SYSTOOLS.OPT_FEEDBACK_RANKING tables. You can inspect these
recommendations and refine the statistics profiles manually, as appropriate. To
have the DB2 server automatically update the statistics profiles based on these
recommendations, enable auto_prof_upd when you enable auto_stats_prof.

Creating the query feedback warehouse

The query feedback warehouse, which is required for automatic statistics profiling,
consists of five tables in the SYSTOOLS schema. These tables store information
about the predicates that are encountered during query execution, as well as
recommendations for statistics collection. The five tables are:
v OPT_FEEDBACK_PREDICATE
v OPT_FEEDBACK_PREDICATE_COLUMN
v OPT_FEEDBACK_QUERY
v OPT_FEEDBACK_RANKING
v OPT_FEEDBACK_RANKING_COLUMN

Use the SYSINSTALLOBJECTS procedure to create the query feedback warehouse.
For more information about this procedure, which is used to create or drop objects
in the SYSTOOLS schema, see “SYSINSTALLOBJECTS”.

Storage used by automatic statistics collection and profiling:

The automatic statistics collection and reorganization features store working data
in tables that are part of your database. These tables are created in the
SYSTOOLSPACE table space.

SYSTOOLSPACE is created automatically with default options when the database
is activated. Storage requirements for these tables are proportional to the number
of tables in the database and can be estimated at approximately 1 KB per table. If
this is a significant size for your database, you might want to drop and then
recreate the table space yourself, allocating storage appropriately. Although the
automatic maintenance and health monitoring tables in the table space are
automatically recreated, any history that was captured in those tables is lost when
you drop the table space.

Automatic statistics collection activity logging:

The statistics log is a record of all of the statistics collection activities (both manual
and automatic) that have occurred against a specific database.

The default name of the statistics log is db2optstats.number.log. It resides in the
$diagpath/events directory. The statistics log is a rotating log. Log behavior is
controlled by the DB2_OPTSTATS_LOG registry variable.

The statistics log can be viewed directly or it can be queried using the
SYSPROC.PD_GET_DIAG_HIST table function. This table function returns a
number of columns containing standard information about any logged event, such
as the timestamp, DB2 instance name, database name, process ID, process name,
and thread ID. The log also contains generic columns for use by different logging
facilities. The following table describes how these generic columns are used by the
statistics log.

374 Troubleshooting and Tuning Database Performance

Table 72. Generic columns in the statistics log file

Column name Data type Description

OBJTYPE VARCHAR(64) The type of object to which the event applies.
For statistics logging, this is the type of
statistics to be collected. OBJTYPE can refer to
a statistics collection background process
when the process starts or stops. It can also
refer to activities that are performed by
automatic statistics collection, such as a
sampling test, initial sampling, and table
evaluation.

Possible values for statistics collection
activities are:

TABLE STATS
Table statistics are to be collected.

INDEX STATS
Index statistics are to be collected.

TABLE AND INDEX STATS
Both table and index statistics are to
be collected.

Possible values for automatic statistics
collection are:

EVALUATION
The automatic statistics background
collection process has begun an
evaluation phase. During this phase,
tables will be checked to determine
if they need updated statistics, and
statistics will be collected, if
necessary.

INITIAL SAMPLING
Statistics are being collected for a
table using sampling. The sampled
statistics are stored in the system
catalog. This allows automatic
statistics collection to proceed
quickly for a table with no statistics.
Subsequent operations will collect
statistics without sampling. Initial
sampling is performed during the
evaluation phase of automatic
statistics collection.

SAMPLING TEST
Statistics are being collected for a
table using sampling. The sampled
statistics are not stored in the
system catalog. The sampled
statistics will be compared to the
current catalog statistics to
determine if and when full statistics
should be collected for this table.
The sampling is performed during
the evaluation phase of automatic
statistics collection.

STATS DAEMON
The statistics daemon is a
background process used to handle
requests that are submitted by
real-time statistics processing. This
object type is logged when the
background process starts or stops.

Chapter 3. Factors affecting performance 375

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

OBJNAME VARCHAR(255) The name of the object to which the event
applies, if available. For statistics logging, this
is the table or index name. If OBJTYPE is
STATS DAEMON or EVALUATION,
OBJNAME is the database name and
OBJNAME_QUALIFIER is NULL.

OBJNAME_QUALIFIER VARCHAR(255) For statistics logging, this is the schema of the
table or index.

EVENTTYPE VARCHAR(24) The event type is the action that is associated
with this event. Possible values for statistics
logging are:

COLLECT
This action is logged for a statistics
collection operation.

START This action is logged when the
real-time statistics background
process (OBJTYPE = STATS
DAEMON) or an automatic statistics
collection evaluation phase
(OBJTYPE = EVALUATION) starts.

STOP This action is logged when the
real-time statistics background
process (OBJTYPE = STATS
DAEMON) or an automatic statistics
collection evaluation phase
(OBJTYPE = EVALUATION stops.

ACCESS
This action is logged when an
attempt has been made to access a
table for statistics collection
purposes. This event type is used to
log an unsuccessful access attempt
when the object is unavailable.

WRITE This action is logged when
previously collected statistics that
are stored in the statistics cache are
written to the system catalog.

FIRST_EVENTQUALIFIERTYPE VARCHAR(64) The type of the first event qualifier. Event
qualifiers are used to describe what was
affected by the event. For statistics logging,
the first event qualifier is the timestamp for
when the event occurred. For the first event
qualifier type, the value is AT.

FIRST_EVENTQUALIFIER CLOB(16k) The first qualifier for the event. For statistics
logging, the first event qualifier is the
timestamp for when the statistics event
occurred. The timestamp of the statistics event
might be different than the timestamp of the
log record, as represented by the TIMESTAMP
column.

SECOND_EVENTQUALIFIERTYPE VARCHAR(64) The type of the second event qualifier. For
statistics logging, the value can be BY or
NULL. This field is not used for other event
types.

376 Troubleshooting and Tuning Database Performance

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

SECOND_EVENTQUALIFIER CLOB(16k) The second qualifier for the event. For
statistics logging, this represents how statistics
were collected for COLLECT event types.
Possible values are:

User Statistics collection was performed
by a DB2 user invoking the LOAD,
REDISTRIBUTE, or RUNSTATS
command, or issuing the CREATE
INDEX statement.

Synchronous
Statistics collection was performed
at SQL statement compilation time
by the DB2 server. The statistics are
stored in the statistics cache but not
the system catalog.

Synchronous sampled
Statistics collection was performed
using sampling at SQL statement
compilation time by the DB2 server.
The statistics are stored in the
statistics cache but not the system
catalog.

Fabricate
Statistics were fabricated at SQL
statement compilation time using
information that is maintained by
the data and index manager. The
statistics are stored in the statistics
cache but not the system catalog.

Fabricate partial
Only some statistics were fabricated
at SQL statement compilation time
using information that is maintained
by the data and index manager. In
particular, only the HIGH2KEY and
LOW2KEY values for certain
columns were fabricated. The
statistics are stored in the statistics
cache but not the system catalog.

Asynchronous
Statistics were collected by a DB2
background process and are stored
in the system catalog.

This field is not used for other event types.

THIRD_EVENTQUALIFIERTYPE VARCHAR(64) The type of the third event qualifier. For
statistics logging, the value can be DUE TO or
NULL.

Chapter 3. Factors affecting performance 377

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

THIRD_EVENTQUALIFIER CLOB(16k) The third qualifier for the event. For statistics
logging, this represents the reason why a
statistics activity could not be completed.
Possible values are:

Timeout Synchronous statistics collection
exceeded the time budget.

Error The statistics activity failed due to
an error.

RUNSTATS error
Synchronous statistics collection
failed due to a RUNSTATS error. For
some errors, SQL statement
compilation might have completed
successfully, even though statistics
could not be collected. For example,
if there was insufficient memory to
collect statistics, SQL statement
compilation will continue.

Object unavailable
Statistics could not be collected for
the database object because it could
not be accessed. Some possible
reasons include:

v The object is locked in super
exclusive (Z) mode

v The table space in which the
object resides is unavailable

v The table indexes need to be
recreated

Conflict Synchronous statistics collection was
not performed because another
application was already collecting
synchronous statistics.

Check the FULLREC column or the db2diag
log files for the error details.

EVENTSTATE VARCHAR(255) State of the object or action as a result of the
event. For statistics logging, this indicates the
state of the statistics operation. Possible values
are:

v Start

v Success

v Failure

Example

In this example, the query returns statistics log records for events up to one year
prior to the current timestamp by invoking PD_GET_DIAG_HIST.

select pid, tid,
substr(eventtype, 1, 10),
substr(objtype, 1, 30) as objtype,
substr(objname_qualifier, 1, 20) as objschema,
substr(objname, 1, 10) as objname,
substr(first_eventqualifier, 1, 26) as event1,
substr(second_eventqualifiertype, 1, 2) as event2_type,
substr(second_eventqualifier, 1, 20) as event2,
substr(third_eventqualifiertype, 1, 6) as event3_type,
substr(third_eventqualifier, 1, 15) as event3,

378 Troubleshooting and Tuning Database Performance

substr(eventstate, 1, 20) as eventstate
from table(sysproc.pd_get_diag_hist

('optstats', 'EX', 'NONE',
current_timestamp - 1 year, cast(null as timestamp))) as sl

order by timestamp(varchar(substr(first_eventqualifier, 1, 26), 26));

The results are ordered by the timestamp stored in the FIRST_EVENTQUALIFIER
column, which represents the time of the statistics event.

PID TID EVENTTYPE OBJTYPE OBJSCHEMA OBJNAME EVENT1 EVENT2_ EVENT2 EVENT3_ EVENT3 EVENTSTATE
TYPE TYPE

----- ------------- --------- --------------------- --------- ---------- -------------------------- ------- -------------------- ------- -------- ----------
28399 1082145120 START STATS DAEMON - PROD_DB 2007-07-09-18.37.40.398905 - - - - success
28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.261222 BY Synchronous - - start
28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.407447 BY Synchronous - - success
28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.471614 BY Asynchronous - - start
28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.524496 BY Asynchronous - - success
28399 1082145120 STOP STATS DAEMON - PROD_DB 2007-07-09-18.37.43.526212 - - - - success
28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.48.676524 BY Synchronous sampled - - start
28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.53.677546 BY Synchronous sampled DUE TO Timeout failure
28389 1772561034 START EVALUATION - PROD_DB 2007-07-10-12.36.11.092739 - - - - success
28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.30.737603 BY Asynchronous - - start
28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.34.029756 BY Asynchronous - - success
28389 1772561034 STOP EVALUATION - PROD_DB 2007-07-10-12.36.39.685188 - - - - success
28399 1504428165 START STATS DAEMON - PROD_DB 2007-07-10-12.37.43.319291 - - - - success
28399 1504428165 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-10-12.37.43.471614 BY Asynchronous - - start
28399 1504428165 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-10-12.37.44.524496 BY Asynchronous - - failure
28399 1504428165 STOP STATS DAEMON - PROD_DB 2007-07-10-12.37.45.905975 - - - - success
28399 4769515044 START STATS DAEMON - PROD_DB 2007-07-10-12.48.33.319291 - - - - success
28389 4769515044 WRITE TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-10-12.48.33.969888 BY Asynchronous - - start
28389 4769515044 WRITE TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-10-12.48.34.215230 BY Asynchronous - - success

Improving query performance for large statistics logs:

If the statistics log files are large, you can improve query performance by copying
the log records into a table, creating indexes, and then gathering statistics.
1. Create a table with appropriate columns for the log records.

create table db2user.stats_log (
pid bigint,
tid bigint,
timestamp timestamp,
dbname varchar(128),
retcode integer,
eventtype varchar(24),
objtype varchar(30),
objschema varchar(20),
objname varchar(30),
event1_type varchar(20),
event1 timestamp,
event2_type varchar(20),
event2 varchar(40),
event3_type varchar(20),
event3 varchar(40),
eventstate varchar(20))

2. Declare a cursor for a query against SYSPROC.PD_GET_DIAG_HIST.
declare c1 cursor for

select pid, tid, timestamp, dbname, retcode, eventtype,
substr(objtype, 1, 30) as objtype,
substr(objname_qualifier, 1, 20) as objschema,
substr(objname, 1, 30) as objname,
substr(first_eventqualifiertype, 1, 20),
substr(first_eventqualifier, 1, 26),
substr(second_eventqualifiertype, 1, 20),
substr(second_eventqualifier, 1, 40),
substr(third_eventqualifiertype, 1, 20),
substr(third_eventqualifier, 1, 40),
substr(eventstate, 1, 20)

from table (sysproc.pd_get_diag_hist
('optstats', 'EX', 'NONE',

current_timestamp - 1 year, cast(null as timestamp))) as sl

3. Load the statistics log records into the table.

Chapter 3. Factors affecting performance 379

load from c1 of cursor replace into db2user.stats_log

4. Create indexes and then gather statistics on the table.
create index sl_ix1 on db2user.stats_log(eventtype, event1);
create index sl_ix2 on db2user.stats_log(objtype, event1);
create index sl_ix3 on db2user.stats_log(objname);

runstats on table db2user.stats_log
with distribution and sampled detailed indexes all;

Guidelines for collecting and updating statistics
The runstats utility collects statistics on tables, indexes, and statistical views to
provide the optimizer with accurate information for access plan selection.

Use the runstats utility to collect statistics in the following situations:
v After data has been loaded into a table and appropriate indexes have been

created
v After creating a new index on a table
v After a table has been reorganized with the reorg utility
v After a table and its indexes have been significantly modified through update,

insert, or delete operations
v Before binding application programs whose performance is critical
v When you want to compare current and previous statistics
v When the prefetch value has been changed
v After executing the REDISTRIBUTE DATABASE PARTITION GROUP command
v When you have XML columns. When runstats is used to collect statistics for

XML columns only, existing statistics for non-XML columns that were collected
during a load operation or a previous runstats operation are retained. If statistics
on some XML columns were collected previously, those statistics are either
replaced or dropped if the current runstats operation does not include those
columns.

To improve runstats performance and save disk space used to store statistics,
consider specifying only those columns for which data distribution statistics should
be collected.

You should rebind application programs after executing runstats. The query
optimizer might choose different access plans if new statistics are available.

If a full set of statistics cannot be collected at one time, use the runstats utility on
subsets of the objects. If inconsistencies occur as a result of ongoing activity against
those objects, a warning message (SQL0437W, reason code 6) is returned during
query optimization. If this occurs, use runstats again to update the distribution
statistics.

To ensure that index statistics are synchronized with the corresponding table,
collect both table and index statistics at the same time. If a table has been modified
extensively since the last time that statistics were gathered, updating only the
index statistics for that table will leave the two sets of statistics out of
synchronization with each other.

Using the runstats utility on a production system might negatively impact
workload performance. The utility now supports a throttling option that can be
used to limit the performance impact of runstats execution during high levels of
database activity.

380 Troubleshooting and Tuning Database Performance

When you collect statistics for a table in a partitioned database environment,
runstats only operates on the database partition from which the utility is executed.
The results from this database partition are extrapolated to the other database
partitions. If this database partition does not contain a required portion of the
table, the request is sent to the first database partition in the database partition
group that contains the required data.

Statistics for a statistical view are collected on all database partitions containing
base tables that are referenced by the view.

Consider the following tips to improve the efficiency of runstats and the usefulness
of the statistics:
v Collect statistics only for columns that are used to join tables or for columns that

are referenced in the WHERE, GROUP BY, or similar clauses of queries. If the
columns are indexed, you can specify these columns with the ONLY ON KEY
COLUMNS clause on the RUNSTATS command.

v Customize the values of the num_freqvalues and num_quantiles database
configuration parameters for specific tables and columns.

v Collect detailed index statistics with the SAMPLE DETAILED clause to reduce
the amount of background calculation that is performed for detailed index
statistics. The SAMPLE DETAILED clause reduces the time that is required to
collect statistics, and produces adequate precision in most cases.

v When you create an index for a populated table, use the COLLECT STATISTICS
clause to create statistics as the index is created.

v When significant numbers of table rows are added or removed, or if data in
columns for which you collect statistics is updated, use runstats again to update
the statistics.

v Because runstats collects statistics on only a single database partition, the
statistics will be less accurate if the data is not distributed consistently across all
database partitions. If you suspect that there is skewed data distribution,
consider redistributing the data across database partitions by using the
REDISTRIBUTE DATABASE PARTITION GROUP command before using the
runstats utility.

v For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics can be collected
on an XML column. Distribution statistics are collected for each index over XML
data specified on the XML column. By default, a maximum of 250 quantiles are
used for distribution statistics for each index over XML data.
When collecting distribution statistics on an XML column, you can change
maximum number of quantiles. You can lower the maximum number of
quantiles to reduce the space requirements for XML distribution statistics based
on your particular data size, or you can increase the maximum number of
quantiles if 250 quantiles is not sufficient to capture the distribution statistics of
the data set for an index over XML data.

Collecting catalog statistics:

Use the RUNSTATS utility to collect catalog statistics on tables, indexes, and
statistical views. The query optimizer uses this information to choose the best
access plans for queries.

For privileges and authorities that are required to use this utility, see the
description of the RUNSTATS command. To collect catalog statistics:
1. Connect to the database that contains the tables, indexes, or statistical views for

which you want to collect statistical information.

Chapter 3. Factors affecting performance 381

2. From the DB2 command line, execute the RUNSTATS command with
appropriate options. These options enable you to tailor the statistics that are
collected for queries that run against the tables, indexes, or statistical views.

3. When the runstats operation completes, issue a COMMIT statement to release
locks.

4. Rebind any packages that access the tables, indexes, or statistical views for
which you have updated statistical information.

Note:

1. The RUNSTATS command does not support the use of nicknames. If queries
access a federated database, use RUNSTATS to update statistics for tables in all
databases, then drop and recreate the nicknames that access remote tables to
make the new statistics available to the optimizer.

2. When you collect statistics for a table in a partitioned database environment,
RUNSTATS only operates on the database partition from which the utility is
executed. The results from this database partition are extrapolated to the other
database partitions. If this database partition does not contain a required
portion of the table, the request is sent to the first database partition in the
database partition group that contains the required data.
Statistics for a statistical view are collected on all database partitions containing
base tables that are referenced by the view.

3. For DB2 V9.7 Fix Pack 1 and later releases, the following apply to the collection
of distribution statistics on a column of type XML:
v Distribution statistics are collected for each index over XML data specified on

an XML column.
v The RUNSTATS command must collect both distribution statistics and table

statistics to collect distribution statistics for an index over XML data.
v As the default, the RUNSTATS command collects a maximum of 250

quantiles for distribution statistics for each index over XML data. The
maximum number of quantiles for a column can be specified when executing
the RUNSTATS command.

v Distribution statistics are collected on indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. XML distribution statistics
are not collected on indexes over XML data of type VARCHAR HASHED.

v Distribution statistics are not collected on partitioned indexes over XML data
defined on a partitioned table.

Collecting statistics on a sample of the table data:

Table statistics are used by the query optimizer to select the best access plan for a
query, so it is important that statistics remain current. With the ever-increasing size
of databases, efficient statistics collection becomes more challenging.

An effective approach is to collect statistics on a random sample of table data. For
I/O-bound or processor-bound systems, the performance benefits can be
enormous.

The DB2 product enables you to efficiently sample data for statistics collection,
potentially improving the performance of the runstats utility by orders of
magnitude, while maintaining a high degree of accuracy.

382 Troubleshooting and Tuning Database Performance

Two methods of sampling are available: row-level sampling and page-level
sampling. For a description of these sampling methods, see “Data sampling in
queries”.

Performance of page-level sampling is excellent, because only one I/O operation is
required for each selected page. With row-level sampling, I/O costs are not
reduced, because every table page is retrieved in a full table scan. However,
row-level sampling provides significant performance improvements, even if the
amount of I/O is not reduced, because collecting statistics is processor-intensive.

Row-level sampling provides a better sample than page-level sampling in
situations where the data values are highly clustered. Compared to page-level
sampling, the row-level sample set will likely be a better reflection of the data,
because it will include P percent of the rows from each data page. With page-level
sampling, all the rows of P percent of the pages will be in the sample set. If the
rows are distributed randomly over the table, the accuracy of row-sampled
statistics will be similar to the accuracy of page-sampled statistics.

Each sample is randomly generated across repeated invocations of the RUNSTATS
command, unless the REPEATABLE option is used, in which case the previous
sample is regenerated. This option can be useful in cases where consistent statistics
are required for tables whose data remains constant.

Sub-element statistics:

If you specify LIKE predicates using the % wildcard character in any position other
than at the end of the pattern, you should collect basic information about the
sub-element structure.

As well as the wildcard LIKE predicate (for example, SELECT...FROM DOCUMENTS
WHERE KEYWORDS LIKE '%simulation%'), the columns and the query must fit certain
criteria to benefit from sub-element statistics.

Table columns should contain sub-fields or sub-elements separated by blanks. For
example, a four-row table DOCUMENTS contains a KEYWORDS column with lists
of relevant keywords for text retrieval purposes. The values in KEYWORDS are:
'database simulation analytical business intelligence'
'simulation model fruit fly reproduction temperature'
'forestry spruce soil erosion rainfall'
'forest temperature soil precipitation fire'

In this example, each column value consists of five sub-elements, each of which is
a word (the keyword), separated from the others by one blank.

The query should reference these columns in WHERE clauses.

The optimizer always estimates how many rows match each predicate. For these
wildcard LIKE predicates, the optimizer assumes that the column being matched
contains a series of elements concatenated together, and it estimates the length of
each element based on the length of the string, excluding leading and trailing %
characters. If you collect sub-element statistics, the optimizer will have information
about the length of each sub-element and the delimiter. It can use this additional
information to more accurately estimate how many rows will match the predicate.

To collect sub-element statistics, execute the RUNSTATS command with the LIKE
STATISTICS option.

Chapter 3. Factors affecting performance 383

Runstats statistics about sub-elements:

The runstats utility collects statistics for columns of type CHAR and VARCHAR
with a code page attribute of single-byte character set (SBCS), FOR BIT DATA, or
UTF-8 when you specify the LIKE STATISTICS clause.

SUB_COUNT
The average number of sub-elements.

SUB_DELIM_LENGTH
The average length of each delimiter separating the sub-elements. A
delimiter, in this context, is one or more consecutive blank characters.

The DB2_LIKE_VARCHAR registry variable affects the way in which the
optimizer deals with a predicate of the form: <column > like '%<character-
string>%'. For more information about this registry variable, see “Query compiler
variables”.

To examine the values of the sub-element statistics, query the SYSCAT.COLUMNS
catalog view. For example:

select substr(colname, 1, 16), sub_count, sub_delim_length
from syscat.columns where tabname = 'DOCUMENTS'

The runstats utility might take longer to complete if you use the LIKE STATISTICS
clause. If you are considering this option, assess the improvements in query
performance against this additional overhead.

General rules for updating catalog statistics manually:

When you update catalog statistics, the most important general rule is to ensure
that valid values, ranges, and formats of the various statistics are stored in the
views for those statistics.

It is also important to preserve the consistency of relationships among various
statistics. For example, COLCARD in SYSSTAT.COLUMNS must be less than
CARD in SYSSTAT.TABLES (the number of distinct values in a column cannot be
greater than the number of rows in a table). Suppose that you want to reduce
COLCARD from 100 to 25, and CARD from 200 to 50. If you update
SYSSTAT.TABLES first, an error is returned, because CARD would be less than
COLCARD.

In some cases, however, a conflict is difficult to detect, and an error might not be
returned, especially if the impacted statistics are stored in different catalog tables.

Before updating catalog statistics, ensure (at a minimum) that:
v Numeric statistics are either -1 or greater than or equal to zero.
v Numeric statistics representing percentages (for example, CLUSTERRATIO in

SYSSTAT.INDEXES) are between 0 and 100.

When a table is created, catalog statistics are set to -1 to indicate that the table has
no statistics. Until statistics are collected, the DB2 server uses default values for
SQL or XQuery statement compilation and optimization. Updating the table or
index statistics might fail if the new values are inconsistent with the default values.
Therefore, it is recommended that you use the runstats utility after creating a table,
and before attempting to update statistics for the table or its indexes.

Note:

384 Troubleshooting and Tuning Database Performance

1. For row types, the table-level statistics NPAGES, FPAGES, and OVERFLOW are
not updatable for a subtable.

2. Partition-level table and index statistics are not updatable.

Rules for updating column statistics manually:

There are certain guidelines that you should follow when updating statistics in the
SYSSTAT.COLUMNS catalog view.
v When manually updating HIGH2KEY or LOW2KEY values, ensure that:

– The values are valid for the data type of the corresponding user column.
– The length of the values must be the smaller of 33 or the maximum length of

the target column data type, not including additional quotation marks, which
can increase the length of the string to 68. This means that only the first 33
characters of the value in the corresponding user column will be considered
in determining the HIGH2KEY or LOW2KEY values.

– The values are stored in such a way that they can be used with the SET
clause of an UPDATE statement, as well as for cost calculations. For character
strings, this means that single quotation marks are added to the beginning
and at the end of the string, and an extra quotation mark is added for every
quotation mark that is already in the string. Examples of user column values
and their corresponding values in HIGH2KEY or LOW2KEY are provided in
Table 73.

Table 73. HIGH2KEY and LOW2KEY values by data type

Data type in user column User data
Corresponding HIGH2KEY
or LOW2KEY value

INTEGER -12 -12

CHAR abc 'abc'

CHAR ab'c 'ab''c'

– HIGH2KEY is greater than LOW2KEY whenever there are more than three
distinct values in the corresponding column.

v The cardinality of a column (COLCARD in SYSSTAT.COLUMNS) cannot be
greater than the cardinality of its corresponding table or statistical view (CARD
in SYSSTAT.TABLES).

v The number of null values in a column (NUMNULLS in SYSSTAT.COLUMNS)
cannot be greater than the cardinality of its corresponding table or statistical
view (CARD in SYSSTAT.TABLES).

v Statistics are not supported for columns that are defined with LONG or large
object (LOB) data types.

Rules for updating table and nickname statistics manually:

There are certain guidelines that you should follow when updating statistics in the
SYSSTAT.TABLES catalog view.
v The only statistical values that you can update in SYSSTAT.TABLES are CARD,

FPAGES, NPAGES, and OVERFLOW; and for multidimensional clustering
(MDC) tables, ACTIVE_BLOCKS.

v CARD must be greater than or equal to all COLCARD values for the
corresponding table in SYSSTAT.COLUMNS.

v CARD must be greater than NPAGES.
v FPAGES must be greater than NPAGES.

Chapter 3. Factors affecting performance 385

v NPAGES must be less than or equal to any “fetch” value in the
PAGE_FETCH_PAIRS column of any index (assuming that this statistic is
relevant to the index).

v CARD must not be less than or equal to any “fetch” value in the
PAGE_FETCH_PAIRS column of any index (assuming that this statistic is
relevant to the index).

In a federated database system, use caution when manually updating statistics for
a nickname over a remote view. Statistical information, such as the number of rows
that a nickname will return, might not reflect the real cost of evaluating this
remote view, and therefore might mislead the DB2 optimizer. In certain cases,
however, remote views can benefit from statistics updates; these include remote
views that are defined on a single base table with no column functions applied to
the SELECT list. Complex views might require a complex tuning process in which
each query is tuned. Consider creating local views over nicknames, so that the DB2
optimizer knows how to derive the cost of those views more accurately.

Detailed index statistics
A runstats operation for indexes with the DETAILED option collects statistical
information that allows the optimizer to estimate how many data page fetches will
be required, depending on the buffer pool size. This additional information helps
the optimizer to better estimate the cost of accessing a table through an index.

Detailed statistics provide concise information about the number of physical I/Os
that are required to access the data pages of a table if a complete index scan is
performed under different buffer pool sizes. As the runstats utility scans the pages
of an index, it models the different buffer sizes, and estimates how often a page
fault occurs. For example, if only one buffer page is available, each new page that
is referenced by the index results in a page fault. In the worst case, each row might
reference a different page, resulting in at most the same number of I/Os as the
number of rows in the indexed table. At the other extreme, when the buffer is big
enough to hold the entire table (subject to the maximum buffer size), all table
pages are read at once. As a result, the number of physical I/Os is a monotonic,
nonincreasing function of the buffer size.

The statistical information also provides finer estimates of the degree of clustering
of the table rows to the index order. The less clustering, the more I/Os are required
to access table rows through the index. The optimizer considers both the buffer
size and the degree of clustering when it estimates the cost of accessing a table
through an index.

Collect detailed index statistics when:
v Queries reference columns that are not included in the index
v The table has multiple non-clustered indexes with varying degrees of clustering
v The degree of clustering among the key values is nonuniform
v Index values are updated in a nonuniform manner

It is difficult to identify these conditions without previous knowledge or without
forcing an index scan under varying buffer sizes and then monitoring the resulting
physical I/Os. Perhaps the least expensive way to determine whether any of these
conditions exist is to collect and examine the detailed statistics for an index, and to
retain them if the resulting PAGE_FETCH_PAIRS are nonlinear.

When you collect detailed index statistics, the runstats operation takes longer to
complete and requires more memory and processing time. The SAMPLED

386 Troubleshooting and Tuning Database Performance

DETAILED option, for example, requires 2 MB of the statistics heap. Allocate an
additional 488 4-KB pages to the stat_heap_sz database configuration parameter
setting for this memory requirement. If the heap is too small, the runstats utility
returns an error before it attempts to collect statistics.

CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected unless the table is
of sufficient size (greater than about 25 pages). In this case, CLUSTERFACTOR will
be a value between 0 and 1, and CLUSTERRATIO is -1 (not collected). If the table
is relatively small, only CLUSTERRATIO, with a value between 0 and 100, is
collected by the runstats utility; CLUSTERFACTOR and PAGE_FETCH_PAIRS are
not collected. If the DETAILED clause is not specified, only CLUSTERRATIO is
collected.

Collecting index statistics:

Collect index statistics to help the optimizer decide whether a specific index should
be used to resolve a query.

The following example is based on a database named SALES that contains a
CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

For privileges and authorities that are required to use the runstats utility, see the
description of the RUNSTATS command.

To collect detailed statistics for an index:
1. Connect to the SALES database.
2. Execute one of the following commands from the DB2 command line,

depending on your requirements:
v To collect detailed statistics on both CUSTIDX1 and CUSTIDX2:

runstats on table sales.customers and detailed indexes all

v To collect detailed statistics on both indexes, but with sampling instead of
detailed calculations on each index entry:

runstats on table sales.customers and sampled detailed indexes all

The SAMPLED DETAILED option requires 2 MB of the statistics heap.
Allocate an additional 488 4-KB pages to the stat_heap_sz database
configuration parameter setting for this memory requirement. If the heap is
too small, the runstats utility returns an error before it attempts to collect
statistics.

v To collect detailed statistics on sampled indexes, as well as distribution
statistics for the table so that index and table statistics are consistent:

runstats on table sales.customers
with distribution on key columns

and sampled detailed indexes all

Rules for updating index statistics manually:

There are certain guidelines that you should follow when updating statistics in the
SYSSTAT.INDEXES catalog view.
v The following rules apply to PAGE_FETCH_PAIRS:

– Individual values in the PAGE_FETCH_PAIRS statistic must not be longer
than 10 digits and must be less than the maximum integer value (2 147 483
647).

Chapter 3. Factors affecting performance 387

– Individual values in the PAGE_FETCH_PAIRS statistic must be separated by
a blank character delimiter.

– There must always be a valid PAGE_FETCH_PAIRS statistic if
CLUSTERFACTOR is greater than zero.

– There must be exactly 11 pairs in a single PAGE_FETCH_PAIRS statistic.
– Buffer size values in a PAGE_FETCH_PAIRS statistic (the first value in each

pair) must appear in ascending order.
– Any buffer size value in a PAGE_FETCH_PAIRS statistic cannot be greater

than MIN(NPAGES, 524 287) for a 32-bit operating system, or MIN(NPAGES,
2 147 483 647) for a 64-bit operating system, where NPAGES (stored in
SYSSTAT.TABLES) is the number of pages in the corresponding table.

– Page fetch values in a PAGE_FETCH_PAIRS statistic (the second value in
each pair) must appear in descending order, with no individual value being
less than NPAGES or greater than CARD for the corresponding table.

– If the buffer size value in two consecutive pairs is identical, the page fetch
value in both of the pairs must also be identical.

An example of a valid PAGE_FETCH_PAIRS statistic is:
PAGE_FETCH_PAIRS =

'100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300
260 300 280 300 300 300'

where
NPAGES = 300
CARD = 10000
CLUSTERRATIO = -1
CLUSTERFACTOR = 0.9

v The following rules apply to CLUSTERRATIO and CLUSTERFACTOR:
– Valid values for CLUSTERRATIO are -1 or between 0 and 100.
– Valid values for CLUSTERFACTOR are -1 or between 0 and 1.
– At least one of the CLUSTERRATIO and CLUSTERFACTOR values must be -1

at all times.
– If CLUSTERFACTOR is a positive value, it must be accompanied by a valid

PAGE_FETCH_PAIRS value.
v For relational indexes, the following rules apply to FIRSTKEYCARD,

FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and
INDCARD:
– For a single-column index, FIRSTKEYCARD must be equal to

FULLKEYCARD.
– FIRSTKEYCARD must be equal to SYSSTAT.COLUMNS.COLCARD for the

corresponding column.
– If any of these index statistics are not relevant, set them to -1. For example, if

you have an index with only three columns, set FIRST4KEYCARD to -1.
– For multiple column indexes, if all of the statistics are relevant, the

relationship among them must be as follows:
FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

<= FULLKEYCARD <= INDCARD == CARD

v For indexes over XML data, the relationship among FIRSTKEYCARD,
FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and
INDCARD must be as follows:

FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD
<= FULLKEYCARD <= INDCARD

v The following rules apply to SEQUENTIAL_PAGES and DENSITY:

388 Troubleshooting and Tuning Database Performance

– Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.
– Valid values for DENSITY are -1 or between 0 and 100.

Distribution statistics
You can collect two kinds of data distribution statistics: frequent-value statistics
and quantile statistics.
v Frequent-value statistics provide information about a column and the data value

with the highest number of duplicates, the value with the second highest
number of duplicates, and so on, to the level that is specified by the value of the
num_freqvalues database configuration parameter. To disable the collection of
frequent-value statistics, set num_freqvalues to 0. You can also use the
NUM_FREQVALUES clause on the RUNSTATS command for a specific table,
statistical view, or column.

v Quantile statistics provide information about how data values are distributed in
relation to other values. Called K-quantiles, these statistics represent the value V
at or below which at least K values lie. You can compute a K-quantile by sorting
the values in ascending order. The K-quantile value is the value in the Kth
position from the low end of the range.
To specify the number of “sections” (quantiles) into which the column data
values should be grouped, set the num_quantiles database configuration
parameter to a value between 2 and 32 767. The default value is 20, which
ensures a maximum optimizer estimation error of plus or minus 2.5% for any
equality, less-than, or greater-than predicate, and a maximum error of plus or
minus 5% for any BETWEEN predicate. To disable the collection of quantile
statistics, set num_quantiles to 0 or 1.
You can set num_quantiles for a specific table, statistical view, or column.

Note: The runstats utility consumes more processing resources and memory
(specified by the stat_heap_sz database configuration parameter) if larger
num_freqvalues and num_quantiles values are used.

When to collect distribution statistics

To decide whether distribution statistics for a table or statistical view would be
helpful, first determine:
v Whether the queries in an application use host variables.

Distribution statistics are most useful for dynamic and static queries that do not
use host variables. The optimizer makes limited use of distribution statistics
when assessing queries that contain host variables.

v Whether the data in columns is uniformly distributed.
Create distribution statistics if at least one column in the table has a highly
“nonuniform” distribution of data, and the column appears frequently in
equality or range predicates; that is, in clauses such as the following:

where c1 = key;
where c1 in (key1, key2, key3);
where (c1 = key1) or (c1 = key2) or (c1 = key3);
where c1 <= key;
where c1 between key1 and key2;

Two types of nonuniform data distribution can occur, and possibly together.
v Data might be highly clustered instead of being evenly spread out between the

highest and lowest data value. Consider the following column, in which the data
is clustered in the range (5,10):

Chapter 3. Factors affecting performance 389

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1
93.6
100.0

Quantile statistics help the optimizer to deal with this kind of data distribution.
Queries can help you to determine whether column data is not uniformly
distributed. For example:

select c1, count(*) as occurrences
from t1

group by c1
order by occurrences desc

v Duplicate data values might often occur. Consider a column in which the data is
distributed with the following frequencies:

Table 74. Frequency of data values in a column

Data Value Frequency

20 5

30 10

40 10

50 25

60 25

70 20

80 5

Both frequent-value and quantile statistics help the optimizer to deal with
numerous duplicate values.

When to collect index statistics only

You might consider collecting statistics that are based only on index data in the
following situations:
v A new index has been created since the runstats utility was run, and you do not

want to collect statistics again on the table data.
v There have been many changes to the data that affect the first column of an

index.

What level of statistical precision to specify

Use the num_quantiles and num_freqvalues database configuration parameters to
specify the precision with which distribution statistics are stored. You can also
specify the precision with corresponding RUNSTATS command options when you
collect statistics for a table or for columns. The higher you set these values, the
greater the precision that the runstats utility uses when it creates and updates
distribution statistics. However, greater precision requires more resources, both
during the runstats operation itself, and for storing more data in the catalog tables.

For most databases, specify between 10 and 100 as the value of the
num_freqvalues database configuration parameter. Ideally, frequent-value statistics

390 Troubleshooting and Tuning Database Performance

should be created in such a way that the frequencies of the remaining values are
either approximately equal to one another or negligible when compared to the
frequencies of the most frequent values. The database manager might collect fewer
than this number, because these statistics will only be collected for data values that
occur more than once. If you need to collect only quantile statistics, set the value of
num_freqvalues to zero.

To specify the number of quantiles, set the num_quantiles database configuration
parameter to a value between 20 and 50.
v First determine the maximum acceptable error when estimating the number of

rows for any range query, as a percentage P.
v The number of quantiles should be approximately 100/P for BETWEEN

predicates, and 50/P for any other type of range predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for
BETWEEN predicates and 2% for “>” predicates. In general, specify at least 10
quantiles. More than 50 quantiles should be necessary only for extremely
nonuniform data. If you need only frequent-value statistics, set num_quantiles to
0. If you set this parameter to 1, because the entire range of values fits within one
quantile, no quantile statistics are collected.

Optimizer use of distribution statistics:

The optimizer uses distribution statistics for better estimates of the cost of different
query access plans.

Unless it has additional information about the distribution of values between the
low and high values, the optimizer assumes that data values are evenly
distributed. If data values differ widely from each other, are clustered in some
parts of the range, or contain many duplicate values, the optimizer will choose a
less than optimal access plan.

Consider the following example: To select the least expensive access plan, the
optimizer needs to estimate the number of rows with a column value that satisfies
an equality or range predicate. The more accurate the estimate, the greater the
likelihood that the optimizer will choose the optimal access plan. For the following
query:

select c1, c2
from table1
where c1 = 'NEW YORK'
and c2 <= 10

Assume that there is an index on both columns C1 and C2. One possible access
plan is to use the index on C1 to retrieve all rows with C1 = 'NEW YORK', and then
to check whether C2 <= 10 for each retrieved row. An alternate plan is to use the
index on C2 to retrieve all rows with C2 <= 10, and then to check whether C1 =
'NEW YORK' for each retrieved row. Because the primary cost of executing a query is
usually the cost of retrieving the rows, the best plan is the one that requires the
fewest retrievals. Choosing this plan means estimating the number of rows that
satisfy each predicate.

When distribution statistics are not available, but the runstats utility has been used
on a table or a statistical view, the only information that is available to the
optimizer is the second-highest data value (HIGH2KEY), the second-lowest data
value (LOW2KEY), the number of distinct values (COLCARD), and the number of
rows (CARD) in a column. The number of rows that satisfy an equality or range

Chapter 3. Factors affecting performance 391

predicate is estimated under the assumption that the data values in the column
have equal frequencies and that the data values are evenly distributed between
LOW2KEY and HIGH2KEY. Specifically, the number of rows that satisfy an
equality predicate (C1 = KEY) is estimated as CARD/COLCARD, and the number
of rows that satisfy a range predicate (C1 BETWEEN KEY1 AND KEY2) can be estimated
with the following formula:

KEY2 - KEY1
------------------ x CARD
HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values within
a column is reasonably uniform. When distribution statistics are unavailable, and
either the frequency of data values varies widely, or the data values are very
unevenly distributed, the estimates can be off by orders of magnitude, and the
optimizer might choose a suboptimal access plan.

When distribution statistics are available, the probability of such errors can be
greatly reduced by using frequent-value statistics to estimate the number of rows
that satisfy an equality predicate, and by using both frequent-value statistics and
quantile statistics to estimate the number of rows that satisfy a range predicate.

Collecting distribution statistics for specific columns:

For efficient runstats operations and subsequent query-plan analysis, collect
distribution statistics on only those columns that queries reference in WHERE,
GROUP BY, and similar clauses. You can also collect cardinality statistics on
combined groups of columns. The optimizer uses such information to detect
column correlation when it estimates selectivity for queries that reference the
columns in a group.

The following example is based on a database named SALES that contains a
CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

For privileges and authorities that are required to use the runstats utility, see the
description of the RUNSTATS command.

When you collect statistics for a table in a partitioned database environment,
runstats only operates on the database partition from which the utility is executed.
The results from this database partition are extrapolated to the other database
partitions. If this database partition does not contain a required portion of the
table, the request is sent to the first database partition in the database partition
group that contains the required data.

To collect statistics on specific columns:
1. Connect to the SALES database.
2. Execute one of the following commands from the DB2 command line,

depending on your requirements:
v To collect distribution statistics on columns ZIP and YTDTOTAL:

runstats on table sales.customers
with distribution on columns (zip, ytdtotal)

v To collect distribution statistics on the same columns, but with different
distribution options:

runstats on table sales.customers
with distribution on columns (

zip, ytdtotal num_freqvalues 50 num_quantiles 75)

392 Troubleshooting and Tuning Database Performance

v To collect distribution statistics on the columns that are indexed in
CUSTIDX1 and CUSTIDX2:

runstats on table sales.customer
on key columns

v To collect statistics for columns ZIP and YTDTOTAL and a column group
that includes REGION and TERRITORY:

runstats on table sales.customers
on columns (zip, (region, territory), ytdtotal)

v Suppose that statistics for non-XML columns have been collected previously
using the LOAD command with the STATISTICS option. To collect statistics
for the XML column MISCINFO:

runstats on table sales.customers
on columns (miscinfo)

v To collect statistics for the non-XML columns only:
runstats on table sales.customers

excluding xml columns

The EXCLUDING XML COLUMNS clause takes precedence over all other
clauses that specify XML columns.

v For DB2 V9.7 Fix Pack 1 and later releases, the following command collects
distribution statistics using a maximum of 50 quantiles for the XML column
MISCINFO. A default of 20 quantiles is used for all other columns in the
table:
runstats on table sales.customers

with distribution on columns (miscinfo num_quantiles 50)
default num_quantiles 20

Note: The following are required for distribution statistics to be collected on
the XML column MISCINFO:
– Both table and distribution statistics must be collected.
– An index over XML data must be defined on the column, and the data

type specified for the index must be VARCHAR, DOUBLE, TIMESTAMP,
or DATE.

Extended examples of the use of distribution statistics:

Distribution statistics provide information about the frequency and distribution of
table data that helps the optimizer build query access plans when the data is not
evenly distributed and there are many duplicates.

The following examples will help you to understand how the optimizer might use
distribution statistics.

Example with frequent-value statistics

Consider a query that contains an equality predicate of the form C1 = KEY. If
frequent-value statistics are available, the optimizer can use those statistics to
choose an appropriate access plan, as follows:
v If KEY is one of the N most frequent values, the optimizer uses the frequency of

KEY that is stored in the catalog.
v If KEY is not one of the N most frequent values, the optimizer estimates the

number of rows that satisfy the predicate under the assumption that the
(COLCARD - N) non-frequent values have a uniform distribution. That is, the
number of rows is estimated by the following formula (1):

Chapter 3. Factors affecting performance 393

CARD - NUM_FREQ_ROWS

COLCARD - N

where CARD is the number of rows in the table, COLCARD is the cardinality of
the column, and NUM_FREQ_ROWS is the total number of rows with a value
equal to one of the N most frequent values.

For example, consider a column C1 whose data values exhibit the following
frequencies:

Data Value Frequency

1 2

2 3

3 40

4 4

5 1

The number of rows in the table is 50 and the column cardinality is 5. Exactly 40
rows satisfy the predicate C1 = 3. If it is assumed that the data is evenly
distributed, the optimizer estimates the number of rows that satisfy the predicate
as 50/5 = 10, with an error of -75%. But if frequent-value statistics based on only
the most frequent value (that is, N = 1) are available, the number of rows is
estimated as 40, with no error.

Consider another example in which two rows satisfy the predicate C1 = 1. Without
frequent-value statistics, the number of rows that satisfy the predicate is estimated
as 10, an error of 400%:

estimated rows - actual rows
---------------------------- X 100

actual rows

10 - 2
------ X 100 = 400%

2

Using frequent-value statistics (N = 1), the optimizer estimates the number of rows
containing this value using the formula (1) given above as:

(50 - 40)
--------- = 3
(5 - 1)

and the error is reduced by an order of magnitude:
3 - 2
----- = 50%

2

Example with quantile statistics

The following discussion of quantile statistics uses the term “K-quantile”. The
K-quantile for a column is the smallest data value, V, such that at least K rows have
data values that are less than or equal to V. To compute a K-quantile, sort the
column values in ascending order; the K-quantile is the data value in the Kth row
of the sorted column.

394 Troubleshooting and Tuning Database Performance

If quantile statistics are available, the optimizer can better estimate the number of
rows that satisfy a range predicate, as illustrated by the following examples.
Consider a column C1 that contains the following values:

0.0
5.1
6.3
7.1
8.2
8.4
8.5
9.1
93.6
100.0

Suppose that K-quantiles are available for K = 1, 4, 7, and 10, as follows:

K K-quantile

1 0.0

4 7.1

7 8.5

10 100.0

v Exactly seven rows satisfy the predicate C <= 8.5. Assuming a uniform data
distribution, the following formula (2):

KEY2 - KEY1
------------------ X CARD
HIGH2KEY - LOW2KEY

with LOW2KEY in place of KEY1, estimates the number of rows that satisfy the
predicate as:

8.5 - 5.1
---------- X 10 ≈ 0
93.6 - 5.1

where ≈ means “approximately equal to”. The error in this estimate is
approximately -100%.
If quantile statistics are available, the optimizer estimates the number of rows
that satisfy this predicate by the value of K that corresponds to 8.5 (the highest
value in one of the quantiles), which is 7. In this case, the error is reduced to 0.

v Exactly eight rows satisfy the predicate C <= 10. If the optimizer assumes a
uniform data distribution and uses formula (2), the number of rows that satisfy
the predicate is estimated as 1, an error of -87.5%.
Unlike the previous example, the value 10 is not one of the stored K-quantiles.
However, the optimizer can use quantiles to estimate the number of rows that
satisfy the predicate as r_1 + r_2, where r_1 is the number of rows satisfying
the predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C
> 8.5 AND C <= 10. As in the above example, r_1 = 7. To estimate r_2, the
optimizer uses linear interpolation:

10 - 8.5
r_2 ≈ ---------- X (number of rows with value > 8.5 and <= 100.0)

100 - 8.5

10 - 8.5
r_2 ≈ ---------- X (10 - 7)

100 - 8.5

1.5

Chapter 3. Factors affecting performance 395

r_2 ≈ ----- X (3)
91.5

r_2 ≈ 0

The final estimate is r_1 + r_2 ≈ 7, and the error is only -12.5%.

Quantiles improve the accuracy of the estimates in these examples because the real
data values are “clustered” in a range from 5 to 10, but the standard estimation
formulas assume that the data values are distributed evenly between 0 and 100.

The use of quantiles also improves accuracy when there are significant differences
in the frequencies of different data values. Consider a column having data values
with the following frequencies:

Data Value Frequency

20 5

30 5

40 15

50 50

60 15

70 5

80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:

K K-quantile

5 20

25 40

75 50

95 70

100 80

Suppose also that frequent-value statistics are available, based on the three most
frequent values.

Exactly 10 rows satisfy the predicate C BETWEEN 20 AND 30. Assuming a uniform
data distribution and using formula (2), the number of rows that satisfy the
predicate is estimated as:

30 - 20
------- X 100 = 25
70 - 30

an error of 150%.

Using frequent-value statistics and quantile statistics, the number of rows that
satisfy the predicate is estimated as r_1 + r_2, where r_1 is the number of rows
that satisfy the predicate (C = 20) and r_2 is the number of rows that satisfy the
predicate C > 20 AND C <= 30. Using formula (1), r_1 is estimated as:

100 - 80
-------- = 5

7 - 3

396 Troubleshooting and Tuning Database Performance

Using linear interpolation, r_2 is estimated as:
30 - 20
------- X (number of rows with a value > 20 and <= 40)
40 - 20

30 - 20
= ------- X (25 - 5)

40 - 20

= 10

This yields a final estimate of 15 and reduces the error by a factor of three.

Rules for updating distribution statistics manually:

There are certain guidelines that you should follow when updating statistics in the
SYSSTAT.COLDIST catalog view.
v Frequent-value statistics:

– VALCOUNT values must be unchanging or decreasing with increasing values
of SEQNO.

– The number of COLVALUE values must be less than or equal to the number
of distinct values in the column, which is stored in
SYSSTAT.COLUMNS.COLCARD.

– The sum of the values in VALCOUNT must be less than or equal to the
number of rows in the column, which is stored in SYSSTAT.TABLES.CARD.

– In most cases, COLVALUE values should lie between the second-highest and
the second-lowest data values for the column, which are stored in HIGH2KEY
and LOW2KEY in SYSSTAT.COLUMNS, respectively. There can be one
frequent value that is greater than HIGH2KEY and one frequent value that is
less than LOW2KEY.

v Quantile statistics:
– COLVALUE values must be unchanging or decreasing with increasing values

of SEQNO.
– VALCOUNT values must be increasing with increasing values of SEQNO.
– The largest COLVALUE value must have a corresponding entry in

VALCOUNT that is equal to the number of rows in the column.
– In most cases, COLVALUE values should lie between the second-highest and

the second-lowest data values for the column, which are stored in HIGH2KEY
and LOW2KEY in SYSSTAT.COLUMNS, respectively.

Suppose that distribution statistics are available for column C1 with R rows, and
that you want to modify the statistics to correspond with a column that has the
same relative proportions of data values, but with (F x R) rows. To scale up the
frequent-value or quantile statistics by a factor of F, multiply each VALCOUNT
entry by F.

Statistics for user-defined functions
To create statistical information for user-defined functions (UDFs), edit the
SYSSTAT.ROUTINES catalog view.

The runstats utility does not collect statistics for UDFs. If UDF statistics are
available, the optimizer can use them when it estimates costs for various access
plans. If statistics are not available, the optimizer uses default values that assume a
simple UDF.

Chapter 3. Factors affecting performance 397

Table 75 lists the catalog view columns for which you can provide estimates to
improve performance. Note that only column values in SYSSTAT.ROUTINES (not
SYSCAT.ROUTINES) can be modified by users.

Table 75. Function Statistics (SYSCAT.ROUTINES and SYSSTAT.ROUTINES)

Statistic Description

IOS_PER_INVOC Estimated number of read or write requests
executed each time a function is called

INSTS_PER_INVOC Estimated number of machine instructions
executed each time a function is called

IOS_PER_ARGBYTE Estimated number of read or write requests
executed per input argument byte

INSTS_PER_ARGBYTE Estimated number of machine instructions
executed per input argument byte

PERCENT_ARGBYTES Estimated average percent of input
argument bytes that a function will actually
process

INITIAL_IOS Estimated number of read or write requests
executed the first or last time a function is
invoked

INITIAL_INSTS Estimated number of machine instructions
executed the first or last time a function is
invoked

CARDINALITY Estimated number of rows generated by a
table function

For example, consider EU_SHOE, a UDF that converts an American shoe size to
the equivalent European shoe size. For this UDF, you might set the values of
statistic columns in SYSSTAT.ROUTINES as follows:
v INSTS_PER_INVOC. Set to the estimated number of machine instructions

required to:
– Call EU_SHOE
– Initialize the output string
– Return the result

v INSTS_PER_ARGBYTE. Set to the estimated number of machine instructions
required to convert the input string into a European shoe size

v PERCENT_ARGBYTES. Set to 100, indicating that the entire input string is to be
converted

v INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS.
Each set to 0, because this UDF only performs computations

PERCENT_ARGBYTES would be used by a function that does not always process
the entire input string. For example, consider LOCATE, a UDF that accepts two
arguments as input and returns the starting position of the first occurrence of the
first argument within the second argument. Assume that the length of the first
argument is small enough to be insignificant relative to the second argument and
that, on average, 75% of the second argument is searched. Based on this
information and the following assumptions, PERCENT_ARGBYTES should be set
to 75:
v Half the time the first argument is not found, which results in searching the

entire second argument

398 Troubleshooting and Tuning Database Performance

v The first argument is equally likely to appear anywhere within the second
argument, which results in searching half of the second argument (on average)
when the first argument is found

You can use INITIAL_INSTS or INITIAL_IOS to record the estimated number of
machine instructions or read or write requests that are performed the first or last
time that a function is invoked; this might represent the cost, for example, of
setting up a scratchpad area.

To obtain information about I/Os and the instructions that are used by a UDF, use
output provided by your programming language compiler or by monitoring tools
that are available for your operating system.

Catalog statistics for modeling and what-if planning
You can observe the effect on database performance of changes to certain statistical
information in the system catalog for planning purposes.

The ability to update selected system catalog statistics enables you to:
v Model query performance on a development system using production system

statistics
v Perform “what-if” query performance analysis

Do not manually update statistics on a production system. Otherwise, the
optimizer might not choose the best access plan for production queries that contain
dynamic SQL or XQuery statements.

To modify statistics for tables and indexes and their components, you must have
explicit DBADM authority for the database. Users holding DATAACCESS authority
can execute UPDATE statements against views that are defined in the SYSSTAT
schema to change values in these statistical columns.

Users without DATAACCESS authority can see only rows that contain statistics for
objects on which they have CONTROL privilege. If you do not have
DATAACCESS authority, you can change statistics for individual database objects
if you hold the following privileges on each object:
v Explicit CONTROL privilege on tables. You can also update statistics for

columns and indexes on these tables.
v Explicit CONTROL privilege on nicknames in a federated database system. You

can also update statistics for columns and indexes on these nicknames. Note that
these updates only affect local metadata (datasource table statistics are not
changed), and only affect the global access strategy that is generated by the DB2
optimizer.

v Ownership of user-defined functions (UDFs)

The following code is an example of updating statistics for the EMPLOYEE table:
update sysstat.tables

set
card = 10000,
npages = 1000,
fpages = 1000,
overflow = 2

where tabschema = 'MELNYK'
and tabname = 'EMPLOYEE'

Chapter 3. Factors affecting performance 399

Care must be taken when manually updating catalog statistics. Arbitrary changes
can seriously alter the performance of subsequent queries. You can use any of the
following methods to return the statistics on your development system to a
consistent state:
v Roll back the unit of work in which your manual changes were made (assuming

that the unit of work has not yet been committed).
v Use the runstats utility to refresh the catalog statistics.
v Update the catalog statistics to specify that statistics have not been collected; for

example, setting the NPAGES column value to -1 indicates that this statistic has
not been collected.

v Undo the changes that you made. This method is possible only if you used the
db2look command to capture the statistics before you made any changes.

If it determines that some value or combination of values is not valid, the
optimizer will use default values and return a warning. This is quite rare, however,
because most validation is performed when the statistics are updated.

Statistics for modeling production databases:

Sometimes you might want your development system to contain a subset of the
data in your production system. However, access plans that are selected on
development systems are not necessarily the same as those that would be selected
on the production system.

In some cases, it is necessary that the catalog statistics and the configuration of the
development system be updated to match those of the production system.

The db2look command in mimic mode (specifying the -m option) can be used to
generate the data manipulation language (DML) statements that are required to
make the catalog statistics of the development and production databases match.

After running the UPDATE statements that are produced by db2look against the
development system, that system can be used to validate the access plans that are
being generated on the production system. Because the optimizer uses the
configuration of table spaces to estimate I/O costs, table spaces on the
development system must be of the same type (SMS or DMS) and have the same
number of containers as do those on the production system. The test system may
have less physical memory than the production system. Setting memory related
configuration parameters on the test system same as values of those on the
production system might not be feasible. You can use the db2fopt command to
assign values to be used by the optimizer during statement compilation. For
example, if the production system is running with sortheap=20000 and the test
system can only run with sortheap=5000, you can use db2fopt on the test system
to set opt_sortheap to 20000. opt_sortheap instead of sortheap, will be used by the
query optimizer during statement compilation when evaluating access plans.

Avoiding manual updates to the catalog statistics
The DB2 data server supports manually updating catalog statistics by issuing
UPDATE statements against views in the SYSSTAT schema.

This feature can be useful when mimicking a production database on a test system
in order to examine query access plans. The db2look utility is very helpful for
capturing the DDL and UPDATE statements against views in the SYSSTAT schema
for playback on another system.

400 Troubleshooting and Tuning Database Performance

Avoid influencing the query optimizer by manually providing incorrect statistics to
force a particular query access plan. Although this practice might result in
improved performance for some queries, it can result in performance degradation
for others. Consider other tuning options (such as using optimization guidelines
and profiles) before resorting to this approach. If this approach does become
necessary, be sure to record the original statistics in case they need to be restored.

Minimizing runstats impact
There are several approaches available to improve runstats performance.

To minimize the performance impact of this utility:
v Limit the columns for which statistics should be collected by using the

COLUMNS clause. Many columns are never referenced by predicates in the
query workload, so they do not require statistics.

v Limit the columns for which distribution statistics are collected if the data tends
to be uniformly distributed. Collecting distribution statistics requires more CPU
and memory than collecting basic column statistics. However, determining
whether or not a column's values are uniformly distributed requires either
having existing statistics or querying the data. This approach also assumes that
the data will remain uniformly distributed as the table is modified.

v Limit the number of pages and rows processed by using page- or row-level
sampling (by specifying the TABLESAMPLE SYSTEM or BERNOULLI clause).
Start with a 10% page-level sample, by specifying TABLESAMPLE SYSTEM(10).
Check the accuracy of the statistics and whether system performance has
degraded due to changes in access plan. If it has degraded, try a 10% row-level
sample instead, by specifying TABLESAMPLE BERNOULLI(10). If the accuracy of the
statistics is insufficient, increase the sampling amount. When using RUNSTATS
page- or row-level sampling, use the same sampling rate for tables that are
joined. This is important to ensure that the join column statistics have the same
level of accuracy.

v Collect index statistics during index creation by specifying the COLLECT
STATISTICS option on the CREATE INDEX statement. This approach is faster
than performing a separate runstats operation after the index has been created. It
also ensures that the new index has statistics generated immediately after
creation, to allow the optimizer to accurately estimate the cost of using the
index.

v Collect statistics when executing the LOAD command with the REPLACE
option. This approach is faster than performing a separate runstats operation
after the load operation has completed. It also ensures that the table has the
most current statistics immediately after the data has been loaded, to allow the
optimizer to accurately estimate the cost of using the table.

In a partitioned database environment, the runstats utility collects statistics from a
single database partition. If the RUNSTATS command is issued on a database
partition on which the table resides, statistics will be collected there. If not,
statistics will be collected on the first database partition in the database partition
group for the table. For consistent statistics, ensure that statistics for joined tables
are collected from the same database partition.

Data compression and performance
Data compression can be used to reduce the amount of data that must be read
from or written to disk, thereby reducing I/O cost.

Two forms of data compression are currently available to you:

Chapter 3. Factors affecting performance 401

v Value compression involves removing duplicate entries for a value, storing only
one copy, and keeping track of the location of any references to the stored value.

v Row compression involves replacing repeating patterns that span multiple column
values within a row with shorter symbol strings. The row compression logic
scans a table that is to be compressed for repetitive and duplicate data. A
compression dictionary contains short, numeric keys to that data, and in a
compressed row, these keys replace the actual data.

Prior to DB2 Version 9.1, you had to manually create a compression dictionary by
performing an offline table reorganization. In Version 9.5 and later, a data
compression dictionary is created automatically for tables that are enabled for data
compression.

With this release, the autonomic row compression that was introduced for
permanent tables in Version 9.5 has been extended to include all temporary tables.
Data compression for temporary tables:
v Reduces the amount of temporary disk space that is required for large and

complex queries
v Increases query performance

Data compression for temporary tables is enabled automatically under the DB2
Storage Optimization Feature.

Each temporary table that is eligible for row compression requires an additional
2-3 MB of memory for the creation of its compression dictionary; this memory
remains allocated until the compression dictionary has been created.

Index objects and indexes on compressed temporary tables can also be compressed
to reduce storage costs. This is especially useful for large online transaction
processing (OLTP) and data warehouse environments, where it is common to have
many very large indexes. In both of these cases, index compression can cause
significant performance improvements in I/O-bound environments, and little or no
performance decrements in CPU-bound environments.

If compression is enabled on a table with an XML column, the XML data that is
stored in the XDA object is also compressed. A separate compression dictionary for
the XML data is stored in the XDA object. This also applies to tables whose XML
columns were added in the current version of the DB2 product. XDA compression
is not supported for tables whose XML columns were created prior to this version;
for such tables, only the data object is compressed.

Reducing logging overhead to improve DML performance
The database manager maintains log files that record all database changes. There
are two logging strategies: circular logging and archive logging.
v With circular logging, log files are reused (starting with the initial log file) when

the available files have filled up. The overwritten log records are not
recoverable.

v With archive logging, log files are archived when they fill up with log records.
Log retention enables rollforward recovery, in which changes to the database
(completed units of work or transactions) that are recorded in the log files can
be reapplied during disaster recovery.

402 Troubleshooting and Tuning Database Performance

All changes to regular data and index pages are written to the log buffer before
being written to disk by the logger process. SQL statement processing must wait
for log data to be written to disk:
v On COMMIT
v Until the corresponding data pages are written to disk, because the DB2 server

uses write-ahead logging, in which not all of the changed data and index pages
need to be written to disk when a transaction completes with a COMMIT
statement

v Until changes (mostly resulting from the execution of data definition language
statements) are made to the metadata

v When the log buffer is full

The database manager writes log data to disk in this way to minimize processing
delays. If many short transactions are processing concurrently, most of the delay is
caused by COMMIT statements that must wait for log data to be written to disk.
As a result, the logger process frequently writes small amounts of log data to disk.
Additional delays are caused by log I/O. To balance application response time
with logging delays, set the mincommit database configuration parameter to a
value that is greater than 1. This setting might cause longer COMMIT delays for
some applications, but more log data might be written in one operation.

Changes to large objects (LOBs) and LONG VARCHARs are tracked through
shadow paging. LOB column changes are not logged unless you specify log retain
and the LOB column has been defined without the NOT LOGGED clause on the
CREATE TABLE statement. Changes to allocation pages for LONG or LOB data
types are logged like regular data pages. Inline LOB values participate fully in
update, insert, or delete logging, as though they were VARCHAR values.

Inline LOBs improve performance
Some applications make extensive use of large objects (LOBs). In many cases, these
LOBs are not very large—at most, a few kilobytes in size. The performance of LOB
data access can now be improved by placing such LOB data within the formatted
rows on data pages instead of in the LOB storage object.

Such LOBs are known as inline LOBs. Previously, the processing of such LOBs
could create bottlenecks for applications. Inline LOBs improve the performance of
queries that access LOB data, because no additional I/O is required to fetch, insert,
or update this data. Moreover, inline LOB data is eligible for row compression.

This feature is enabled through the INLINE LENGTH option on the CREATE
TABLE statement or the ALTER TABLE statement. The INLINE LENGTH option
applies to structured types, the XML type, or LOB columns. In the case of a LOB
column, the inline length indicates the maximum byte size of a LOB value
(including four bytes for overhead) that can be stored in a base table row.

This feature is also implicitly enabled for all LOB columns in new or existing tables
(when LOB columns are added), and for all existing LOB columns on database
upgrade. Every LOB column has reserved row space that is based on its defined
maximum size. An implicit INLINE LENGTH value for each LOB column is
defined automatically and stored as if it had been explicitly specified.

LOB values that cannot be stored inline are stored separately in the LOB storage
object.

Chapter 3. Factors affecting performance 403

Note that when a table has columns with inline LOBs, fewer rows fit on a page,
and the performance of queries that return only non-LOB data can be adversely
affected. LOB inlining is helpful for workloads in which most of the statements
include one or more LOB columns.

Although LOB data is not necessarily logged, inline LOBs are always logged and
can therefore increase logging overhead.

404 Troubleshooting and Tuning Database Performance

Chapter 4. Establishing a performance tuning strategy

The Design Advisor
The DB2 Design Advisor is a tool that can help you significantly improve your
workload performance. The task of selecting which indexes, materialized query
tables (MQTs), clustering dimensions, or database partitions to create for a complex
workload can be quite daunting. The Design Advisor identifies all of the objects
that are needed to improve the performance of your workload.

Given a set of SQL statements in a workload, the Design Advisor will generate
recommendations for:
v New indexes
v New clustering indexes
v New MQTs
v Conversion to multidimensional clustering (MDC) tables
v The redistribution of tables

The Design Advisor can implement some or all of these recommendations
immediately, or you can schedule them to run at a later time.

Use the db2advis command to launch the Design Advisor utility.

The Design Advisor can help simplify the following tasks:

Planning for and setting up a new database
While designing your database, use the Design Advisor to generate design
alternatives in a test environment for indexing, MQTs, MDC tables, or
database partitioning.

In partitioned database environments, you can use the Design Advisor to:
v Determine an appropriate database partitioning strategy before loading

data into a database
v Assist in upgrading from a single-partition database to a multi-partition

database
v Assist in migrating from another database product to a multi-partition

DB2 database

Workload performance tuning
After your database is set up, you can use the Design Advisor to:
v Improve the performance of a particular statement or workload
v Improve general database performance, using the performance of a

sample workload as a gauge
v Improve the performance of the most frequently executed queries, as

identified, for example, by the Activity Monitor
v Determine how to optimize the performance of a new query
v Respond to Health Center recommendations regarding shared memory

utility or sort heap problems with a sort-intensive workload
v Find objects that are not used in a workload

© Copyright IBM Corp. 2006, 2010 405

Design Advisor output

Design Advisor output is written to standard output by default, and saved in the
ADVISE_* tables:
v The ADVISE_INSTANCE table is updated with one new row each time that the

Design Advisor runs:
– The START_TIME and END_TIME fields show the start and stop times for

the utility.
– The STATUS field contains a value of COMPLETED if the utility ended

successfully.
– The MODE field indicates whether the -m option on the db2advis command

was used.
– The COMPRESSION field indicates the type of compression that was used.

v The USE_TABLE column in the ADVISE_TABLE table contains a value of Y if
MQT, MDC table, or database partitioning strategy recommendations have been
made.
MQT recommendations can be found in the ADVISE_MQT table; MDC
recommendations can be found in the ADVISE_TABLE table; and database
partitioning strategy recommendations can be found in the ADVISE_PARTITION
table. The RUN_ID column in these tables contains a value that corresponds to
the START_TIME value of a row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.
When MQT, MDC, or database partitioning recommendations are provided, the
relevant ALTER TABLE stored procedure call is placed in the
ALTER_COMMAND column of the ADVISE_TABLE table. The ALTER TABLE
stored procedure call might not succeed due to restrictions on the table for the
ALTOBJ stored procedure.

v The USE_INDEX column in the ADVISE_INDEX table contains a value of Y
(index recommended or evaluated) or R (an existing clustering RID index was
recommended to be unclustered) if index recommendations have been made.

v The COLSTATS column in the ADVISE_MQT table contains column statistics for
an MQT. These statistics are contained within an XML structure as follows:
<?xml version=\"1.0\" encoding=\"USASCII\"?>
<colstats>

<column>
<name>COLNAME1</name>
<colcard>1000</colcard>
<high2key>999</high2key>
<low2key>2</low2key>

</column>
....

<column>
<name>COLNAME100</name>
<colcard>55000</colcard>
<high2key>49999</high2key>
<low2key>100</low2key>

</column>
</colstats>

You can save Design Advisor recommendations to a file using the -o option on the
db2advis command. The saved Design Advisor output consists of the following
elements:
v CREATE statements associated with any new indexes, MQTs, MDC tables, or

database partitioning strategies

406 Troubleshooting and Tuning Database Performance

v REFRESH statements for MQTs
v RUNSTATS commands for new objects

An example of this output is as follows:
--<?xml version="1.0"?>
--<design-advisor>
--<mqt>
--<identifier>
--<name>MQT612152202220000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<statementlist>3</statementlist>
--<benefit>1013562.481682</benefit>
--<overhead>1468328.200000</overhead>
--<diskspace>0.004906</diskspace>
--</mqt>
.....
--<index>
--<identifier>
--<name>IDX612152221400000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<table><identifier>
--<name>PART</name>
--<schema>TPCD </schema>
--</identifier></table>
--<statementlist>22</statementlist>
--<benefit>820160.000000</benefit>
--<overhead>0.000000</overhead>
--<diskspace>9.063500</diskspace>
--</index>
.....
--<statement>
--<statementnum>11</statementnum>
--<statementtext>
--
-- select
-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice,
-- sum(l_quantity) from tpcd.customer, tpcd.orders,
-- tpcd.lineitem where o_orderkey in(select
-- l_orderkey from tpcd.lineitem group by l_orderkey
-- having sum(l_quantity) > 300) and c_custkey
-- = o_custkey and o_orderkey = l_orderkey group by
-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice
-- order by o_totalprice desc, o_orderdate fetch first
-- 100 rows only
--</statementtext>
--<objects>
--<identifier>
--<name>MQT612152202490000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>ORDERS</name>
--<schema>TPCD </schema>
--</identifier>
--<identifier>
--<name>CUSTOMER</name>
--<schema>TPCD </schema>
--</identifier>
--<identifier>
--<name>IDX612152235020000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>IDX612152235030000</name>

Chapter 4. Establishing a performance tuning strategy 407

--<schema>ZILIO2 </schema>
--</identifier>
--<identifier>
--<name>IDX612152211360000</name>
--<schema>ZILIO2 </schema>
--</identifier>
--</objects>
--<benefit>2091459.000000</benefit>
--<frequency>1</frequency>
--</statement>

This XML structure can contain more than one column. The column cardinality
(that is, the number of values in each column) is included and, optionally, the
HIGH2KEY and LOW2KEY values.

The base table on which an index is defined is also included. Ranking of indexes
and MQTs can be done using the benefit value. You can also rank indexes using
(benefit - overhead) and MQTs using (benefit - 0.5 * overhead).

Following the list of indexes and MQTs is the list of statements in the workload,
including the SQL text, the statement number for the statement, the estimated
performance improvement (benefit) from the recommendations, as well as the list
of tables, indexes, and MQTs that were used by the statement. The original spacing
in the SQL text is preserved in this output example, but the SQL text is normally
split into 80 character commented lines for increased readability.

Existing indexes or MQTs appear in the output if they are being used to execute a
workload.

MDC and database partitioning recommendations are not explicitly shown in this
XML output example.

After some minor modifications, you can run this output file as a CLP script to
create the recommended objects. The modifications that you might want to
perform include:
v Combining all of the RUNSTATS commands into a single RUNSTATS invocation

against the new or modified objects
v Providing more usable object names in place of system-generated IDs
v Removing or commenting out any data definition language (DDL) for objects

that you do not want to implement immediately

Using the Design Advisor
You can run the Design Advisor by invoking the db2advis command.
1. Define your workload. See “Defining a workload for the Design Advisor”.
2. Run the db2advis command against this workload.

Note: If the statistics on your database are not current, the generated
recommendations will be less reliable.

3. Interpret the output from db2advis and make any necessary modifications.
4. Implement the Design Advisor recommendations, as appropriate.

Defining a workload for the Design Advisor
When the Design Advisor analyzes a specific workload, it considers factors such as
the type of statements that are included in the workload, the frequency with which

408 Troubleshooting and Tuning Database Performance

a particular statement occurs, and characteristics of your database to generate
recommendations that minimize the total cost of running the workload.

A workload is a set of SQL statements that the database manager must process
during a given period of time. The Design Advisor can be run against:
v A single SQL statement that you enter inline with the db2advis command
v A set of dynamic SQL statements that were captured in a DB2 snapshot
v A set of SQL statements that are contained in a workload file

You can create a new workload file or modify a previously existing workload file.
You can import statements into the file from several sources, including:
v A delimited text file
v An event monitor table
v Query Patroller historical data tables, by using the -qp option from the

command line
v Explained statements in the EXPLAIN_STATEMENT table
v Recent SQL statements that have been captured with a DB2 snapshot
v Workload manager activity tables
v Workload manager event monitor tables by using the -wlm option from the

command line

After you import the SQL statements into a workload file, you can add, change,
modify, or remove statements and modify their frequency.
v To run the Design Advisor against dynamic SQL statements:

1. Reset the database monitor with the following command:
db2 reset monitor for database database-name

2. Wait for an appropriate amount of time to allow for the execution of
dynamic SQL statements against the database.

3. Invoke the db2advis command using the -g option. If you want to save the
dynamic SQL statements in the ADVISE_WORKLOAD table for later
reference, use the -p option as well.

v To run the Design Advisor against a set of SQL statements in a workload file:
1. Create a workload file manually, separating each SQL statement with a

semicolon, or import SQL statements from one or more of the sources listed
above.

2. Set the frequency of the statements in the workload. Every statement in a
workload file is assigned a frequency of 1 by default. The frequency of an
SQL statement represents the number of times that the statement occurs
within a workload relative to the number of times that other statements
occur. For example, a particular SELECT statement might occur 100 times in
a workload, whereas another SELECT statement occurs 10 times. To
represent the relative frequency of these two statements, you could assign the
first SELECT statement a frequency of 10; the second SELECT statement has
a frequency of 1. You can manually change the frequency or weight of a
particular statement in the workload by inserting the following line after the
statement: - - # SET FREQUENCY n, where n is the frequency value that you
want to assign to the statement.

3. Invoke the db2advis command using the -i option followed by the name of
the workload file.

v To run the Design Advisor against a workload that is contained in the
ADVISE_WORKLOAD table, invoke the db2advis command using the -w option
followed by the name of the workload.

Chapter 4. Establishing a performance tuning strategy 409

Using the Design Advisor to convert from a single-partition to
a multi-partition database

You can use the Design Advisor to help you convert a single-partition database
into a multi-partition database.

In addition to making recommendations about new indexes, materialized query
tables (MQTs), and multidimensional clustering (MDC) tables, the Design Advisor
can provide you with recommendations for distributing data.
1. Use the db2licm command to register the Database Partitioning Feature (DPF)

license key.
2. Create at least one table space in a multi-partition database partition group.

Note: The Design Advisor can only recommend data redistribution to existing
table spaces.

3. Run the Design Advisor with the partitioning option specified on the db2advis
command.

4. Modify the db2advis output file slightly before running the DDL statements
that were generated by the Design Advisor. Because database partitioning must
be set up before you can run the DDL script that the Design Advisor generates,
recommendations are commented out of the script that is returned. It is up to
you to transform your tables in accordance with the recommendations.

Design Advisor limitations and restrictions
There are certain limitations and restrictions associated with Design Advisor
recommendations about indexes, materialized query tables (MQTs),
multidimensional clustering (MDC) tables, and database partitioning.

Restrictions on index recommendations
v Indexes that are recommended for MQTs are designed to improve workload

performance, not MQT refresh performance.
v A clustering RID index is recommended only for MDC tables. The Design

Advisor will include clustering RID indexes as an option rather than create an
MDC structure for the table.

v The Version 9.7 Design Advisor does not recommend partitioned indexes on a
partitioned table. All indexes are recommended with an explicit NOT
PARTITIONED clause.

Restrictions on MQT recommendations
v The Design Advisor will not recommend incremental MQTs. If you want to

create incremental MQTs, you can convert REFRESH IMMEDIATE MQTs into
incremental MQTs with your choice of staging tables.

v Indexes that are recommended for MQTs are designed to improve workload
performance, not MQT refresh performance.

v If update, insert, or delete operations are not included in the workload, the
performance impact of updating a recommended REFRESH IMMEDIATE MQT
is not considered.

v It is recommended that REFRESH IMMEDIATE MQTs have unique indexes
created on the implied unique key, which is composed of the columns in the
GROUP BY clause of the MQT query definition.

410 Troubleshooting and Tuning Database Performance

Restrictions on MDC recommendations
v An existing table must be populated with sufficient data before the Design

Advisor considers MDC for the table. A minimum of twenty to thirty megabytes
of data is recommended. Tables that are smaller than 12 extents are excluded
from consideration.

v MDC recommendations for new MQTs will not be considered unless the
sampling option, -r, is used with the db2advis command.

v The Design Advisor does not make MDC recommendations for typed,
temporary, or federated tables.

v Sufficient storage space (approximately 1% of the table data for large tables)
must be available for the sampling data that is used during the execution of the
db2advis command.

v Tables that have not had statistics collected are excluded from consideration.
v The Design Advisor does not make recommendations for multicolumn

dimensions.

Restrictions on database partitioning recommendations

The Design Advisor can recommend database partitioning only for DB2 Enterprise
Server Edition.

Additional restrictions

Temporary simulation catalog tables are created when the Design Advisor runs. An
incomplete run can result in some of these tables not being dropped. In this
situation, you can use the Design Advisor to drop these tables by restarting the
utility. To remove the simulation catalog tables, specify both the -f option and the
-n option (for -n, specifying the same user name that was used for the incomplete
execution). If you do not specify the -f option, the Design Advisor will only
generate the DROP statements that are required to remove the tables; it will not
actually remove them.

Note: As of Version 9.5, the -f option is the default. This means that if you run
db2advis with the MQT selection, the database manager automatically drops all
local simulation catalog tables using the same user ID as the schema name.

You should create a separate table space on the catalog database partition for
storing these simulated catalog tables, and set the DROPPED TABLE RECOVERY
option on the CREATE or ALTER TABLESPACE statement to OFF. This enables
easier cleanup and faster Design Advisor execution.

Chapter 4. Establishing a performance tuning strategy 411

412 Troubleshooting and Tuning Database Performance

Part 2. Troubleshooting a problem

The first step in good problem analysis is to describe the problem completely.
Without a problem description, you will not know where to start investigating the
cause of the problem.

This step includes asking yourself such basic questions as:
v What are the symptoms?
v Where is the problem happening?
v When does the problem happen?
v Under which conditions does the problem happen?
v Is the problem reproducible?

Answering these and other questions will lead to a good description to most
problems, and is the best way to start down the path of problem resolution.

What are the symptoms?

When starting to describe a problem, the most obvious question is "What is the
problem?" This might seem like a straightforward question; however, it can be
broken down into several other questions to create a more descriptive picture of
the problem. These questions can include:
v Who or what is reporting the problem?
v What are the error codes and error messages?
v How does it fail? For example: loop, hang, stop, performance degradation,

incorrect result.
v What is the affect on business?

Where is the problem happening?

Determining where the problem originates is not always easy, but it is one of the
most important steps in resolving a problem. Many layers of technology can exist
between the reporting and failing components. Networks, disks, and drivers are
only a few components to be considered when you are investigating problems.
v Is the problem platform specific, or common to multiple platforms?
v Is the current environment and configuration supported?
v Is the application running locally on the database server or on a remote server?
v Is there a gateway involved?
v Is the database stored on individual disks, or on a RAID disk array?

These types of questions will help you isolate the problem layer, and are necessary
to determine the problem source. Remember that just because one layer is
reporting a problem, it does not always mean the root cause exists there.

Part of identifying where a problem is occurring is understanding the environment
in which it exists. You should always take some time to completely describe the
problem environment, including the operating system, its version, all
corresponding software and versions, and hardware information. Confirm you are
running within an environment that is a supported configuration, as many
problems can be explained by discovering software levels that are not meant to run

© Copyright IBM Corp. 2006, 2010 413

together, or have not been fully tested together.

When does the problem happen?

Developing a detailed time line of events leading up to a failure is another
necessary step in problem analysis, especially for those cases that are one-time
occurrences. You can most easily do this by working backwards --start at the time
an error was reported (as exact as possible, even down to milliseconds), and work
backwards through available logs and information. Usually you only have to look
as far as the first suspicious event that you find in any diagnostic log, however,
this is not always easy to do and will only come with practice. Knowing when to
stop is especially difficult when there are multiple layers of technology each with
its own diagnostic information.
v Does the problem only happen at a certain time of day or night?
v How often does it happen?
v What sequence of events leads up to the time the problem is reported?
v Does the problem happen after an environment change such as upgrading

existing or installing new software or hardware?

Responding to questions like this will help you create a detailed time line of
events, and will provide you with a frame of reference in which to investigate.

Under which conditions does the problem happen?

Knowing what else is running at the time of a problem is important for any
complete problem description. If a problem occurs in a certain environment or
under certain conditions, that can be a key indicator of the problem cause.
v Does the problem always occur when performing the same task?
v Does a certain sequence of events need to occur for the problem to surface?
v Do other applications fail at the same time?

Answering these types of questions will help you explain the environment in
which the problem occurs, and correlate any dependencies. Remember that just
because multiple problems might have occurred around the same time, it does not
necessarily mean that they are always related.

Is the problem reproducible?

From a problem description and investigation standpoint, the "ideal" problem is
one that is reproducible. With reproducible problems you almost always have a
larger set of tools or procedures available to use to help your investigation.
Consequently, reproducible problems are usually easier to debug and solve.

However, reproducible problems can have a disadvantage: if the problem is of
significant business impact, you don't want it recurring. If possible, recreating the
problem in a test or development environment is often preferable in this case.
v Can the problem be recreated on a test machine?
v Are multiple users or applications encountering the same type of problem?
v Can the problem be recreated by running a single command, a set of commands,

or a particular application, or a standalone application?
v Can the problem be recreated by entering the equivalent command/query from

a DB2 command line?

414 Troubleshooting and Tuning Database Performance

Recreating a single incident problem in a test or development environment is often
preferable, as there is usually much more flexibility and control when
investigating.

Part 2.Troubleshooting a problem 415

416 Troubleshooting and Tuning Database Performance

Chapter 5. Tools for troubleshooting

The following tools are available to help collect, format or analyze diagnostic data.
v db2dart

The db2dart command can be used to verify the architectural correctness of
databases and the objects within them. It can also be used to display the
contents of database control files in order to extract data from tables that might
otherwise be inaccessible.

v db2diag
The db2diag tool serves to filter and format the volume of information available
in the db2diag log files. Filtering records in db2diag log files can reduce the time
required to locate the records needed when troubleshooting problems.

v db2greg
You can view and edit the Global Registry with the db2greg tool.

v db2level
The db2level command will help you determine the version and service level
(build level and fix pack number) of your DB2 instance.

v db2look
There are many times when it is advantageous to be able to create a database
that is similar in structure to another database. For example, rather than testing
out new applications or recovery plans on a production system, it makes more
sense to create a test system that is similar in structure and data, and to then do
the tests against the test system without adversely affecting the production
system. You can use the db2look tool to extract the required DDL statements
needed to reproduce the database objects of one database in another database.
The tool can also generate the required SQL statements needed to replicate the
statistics from the one database to the other, and the statements needed to
replicate the database configuration, database manager configuration, and
registry variables.

v db2ls
With the ability to install multiple copies of DB2 products on your system and
the flexibility to install DB2 products and features in the path of your choice,
you need a tool to help you keep track of what is installed and where it is
installed. On supported Linux and UNIX operating systems, the db2ls command
lists the DB2 products and features installed on your system, including the DB2
Version 9 HTML documentation.

v db2pd
The db2pd tool is used for troubleshooting because it can return quick and
immediate information from the DB2 memory sets.

v db2support
When it comes to collecting information for a DB2 problem, the most important
DB2 utility you must run is db2support. The db2support utility automatically
collects all DB2 and system diagnostic information available. It also has an
optional interactive "Question and Answer" session, which poses questions about
the circumstances of your problem.

v db2val
The db2val tool verifies the core function of a DB2 copy by validating
installation files, instances, database creation, connections to that database, and
the state of partitioned database environments.

© Copyright IBM Corp. 2006, 2010 417

v Traces
If you experience a recurring and reproducible problem with DB2, tracing
sometimes allows you to capture additional information about it. Under normal
circumstances, you should only use a trace if asked to by IBM Software Support.
The process of taking a trace entails setting up the trace facility, reproducing the
error and collecting the data.

v Platform-specific tools (Windows) (Linux and UNIX)
Useful diagnostic tools provided with the Windows, Linux, and UNIX operating
systems can be used to gather and process data that can help identify the cause
of a problem you are having with your system.

Overview of the db2dart tool
The db2dart command can be used to verify the architectural correctness of
databases and the objects within them. It can also be used to display the contents
of database control files in order to extract data from tables that might otherwise
be inaccessible.

To display all of the possible options, issue the db2dart command without any
parameters. Some options that require parameters, such as the table space ID, are
prompted for if they are not explicitly specified on the command line.

By default, the db2dart utility will create a report file with the name
databaseName.RPT. For single-partition database partition environments, the file is
created in the current directory. For multiple-partition database partition
environments, the file is created under a subdirectory in the diagnostic directory.
The subdirectory is called DART####, where #### is the database partition number.

The db2dart utility accesses the data and metadata in a database by reading them
directly from disk. Because of that, you should never run the tool against a
database that still has active connections. If there are connections, the tool will not
know about pages in the buffer pool or control structures in memory, for example,
and might report false errors as a result. Similarly, if you run db2dart against a
database that requires crash recovery or that has not completed rollforward
recovery, similar inconsistencies might result due to the inconsistent nature of the
data on disk.

Comparison of INSPECT and db2dart
The INSPECT command inspects a database for architectural integrity, checking the
pages of the database for page consistency. The INSPECT command checks that the
structures of table objects and structures of table spaces are valid. Cross object
validation conducts an online index to data consistency check. The db2dart
command examines databases for architectural correctness and reports any
encountered errors.

The INSPECT command is similar to the db2dart command in that it allows you to
check databases, table spaces, and tables. A significant difference between the two
commands is that the database needs to be deactivated before you run db2dart,
whereas INSPECT requires a database connection and can be run while there are
simultaneous active connections to the database.

If you do not deactivate the database, db2dart will yield unreliable results.

The following tables list the differences between the tests that are performed by the
db2dart and INSPECT commands.

418 Troubleshooting and Tuning Database Performance

Table 76. Feature comparison of db2dart and INSPECT for table spaces

Tests performed db2dart INSPECT

SMS table spaces

Check table space files YES NO

Validate contents of internal
page header fields

YES YES

DMS table spaces

Check for extent maps
pointed at by more than one
object

YES NO

Check every extent map
page for consistency bit
errors

NO YES

Check every space map page
for consistency bit errors

NO YES

Validate contents of internal
page header fields

YES YES

Verify that extent maps agree
with table space maps

YES NO

Table 77. Feature comparison of db2dart and INSPECT for data objects

Tests performed db2dart INSPECT

Check data objects for
consistency bit errors

YES YES

Check the contents of special
control rows

YES NO

Check the length and
position of variable length
columns

YES NO

Check the LONG
VARCHAR, LONG
VARGRAPHIC, and large
object (LOB) descriptors in
table rows

YES NO

Check the summary total
pages, used pages and free
space percentage

NO YES

Validate contents of internal
page header fields

YES YES

Verify each row record type
and its length

YES YES

Verify that rows are not
overlapping

YES YES

Table 78. Feature comparison of db2dart and INSPECT for index objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Chapter 5. Tools for troubleshooting 419

Table 78. Feature comparison of db2dart and INSPECT for index objects (continued)

Tests performed db2dart INSPECT

Check the location and
length of the index key and
whether there is overlapping

YES YES

Check the ordering of keys
in the index

YES NO

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Verify the uniqueness of
unique keys

YES NO

Check for the existence of
the data row for a given
index entry

NO YES

Verify each key to a data
value

NO YES

Table 79. Feature comparison of db2dart and INSPECT for block map objects

Tests performed db2dart INSPECT

Check for consistency bit
errors

YES YES

Determine the summary total
pages and used pages

NO YES

Validate contents of internal
page header fields

YES YES

Table 80. Feature comparison of db2dart and INSPECT for long field and LOB objects

Tests performed db2dart INSPECT

Check the allocation
structures

YES YES

Determine the summary total
pages and used pages (for
LOB objects only)

NO YES

In addition, the following actions can be performed using the db2dart command:
v Format and dump data pages
v Format and dump index pages
v Format data rows to delimited ASCII
v Mark an index invalid

The INSPECT command cannot be used to perform those actions.

Analyzing db2diag log files using db2diag tool
The primary log file intended for use by database and system administrators is the
administration notification log. The db2diag log files are intended for use by IBM
Software Support for troubleshooting purposes.

420 Troubleshooting and Tuning Database Performance

Administration notification log messages are also logged to the db2diag log files
using a standardized message format.

The db2diag tool serves to filter and format the volume of information available in
the db2diag log files. Filtering db2diag log file records can reduce the time
required to locate the records needed when troubleshooting problems.

Example 1: Filtering the db2diag log files by database name

If there are several databases in the instance, and you want to only see those
messages which pertain to the database "SAMPLE", you can filter the db2diag log
files as follows:
db2diag -g db=SAMPLE

Thus you would only see db2diag log file records that contained "DB: SAMPLE",
such as:
2006-02-15-19.31.36.114000-300 E21432H406 LEVEL: Error
PID : 940 TID : 660 PROC : db2syscs.exe
INSTANCE: DB2 NODE : 000 DB : SAMPLE
APPHDL : 0-1056 APPID: *LOCAL.DB2.060216003103
FUNCTION: DB2 UDB, base sys utilities, sqleDatabaseQuiesce, probe:2
MESSAGE : ADM7507W Database quiesce request has completed successfully.

Example 2: Filtering the db2diag log files by process ID

The following command can be used to display all severe error messages produced
by processes running on partitions 0,1,2, or 3 with the process ID (PID) 2200:
db2diag -g level=Severe,pid=2200 -n 0,1,2,3

Note that this command could have been written a couple of different ways,
including db2diag -l severe -pid 2200 -n 0,1,2,3. It should also be noted that the -g
option specifies case-sensitive search, so here "Severe" will work but will fail if
"severe" is used. These commands would successfully retrieve db2diag log file
records which meet these requirements, such as:
2006-02-13-14.34.36.027000-300 I18366H421 LEVEL: Severe
PID : 2200 TID : 660 PROC : db2syscs.exe
INSTANCE: DB2 NODE : 000 DB : SAMPLE
APPHDL : 0-1433 APPID: *LOCAL.DB2.060213193043
FUNCTION: DB2 UDB, data management, sqldPoolCreate, probe:273
RETCODE : ZRC=0x8002003C=-2147352516=SQLB_BAD_CONTAINER_PATH

"Bad container path"

Example 3: Formatting the db2diag tool output

The following command filters all records occurring after January 1, 2006
containing non-severe and severe errors logged on partitions 0,1 or 2. It outputs
the matched records such that the time stamp, partition number and level appear
on the first line, pid, tid and instance name on the second line, and the error
message follows thereafter:
db2diag -time 2006-01-01 -node "0,1,2" -level "Severe, Error" | db2diag -fmt
"Time: %{ts}
Partition: %node Message Level: %{level} \nPid: %{pid} Tid: %{tid}
Instance: %{instance}\nMessage: @{msg}\n"

An example of the output produced is as follows:
Time: 2006-02-15-19.31.36.099000 Partition: 000 Message Level: Error
Pid: 940 Tid:940 Instance: DB2
Message: ADM7506W Database quiesce has been requested.

Chapter 5. Tools for troubleshooting 421

For more information, issue the following commands:
v db2diag -help provides a short description of all available options
v db2diag -h brief provides descriptions for all options without examples
v db2diag -h notes provides usage notes and restrictions
v db2diag -h examples provides a small set of examples to get started
v db2diag -h tutorial provides examples for all available options
v db2diag -h all provides the most complete list of options

Example 4: Filtering messages from different facilities

The following examples show how to only see messages from a specific facility (or
from all of them) from within the database manager. The supported facilities are:
v ALL which returns records from all facilities
v MAIN which returns records from DB2 general diagnostic logs such as the

db2diag log files and the administration notification log
v OPTSTATS which returns records related to optimizer statistics

To read messages from the MAIN facility:
db2diag -facility MAIN

To display messages from the OPTSTATS facility and filter out records having a
level of Severe:
db2diag -fac OPTSTATS -level Severe

To display messages from all facilities available and filter out records having
instance=harmistr and level=Error:
db2diag -fac all -g instance=harmistr,level=Error

To display all messages from the OPTSTATS facility having a level of Error and
then outputting the Timestamp and PID field in a specific format:
db2diag -fac optstats -level Error -fmt " Time :%{ts} Pid :%{pid}"

Example 5: Merging files and sorting records according to
timestamps

This example shows how to merge two or more db2diag log files and sort the
records according to timestamps.

The two db2diag log files to merge are the following:
v db2diag.0.log; contains records of Level:Error with the following timestamps:

– 2009-02-26-05.28.49.822637
– 2009-02-26-05.28.49.835733
– 2009-02-26-05.28.50.258887
– 2009-02-26-05.28.50.259685

v db2diag.1.log; contains records of Level:Error with the following timestamps:
– 2009-02-26-05.28.11.480542
– 2009-02-26-05.28.49.764762
– 2009-02-26-05.29.11.872184
– 2009-02-26-05.29.11.872968

422 Troubleshooting and Tuning Database Performance

To merge the two diagnostic log files and sort the records according to timestamps,
execute the following command:
db2diag -merge db2diag.0.log db2diag.1.log -fmt %{ts} -level error

The result of the merge and sort of the records is the following:
v 2009-02-26-05.28.11.480542
v 2009-02-26-05.28.49.764762
v 2009-02-26-05.28.49.822637
v 2009-02-26-05.28.49.835733
v 2009-02-26-05.28.50.258887
v 2009-02-26-05.28.50.259685
v 2009-02-26-05.29.11.872184
v 2009-02-26-05.29.11.872968

where the timestamps are merged and sorted chronologically.

Example 6: Merging split diagnostic directory path files from a
single host and sorting records by timestamps

This example shows how to merge files from three database partitions on the
current host. To obtain the split diagnostic directory paths, the diagpath database
manager configuration parameter was set in the following way:
db2 update dbm cfg using diagpath '"$n"'

The following is a list of the three db2diag log files to merge:
v ~/sqllib/db2dump/NODE0000/db2diag.log

v ~/sqllib/db2dump/NODE0001/db2diag.log

v ~/sqllib/db2dump/NODE0002/db2diag.log

To merge the three diagnostic log files and sort the records according to
timestamps, execute the following command:
db2diag -merge

Example 7: Merging split diagnostic directory path files from
multiple hosts and database partitions

In this example, the default diagnostic data directory path was split according to
physical host and database partition by setting the diagpath database manager
configuration parameter using the following command:
db2 update dbm cfg using diagpath '"hn"'

This example shows how to obtain an output of all the records from all the
diagnostic logs and merge the diagnostic log files from three database partitions on
each of two hosts, bower and horton. The following is a list of the six db2diag log
files:
v ~/sqllib/db2dump/HOST_bower/NODE0000/db2diag.log

v ~/sqllib/db2dump/HOST_bower/NODE0001/db2diag.log

v ~/sqllib/db2dump/HOST_bower/NODE0002/db2diag.log

v ~/sqllib/db2dump/HOST_horton/NODE0003/db2diag.log

v ~/sqllib/db2dump/HOST_horton/NODE0004/db2diag.log

v ~/sqllib/db2dump/HOST_horton/NODE0005/db2diag.log

Chapter 5. Tools for troubleshooting 423

To output the records from all six db2diag log files, run the following command:
db2diag -global

To merge all six db2diag log files in the diagnostic data directory path from all
three database partitions on each of the hosts bower and horton and format the
output based on the timestamp, execute the following command:
db2diag -global -merge -sdir /temp/keon -fmt %{ts}

where /temp/keon is a shared directory, shared by the hosts bower and horton, to
store temporary merged files from each host during processing.

Displaying and altering the Global Registry (UNIX) using db2greg
You can view the Global Registry using the db2greg command on UNIX and Linux
platforms.

In DB2 Version 9.7 and higher, the DB2 global profile registries are not recorded in
the text file <DB2DIR>/default.env. The global registry file global.reg is now used
to register the DB2 global profile settings related to the current DB2 installation.

The Global Registry exists only on UNIX and Linux platforms:
v For root installations, the Global Registry file is located at /var/db2/global.reg

(/var/opt/db2/global.reg on HP-UX).
v For non-root installations, the Global Registry file is located at

$HOME/sqllib/global.reg, where $HOME is the non-root user's home directory.

The Global Registry consists of three different record types:
v "Service": Service records contain information at the product level - for example,

version, and install path.
v "Instance": Instance records contain information at the instance level - for

example, Instance name, instance path, version, and the "start-at-boot" flag.
v "Variable": Variable records contain information at the variable level - for

example, Variable name, Variable value.
v Comment.

You can view the Global Registry with the db2greg tool. This tool is located in
sqllib/bin, and in the install directory under bin as well (for use when logged
in as root).

You can edit the Global Registry with the db2greg tool. Editing the Global Registry
in root installations requires root authority.

You must only use the db2greg tool if requested to do so by IBM Software
Support.

Identifying the version and service level of your product
The db2level command will help you determine the version and service level
(build level and fix pack number) of your DB2 instance.

To determine if your DB2 instance is at the latest service level, compare your
db2level output to information in the fix pack download pages at the DB2 Support
web site: www.ibm.com/support/docview.wss?rs=71&uid=swg27007053.

424 Troubleshooting and Tuning Database Performance

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27007053

A typical result of running the db2level command on a Windows system would be:
DB21085I Instance "DB2" uses "32" bits and DB2 code release "SQL09010" with
level identifier "01010107".
Informational tokens are "DB2 v9.1.0.189", "n060119", "", and Fix Pack "0".
Product is installed at "c:\SQLLIB" with DB2 Copy Name "db2build".

The combination of the four informational tokens uniquely identify the precise
service level of your DB2 instance. This information is essential when contacting
IBM Software Support for assistance.

For JDBC or SQLJ applications, if you are using the IBM DB2 Driver for SQLJ and
JDBC, you can determine the level of the driver by running the db2jcc utility:
db2jcc -version

IBM DB2 JDBC Driver Architecture 2.3.63

Mimicking databases using db2look
There are many times when it is advantageous to be able to create a database that
is similar in structure to another database. For example, rather than testing out
new applications or recovery plans on a production system, it makes more sense to
create a test system that is similar in structure and data, and to then do the tests
against it instead.

This way, the production system will not be affected by the adverse performance
impact of the tests or by the accidental destruction of data by an errant application.
Also, when you are investigating a problem (such as invalid results, performance
issues, and so on), it might be easier to debug the problem on a test system that is
identical to the production system.

You can use the db2look tool to extract the required DDL statements needed to
reproduce the database objects of one database in another database. The tool can
also generate the required SQL statements needed to replicate the statistics from
the one database to the other, as well as the statements needed to replicate the
database configuration, database manager configuration, and registry variables.
This is important because the new database might not contain the exact same set of
data as the original database but you might still want the same access plans chosen
for the two systems. The db2look command should only be issued on databases
running on DB2 Servers of Version 9.5 and higher levels.

The db2look tool is described in detail in the DB2 Command Reference but you can
view the list of options by executing the tool without any parameters. A more
detailed usage can be displayed using the -h option.

Using db2look to mimic the tables in a database

To extract the DDL for the tables in the database, use the -e option. For example,
create a copy of the SAMPLE database called SAMPLE2 such that all of the objects
in the first database are created in the new database:
C:\>db2 create database sample2
DB20000I The CREATE DATABASE command completed successfully.
C:\>db2look -d sample -e > sample.ddl
-- USER is:
-- Creating DDL for table(s)
-- Binding package automatically ...
-- Bind is successful
-- Binding package automatically ...
-- Bind is successful

Chapter 5. Tools for troubleshooting 425

Note: If you want the DDL for the user-defined spaces, database partition groups
and buffer pools to be produced as well, add the-l flag after -e in the command
above. The default database partition groups, buffer pools, and table spaces will
not be extracted. This is because they already exist in every database by default. If
you want to mimic these, you must alter them yourself manually.

Bring up the file sample.ddl in a text editor. Since you want to run the DDL in this
file against the new database, you must change the CONNECT TO SAMPLE
statement to CONNECT TO SAMPLE2. If you used the -l option, you might need
to alter the path associated with the table space commands, such that they point to
appropriate paths as well. While you are at it, take a look at the rest of the
contents of the file. You should see CREATE TABLE, ALTER TABLE, and CREATE
INDEX statements for all of the user tables in the sample database:
...
--
-- DDL Statements for table "DB2"."ORG"
--

CREATE TABLE "DB2"."ORG" (
"DEPTNUMB" SMALLINT NOT NULL ,
"DEPTNAME" VARCHAR(14) ,
"MANAGER" SMALLINT ,
"DIVISION" VARCHAR(10) ,
"LOCATION" VARCHAR(13))
IN "USERSPACE1" ;

...

Once you have changed the connect statement, run the statements, as follows:
C:\>db2 -tvf sample.ddl > sample2.out

Take a look at the sample2.out output file -- everything should have been executed
successfully. If errors have occurred, the error messages should state what the
problem is. Fix those problems and run the statements again.

As you can see in the output, DDL for all of the user tables are exported. This is
the default behavior but there are other options available to be more specific about
the tables included. For example, to only include the STAFF and ORG tables, use
the -t option:
C:\>db2look -d sample -e -t staff org > staff_org.ddl

To only include tables with the schema DB2, use the -z option:
C:\>db2look -d sample -e -z db2 > db2.ddl

Mimicking statistics for tables

If the intent of the test database is to do performance testing or to debug a
performance problem, it is essential that access plans generated for both databases
are identical. The optimizer generates access plans based on statistics, configuration
parameters, registry variables, and environment variables. If these things are
identical between the two systems then it is very likely that the access plans will
be the same.

If both databases have the exact same data loaded into them and the same options
of RUNSTATS is performed on both, the statistics should be identical. However, if
the databases contain different data or if only a subset of data is being used in the
test database then the statistics will likely be very different. In such a case, you can
use db2look to gather the statistics from the production database and place them

426 Troubleshooting and Tuning Database Performance

into the test database. This is done by creating UPDATE statements against the
SYSSTAT set of updatable catalog tables as well as RUNSTATS commands against
all of the tables.

The option for creating the statistic statements is -m. Going back to the
SAMPLE/SAMPLE2 example, gather the statistics from SAMPLE and add them
into SAMPLE2:
C:\>db2look -d sample -m > stats.dml
-- USER is:
-- Running db2look in mimic mode

As before, the output file must be edited such that the CONNECT TO SAMPLE
statement is changed to CONNECT TO SAMPLE2. Again, take a look at the rest of
the file to see what some of the RUNSTATS and UPDATE statements contain:
...
-- Mimic table ORG
RUNSTATS ON TABLE "DB2"."ORG" ;

UPDATE SYSSTAT.INDEXES
SET NLEAF=-1,

NLEVELS=-1,
FIRSTKEYCARD=-1,
FIRST2KEYCARD=-1,
FIRST3KEYCARD=-1,
FIRST4KEYCARD=-1,
FULLKEYCARD=-1,
CLUSTERFACTOR=-1,
CLUSTERRATIO=-1,
SEQUENTIAL_PAGES=-1,
PAGE_FETCH_PAIRS='',
DENSITY=-1,
AVERAGE_SEQUENCE_GAP=-1,
AVERAGE_SEQUENCE_FETCH_GAP=-1,
AVERAGE_SEQUENCE_PAGES=-1,
AVERAGE_SEQUENCE_FETCH_PAGES=-1,
AVERAGE_RANDOM_PAGES=-1,
AVERAGE_RANDOM_FETCH_PAGES=-1,
NUMRIDS=-1,
NUMRIDS_DELETED=-1,
NUM_EMPTY_LEAFS=-1

WHERE TABNAME = 'ORG' AND TABSCHEMA = 'DB2 ';
...

As with the -e option that extracts the DDL, the -t and -z options can be used to
specify a set of tables.

Extracting configuration parameters and environment variables

The optimizer chooses plans based on statistics, configuration parameters, registry
variables, and environment variables. As with the statistics, db2look can be used to
generate the necessary configuration update and set statements. This is done using
the -f option. For example:
c:\>db2look -d sample -f>config.txt
-- USER is: DB2INST1
-- Binding package automatically ...
-- Bind is successful
-- Binding package automatically ...
-- Bind is successful

The config.txt contains output similar to the following:

Chapter 5. Tools for troubleshooting 427

-- This CLP file was created using DB2LOOK Version 9.1
-- Timestamp: 2/16/2006 7:15:17 PM
-- Database Name: SAMPLE
-- Database Manager Version: DB2/NT Version 9.1.0
-- Database Codepage: 1252
-- Database Collating Sequence is: UNIQUE

CONNECT TO SAMPLE;

--
-- Database and Database Manager configuration parameters
--

UPDATE DBM CFG USING cpuspeed 2.991513e-007;
UPDATE DBM CFG USING intra_parallel NO;
UPDATE DBM CFG USING comm_bandwidth 100.000000;
UPDATE DBM CFG USING federated NO;

...

-- Environment Variables settings

COMMIT WORK;

CONNECT RESET;

Note: Only those parameters and variables that affect DB2 compiler will be
included. If a registry variable that affects the compiler is set to its default value, it
will not show up under "Environment Variables settings".

Listing DB2 database products installed on your system (Linux and
UNIX)

On supported Linux and UNIX operating systems, the db2ls command lists the
DB2 database products and features installed on your system, including the DB2
Version 9.7 HTML documentation.

At least one DB2 Version 9 (or later) database product must already be installed by
a root user for a symbolic link to the db2ls command to be available in the
/usr/local/bin directory.

With the ability to install multiple copies of DB2 database products on your system
and the flexibility to install DB2 database products and features in the path of your
choice, you need a tool to help you keep track of what is installed and where it is
installed. On supported Linux and UNIX operating systems, the db2ls command
lists the DB2 products and features installed on your system, including the DB2
HTML documentation.

The db2ls command can be found both in the installation media and in a DB2
install copy on the system. The db2ls command can be run from either location.
The db2ls command can be run from the installation media for all products except
IBM Data Server Driver Package.

The db2ls command can be used to list:
v Where DB2 database products are installed on your system and list the DB2

database product level

428 Troubleshooting and Tuning Database Performance

v All or specific DB2 database products and features in a particular installation
path

Restrictions

The output that the db2ls command lists is different depending on the ID used:
v When the db2ls command is run with root authority, only root DB2 installations

are queried.
v When the db2ls command is run with a non-root ID, root DB2 installations and

the non-root installation owned by matching non-root ID are queried. DB2
installations owned by other non-root IDs are not queried.

The db2ls command is the only method to query a DB2 database product. You
cannot query DB2 database products using Linux or UNIX operating system native
utilities, such as pkginfo, rpm, SMIT, or swlist. Any existing scripts containing a
native installation utility that you use to query and interface with DB2 installations
must change.

You cannot use the db2ls command on Windows operating systems.
v To list the path where DB2 database products are installed on your system and

list the DB2 database product level, enter:
db2ls

The command lists the following information for each DB2 database product
installed on your system:
– Installation path
– Level
– Fix pack
– Special Install Number. This column is used by IBM DB2 Support.
– Installation date. This column shows when the DB2 database product was last

modified.
– Installer UID. This column shows the UID with which the DB2 database

product was installed.
v To list information about DB2 database products or features in a particular

installation path the q parameter must be specified:
db2ls -q -p -b baseInstallDirectory

where:
– q specifies that you are querying a product or feature. This parameter is

mandatory. If a DB2 Version 8 product is queried, a blank value is returned.
– p specifies that the listing displays products rather than listing the features.
– b specifies the installation directory of the product or feature. This parameter

is mandatory if you are not running the command from the installation
directory.

Depending on the parameters provided, the command lists the following
information:
v Installation path. This is specified only once, not for each feature.
v The following information is displayed:

– Response file ID for the installed feature, or if the p option is specified, the
response file ID for the installed product. For example,
ENTERPRISE_SERVER_EDITION.

Chapter 5. Tools for troubleshooting 429

– Feature name, or if the p option is specified, product name.
– Product version, release, modification level, fix pack level (VRMF). For

example, 9.5.0.0
– Fix pack, if applicable. For example, if Fix Pack 1 is installed, the value

displayed is 1. This includes interim fix packs, such as Fix Pack 1a.
v If any of the product's VRMF information do not match, a warning message

displays at the end of the output listing. The message suggests the fix pack to
apply.

Monitoring and troubleshooting using db2pd command
The db2pd command is used for troubleshooting because it can return quick and
immediate information from the DB2 memory sets.

Overview

The tool collects information without acquiring any latches or using any engine
resources. It is therefore possible (and expected) to retrieve information that is
changing while db2pd is collecting information; hence the data might not be
completely accurate. If changing memory pointers are encountered, a signal
handler is used to prevent db2pd from ending abnormally. This can result in
messages such as "Changing data structure forced command termination" to
appear in the output. Nonetheless, the tool can be helpful for troubleshooting. Two
benefits to collecting information without latching include faster retrieval and no
competition for engine resources.

If you want to capture information about the database management system when a
specific SQLCODE, ZRC code or ECF code occurs, this can be accomplished using
the db2pdcfg -catch command. When the errors are caught, the db2cos (callout
script) is launched. The db2cos script can be dynamically altered to run any db2pd
command, operating system command, or any other command needed to resolve
the problems. The template db2cos script file is located in sqllib/bin on UNIX
and Linux. On the Windows operating system, db2cos is located in the
$DB2PATH\bin directory.

When adding a new node, you can monitor the progress of the operation on the
database partition server, that is adding the node, using the db2pd -addnode
command with the optional oldviewapps and detail parameters for more detailed
information.

If you require a list of event monitors that are currently active or have been, for
some reason, deactivated, run the db2pd -gfw command. This command also
returns statistics and information about the targets, into which event monitors
write data, for each fast writer EDU.

Examples

The following is a collection of examples in which the db2pd command can be
used to expedite troubleshooting:
v Example 1: Diagnosing a lockwait
v Example 2: Using the -wlocks parameter to capture all the locks being waited on
v Example 3: Using the -apinfo parameter to capture detailed runtime information

about the lock owner and the lock waiter
v Example 4: Using the callout scripts when considering a locking problem

430 Troubleshooting and Tuning Database Performance

v Example 5: Mapping an application to a dynamic SQL statement
v Example 6: Monitoring memory usage
v Example 7: Determine which application is using up your table space
v Example 8: Monitoring recovery
v Example 9: Determining the amount of resources a transaction is using
v Example 10: Monitoring log usage
v Example 11: Viewing the sysplex list
v Example 12: Generating stack traces
v Example 13: Viewing memory statistics for a database partition
v Example 14: Monitoring the progress of index reorganization

Example 1: Diagnosing a lockwait

If you run db2pd -db databasename -locks -transactions -applications -dynamic, the
results are similar to the following ones:

Locks:
Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att ReleaseFlg
0x07800000202E5238 3 00020002000000040000000052 Row ..X G 3 1 0 0x0000 0x40000000
0x07800000202E4668 2 00020002000000040000000052 Row ..X W* 2 1 0 0x0000 0x40000000

For the database that you specified using the -db database name option, the first
results show the locks for that database. The results show that TranHdl 2 is
waiting on a lock held by TranHdl 3.

Transactions:
Address AppHandl [nod-index] TranHdl Locks State Tflag Tflag2 Firstlsn Lastlsn LogSpace SpaceReserved TID AxRegCnt GXID
0x0780000020251B80 11 [000-00011] 2 4 READ 0x00000000 0x00000000 0x000000000000 0x000000000000 0 0 0x0000000000B7 1 0
0x0780000020252900 12 [000-00012] 3 4 WRITE 0x00000000 0x00000000 0x000000FA000C 0x000000FA000C 113 154 0x0000000000B8 1 0

We can see that TranHdl 2 is associated with AppHandl 11 and TranHdl 3 is
associated with AppHandl 12.
Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

0x07800000006879E0 12 [000-00012] 1 1073336 UOW-Waiting 0 0 17 1 *LOCAL.burford.060303225602
0x0780000000685E80 11 [000-00011] 1 1040570 UOW-Executing 17 1 94 1 *LOCAL.burford.060303225601

We can see that AppHandl 12 last ran dynamic statement 17, 1. ApplHandl 11 is
currently running dynamic statement 17, 1 and last ran statement 94, 1.
Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x07800000209FD800 17 1 1 1 2 2 update pdtest set c1 = 5
0x07800000209FCCC0 94 1 1 1 2 2 set lock mode to wait 1

We can see that the text column shows the SQL statements that are associated with
the lock timeout.

Example 2: Using the -wlocks parameter to capture all the locks being waited on

If you run db2pd -wlocks -db pdtest, results similar to the following ones are
generated. They show that the first application (AppHandl 47) is performing an
insert on a table and that the second application (AppHandl 46) is performing a
select on that table:

venus@boson:/home/venus =>db2pd -wlocks -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:22

Locks being waited on :
AppHandl [nod-index] TranHdl Lockname Type Mode Conv Sts CoorEDU AppName AuthID AppID
47 [000-00047] 8 00020004000000000840000652 Row ..X G 5160 db2bp VENUS *LOCAL.venus.071207213730
46 [000-00046] 2 00020004000000000840000652 Row .NS W 5913 db2bp VENUS *LOCAL.venus.071207213658

Chapter 5. Tools for troubleshooting 431

Example 3: Using the -apinfo parameter to capture detailed runtime information
about the lock owner and the lock waiter

The following sample output was generated under the same conditions as those
for Example 2:
venus@boson:/home/venus =>db2pd -apinfo 47 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:30

Application :
Address : 0x0780000001676480
AppHandl [nod-index] : 47 [000-00047]
Application PID : 876558
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063450)Fri Dec 7 16:37:30 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5160
Coordinator Partition : 0
Number of Agents : 1
Locks timeout value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 2
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : UOW-Waiting
Application Name : db2bp
Application ID : *LOCAL.venus.071207213730

ClientUserID : n/a
ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of inactive statements of current UOW :
UOW-ID : 2
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 203
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Insert/Update/Delete
Statement : insert into pdtest values 99

venus@boson:/home/venus =>db2pd -apinfo 46 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:39

Application :
Address : 0x0780000000D77A60
AppHandl [nod-index] : 46 [000-00046]
Application PID : 881102
Application Node Name : boson
IP Address: n/a
Connection Start Time : (1197063418)Fri Dec 7 16:36:58 2007
Client User ID : venus
System Auth ID : VENUS
Coordinator EDU ID : 5913
Coordinator Partition : 0
Number of Agents : 1

432 Troubleshooting and Tuning Database Performance

Locks timeout value : 4294967294 seconds
Locks Escalation : No
Workload ID : 1
Workload Occurrence ID : 1
Trusted Context : n/a
Connection Trust Type : non trusted
Role Inherited : n/a
Application Status : Lock-wait
Application Name : db2bp
Application ID : *LOCAL.venus.071207213658

ClientUserID : n/a
ClientWrkstnName : n/a
ClientApplName : n/a
ClientAccntng : n/a

List of active statements :
*UOW-ID : 3
Activity ID : 1
Package Schema : NULLID
Package Name : SQLC2G13
Package Version :
Section Number : 201
SQL Type : Dynamic
Isolation : CS
Statement Type : DML, Select (blockable)
Statement : select * from pdtest

Example 4: Using the callout scripts when considering a locking problem

To use the callout scripts, find the db2cos output files. The location of the files is
controlled by the database manager configuration parameter diagpath. The
contents of the output files will differ depending on what commands you enter in
the db2cos script file. An example of the output provided when the db2cos script
file contains a db2pd -db sample -locks command is as follows:
Lock Timeout Caught
Thu Feb 17 01:40:04 EST 2006
Instance DB2
Datbase: SAMPLE
Partition Number: 0
PID: 940
TID: 2136
Function: sqlplnfd
Component: lock manager
Probe: 999
Timestamp: 2006-02-17-01.40.04.106000
AppID: *LOCAL.DB2...
AppHdl:
...
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:06:53
Locks:
Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att Rlse
0x402C6B30 3 00020003000000040000000052 Row ..X W* 3 1 0 0 0x40

In the output, W* indicates the lock that experienced the timeout. In this case, a
lockwait has occurred. A lock timeout can also occur when a lock is being
converted to a higher mode. This is indicated by C* in the output.

You can map the results to a transaction, an application, an agent, or even an SQL
statement with the output provided by other db2pd commands in the db2cos file.
You can narrow down the output or use other commands to collect the information
that you need. For example, you can use the db2pd -locks wait parameters to print
only locks with a wait status. You can also use the -app and -agent parameters.

Chapter 5. Tools for troubleshooting 433

Example 5: Mapping an application to a dynamic SQL statement

The command db2pd -applications -dynamic reports the current and last anchor ID
and statement unique ID for dynamic SQL statements. This allows direct mapping
from an application to a dynamic SQL statement.
Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status
0x00000002006D2120 780 [000-00780] 1 10615 UOW-Executing

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
163 1 110 1 *LOCAL.burford.050202200412

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x0000000220A02760 163 1 2 2 2 1 CREATE VIEW MYVIEW
0x0000000220A0B460 110 1 2 2 2 1 CREATE VIEW YOURVIEW

Example 6: Monitoring memory usage

The db2pd -memblock command can be useful when you are trying to understand
memory usage, as shown in the following sample output:
All memory blocks in DBMS set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File
0x0780000000740068 62 resynch 2 112 1 1746 1583816485
0x0780000000725688 62 resynch 1 108864 1 127 1599127346
0x07800000001F4348 57 ostrack 6 5160048 1 3047 698130716
0x07800000001B5608 57 ostrack 5 240048 1 3034 698130716
0x07800000001A0068 57 ostrack 1 80 1 2970 698130716
0x07800000001A00E8 57 ostrack 2 240 1 2983 698130716
0x07800000001A0208 57 ostrack 3 80 1 2999 698130716
0x07800000001A0288 57 ostrack 4 80 1 3009 698130716
0x0780000000700068 70 apmh 1 360 1 1024 3878879032
0x07800000007001E8 70 apmh 2 48 1 914 1937674139
0x0780000000700248 70 apmh 3 32 1 1000 1937674139
...

This is followed by the sorted 'per-pool' output:
Memory blocks sorted by size for ostrack pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
57 ostrack 5160048 1 3047 698130716
57 ostrack 240048 1 3034 698130716
57 ostrack 240 1 2983 698130716
57 ostrack 80 1 2999 698130716
57 ostrack 80 1 2970 698130716
57 ostrack 80 1 3009 698130716
Total size for ostrack pool: 5400576 bytes

Memory blocks sorted by size for apmh pool:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
70 apmh 40200 2 121 2986298236
70 apmh 10016 1 308 1586829889
70 apmh 6096 2 4014 1312473490
70 apmh 2516 1 294 1586829889
70 apmh 496 1 2192 1953793439
70 apmh 360 1 1024 3878879032
70 apmh 176 1 1608 1953793439
70 apmh 152 1 2623 1583816485
70 apmh 48 1 914 1937674139
70 apmh 32 1 1000 1937674139
Total size for apmh pool: 60092 bytes
...

The final section of output sorts the consumers of memory for the entire memory
set:

434 Troubleshooting and Tuning Database Performance

All memory consumers in DBMS memory set:
PoolID PoolName TotalSize(Bytes) %Bytes TotalCount %Count LOC File
57 ostrack 5160048 71.90 1 0.07 3047 698130716
50 sqlch 778496 10.85 1 0.07 202 2576467555
50 sqlch 271784 3.79 1 0.07 260 2576467555
57 ostrack 240048 3.34 1 0.07 3034 698130716
50 sqlch 144464 2.01 1 0.07 217 2576467555
62 resynch 108864 1.52 1 0.07 127 1599127346
72 eduah 108048 1.51 1 0.07 174 4210081592
69 krcbh 73640 1.03 5 0.36 547 4210081592
50 sqlch 43752 0.61 1 0.07 274 2576467555
70 apmh 40200 0.56 2 0.14 121 2986298236
69 krcbh 32992 0.46 1 0.07 838 698130716
50 sqlch 31000 0.43 31 2.20 633 3966224537
50 sqlch 25456 0.35 31 2.20 930 3966224537
52 kerh 15376 0.21 1 0.07 157 1193352763
50 sqlch 14697 0.20 1 0.07 345 2576467555
...

You can also report memory blocks for private memory on UNIX and Linux
operating systems. For example, if you run db2pd -memb pid=159770, results
similar to the following ones are generated:
All memory blocks in Private set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File
0x0000000110469068 88 private 1 2488 1 172 4283993058
0x0000000110469A48 88 private 2 1608 1 172 4283993058
0x000000011046A0A8 88 private 3 4928 1 172 4283993058
0x000000011046B408 88 private 4 7336 1 172 4283993058
0x000000011046D0C8 88 private 5 32 1 172 4283993058
0x000000011046D108 88 private 6 6728 1 172 4283993058
0x000000011046EB68 88 private 7 168 1 172 4283993058
0x000000011046EC28 88 private 8 24 1 172 4283993058
0x000000011046EC68 88 private 9 408 1 172 4283993058
0x000000011046EE28 88 private 10 1072 1 172 4283993058
0x000000011046F288 88 private 11 3464 1 172 4283993058
0x0000000110470028 88 private 12 80 1 172 4283993058
0x00000001104700A8 88 private 13 480 1 1534 862348285
0x00000001104702A8 88 private 14 480 1 1939 862348285
0x0000000110499FA8 88 private 80 65551 1 1779 4231792244
Total set size: 94847 bytes

Memory blocks sorted by size:
PoolID PoolName TotalSize(Bytes) TotalCount LOC File
88 private 65551 1 1779 4231792244
88 private 28336 12 172 4283993058
88 private 480 1 1939 862348285
88 private 480 1 1534 862348285
Total set size: 94847 bytes

Example 7: Determine which application is using up your table space

Using db2pd -tcbstats, you can identify the number of inserts for a table. The
following is sample information for a user-defined global temporary table called
TEMP1:
TCB Table Information:
Address TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize LfSize LobSize XMLSize
0x0780000020B62AB0 3 2 n/a 3 2 TEMP1 SESSION Temp 966 0 0 0

TCB Table Stats:
Address TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts Updates Deletes OvFlReads OvFlCrtes
0x0780000020B62AB0 TEMP1 0 0 0 0 0 0 43968 0 0 0 0

You can then obtain the information for table space 3 by using the db2pd
-tablespaces command. Sample output is as follows:
Tablespace 3 Configuration:
Address Type Content PageSz ExtentSz Auto Prefetch BufID BufIDDisk FSC NumCntrs MaxStripe LastConsecPg Name
0x0780000020B1B5A0 DMS UsrTmp 4096 32 Yes 32 1 1 On 1 0 31 TEMPSPACE2

Tablespace 3 Statistics:
Address TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
0x0780000020B1B5A0 5000 4960 1088 0 3872 1088 0x00000000 0 0

Tablespace 3 Autoresize Statistics:
Address AS AR InitSize IncSize IIP MaxSize LastResize LRF
0x0780000020B1B5A0 No No 0 0 No 0 None No

Chapter 5. Tools for troubleshooting 435

Containers:
Address ContainNum Type TotalPgs UseablePgs StripeSet Container
0x0780000020B1DCC0 0 File 5000 4960 0 /home/db2inst1/tempspace2a

The FreePgs column shows that space is filling up. As the free pages value
decreases, there is less space available. Notice also that the value for FreePgs plus
the value for UsedPgs equals the value of UsablePgs.

Once this is known, you can identify the dynamic SQL statement that is using the
table TEMP1 by running the db2pd -db sample -dyn:
Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:13:06

Dynamic Cache:
Current Memory Used 1022197
Total Heap Size 1271398
Cache Overflow Flag 0
Number of References 237
Number of Statement Inserts 32
Number of Statement Deletes 13
Number of Variation Inserts 21
Number of Statements 19

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x0000000220A08C40 78 1 2 2 3 2 declare global temporary table temp1 (c1 char(6)) not logged
0x0000000220A8D960 253 1 1 1 24 24 insert into session.temp1 values('TEST')

Finally, you can map the information from the preceding output to the applications
output to identify the application by running db2pd -db sample -app.
Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status
0x0000000200661840 501 [000-00501] 1 11246 UOW-Waiting

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
0 0 253 1 *LOCAL.db2inst1.050202160426

You can use the anchor ID (AnchID) value that identified the dynamic SQL
statement to identify the associated application. The results show that the last
anchor ID (L-AnchID) value is the same as the anchor ID (AnchID) value. You use
the results from one run of db2pd in the next run of db2pd.

The output from db2pd -agent shows the number of rows read (in the Rowsread
column) and rows written (in the Rowswrtn column) by the application. These
values give you an idea of what the application has completed and what the
application still has to complete, as shown in the following sample output:.
Address AppHandl [nod-index] AgentPid Priority Type DBName
0x0000000200698080 501 [000-00501] 11246 0 Coord SAMPLE

State ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt
Inst-Active 26377 db2inst1 db2bp 22 9588 NotSet

You can map the values for AppHandl and AgentPid resulting from running the
db2pd -agent command to the corresponding values for AppHandl and CoorPiid
resulting from running the db2pd -app command.

The steps are slightly different if you suspect that an internal temporary table is
filling up the table space. You still use db2pd -tcbstats to identify tables with large
numbers of inserts, however. Following is sample information for an implicit
temporary table:
TCB Table Information:
Address TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize ...
0x0780000020CC0D30 1 2 n/a 1 2 TEMP (00001,00002) <30> <JMC Temp 2470 ...
0x0780000020CC14B0 1 3 n/a 1 3 TEMP (00001,00003) <31> <JMC Temp 2367 ...
0x0780000020CC21B0 1 4 n/a 1 4 TEMP (00001,00004) <30> <JMC Temp 1872 ...

TCB Table Stats:
Address TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts ...
0x0780000020CC0D30 TEMP (00001,00002) 0 0 0 0 0 0 43219 ...
0x0780000020CC14B0 TEMP (00001,00003) 0 0 0 0 0 0 42485 ...
0x0780000020CC21B0 TEMP (00001,00004) 0 0 0 0 0 0 0 ...

436 Troubleshooting and Tuning Database Performance

In this example, there are a large number of inserts for tables with the naming
convention TEMP (TbspaceID, TableID). These are implicit temporary tables. The
values in the SchemaNm column have a naming convention of the value for AppHandl
concatenated with the value for SchemaNm, which makes it possible to identify the
application doing the work.

You can then map that information to the output from db2pd -tablespaces to see
the used space for table space 1. Take note of the relationship between the UsedPgs
and UsablePgs values in the table space statistics in the following output:

Tablespace Configuration:
Address Id Type Content PageSz ExtentSz Auto Prefetch BufID BufIDDisk FSC NumCntrs MaxStripe LastConsecPg Name
0x07800000203FB5A0 1 SMS SysTmp 4096 32 Yes 320 1 1 On 10 0 31 TEMPSPACE1

Tablespace Statistics:
Address Id TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers
0x07800000203FB5A0 1 6516 6516 6516 0 0 0 0x00000000 0 0

Tablespace Autoresize Statistics:
Address Id AS AR InitSize IncSize IIP MaxSize LastResize LRF
0x07800000203FB5A0 1 No No 0 0 No 0 None No

Containers:
...

You can then identify application handles 30 and 31 (because you saw them in the
-tcbstats output) by using the command db2pd -app:

Applications:
Address AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid
0x07800000006FB880 31 [000-00031] 1 4784182 UOW-Waiting 0 0 107 1 *LOCAL.db2inst1.051215214142
0x07800000006F9CE0 30 [000-00030] 1 8966270 UOW-Executing 107 1 107 1 *LOCAL.db2inst1.051215214013

Finally, map the information from the preceding output to the Dynamic SQL
output obtained by running the db2pd -dyn command:

Dynamic SQL Statements:
Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text
0x0780000020B296C0 107 1 1 1 43 43 select c1, c2 from test group by c1,c2

Example 8: Monitoring recovery

If you run the command db2pd -recovery, the output shows several counters that
you can use to verify that recovery is progressing, as shown in the following
sample output. The Current Log and Current LSN values provide the log position.
The CompletedWork value is the number of bytes completed thus far.
Recovery:
Recovery Status 0x00000401
Current Log S0000005.LOG
Current LSN 000002551BEA
Job Type ROLLFORWARD RECOVERY
Job ID 7
Job Start Time (1107380474) Wed Feb 2 16:41:14 2005
Job Description Database Rollforward Recovery
Invoker Type User
Total Phases 2
Current Phase 1

Progress:
Address PhaseNum Description StartTime CompletedWork TotalWork
0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown
0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

Example 9: Determining the amount of resources a transaction is using

If you run the command db2pd -transactions, the output shows the number of
locks, the first log sequence number (LSN), the last LSN, the log space used, and
the space reserved, as shown in the following sample output. This can be useful
for understanding the behavior of a transaction.

Chapter 5. Tools for troubleshooting 437

Transactions:
Address AppHandl [nod-index] TranHdl Locks State Tflag
0x000000022026D980 797 [000-00797] 2 108 WRITE 0x00000000
0x000000022026E600 806 [000-00806] 3 157 WRITE 0x00000000
0x000000022026F280 807 [000-00807] 4 90 WRITE 0x00000000

Tflag2 Firstlsn Lastlsn LogSpace SpaceReserved
0x00000000 0x000001072262 0x0000010B2C8C 4518 95450
0x00000000 0x000001057574 0x0000010B3340 6576 139670
0x00000000 0x00000107CF0C 0x0000010B2FDE 3762 79266

TID AxRegCnt GXID
0x000000000451 1 0
0x0000000003E0 1 0
0x000000000472 1 0

Example 10: Monitoring log usage

The command db2pd -logs is useful for monitoring log usage for a database. By
using thePages Written value, as shown in the following sample output, you can
determine whether the log usage is increasing:
Logs:
Current Log Number 0
Pages Written 0
Cur Commit Disk Log Reads 0
Cur Commit Total Log Reads 0
Method 1 Archive Status n/a
Method 1 Next Log to Archive n/a
Method 1 First Failure n/a
Method 2 Archive Status n/a
Method 2 Next Log to Archive n/a
Method 2 First Failure n/a
Log Chain ID 0
Current LSN 0x0000000001F40010

Address StartLSN State Size Pages Filename
0x00002B75E9E3D2D0 0000000001F40010 0x00000000 1000 1000 S0000000.LOG
0x00002B75E9E53D70 0000000002328010 0x00000000 1000 1000 S0000001.LOG
0x00002B75E9E545D0 0000000002710010 0x00000000 1000 1000 S0000002.LOG

You can identify two types of problems by using this output:
v If the most recent log archive fails, Archive Status is set to a value of Failure. If

there is an ongoing archive failure, preventing logs from being archived at all,
Archive Status is set to a value of First Failure.

v If log archiving is proceeding very slowly, the Next Log to Archive value is
lower than the Current Log Number value. If archiving is very slow, space for
active logs might run out, which in turn might prevent any data changes from
occurring in the database.

Example 11: Viewing the sysplex list

Without the db2pd -sysplex command showing the following sample output, the
only other way to report the sysplex list is by using a DB2 trace.
Sysplex List:
Alias: HOST
Location Name: HOST1
Count: 1

IP Address Port Priority Connections Status PRDID
1.2.34.56 400 1 0 0

438 Troubleshooting and Tuning Database Performance

Example 12: Generating stack traces

You can use the db2pd -stack all command for Windows operating systems or the
-stack command for UNIX operating systems to produce stack traces for all
processes in the current database partition. You might want to use this command
iteratively when you suspect that a process or thread is looping or hanging.

You can obtain the current call stack for a particular engine dispatchable unit
(EDU) by issuing the command db2pd -stack eduid, as shown in the following
example:

Attempting to dump stack trace for eduid 137.
See current DIAGPATH for trapfile.

If the call stacks for all of the DB2 processes are desired, use the command db2pd
-stack all, for example (on Windows operating systems):

Attempting to dump all stack traces for instance.
See current DIAGPATH for trapfiles.

If you are using a partitioned database environment with multiple physical nodes,
you can obtain the information from all of the partitions by using the command
db2_all "; db2pd -stack all". If the partitions are all logical partitions on the same
machine, however, a faster method is to use db2pd -alldbp -stacks.

Example 13: Viewing memory statistics for a database partition

The db2pd -dbptnmem command shows how much memory the DB2 server is
currently consuming and, at a high level, which areas of the server are using that
memory.

Following is an example of the output from running db2pd -dbptnmem on an AIX
machine:
Database Partition Memory Controller Statistics

Controller Automatic: Y
Memory Limit: 122931408 KB
Current usage: 651008 KB
HWM usage: 651008 KB
Cached memory: 231296 KB

The descriptions of these data fields and columns are as follows:

Controller Automatic
Indicates the memory controller setting. It shows the value "Y" if the
instance_memory configuration parameter is set to AUTOMATIC. This
means that database manager automatically determines the upper
boundary of memory consumption.

Memory Limit
If an instance memory limit is enforced, the value of the instance_memory
configuration parameter is the upper bound limit of DB2 server memory
that can be consumed.

Current usage
The amount of memory the server is currently consuming.

HWM usage
The high water mark (HWM) or peak memory usage that has been
consumed since the activation of the database partition (when the db2start
command was run).

Chapter 5. Tools for troubleshooting 439

Cached memory
The amount of the current usage that is not currently being used but is
cached for performance reasons for future memory requests.

Following is the continuation of the sample output from running db2pd
-dbptnmem on an AIX operating system:
Individual Memory Consumers:
Name Mem Used (KB) HWM Used (KB) Cached (KB)
===
APPL-DBONE 160000 160000 159616
DBMS-name 38528 38528 3776
FMP_RESOURCES 22528 22528 0
PRIVATE 13120 13120 740
FCM_RESOURCES 10048 10048 0
LCL-p606416 128 128 0
DB-DBONE 406656 406656 67200

All registered “consumers” of memory within the DB2 server are listed with the
amount of the total memory they are consuming. The column descriptions are as
follows:

Name A short, distinguishing name of a consumer of memory, such as the
following:

APPL-dbname
Application memory consumed for database dbname

DBMS-name
Global database manager memory requirements

FMP_RESOURCES
Memory required to communicate with db2fmps

PRIVATE
Miscellaneous private memory requirements

FCM_RESOURCES
Fast Communication Manager resources

LCL-pid
The memory segment used to communicate with local applications

DB-dbname
Database memory consumed for database dbname

Mem Used (KB)
The amount of memory that is currently allotted to the consumer

HWM Used (KB)
The high-water mark (HWM) of the memory, or the peak memory, that the
consumer has used

Cached (KB)
Of the Mem Used (KB), the amount of memory that is not currently being
used but is immediately available for future memory allocations

Example 14: Monitoring the progress of index reorganization

In DB2 Version 9.7 Fix Pack 2 and later fix packs, the progress report of an index
reorganization has the following characteristics:
v The db2pd -reorgs index command reports index reorg progress for partitioned

indexes (Fix Pack 1 introduced support for only non-partitioned indexes).

440 Troubleshooting and Tuning Database Performance

v The db2pd -reorgs index command supports the monitoring of index reorg at
the partition level (that is, during reorganization of a single partition).

v The reorg progress for non-partitioned and partitioned indexes is reported in
separate outputs. One output shows the reorg progress for non-partitioned
indexes, and the following outputs show the reorg progress for partitioned
indexes on each table partition; the index reorg statistics of only one partition is
reported in each output.

v Non-partitioned indexes are processed first, followed by partitioned indexes in
serial fashion.

v The db2pd -reorgs index command displays the following additional
information fields in the output for partitioned indexes:
– MaxPartition - Total number of partitions for the table being processed. For

partition-level reorg, MaxPartition will always have a value of 1 since only a
single partition is being reorganized.

– PartitionID - The data partition identifier for the partition being processed.

The following is an example of output obtained using the db2pd -reorgs index
command which reports the index reorg progress for a range-partitioned table with
2 partitions.

Note: The first output reports the Index Reorg Stats of the non-partitioned indexes.
The following outputs report the Index Reorg Stats of the partitioned indexes on
each partition.
Index Reorg Stats:
Retrieval Time: 02/08/2010 23:04:21
TbspaceID: -6 TableID: -32768
Schema: ZORAN TableName: BIGRPT
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:03:55 End Time: 02/08/2010 23:04:04
Total Duration: 00:00:08
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 750000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 5
Schema: ZORAN TableName: BIGRPT
PartitionID: 0 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:04 End Time: 02/08/2010 23:04:08
Total Duration: 00:00:04
Prev Index Duration: -
Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Retrieval Time: 02/08/2010 23:04:21
TbspaceID: 2 TableID: 6
Schema: ZORAN TableName: BIGRPT
PartitionID: 1 MaxPartition: 2
Access: Allow none
Status: Completed
Start Time: 02/08/2010 23:04:08 End Time: 02/08/2010 23:04:12
Total Duration: 00:00:04
Prev Index Duration: -

Chapter 5. Tools for troubleshooting 441

Cur Index Start: -
Cur Index: 0 Max Index: 2 Index ID: 0
Cur Phase: 0 (-) Max Phase: 0
Cur Count: 0 Max Count: 0
Total Row Count: 375000

Collecting environment information using db2support command
When it comes to collecting information for a DB2 problem, the most important
DB2 utility you need to run is db2support. The db2support utility automatically
collects all DB2 and system diagnostic information available. It also has an optional
interactive "Question and Answer" session, which poses questions about the
circumstances of your problem.

Using the db2support utility avoids possible user errors, as you do not need to
manually type commands such as GET DATABASE CONFIGURATION FOR
database-name or LIST TABLESPACES SHOW DETAIL. Also, you do not require
instructions on which commands to run or files to collect, therefore it takes less
time to collect the data.
v Execute the command db2support -h to display the complete list of command

options.
v Collect data using the appropriate db2support command.

The db2support utility should be run by a user with SYSADM authority, such as
an instance owner, so that the utility can collect all of the necessary information
without an error. If a user without SYSADM authority runs db2support, SQL
errors (for example, SQL1092N) might result when the utility runs commands
such as QUERY CLIENT or LIST ACTIVE DATABASES.
If you're using the db2support utility to help convey information to IBM
Software Support, run the db2support command while the system is
experiencing the problem. That way the tool will collect timely information, such
as operating system performance details. If you are unable to run the utility at
the time of the problem, you can still issue the db2support command after the
problem has stopped since some first occurrence data capture (FODC) diagnostic
files are produced automatically.
The following basic invocation is usually sufficient for collecting most of the
information required to debug a problem (note, that if the -c option is used, the
utility will establish a connection to the database):
db2support <output path> -d <database name> -c

The output is conveniently collected and stored in a compressed ZIP archive,
db2support.zip, so that it can be transferred and extracted easily on any system.

The type of information that db2support captures depends on the way the
command is invoked, whether or not the database manager has been started, and
whether it is possible to connect to the database.

The db2support utility collects the following information under all conditions:
v db2diag log files
v All trap files
v Locklist files
v Dump files
v Various system related files
v Output from various system commands
v db2cli.ini

442 Troubleshooting and Tuning Database Performance

Depending on the circumstances, the db2support utility might also collect:
v Active log files
v Buffer pool and table space (SQLSPCS.1 and SQLSPCS.2) control files (with -d

option)
v Contents of the db2dump directory
v Extended system information (with -s option)
v Database configuration settings (with -d option)
v Database manager configuration settings files
v Log File Header file (with -d option)
v Recovery History File (with -d option)

The HTML report db2support.html will always include the following information:
v Problem record (PMR) number (if -n was specified)
v Operating system and level (for example, AIX 5.1)
v DB2 release information
v An indication of whether it is a 32- or 64-bit environment
v DB2 install path information
v Contents of db2nodes.cfg
v Number of CPUs and disks and how much memory
v List of databases in the instance
v Registry information and environment, including PATH and LIBPATH
v Disk freespace for current filesystem and inodes for UNIX
v Java™ SDK level
v Java JCC version
v Java JCC configuration
v Database Manager Configuration
v Listing of the database recovery history file
v ls -lR output (or Windows equivalent) of the sqllib directory
v The result of the LIST NODE DIRECTORY command
v The result of the LIST ADMIN NODE DIRECTORY command
v The result of the LIST DCS DIRECTORY command
v The result of the LIST DCS APPLICATIONS EXTENDED command
v List of all installed software

The following information appears in the db2support.html file when the -s option
is specified:
v Detailed disk information (partition layout, type, LVM information, and so on)
v Detailed network information
v Kernel statistics
v Firmware versions
v Other operating system-specific commands

The db2support.html file contains the following additional information if DB2 has
been started:
v Client connection state
v Database and Database Manager Configuration (Database Configuration requires

the -d option)

Chapter 5. Tools for troubleshooting 443

v CLI configuration
v Memory pool info (size and consumed). Complete data is collected if the -d

option is used
v The result of the LIST ACTIVE DATABASES command
v The result of the LIST DCS APPLICATIONS command

The db2support.html file contains the following information if the -c option has
been specified and a connection to the database was successfully established:
v Number of user tables
v Approximate size of database data
v Database snapshot
v Application snapshot
v Buffer pool information
v The result of the LIST APPLICATIONS command
v The result of the LIST COMMAND OPTIONS command
v The result of the LIST DATABASE DIRECTORY command
v The result of the LIST INDOUBT TRANSACTIONS command
v The result of the LIST DATABASE PARTITION GROUPS command
v The result of the LIST DBPARTITIONNUMS command
v The result of the LIST ODBC DATA SOURCES command
v The result of the LIST PACKAGES/TABLES command
v The result of the LIST TABLESPACE CONTAINERS command
v The result of the LIST TABLESPACES command
v The result of the LIST DRDA IN DOUBT TRANSACTIONS command
v DB2 workload manager information

Example contents of db2support.zip file

For an example of the contents of a db2support.zip file, the following command
was executed:
db2support . -d sample -c -f -st "select * from staff"

Extracting the db2support.zip file, the following files and directories were
collected:
v DB2CONFIG/ - Configuration information (for example, database, database

manager, BP, CLI, and Java developer kit, among others)
v DB2DUMP/ - db2diag.log file contents for the past 3 days
v DB2MISC/ - List of the sqllib directory
v DB2SNAP/ - Output of DB2 commands (for example,db2set, LIST TABLES, LIST

INDOUBT TRANSACTIONS, and LIST APPLICATIONS, among others)
v db2supp_opt.zip - Diagnostic information for optimizer problems
v db2supp_system.zip - Operating system information
v db2support.html - Diagnostic information formatted into HTML sections
v db2support.log - Diagnostic log information for db2support collection
v db2support_options.in - Command line options used to start the db2support

collection

Information about Optimizer can be found in the db2supp_opt.zip file. Extraction
of this file finds the following directories:

444 Troubleshooting and Tuning Database Performance

v OPTIMIZER/ - Diagnostic information for optimizer problems
v OPTIMIZER/optimizer.log - File contains a log of all activities
v OPTIMIZER/CATALOGS - All the catalogs with LOBs in the following

subdirectories:
– FUNCTIONS
– ROUTINES
– SEQUENCES
– TABLES
– VIEWS

v OPTIMIZER/DB2DUMP - db2serv output (serv.* and serv2.* output files)

System information can be found in the db2supp_system.zip file. Extraction of this
file finds the following file and directories:
v DB2CONFIG/ - db2cli.ini (files from ~/sqllib/cfg)
v DB2MISC/ - DB2SYSTM file (binary), among others
v OSCONFIG/ - Different operating system information files (for example, netstat,

services, vfs, ulimit, and hosts, among others)
v OSSNAP/ - Operating system snapshots (for example, iostat, netstat, uptime,

vmstat, and ps_elf, among others)
v SQLDBDIR/ - Important buffer pool meta files (~/sqllib/sqldbdir)
v SQLGWDIR/ - DCS directory (files from ~/sqllib/sqlgwdir)
v SQLNODIR/ - Node directory (files from ~/sqllib/sqlnodir)
v SPMLOG/ - Files from ~/sqllib/spmlog

v report.log - Log of all collection activities

Basic trace diagnostics
If you experience a recurring and reproducible problem with DB2, tracing
sometimes allows you to capture additional information about it. Under normal
circumstances, you should only use a trace if asked to by IBM Software Support.
The process of taking a trace entails setting up the trace facility, reproducing the
error and collecting the data.

The amount of information gathered by a trace grows rapidly. When you take the
trace, capture only the error situation and avoid any other activities whenever
possible. When taking a trace, use the smallest scenario possible to reproduce a
problem.

Collecting a trace often has a detrimental effect on the performance of a DB2
instance. The degree of performance degradation is dependent on the type of
problem and on how many resources are being used to gather the trace
information.

IBM Software Support should provide the following information when traces are
requested:
v Simple, step by step procedures
v An explanation of where each trace is to be taken
v An explanation of what should be traced
v An explanation of why the trace is requested
v Backout procedures (for example, how to disable all traces)

Chapter 5. Tools for troubleshooting 445

Though you should be counseled by IBM Software Support as to which traces to
obtain, here are some general guidelines as to when you'd be asked to obtain
particular traces:
v If the problem occurs during installation, and the default installation logs are not

sufficient to determine the cause of the problem, installation traces are
appropriate.

v If the problem occurs in one of the GUI (Graphical User Interface) tools, and the
same actions succeed when performed via explicit commands in the DB2
command window, then a Control Center trace is appropriate. Note that this will
only capture problems with tools that can be launched from the Control Center.

v If the problem manifests in a CLI application, and the problem cannot be
recreated outside of the application, then a CLI trace is appropriate.

v If the problem manifests in a JDBC application, and the problem cannot be
recreated outside of the application, then a JDBC trace is appropriate.

v If the problem is directly related to information that is being communicated at
the DRDA layer, a DRDA trace is appropriate.

v For all other situations where a trace is feasible, a DB2 trace is most likely to be
appropriate.

Trace information is not always helpful in diagnosing an error. For example, it
might not capture the error condition in the following situations:
v The trace buffer size you specified was not large enough to hold a complete set

of trace events, and useful information was lost when the trace stopped writing
to the file or wrapped.

v The traced scenario did not recreate the error situation.
v The error situation was recreated, but the assumption as to where the problem

occurred was incorrect. For example, the trace was collected at a client
workstation while the actual error occurred on a server.

DB2 traces

Obtaining a DB2 trace using db2trc
The db2trc command controls the trace facility provided with DB2. The trace
facility records information about operations and formats this information into a
readable form.

Keep in mind that there is added overhead when a trace is running so enabling the
trace facility might impact your system's performance.

In general, IBM Software Support and development teams use DB2 traces for
troubleshooting. You might run a trace to gain information about a problem that
you are investigating, but its use is rather limited without knowledge of the DB2
source code.

Nonetheless, it is important to know how to correctly turn on tracing and how to
dump trace files, just in case you are asked to obtain them.

Note: You will need one of SYSADM, SYSCTRL or SYSMAINT authority to use
db2trc

To get a general idea of the options available, execute the db2trc command without
any parameters:

446 Troubleshooting and Tuning Database Performance

C:\>db2trc
Usage: db2trc (chg|clr|dmp|flw|fmt|inf|off|on) options

For more information about a specific db2trc command parameter, use the -u
option. For example, to see more information about turning the trace on, execute
the following command:
db2trc on -u

This will provide information about all of the additional options (labeled as
"facilities") that can be specified when turning on a DB2 trace.

When turning trace on, the most important option is -L. This specifies the size of
the memory buffer that will be used to store the information being traced. The
buffer size can be specified in either bytes or megabytes. (To specify megabytes
append either "M" or "m" after the value). The trace buffer size must be a power of
two megabytes. If you specify a size that does not meet this requirement, the
buffer size will automatically be rounded down to the nearest power of two.

If the buffer is too small, information might be lost. By default only the most
recent trace information is kept if the buffer becomes full. If the buffer is too large,
it might be difficult to send the file to the IBM Software Support team.

If tracing an operation that is relatively short (such as a database connection), a
size of approximately 8 MB is usually sufficient:
C:\> db2trc on -l 8M
Trace is turned on

However, if you are tracing a larger operation or if a lot of work is going on at the
same time, a larger trace buffer might be required.

On most platforms, tracing can be turned on at any time and works as described
above. However, there are certain situations to be aware of:
1. On multiple database partition systems, you must run a trace for each physical

(as opposed to logical) database partition.
2. On HP-UX, Linux and Solaris platforms, if the trace is turned off after the

instance has been started, a very small buffer will be used the next time the
trace is started regardless of the size specified. For example, yesterday you
turned trace on by using db2trc on -l 8m, then collected a trace, and then
turned the trace off (db2trc off). Today you wish to run a trace with the
memory buffer set for 32 megabytes (db2trc on -l 32m) without bringing the
instance down and restarting. You will find that in this case trace will only get
a small buffer. To effectively run a trace on these platforms, turn the trace on
before starting the instance with the size buffer you need and “clear” the buffer
as necessary afterwards.

Dumping a DB2 trace file
After the trace facility has been enabled using the ON option, all subsequent work
done by the instance will be traced.

While the trace is running, you can use the clr option to clear out the trace buffer.
All existing information in the trace buffer will be removed.
C:\>db2trc clr
Trace has been cleared

Once the operation being traced has finished, use the dmp option followed by a
trace file name to dump the memory buffer to disk. For example:

Chapter 5. Tools for troubleshooting 447

C:\>db2trc dmp trace.dmp
Trace has been dumped to file

The trace facility will continue to run after dumping the trace buffer to disk. To
turn tracing off, use the OFF option:
C:\>db2trc off
Trace is turned off

Formatting a DB2 trace file
The dump file created by the command db2trc dmp is in binary format and is not
readable. To verify that a trace file can be read, format the binary trace file to show
the flow control and send the formatted output to a null device.

The following example shows the command to perform this task:
db2trc flw example.trc nul

where example.trc is a binary file that was produced using the dmp option.

The output for this command will explicitly tell you if there is a problem reading
the file, and whether or not the trace was wrapped.

At this point, the dump file can be sent to IBM Software Support. They would then
format it based on your DB2 service level. However, you might sometimes be
asked to format the dump file into ASCII format before sending it. This is
accomplished via the flw and fmt options. You must provide the name of the
binary dump file along with the name of the ASCII file that you want to create:
C:\>db2trc flw trace.dmp trace.flw
C:\Temp>db2trc flw trace.dmp trace.flw
Total number of trace records : 18854
Trace truncated : NO
Trace wrapped : NO
Number of trace records formatted : 1513 (pid: 2196 tid 2148 node: -1)
Number of trace records formatted : 100 (pid: 1568 tid 1304 node: 0)
...

C:\>db2trc fmt trace.dmp trace.fmt
C:\Temp>db2trc fmt trace.dmp trace.fmt
Trace truncated : NO
Trace wrapped : NO
Total number of trace records : 18854
Number of trace records formatted : 18854

If this output indicates "Trace wrapped" is "YES", then this means that the trace
buffer was not large enough to contain all of the information collected during the
trace period. A wrapped trace might be okay depending on the situation. If you
are interested in the most recent information (this is the default information that is
maintained, unless the -i option is specified), then what is in the trace file might be
sufficient. However, if you are interested in what happened at the beginning of the
trace period or if you are interested in everything that occurred, you might want to
redo the operation with a larger trace buffer.

There are options available when formatting a binary file into a readable text file.
For example, you can use db2trc fmt -xml trace.dmp trace.fmt to convert the
binary data and output the result into an XML parsable format. Additional options
are shown in the detailed description of the trace command (db2trc).

Another thing to be aware of is that on Linux and UNIX operating systems, DB2
will automatically dump the trace buffer to disk when it shuts the instance down

448 Troubleshooting and Tuning Database Performance

due to a severe error. Thus if tracing is enabled when an instance ends abnormally,
a file will be created in the diagnostic directory and its name will be db2trdmp.###,
where ### is the database partition number. This does not occur on Windows
platforms. You have to dump the trace manually in those situations.

To summarize, the following is an example of the common sequence of db2trc
commands:

db2trc on -l 8M
db2trc clr
<Execute problem recreation commands>
db2trc dump db2trc.dmp
db2trc off
db2trc flw db2trc.dmp <filename>.flw
db2trc fmt db2trc.dmp <filename>.fmt
db2trc fmt -c db2trc.dmp <filename>.fmtc

DRDA trace files
Before analyzing DRDA traces, you must understand that DRDA is an open
standard for the definition of data and communication structures. For example,
DRDA comprises a set of rules about how data should be organized for
transmission and how communication of that information should occur.

These rules are defined in the following reference manuals:
v DRDA V3 Vol. 1: Distributed Relational Database Architecture™

v DRDA V3 Vol. 2: Formatted Data Object Content Architecture
v DRDA V3 Vol. 3: Distributed Data Management Architecture

PDF versions of these manuals are available on www.opengroup.org.

The db2drdat utility records the data interchanged between a DRDA Application
Requestor (AR) and a DB2 DRDA Application Server (AS) (for example between
DB2 Connect and a host or Power Systems™ Servers database server).

Trace utility
The db2drdat utility records the data interchanged between the DB2 Connect
server (on behalf of the IBM data server client) and the IBM mainframe database
server.

As a database administrator (or application developer), you might find it useful to
understand how this flow of data works, because this knowledge can help you
determine the origin of a particular problem. Suppose you found yourself in the
following situation: you issue a CONNECT TO database statement for a IBM
mainframe database server but the command fails and you receive an unsuccessful
return code. If you understand exactly what information was conveyed to the IBM
mainframe database server management system, you might be able to determine
the cause of the failure even if the return code information is general. Many
failures are caused by simple user errors.

Output from db2drdat lists the data streams exchanged between the DB2 Connect
workstation and the IBM mainframe database server management system. Data
sent to the IBM mainframe database server is labeled SEND BUFFER and data
received from the IBM mainframe database server is labeled RECEIVE BUFFER.

If a receive buffer contains SQLCA information, it will be followed by a formatted
interpretation of this data and labeled SQLCA. The SQLCODE field of an SQLCA

Chapter 5. Tools for troubleshooting 449

http://www.opengroup.org

is the unmapped value as returned by the IBM mainframe database server. The send
and receive buffers are arranged from the oldest to the most recent within the file.
Each buffer has:
v The process ID
v A SEND BUFFER, RECEIVE BUFFER, or SQLCA label. The first DDM command

or object in a buffer is labeled DSS TYPE.

The remaining data in send and receive buffers is divided into five columns,
consisting of:
v A byte count.
v Columns 2 and 3 represent the DRDA data stream exchanged between the two

systems, in ASCII or EBCDIC.
v An ASCII representation of columns 2 and 3.
v An EBCDIC representation of columns 2 and 3.

Trace output
The db2drdat utility writes the following information to tracefile:
v -r

– Type of DRDA reply/object
– Receive buffer

v -s
– Type of DRDA request
– Send buffer

v -c
– SQLCA

v TCP/IP error information
– Receive function return code
– Severity
– Protocol used
– API used
– Function
– Error number.

Note:

1. A value of zero for the exit code indicates that the command completed
successfully, and a non-zero value indicates that it did not.

2. The fields returned vary based on the API used.
3. The fields returned vary based on the platform on which DB2 Connect is

running, even for the same API.
4. If the db2drdat command sends the output to a file that already exists, the old

file will be erased unless the permissions on the file do not allow it to be
erased.

Trace output file analysis
The following information is captured in a db2drdat trace :
v The process ID (PID) of the client application
v The RDB_NAME cataloged in the database connection services (DCS) directory
v The DB2 Connect CCSID(s)
v The IBM mainframe database server CCSID(s)

450 Troubleshooting and Tuning Database Performance

v The IBM mainframe database server management system with which the DB2
Connect system is communicating.

The first buffer contains the Exchange Server Attributes (EXCSAT) and Access RDB
(ACCRDB) commands sent to the IBM mainframe database server management
system. It sends these commands as a result of a CONNECT TO database command.
The next buffer contains the reply that DB2 Connect received from the IBM
mainframe database server management system. It contains an Exchange Server
Attributes Reply Data (EXCSATRD) and an Access RDB Reply Message
(ACCRDBRM).

EXCSAT
The EXCSAT command contains the workstation name of the client
specified by the Server Name (SRVNAM) object, which is code point
X'116D', according to DDM specification. The EXCSAT command is found
in the first buffer. Within the EXCSAT command, the values X'9481A292'
(coded in CCSID 500) are translated to mask once the X'116D' is removed.

The EXCSAT command also contains the EXTNAM (External Name) object,
which is often placed in diagnostic information on the IBM mainframe
database management system. It consists of a 20-byte application ID
followed by an 8-byte process ID (or 4-byte process ID and 4-byte thread
ID). It is represented by code point X'115E', and in this example its value is
db2bp padded with blanks followed by 000C50CC. On a Linux or UNIX IBM
data server client, this value can be correlated with the ps command,
which returns process status information about active processes to
standard output.

ACCRDB
The ACCRDB command contains the RDB_NAME in the RDBNAM object,
which is code point X'2110'. The ACCRDB command follows the EXCSAT
command in the first buffer. Within the ACCRDB command, the values
X'E2E3D3C5C3F1' are translated to STLEC1 once the X'2110' is removed.
This corresponds to the target database name field in the DCS directory.

The accounting string has code point X'2104'.

The code set configured for the DB2 Connect workstation is shown by
locating the CCSID object CCSIDSBC (CCSID for single-byte characters)
with code point X'119C' in the ACCRDB command. In this example, the
CCSIDSBC is X'0333', which is 819.

The additional objects CCSIDDBC (CCSID for double-byte characters) and
CCSIDMBC (CCSID for mixed-byte characters), with code points X'119D'
and X'119E' respectively, are also present in the ACCRDB command. In this
example, the CCSIDDBC is X'04B0', which is 1200, and the CCSIDMBC is
X'0333', which is 819, respectively.

EXCSATRD and ACCRDBRM
CCSID values are also returned from the IBM mainframe database server
in the Access RDB Reply Message (ACCRDBRM) within the second buffer.
This buffer contains the EXCSATRD followed by the ACCRDBRM. The
example output file contains two CCSID values for the IBM mainframe
database server system. The values are 1208 (for both single-byte and
mixed byte characters) and 1200 (for double-byte characters).

If DB2 Connect does not recognize the code page coming back from the
IBM mainframe database server, SQLCODE -332 will be returned to the
user with the source and target code pages. If the IBM mainframe database
server doesn't recognize the code set sent from DB2 Connect, it will return

Chapter 5. Tools for troubleshooting 451

VALNSPRM (Parameter Value Not Supported, with DDM code point
X'1252'), which gets translated into SQLCODE -332 for the user.

The ACCRDBRM also contains the parameter PRDID (Product-specific
Identifier, with code point X'112E'). The value is X'C4E2D5F0F8F0F1F5'
which is DSN08015 in EBCDIC. According to standards, DSN is DB2 for
z/OS®. The version number is also indicated. ARI is DB2 Server for VSE &
VM, SQL is DB2 database or DB2 Connect, and QSQ is DB2 for IBM i.

Trace output file samples

The following figures show sample output illustrating some DRDA data streams
exchanged between DB2 Connect workstations and a host or System i® database
server. From the user's viewpoint, a CONNECT TO database command has been
issued using the command line processor (CLP).

Figure 35 on page 453 uses DB2 Connect Enterprise Edition Version 9.1 and DB2
for z/OS Version 8 over a TCP/IP connection.

452 Troubleshooting and Tuning Database Performance

1 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 0 probe 100
bytes 16

Data1 (PD_TYPE_UINT,8) unsigned integer:
233

2 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 19532 probe 1177
bytes 250

SEND BUFFER(AR):

EXCSAT RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 00C3D041000100BD 1041007F115E8482 ...A.....A...^.. .C}........".;db
0010 F282974040404040 4040404040404040 ...@@@@@@@@@@@@@ 2bp
0020 4040F0F0F0C3F5F0 C3C3F0F0F0000000 @@.............. 000C50CC000...
0030 0000000000000000 0000000000000000
0040 0000000000000000 000000000060F0F0`..-00
0050 F0F1A2A495404040 4040404040404040@@@@@@@@@@@ 01sun
0060 4040404040404040 4040404040404040 @@@@@@@@@@@@@@@@
0070 C4C5C3E5F8404040 F0A2A49540404040@@@....@@@@ DECV8 0sun
0080 4040404040404040 4000181404140300 @@@@@@@@@.......
0090 0724070008147400 05240F0008144000 .$....t..$....@.
00A0 08000E1147D8C4C2 F261C1C9E7F6F400G....a......QDB2/AIX64.
00B0 08116D9481A29200 0C115AE2D8D3F0F9 ..m.......Z..... .._mask...]SQL09
00C0 F0F0F0 ... 000

ACCSEC RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0026D00100020020 106D000611A20003 .&..... .m...... ..}......_...s..
0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@STLEC1
0020 404040404040 @@@@@@

3 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110546200 probe 100
bytes 12

Data1 (PD_TYPE_UINT,4) unsigned integer:
105

4 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110549755 probe 1178
bytes 122

RECEIVE BUFFER(AR):

EXCSATRD OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0059D04300010053 1443000F115EE5F8 .Y.C...S.C...^.. ..}..........;V8
0010 F1C14BE2E3D3C5C3 F100181404140300 ..K............. 1A.STLEC1.......
0020 0724070007147400 05240F0007144000 .$....t..$....@.
0030 0700081147D8C4C2 F20014116DE2E3D3G.......m...QDB2..._STL
0040 C5C3F14040404040 4040404040000C11 ...@@@@@@@@@@... EC1 ...
0050 5AC4E2D5F0F8F0F1 F5 Z........]DSN08015

ACCSECRD OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0010D0030002000A 14AC000611A20003}..........s..

5 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110656806 probe 100
bytes 16

Data1 (PD_TYPE_UINT,8) unsigned integer:
233

Figure 35. Example of Trace Output (TCP/IP connection)

Chapter 5. Tools for troubleshooting 453

6 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110659711 probe 1177
bytes 250

SEND BUFFER(AR):

SECCHK RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 003CD04100010036 106E000611A20003 .<.A...6.n...... ..}......>...s..
0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@STLEC1
0020 404040404040000C 11A1D9858799F485 @@@@@@..........Regr4e
0030 A599000A11A09585 A6A39695 vr....newton

ACCRDB RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 00ADD001000200A7 20010006210F2407!.$. ..}....x........
0010 00172135C7F9F1C1 F0C4F3C14BD7C1F8 ..!5........K...G91A0D3A.PA8
0020 F806030221064600 162110E2E3D3C5C3!.F..!...... 8..........STLEC
0030 F140404040404040 4040404040000C11 .@@@@@@@@@@@@... 1 ...
0040 2EE2D8D3F0F9F0F0 F0000D002FD8E3C4/... .SQL09000....QTD
0050 E2D8D3C1E2C30016 00350006119C03335.....3 SQLASC..........
0060 0006119D04B00006 119E0333003C21043.

7 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 259908001 probe 100
bytes 12

Data1 (PD_TYPE_UINT,4) unsigned integer:
176

8 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)
pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 259911584 probe 1178
bytes 193

RECEIVE BUFFER(AR):

SECCHKRM RPYDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0015D0420001000F 1219000611490000 ...B.........I.. ..}.............
0010 000511A400u.

ACCRDBRM RPYDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 009BD00200020095 2201000611490000"....I.. ..}....n........
0010 000D002FD8E3C4E2 D8D3F3F7F0000C11 .../............QTDSQL370...
0020 2EC4E2D5F0F8F0F1 F5001600350006115... .DSN08015.......
0030 9C04B80006119E04 B80006119D04B000
0040 0C11A0D5C5E6E3D6 D540400006212524@@..!%$...NEWTON
0050 34001E244E000624 4C00010014244D00 4..$N..$L....$M.+...<.....(.
0060 06244FFFFF000A11 E8091E768301BE00 .$O........v.... ..!.....Y...c...
0070 2221030000000005 68B3B8C7F9F1C1F0 "!......h.......G91A0
0080 C4F3C1D7C1F8F840 4040400603022106@@@@...!. D3APA88
0090 46000A11E8091E76 831389 F......v...Y...c.i

9 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 364420503 probe 100
bytes 16

Data1 (PD_TYPE_UINT,8) unsigned integer:
10

Figure 36. Example of Trace Output (TCP/IP connection) continued

454 Troubleshooting and Tuning Database Performance

10 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)
pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 364440751 probe 1177
bytes 27

SEND BUFFER(AR):

RDBCMM RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 000AD00100010004 200E}.......

11 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 475009631 probe 100
bytes 12

Data1 (PD_TYPE_UINT,4) unsigned integer:
54

12 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)
pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 475014579 probe 1178
bytes 71

RECEIVE BUFFER(AR):

ENDUOWRM RPYDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 002BD05200010025 220C000611490004 .+.R...%"....I.. ..}.............
0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@STLEC1
0020 4040404040400005 211501 @@@@@@..!..

SQLCARD OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 000BD00300010005 2408FF$.. ..}........

13 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 721710319 probe 100
bytes 16

Data1 (PD_TYPE_UINT,8) unsigned integer:
126

14 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 721727276 probe 1177
bytes 143

SEND BUFFER(AR):

EXCSQLIMM RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0053D0510001004D 200A00442113E2E3 .S.Q...M ..D!... ..}....(......ST
0010 D3C5C3F140404040 4040404040404040@@@@@@@@@@@@ LEC1
0020 D5E4D3D3C9C44040 4040404040404040@@@@@@@@@@ NULLID
0030 4040E2D8D3C3F2C6 F0C1404040404040 @@........@@@@@@ SQLC2F0A
0040 4040404041414141 41484C5600CB0005 @@@@AAAAAHLV....<.....
0050 2105F1 !.. ..1

SQLSTT OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 002BD00300010025 2414000000001B64 .+.....%$......d ..}.............
0010 656C657465206672 6F6D206464637375 elete from ddcsu .%......?_......
0020 73312E6D79746162 6C65FF s1.mytable. ..._`./.%..

15 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 832901261 probe 100
bytes 12

Data1 (PD_TYPE_UINT,4) unsigned integer:
102

Figure 37. Example of Trace Output (TCP/IP connection) continued

Chapter 5. Tools for troubleshooting 455

Subsequent buffer information for DRDA traces

You can analyze subsequent send and receive buffers for additional information.
The next request contains a commit. The commit command instructs the IBM
mainframe database server management system to commit the current unit of
work. The fourth buffer is received from the IBM mainframe database server
database management system as a result of a commit or rollback. It contains the
End Unit of Work Reply Message (ENDUOWRM), which indicates that the current
unit of work has ended.

16 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 832906528 probe 1178
bytes 119

RECEIVE BUFFER(AR):

SQLCARD OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 0066D00300010060 240800FFFFFF3434 .f.....`$.....44 ..}....-........
0010 3237303444534E58 4F544C2000FFFFFE 2704DSNXOTL+.!.<.....
0020 0C00000000000000 00FFFFFFFF000000
0030 0000000000572020 2057202020202020W W
0040 001053544C454331 2020202020202020 ..STLEC1<...........
0050 2020000F44444353 5553312E4D595441 ..DDCSUS1.MYTA(...
0060 424C450000FF BLE... .<....

17 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 833156953 probe 100
bytes 16

Data1 (PD_TYPE_UINT,8) unsigned integer:
10

18 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 833159843 probe 1177
bytes 27

SEND BUFFER(AR):

RDBRLLBCK RQSDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 000AD00100010004 200F}.......

19 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 943302832 probe 100
bytes 12

Data1 (PD_TYPE_UINT,4) unsigned integer:
54

20 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)
pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 943306288 probe 1178
bytes 71

RECEIVE BUFFER(AR):

ENDUOWRM RPYDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 002BD05200010025 220C000611490004 .+.R...%"....I.. ..}.............
0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@STLEC1
0020 4040404040400005 211502 @@@@@@..!..

SQLCARD OBJDSS (ASCII) (EBCDIC)
0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

0000 000BD00300010005 2408FF$.. ..}........

Figure 38. Example of Trace Output (TCP/IP connection) continued

456 Troubleshooting and Tuning Database Performance

In this example, trace entry 12 contains a null SQLCA, indicated by DDM code
point X'2408' followed by X'FF'. A null SQLCA (X'2408FF') indicates success
(SQLCODE 0).

Figure 35 on page 453 shows an example of a receive buffer containing an error
SQLCA at trace entry 16.

Control Center traces
Before attempting to trace a problem in the Control Center, it is advisable to first
ensure that the same problem does not occur when the equivalent actions are
performed via explicit commands from the DB2 command prompt.

Often when you are performing a task within the Control Center (or one of the
other GUI tools which can be started from the Control Center), you will see a
"Show Command" button, which provides the exact syntax for the command
which the tool will use. If that exact command succeeds from the DB2 command
prompt, but fails when executed within the GUI tool, then it is appropriate to
obtain a Control Center trace.

In order to obtain a trace of a problem which is only reproducible within the
Control Center, start the Control Center as follows:
db2cc -tf filename

This turns on the Control Center Trace and saves the output of the trace to the
specified file. The output file is saved to <DB2 install path>\sqllib\tools on
Windows and to /home/<userid>/sqllib/tools on UNIX and Linux.

Note: When the Control Center has been started with tracing enabled, recreate the
problem using as few steps as possible. Try to avoid clicking on unnecessary or
unrelated items in the tool. Once you have recreated the problem, close the Control
Center (and any other GUI tools which you opened to recreate the problem).

The resulting trace file must be sent to IBM Software Support for analysis.

JDBC trace files

Obtaining traces of applications that use the DB2 JDBC Type 2
Driver for Linux, UNIX and Windows
This task describes how to obtain a trace of an application using the DB2 JDBC
Type 2 Driver for Linux, UNIX, and Windows systems.

This type of trace is applicable for situations where a problem is encountered in:
v a JDBC application which uses the DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows (DB2 JDBC Type 2 Driver)
v DB2 JDBC stored procedures.

Note: There are lots of keywords that can be added to the db2cli.ini file that can
affect application behavior. These keywords can resolve or be the cause of
application problems. There are also some keywords that are not covered in the
CLI documentation. Those are only available from DB2 Support. If you have
keywords in your db2cli.ini file that are not documented, it is likely that they
were recommended by DB2 Support. Internally, the DB2 JDBC Type 2 Driver
makes use of the DB2 CLI driver for database access. For example, the Java
getConnection() method is internally mapped by the DB2 JDBC Type 2 Driver to

Chapter 5. Tools for troubleshooting 457

the DB2 CLI SQLConnect() function. As a result, Java developers might find a DB2
CLI trace to be a useful complement to the DB2 JDBC trace.
1. Create a path for the trace files. It is important to create a path that every user

can write to.
For example, on Windows:

mkdir c:\temp\trace

On Linux and UNIX:
mkdir /tmp/trace
chmod 777 /tmp/trace

2. Update the CLI configuration keywords. There are two methods to accomplish
this:
v Manually edit the db2cli.ini file. The location of the db2cli.ini file might

change based on whether the Microsoft® ODBC Driver Manager is used, the
type of data source names (DSN) used, the type of client or driver being
installed, and whether the registry variable DB2CLIINIPATH is set. For more
information, see the “db2cli.ini initialization file” topic in the Call Level
Interface Guide and Reference, Volume 1.
a. Open up the db2cli.ini file in a plain text editor.
b. Add the following section to the file (if the COMMON section already

exists, just append the variables):
[COMMON]
JDBCTrace=1
JDBCTracePathName=<path>
JDBCTraceFlush=1

where <path> is, for example, C:\temp\trace on Windows, or /tmp/trace
on Linux or UNIX operating systems.

c. Save the file with at least one blank line at the end of the file. (This
prevents some parsing errors.)

v Use UPDATE CLI CFG commands to update the db2cli.ini file. Issue the
following commands:

db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTrace 1
db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTracePathName <path>

where <path> is, for example, C:\temp\trace on Windows, or /tmp/trace on
Linux or UNIX operating systems.

db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTraceFlush 1

When you use the trace facility to diagnose application issues, keep in mind
that it does have an affect on application performance and that it affects all
applications, not only your test application. This is why it is important to
remember to turn it off after the problem has been identified.

3. Issue the following command to verify that the correct keywords are set and
being picked up:

db2 GET CLI CFG FOR SECTION COMMON

4. Restart the application.
The db2cli.ini file is only read when the application starts, therefore, for any
changes to take effect, the application must be restarted.
If tracing a JDBC stored procedure, this means restarting the DB2 instance.

5. Capture the error. Run the application until the error is generated, then
terminate the application. If it is possible, reduce the situation, such that the
only JDBC applications that are running at the time of trace are those related to
the problem recreation. This makes for much clearer trace files.

458 Troubleshooting and Tuning Database Performance

6. Disable the JDBC trace.
Set the JDBCTrace=0 keyword in the [COMMON] section of the db2cli.ini
manually, or issue:

db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 0
db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTrace 0

7. Restart any applications that are running and tracing.
8. Collect the trace files.

The JDBC trace files will be written to the path specified in the
JDBCTracePathName keyword. The filenames generated will all end with a .trc
extension. All files generated in the trace path at the time of the problem
recreation are required.

Obtaining traces of applications that use the DB2 Universal
JDBC Driver
This task will describe how to obtain a trace of an application that uses the DB2
Universal JDBC Driver.

If you have an SQLJ or JDBC application that is using the DB2 Universal JDBC
Driver, a JDBC trace can be enabled in several different ways:
v If you use the DataSource interface to connect to a data source, then use the

DataSource.setTraceLevel() and DataSource.setTraceFile() method to enable
tracing.

v If you use the DriverManager interface to connect to a data source, the easiest
way to enable tracing will be to set the logWriter on DriverManager before
obtaining a connection.
For example:
DriverManager.setLogWriter(new PrintWriter(new FileOutputStream("trace.txt")));

v If you are using the DriverManager interface, you can alternatively specify the
traceFile and traceLevel properties as part of the URL when you load the driver.
For example:
String databaseURL =
"jdbc:db2://hal:50000/sample:traceFile=c:/temp/foobar.txt;" ;

CLI trace files
The CLI trace captures information about applications that access the DB2 CLI
driver. The CLI trace offers very little information about the internal workings of
the DB2 CLI driver.

This type of trace is applicable for situations where a problem is encountered in:
v a CLI application
v an ODBC application (since ODBC applications use the DB2 CLI interface to

access DB2)
v DB2 CLI stored procedures
v JDBC applications and stored procedures

When diagnosing ODBC applications it is often easiest to determine the problem
by using an ODBC trace or DB2 CLI trace. If you are using an ODBC driver
manager, it will likely provide the capability to take an ODBC trace. Consult your
driver manager documentation to determine how to enable ODBC tracing. DB2
CLI traces are DB2-specific and will often contain more information than a generic

Chapter 5. Tools for troubleshooting 459

ODBC trace. Both traces are usually quite similar, listing entry and exit points for
all CLI calls from an application; including any parameters and return codes to
those calls.

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2
Driver) depends on the DB2 CLI driver to access the database. Consequently, Java
developers might also want to enable DB2 CLI tracing for additional information
on how their applications interact with the database through the various software
layers. DB2 JDBC and DB2 CLI trace options (though both set in the db2cli.ini file)
are independent of each other.

Obtaining CLI traces
To turn on a CLI trace you must enable a set of CLI configuration keywords.

Note: There are lots of keywords that can be added to the db2cli.ini file that can
affect application behavior. These keywords can resolve or be the cause of
application problems. There are also some keywords that are not covered in the
CLI documentation. Those are only available from IBM Software Support. If you
have keywords in your db2cli.ini file that are not documented, it is likely that
they were recommended by the IBM Software Support team.

When you use the trace facility to diagnose application issues, keep in mind that it
does have an impact on application performance and that it affects all applications,
not only your test application. This is why it is important to remember to turn it
off after the problem has been identified.

To obtain a CLI trace:
1. Create a path for the trace files.

It is important to create a path that every user can write to. For example, on
Windows operating systems:

mkdir c:\temp\trace

On Linux and UNIX operating systems:
mkdir /tmp/trace
chmod 777 /tmp/trace

2. Update the CLI configuration keywords.
This can be done by either manually editing the db2cli.ini file or using the
UPDATE CLI CFG command.
v To manually edit the db2cli.ini file:

a. Open up the db2cli.ini file in a plain text editor. The location of the
db2cli.ini file might change based on whether the Microsoft ODBC
Driver Manager is used, the type of data source names (DSN) used, the
type of client or driver being installed, and whether the registry variable
DB2CLIINIPATH is set. For more information, see the “db2cli.ini
initialization file” topic in the Call Level Interface Guide and Reference,
Volume 1.

b. Add the following section to the file (or if the COMMON section already
exists, just append the variables):
[COMMON]
Trace=1
TracePathName=path
TraceComm=1
TraceFlush=1
TraceTimeStamp=1

460 Troubleshooting and Tuning Database Performance

where path is, for example, C:\temp\trace on Windows, or /tmp/trace on
Linux and UNIX.

c. Save the file with at least one blank line at the end of the file. (This
prevents some parsing errors.)

v To use the UPDATE CLI CFG command to update the CLI configuration
keywords, issue the following commands:
db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 1
db2 UPDATE CLI CFG FOR SECTION COMMON USING TracePathName path
db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceComm 1
db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceFlush 1
db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceTimeStamp 3

where path is, for example, C:\temp\trace on Windows, or /tmp/trace on
Linux and UNIX.

3. Confirm the db2cli.ini configuration.
Issue the following command to verify that the correct keywords are set and
being picked up:
db2 GET CLI CFG FOR SECTION COMMON

4. Restart the application.
The db2cli.ini file is only read on application start, therefore, for any changes
to take effect, the application must be restarted.
If tracing a CLI stored procedure, this means restarting the DB2 instance.

5. Capture the error.
Run the application until the error is generated, then terminate the application.
If it is possible to reduce the situation, such that only applications related to the
problem recreation are running at the time of the trace, this makes for much
clearer trace analysis.

6. Disable the CLI trace.
Set the Trace keyword to a value of zero in the [COMMON] section of the
db2cli.ini manually, or issue:
db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 0

7. (Optional) Restart any applications that might be running and tracing.

The CLI trace files will be written to the path specified in the TracePathName
keyword. The filenames have a format of ppidttid.cli where pid is the operating
system assigned process ID, and tid is a numeric counter (starting at 0) for each
thread generated by the application process. For example, p1234t1.cli. If you are
working with IBM Software Support to diagnose a problem, they will want to see
all of the files that were generated in the trace path.

Interpreting input and output parameters in CLI trace files
As is the case with any regular function, DB2 CLI functions have input and output
parameters. In a DB2 CLI trace, these input and output parameters can be seen,
providing details about how each application is invoking a particular CLI API. The
input and output parameters for any CLI function, as shown in the CLI trace, can
be compared to the definition of that CLI function in the CLI Reference sections of
the documentation.

Here is a snippet from a CLI trace file:
SQLConnect(hDbc=0:1, szDSN="sample", cbDSN=-3, szUID="",

cbUID=-3, szAuthStr="", cbAuthStr=-3)
---> Time elapsed - +6.960000E-004 seconds

SQLRETURN SQLConnect (

Chapter 5. Tools for troubleshooting 461

SQLHDBC ConnectionHandle, /* hdbc */
SQLCHAR *FAR ServerName, /* szDSN */
SQLSMALLINT NameLength1, /* cbDSN */
SQLCHAR *FAR UserName, /* szUID */
SQLSMALLINT NameLength2, /* cbUID */
SQLCHAR *FAR Authentication, /* szAuthStr */
SQLSMALLINT NameLength3); /* cbAuthStr */

The initial call to the CLI function shows the input parameters and the values
being assigned to them (as appropriate).

When CLI functions return, they show the resultant output parameters, for
example:
SQLAllocStmt(phStmt=1:1)

<--- SQL_SUCCESS Time elapsed - +4.444000E-003 seconds

In this case, the CLI function SQLAllocStmt() is returning an output parameter
phStmt with a value of "1:1" (connection handle 1, statement handle 1).

Analyzing Dynamic SQL in CLI traces
DB2 CLI Traces also show how dynamic SQL is performed by the declaration and
use of parameter markers in SQLPrepare() and SQLBindParameter(). This gives
you the ability to determine at runtime what SQL statements will be performed.

The following trace entry shows the preparation of the SQL statement (a question
mark (?) or a colon followed by a name (:name) denotes a parameter marker):
SQLPrepare(hStmt=1:1, pszSqlStr=

"select * from employee where empno = ?",
cbSqlStr=-3)
---> Time elapsed - +1.648000E-003 seconds

(StmtOut="select * from employee where empno = ?")
SQLPrepare()

<--- SQL_SUCCESS Time elapsed - +5.929000E-003 seconds

The following trace entry shows the binding of the parameter marker as a CHAR
with a maximum length of 7:
SQLBindParameter(hStmt=1:1, iPar=1, fParamType=SQL_PARAM_INPUT,
fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=7, ibScale=0,
rgbValue=&00854f28, cbValueMax=7, pcbValue=&00858534)

---> Time elapsed - +1.348000E-003 seconds
SQLBindParameter()

<--- SQL_SUCCESS Time elapsed - +7.607000E-003 seconds

The dynamic SQL statement is now executed. The rbgValue="000010" shows the
value that was substituted for the parameter marker by the application at run time:
SQLExecute(hStmt=1:1)

---> Time elapsed - +1.317000E-003 seconds
(iPar=1, fCType=SQL_C_CHAR, rgbValue="000010" - X"303030303130",
pcbValue=6, piIndicatorPtr=6)

sqlccsend(ulBytes - 384)
sqlccsend(Handle - 14437216)
sqlccsend() - rc - 0, time elapsed - +1.915000E-003
sqlccrecv()
sqlccrecv(ulBytes - 1053) - rc - 0, time elapsed - +8.808000E-003

SQLExecute()
<--- SQL_SUCCESS Time elapsed - +2.213300E-002 seconds

462 Troubleshooting and Tuning Database Performance

Interpreting timing information in CLI traces
There are a few ways to gather timing information from a DB2 CLI trace. By
default, a CLI trace captures the time spent in the application since the last CLI
API call was made on a particular thread.

As well as the time spent in DB2, it includes the network time between the client
and server. For example:
SQLAllocStmt(hDbc=0:1, phStmt=&0012ee48)

---> Time elapsed - +3.964187E+000 seconds

(This time value indicates the time spent in the application since last CLI API was
called)
SQLAllocStmt(phStmt=1:1)

<--- SQL_SUCCESS Time elapsed - +4.444000E-003 seconds

(Since the function has completed, this time value indicates the time spent in DB2,
including the network time)

The other way to capture timing information is using the CLI keyword:
TraceTimeStamp. This keyword will generate a timestamp for every invocation and
result of a DB2 CLI API call. The keyword has 4 display options: no timestamp
information, processor ticks and ISO timestamp, processor ticks, or ISO timestamp.

This can be very useful when working with timing related problems such as
CLI0125E - function sequence errors. It can also be helpful when attempting to
determine which event happened first when working with multithreaded
applications.

Interpreting unknown values in CLI traces
It is possible that a DB2 CLI function might return "Unknown value" as a value for
an input parameter in a CLI trace.

This can occur if the DB2 CLI driver is looking for something specific for that
input parameter, yet the application provides a different value. For example, this
can occur if you're following outdated definitions of CLI functions or are using CLI
functions which have been deprecated.

It is also possible that you could see a CLI function call return an "Option value
changed" or a "Keyset Parser Return Code". This is a result of the keyset cursor
displaying a message, such as when the cursor is being downgraded to a static
cursor for some specific reason.

SQLExecDirect(hStmt=1:1, pszSqlStr="select * from org", cbSqlStr=-3)
---> Time elapsed - +5.000000E-002 seconds

(StmtOut="select * from org")
(COMMIT=0)
(StmtOut=" SELECT A.TABSCHEMA,)
(StmtOut=" SELECT A.TABSCHEMA,)
(Keyset Parser Return Code=1100)

SQLExecDirect()
<--- SQL_SUCCESS_WITH_INFO Time elapsed - +1.06E+001 seconds

In the above CLI trace, the keyset parser has indicated a return code of 1100, which
indicates that there is not a unique index or primary key for the table, and
therefore a keyset cursor cannot be created. These return codes are not externalized

Chapter 5. Tools for troubleshooting 463

and thus at this point you must contact IBM Software Support if you want further
information about the meaning of the return code.

Calling SQLError or SQLDiagRec will indicate that the cursor type was changed.
The application should then query the cursor type and concurrency to determine
which attribute was changed.

Interpreting multi-threaded CLI trace output
CLI traces can trace multi-threaded applications. The best way to trace a
multithreaded application is by using the CLI keyword: TracePathName. This will
produce trace files named p<pid>t<tid>.cli where <tid> is the actual thread id of
the application.

If you must know what the actual thread id is, this information can be seen in the
CLI Trace Header:
[Process: 3500, Thread: 728]
[Date & Time: 02/17/2006 04:28:02.238015]
[Product: QDB2/NT DB2 v9.1.0.190]
...

You can also trace a multithreaded application to one file, using the CLI keyword:
TraceFileName. This method will generate one file of your choice, but can be
cumbersome to read, as certain API's in one thread can be executed at the same
time as another API in another thread, which could potentially cause some
confusion when reviewing the trace.

It is usually recommended to turn TraceTimeStamp on so that you can determine
the true sequence of events by looking at the time that a certain API was executed.
This can be very useful for investigating problems where one thread caused a
problem in another thread (for example, CLI0125E - Function sequence error).

Platform-specific tools

Diagnostic tools (Windows)
Three useful diagnostic tools on Windows systems are described.

The following diagnostic tools are available for Windows operating systems:

Event viewer, performance monitor, and other administrative tools
The Administrative Tools folder provides a variety of diagnostic
information, including access to the event log and access to performance
information.

Task Manager
The Task Manager shows all of the processes running on the Windows
server, along with details about memory usage. Use this tool to find out
which DB2 processes are running, and to diagnose performance problems.
Using this tool, you can determine memory usage, memory limits, swapper
space used, and memory leakage for a process.

To open the Task Manager, press Ctrl + Alt + Delete, and click Task
Manager from the available options.

Dr. Watson
The Dr. Watson utility is invoked in the event of a General Protection Fault

464 Troubleshooting and Tuning Database Performance

(GPF). It logs data that might help in diagnosing a problem, and saves this
information to a file. You must start this utility by typing drwatson on the
command line.

Diagnostic tools (Linux and UNIX)
This section describes some essential commands for troubleshooting and
performance monitoring on Linux and UNIX platforms.

For details on any one of these commands, precede it with "man" on the command
line. Use these commands to gather and process data that can help identify the
cause of a problem you are having with your system. Once the data is collected, it
can be examined by someone who is familiar with the problem, or provided to
IBM Software Support if requested.

Troubleshooting commands (AIX)

The following AIX system commands are useful for DB2 troubleshooting:

errpt The errpt command reports system errors such as hardware errors and
network failures.
v For an overview that shows one line per error, use errpt
v For a more detailed view that shows one page for each error, use errpt

-a
v For errors with an error number of "1581762B", use errpt -a -j 1581762B
v To find out if you ran out of paging space in the past, use errpt | grep

SYSVMM
v To find out if there are token ring card or disk problems, check the errpt

output for the phrases "disk" and "tr0"

lsps The lsps -a command monitors and displays how paging space is being
used.

lsattr This command displays various operating system parameters. For example,
use the following command to find out the amount of real memory on the
database partition:
lsattr -l sys0 -E

xmperf
For AIX systems using Motif, this command starts a graphical monitor that
collects and displays system-related performance data. The monitor
displays three-dimensional diagrams for each database partition in a single
window, and is good for high-level monitoring. However, if activity is low,
the output from this monitor is of limited value.

spmon
If you are using system partitioning as part of the Parallel System Support
Program (PSSP), you might need to check if the SP Switch is running on all
workstations. To view the status of all database partitions, use one of the
following commands from the control workstation:
v spmon -d for ASCII output
v spmon -g for a graphical user interface

Alternatively, use the command netstat -i from a database partition
workstation to see if the switch is down. If the switch is down, there is an
asterisk (*) beside the database partition name. For example:
css0* 65520 <Link>0.0.0.0.0.0

Chapter 5. Tools for troubleshooting 465

The asterisk does not display if the switch is up.

Troubleshooting commands (Linux and UNIX)

The following system commands are for all Linux and UNIX systems, including
AIX, unless otherwise noted.

df The df command lets you see if file systems are full.
v To see how much free space is in all file systems (including mounted

ones), use df
v To see how much free space is in all file systems with names containing

"dev", use df | grep dev
v To see how much free space is in your home file system, use df /home
v To see how much free space is in the file system "tmp", use df /tmp
v To see if there is enough free space on the machine, check the output

from the following commands: df /usr , df /var , df /tmp , and df
/home

truss This command is useful for tracing system calls in one or more processes.

pstack Available for Solaris 2.5.1 or later, the /usr/proc/bin/pstack command
displays stack traceback information. The /usr/proc/bin directory contains
other tools for debugging processes that seem to be suspended.

Performance Monitoring Tools

The following tools are available for monitoring the performance of your system.

vmstat
This command is useful for determining if something is suspended or just
taking a long time. You can monitor the paging rate, found under the page
in (pi) and page out (po) columns. Other important columns are the
amount of allocated virtual storage (avm) and free virtual storage (fre).

iostat This command is useful for monitoring I/O activities. You can use the read
and write rate to estimate the amount of time required for certain SQL
operations (if they are the only activity on the system).

netstat
This command lets you know the network traffic on each database
partition, and the number of error packets encountered. It is useful for
isolating network problems.

system file
Available for Solaris operating system, the /etc/system file contains
definitions for kernel configuration limits such as the maximum number of
users allowed on the system at a time, the maximum number of processes
per user, and the interprocess communication (IPC) limits on size and
number of resources. These limits are important because they affect DB2
performance on a Solaris operating system machine.

466 Troubleshooting and Tuning Database Performance

Chapter 6. Troubleshooting DB2 database

In general, the troubleshooting process requires that you isolate and identify a
problem, then seek a resolution. This section will provide troubleshooting
information related to specific features of DB2 products.

As common problems are identified, the findings will be added to this section in
the form of checklists. If the checklist does not lead you to a resolution, you can
collect additional diagnostic data and analyze it yourself, or submit the data to
IBM Software Support for analysis.

The following questions direct you to appropriate troubleshooting tasks:
1. Have you applied all known fix packs? If not, consider “Applying fix packs” in

Installing DB2 Servers.
2. Does the problem occur when you are:
v Installing DB2 database servers or clients? If so, see the topic “Collect data

for installation problems” elsewhere in this book.
v Creating, dropping, updating or upgrading an instance or the DB2

Administration Server (DAS)? If so, see the topic “Collect data for DAS and
instance management problems” elsewhere in this book.

v Moving data using EXPORT, IMPORT, LOAD or db2move commands? If so,
see the topic “Collect data for data movement problems” elsewhere in this
book.

If your problem does not fall into one of these categories, basic diagnostic data
might still be required if you are contacting IBM Software Support. You must .

Collecting data for DB2
Sometimes you cannot solve a problem simply by troubleshooting the symptoms.
In such cases, you must collect diagnostic data. The diagnostic data that you must
collect and the sources from which you collect that data are dependent on the type
of problem that you are investigating. These steps represent how to collect the base
set of information that you typically must provide when you submit a problem to
IBM Software Support.

To obtain the most complete output, the db2support utility should be invoked by
the instance owner.

To collect the base set of diagnostic information in a compressed file archive, enter
the db2support command:
db2support output_directory -s -d database_name -c

Using -s will give system details about the hardware used and the operating
system. Using -d will give details about the specified database. Using -c allows for
an attempt to connect to the specified database.
The output is conveniently collected and stored in a compressed ZIP archive,
db2support.zip, so that it can be transferred and extracted easily on any system.

For specific symptoms, or for problems in a specific part of the product, you might
have to collect additional data. Refer to the problem-specific "Collecting data"
documents.

© Copyright IBM Corp. 2006, 2010 467

You can do any of the following tasks next:
v Analyze the data
v Submit the data to IBM Software Support

Collecting data for data movement problems
If you are experiencing problems while performing data movement commands and
you cannot determine the cause of the problem, collect diagnostic data that either
you or IBM Software Support can use to diagnose and resolve the problem.

Follow the data collection instructions, appropriate for the circumstance you are
experiencing, from the following list:
v To collect data for problems related to the db2move command, go to the

directory where you issued the command. Locate the following file(s),
depending on the action you specified in the command:
– For the COPY action, look for files called COPY.timestamp.ERR and

COPYSCHEMA.timestamp.MSG. If you also specified either LOAD_ONLY or
DDL_AND_LOAD mode, look for a file called LOADTABLE.timestamp.MSG as
well.

– For the EXPORT action, look for a file called EXPORT.out.
– For the IMPORT action, look for a file called IMPORT.out.
– For the LOAD action, look for a file called LOAD.out.

v To collect data for problems related to EXPORT, IMPORT, or LOAD commands,
determine whether your command included the MESSAGES parameter. If it did,
collect the output file. These utilities use the current directory and the default
drive as the destination if you do not specify otherwise.

v To collect data for problems related to a REDISTRIBUTE command, look for a
file called "databasename.database_partition_groupname. timestamp" on Linux
and UNIX and “databasename. database_partition_groupname.date.time" on
Windows. It is located in $HOME/sqllib/db2dump directory or
$DB2PATH\sqllib\redist respectively, where $HOME is the home directory of the
instance owner.

Collecting data for DAS and instance management problems
If you are experiencing problems while performing DB2 Administration Server
(DAS) or instance management and you cannot determine the cause of the
problem, collect diagnostic data that either you or IBM Software Support can use
to diagnose and resolve the problem.

These steps are only for situations where you can recreate the problem and you are
using DB2 on Linux or UNIX.

To collect diagnostic data for DAS or instance management problems:
1. Repeat the failing command with tracing or debug mode enabled. Example

commands:
db2setup -t trace.out
dascrt -u DASUSER -d
dasdrop -d
dasmigr -d
dasupdt -d
db2icrt -d INSTNAME
db2idrop INSTNAME -d
db2iupgrade -d INSTNAME
db2iupdt -d INSTNAME

468 Troubleshooting and Tuning Database Performance

2. Locate the diagnostic files. More than one file might be present, so compare the
timestamps to ensure that you are obtaining all of the appropriate files.
The output will be found in the /tmp directory by default.
Example file names are: dascrt.log, dasdrop.log , dasupdt.log ,
db2icrt.log.PID, db2idrop.log.PID, db2iupgrade.log.PID, and
db2iupdt.log.PID, where PID is the process ID.

3. Provide the diagnostic file(s) to IBM Software Support.

If the problem is that the db2start or START DATABASE MANAGER command is
failing, look for a file named db2start.timestamp.log in the insthome/sqllib/log
directory, where insthome is the home directory for the instance owner. Likewise if
the problem is that the db2stop or STOP DATABASE MANAGER command is
failing, look for a file named db2stop.timestamp.log. These files will only be found
if the database manager did not respond to the command within the amount of
time specified in the start_stop_time database manager configuration parameter.

Analyzing data for DB2
After you collect data, you must determine how that data can help you to resolve
your particular problem. The type of analysis depends on the type of problem that
you are investigating and the data that you have collected. These steps represent
how to start your investigation of any basic DB2 diagnostic data.

To analyze diagnostic data, take the following actions:
v Have a clear understanding of how the various pieces of data relate to each

other. For example, if the data spans more than one system, keep your data well
organized so that you know which pieces of data come from which sources.

v Confirm that each piece of diagnostic data is relevant to the timing of the
problem by checking timestamps. Note that data from different sources can have
different timestamp formats; be sure to understand the sequence of the different
elements in each timestamp format so that you can tell when the different events
occurred.

v Determine which data sources are most likely to contain information about the
problem, and start your analysis there. For example, if the problem is related to
installation, start your analysis with the installation log files (if any), rather than
starting with the general product or operating system log files.

v The specific method of analysis is unique to each data source, but one tip that is
applicable to most traces and log files is to start by identifying the point in the
data where the problem occurs. After you identify that point, you can work
backward in time through the data to unravel the root cause of the problem.

v If you are investigating a problem for which you have comparative data from an
environment that is working and one that is not, start by comparing the
operating system and product configuration details for each environment.

Diagnosing and resolving locking problems
To resolve a locking problem, you need to start by diagnosing the type of lock
event causing the SQL query performance slowdown, or query completion failure,
and the SQL statement or statements involved. The steps to help in diagnosing the
type of locking problem and the steps that can then be taken to help resolve the
locking issue are provided here.

Chapter 6. Troubleshooting DB2 database 469

Introduction

A locking problem is the proper diagnosis if you are experiencing a failure of
applications to complete their tasks or a slow down in the performance of SQL
queries due to locks. Therefore, the ideal objective is not to have any lock timeouts
or deadlocks on a database system, both of which result in applications failing to
complete their tasks.

Lock waits are normal expected events, but if the time spent waiting for a lock
becomes large, then lock waits can slow down both SQL query performance and
completion of an application. Excessive lock wait durations have a risk of
becoming lock timeouts which result in the application not completing its tasks.

Lock escalations are a consideration as a locking problem when they contribute to
causing lock timeouts. Ideally, the objective is not to have any lock escalations, but
a small number can be acceptable if adverse effects are not occurring.

It is suggested that you monitor lock wait, lock timeout, and deadlock locking
events at all times; typically at the workload level for lock waits, and at the
database level for lock timeouts and deadlocks.

The diagnosis of the type of locking problem that is occurring and its resolution
begins with the collection of information and looking for diagnostic indicators. The
following sections help to guide you through this process.

Collect information

In general, to be able to objectively assess that your system is demonstrating
abnormal behavior which can include processing delays and poor performance,
you must have information that describes the typical behavior (baseline) of your
system. A comparison can then be made between your observations of suspected
abnormal behavior and the baseline. Collecting baseline data, by scheduling
periodic operational monitoring tasks, is a key component of the troubleshooting
process. For more detailed information about establishing the baseline operation of
your system, see: “Operational monitoring of system performance” on page 11.

To confirm what type of locking problem is the reason for your SQL query
performance slowdown or query completion failure, it is necessary to collect
information that would help to identify what type of lock event is involved, which
application is requesting or holding this lock, what was the application doing
during this event, and the SQL statement or statements that are involved in being
noticeably slow.

The creation of a locking event monitor, use of a table function, or use of the
db2pd command can collect this type of information. The information gathered by
the locking event monitor can be categorized into three main categories:
v Information about the lock in question
v Information about the application requesting this lock and its current activities.

In the case of a deadlock, this is information about the statement referred to as
the victim.

v Information about the application owning the lock and its current activities. In
the case of a deadlock, this is information about the statement referred to as the
participant.

470 Troubleshooting and Tuning Database Performance

For instructions about how to monitor lock wait, lock timeout, and deadlock
locking events, see: “Monitoring locking events” in the Database Monitoring Guide
and Reference.

Look for diagnostic indicators

The locking event monitor, a table function, or running the db2pd command can
collect information that can help isolate the nature of a locking problem.
Specifically, the following topics contain diagnostically indicative information to
help you to diagnose and confirm the particular type of locking problem you are
experiencing.
v If you are experiencing long wait times and no lock timeouts, then you likely

have a lock wait problem. To confirm: Diagnosing a lock wait problem
v If you are experiencing an increased number of deadlocks than the baseline

number, then you likely have a deadlock problem. To confirm: Diagnosing a
deadlock problem

v If you are experiencing an increased number of lock timeouts and the
locktimeout database configuration parameter is set to a nonzero time value,
then you likely have a lock timeout problem. To confirm (also consider lock wait
problem): Diagnosing a lock timeout problem

v If you are experiencing a higher than typical number of lock waits and the
locking event monitor indicates that lock escalations are occurring (Yes), then
you likely have a lock escalation problem. To confirm: Diagnosing a lock
escalation problem

Diagnosing a lock wait problem
A lock wait occurs when a transaction tries to obtain a lock on a resource that is
already held by another transaction. When the duration of the lock wait time is
extended, this results in a slow down of SQL query execution. You likely have a
lock wait problem if you are experiencing long or unexpected lock wait times and
no lock timeouts.

In general, to be able to objectively assess that your system is demonstrating
abnormal behavior which can include processing delays and poor performance,
you must have information that describes the typical behavior (baseline) of your
system. A comparison can then be made between your observations of suspected
abnormal behavior and the baseline. Collecting baseline data, by scheduling
periodic operational monitoring tasks, is a key component of the troubleshooting
process. For more detailed information about establishing the baseline operation of
your system, see: “Operational monitoring of system performance” on page 11.

For instructions about how to monitor lock wait locking events, see: “Monitoring
locking events” in Database Monitoring Guide and Reference.

Diagnosis
A lock wait occurs when one transaction (composed of one or more SQL
statements) tries to acquire a lock whose mode conflicts with a lock held
by another transaction. Excessive lock wait time often translates into poor
response time, so it is important to monitor. The amount of lock wait time
is best normalized to one thousand transactions because lock wait time on
a single transaction is typically quite low and a normalized measurement is
easier to handle.

Chapter 6. Troubleshooting DB2 database 471

There are different qualities of lock wait that must be taken into
consideration when attempting to confirm diagnosis of each of them. The
following is a list of the three different qualities of lock wait and how best
to diagnose them:
v Long individual lock wait

– Check for peak lock wait time from service class and workload. Set
up the locking event monitor on workload to obtain that value.

v Long lock wait time but short individual lock waits
– Typically a result of a lock convoy. Use the db2pd -locks wait

command to detect wait chains.
v Types of lock being waited on

– Checking this might help determine the problem. Find the agent that
is waiting on the lock to get information about the lock type. Use the
lock type information to determine if something obvious is occurring.
For example, a package lock might indicate a BIND/REBIND
command or DDL colliding with a user of that package; an internal c
(catalog cache) lock might indicate a DDL colliding with a statement
compilation.

Indicative signs
Look for the following indicative signs of lock waits:
v The number of lock waits is increasing (increasing lock_waits

monitor element value)
v A high percentage of active agents waiting on locks (for

example, 20%, or more, of the total active agents). For
information about how to obtain this information, see the next
section, “What to monitor”.

v An increasing value of lock wait time (lock_wait_time monitor
element) captured at database or workload level

What to monitor
Unlike many other types of DB2 monitor data, locking information
is very transient. Apart from lock_wait_time, which is a running
total, most other lock information goes away when the locks
themselves are released. Thus, lock and lock wait event data are
most valuable if collected periodically over a period of time, so
that the evolving picture can be better understood.

To collect information about active agents waiting on locks, use the
WLM_GET_SERVICE_CLASS_AGENTS_V97 table function. Agents
waiting for locks are indicated by agents with the following
attribute-value pairs:
v EVENT_OBJECT = LOCK
v EVENT_TYPE = ACQUIRE

You can also use application snapshot, the lock administrative
views, or the lock wait option of the db2pd -wlocks command to
obtain information about active agents waiting on locks.

These are the key indicator monitoring elements:
v lock_waits value is increasing
v long lock_wait_time value

472 Troubleshooting and Tuning Database Performance

If you have observed one or more of the indicative signs listed here, then
you are likely experiencing a problem with lock waits. Follow the link in
the “What to do next” section to resolve this issue.

After having diagnosed that lock waits are likely causing the problem you are
experiencing, take steps to resolve the issue: “Resolving lock wait problems”

Resolving lock wait problems
After diagnosing a lock wait problem, the next step is to attempt to resolve the
issue resulting from an application having to wait too long for a lock. Guidelines
are provided here to help you resolve lock wait problems and assist you in
preventing such incidents from occurring in future.

Confirm that you are experiencing a lock wait problem by taking the necessary
diagnostic steps for locking problems outlined in “Diagnosing and resolving
locking problems” on page 469.

The guidelines provided here can help you to resolve the lock wait problem you
are experiencing and help you to prevent such future incidents.

Use the following steps to diagnose the cause of the unacceptable lock wait
problem and to apply a remedy:
1. Obtain information from the administration notification log about all tables

where agents are spending long periods of time waiting for locks.
2. Use the information in the administration notification log to decide how to

resolve the lock wait problem. There are a number of guidelines that help to
reduce lock contention and lock wait time. Consider the following options:
v If possible, avoid very long transactions and WITH HOLD cursors. The

longer locks are held, the more chance that they cause contention with other
applications. This is only an issue if you are using a high isolation level.

v It is best practice to commit the following actions as soon as possible:
– Write actions such as delete, insert, and update
– Data definition language (DDL) statements, for example ALTER, CREATE,

and DROP statements
– BIND and REBIND commands

v After issuing ALTER or DROP DDL statements, run the
SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate any
data objects and the db2rbind command to rebind any packages.

v Avoid fetching result sets that are larger than necessary, especially under the
repeatable read (RR) isolation level. The more that rows are touched, the
more that locks are held, and the greater the opportunity to run into a lock
that is held by someone else. In practical terms, this often means pushing
down row selection criteria into a WHERE clause of the SELECT statement,
rather than bringing back more rows and filtering them at the application.
For example:
exec sql declare curs for

select c1,c2 from t
where c1 not null;

exec sql open curs;
do {

exec sql fetch curs
into :c1, :c2;

} while(P(c1) != someVar);

Chapter 6. Troubleshooting DB2 database 473

==>

exec sql declare curs for
select c1,c2 from t
where c1 not null
and myUdfP(c1) = :someVar;

exec sql open curs;
exec sql fetch curs

into :c1, :c2;

v Avoid using higher isolation levels than necessary. Repeatable read might be
necessary to preserve result set integrity in your application; however, it does
incur extra cost in terms of locks held and potential lock conflicts.

v If appropriate for the business logic in the application, consider modifying
locking behavior through the DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED, and DB2_SKIPINSERTED registry variables. These
registry variables enable DB2 database manager to delay or avoid taking
locks in some circumstances, thereby reducing contention and potentially
improving throughput.

v Eliminate lock escalations wherever possible.

Rerun the application or applications to ensure that the locking problem has been
eliminated by checking the administration notification log for lock-related entries
or checking the lock wait and lock wait time metrics for the appropriate workload,
connection, service subclass, unit of work, and activity levels.

Diagnosing a deadlock problem
A deadlock is created when two applications lock data that is needed by the other,
resulting in a situation in which neither application can continue executing without
the intervention of the deadlock detector. The deadlock slows down the participant
transaction while it waits for deadlock detection, wastes system resources by
rolling back the victim transaction, and causes extra system work and transaction
log access during the whole process. You likely have a deadlock problem if you are
experiencing an increased number of deadlocks than the baseline number and
transactions are being re-executed.

In general, any observed deadlock is considered abnormal. To be able to objectively
assess that your system is demonstrating abnormal behavior which can include
processing delays and poor performance, you must have information that describes
the typical behavior (baseline) of your system. A comparison can then be made
between your observations of suspected abnormal behavior and the baseline.
Collecting baseline data, by scheduling periodic operational monitoring tasks, is a
key component of the troubleshooting process..

For instructions about how to monitor deadlock locking events, see: “Monitoring
locking events” in Database Monitoring Guide and Reference.

Diagnosis
A deadlock is created when two applications lock data that is needed by
the other, resulting in a situation in which neither application can continue
executing without the intervention of the deadlock detector. The victim
application has to re-execute the transaction from the beginning after the
system automatically rolls back the previous deadlocked transaction.
Monitoring the rate at which this happens helps avoid the case where
many deadlocks drive significant extra load on the system without the
DBA being aware.

474 Troubleshooting and Tuning Database Performance

Indicative signs
Look for the following indicative signs of deadlocks:
v One or more applications are occasionally re-executing

transactions
v Deadlock message entries in the administration notification log
v Increased number of deadlocks displayed for the deadlocks

monitor element
v Increased number of roll backs displayed for the

int_deadlock_rollbacks monitor element
v Increased amount of time an agent spends waiting for log

records to be flushed to disk which is displayed for the
log_disk_wait_time monitor element

What to monitor
The cost of a deadlock varies, and is directly proportional to the
length of the rolled-back transaction. All the same, any deadlock
generally indicates a problem.

There are essentially three approaches to detecting deadlock events:
1. Set a locking event monitor and set the mon_deadlock database

configuration parameter to capture details on all deadlock
events that occur database-wide

2. Monitor the administration notification log for deadlock
messages and basic information that accompanies them

Note: To enable deadlock messages to be written to the
administration notification log file, set the mon_lck_msg_lvl
database manager configuration parameter to a value of 2.

3. Monitor the indicator monitoring elements by way of a table
function

Most users adopt the first approach. By monitoring the key
indicator monitor elements to detect when a deadlock occurs, users
can then obtain detailed information by checking the information
collected by the event monitor.

These are the key indicator monitoring elements:
v deadlocks value is non-zero
v int_deadlock_rollbacks shows increase in number of roll backs

due to deadlock events
v log_disk_wait_time shows increase in amount of time agents

spend waiting for logs to be flushed to disk

If you have observed one or more of the indicative signs listed here, then
you are likely experiencing a problem with deadlocks. Follow the link in
the “What to do next” section to resolve this issue.

After having diagnosed that deadlocks are likely causing the problem you are
experiencing, take steps to resolve the issue: “Resolving deadlock problems”

Resolving deadlock problems
After diagnosing a deadlock problem, the next step is to attempt to resolve the
deadlock issue resulting between two concurrently running applications each of
which have locked a resource the other application needs. The guidelines provided
here can help you to resolve the deadlock problem you are experiencing and help
you to prevent such future incidents.

Chapter 6. Troubleshooting DB2 database 475

Confirm that you are experiencing a deadlock problem by taking the necessary
diagnostic steps for locking problems outlined in “Diagnosing and resolving
locking problems” on page 469.

The guidelines provided here can help you to resolve the deadlock problem you
are experiencing and help you to prevent such future incidents.

Use the following steps to diagnose the cause of the unacceptable deadlock
problem and to apply a remedy:
1. Obtain information from the lock event monitor or administration notification

log about all tables where agents are experiencing deadlocks.
2. Use the information in the administration notification log to decide how to

resolve the deadlock problem. There are a number of guidelines that help to
reduce lock contention and lock wait time. Consider the following options:
v Each application connection should process its own set of rows to avoid lock

waits.
v Deadlock frequency can sometimes be reduced by ensuring that all

applications access their common data in the same order – meaning, for
example, that they access (and therefore lock) rows in Table A, followed by
Table B, followed by Table C, and so on. If two applications take
incompatible locks on the same objects in different order, they run a much
larger risk of deadlocking.

v A lock timeout is not much better than a deadlock, because both cause a
transaction to be rolled back, but if you must minimize the number of
deadlocks, you can do it by ensuring that a lock timeout will usually occur
before a potential related deadlock can be detected. To do this, set the value
of the locktimeout database configuration parameter (units of seconds) to be
much lower than the value of the dlchktime database configuration
parameter (units of milliseconds). Otherwise, if locktimeout is longer than
the dlchktime interval, the deadlock detector could wake up just after the
deadlock situation began, and detect the deadlock before the lock timeout
occurs.

v Avoid concurrent DDL operations if possible. For example, DROP TABLE
statements can result in a large number of catalog updates as rows might
have to be deleted for the table indexes, primary keys, check constraints, and
so on, in addition to the table itself. If other DDL operations are dropping or
creating objects, there can be lock conflicts and even occasional deadlocks.

v It is best practice to commit the following actions as soon as possible:
– Write actions such as delete, insert, and update
– Data definition language (DDL) statements, such as ALTER, CREATE, and

DROP
– BIND and REBIND commands

3. The deadlock detector is unable to know about and resolve the following
situation, so your application design must guard against this. An application,
particularly a multithreaded one, can have a deadlock involving a DB2 lock
wait and a wait for a non-DB2 resource such as a semaphore. For example,
connection A can be waiting for a lock held by connection B, and B can be
waiting for a semaphore held by A.

Rerun the application or applications to ensure that the locking problem has been
eliminated by checking the administration notification log for lock-related entries.

476 Troubleshooting and Tuning Database Performance

Diagnosing a lock timeout problem
A lock timeout occurs when a transaction, waiting for a resource lock, waits long
enough to have surpassed the wait time value specified by the locktimeout
database configuration parameter. This consumes time which causes a slow down
in SQL query performance. You likely have a lock timeout problem if you are
experiencing an increased number of lock timeouts and the locktimeout database
configuration parameter is set to a nonzero time value.

In general, to be able to objectively assess that your system is demonstrating
abnormal behavior which can include processing delays and poor performance,
you must have information that describes the typical behavior (baseline) of your
system. A comparison can then be made between your observations of suspected
abnormal behavior and the baseline. Collecting baseline data, by scheduling
periodic operational monitoring tasks, is a key component of the troubleshooting
process. .

For instructions about how to monitor lock timeout locking events, see:
“Monitoring locking events” in Database Monitoring Guide and Reference.

Diagnosis
Sometimes, lock wait situations lead to lock timeouts that cause
transactions to be rolled back. The period of time until a lock wait leads to
a lock timeout is specified by the database configuration parameter
locktimeout. Lock timeouts, in excessive numbers, can be as disruptive to
a system as deadlocks. Although deadlocks are comparatively rare in most
production systems, lock timeouts can be more common. The application
usually has to handle them in a similar way: re-executing the transaction
from the beginning. Monitoring the rate at which this happens helps avoid
the case where many lock timeouts drive significant extra load on the
system without the DBA being aware.

Indicative signs
Look for the following indicative signs of lock timeouts:
v An application is frequently re-executing transactions
v lock_timeouts monitor element value is climbing
v Lock timeout message entries in the administration notification

log

What to monitor
Due to the relatively transient nature of locking events, lock event
data is most valuable if collected periodically over a period of
time, so that the evolving picture can be better understood.

You can monitor the administration notification log for lock
timeout messages.

Note: To enable lock timeout messages to be written to the
administration notification log file, set the mon_lck_msg_lvl
database manager configuration parameter to a value of 3.

Create an event monitor to capture lock timeout data for a
workload or database.

These are the key indicator monitoring elements:
v lock_timeouts value is climbing
v int_rollbacks value is climbing

Chapter 6. Troubleshooting DB2 database 477

If you have observed one or more of the indicative signs listed here, then
you are likely experiencing a problem with lock timeouts. Follow the link
in the “What to do next” section to resolve this issue.

After having diagnosed that lock timeouts are likely causing the problem you are
experiencing, take steps to resolve the issue: “Resolving lock timeout problems”

Resolving lock timeout problems
After diagnosing a lock timeout problem, the next step is to attempt to resolve the
issue resulting from an application or applications waiting for locks until the lock
timeout period has elapsed. The guidelines provided here can help you to resolve
the lock timeout problem you are experiencing and help you to prevent such
future incidents.

Confirm that you are experiencing a lock timeout problem by taking the necessary
diagnostic steps for locking problems outlined in “Diagnosing and resolving
locking problems” on page 469.

The guidelines provided here can help you to resolve the lock timeout problem
you are experiencing and help you to prevent such future incidents.

Use the following steps to diagnose the cause of the unacceptable lock timeout
problem and to apply a remedy:
1. Obtain information from the lock event monitor or administration notification

log about all tables where agents are experiencing lock timeouts.
2. Use the information in the administration notification log to decide how to

resolve the lock timeout problem. There are a number of guidelines that help to
reduce lock contention and lock wait time that can result in a reduced number
of lock timeouts. Consider the following options:
v Tune the locktimeout database configuration parameter to a number of

seconds appropriate for your database environment.
v If possible, avoid very long transactions and WITH HOLD cursors. The

longer locks are held, the more chance that they cause contention with other
applications.

v It is best practice to commit the following actions as soon as possible:
– Write actions such as delete, insert, and update
– Data definition language (DDL) statements, such as ALTER, CREATE, and

DROP
– BIND and REBIND commands

v Avoid fetching result sets that are larger than necessary, especially under the
repeatable read (RR) isolation level. The more that rows are touched, the
more that locks are held, and the greater the opportunity to run into a lock
that is held by someone else. In practical terms, this often means pushing
down row selection criteria into a WHERE clause of the SELECT statement,
rather than bringing back more rows and filtering them at the application.
For example:
exec sql declare curs for

select c1,c2 from t
where c1 not null;

exec sql open curs;
do {

exec sql fetch curs
into :c1, :c2;

} while(P(c1) != someVar);

478 Troubleshooting and Tuning Database Performance

==>

exec sql declare curs for
select c1,c2 from t
where c1 not null
and myUdfP(c1) = :someVar;

exec sql open curs;
exec sql fetch curs

into :c1, :c2;

v Avoid using higher isolation levels than necessary. Repeatable read might be
necessary to preserve result set integrity in your application; however, it does
incur extra cost in terms of locks held and potential lock conflicts.

v If appropriate for the business logic in the application, consider modifying
locking behavior through the DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED, and DB2_SKIPINSERTED registry variables. These
registry variables enable DB2 database manager to delay or avoid taking
locks in some circumstances, thereby reducing contention and potentially
improving throughput.

Rerun the application or applications to ensure that the locking problem has been
eliminated by checking the administration notification log for lock-related entries
or checking the lock wait and lock wait time metrics for the appropriate workload,
connection, service subclass, unit of work, and activity levels.

Diagnosing a lock escalation problem
A lock escalation occurs when, in the interest of reducing memory that is allocated
to locks (lock space), numerous row-level locks are escalated into a single,
memory-saving table lock. This situation, although automated and saves memory
space devoted to locks, can reduce concurrency to an unacceptable level. You likely
have a lock escalation problem if you are experiencing a higher than typical
number of lock waits and the administration notification log entries indicate that
lock escalations are occurring.

In general, to be able to objectively assess that your system is demonstrating
abnormal behavior which can include processing delays and poor performance,
you must have information that describes the typical behavior (baseline) of your
system. A comparison can then be made between your observations of suspected
abnormal behavior and the baseline. Collecting baseline data, by scheduling
periodic operational monitoring tasks, is a key component of the troubleshooting
process. For more detailed information about establishing the baseline operation of
your system, see: “Operational monitoring of system performance” on page 11.

Diagnosis
Lock escalation from multiple row-level locks to a single table-level lock
can occur for the following reasons:
v The total amount of memory consumed by many row-level locks held

against a table exceeds the percentage of total memory allocated for
storing locks

v The lock list runs out of space. The application that caused the lock list
to be exhausted will have its locks forced through the lock escalation
process, even though the application is not the holder of the most locks.

The threshold percentage of total memory allocated for storing locks, that
has to be exceeded by an application for a lock escalation to occur, is
defined by the maxlocks database configuration parameter and the
allocated memory for locks is defined by the locklist database

Chapter 6. Troubleshooting DB2 database 479

configuration parameter. In a well-configured database, lock escalation is
rare. If lock escalation reduces concurrency to an unacceptable level, you
can analyze the problem and decide on the best course of action.

Lock escalation is less of an issue, from the memory space perspective, if
self tuning memory manager (STMM) is managing the memory for locks
that is otherwise only allocated by the locklist database configuration
parameter. STMM will automatically adjust the memory space for locks if
it ever runs out of free memory space.

Indicative signs
Look for the following indicative signs of lock escalations:
v Lock escalation message entries in the administration notification

log

What to monitor
Due to the relatively transient nature of locking events, lock event
data is most valuable if collected periodically over a period of
time, so that the evolving picture can be better understood.

Check this monitoring element for indications that lock escalations
might be a contributing factor in the SQL query performance slow
down:
v lock_escals

If you have observed one or more of the indicative signs listed here, then
you are likely experiencing a problem with lock escalations. Follow the
link in the “What to do next” section to resolve this issue.

After having diagnosed that lock escalations are likely causing the problem you are
experiencing, take steps to resolve the issue: “Resolving lock escalation problems”

Resolving lock escalation problems
After diagnosing a lock escalation problem, the next step is to attempt to resolve
the issue resulting from the database manager automatically escalating locks from
row level to table level. The guidelines provided here can help you to resolve the
lock escalation problem you are experiencing and help you to prevent such future
incidents.

Confirm that you are experiencing a lock escalation problem by taking the
necessary diagnostic steps for locking problems outlined in “Diagnosing and
resolving locking problems” on page 469.

The guidelines provided here can help you to resolve the lock escalation problem
you are experiencing and help you to prevent such future incidents.

The objective is to minimize lock escalations, or eliminate them, if possible. A
combination of good application design and database configuration for lock
handling can minimize or eliminate lock escalations. Lock escalations can lead to
reduced concurrency and potential lock timeouts, so addressing lock escalations is
an important task. The lock_escals monitor element and messages written to the
administration notification log can be used to identify and correct lock escalations.

First, ensure that lock escalation information is being recorded. Set the value of the
mon_lck_msg_lvl database manager configuration parameter to 1. This is the
default setting. When a lock escalation event occurs, information regarding the

480 Troubleshooting and Tuning Database Performance

lock, workload, application, table, and error SQLCODEs are recorded. The query is
also logged if it is a currently executing dynamic SQL statement.

Use the following steps to diagnose the cause of the unacceptable lock escalation
problem and to apply a remedy:
1. Gather information from the administration notification log about all tables

whose locks have been escalated and the applications involved. This log file
includes the following information:
v The number of locks currently held
v The number of locks needed before lock escalation is completed
v The table identifier and table name of each table being escalated
v The number of non-table locks currently held
v The new table-level lock to be acquired as part of the escalation. Usually, an

S or X lock is acquired.
v The internal return code that is associated with the acquisition of the new

table-level lock
2. Use the administration notification log information about the applications

involved in the lock escalations to decide how to resolve the escalation
problems. Consider the following options:
v Check and possibly adjust either the maxlocks or locklist database

configuration parameters, or both. In a partitioned database system, make
this change on all database partitions. The value of the locklist configuration
parameter may be too small for your current workload. If multiple
applications are experiencing lock escalation, this could be an indication that
the lock list size needs to be increased. Growth in workloads or the addition
of new applications could cause the lock list to be too small. If only one
application is experiencing lock escalations, then adjusting the maxlocks
configuration parameter could resolve this. However, you may want to
consider increasing locklist at the same time you increase maxlocks — if one
application is allowed to use more of the lock list, all the other applications
could now exhaust the remaining locks available in the lock list and
experience escalations.

v You might want to consider the isolation level at which the application and
the SQL statements are being run, for example RR, RS, CS, or UR. RR and RS
isolation levels tend to cause more escalations because locks are held until a
COMMIT is issued. CS and UR isolation levels do not hold locks until a
COMMIT is issued, and therefore lock escalations are less likely. Use the
lowest possible isolation level that can be tolerated by the application.

v Increase the frequency of commits in the application, if business needs and
the design of the application allow this. Increasing the frequency of commits
reduces the number of locks that are held at any given time. This helps to
prevent the application from reaching the maxlocks value, which triggers a
lock escalation, and helps to prevent all the applications from exhausting the
lock list.

v You can modify the application to acquire table locks using the LOCK
TABLE statement. This is a good strategy for tables where concurrent access
by many applications and users is not critical; for example, when the
application uses a permanent work table (for example, not a DGTT) that is
uniquely named for this instance of the application. Acquiring table locks
would be a good strategy in this case as it will reduce the number of locks
being held by the application and increase the performance because row
locks no longer need to be acquired and released on the rows that are
accessed in the work table.

Chapter 6. Troubleshooting DB2 database 481

If the application does not have work tables and you cannot increase the
values for locklist or maxlocks configuration parameters, then you can have
the application acquire a table lock. However, care must be taken in choosing
the table or tables to lock. Avoid tables that are accessed by many
applications and users because locking these tables will lead to concurrency
problems which can affect response time, and, in the worst case, can lead to
applications experiencing lock timeouts.

Rerun the application or applications to ensure that the locking problem has been
eliminated by checking the administration notification log for lock-related entries.

Recovering from sustained traps
The DB2 instance prepares the first occurrence data capture (FODC) package for
the trap that you have encountered. By default, the DB2 instance has been
configured for trap resiliency. The DB2 instance has also determined whether or
not the trap is sustainable. The term “sustainable” means that the trapped DB2
engine thread has been suspended and the DB2 instance continues to run.

By default, the DB2 instance has been configured for trap resiliency based on the
default setting of the DB2RESILIENCE registry variable.

Recognizing a sustained trap
Traps are sustained to minimize the effect on the database system when
traps (DB2 programming errors) occur. A sustained trap results in the
following diagnostics:
1. An FODC directory is created under the fully qualified path specified

with the diagpath database manager configuration parameter.
2. Error message ADM14013C is logged to the administration notification

and db2diag log files.

Note: ADM14011C is logged if the trap could not be sustained,
resulting in the instance being shut down.

3. Error sqlcode -1224 is returned to the application.
4. The EDU thread is suspended, which can be observed in the output of

db2pd -edus.

Recovery
While it is expected that a sustained trap does not hamper the regular
operation of the instance, a suspended EDU thread does hold on to some
resources, and it is recommended to stop and restart the instance at your
earliest convenience by following these steps:
1. To terminate all active applications which issue a COMMIT or

ROLLBACK within the timeout period, which minimizes the recovery
window for crash recovery when the db2start command is run, issue
the following command:
db2 quiesce instance instance_name user user_name

defer with timeout minutes

2. [Optional] To terminate any applications that did not COMMIT or
ROLLBACK during the timeout period in Step 1 and any new
applications which accessed the database after the timeout period
completed, issue the following command:
db2 quiesce instance instance_name user user_name immediate

3. Forcefully shut down the instance and suspended EDUs by executing
the following command:

482 Troubleshooting and Tuning Database Performance

db2_kill

Note: Issuing the db2stop command will not complete when an
instance has sustained a trap.

4. Restart the DB2 instance using either one of the following commands:
db2start

or
START DATABASE MANAGER

Diagnosis
Locate the FODC directory that is specified under the diagpath database
manager configuration parameter. The location of the FODC directory can
also be confirmed by viewing the administration notification or db2diag
log files. Forward the FODC information to IBM Software Support.

Troubleshooting administrative task scheduler
This checklist can help you troubleshoot problems that occur while running tasks
in the administrative task scheduler.
1. If your task does not execute as expected, the first thing you should do is look

for a execution status record in the ADMIN_TASK_STATUS administrative
view.
v If there is a record, examine the various values. In particular, pay attention to

the STATUS, INVOCATION, SQLCODE, SQLSTATE, SQLERRMC and RC
columns. The values often identify the root cause of the problem.

v If there is no execution status record in the view, the task did not execute.
There are a number of possible explanations for this:
– The administrative task scheduler is disabled. Tasks will not execute if the

administrative task scheduler is disabled. To enable the scheduler, set the
DB2_ATS_ENABLE registry variable.

– The task was removed. Someone may have removed the task. Confirm the
task exists by querying the ADMIN_TASK_LIST administrative view.

– The scheduler is unaware of the task. The administrative task scheduler
looks for new and updated tasks by connecting to each active database
every five minutes. Until this period has elapsed, the scheduler is unaware
of your task. Wait at least five minutes.

– The database is inactive. The administrative task scheduler cannot retrieve
or execute tasks unless the database is active. Activate the database.

– The transaction is uncommitted. The administrative task scheduler ignores
uncommitted tasks. Be sure to commit after adding, updating, or
removing a task.

– The schedule is invalid. The task's schedule might prevent the task from
running. For example, the task may have already reached the maximum
number of invocations. Review the task's schedule in the
ADMIN_TASK_LIST view and update the schedule if necessary.

2. If you cannot determine the cause of the problem by referring to the
ADMIN_TASK_STATUS administrative view, refer to the DB2 diagnostic log.
All critical errors are logged to the db2diag log file. Informational event
messages are also logged by the administrative task scheduler daemon during
task execution. These errors and messages are by identified by the
"Administrative Task Scheduler" component.

Chapter 6. Troubleshooting DB2 database 483

If you follow the steps above and are still unable to determine the cause of the
problem, consider opening a problem management record (PMR) with IBM
Software Support. Inform them that you have followed these instructions and send
them the diagnostic data that you collected.

Troubleshooting compression

Data compression dictionary is not automatically created
You have a large table or a large XML storage object for the table, but the data
compression dictionary was not created. You would like to understand why the
creation of the data compression dictionary did not occur as you were expecting.
This information applies to both the compression dictionary for the table object
and the compression dictionary for the XML storage object.

You may find yourself in the following situation:
v You have a table where the COMPRESS attribute has been set to YES.
v The table has existed for some time and data has been added and removed.
v The size of the table appears to be close to the threshold size. You are expecting

the data compression dictionary to be automatically created.
v You run a table data population operation (such as INSERT, LOAD INSERT, or

REDISTRIBUTE) which you expect will increase the size of the table beyond the
threshold size.

v Automatic creation of the data compression dictionary does not occur. The data
compression dictionary is not created and placed into the table. You expect
compression to occur on data added to the table after that point, but the data
remains decompressed.

v For XML data, the data is in the DB2 Version 9.7 storage format.
Compression of data in the XML storage object of a table is not supported if the
table contains XML columns that were created using DB2 Version 9.5 or earlier.
If you enable such a table for data row compression, only the table row data in
the table object is compressed. If the XML storage object cannot be compressed
during an insert, load, or reorg operation, a message is written to a db2diag log
file only if the XML columns were created with DB2 V9 or DB2 V9.5.

Why is the data compression not occurring?

Although the data is larger than the threshold size to enable automatic creation of
the compression dictionary, there is another condition that is checked. The
condition is that there must be sufficient data present in the object to be able to
create the dictionary, and message ADM5591W will inform you of this
requirement. Past activity against the data may also have included the deletion or
removal of data. There may be large sections within the object where there is no
data. This is how you can have a large object which meets or exceeds the object
size threshold, but there may not be enough data in the object to enable the
creation of the dictionary.

If you experience a lot of activity against the object, you need to reorganize the
object on a regular basis. For XML data, you need to reorganize the table with the
longlobdata option. If you do not, the object size may be large, but it may be
sparsely populated with data. Reorganizing the object will eliminate fragmented
data and compact the data in the object. Following the reorganization, the object
will be smaller and be more densely populated. The reorganized object will more

484 Troubleshooting and Tuning Database Performance

accurately represent the amount of data in the object and may be smaller than the
threshold size to enable automatic creation of the data compression dictionary.

If the object is sparsely populated, a reorganization of the table can be performed
using the REORG TABLE command (use the LONGLOBDATA option for XDA) to
create the dictionary. By default, KEEPDICTIONARY is specified.
RESETDICTIONARY may be specified to force dictionary creation.

Use the REORGCHK command to determine if a table needs to be reorganized.

Automatic Dictionary Creation (ADC) will not occur for a table when the table is
not enabled for data row compression. Message ADM5594I is returned when ADC
processing is disabled for the database and describes the reason for it.

If the table contains XML columns that were created using DB2 Version 9.5 or
earlier, use the ADMIN_MOVE_TABLE stored procedure to upgrade the table and
then enable data row compression.

Row compression not reducing disk storage space for
temporary tables

There are known situations that might occur which result in a lack of expected
savings in disk storage space for temporary tables even though the Storage
Optimization feature is licensed.

Symptoms

Potential disk space savings by enabling row compression on temporary tables are
not being realized as expected.

Causes
v This situation occurs mostly as a result of a large number of applications

running at the same time and creating temporary tables, each of which
consumes a portion of the database manager memory. This results in not enough
memory being available to create the compression dictionary. Notification is not
given when this situation occurs.

v Rows are compressed using a dictionary-based approach according to an
algorithm. If a row of a temporary table is large enough to yield appreciable
savings in disk space, the row will be compressed. Small rows in temporary
tables will not be compressed and this will account for the lack of expected
savings in disk storage space. Notification is not given when this situation
occurs.

Risk

There is no risk to the system aside from row compression not being used on
temporary tables with below-threshold row sizes. There could be other adverse
effects to the database manager if available memory remains highly constricted.

Data replication process cannot decompress a compressed
row image

There are known situations that may occur which result in a data replication
solution being unable to successfully decompress a log record with a compressed
row image. For transient (temporary) errors, the SQL code returned will
correspond to the cause of the error, while a permanent error is typically signalled

Chapter 6. Troubleshooting DB2 database 485

by a SQL0204N notification. Only transient error situations might result in a
subsequent successful decompression of a row image in a log record. The
db2ReadLog API will continue processing other log records even if it cannot
decompress a log record.

Symptoms

It is possible that the log reader may encounter transient and permanent errors
while reading log records that contain compressed user data. Here are
non-exhaustive example lists of the two classes of errors that may be encountered
while reading log records with compressed data (row images).

Transient errors:

v Table space access not allowed
v Unable to access the table (lock timeout)
v Out of memory (to load and store the required dictionary)

Permanent errors:

v Table space in which the table resides does not exist
v Table or table partition to which the log record belongs does not exist
v A dictionary does not exist for the table or table partition
v The log record contains row images compressed with a dictionary older

than the dictionaries in the table

Causes

It is possible that a replication solution, or any other log reader, may fall behind
database activities and receive an error reading a log record which contains
compressed user data (see Scenario 1). Such a case could arise if the log record
being read contains compressed user data that was compressed by an older
compression dictionary than what is available in the table (at the time of the log
read).

Similarly, if a table is dropped, the dictionaries associated with the table will also
be removed. Compressed row images for the table cannot be decompressed in this
case (see Scenario 2). Note that this restriction does not apply to row images that
are not in a compressed state, as these row images can still be read and replicated
even if the table is dropped.

For any one table, there can be only one active data compression dictionary and
one historical dictionary.

Scenario 1:

Table t6 has compression enabled. The DATA CAPTURE CHANGES attribute, for
replication purposes, is enabled for the table. The table is being replicated by a
data replication application and the log reader is reading log records that contain
compressed data (row images). A client log reader, using the db2ReadLog API, is
reading the first log record for the first INSERT statement as a LOAD operation is
performed on table t6, after a REORG TABLE command has been issued (causing
the table's dictionary to be rebuilt).

The following statements are executed against table t6, which already contains a
compression dictionary and has the DATA CAPTURE CHANGES attribute is
enabled:

486 Troubleshooting and Tuning Database Performance

-> db2 alter table t6 data capture changes
-> db2 insert into t6 values (...)
-> db2 insert into t6 values (...)

Since a data compression dictionary already exists for table t6, the two INSERTs
after the ALTER will be compressed (using Table t6's compression dictionary). At
this point, the log reader has not yet reached the first INSERT statement.

The following REORG TABLE command causes a new compression dictionary to
be built for table t6, and the current compression dictionary is kept as the historical
dictionary, thus making the log reader one dictionary behind the current
compression dictionary (however, the historical dictionary is not loaded into
memory after the REORG):
-> db2 reorg table t6 resetdictionary

As the log reader is reading the INSERT log for the INSERT statements, which
now requires the historical dictionary to be read in memory, the table t6 is
undergoing a LOAD operation:
-> db2 load from data.del of del insert into table t6 allow no access

When the LOAD is executed on the source table, table t6 will be Z-locked due to
the specified ALLOW NO ACCESS option. The log reader must load the historical
dictionary into memory to decompress row images found in the INSERT log
records, however, fetching the dictionary requires an IN table lock. In this case, the
log reader will fail to acquire the lock. This results in the sqlcode member of the
db2ReadLogFilterData structure to return SQL code SQL2048N. This corresponds
to a transient error (that is, the log record might be decompressed if the API is
called again). The log reader will return the compressed row image in the log
record and continue on reading the next log record.

Scenario 2:

Table t7 has the DATA CAPTURE CHANGES attribute enabled. Compression is
enabled for the table in order to reduce storage costs. The table is being replicated
by a data replication application, however, the log reader has fallen behind on the
source table activity and the data compression dictionary has already been rebuilt
twice before the log reader reads from the log records again.

The following statements are executed against Table t7, with the DATA CAPTURE
CHANGES attribute already enabled, table compression is enabled, and a new
dictionary is built:
-> db2 alter table t7 compress yes
-> db2 reorg table t7 resetdictionary
-> db2 insert into t7 values (...)

A client log reader, using the db2ReadLog API, is about to read the next log
corresponding to the first INSERT statement below:
-> db2 insert into t7 values (...)
...
-> db2 reorg table t7 resetdictionary
-> db2 insert into t7 values (...)
...
-> db2 reorg table t7 resetdictionary

The db2ReadLog API will not be able to decompress the contents of the log record
in this case, because the log reader has fallen behind two or more REORG
RESETDICTIONARY operations. The dictionary required to decompress the row

Chapter 6. Troubleshooting DB2 database 487

image in the log record would not be found in the table; only the compression
dictionary of the second REORG and the compression dictionary of the last
REORG is stored with the table. However, the db2ReadLog API would not fail
with an error. Instead, the uncompressed row image will be returned in the user
buffer, and, in the db2ReadLogFilterData structure preceding the log record, the
sqlcode member will return SQL code SQL0204N. This code corresponds to a
permanent error (that is, the log record cannot ever be decompressed).

Environment

This failure to successfully decompress a compressed log record, due to a missing
old compression dictionary, can occur on any platform on which a data replication
solution uses the db2ReadLog API and the DATA CAPTURE CHANGES attribute
is set for the table.

Resolving the problem

User response:

For transient errors, it may be possible to reissue the read request and successfully
read the log. For example, if the log record belongs to a table residing in a table
space and access to the table is not allowed, the dictionary may not be accessible to
decompress the log record (see Scenario 1). The table space may become available
at a later time, and reissuing the log read request at that time may successfully
decompress the log record.
v If a transient error is returned (see Scenario 1), read the error information in

order to take appropriate action. This may include waiting for the table
operation to complete, which could allow a re-read of the log record and
decompression to be successful.

v If a permanent error occurs (see Scenario 2), the row image in the log record
cannot be decompressed since the compression dictionary, which was used to
compress the row image, is no longer available. For this case, replication
solutions may need to re-initialize the affected (target) table.

Troubleshooting global variable problems
In general, troubleshooting applications with regard to global variables is not a
problem if the user experiencing the problem has permission to READ the global
variables. Having READ permission is all that is needed to know what the value of
the global variable is by issuing a VALUES(Global Variable Name) statement.
There will be cases where the user running the application will not have access to
READ the global variable.

The first scenario illustrates a possible problem when referencing global variables
that has a simple solution. The second scenario presents a more likely situation
where the permission to READ the global variables needs to be granted to the
appropriate users.

Scenario 1

References to global variables must be properly qualified. It is possible that there
exists a variable with the same name and a different schema where the incorrect
schema is encountered earlier in the PATH register value. One solution is to ensure
that the references to the global variable are fully qualified.

488 Troubleshooting and Tuning Database Performance

Scenario 2

An application developer (developerUser) creates a highly complex series of
procedures, views, triggers, and so on based upon the value of some global
variables to which only he has read access. An end user of the application
(finalUser) logs in and starts issuing SQL using the environment created by
developerUser. finalUser complains to developerUser that he cannot see data that
he must be allowed to see. As part of troubleshooting this problem, developerUser
changes his authorization ID to that of finalUser, logs in as finalUser, and tries the
same SQL as finalUser. developerUser finds that finalUser is right, and there is a
problem.

developerUser has to determine whether finalUser sees the same global variable
values as he does. developerUser runs SET SESSION USER to see the global
variable values that the finalUser sees. Here is a proposed method to determine
this problem and solve it.

developerUser asks the security administrator (secadmUser) to grant him
permission to use SET SESSION USER as finalUser. Then developerUser logs in as
himself and uses the SET SESSION AUTHORIZATION statement to set the
SESSION_USER special register to that of finalUser. After running the SQL that is
the problem, he then switches back to developerUser using another SET SESSION
AUTHORIZATION statement. developerUser can now issue a VALUES statement
and see the actual value of the global variable.

What follows is sample SQL showing the actions taken in the database by
developerUser.
##
developerUser connects to database and creates needed objects
##

db2 "connect to sample user developerUser using xxxxxxxx"

db2 "create table security.users \
(userid varchar(10) not null primary key, \
firstname varchar(10), \
lastname varchar(10), \
authlevel int)"

db2 "insert into security.users values ('ZUBIRI', 'Adriana', 'Zubiri', 1)"
db2 "insert into security.users values ('SMITH', 'Mary', 'Smith', 2)"
db2 "insert into security.users values ('NEWTON', 'John', 'Newton', 3)"

db2 "create variable security.gv_user varchar(10) default (SESSION_USER)"
db2 "create variable security.authorization int default 0"

Create a procedure that depends on a global variable
db2 "CREATE PROCEDURE SECURITY.GET_AUTHORIZATION() \
SPECIFIC GET_AUTHORIZATION \
RESULT SETS 1 \
LANGUAGE SQL \

SELECT authlevel INTO security.authorization \
FROM security.users \
WHERE userid = security.gv_user"

db2 "grant all on variable security.authorization to public"
db2 "grant execute on procedure security.get_authorization to public"
db2 "terminate"

##
secadmUser grants setsessionuser

Chapter 6. Troubleshooting DB2 database 489

##
db2 "connect to sample user secadmUser using xxxxxxxx"
db2 "grant setsessionuser on user finalUser to user developerUser"
db2 "terminate"

##
developerUser will debug the problem now
##

echo "--"
echo " Connect as developerUser "
echo "--"
db2 "connect to sample user developerUser using xxxxxxxx"

echo "--"
echo " SET SESSION AUTHORIZATION = finalUser "
echo "--"
db2 "set session authorization = finalUser"

echo "--- TRY to get the value of gv_user as finalUser (we must not be able to)"
db2 "values(security.gv_user)"

echo "--- Now call the procedure---"
db2 "call security.get_authorization()"

echo "--- if it works it must return 3 ---"
db2 "values(security.authorization)"

echo "--"
echo " SET SESSION AUTHORIZATION = developerUser "
echo "--"

db2 "set session authorization = developerUser"

echo "--- See what the variable looks like ----"
db2 "values(security.gv_user)"

db2 "terminate"

Troubleshooting high availability

Tivoli System Automation for Multiplatforms (SA MP) Base
Component is not installed by DB2 Version 9.5 GA on AIX 6.1

The IBM Tivoli® SA MP Base Component that is included in the DB2 Version 9.5
GA High Availability Feature does not support the AIX 6.1 operating system. To
obtain the appropriate version of the SA MP Base Component for AIX 6.1, install
DB2 Version 9.5 Fix Pack 1 or later fix packs.

Symptoms

If you install a DB2 Version 9.5 GA database product on AIX 6.1, the installer will
detect that you are using AIX 6.1 and will not install the SA MP Base Component.

Causes

The SA MP Base Component that is bundled with DB2 Version 9.5 GA does not
support AIX 6.1.

490 Troubleshooting and Tuning Database Performance

Resolving the problem

When you install DB2 Version 9.5 Fix Pack 1 or later fix packs on AIX 6.1, the SA
MP Base Component will be installed successfully.

Troubleshooting inconsistencies

Troubleshooting data inconsistencies
Diagnosing where data inconsistencies exist within the database is very important.
One way to determine data inconsistencies is to use the output from the INSPECT
command to identify where a problem exists. When inconsistencies are found, you
will have to decide how to deal with the problem.

Once you have determined that there is a data consistency problem, you have two
options:
v Contact IBM Software Support and ask for their assistance in recovering from

the data inconsistency
v Drop and rebuild the database object that has the data consistency problem.

You will use the INSPECT CHECK variation from the INSPECT command to check
the database, table space, or table that has evidence of a data inconsistency. Once
the results of the INSPECT CHECK command are produced, you should format
the inspection results using the db2inspf command.

If the INSPECT command does not finish, then contact IBM Software Support.

Troubleshooting index to data inconsistencies
Indexes must be accurate to allow quick access to the right data in tables otherwise
your database is corrupt.

You can use the INSPECT command to carry out an online check for index to data
inconsistency by using the INDEXDATA option in the cross object checking clause.
Index data checking is not performed by default when using the INSPECT
command; it must be explicitly requested.

When there is an error discovered due to an index data inconsistency while
INSPECT performs an INDEXDATA inspection, the error message SQL1141N is
returned. At the same time this error message is returned, data diagnostic
information is collected and dumped to the db2diag log file. An urgent message is
also logged in the administration notification log. Use the db2diag log file analysis
tool (db2diag) to filter and format the contents of the db2diag log file.

Locking implications

While checking for index to data inconsistencies by using the INSPECT command
with the INDEXDATA option, the inspected tables are only locked in IS mode.

When the INDEXDATA option is specified, by default only the values of explicitly
specified level clause options are used. For any level clause options which are not
explicitly specified, the default levels (INDEX NORMAL and DATA NORMAL) are
overwritten from NORMAL to NONE.

Chapter 6. Troubleshooting DB2 database 491

Troubleshooting installation of DB2 database systems
If problems occur while you are installing DB2 database products, confirm that
your system meets the installation requirements and review the list of common
installation issues.

To troubleshoot installation problems for DB2 database systems:
v Ensure that your system meets all of the installation requirements.
v If you are encountering licensing errors, ensure that you have applied the

appropriate licenses.
Review the list of frequently asked questions in the “Knowledge Collection: DB2
license issues” technote: http://www.ibm.com/support/docview.wss?rs=71
&uid=swg21322757

v Review the list of installation issues in the documentation and on the DB2
Technical Support Web site: www.ibm.com/software/data/db2/support/db2_9/
troubleshoot.html

If you complete these steps but cannot yet identify the source of the problem,
begin collecting diagnostic data to obtain more information.

Collecting data for installation problems
If you are experiencing installation problems and cannot determine the cause of
the problem, collect diagnostic data that either you or IBM Software Support can
use to diagnose and resolve the problem.

To collect diagnostic data for installation problems:
1. Optional: Repeat the installation attempt with tracing enabled. For example:

On Linux and UNIX operating systems
db2setup -t /filepath/trace.out

On Windows operating systems
setup -t \filepath\trace.out

2. Locate the installation log files.
v On Windows, the default file name is "DB2-ProductAbbreviation-

DateTime.log". For example: DB2-ESE-Wed Jun 21 11_59_37 2006.log. The
default location for the installation log is the "My Documents"\DB2LOG\
directory.

v On Linux and UNIX, the default file names are db2setup.log, db2setup.his,
and db2setup.err.
If you recreated the problem with tracing (or debug mode) enabled,
additional files might be created, such as: dascrt.log, dasdrop.log,
dasupdt.log, db2icrt.log.PID, db2idrop.log.PID, db2iupgrade.log.PID, and
db2iupdt.log.PID, where PID is the process ID.
The default location for all of these files is the /tmp directory. For the trace
file (trace.out), there is no default directory if not given, so you must specify
the file path to the folder in which the trace output file was created.

3. Optional: If you intend to submit the data to IBM Software Support, collect
data for DB2 as well. See "Collecting data for DB2" for additional information.

492 Troubleshooting and Tuning Database Performance

http://www.ibm.com/support/docview.wss?rs=71&uid=swg21322757
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21322757
http://www.ibm.com/software/data/db2/support/db2_9/troubleshoot.html
http://www.ibm.com/software/data/db2/support/db2_9/troubleshoot.html

Analyzing data for installation problems
After you collect diagnostic data about installation problems, you can analyze the
data to determine the cause of the problem. These steps are optional. If the cause
of the problem is not easily determined, submit the data to IBM Software Support.

These steps assume that you have obtained the files described in Collecting data
for installation problems.
1. Ensure that you are looking at the appropriate installation log file. Check the

file's creation date, or the timestamp included in the file name (on Windows
operating systems).

2. Determine whether the installation completed successfully.
v On Windows operating systems, success is indicated by a message similar to

the following at the bottom of the installation log file:
Property(C): INSTALL_RESULT = Setup Complete Successfully
=== Logging stopped: 6/21/2006 16:03:09 ===
MSI (c) (34:38) [16:03:09:109]:
Product: DB2 Enterprise Server Edition - DB2COPY1 -- Installation operation
completed successfully.

v On Linux and UNIX operating systems, success is indicated by a message at
the bottom of the installation log file (the one named db2setup.log by
default).

3. OPTIONAL: Determine whether any errors occurred. If the installation
completed successfully, but you received an error message during the
installation process, locate these errors in the installation log file.
v On Windows operating systems, most errors will be prefaced with "ERROR:" or

"WARNING:". For example:
1: ERROR:An error occurred while running the command
"D:\IBM\SQLLIB\bin\db2.exe
CREATE TOOLS CATALOG SYSTOOLS USE EXISTING DATABASE TOOLSDB FORCE" to
initialize and/or migrate the DB2 tools catalog database.
The return value is "4".

1: WARNING:A minor error occurred while installing "DB2 Enterprise Server
Edition - DB2COPY1" on this computer. Some features may not function
correctly.

v On Linux and UNIX operating systems, a file with a default name of
db2setup.err will be present if any errors were returned by Java (for
example, exceptions and trap information).

If you had enabled an installation trace, there will be more entries in the
installation log files and the entries will be more detailed.

If analyzing this data does not help you to resolve your problem, and if you have
a maintenance contract with IBM Software Support, you can open a problem
report. IBM Software Support will ask you to submit any data that you have
collected, and they might also ask you about any analysis that you performed.

If your investigation has not solved the problem, submit the data to IBM Software
Support.

Known problems and solutions

Errors when installing a DB2 database product as a non-root
user to the default path on a system WPAR (AIX)
Various errors can occur if you install DB2 database products as a non-root user in
the default installation path (/opt/IBM/db2/V9.7) on a system workload partition

Chapter 6. Troubleshooting DB2 database 493

r0022584.html
r0022584.html

(WPAR) on AIX 6.1. To avoid these problems, install DB2 database products on a
file system that is accessible only to the WPAR.

Symptoms

If you install DB2 database products in the /usr or /opt directories on a system
WPAR, various errors can occur depending on how you configured the directories.
System WPARs can be configured to either share the /usr and /opt directories
with the global environment (in which case the /usr and /opt directories will be
readable but not write accessible from the WPAR) or to have a local copy of the
/usr and /opt directories.

In the first scenario, if a DB2 database product is installed to the default path on
the global environment, that installation will be visible in the system WPAR. This
will give the appearance that DB2 is installed on the WPAR, however attempts to
create a DB2 instance will result in this error: DBI1288E The execution of the
program db2icrt failed. This program failed because you do not have write
permission on the directory or file /opt/IBM/db2/V9.7/profiles.reg,/opt/
IBM/db2/V9.7/default.env.

In the second scenario, if a DB2 database product is installed to the default path on
the global environment then when the WPAR creates the local copy of the /usr
and /opt directories the DB2 database product installation will also be copied. This
can cause unexpected problems if a system administrator attempts to use the
database system. Since the DB2 database product was intended for another system,
inaccurate information might be copied over. For example, any DB2 instances
originally created on the global environment will appear to be present in the
WPAR. This can cause confusion for the system administrator with respect to
which instances are actually installed on the system.

Causes

These problems are caused by installing DB2 database products in /usr or /opt
directories on a system WPAR.

Resolving the problem

Do not install DB2 database products in the default path on the global
environment.

Mount a file system that is accessible only to the WPAR and install the DB2
database product on that file system.

Beta and non-beta versions of DB2 database products cannot
coexist
A DB2 copy can contain one or more different DB2 database products, but it
cannot contain both beta and non-beta products. Do not install beta and non-beta
versions of DB2 database products in the same location.

This restriction applies to both client and server components of DB2 database
products.

Resolving the problem

Uninstall the beta version of DB2 Version 9.7 before installing the non-beta version
or else choose a different installation path.

494 Troubleshooting and Tuning Database Performance

Resolving service name errors when you install DB2 database
products
If you choose a non-default service name or port number for the DB2 database
product or DB2 Information Center to use, ensure that you do not specify values
that are already in use.

Symptoms

When you attempt to install a DB2 database product or the DB2 Information Center,
the DB2 Setup wizard reports an error that states "The service name specified is in
use".

Causes

The DB2 Setup wizard will prompt you to choose port numbers and service names
when you install:
v The DB2 Information Center

v A DB2 database product that will accept TCP/IP communications from clients
v A DB2 database product that will act as a database partition server

This error can occur if you choose a service name and port number rather than
accepting the default values. If you choose a service name that already exists in the
services file on the system and you only change the port number, this error will
occur.

Resolving the problem

Take one of the following actions:
v Use the default values.
v Use a service name and port number that are both already in the services file.
v Add an unused service name and an unused port number to the services file.

Specify these values in the DB2 Setup wizard.

Troubleshooting license issues

Analyzing DB2 license compliance reports
To verify the license compliance of your DB2 features, analyze a DB2 license
compliance report. If there are any licensing violations, they can be addressed by
obtaining the appropriate license keys or by removing the problematic DB2
database products or features.

The following steps assume that you have used the License Center or the db2licm
command to generate a DB2 license compliance report.
1. Open the file that contains the DB2 license compliance report.
2. Examine the status of each DB2 feature in the compliance report. The report

displays one of the following values for each feature:

In compliance
Indicates that no violations were detected. The feature has been used
and is properly licensed.

Not used
Indicates that you have not performed any activities that require this
particular feature.

Chapter 6. Troubleshooting DB2 database 495

Violation
Indicates that the feature is not licensed and has been used.

3. If there are any violations, use the License Center or the db2licm -l command to
view your license information.
If the DB2 feature is listed with a status of "Not licensed", you must obtain a
license for that feature. The license key and instructions for registering it are
available on the Activation CD that you receive when you purchase a DB2
feature.
Some DB2 features have a soft-stop policy; that is, the feature will continue to
work even in violation, giving you time to obtain and apply the license key.
Other features have hard-stop policies where the feature will cease to function
in violation.

Note: On DB2 Workgroup Server Edition and DB2 Express® Edition, the
SAMPLE database includes materialized query tables (MQT), and
multidimensional cluster tables (MDC) that causes a license violation. This
violation can only be removed by upgrading to DB2 Enterprise Server Edition.

4. If you choose to drop or delete the problematic objects instead of purchasing a
license, use the following commands to determine which objects or settings in
your DB2 database product are causing the license violations:
v For the DB2 Advanced Access Control feature:

Check for tables that use label based access control (LBAC). Run the
following command against every database in every instance in the DB2
copy:
SELECT TABSCHEMA, TABNAME
FROM SYSCAT.TABLES
WHERE SECPOLICYID>0

v For the DB2 Performance Optimization Feature:
– Check whether there are any materialized query tables. Run the following

command against every database in every instance in the DB2 copy:
SELECT OWNER, TABNAME
FROM SYSCAT.TABLES WHERE TYPE='S'

– Check whether there are any multidimensional cluster tables. Run the
following command against every database in every instance in the DB2
copy:
SELECT A.TABSCHEMA, A.TABNAME, A.INDNAME, A.INDSCHEMA
FROM SYSCAT.INDEXES A, SYSCAT.TABLES B
WHERE (A.TABNAME=B.TABNAME AND A.TABSCHEMA=B.TABSCHEMA)
AND A.INDEXTYPE='BLOK'

– Check whether any of your instances use query parallelism (also known
as interquery parallelism). Run the following command once in each
instance in the DB2 copy:
SELECT NAME, VALUE
FROM SYSIBMADM.DBMCFG
WHERE NAME IN ('intra_parallel')

v For the DB2 Storage Optimization feature:
Check if any tables have row level compression enabled. Run the following
command against every database in every instance in the DB2 copy:
SELECT TABSCHEMA, TABNAME
FROM SYSCAT.TABLES
WHERE COMPRESSION IN ('R', 'B')

496 Troubleshooting and Tuning Database Performance

Once you have addressed the violations (either by obtaining a license for the
feature or by removing the sources of the violation), you can reset the license
compliance report from the License Center or by issuing the following command:
db2licm -x

Troubleshooting optimization guidelines and profiles
Diagnostics support for optimization guidelines (passed by optimization profiles) is
provided by EXPLAIN tables.

You will receive an SQL0437W warning with reason code 13 if the optimizer does
not apply an optimization guideline. Diagnostic information detailing why an
optimization guideline was not applied is added to the EXPLAIN tables. There are
two EXPLAIN tables for receiving optimizer diagnostic output:
v EXPLAIN_DIAGNOSTIC - Each entry in this table represents a diagnostic

message pertaining to the optimization of a particular statement. Each diagnostic
message is represented using a numeric code.

v EXPLAIN_DIAGNOSTIC_DATA - Each entry in this table is diagnostic data
relating to a particular diagnostic message in the EXPLAIN_DIAGNOSTIC table.

The DDLs used to create the diagnostic explain tables is shown below in Figure 39
on page 498.

The following steps can help you troubleshoot problems that occur when you are
using optimization guidelines:
1. “Verify that optimization guidelines have been used” in Troubleshooting and

Tuning Database Performance.
2. Examine the full error message using the built-in “EXPLAIN_GET_MSGS table

function” in Administrative Routines and Views.

If you finish these steps but cannot yet identify the source of the problem, begin
collecting diagnostic data and consider contacting IBM Software Support.

Chapter 6. Troubleshooting DB2 database 497

This DDL is included in the EXPLAIN.DDL file located in the misc subdirectory of
the sqllib directory.

CREATE TABLE EXPLAIN_DIAGNOSTIC
(EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
SOURCE_VERSION VARCHAR(64) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
DIAGNOSTIC_ID INTEGER NOT NULL,
CODE INTEGER NOT NULL,
PRIMARY KEY (EXPLAIN_REQUESTER,

EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
SOURCE_VERSION,
EXPLAIN_LEVEL,
STMTNO,
SECTNO,
DIAGNOSTIC_ID),

FOREIGN KEY (EXPLAIN_REQUESTER,
EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
SOURCE_VERSION,
EXPLAIN_LEVEL,
STMTNO,
SECTNO)

REFERENCES EXPLAIN_STATEMENT ON DELETE CASCADE);

CREATE TABLE EXPLAIN_DIAGNOSTIC_DATA
(EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,
SOURCE_NAME VARCHAR(128) NOT NULL,
SOURCE_SCHEMA VARCHAR(128) NOT NULL,
SOURCE_VERSION VARCHAR(64) NOT NULL,
EXPLAIN_LEVEL CHAR(1) NOT NULL,
STMTNO INTEGER NOT NULL,
SECTNO INTEGER NOT NULL,
DIAGNOSTIC_ID INTEGER NOT NULL,
ORDINAL INTEGER NOT NULL,
TOKEN VARCHAR(1000),
TOKEN_LONG BLOB(3M) NOT LOGGED,
FOREIGN KEY (EXPLAIN_REQUESTER,

EXPLAIN_TIME,
SOURCE_NAME,
SOURCE_SCHEMA,
SOURCE_VERSION,
EXPLAIN_LEVEL,
STMTNO,
SECTNO,
DIAGNOSTIC_ID)

REFERENCES EXPLAIN_DIAGNOSTIC ON DELETE CASCADE);

Note: The EXPLAIN_REQUESTOR, EXPLAIN_TIME, SOURCE_NAME, SOURCE_SCHEMA, SOURCE_VERSION,
EXPLAIN_LEVEL, STMTNO, and SECTNO columns are part of both tables in order to form the foreign key to the
EXPLAIN_STATEMENT table and the parent-child relationship between EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA.

Figure 39. DDLs used to create the diagnostic explain tables

498 Troubleshooting and Tuning Database Performance

Troubleshooting partitioned database environments

FCM problems related to 127.0.0.2 (Linux and UNIX)
In a partitioned database environment, the fast communications manager (FCM)
might encounter problems if there is an entry for 127.0.0.2 in the /etc/hosts file.

Symptoms

Various error messages might occur, depending on the circumstances. For example,
the following error can occur when you create a database: SQL1229N The current
transaction has been rolled back because of a system error. SQLSTATE=40504

Causes

The problem is caused by the presence of an entry for the IP address 127.0.0.2 in
the /etc/hosts file, where 127.0.0.2 maps to the fully qualified hostname of the
machine. For example:
127.0.0.2 ServerA.ibm.com ServerA

where "ServerA.ibm.com" is the fully qualified hostname.

Environment

The problem is limited to DB2 Enterprise Server Edition with the DB2 Database
Partitioning feature.

Resolving the problem

Remove the entry from the /etc/hosts file, or convert it into a comment. For
example:
127.0.0.2 ServerA.ibm.com ServerA

Creating a database partition on an encrypted file system
(AIX)

AIX 6.1 supports the ability to encrypt a JFS2 file system or set of files. This feature
is not supported with partitioned database environments in DB2 database
products. An SQL10004C error will occur if you attempt to create a partitioned
database environment using EFS (encrypted file systems) on AIX.

Symptoms

If you attempt to create a database on an encrypted file system in a multiple
partition database environment, you will receive the following error: SQL10004C
An I/O error occurred while accessing the database directory. SQLSTATE=58031

Causes

At this time it is not possible to create a partitioned database environment using
EFS (encrypted file systems) on AIX. Since partitioned database partitions use rsh
or ssh, the keystore in EFS is lost and database partitions are unable to access the
database files that are stored on the encrypted file system.

Chapter 6. Troubleshooting DB2 database 499

Diagnosing the problem

The DB2 diagnostic (db2diag) log files will contain the error message and the
following text: OSERR : ENOATTR (112) "No attribute found".

Resolving the problem

To create a database successfully in a partitioned database environment, you must
have a file system that is available to all of the machines and it must not be an
encrypted file system.

Troubleshooting scripts
You may have internal tools or scripts that are based on the processes running in
the database engine. These tools or scripts may no longer work because all agents,
prefetchers, and page cleaners are now considered threads in a single,
multi-threaded process.

Your internal tools and scripts will have to be modified to account for a threaded
process. For example, you may have scripts that start the ps command to list the
process names; and then perform tasks against certain agent processes. Your scripts
must be rewritten.

The problem determination database command db2pd will have a new option -edu
(short for “engine dispatchable unit”) to list all agent names along with their
thread IDs. The db2pd -stack command continues to work with the threaded
engine to dump individual EDU stacks or to dump all EDU stacks for the current
node.

Recompile the static section to collect section actuals after applying
Fix Pack 1

After applying DB2 Version 9.7 Fix Pack 1, section actuals cannot be collected for a
static section compiled prior to applying the fix pack. The static section must be
recompiled to collect section actuals after applying Fix Pack 1.

Symptoms

Section actuals are not collected when the EXPLAIN_FROM_ACTIVITY routine is
executed.

Causes

Section actuals cannot be collected for a static section that was compiled prior to
applying the fix pack.

Resolving the problem

After you install DB2 V9.7 Fix Pack 1, verify that the static section has been
rebound, using the REBIND command, since the fix pack was applied. To do this,
check the LAST_BIND_TIME column in the SYSCAT.PACKAGES catalog view.

500 Troubleshooting and Tuning Database Performance

Troubleshooting storage key support
Storage protection keys (hardware keys at a thread level) are used to help the DB2
engine have greater resilience by protecting memory from access attempts that are
not valid. To resolve any error that you have encountered while enabling this
feature, follow the instructions in the next section.

Diagnosing registry variable errors

When setting the registry variable “DB2_MEMORY_PROTECT” in Database
Administration Concepts and Configuration Reference , an Invalid value (DBI1301E)
error was returned. This error occurs for one of the following reasons:
v The value given for the registry variable is not valid. Refer to the registry

variable usage for DB2_MEMORY_PROTECT for information about valid
values.

v The hardware and operating system may not support storage protection keys
and the feature cannot be enabled. Storage protection keys are available in
POWER6® processors and are supported as of the AIX 5L™ Version 5.3, with the
5300-06 Technology Level, operating system.

Chapter 6. Troubleshooting DB2 database 501

502 Troubleshooting and Tuning Database Performance

Chapter 7. Troubleshooting DB2 Connect

The DB2 Connect environment involves multiple software, hardware and
communications products. Troubleshooting is best approached by a process of
elimination and refinement of the available data to arrive at a conclusion (the
location of the error).

After gathering the relevant information and based on your selection of the
applicable topic, proceed to the referenced section.

Diagnostic tools
When you encounter a problem, you can use the following:
v All diagnostic data including dump files, trap files, error logs, notification files,

and alert logs are found in the path specified by the diagnostic data directory
path (diagpath) database manager configuration parameter:
If the value for this configuration parameter is null, the diagnostic data is
written to one of the following directories or folders:
– For Linux and UNIX environments: INSTHOME/sqllib/db2dump, where

INSTHOME is the home directory of the instance.
– For supported Windows environments:

- If the DB2INSTPROF environment variable is not set then
x:\SQLLIB\DB2INSTANCE is used where x:\SQLLIB is the drive reference and
the directory specified in the DB2PATH registry variable, and the value of
DB2INSTANCE has the name of the instance.

Note: The directory does not have to be named SQLLIB.
- If the DB2INSTPROF environment variable is set then

x:\DB2INSTPROF\DB2INSTANCE is used where DB2INSTPROF is the name of
the instance profile directory and DB2INSTANCE is the name of the
instance (by default, the value of DB2INSTDEF on Windows 32-bit
operating systems).

v For Windows operating systems, you can use the Event Viewer to view the
administration notification log.

v The available diagnostic tools that can be used include db2trc, db2pd,
db2support and db2diag

v For Linux and UNIX operating systems, the ps command, which returns process
status information about active processes to standard output.

v For UNIX operating systems, the core file that is created in the current directory
when severe errors occur. It contains a memory image of the terminated process,
and can be used to determine what function caused the error.

Gathering relevant information
Troubleshooting includes narrowing the scope of the problem and investigating the
possible causes. The proper starting point is to gather the relevant information and
determine what you know, what data has not been gathered, and what paths you
can eliminate. At a minimum answer the following questions.
v Has the initial connection been successful?
v Is the hardware functioning properly?

© Copyright IBM Corp. 2006, 2010 503

v Are the communication paths operational?
v Have there been any communication network changes that would make

previous directory entries invalid?
v Has the database been started?
v Is the communication breakdown between one or more clients and the DB2

Connect Server (gateway); between the DB2 Connect gateway and the IBM
mainframe database server; or between theDB2 Connect Personal Edition and
the IBM mainframe database server?

v What can you determine by the content of the message and the tokens returned
in the message?

v Will using diagnostic tools such as db2trc, db2pd, or db2support provide any
assistance at this time?

v Are other machines performing similar tasks working correctly?
v If this is a remote task, is it successful if performed locally?

Initial connection is not successful
Review the following questions and ensure that the installation steps were
followed:
1. Did the installation processing complete successfully?

v Were all the prerequisite software products available?
v Were the memory and disk space adequate?
v Was remote client support installed?
v Was the installation of the communications software completed without any

error conditions?
2. For UNIX operating systems, was an instance of the product created?

v As root did you create a user and a group to become the instance owner and
sysadm group?

3. If applicable, was the license information processed successfully?

v For UNIX operating systems, did you edit the nodelock file and enter the
password that IBM supplied?

4. Were the IBM mainframe database server and workstation communications configured
properly?

v There are three configurations that must be considered:
a. The IBM mainframe database server configuration identifies the

application requester to the server. The IBM mainframe server database
management system will have system catalog entries that will define the
requestor in terms of location, network protocol and security.

b. The DB2 Connect workstation configuration defines the client population
to the server and the IBM mainframe server to the client.

c. The client workstation configuration must have the name of the
workstation and the communications protocol defined.

v Problem analysis for not making an initial connection includes verifying that
PU (physical unit) names are complete and correct, or verifying for TCP/IP
connections that the correct port number and hostname have been specified.

v Both the IBM mainframe server database administrator and the Network
administrators have utilities available to diagnose problems.

5. Do you have the level of authority required by the IBM mainframe server database
management system to use the IBM mainframe server database?

504 Troubleshooting and Tuning Database Performance

v Consider the access authority of the user, rules for table qualifiers, the
anticipated results.

6. If you attempt to use the Command Line Processor (CLP) to issue SQL statements
against a IBM mainframe database server, are you unsuccessful?

v Did you follow the procedure to bind the CLP to the IBM mainframe
database server?

Problems encountered after an initial connection
The following questions are offered as a starting point to assist in narrowing the
scope of the problem.
1. Are there any special or unusual operating circumstances?

v Is this a new application?
v Are new procedures being used?
v Are there recent changes that might be affecting the system? For example,

have any of the software products or applications been changed since the
application or scenario last ran successfully?

v For application programs, what application programming interface (API) was
used to create the program?

v Have other applications that use the software or communication APIs been
run on the user's system?

v Has a fix pack recently been installed? If the problem occurred when a user
tried to use a feature that had not been used (or loaded) on their operating
system since it was installed, determine IBM's most recent fix pack and load
it after installing the feature.

2. Has this error occurred before?

v Are there any documented resolutions to previous error conditions?
v Who were the participants and can they provide insight into a possible

course of action?
3. Have you explored using communications software commands that return information

about the network?

v TCP/IP might have valuable information retrieved from using TCP/IP
commands and daemons.

4. Is there information returned in the SQLCA (SQL communication area) that can be
helpful?

v Problem handling procedures should include steps to examine the contents
of the SQLCODE and SQLSTATE fields.

v SQLSTATEs allow application programmers to test for classes of errors that
are common to the DB2 family of database products. In a distributed
relational database network this field might provide a common base.

5. Was START DBM executed at the Server? Additionally, ensure that the
DB2COMM environment variable is set correctly for clients accessing the server
remotely.

6. Are other machines performing the same task able to connect to the server successfully?
The maximum number of clients attempting to connect to the server might
have been reached. If another client disconnects from the server, is the client
who was previously unable to connect, now able to connect?

7. Does the machine have the proper addressing? Verify that the machine is unique in
the network.

Chapter 7. Troubleshooting DB2 Connect 505

8. When connecting remotely, has the proper authority been granted to the client?
Connection to the instance might be successful, but the authorization might not
have been granted at the database or table level.

9. Is this the first machine to connect to a remote database? In distributed
environments routers or bridges between networks might block communication
between the client and the server. For example, when using TCP/IP, ensure that
you can PING the remote host.

Unsupported DDM commands
The DDM commands BNDCPY, BNDDPLY, DRPPKG and DSCRDBTBL are not
supported by DB2 Version 9.5 for Linux, UNIX, and Windows when it is acting as
a DRDA application server (DRDA AS).

Symptoms

If a DRDA application requester (DRDA AR) connects to DB2 Version 9.5 for
Linux, UNIX, and Windows and issues any of the following commands, the
command will fail:

Table 81. Unsupported DDM commands

DDM command DDM code point Description

BNDCPY X'2011' Copy an existing relational
database (RDB) package

BNDDPLY X'2016' Deploy an existing RDB
package

DRPPKG X'2007' Drop a package

DSCRDBTBL X'2012' Describe an RDB table

In addition, the following code points, used in the SQLDTA descriptor for
parameter-wise (or column-wise) array input, are also not supported:

Table 82. Unsupported FD:OCA data objects

FD:OCA data objects DDM code point Description

FDOEXT X'147B' Formatted Data Object
Content Architecture
(FD:OCA) Data Extents

FDOOFF X'147D' FD:OCA Data Offsets

The most common error message in this situation is SQL30020N ("Execution failed
because of a Distributed Protocol Error that will affect the successful execution of
subsequent commands and SQL statements").

Causes

Distributed Data Management Architecture (DDM) is part of the DRDA protocol.
The DDM commands BNDCPY, BNDDPLY, DRPPKG and DSCRDBTBL exist in all
of the DRDA levels that are supported by DB2 Version 9.5 for Linux, UNIX, and
Windows but the DRDA application server does not support these DDM
commands.

Likewise, a DB2 Version 9.5 for Linux, UNIX, and Windows DRDA application
server does not support the FDOEXT and FDOOFF code points. These code points

506 Troubleshooting and Tuning Database Performance

are used in the SQLDTA descriptor that is sent to server when you submit a
column-wise array input request.

Diagnosing the problem

If you obtain a DB2 trace on the DRDA application server, you will see a message
similar to the following in response to these commands:ERROR MSG = Parser:
Command Not Supported.

Resolving the problem

There are currently no supported alternatives for the BNDCPY and BNDDPLY
DDM commands.

To drop a package, use the SQL statement DROP PACKAGE. For example, connect
to the DB2 Version 9.5 for Linux, UNIX, and Windows DRDA application server
and send a DROP PACKAGE statement in an EXECUTE IMMEDIATE request. DB2
Version 9.5 for Linux, UNIX, and Windows will process that request successfully.

To describe an RDB table, use one of the following DDM commands: DSCSQLSTT
(Describe SQL Statement) or PRPSQLSTT (Prepare SQL Statement). For example, if
you want a description of the table TAB1, describe or prepare the following
statement: SELECT * FROM TAB1.

Note: When the DRDA AR issues the PRPSQLSTT command, it is necessary to
also specify the instance variable RTNSQLDA with a value of TRUE, otherwise
the SQLDA Reply Data (SQLDARD) descriptor will not be returned by the server.

To avoid problems with the FDOEXT and FDOOFF code points, use row-wise
array input requests instead of parameter-wise (or column-wise) array input
requests.

Common DB2 Connect problems
This topic lists the most common symptoms of connection problems encountered
when using DB2 Connect. In each case, you are provided with:
v A combination of a message number and a return code (or protocol specific

return code) associated with that message. Each message and return code
combination has a separate heading, and the headings are ordered by message
number, and then by return code.

v A symptom, usually in the form of a sample message listing.
v A suggested solution, indicating the probable cause of the error. In some cases,

more than one suggested solution might be provided.

SQL0965 or SQL0969

Symptom
Messages SQL0965 and SQL0969 can be issued with a number of different
return codes from DB2 for IBM i, DB2 for z/OS, and DB2 Server for VM
and VSE.

When you encounter either message, you should look up the original SQL
code in the documentation for the database server product issuing the
message.

Chapter 7. Troubleshooting DB2 Connect 507

Solution
The SQL code received from the IBM mainframe database cannot be
translated. Correct the problem, based on the error code, then resubmit the
failing command.

SQL5043N

Symptom
Support for one or more communications protocols failed to start
successfully. However, core database manager functionality started
successfully.

Perhaps the TCP/IP protocol is not started on the DB2 Connect server.
There might have been a successful client connection previously.

If diaglevel = 4, then the db2diag log files might contain a similar entry,
for example:

2001-05-30-14.09.55.321092 Instance:svtdbm5 Node:000
PID:10296(db2tcpcm) Appid:none
common_communication sqlcctcpconnmgr_child Probe:46
DIA3205E Socket address "30090" configured in the TCP/IP
services file and
required by the TCP/IP server support is being used by another
process.

Solution
This warning is a symptom which signals that DB2 Connect, acting as a
server for remote clients, is having trouble handling one or more client
communication protocols. These protocols can be TCP/IP and others, and
usually the message indicates that one of the communications protocols
defined to DB2 Connect is not configured properly.

Often the cause might be that the DB2COMM profile variable is not
defined, or is defined incorrectly. Generally, the problem is the result of a
mismatch between the DB2COMM variable and names defined in the
database manager configuration (for example, svcename or nname).

One possible scenario is having a previously successful connection, then
getting the SQL5043 error message, while none of the configuration has
changed. This could occur using the TCP/IP protocol, when the remote
system abnormally terminates the connection for some reason. When this
happens, a connection might still appear to exist on the client, and it might
become possible to restore the connection without further intervention by
issuing the commands shown below.

Most likely, one of the clients connecting to the DB2 Connect server still
has a handle on the TCP/IP port. On each client machine that is connected
to the DB2 Connect server, enter the following commands:

db2 terminate
db2stop

SQL30020

Symptom
SQL30020N Execution failed because of a Distributed Protocol Error that
will affect the successful execution of subsequent commands and SQL
statements.

Solutions
Service should be contacted with this error. Run the db2support command
before contacting service.

508 Troubleshooting and Tuning Database Performance

SQL30060

Symptom
SQL30060N "<authorization-ID>" does not have the privilege to perform
operation "<operation>".

Solution
When connecting to DB2 for z/OS, the Communications Database (CDB)
tables have not been updated properly.

SQL30061

Symptom
Connecting to the wrong IBM mainframe database server location - no
target database can be found.

Solution
The wrong server database name might be specified in the DCS directory
entry. When this occurs, SQLCODE -30061 is returned to the application.

Check the DB2 node, database, and DCS directory entries. The target
database name field in the DCS directory entry must correspond to the
name of the database based on the platform. For example, for a DB2 for
z/OS database, the name to be used should be the same as that used in the
Boot Strap Data Set (BSDS) "LOCATION=locname" field, which is also
provided in the DSNL004I message (LOCATION=location) when the
Distributed Data Facility (DDF) is started.

The correct commands for a TCP/IP node are:
db2 catalog tcpip node <node_name> remote <host_name_or_address>

server <port_no_or_service_name>
db2 catalog dcs database <local_name> as <real_db_name>
db2 catalog database <local_name> as <alias> at <node node_name>

authentication server

To connect to the database you then issue:
db2 connect to <alias> user <user_name> using <password>

SQL30081N with Return Code 79

Symptom
SQL30081N A communication error has been detected.
Communication protocol
being used: "TCP/IP". Communication API being used: "SOCKETS".
Location
where the error was detected: "". Communication function
detecting the error:
"connect". Protocol specific error code(s): "79", "*", "*".
SQLSTATE=08001

Solution(s)
This error can occur in the case of a remote client failing to connect to a
DB2 Connect server. It can also occur when connecting from the DB2
Connect server to a IBM mainframe database server.
1. The DB2COMM profile variable might be set incorrectly on the DB2

Connect server. Check this. For example, the command db2set
db2comm=tcpip should appear in sqllib/db2profile when running DB2
Enterprise Server Edition on AIX.

Chapter 7. Troubleshooting DB2 Connect 509

2. There might be a mismatch between the TCP/IP service name and port
number specifications at the IBM data server client and the DB2
Connect server. Verify the entries in the TCP/IP services files on both
machines.

3. Check that DB2 is started on the DB2 Connect server. Set the Database
Manager Configuration diaglevel to 4, using the command:

db2 update dbm cfg using diaglevel 4

After stopping and restarting DB2, look in the db2diag log files to
check that DB2 TCP/IP communications have been started. You should
see output similar to the following:

2001-02-03-12.41.04.861119 Instance:svtdbm2 Node:00
PID:86496(db2sysc) Appid:none
common_communication sqlcctcp_start_listen Probe:80
DIA3000I "TCPIP" protocol support was successfully started.

SQL30081N with Protocol Specific Error Code 10032

Symptom
SQL30081N A communication error has been detected.
Communication protocol
being used: "TCP/IP". Communication API being used: "SOCKETS".
Location
where the error was detected: "9.21.85.159". Communication
function detecting
the error: "send". Protocol specific error code(s): "10032",
"*", "*".
SQLSTATE=08001

Solution
This error message might be received when trying to disconnect from a
machine where TCP/IP communications have already failed. Correct the
problem with the TCP/IP subsystem.

On most machines, simply restarting the TCP/IP protocol for the machine
is the way to correct the problem. Occasionally, recycling the entire
machine might be required.

SQL30082 RC=24 During CONNECT

Symptom
SQLCODE -30082 The username or the password supplied is incorrect.

Solution
Ensure that the correct password is provided on the CONNECT statement
if necessary. Password not available to send to the target server database. A
password has to be sent from the IBM data server client to the target
server database. On certain platforms, for example AIX, the password can
only be obtained if it is provided on the CONNECT statement.

510 Troubleshooting and Tuning Database Performance

Chapter 8. Searching knowledge bases

How to search effectively for known problems
There are many resources available that describe known problems, including DB2
APARs, whitepapers, IBM Redbooks® publications, Technotes, and manuals. It is
important to be able to effectively search these (and other) resources in order to
quickly determine whether a solution already exists for the problem you are
experiencing.

Before searching, you should have a clear understanding of your problem
situation.

Once you have a clear understanding of what the problem situation is, you need to
create a list of search keywords to increase your chances of finding the existing
solutions. Here are some tips:
1. Use multiple words in your search. The more pertinent search terms you use,

the better your search results will be.
2. Start with specific results, and then go to broader results if necessary. For

example, if too few results are returned, then remove some of the less pertinent
search terms and try it again. Alternatively, if you are uncertain which
keywords to use, you can perform a broad search with a few keywords, look at
the type of results that you receive, and be able to make a more informed
choice of additional keywords.

3. Sometimes it is more effective to search for a specific phrase. For example, if
you enter: "administration notification file" (with the quotation marks) you will
get only those documents that contain the exact phrase in the exact order in
which you type it. (As opposed to all documents that contain any combination
of those three words).

4. Use wildcards. If you are encountering a specific SQL error, search for
"SQL5005<wildcard>", where <wildcard> is the appropriate wildcard for the
resource you're searching. This is likely to return more results than if you had
merely searched for "SQL5005" or "SQL5005c ".

5. If you are encountering a situation where your instance ends abnormally and
produces trap files, search for known problems using the first two or three
functions in the trap or core file's stack traceback. If too many results are
returned, try adding keywords "trap", "abend" or "crash".

6. If you are searching for keywords that are operating-system-specific (such as
signal numbers or errno values), try searching on the constant name, not the
value. For example, search for "EFBIG" instead of the error number 27.

In general, search terms that are successful often involve:
v Words that describe the command run
v Words that describe the symptoms
v Tokens from the diagnostics

Troubleshooting resources
A wide variety of troubleshooting information is available to assist you in using
DB2 database products.

© Copyright IBM Corp. 2006, 2010 511

DB2 documentation

Troubleshooting information can be found throughout the DB2 Information Center,
as well as throughout the PDF books that make up the DB2 library.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing problems and
want help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program Analysis
Reports (APARs), fix packs and other resources. You can search through this
knowledge base to find possible solutions to your problems.

Access the DB2 Technical Support Web site at: www.ibm.com/software/data/db2/
support/db2_9/

512 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Chapter 9. Getting DB2 product fixes

Fix packs contain code updates and fixes for problems found by IBM during
product testing and by customers as they use the product. How to find the latest
fix pack and how to apply the fixes to your database environment are discussed.

Getting fixes
A product fix might be available to resolve your problem. You can get fixes by
following these steps.
1. You can view fix lists and obtain fix packs from the following Web pages,

respectively:
v DB2 9 for Linux, UNIX, and Windows support
v Fixes by version for DB2 for Linux, UNIX, and Windows

2. Determine which fix pack you need. In general, the installation of the most
recent fix pack is recommended in order to avoid encountering problems
caused by software defects already known and corrected.

3. Download the fix pack and extract the files by double-clicking the
self-extracting executable package. Open the SERVER/doc/your_language/
readme.txt document and follow the provided link to the DB2 Information
Center to obtain installation instructions.

4. Apply the fix. For instructions, see: “Applying fix packs” in Installing DB2
Servers.

Fix packs, interim fix packs and test fixes
An Authorized Program Analysis Report (APAR) is a formal report of a problem
caused by a suspected defect in a current unaltered release of an IBM program.
APARs describe problems found during testing by IBM, as well as problems
reported by customers.

The modified DB2 code that resolves the problem described in the APAR can be
delivered in fix packs, interim fix packs and test fixes.

Fix pack
A fix pack is a cumulative collection of APAR fixes. In particular, fix packs
address the APARs that arise between new releases of DB2. They are
intended to allow you to move up to a specific maintenance level. Fix
packs have the following characteristics:
v They are cumulative. Fix packs for a particular release of DB2 supersede

or contain all of the APAR fixes shipped in previous fix packs and
interim fix packs for that release.

v They are available for all supported operating systems and DB2 database
products.

v They contain many APARs.
v They are published on the DB2 Technical Support Web site and are

generally available to customers who have purchased products under
the Passport Advantage® program.

v They are fully tested by IBM.
v They are accompanied by documentation that describes changes to the

database products, and how to install and remove the fix pack.

© Copyright IBM Corp. 2006, 2010 513

http://www-306.ibm.com/software/data/db2/support/db2_9/download.html
http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg27007053

Note: The status of an APAR is changed from "Open" to "Closed as
program error" when the APAR fix is provided in a fix pack. You can
determine the status of individual APARs by examining the APAR
descriptions on the DB2 Technical Support Web site.

Interim fix pack
An interim fix pack is a cumulative collection of important APAR fixes that
arise between fix packs. To qualify for inclusion in an interim fix pack, an
APAR must be considered pervasive or otherwise important. Candidate
APARs are evaluated and approved by experts on the DB2 technical
support team. Interim fix packs have the following characteristics:
v They are cumulative. Interim fix packs for a particular release of DB2

supersede or contain all of the APAR fixes shipped in previous fix packs
and interim fix packs for that release.

v They are available for a subset of operating systems and DB2 database
products.

v They usually contain 20 to 30 new APARs.
v They are published on the DB2 Technical Support Web site and are

generally available to customers who have purchased products under
the Passport Advantage program.

v They are fully tested by IBM.
v They are accompanied by documentation that describes how to install

and remove the interim fix pack.

Interim fix packs are supported in production for two years after they are
released. They are available at the approximate midpoint between fix packs
and are intended as the preferred alternative to test fixes, which do not
receive the same level of testing or enjoy the same level of support as
interim fix packs.

Test fix
A test fix is a temporary solution that is supplied to specific customers for
testing in response to a reported problem. Test fixes are sometimes referred
to as "special builds" and they have the following characteristics:
v They usually contain a single APAR.
v They are obtained from DB2 Support and are not generally available to

the public.
v They undergo limited IBM testing.
v They include minimal documentation, including a description of how

the test fix should be applied, the APARs it fixes, and instructions for the
removal of the test fix.

Test fixes are supplied in situations where a new problem has been
uncovered, there is no workaround or bypass for the problem and you
cannot wait until the next fix pack or interim fix pack becomes available.
For example, if the problem is causing critical impact on your business, a
test fix might be provided to alleviate the situation until the APAR is
addressed in a fix pack or interim fix pack.

It is recommended that you keep your DB2 environment running at the latest fix
pack level to ensure problem-free operation. To receive notification of the
availability of new fix packs, subscribe to "My notifications" e-mail updates on the
DB2 Technical Support Web site at: http://www.ibm.com/software/data/db2/
support/db2_9/

514 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

To learn more about the role and purpose of DB2 fixes and fix packs, see the
support policy statement.

Applying test fixes
A test fix is a temporary fix that is supplied to specific customers for testing in
response to a reported problem. A Readme file accompanies every test fix. The test
fix Readme file provides instructions for installing and uninstalling the test fix, and
a list of the APARs (if any) included in the test fix.

Each test fix has specific prerequisites. Refer to the Readme file that accompanies
the test fix for details.

There are two types of test fixes:
v A test fix for an individual DB2 product. These test fixes can be applied on an

existing installation of the product, or can be used to perform a full product
installation where there is no existing DB2 installation.

v Universal test fixes (Linux and UNIX only). A universal test fix services
installations where more than one DB2 product has been installed.

If national languages have been installed, you might also require a separate
national language test fix. The national language test fix can only be applied if it is
at the same test fix level as the installed DB2 product. If you are applying a
universal test fix, you must apply both the universal test fix and the national
language test fix to update the DB2 products.

Obtain the test fix from IBM Software Support and follow the instructions in the
Readme file with respect to installing, testing and removing (if necessary) the test
fix.
When installing a test fix in a multi-partition database partition environment, the
system must be offline and all computers participating in the instance must be
upgraded to the same test fix level.

Chapter 9. Getting DB2 product fixes 515

http://www-01.ibm.com/support/docview.wss?rs=71&context=SSEPGG&q1=special+builds&uid=swg21180416&loc=en_US&cs=utf-8&lang=en]

516 Troubleshooting and Tuning Database Performance

Chapter 10. Learning more about troubleshooting

At some point when working with DB2 database products, you may encounter a
problem. This problem might be reported by the database manager, by an
application running against the database, or by your users as they give feedback to
you that “something is not quite right” with the database.

The concepts and tools presented here are to introduce you to, and to help you
with, the task of troubleshooting a real or perceived problem in the operations of
your database. The importance of capturing the right data at the right time is
emphasized and so first occurrence data capture is the first tool discussed. Other
logs and files that are used by the database manager to capture data about the
operations of the database are presented including mention of operating system
diagnostic tools.

Learning more
The following topics can help you to acquire the conceptual information that you
need to effectively troubleshoot problems with the DB2 product:
v About troubleshooting

Troubleshooting is a systematic approach to solving a problem. The goal is to
determine why something does not work as expected and how to resolve the
problem.

v About the diagnostic data directory path
Depending on your platform, DB2 diagnostic information contained in a dump
file, trap file, diagnostic log file, administration notification log file, alert log file,
and first occurrence data collection (FODC) package can be found in the
diagnostic data directory specified by the diagpath database manager
configuration parameter.

v About administration notification log files
The DB2 database manager writes the following kinds of information to the
administration notification log: the status of DB2 utilities such as REORG and
BACKUP; client application errors; service class changes, licensing activity; log
file paths and storage problems; monitoring and indexing activities; and table
space problems. A database administrator can use this information to diagnose
problems, tune the database, or monitor the database.

v About DB2 diagnostic (db2diag) log files
With the addition of administration notification log messages being logged to
the db2diag log files using a standardized message format, viewing the db2diag
log files is an excellent first task in understanding what has been happening to
the database.

v About platform-specific error logs
There are many other files and utilities available outside of DB2 to help analyze
problems. Often they are just as important to determining root cause as the
information made available in the DB2 files.

v About messages
Learning more about messages can help you to identify an error or problem and
resolve the problem by using the appropriate recovery action. This information
can also be used to understand where messages are generated and logged.

v About internal return codes

© Copyright IBM Corp. 2006, 2010 517

There are two types of internal return codes: ZRC values and ECF values. They
are displayed in DB2 trace output and in the db2diag log files. ZRC and ECF
values are typically negative numbers and are used to represent error conditions.

v About dump files
Dump files are created when an error occurs for which there is additional
information that would be useful in diagnosing a problem (such as internal
control blocks). Every data item written to the dump files has a timestamp
associated with it to help with problem determination. Dump files are in binary
format and are intended for DB2 customer support representatives.

v About trap files
DB2 generates a trap file if it cannot continue processing because of a trap,
segmentation violation, or exception. All signals or exceptions received by DB2
are recorded in the trap file. The trap file also contains the function sequence
that was running when the error occurred. This sequence is sometimes referred
to as the "function call stack" or "stack trace." The trap file also contains
additional information about the state of the process when the signal or
exception was caught.

v About first occurrence data capture (FODC)
First occurrence data capture (FODC) is the process used to capture
scenario-based data about a DB2 instance. FODC can be invoked manually by a
DB2 user based on a particular symptom or invoked automatically when a
predetermined scenario or symptom is detected. This information reduces the
need to reproduce errors to get diagnostic information.

v About callout script (db2cos) output files
A db2cos script is invoked by default when the database manager cannot
continue processing due to a panic, trap, segmentation violation or exception.

v About combining DB2 and OS diagnostics
Diagnosing some problems related to memory, swap files, CPU, disk storage,
and other resources requires a thorough understanding of how a given operating
system manages these resources. At a minimum, defining resource-related
problems requires knowing how much of that resource exists, and what resource
limits might exist per user.

Diagnostic data directory path
Depending on your platform, DB2 diagnostic information contained in a dump file,
trap file, diagnostic log file, administration notification log file, alert log file, and
first occurrence data collection (FODC) package can be found in the diagnostic
data directory specified by the diagpath database manager configuration
parameter.

Overview

The specification of the diagnostic data directory path, using the diagpath database
manager configuration parameter, can determine which one of the following
directory path methods is used for diagnostic data storage:

Single diagnostic data directory path
All diagnostic data for the DB2 instance is stored within a single directory,
no matter whether the database is partitioned or not. In a partitioned
database environment, diagnostic data from different partitions within the
host is all dumped to this single diagnostic data directory path. This single

518 Troubleshooting and Tuning Database Performance

diagnostic data directory path is the default condition when the diagpath
value is set to null or any valid path name without the $h or $n pattern
identifiers.

Split diagnostic data directory path
For partitioned database environments, diagnostic data can be stored
separately within a directory named according to the host, database
partition, or both. Therefore, each type of diagnostic file, within a given
diagnostic directory, contains diagnostic information from only one host, or
from only one database partition, or from both one host and one database
partition.

For information about the diagpath database manager configuration parameter
settings, see: “diagpath - Diagnostic data directory path configuration parameter”
in the Database Administration Concepts and Configuration Reference.

Benefits

The benefits of specifying the diagnostic data directory path are as follows:
v Diagnostic information, from several database partitions and hosts, can be

consolidated in a central location for easy access by setting a single diagnostic
data directory path.

v Diagnostic logging performance can be improved because of less contentions on
the db2diag log file if you split the diagnostic data directory path per host or
per database partition.

Merging files and sorting records

Merging and sorting records of multiple diagnostic files of the same type, based on
timestamps, can be done with the db2diag -merge command in the case of a split
diagnostic data directory path. For more information, see: “db2diag - db2diag logs
analysis tool command” in the Command Reference.

Splitting a diagnostic data directory path by database partition
server, database partition, or both
The default DB2 diagnostic data directory path setting of the diagpath database
manager configuration parameter collects all diagnostic information within a single
diagnostic data directory. You can split the diagnostic data directory path so that
separate directories are created and named according to the database partition
server, database partition, or both. In this way, diagnostic dump files, previously
stored in a single directory, are now stored in separate directories according to the
database partition server or database partition from which the diagnostic data
dump originated.

DB2 Version 9.7 Fix Pack 1 or a later fix pack is required.

You will be able to split a diagnostic data directory path to separately store
diagnostic information according to the database partition server or database
partition from which the diagnostic data dump originated.

Restrictions

Splitting a diagnostic data directory path, to keep multiple sources of diagnostic
information separated, is mostly useful in partitioned database environments.
v Splitting diagnostic data directory path per physical database partition server

– To split the default diagnostic data directory path, execute the following step:

Chapter 10. Learning more about troubleshooting 519

- Set the diagpath database manager configuration parameter to split the
default diagnostic data directory path per physical database partition server
by issuing the following command:
db2 update dbm cfg using diagpath '"$h"'

This command creates a subdirectory under the default diagnostic data
directory with the computer name, as in the following:
Default_diagpath/HOST_db-partition-server-name

– To split a user specified diagnostic data directory path (for example,
/home/usr1/db2dump/), execute the following step:
- Set the diagpath database manager configuration parameter to split the

/home/usr1/db2dump/ diagnostic data directory path per database partition
server by issuing the following command:
db2 update dbm cfg using diagpath '"/home/usr1/db2dump/ $h"'

Note: A blank space must separate /home/usr1/db2dump/ and $h.

This command creates a subdirectory under the /home/usr1/db2dump/
diagnostic data directory with the database partition server name, as in the
following:
/home/usr1/db2dump/HOST_db-partition-server-name

v Splitting diagnostic data directory path per database partition

– To split the default diagnostic data directory path, execute the following step:
- Set the diagpath database manager configuration parameter to split the

default diagnostic data directory path per database partition by issuing the
following command:
db2 update dbm cfg using diagpath '"$n"'

This command creates a subdirectory for each partition under the default
diagnostic data directory with the partition number, as in the following:
Default_diagpath/NODEnumber

– To split a user specified diagnostic data directory path (for example,
/home/usr1/db2dump/), execute the following step:
- Set the diagpath database manager configuration parameter to split the

/home/usr1/db2dump/ diagnostic data directory path per database partition
by issuing the following command:
db2 update dbm cfg using diagpath '"/home/usr1/db2dump/ $n"'

Note: A blank space must separate /home/usr1/db2dump/ and $n.

This command creates a subdirectory for each partition under the
/home/usr1/db2dump/ diagnostic data directory with the partition number, as
in the following:
/home/usr1/db2dump/NODEnumber

v Splitting diagnostic data directory path per physical database partition server
and per database partition

– To split the default diagnostic data directory path, execute the following step:
- Set the diagpath database manager configuration parameter to split the

default diagnostic data directory path per physical database partition server
and per database partition by issuing the following command:
db2 update dbm cfg using diagpath '"hn"'

520 Troubleshooting and Tuning Database Performance

This command creates a subdirectory for each logical partition on the
database partition server under the default diagnostic data directory with the
database partition server name and partition number, as in the following:
Default_diagpath/HOST_db-partition-server-name/NODEnumber

– To split a user specified diagnostic data directory path (for example,
/home/usr1/db2dump/), execute the following step:
- Set the diagpath database manager configuration parameter to split the

/home/usr1/db2dump/ diagnostic data directory path per database partition
server and per database partition by issuing the following command:
db2 update dbm cfg using diagpath '"/home/usr1/db2dump/ hn"'

Note: A blank space must separate /home/usr1/db2dump/ and hn.

This command creates a subdirectory for each logical partition on the
database partition server under the /home/usr1/db2dump/ diagnostic data
directory with the database partition server name and partition number, as in
the following:
/home/usr1/db2dump/HOST_db-partition-server-name/NODEnumber

For example, an AIX database partition server, named boson, has 3 database
partitions with node numbers 0, 1, and 2. An example of a list output for the
directory is similar to the following:
usr1@boson /home/user1/db2dump->ls -R *
HOST_boson:

HOST_boson:
NODE0000 NODE0001 NODE0002

HOST_boson/NODE0000:
db2diag.log db2eventlog.000 db2resync.log db2sampl_Import.msg events usr1.nfy

HOST_boson/NODE0000/events:
db2optstats.0.log

HOST_boson/NODE0001:
db2diag.log db2eventlog.001 db2resync.log usr1.nfy stmmlog

HOST_boson/NODE0001/stmmlog:
stmm.0.log

HOST_boson/NODE0002:
db2diag.log db2eventlog.002 db2resync.log usr1.nfy

Note:

v If a diagnostic data directory path split per database partition is specified ($n or
hn), the NODE0000 directory will always be created for each database partition
server. The NODE0000 directory can be ignored if database partition 0 does not
exist on the database partition server where the NODE0000 directory was created.

v To check that the setting of the diagnostic data directory path was successfully
split, execute the following command:
db2 get dbm cfg | grep DIAGPATH

A successfully split diagnostic data directory path returns the values $h, $n, or
hn with a preceding blank space. For example, the output returned is similar
to the following:
Diagnostic data directory path (DIAGPATH) = /home/usr1/db2dump/ hn

Chapter 10. Learning more about troubleshooting 521

To merge separate db2diag log files to make analysis and troubleshooting easier,
use the db2diag -merge command. For additional information, see: “db2diag -
db2diag logs analysis tool command” in the Command Reference and “Analyzing
db2diag log files using db2diag tool” on page 420..

Administration notification log
The administration notification log (instance_name.nfy) is the repository from which
information about numerous database administration and maintenance activities
can be obtained. A database administrator can use this information to diagnose
problems, tune the database, or simply monitor the database.

The DB2 database manager writes the following kinds of information to the
administration notification log on UNIX and Linux operating system platforms (on
Windows operating system platforms, the event log is used to record
administration notification events):
v Status of DB2 utilities such REORG and BACKUP
v Client application errors
v Service class changes
v Licensing activity
v File paths
v Storage problems
v Monitoring activities
v Indexing activities
v Table space problems

Administration notification log messages are also logged to the db2diag log files
using a standardized message format.

Notification messages provide additional information to supplement the SQLCODE
that is provided.

The administration notification log file can exist in two different forms:

Single administration notification log file
One active administration notification log file, named instance_name.nfy,
that grows in size indefinitely. This is the default form and it exists
whenever the diagsize database manager configuration parameter has the
value of 0 (the default value for this parameter is 0).

Rotating administration notification log files
A single active log file (named instance_name.N.nfy, where N is the file
name index that is a continuously growing number starting from 0),
although a series of administration notification log files can be found in the
location defined by the diagpath configuration parameter, each growing
until reaching a limited size, at which time the log file is closed and a new
one is created and opened for logging with an incremented file name index
(instance_name.N+1.nfy). It exists whenever the diagsize database manager
configuration parameter has a nonzero value.

Note: Neither single nor rotating administration notification log files are
available on the Windows operating system platform.

You can choose which of these two forms exist on your system by appropriately
setting the diagsize database manager configuration parameter.

522 Troubleshooting and Tuning Database Performance

Configurations

The administration notification log files can be configured in size, location, and the
types of events and level of detail recorded, by setting the following database
manager configuration parameters:

diagsize
The value of diagsize decides what form of administration notification log
file will be adopted. If the value is 0, a single administration notification
log file will be adopted. If the value is not 0, rotating administration
notification log files will be adopted, and this nonzero value also specifies
the total size of all rotating diagnostic log files and all rotating
administration notification log files. The instance must be restarted for the
new value of the diagsize parameter to take effect. See the "diagsize -
Diagnostic log file size configuration parameter" topic for complete details.

diagpath
Diagnostic information can be specified to be written to administration
notification log files in the location defined by the diagpath configuration
parameter. See the "diagpath - Diagnostic data directory path configuration
parameter" topic for complete details.

notifylevel
The types of events and the level of detail written to the administration
notification log files can be specified with the notifylevel configuration
parameter. See the "notifylevel - Notify level configuration parameter" topic
for complete details.

Note: Starting with DB2 Version 9.7 Fix Pack 1, if the diagsize configuration
parameter is set to a non-zero value and the diagpath configuration parameter is
set to split the diagnostic data into separate directories, then the non-zero value of
the diagsize configuration parameter specifies the total size of the combination of
all rotating administration notification log files and all rotating diagnostic log files
contained within a given split diagnostic data directory. For example, if a system
with 4 database partitions has diagsize set to 1 GB and diagpath set to "$n" (split
diagnostic data per database partition), the maximum total size of the combined
notification and diagnostic logs can reach 4 GB (4 x 1 GB).

Interpreting administration notification log file entries
You can use a text editor to view the administration notification log file on the
machine where you suspect a problem to have occurred. The most recent events
recorded are the furthest down the file.

Generally, each entry contains the following parts:
v A timestamp
v The location reporting the error. Application identifiers allow you to match up

entries pertaining to an application on the logs of servers and clients.
v A diagnostic message (usually beginning with "DIA" or "ADM") explaining the

error.
v Any available supporting data, such as SQLCA data structures and pointers to

the location of any extra dump or trap files.

The following example shows the header information for a sample log entry, with
all the parts of the log identified.

Note: Not every log entry will contain all of these parts.

Chapter 10. Learning more about troubleshooting 523

2006-02-15-19.33.37.630000 �1� Instance:DB2 �2� Node:000 �3�
PID:940(db2syscs.exe) TID: 660�4� Appid:*LOCAL.DB2.020205091435 �5�
recovery manager �6� sqlpresr �7� Probe:1 �8� Database:SAMPLE �9�
ADM1530E �10� Crash recovery has been initiated. �11�

Legend:

1. A timestamp for the message.
2. The name of the instance generating the message.
3. For multi-partition systems, the database partition generating the message. (In

a nonpartitioned database, the value is "000".)
4. The process identifier (PID), followed by the name of the process, followed by

the thread identifier (TID) that are responsible for the generation of the
message.

5.

Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID *LOCAL.DB2.020205091435.
This value is the same as the appl_id monitor element data. For detailed
information about how to interpret this value, see the documentation for the
appl_id monitor element.
To identify more about a particular application ID, either:
v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect gateway to view a list of application
IDs. From this list, you can determine information about the client
experiencing the error, such as its node name and its TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list of
application IDs.

6. The DB2 component that is writing the message. For messages written by user
applications using the db2AdminMsgWrite API, the component will read
“User Application”.

7. The name of the function that is providing the message. This function
operates within the DB2 component that is writing the message. For messages
written by user applications using the db2AdminMsgWrite API, the function
will read “User Function”.

8. Unique internal identifier. This number allows DB2 customer support and
development to locate the point in the DB2 source code that reported the
message.

9. The database on which the error occurred.
10. When available, a message indicating the error type and number as a

hexadecimal code.
11. When available, message text explaining the logged event.

Setting the error capture level for the administration notification
log file
This task describes how to set the error capture level for the administration
notification log file.

The information that DB2 records in the administration notification log is
determined by the NOTIFYLEVEL setting.
v To check the current setting, issue the GET DBM CFG command.

Look for the following variable:
Notify Level (NOTIFYLEVEL) = 3

524 Troubleshooting and Tuning Database Performance

v To alter the setting, use the UPDATE DBM CFG command. For example:
DB2 UPDATE DBM CFG USING NOTIFYLEVEL X

where X is the notification level you want.

DB2 diagnostic (db2diag) log files
The DB2 diagnostic db2diag log files are primarily intended for use by IBM
Software Support for troubleshooting purposes. The administration notification log
is primarily intended for troubleshooting use by database and system
administrators. Administration notification log messages are also logged to the
db2diag log files using a standardized message format.

Overview

With DB2 diagnostic and administration notification messages both logged within
the db2diag log files, this often makes the db2diag log files the first location to
examine in order to obtain information about the operation of your databases.
Help with the interpretation of the contents of these diagnostic log files is provided
in the topics listed in the "Related links" section. If your troubleshooting attempts
are unable to resolve your problem and you feel you require assistance, you can
contact IBM Software Support (for details, see the "Contacting IBM Software
Support" topic). In gathering relevant diagnostic information that will be requested
to be sent to IBM Software Support, you can expect to include your db2diag log
files among other sources of information which includes other relevant logs,
storage dumps, and traces.

The db2diag log file can exist in two different forms:

Single diagnostic log file
One active diagnostic log file, named db2diag.log, that grows in size
indefinitely. This is the default form and it exists whenever the diagsize
database manager configuration parameter has the value of 0 (the default
value for this parameter is 0).

Rotating diagnostic log files
A single active log file (named db2diag.N.log, where N is the file name
index that is a continuously growing number starting from 0), although a
series of diagnostic log files can be found in the location defined by the
diagpath configuration parameter, each growing until reaching a limited
size, at which time the log file is closed and a new one is created and
opened for logging with an incremented file name index
(db2diag.N+1.log). It exists whenever the diagsize database manager
configuration parameter has a nonzero value.

You can choose which of these two forms exist on your system by appropriately
setting the diagsize database manager configuration parameter.

Configurations

The db2diag log files can be configured in size, location, and the types of
diagnostic errors recorded by setting the following database manager configuration
parameters:

diagsize
The value of diagsize decides what form of diagnostic log file will be
adopted. If the value is 0, a single diagnostic log file will be adopted. If the
value is not 0, rotating diagnostic log files will be adopted, and this
nonzero value also specifies the total size of all rotating diagnostic log files

Chapter 10. Learning more about troubleshooting 525

and all rotating administration notification log files. The instance must be
restarted for the new value of the diagsize parameter to take effect. See the
"diagsize - Diagnostic log file size configuration parameter" topic for
complete details.

diagpath
Diagnostic information can be specified to be written to db2diag log files
in the location defined by the diagpath configuration parameter. See the
"diagpath - Diagnostic data directory path configuration parameter" topic
for complete details.

diaglevel
The types of diagnostic errors written to the db2diag log files can be
specified with the diaglevel configuration parameter. See the "diaglevel -
Diagnostic error capture level configuration parameter" topic for complete
details.

Note: Starting with DB2 Version 9.7 Fix Pack 1, if the diagsize configuration
parameter is set to a non-zero value and the diagpath configuration parameter is
set to split the diagnostic data into separate directories, then the non-zero value of
the diagsize configuration parameter specifies the total size of the combination of
all rotating administration notification log files and all rotating diagnostic log files
contained within a given split diagnostic data directory. For example, if a system
with 4 database partitions has diagsize set to 1 GB and diagpath set to "$n" (split
diagnostic data per database partition), the maximum total size of the combined
notification and diagnostic logs can reach 4 GB (4 x 1 GB).

Interpretation of diagnostic log file entries
Use the db2diag log files analysis tool (db2diag) to filter and format the db2diag
log files. With the addition of administration notification log messages being
logged to the db2diag log files using a standardized message format, viewing the
db2diag log files first is a recommended choice to understand what has been
happening to the database.

As an alternative to using db2diag, you can use a text editor to view the diagnostic
log file on the machine where you suspect a problem to have occurred. The most
recent events recorded are the furthest down the file.

Note: The administration notification (instance_name.nfy) and diagnostic
(db2diag.log) logs grow continuously as single log files. When the diagsize database
manager configuration parameter is set to a nonzero value, both the administration
notification and the db2diag log files become a series of rotating log files
(instance_name.N.nfy and db2diag.N.log) having a limited total size which is
determined by the value of the diagsize configuration parameter.

The following example shows the header information for a sample log entry, with
all the parts of the log identified.

Note: Not every log entry will contain all of these parts. Only the first several
fields (timestamp to TID) and FUNCTION will be present in all the db2diag log
file records.
2007-05-18-14.20.46.973000-240�1� I27204F655�2� LEVEL: Info�3�
PID : 3228�4� TID : 8796�5� PROC : db2syscs.exe�6�
INSTANCE: DB2MPP�7� NODE : 002�8� DB : WIN3DB1�9�
APPHDL : 0-51�10� APPID: 9.26.54.62.45837.070518182042�11�
AUTHID : UDBADM�12�
EDUID : 8796�13� EDUNAME: db2agntp�14� (WIN3DB1) 2
FUNCTION:�15� DB2 UDB, data management, sqldInitDBCB, probe:4820

526 Troubleshooting and Tuning Database Performance

DATA #1 :�16� String, 26 bytes
Setting ADC Threshold to:
DATA #2 : unsigned integer, 8 bytes
1048576

Legend:

1. A timestamp and timezone for the message.

Note: Timestamps in the db2diag log files contain a time zone. For
example: 2006-02-13-14.34.35.965000-300, where "-300" is the difference
between UTC (Coordinated Universal Time, formerly known as GMT) and
local time at the application server in minutes. Thus -300 represents UTC -
5 hours, for example, EST (Eastern Standard Time).

2. The record ID field. The recordID of the db2diag log files specifies the file
offset at which the current message is being logged (for example, “27204”)
and the message length (for example, “655”) for the platform where the
DB2 diagnostic log was created.

3. The diagnostic level associated with an error message. For example, Info,
Warning, Error, Severe, or Event

4. The process ID

5. The thread ID

6. The process name

7. The name of the instance generating the message.

8. For multi-partition systems, the database partition generating the message.
(In a non-partitioned database, the value is "000".)

9. The database name

10. The application handle. This value aligns with that used in db2pd output
and lock dump files. It consists of the coordinator partition number
followed by the coordinator index number, separated by a dash.

11. Identification of the application for which the process is working. In this
example, the process generating the message is working on behalf of an
application with the ID 9.26.54.62.45837.070518182042.

A TCP/IP-generated application ID is composed of three sections
1. IP address: It is represented as a 32-bit number displayed as a

maximum of 8 hexadecimal characters.
2. Port number: It is represented as 4 hexadecimal characters.
3. A unique identifier for the instance of this application.

Note: When the hexadecimal versions of the IP address or port number
begin with 0 through to 9, they are changed to G through to P. For
example, "0" is mapped to "G", "1" is mapped to "H", and so on. The IP
address, AC10150C.NA04.006D07064947 is interpreted as follows: The IP
address remains AC10150C, which translates to 172.16.21.12. The port
number is NA04. The first character is "N", which maps to "7". Therefore,
the hexadecimal form of the port number is 7A04, which translates to
31236 in decimal form.

This value is the same as the appl_id monitor element data. For detailed
information about how to interpret this value, see the documentation for
the appl_id monitor element.

Chapter 10. Learning more about troubleshooting 527

To identify more about a particular application ID, either:
v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect gateway to view a list of application
IDs. From this list, you can determine information about the client
experiencing the error, such as its database partition name and its
TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list
of application IDs.

v Use the db2pd -applications -db <dbname> command.

12 The authorization identifier.

13 The engine dispatchable unit identifier.

14 The name of the engine dispatchable unit.

15. The product name ("DB2"), component name (“data management”), and
function name (“sqlInitDBCB”) that is writing the message (as well as the
probe point (“4820”) within the function).

16. The information returned by a called function. There may be multiple data
fields returned.

Now that you have seen a sample db2diag log file entry, here is a list of all of the
possible fields:
<timestamp><timezone> <recordID> LEVEL: <level> (<source>)
PID : <pid> TID : <tid> PROC : <procName>
INSTANCE: <instance> NODE : <node> DB : <database>
APPHDL : <appHandle> APPID: <appID>
AUTHID : <authID>
EDUID : <eduID> EDUNAME: <engine dispatchable unit name>
FUNCTION: <prodName>, <compName>, <funcName>, probe:<probeNum>
MESSAGE : <messageID> <msgText>
CALLED : <prodName>, <compName>, <funcName> OSERR: <errorName> (<errno>)
RETCODE : <type>=<retCode> <errorDesc>
ARG #N : <typeTitle>, <typeName>, <size> bytes
... argument ...
DATA #N : <typeTitle>, <typeName>, <size> bytes
... data ...

The fields which were not already explained in the example, are:
v

<source> Indicates the origin of the logged error. (You can find it at the end of
the first line in the sample.) The possible values are:
– origin - message is logged by the function where error originated (inception

point)
– OS - error has been produced by the operating system
– received - error has been received from another process (client/server)
– sent - error has been sent to another process (client/server)

v

MESSAGE Contains the message being logged. It consists of:
– <messageID> - message number, for example, ECF=0x9000004A or DIA8604C
– <msgText> - error description
When the CALLED field is also present, <msgText> is an impact of the error
returned by the CALLED function on the function logging a message (as specified
in the FUNCTION field)

v

528 Troubleshooting and Tuning Database Performance

CALLED This is the function that returned an error. It consists of:
– <prodName> - The product name: "OS", "DB2", "DB2 Tools" or "DB2 Common"
– <compName> - The component name ('-' in case of a system call)
– <funcName> - The called function name

v OSERR This is the operating system error returned by the CALLED system call.
(You can find it at the end of the same line as CALLED.) It consists of:
– <errorName> - the system specific error name
– <errno> - the operating system error number

v ARG This section lists the arguments of a function call that returned an error. It
consists of:
– <N> - The position of an argument in a call to the "called" function
– <typeTitle> - The label associated with the Nth argument typename
– <typeName> - The name of the type of argument being logged
– <size> - The size of argument to be logged

v DATA This contains any extra data dumped by the logging function. It consists of:
– <N> - The sequential number of data object being dumped
– <typeTitle> - The label of data being dumped
– <typeName> - The name of the type of data field being logged, for example,

PD_TYPE_UINT32, PD_TYPE_STRING
– <size> - The size of a data object

Interpreting the informational record of the db2diag log files
The first message in the db2diag log files should always be an informational
record.

An example of an informational record is as follows:
2006-02-09-18.07.31.059000-300 I1H917 LEVEL: Event
PID : 3140 TID : 2864 PROC : db2start.exe
INSTANCE: DB2 NODE : 000
FUNCTION: DB2 UDB, RAS/PD component, _pdlogInt, probe:120
START : New Diagnostic Log file
DATA #1 : Build Level, 124 bytes
Instance "DB2" uses "32" bits and DB2 code release "SQL09010"
with level identifier "01010107".
Informational tokens are "DB2 v9.1.0.190", "s060121", "", Fix Pack "0".
DATA #2 : System Info, 1564 bytes
System: WIN32_NT MYSRVR Service Pack 2 5.1 x86 Family 15, model 2, stepping 4
CPU: total:1 online:1 Cores per socket:1 Threading degree per core:1
Physical Memory(MB): total:1024 free:617 available:617
Virtual Memory(MB): total:2462 free:2830
Swap Memory(MB): total:1438 free:2213
Information in this record is only valid at the time when this file was created
(see this record's time stamp)

The Informational record is output for db2start on every logical partition. This
results in multiple informational records: one per logical partition. Since the
informational record contains memory values which are different on every
partition, this information might be useful.

Setting the error capture level of the diagnostic log files
The DB2 diagnostic (db2diag) log files are files that contain text information logged
by DB2. This information is used for troubleshooting and much of it is primarily
intended for IBM Software Support.

Chapter 10. Learning more about troubleshooting 529

The types of diagnostic errors that are recorded in the db2diag log files are
determined by the diaglevel database manager configuration parameter setting.
v To check the current setting, issue the command GET DBM CFG.

Look for the following variable:
Diagnostic error capture level (DIAGLEVEL) = 3

v To change the value dynamically, use the UPDATE DBM CFG command.
To change a database manager configuration parameter online:
db2 attach to <instance-name>
db2 update dbm cfg using <parameter-name> <value>
db2 detach

For example:
DB2 UPDATE DBM CFG USING DIAGLEVEL X

where X is the desired notification level. If you are diagnosing a problem that
can be reproduced, IBM Software Support personnel might suggest that you use
diaglevel 4 while performing troubleshooting.

Combining DB2 database and OS diagnostics
Diagnosing some problems related to memory, swap files, CPU, disk storage, and
other resources requires a thorough understanding of how a given operating
system manages these resources. At a minimum, defining resource-related
problems requires knowing how much of that resource exists, and what resource
limits might exist per user. (The relevant limits are typically for the user ID of the
DB2 instance owner.)

Here is some of the important configuration information that you must obtain:
v Operating system patch level, installed software, and upgrade history
v Number of CPUs
v Amount of RAM
v Swap and file cache settings
v User data and file resource limits and per user process limit
v IPC resource limits (message queues, shared memory segments, semaphores)
v Type of disk storage
v What else is the machine used for? Does DB2 compete for resources?
v Where does authentication occur?

Most platforms have straightforward commands for retrieving resource
information. However, you will rarely be required to obtain that information
manually, since the db2support utility collects this data and much more. The
detailed_system_info.html file produced by db2support (when the options -s and
-m are specified) contains the syntax for many of the operating system commands
used to collect this information.

The following exercises are intended to help you discover system configuration
and user environment information in various DB2 diagnostic files. The first
exercise familiarizes you with the steps involved in running the db2support utility.
Subsequent exercises cover trap files, which provide more DB2-generated data that
can be useful in understanding the user environment and resource limits.

Exercise 1: Running the db2support command
1. Start the DB2 instance with the db2start command.

530 Troubleshooting and Tuning Database Performance

2. Assuming you already have the SAMPLE database available, create a directory
for storing the output from db2support.

3. Change to that directory and issue:
db2support <directory> -d sample -s -m

4. Review the console output, especially the types of information that are
collected.
You should see output like this (when run on Windows):
...
Collecting "System files"

"db2cache.prf"
"db2cos9402136.0"
"db2cos9402840.0"
"db2dbamr.prf"
"db2diag.bak"
"db2eventlog.000"
"db2misc.prf"
"db2nodes.cfg"
"db2profile.bat"
"db2systm"
"db2tools.prf"
"HealthRulesV82.reg"
"db2dasdiag.log"
...

Collecting "Detailed operating system and hardware information"
Collecting "System resource info (disk, CPU, memory)"
Collecting "Operating system and level"
Collecting "JDK Level"
Collecting "DB2 Release Info"
Collecting "DB2 install path info"
Collecting "Registry info"
...
Creating final output archive

"db2support.html"
"db2_sqllib_directory.txt"
"detailed_system_info.html"
"db2supp_system.zip"
"dbm_detailed.supp_cfg"
"db2diag.log"

db2support is now complete.
An archive file has been produced: "db2support.zip"

5. Now use a Web browser to view the detailed_system_info.html file. On each
of your systems, identify the following information:
v Number of CPUs
v Operating system level
v User environment
v User resource limits (UNIX ulimit command)

Exercise 2: Locating environment information in a DB2 trap file
1. Ensure a DB2 instance is started, then issue

db2pd -stack all

The call stacks are placed in files in the diagnostic directory (as defined by the
diagpath database manager configuration parameter).

2. Locate the following in one of the trap files:
v DB2 code level
v Data seg top (this is the maximum private address space that has been

required)
v Cur data size (this is the maximum private address space limit)

Chapter 10. Learning more about troubleshooting 531

v Cur core size (this is the maximum core file limit)
v Signal Handlers (this information might not appear in all trap files)
v Environment variables (this information might not appear in all trap files)
v map output (shows loaded libraries)

Example trap file from Windows (truncated):
...
<DB2TrapFile version="1.0">
<Trap>
<Header>
DB2 build information: DB2 v9.1.0.190 s060121 SQL09010
timestamp: 2006-02-17-14.03.43.846000
uname: S:Windows
comment:
process id: 940
thread id: 3592
</Header>
<SystemInformation>
Number of Processors: 1
Processor Type: x86 Family 15 Model 2 Stepping 4
OS Version: Microsoft Windows XP, Service Pack 2 (5.1)
Current Build: 2600
</SystemInformation>
<MemoryInformation>
<Usage>
Physical Memory: 1023 total, 568 free.
Virtual Memory : 2047 total, 1882 free.
Paging File : 2461 total, 2011 free.
Ext. Virtual : 0 free.
</Usage>
</MemoryInformation>
<EnvironmentVariables>
<![CDATA[
[e] DB2PATH=C:\Program Files\IBM\SQLLIB
[g] DB2_EXTSECURITY=YES
[g] DB2SYSTEM=MYSRVR
[g] DB2PATH=C:\Program Files\IBM\SQLLIB
[g] DB2INSTDEF=DB2
[g] DB2ADMINSERVER=DB2DAS00
]]></EnvironmentVariables>

Correlating DB2 and system events or errors

System messages and error logs are too often ignored. You can save hours, days,
and even weeks on the time it takes to solve a problem if you take the time to
perform one simple task at the initial stage of problem definition and investigation.
That task is to compare entries in different logs and take note of any that appear to
be related both in time and in terms of what resource the entries are referring to.

While not always relevant to problem diagnosis, in many cases the best clue is
readily available in the system logs. If you can correlate a reported system problem
with DB2 errors, you will have often identified what is directly causing the DB2
symptom. Obvious examples are disk errors, network errors, and hardware errors.
Not so obvious are problems reported on different machines, for example domain
controllers which can affect connection time or authentication.

System logs can be investigated in order to assess stability, especially when
problems are reported on brand new systems. Intermittent traps occurring in
common applications can be a sign that there is an underlying hardware problem.

Here is some other information provided by system logs.

532 Troubleshooting and Tuning Database Performance

v Significant events such as when the system was rebooted
v Chronology of DB2 traps on the system (and errors, traps, or exceptions from

other software that is failing)
v Kernel panics, out-of-filesystem-space, and out-of-swap-space errors (which can

prevent the system from creating or forking a new process)

System logs can help to rule out crash entries in the db2diag log files as causes for
concern. If you see a crash entry in DB2 administration notification or DB2
diagnostic logs with no preceding errors, the DB2 crash recovery is likely a result
of a system shutdown.

This principle of correlating information extends to logs from any source and to
any identifiable user symptoms. For example, it can be very useful to identify and
document correlating entries from another application's log even if you can't fully
interpret them.

The summation of this information is a very complete understanding of your
server and of all of the varied events which are occurring at the time of the
problem.

db2cos (callout script) output files
A db2cos script is invoked by default when the database manager cannot continue
processing due to a panic, trap, segmentation violation or exception. Each default
db2cos script will invoke db2pd commands to collect information in an unlatched
manner.

The names for the db2cos scripts are in the form db2cos_hang, db2cos_trap, and so
on. Each script behaves in a similar way except db2cos_hang which is called from
the db2fodc tool.

The default db2cos scripts are found under the bin directory. On UNIX operating
systems, this directory is read-only. You can copy the db2cos script file to the adm
directory and modify the file at that location if required. If a db2cos script is found
in the adm directory, it is run; otherwise, the script in the bin directory is run.

In a multiple partition configuration, the script will only be invoked for the
trapping agent on the partition encountering the trap. If it is required to collect
information from other partitions, you can update the db2cos script to use the
db2_all command or, if all of the partitions are on the same machine, specify the
-alldbpartitionnums option on the db2pd command.

The types of signals that trigger the invocation of db2cos are also configurable via
the db2pdcfg -cos command. The default configuration is for the db2cos script to
run when either a panic or trap occurs. However, generated signals will not launch
the db2cos script by default.

The order of events when a panic, trap, segmentation violation or exception occurs
is as follows:
1. Trap file is created
2. Signal handler is called
3. db2cos script is called (depending on the db2cos settings enabled)
4. An entry is logged in the administration notification log
5. An entry is logged in the db2diag log file

Chapter 10. Learning more about troubleshooting 533

The default information collected by the db2pd command in the db2cos script
includes details about the operating system, the Version and Service Level of the
installed DB2 product, the database manager and database configuration, as well
as information about the state of the agents, memory pools, memory sets, memory
blocks, applications, utilities, transactions, buffer pools, locks, transaction logs,
table spaces and containers. In addition, it provides information about the state of
the dynamic, static, and catalog caches, table and index statistics, the recovery
status, as well as the reoptimized SQL statements and an active statement list. If
you have to collect further information, update the db2cos script with the
additional commands.

When the default db2cos script is called, it produces output files in the directory
specified by the DIAGPATH database manager configuration parameter. The files
are named XXX.YYY.ZZZ.cos.txt, where XXX is the process ID (PID), YYY is the
thread ID (TID) and ZZZ is the database partition number (or 000 for single
partition databases). If multiple threads trap, there will be a separate invocation of
the db2cos script for each thread. In the event that a PID and TID combination
occurs more than once, the data will be appended to the file. There will be a
timestamp present so you can distinguish the iterations of output.

The db2cos output files will contain different information depending on the
commands specified in the db2cos script. If the default script is not altered, entries
similar to the following will be displayed (followed by detailed db2pd output):
2005-10-14-10.56.21.523659
PID : 782348 TID : 1 PROC : db2cos
INSTANCE: db2inst1 NODE : 0 DB : SAMPLE
APPHDL : APPID: *LOCAL.db2inst1.051014155507
FUNCTION: oper system services, sqloEDUCodeTrapHandler, probe:999
EVENT : Invoking /home/db2inst1/sqllib/bin/db2cos from
oper system services sqloEDUCodeTrapHandler
Trap Caught

Instance db2inst1 uses 64 bits and DB2 code release SQL09010
...
Operating System Information:

OSName: AIX
NodeName: n1
Version: 5
Release: 2
Machine: 000966594C00

...

The db2diag log files will contain entries related to the occurrence as well. For
example:
2005-10-14-10.42.17.149512-300 I19441A349 LEVEL: Event
PID : 782348 TID : 1 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScript, probe:10
START : Invoking /home/db2inst1/sqllib/bin/db2cos from oper system
services sqloEDUCodeTrapHandler

2005-10-14-10.42.23.173872-300 I19791A310 LEVEL: Event
PID : 782348 TID : 1 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScript, probe:20
STOP : Completed invoking /home/db2inst1/sqllib/bin/db2cos

2005-10-14-10.42.23.519227-300 E20102A509 LEVEL: Severe
PID : 782348 TID : 1 PROC : db2sysc

534 Troubleshooting and Tuning Database Performance

INSTANCE: db2inst1 NODE : 000
FUNCTION: DB2 UDB, oper system services, sqloEDUCodeTrapHandler, probe:10
MESSAGE : ADM0503C An unexpected internal processing error has occurred. ALL

DB2 PROCESSES ASSOCIATED WITH THIS INSTANCE HAVE BEEN SHUTDOWN.
Diagnostic information has been recorded. Contact IBM Support for
further assistance.

2005-10-14-10.42.23.520111-300 E20612A642 LEVEL: Severe
PID : 782348 TID : 1 PROC : db2sysc
INSTANCE: db2inst1 NODE : 000
FUNCTION: DB2 UDB, oper system services, sqloEDUCodeTrapHandler, probe:20
DATA #1 : Signal Number Recieved, 4 bytes
11
DATA #2 : Siginfo, 64 bytes
0x0FFFFFFFFFFFD5C0 : 0000 000B 0000 0000 0000 0009 0000 0000
0x0FFFFFFFFFFFD5D0 : 0000 0000 0000 0000 0000 0000 0000 0000
0x0FFFFFFFFFFFD5E0 : 0000 0000 0000 0000 0000 0000 0000 0000
0x0FFFFFFFFFFFD5F0 : 0000 0000 0000 0000 0000 0000 0000 0000

Dump files
Dump files are created when an error occurs for which there is additional
information that would be useful in diagnosing a problem (such as internal control
blocks). Every data item written to the dump files has a timestamp associated with
it to help with problem determination. Dump files are in binary format and are
intended for IBM Software Support representatives.

When a dump file is created or appended, an entry is made in the db2diag log file
indicating the time and the type of data written. These db2diag log entries
resemble the following:

2007-05-18-12.28.11.277956-240 I24861950A192 LEVEL: Severe
PID:1056930 TID:225448 NODE:000 Title: dynamic memory buffer
Dump File:/home/svtdbm5/sqllib/db2dump/1056930.225448.000.dump.bin

Note: For partitioned database environments, the file extension identifies the
partition number. For example, the following entry indicates that the dump file
was created by a DB2 process running on partition 10:
Dump File: /home/db2/sqllib/db2dump/6881492.2.010.dump.bin

First occurrence data capture information
First occurrence data capture (FODC) is the process used to capture scenario-based
data about a DB2 instance. FODC can be invoked manually by a DB2 user based
on a particular symptom or invoked automatically when a predetermined scenario
or symptom is detected. This information reduces the need to reproduce errors to
get diagnostic information.

FODC information can be found in the following files:

Administration notification log (instance_name.nfy)

v Operating system: All
v Default location:

– Linux and UNIX: Located in the directory specified by the diagpath
database manager configuration parameter.

– Windows: Use the Event Viewer Tool (Start > Control Panel >
Administrative Tools > Event Viewer)

v Created automatically when the instance is created.

Chapter 10. Learning more about troubleshooting 535

v When significant events occur, DB2 writes information to the
administration notification log. The information is intended for use by
database and system administrators. The type of message recorded in
this file is determined by the notifylevel configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single administration notification log file
behavior (instance_name.nfy) will be changed to a rotating log behavior
(instance_name.N.nfy).

DB2 diagnostic log (db2diag.log)

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically when the instance is created.
v This text file contains diagnostic information about error and warnings

encountered by the instance. This information is used for
troubleshooting and is intended for technicians at IBM Software Support.
The type of message recorded in this file is determined by the diaglevel
database manager configuration parameter.

Note: When the diagsize database manager configuration parameter is
set to a nonzero value, the single diagnostic log file behavior
(db2diag.log) will be changed to a rotating log behavior (db2diag.N.log).

DB2 administration server (DAS) diagnostic log (db2dasdiag.log)

v Operating system: All
v Default location:

– Linux and UNIX: Located in DASHOME/das/dump, where DASHOME is the
home directory of the DAS owner

– Windows: Located in "dump" folder, in the DAS home directory. For
example: C:\Program Files\IBM\SQLLIB\DB2DAS00\dump

v Created automatically when the DAS is created.
v This text file contains diagnostic information about errors and warnings

encountered by the DAS.

DB2 event log (db2eventlog.xxx, where xxx is the database partition number)

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v Created automatically when the instance is created.
v The DB2 event log file is a circular log of infrastructure-level events

occurring in the database manager. The file is fixed in size, and acts as
circular buffer for the specific events that are logged as the instance
runs. Every time you stop the instance, the previous event log will be
replaced, not appended. If the instance traps, a db2eventlog.XXX.crash
file is also generated. These files are intended for use by IBM Software
Support.

DB2 callout script (db2cos) output files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

536 Troubleshooting and Tuning Database Performance

v If db2cos scripts are executed as a consequence of an FODC outage,
db2cos output files will be placed under the FODC directory that was
created in the location specified by the diagpath database manager
configuration parameter.

v Created automatically when a panic, trap or segmentation violation
occurs. Can also be created during specific problem scenarios, as
specified using the db2pdcfg command.

v The default db2cos script will invoke db2pd commands to collect
information in an unlatched manner. The contents of the db2cos output
files will vary depending on the commands contained in the db2cos
script, such as operating system commands and other DB2 diagnosing
tools. For more details on the tools that are executed with the db2cos
script, open the script file in a text editor.

v The db2cos script is shipped under the bin/ directory. On UNIX, this
directory is read-only. To create your own modifiable version of this
script, copy the db2cos script to the adm/ directory. You are free to
modify this version of the script. If the script is found in the adm/
directory, it is that version that is run. Otherwise, the default version in
the bin/ directory is run.

Dump files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created automatically when particular problem scenarios arise.
v For some error conditions, extra information is logged in binary files

named after the failing process ID. These files are intended for use by
IBM Software Support.

Trap files

v Operating system: All
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created automatically when the instance ends abnormally. Can also be

created at will using the db2pd command.
v The database manager generates a trap file if it cannot continue

processing due to a trap, segmentation violation, or exception.

Core files

v Operating system: Linux and UNIX
v Default location: Located in the directory specified by the diagpath

database manager configuration parameter
v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.
v Created by the operating system when the DB2 instance terminates

abnormally.
v Among other things, the core image will include most or all of the

memory allocations of DB2, which may be required for problem
descriptions.

Chapter 10. Learning more about troubleshooting 537

Collecting diagnosis information based on common outage
problems
Diagnostic information can be gathered automatically in a package when an outage
occurs affecting an instance. The information in the package can also be created
manually.

When trouble occurs when working with DB2 instances and databases, you should
collect data at the time the problem happens. First occurrence data collection
(FODC) is the term used to describe the actions taken when trouble occurs in your
DB2 environment. You control what data is collected during outages through the
setting of options in the DB2FODC registry variable using the db2pdcfg tool. Use
db2pdcfg -fodc to change the DB2FODC registry variable options. The options
influence the database system behavior regarding data capture in FODC situations.

Automatic collection of diagnostic information

The database manager invokes the db2fodc command for automatic First
Occurrence Data Capture (FODC).

To correlate the outage with the DB2 diagnostic logs and the other troubleshooting
files, a diagnostic message is written to both the administration notification and the
db2diag log files. The diagnostic message includes the FODC directory name and the
timestamp when the FODC directory was created. The FODC package description
file is placed in the new FODC directory.

Table 83. Automatic FODC types and packages

Package Description Invocation type Script executed

FODC_Trap_timestamp An instance wide trap has
occurred

Automatic db2cos_trap (.bat)

FODC_Panic_timestamp Engine detected an
incoherence and decided
not to continue

Automatic db2cos_trap (.bat)

FODC_BadPage_
timestamp

A Bad Page has been
detected

Automatic db2cos_datacorruption
(.bat)

FODC_DBMarkedBad_
timestamp

A database has been
marked bad due to an error

Automatic db2cos (.bat)

FODC_IndexError_
timestamp_PID_EDUID_
Node#

A EDU wide index error
occurred. (
db2cos_indexerror_short
(.bat) and/or
db2cos_indexerror_long
(.bat) will be dumped to
the directory.)

Automatic N/A

Manual collection of diagnostic information

The first occurrence data collection command (db2fodc) is used to collect
information about potential hangs, or when there are severe performance issues.
When the db2fodc command is run, a new directory FODC_hang_timestamp is
automatically created under the current diagnostic path. The db2cos_hang script is
run. This script controls the data collection that will be gathered and placed in the
FODC subdirectories. The existence of the FODC subdirectories depends on the way
the db2fodc command is run or on the configuration of the DB2 registry variable.

538 Troubleshooting and Tuning Database Performance

Table 84. Manual FODC types and packages

Package Description Invocation type Script executed

FODC_Hang_ timestamp User invoked db2fodc
-hang to collect data for
hang troubleshooting (or
severe performance)

Manual db2cos_hang (.bat)

FODC_Perf_ timestamp User invoked db2fodc -perf
to collect data for
performance
troubleshooting

Manual db2cos_perf (.bat)

Scripts located in
FODC_IndexError_
timestamp_PID_EDUID_
Node#

User could issue db2fodc
-indexerror
FODC_IndexError_directory
[basic | full] (default is
basic) to invoke the db2dart
commands in the script(s).

On DPF, use db2_all
"<<+node#< db2fodc
-indexerror
FODC_IndexError_directory
[basic | full]". The node# is
the last number in the
FODC_IndexError_directory
directory name. An
absolute path is required
when using db2fodc
-indexerror with the db2_all
command.

Manual db2cos_indexerror_long
(.bat),
db2cos_indexerror_short
(.bat)

Configuring for automatic collection of diagnostic information
Before the database manager can carry out actions automatically, you have to
indicate to the database manager what actions are to be taken.

Flags are set indicating actions to be taken by the database manager when an error
or a warning is encountered during database operations. The actions that are
carried out include:
v Producing a stack trace in the db2diag log files. (Default)
v Running the callout script, db2cos. (Default)
v Stopping the trace (db2trc) command.

Change the first occurrence data capture (FODC) options

Change the first occurrence data capture (FODC) options using the configure DB2
database for problem determination behavior (db2pdcfg) command. The FODC
options are set in the DB2FODC registry variable using the db2pdcfg tool. The
options influence the database system behavior regarding data capture in FODC
situations.

Data collected as part of FODC and its placement
Depending on the type of outage within the instance, first occurrence data capture
(FODC) results in the creation of subdirectories and specific content that is
collected. A series of subdirectories is created along with the collection of files and
logs.

Chapter 10. Learning more about troubleshooting 539

One or more of the following subdirectories is created under the FODC directory:
v DB2CONFIG containing DB2 configuration output and files
v DB2PD containing db2pd output or output files
v DB2SNAPS containing DB2 snapshots
v DB2TRACE containing DB2 traces
v OSCONFIG containing operating system configuration files
v OSSNAPS containing operating system monitor information
v OSTRACE containing operating system traces

These directories might not always exist depending on the configuration of
DB2FODC or the mode in which db2fodc is run.

Depending on the type of outage, the following content is found in the FODC
directory and subdirectories:
v Trap files
v All the different binary and plain text dump files generated during the data

capture as part of the outage and completed by different components
v db2evlog's event log file
v DB2 trace dump if trace has been on at the time of the outage
v The directory containing the core file
v DB2FODC log files:

– Only one "log" file is used for a manual FODC. db2fodc_hang.log (for hangs)
or db2fodc_badpage.log (for bad pages)

v Data corruption related information
– Process information: ps (on UNIX) and db2pd -edus output
– Additional information collected currently by db2support (optional):

- errpt -a output (on AIX)
- System logs on UNIX platforms. For example, /var/adm/messages for

SunOS and /var/adm/syslog.log on HP/UX. This will be done provided
that these files might be collected (on Linux, you must have root access to
copy the syslog file).

Automatic FODC data generation
When an outage occurs and automatic first occurrence data capture (FODC) is
enabled, data is collected based on symptoms. The data collected is specific to
what is needed to diagnose the outage.

One or many messages, including those defined as "critical" are used to mark the
origin of an outage.

Trap files contain information such as:
v The amount of free virtual storage
v Values associated with the product's configuration parameters and registry

variables at the time the trap occurred
v Estimated amount of memory used by the DB2 product at the time of the trap
v Information that provides a context for the outage

The raw stack dump might be included in an ASCII trap file.

Dump files that are specific to components within the database manager are stored
in the appropriate FODC package directory.

540 Troubleshooting and Tuning Database Performance

DB2 Query Patroller and First Occurrence Data Capture (FODC)
If you find you are required to investigate DB2 Query Patroller problems, there are
logs that contain information about the probable cause for the difficulties you may
be experiencing.

qpdiag.log

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically when the Query Patroller system becomes active.
v Contains informational and diagnostic records for Query Patroller. This

information is used for troubleshooting and is intended for use by IBM
Software Support.

qpmigrate.log

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically by the qpmigrate utility. The qpmigrate command

can be run implicitly when you install Query Patroller (if you specify an
existing database to run Query Patroller on), or explicitly after the
installation.

v Captures information and error messages when Query Patroller is
migrated from one version to another. It is intended for use by Query
Patroller administrators.

qpsetup.log

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically by the qpsetup utility. The qpsetup command can

be run implicitly when you install Query Patroller (if you specify an
existing database to run Query Patroller on), or explicitly after the
installation.

v Captures information and error messages that occur while the qpsetup
utility is running. It is intended for use by Query Patroller
administrators.

qpuser.log

v Operating system: All
v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.
v Created automatically when the Query Patroller system becomes active.
v Contains informational messages about Query Patroller; for example,

indicating when Query Patroller stops and starts. It is intended for use
by Query Patroller administrators.

Monitor and audit facilities using First Occurrence Data Capture
(FODC)
If you find you are required to investigate monitor or audit facility problems, there
are logs that contain information about the probable cause for the difficulties you
may be experiencing.

DB2 audit log ("db2audit.log")

Chapter 10. Learning more about troubleshooting 541

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\security directory
– Linux and UNIX: Located in the $HOME\sqllib\security directory,

where $HOME is the instance owner's home directory
v Created when the db2audit facility is started.
v Contains audit records generated by the DB2 audit facility for a series of

predefined database events.

DB2 governor log ("mylog.x", where x is the number of database partitions on
which the governor is running)

v Operating system: All
v Default location:

– Windows: Located in the $DB2PATH\instance_name\log directory
– Linux and UNIX: Located in the $HOME\sqllib\log directory, where

$HOME is the instance owner's home directory
v Created when using the governor utility. The base of the log file name is

specified in the db2gov command.
v Records information about actions performed by the governor daemon

(for example, forcing an application, reading the governor configuration
file, starting or ending the utility) as well as errors and warnings.

Event monitor file (for example, "00000000.evt")

v Operating system: All
v Default location: When you create a file event monitor, all of the event

records are written to the directory specified in the CREATE EVENT
MONITOR statement.

v Generated by the event monitor when events occur.
v Contains event records that are associated with the event monitor.

Graphical tools using First Occurrence Data Capture (FODC)
If you find you are required to investigate command editor, Data Warehouse
Center, or Information Catalog Center problems, there are logs that contain
information about the probable cause for the difficulties you may be experiencing.

Command Editor log

v Operating system: All
v Default location: The name and location of this log file are specified

using the Command Editor page of the DB2 toolbar. If a path is not
specified, the log is stored in the $DB2PATH\sqllib\tools directory on
Windows and in the $HOME/sqllib/tools directory on Linux and UNIX,
where HOME is the instance owner's home directory.

v Created when you select Log command history to file in the Command
Editor and then specify the file and location.

v Contains the command and statement execution history from the
Command Editor.

Data Warehouse Center IWH2LOGC.log file

v Operating system: All
v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the

542 Troubleshooting and Tuning Database Performance

$DB2PATH\sqllib\logging directory on Windows and in the
$HOME/sqllib/logging directory on Linux and UNIX, where HOME is
the instance owner's home directory

v Created automatically by the Data Warehouse Center if the logger stops.
v Contains messages written by the Data Warehouse Center and OLE

server that could not be sent in the situation where the logger stops.
This log may be viewed using the Log Viewer window in the Data
Warehouse Center.

Data Warehouse Center IWH2LOG.log file

v Operating system: All
v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the
$DB2PATH\sqllib\logging directory on Windows and in the
$HOME/sqllib/logging directory on Linux and UNIX, where HOME is
the instance owner's home directory

v Created automatically by the Data Warehouse Center when it cannot
start itself or when a trace is activated.

v Contains diagnostic information for situations when the Data Warehouse
Center logger cannot start itself and cannot write to the Data Warehouse
Center log (IWH2LOGC.log). This log may be viewed using the Log
Viewer window in the Data Warehouse Center.

Data Warehouse Center IWH2SERV.log file

v Operating system: All
v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the
$DB2PATH\sqllib\logging directory on Windows and in the
$HOME/sqllib/logging directory on Linux and UNIX, where HOME is
the instance owner's home directory

v Created automatically by the Data Warehouse Center server trace facility.
v Contains Data Warehouse Center start up messages and logs messages

created by the server trace facility. This log may be viewed using the
Log Viewer window in the Data Warehouse Center.

Information Catalog Center tag file EXPORT log

v Operating system: All
v Default location: The exported tag file path and log file name are

specified in the Options tab of the Export tool in the Information
Catalog Center

v Generated by the Export tool in the Information Catalog Center
v Contains tag file export information, such as the times and dates when

the export process started and stopped. It also includes any error
messages that are encountered during the export operation.

Information Catalog Center tag file IMPORT log

v Operating system: All
v Default location: The imported tag file path and log file name are

specified in the Import tool in the Information Catalog Center
v Generated by the Import tool in the Information Catalog Center
v Contains tag file import history information, such as the times and dates

when the import process started and stopped. It also includes any error
messages that are encountered during the import operation.

Chapter 10. Learning more about troubleshooting 543

Internal return codes
There are two types of internal return codes: ZRC values and ECF values. These
are return codes that will generally only be visible in diagnostic tools intended for
use by IBM Software Support.

For example, they are displayed in DB2 trace output and in the db2diag log files.

ZRC and ECF values basically serve the same purpose, but have slightly different
formats. Each ZRC value has the following characteristics:
v Class name
v Component
v Reason code
v Associated SQLCODE
v SQLCA message tokens
v Description

However, ECF values consist of:
v Set name
v Product ID
v Component
v Description

ZRC and ECF values are typically negative numbers and are used to represent
error conditions. ZRC values are grouped according to the type of error that they
represent. These groupings are called "classes". For example, ZRC values that have
names starting with “SQLZ_RC_MEMHEP” are generally errors related to
insufficient memory. ECF values are similarly grouped into "sets".

An example of a db2diag log file entry containing a ZRC value is as follows:
2006-02-13-14.34.35.965000-300 I17502H435 LEVEL: Error
PID : 940 TID : 660 PROC : db2syscs.exe
INSTANCE: DB2 NODE : 000 DB : SAMPLE
APPHDL : 0-1433 APPID: *LOCAL.DB2.050120082811
FUNCTION: DB2 UDB, data protection, sqlpsize, probe:20
RETCODE : ZRC=0x860F000A=-2045837302=SQLO_FNEX "File not found."

DIA8411C A file "" could not be found.

Full details about this ZRC value can be obtained using the db2diag command, for
example:
c:\>db2diag -rc 0x860F000A

Input ZRC string '0x860F000A' parsed as 0x860F000A (-2045837302).

ZRC value to map: 0x860F000A (-2045837302)
V7 Equivalent ZRC value: 0xFFFFE60A (-6646)

ZRC class :
Critical Media Error (Class Index: 6)

Component:
SQLO ; oper system services (Component Index: 15)

Reason Code:
10 (0x000A)

Identifer:
SQLO_FNEX
SQLO_MOD_NOT_FOUND

Identifer (without component):

544 Troubleshooting and Tuning Database Performance

SQLZ_RC_FNEX

Description:
File not found.

Associated information:
Sqlcode -980

SQL0980C A disk error occurred. Subsequent SQL statements cannot be
processed.

Number of sqlca tokens : 0
Diaglog message number: 8411

The same information is returned if you issue the commands db2diag -rc
-2045837302 or db2diag -rc SQLO_FNEX.

An example of the output for an ECF return code is as follows:
c:\>db2diag -rc 0x90000076

Input ECF string '0x90000076' parsed as 0x90000076 (-1879048074).

ECF value to map: 0x90000076 (-1879048074)

ECF Set :
setecf (Set index : 1)

Product :
DB2 Common

Component:
OSSe

Code:
118 (0x0076)

Identifier:
ECF_LIB_CANNOT_LOAD

Description:
Cannot load the specified library

The most valuable troubleshooting information in the db2diag command output is
the description and the associated information (for ZRC return codes only).

For a full listing of the ZRC or ECF values, use the commands db2diag -rc zrc and
db2diag -rc ecf, respectively.

Introduction to messages

It is assumed that you are familiar with the functions of the operating system
where DB2 is installed. You can use the information contained in the following
chapters to identify an error or problem and resolve the problem by using the
appropriate recovery action. This information can also be used to understand
where messages are generated and logged.

Message Structure

Message help describes the cause of a message and describes any action you
should take in response to the message.

Message identifiers consist of a three character message prefix, followed by a four
or five digit message number, followed by a single letter suffix. For example,

Chapter 10. Learning more about troubleshooting 545

SQL1042C. For a list of message prefixes, see “Invoking message help” and “Other
DB2 Messages” on page 548. The single letter suffix describes the severity of the
error message.

In general, message identifiers ending with a C are for severe messages; those
ending with an E indicate urgent messages; those ending with an N indicate error
messages; those ending with a W indicate warning messages; and those ending
with an I indicate informational message.

For ADM messages, message identifiers ending with a C indicate severe messages;
those ending with an E indicate urgent messages; those ending with a W indicate
important messages; and those ending with an I indicate informational messages.

For SQL messages, message identifiers ending with a C indicate critical system
errors; those ending with an N indicate error messages; those ending with a W
indicate warning or informational messages.

Some messages include tokens, sometimes also called message variables. When a
message containing tokens is generated by DB2, each token is replaced by a value
specific to the error condition that was encountered, to help the user diagnose the
cause of the error message. For example, the DB2 message SQL0107N is as follows:
v from the command line processor:

SQL0107N The name "<name>" is too long. The maximum length is "<length>".
v from the DB2 information center:

SQL0107N The name name is too long. The maximum length is length.

This message includes the two tokens "<name>" and "<length>". When this
message is generated at runtime, the message tokens would be replaced by the
actual name of the object that caused the error, and the maximum length allowed
for that type of object, respectively.

In some cases a token is not applicable for a specific instance of an error, and the
value *N is returned instead, for example:
SQL20416N The value provided ("*N") could not be converted to a security
label. Labels for the security policy with a policy ID of "1" should be "8"
characters long. The value is "0" characters long. SQLSTATE=23523

Invoking message help

The following DB2 messages are accessible from the command line processor:

Prefix Description

ADM messages generated by many DB2 components. These messages are written
in the Administration Notification log file and are intended to provide
additional information to System Administrators.

AMI messages generated by MQ Application Messaging Interface

ASN messages generated by DB2 Replication

CCA messages generated by the Configuration Assistant

CLI messages generated by Call Level Interface

DBA messages generated by the Database Administration tools

DBI messages generated by installation and configuration

DBT messages generated by the Database tools

546 Troubleshooting and Tuning Database Performance

DB2 messages generated by the command line processor

DQP messages generated by Query Patroller

EAS messages generated by the Embedded Application Server

EXP messages generated by the Explain utility

GSE messages generated by the DB2 Spatial Extender

LIC messages generated by the DB2 license manager

MQL messages generated by MQ Listener

SAT messages generated in a satellite environment

SPM messages generated by the sync point manager

SQL messages generated by the database manager when a warning or error
condition has been detected

XMR messages generated by the XML Metadata Repository.

To invoke message help, open the command line processor and enter:
? XXXnnnnn

where XXX represents a valid message prefix and nnnnn represents a valid
message number.

The message text associated with a given SQLSTATE value can be retrieved by
issuing:
? nnnnn

or

? nn

where nnnnn is a five digit SQLSTATE (alphanumeric) and nn is the two digit
SQLSTATE class code (first two digits of the SQLSTATE value).

Note: The message identifier accepted as a parameter of the db2 command is not
case sensitive. Also, the single letter suffix is optional and is ignored.

Therefore, the following commands will produce the same result:
v ? SQL0000N
v ? sql0000
v ? SQL0000w

To invoke message help on the command line of a UNIX based system, enter:
db2 “? XXXnnnnn”

where XXX represents a valid message prefix
and nnnnn represents a valid message number.

If the message text is too long for your screen, use the following command (on
Unix-based systems and others which support 'more'):
db2 “? XXXnnnnn” | more

Chapter 10. Learning more about troubleshooting 547

Other DB2 Messages

Some DB2 components return messages that are not available online or are not
described in this manual. Some of the message prefixes may include:

AUD messages generated by the DB2 Audit facility.

DIA diagnostics messages generated by many DB2 components. These messages
are written in the db2diag log file, and are intended to provide additional
information for users and DB2 service personnel when investigating errors.

GOV messages generated by the DB2 governor utility.

In most cases, these messages provide sufficient information to determine the
cause of the warning or error. For more information on the command or utility that
generated the messages, please refer to the appropriate manual where the
command or utility is documented.

Other Message Sources

When running other programs on the system, you may receive messages with
prefixes other than those mentioned in this reference.

For information on these messages, refer to the information available for that
program product.

Platform-specific error log information
There are many other files and utilities available outside of DB2 to help analyze
problems. Often they are just as important to determining root cause as the
information made available in the DB2 files.

The other files and utilities provide access to information contained in logs and
traces that is concerned with the following areas:
v Operating systems
v Applications and third-party vendors
v Hardware

Based on your operating environment, there might be more places outside of what
has been described here, so be aware of all of the potential areas you might have
to investigate when debugging problems in your system.

Operating systems

Every operating system has its own set of diagnostic files to keep track of activity
and failures. The most common (and usually most useful) is an error report or
event log. Here is a list of how this information can be collected:
v AIX: the /usr/bin/errpt -a command
v Solaris: /var/adm/messages* files or the /usr/bin/dmesg command
v Linux: the /var/log/messages* files or the /bin/dmesg command
v HP-UX: the /var/adm/syslog/syslog.log file or the /usr/bin/dmesg command
v Windows : the system, security, and application event log files and the

windir\drwtsn32.log file (where windir is the Windows install directory)

548 Troubleshooting and Tuning Database Performance

There are always more tracing and debug utilities for each operating system. See
your operating system documentation and support material to determine what
further information is available.

Applications and third-party vendors

Each application should have its own logging and diagnostic files. These files will
complement the DB2 set of information to provide you with a more accurate
picture of potential problem areas.

Hardware

Hardware devices usually log information into operating system error logs.
However, sometimes additional information is required. In those cases, you must
identify what hardware diagnostic files and utilities might be available for piece of
hardware in your environment. An example of such a case is when a bad page, or
a corruption of some type is reported by DB2. Usually this is reported due to a
disk problem, in which case the hardware diagnostics must be investigated. See
your hardware documentation and support material to determine what further
information is available.

Some information, such as information from hardware logs, is time-sensitive. When
an error occurs you should make every effort to gather as much information as
you can from the relevant sources as soon as is possible.

In summary, to completely understand and evaluate a problem, you might have to
collect all information available from DB2, your applications, the operating system
and underlying hardware. The db2support tool automates the collection of most
DB2 and operating system information that you will require, but you should still
be aware of any information outside of this that might help the investigation.

System core files (Linux and UNIX)
If a program terminates abnormally, a core file is created by the system to store a
memory image of the terminated process. Errors such as memory address
violations, illegal instructions, bus errors, and user-generated quit signals cause
core files to be dumped.

The core file is named "core", and is placed in the directory specified by the
diagpath database manager configuration parameter, by default, unless otherwise
configured using the values in the DB2FODC registry variable. Note that system
core files are distinct from DB2 trap files.

Accessing system core file information (Linux and UNIX)
The dbx system command helps you determine which function caused a system
core file to be created. This is a simple check that will help you identify whether
the database manager is in error, or whether an operating system or application
error is responsible for the problem.
v You must have the dbx command installed. This command is operating

system-specific: on AIX and Solaris, use dbx; on HP-UX, use xdb, and on Linux
use gdb.

v On AIX, ensure that the full core option has been enabled using the chdev
command or smitty.

The following steps can be used to determine the function that caused the core file
dump to occur.

Chapter 10. Learning more about troubleshooting 549

1. Enter the following command from a UNIX command prompt:
dbx program_name core_filename

program_name is the name of the program that terminated abnormally, and
core_filename is the name of the file containing the core file dump. The
core_filename parameter is optional. If you do not specify it, the default name
"core" is used.

2. Examine the call stack in the core file. Information about how to do this can be
obtained by issuing man dbx from a UNIX command prompt

3. To end the dbx command, type quit at the dbx prompt.

The following example shows how to use the dbx command to read the core file
for a program called "main".
1. At a command prompt, enter:

dbx main

2. Output similar to the following appears on your display:
dbx version 3.1 for AIX.
Type 'help' for help.
reading symbolic information ...
[using memory image in core]
segmentation.violation in freeSegments at line 136
136 (void) shmdt((void *) pcAdress[i]);

3. The name of the function that caused the core dump is "freeSegments". Enter
where at the dbx prompt to display the program path to the point of failure.
(dbx) where
freeSegments(numSegs = 2, iSetId = 0x2ff7f730, pcAddress = 0x2ff7f758, line
136
in "main.c"
main (0x1, 2ff7f7d4), line 96 in "main.c"

In this example, the error occurred at line 136 of freeSegments, which was
called from line 96 in main.c.

4. To end the dbx command, type quit at the dbx prompt.

Accessing event logs (Windows)
This task describes how to access the Windows event logs.

Windows event logs can also provide useful information. While the system event
log tends to be the most useful in the case of DB2 crashes or other mysterious
errors related to system resources, it is worthwhile obtaining all three types of
event logs:
v System
v Application
v Security

View the event logs using the Windows Event Viewer. The method used to open
the viewer will differ, depending on the Windows operating system you are using.
For example, to open the Event Viewer on Windows XP, click Start —> Control
Panel. Select Administrative Tools, and then double-click Event Viewer.

Exporting event logs (Windows)
This task describes how to export Windows event logs.

From the Windows event viewer, you can export event logs in two formats:

550 Troubleshooting and Tuning Database Performance

v log-file format
v text or comma-delimited format.

Export the event logs from the Windows event viewer.
v You can load the log-file format (*.evt) data back into an event viewer (for

example, on another workstation). This format is easy to work with since you
can use the viewer to switch the chronology order, filter for certain events, and
advance forwards or backwards.

v You can open the text (*.txt) or comma-delimited (*.csv) format logs in most text
editors. They also avoid a potential problem with respect to timestamps. When
you export event logs in .evt format, the timestamps are in Coordinated
Universal Time and get converted to the local time of the workstation in the
viewer. If you are not careful, you can overlook key events because of time zone
differences. Text files are also easier to search.

Accessing the Dr. Watson log file (Windows)
This task describes how to access the Dr. Watson log files on Windows systems.

The Dr. Watson log, drwtsn32.log, is a chronology of all the exceptions that have
occurred on the system. The DB2 trap files are more useful than the Dr. Watson
log, though it can be helpful in assessing overall system stability and as a
document of the history of DB2 traps.

Locate the Dr. Watson log file. The default path is <install_drive>:\Documents
and Settings \All Users\Documents\DrWatson

Trap files
DB2 generates a trap file if it cannot continue processing because of a trap,
segmentation violation, or exception.

All signals or exceptions received by DB2 are recorded in the trap file. The trap file
also contains the function sequence that was running when the error occurred. This
sequence is sometimes referred to as the "function call stack" or "stack trace." The
trap file also contains additional information about the state of the process when
the signal or exception was caught.

A trap file is also generated when an application is forced to stop while running a
fenced threadsafe routine. The trap occurs as the process is shutting down. This is
not a fatal error and it is nothing to be concerned about.

The files are located in the directory specified by the diagpath database manager
configuration parameter.

On all platforms, the trap file name begins with a process identifier (PID), followed
by a thread identifier (TID), followed by the partition number (000 on single
partition databases), and concluded with “.trap.txt”.

There are also diagnostic traps, generated by the code when certain conditions
occur which don't warrant crashing the instance, but where it is useful to see the
stack. Those traps are named with the PID in decimal format, followed by the
partition number (0 in a single partition database).

Examples:
v 6881492.2.000.trap.txt is a trap file with a process identifier (PID) of 6881492,

and a thread identifier (TID) of 2.

Chapter 10. Learning more about troubleshooting 551

v 6881492.2.010.trap.txt is a trap file whose process and thread is running on
partition 10.

You can generate trap files on demand using the db2pd command with the -stack
all or -dump option. In general, though, this should only be done as requested by
IBM Software Support.

You can generate stack trace files with db2pd -stacks or db2pd -dumps commands.
These files have the same contents as trap file but are generated for diagnostic
purposes only. Their names will be similar to 6881492.2.000.stack.txt.

Formatting trap files (Windows)
You can format trap files (*.TRP) with a command called db2xprt. It formats the
DB2 database binary trap files into a human readable ASCII file.

The db2xprt tool uses DB2 symbol files in order to format the trap files. A subset
of these .PDB files are included with the DB2 database products.

If a trap file called "DB30882416.TRP" had been produced in your directory
specified by the diagpath database manager configuration parameter, you could
format it as follows:
db2xprt DB30882416.TRP DB30882416.FMT

552 Troubleshooting and Tuning Database Performance

Chapter 11. Support

DB2 Health Advisor Service

How to use the DB2 Health Advisor Service
Starting in DB2 Version 9.7 Fix Pack 2, the DB2 Health Advisor Service data
collector (db2has) gathers information about a DB2 instance, its databases, and its
operating environment. The compressed output file can be sent to the DB2 Health
Advisor Service at IBM for analysis and generation of a PDF-based report
containing the findings and recommendations concerning the health of your DB2
database environment.

The following is a list of items to consider in preparing to perform this task:
v Have your company's IBM Customer Number (ICN) ready, as this is a required

parameter entry when using the db2has tool. If you do not currently have an
ICN, contact IBM Software Support.

v If you want to use a resource file to run the db2has tool with previously
configured settings, you can copy and paste the contents of a sample resource
file into a file that you created. Options that are required for the data collection
can be uncommented and edited as needed. For the sample resource file, see:
“Sample db2has resource file (db2has.res)” in the Command Reference.

This task shows you how to use the db2has tool and provides examples to
illustrate the usage of the options.

Run the db2has command. A variety of options are available for you to configure
the data collection the way you want (for more details about the command
options, see: “db2has - DB2 Health Advisor Service data collector command”). You
must include the following 3 required parameters and their values:
1. -E | -email "companyEmail" must be specified in order to have the PDF-based

report sent to your email address from the DB2 Health Advisor Service.
2. -I | -icn IBM_Customer_Number must be specified to obtain the PDF-based

report from the DB2 Health Advisor Service. It also serves to facilitate finding
previous Problem Management Records (PMRs) to gain access to historical data
to compare with the current system and instance state.

3. -t | -systype sType must be specified to differentiate the different types of
systems or instances in the analysis.

To immediately send the collected data to the DB2 Health Advisor Service, include
the -send parameter as part of the command string. The specification of an
argument is optional with the -send parameter.

The resulting compressed file, db2has_hostname_timestamp.zip, will be placed into
the default working directory, ~/sqllib/db2hasdir. The collected data will be
stored in XML format inside the zip archive in the db2has_hostname_timestamp.xml
file. Output of the data collector, showing the flow of execution and displaying all
commands that were issued during the run, will be stored inside the archive in the
db2has_hostname_timestamp.out file. These files can be easily extracted from the
archive and examined.

Example 1

© Copyright IBM Corp. 2006, 2010 553

The following is an example of the options to specify for a typical run of the
db2has command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype test -workload OLTP -send

The data will be collected for all databases that are activated on a test system. The
priority of the run could be set to the lowest setting to minimize the performance
impact of the data collector, which in most cases is negligible, on a system. The
resulting compressed file, db2has_hostname_timestamp.zip, will be placed into the
default working directory, ~/sqllib/db2hasdir and is sent, by way of the
Enhanced Customer Data Repository (ECuRep), to the DB2 Health Advisor Service.
A report with findings and recommendations will be sent to DBA John Smith using
the provided email address in this example.

Note: It is recommended to always specify a workload type to ensure a more
accurate health advisor report is generated.

For the first-time run, add the -firsttime option. This option adds several
additional checks and data collections that can be useful for a detailed initial
analysis of a system and DB2 database system health. These checks can be skipped
for subsequent runs. Also, use this option after each upgrade to a new DB2 fix
pack or release, or after any other significant change to the DB2 database manager
and its operating environment.

Example 2

To collect data for a list of specified database names using default values for most
options, run the following command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype QA -W Hybrid
-dblist "mydb1,mydb2,mydb3" -runid "QA test run #26"

The data will be collected for databases mydb1, mydb2, and mydb3 on the QA
(quality assurance) system. The run ID is specified for this specific QA test run to
distinguish it from other similar runs.

Example 3

To include a check for tables with type 1 indexes and also an analysis of database
and database manager snapshots to the previous example, run the following
command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype QA -dblist "mydb1,mydb2,mydb3"
-runid "QA test run #26" -W DSS -include "t1index,dbsnap,dbmsnap"

Example 4

The analysis engine applies more than 20 rule-based scenarios to data collected
from snapshots for a database manager and active databases. To include snapshot
data for all active databases (-extended), excluding potentially sensitive
information about IP addresses and active ports (-exclude IP), on a production
system using the quiet mode to suppress output to a terminal (-quiet), run the
following command:

554 Troubleshooting and Tuning Database Performance

db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype production -W OLTP -exclude IP
-quiet -extended

Note: The db2has tool does not enable any monitor switches. Enabling such
switches and activating databases is a user responsibility.
The amount of data sent for analysis depends on what is enabled on a system
during a data collection run. Although using the -extended option is optional, it is
very useful since it adds more scenarios for the analysis engine to consider and,
thereby, increases the chances of finding potential problems with a system or, on
the contrary, confirms the DB2 instance and its operating environment are in good
health.

Example 5

To write the collected data into a specified working directory, run the following
command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype integration -workload OLTP
-workdir /home/inst1/IntegrationTests/DB2HAS

Note: A parent directory of the working directory must already exist, otherwise an
error will be returned.

Example 6

To send the data collected to a remote server, run the following command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -systype test -workload DSS
-send "ftp://anonymous@ftp.ecurep.ibm.com:21/toibm/im"

The data is sent using the FTP protocol to the URL for the host server
ftp.ecurep.ibm.com using port number 21. The example specifies anonymous as the
user name. The argument for the -send option is optional. It should be only
specified when a resource file is used or as instructed by DB2 Software Support in
the event that the ECuRep FTP service is unavailable due to outage. In all other
cases, the recommended usage is to specify the -send option without the argument.

Example 7

To collect data using a prepared resource file db2has.res, run the following
command:
db2has -resource /home/inst1/db2has.res

You can copy and paste the contents of a sample resource file into a file that you
created. Options that are required for the data collection can be uncommented and
edited as needed. For the sample resource file, see: “Sample db2has resource file
(db2has.res)” in the Command Reference.

Example 8

To send a description of a symptom or of a problem at hand, run the following
command:

Chapter 11. Support 555

db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -W DSS -systype DR -symptom

The data collector will prompt you for a symptom description and then start the
input mode. The maximum allowed text input is 2 KB. Ctrl-D will terminate the
input mode. Any text is allowed, such as full text or fragments of error messages,
db2diag log records, DB2 database trace fragments, call stacks from trap files, to
name just a few examples. This information will be used by the analysis engine to
find matches with other records in our symptom knowledge database. If a match is
found, a known solution, fix, or recommendation will be added to the final
PDF-based report from the DB2 Health Advisor Service.

Example 9

To send feedback about a previous DB2 Health Advisor Service report, run the
following command:
db2has -icn FC123456 -name "Fake 1 Company, Inc." -address "123 Main St., Suite 123,
Anywhere, CA 99999" -phone "555-555-5555" -email "john.smith@fake1company.com"
-desc "Insurance services provider" -W OLTP -systype DR -feedback

The data collector will prompt you for your feedback and then start the input
mode. The maximum allowed text input is 2 KB. Ctrl-D will terminate the input
mode. This option can be used for comments, suggestions, desired improvements,
new requirements, and any criticism you would like to provide on the data
collector and the PDF-based report.

If you want to receive a PDF-based report from the DB2 Health Advisor Service
and you did not specify the -send option, the archived file must be sent to
ftp://anonymous@ftp.ecurep.ibm.com:21/toibm/im using your own FTP client. The
ECuRep FTP service prompts you for a password, to which you respond by
entering your email address.

Read and assess the DB2 Health Advisor Service PDF-based report concerning the
health of your DB2 database environment. Evaluate the affect of the report's
recommendations by first implementing them in your test environment.

Contacting IBM Software Support
IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. For information about the types of maintenance contracts available, see
“Premium Support” in the Software Support Handbook at:
techsupport.services.ibm.com/guides/services.html

Complete the following steps to contact IBM Software Support with a problem:
1. Define the problem, gather background information, and determine the severity

of the problem. For help, see the “Contacting IBM” in the Software Support
Handbook: techsupport.services.ibm.com/guides/beforecontacting.html

2. Gather diagnostic information.
3. Submit your problem to IBM Software Support in one of the following ways:

556 Troubleshooting and Tuning Database Performance

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html#1

v Online: Click the ESR (Electronic Service Request) link on the IBM Software
Support, Open Service Request site: www.ibm.com/software/support/
probsub.html

v By phone: For the phone number to call in your country/region, go to the
Contacts page of the Software Support Handbook:
techsupport.services.ibm.com/guides/contacts.html

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
IBM Software Support web site daily, so that other users who experience the same
problem can benefit from the same resolution.

Submitting data to IBM Software Support
You can submit data to IBM Software Support by FTP or by using the Electronic
Service Request (ESR) tool. Instructions are provided here.

The steps assume that you have already opened a problem management record
(PMR) with IBM Software Support.

You can send diagnostic data, such as log files and configuration files, to IBM
Software Support using one of the following methods:
v FTP
v Electronic Service Request (ESR) tool
v To submit files (via FTP) to the Enhanced Centralized Client Data Repository

(EcuRep):
1. Package the data files that you collected into ZIP or TAR format, and name

the package according to your Problem Management Record (PMR)
identifier.
Your file must use the following naming convention in order to be correctly
associated with the PMR: xxxxx.bbb.ccc.yyy.yyy, where xxxxx is the PMR
number, bbb is the PMR's branch number, ccc is the PMR's territory code,
and yyy.yyy is the file name.

2. Using an FTP utility, connect to the server ftp.emea.ibm.com.
3. Log in as the userid "anonymous" and enter your e-mail address as your

password.
4. Go to the toibm directory. For example, cd toibm.
5. Go to one of the operating system-specific subdirectories. For example, the

subdirectories include: aix, linux, unix, or windows.
6. Change to binary mode. For example, enter bin at the command prompt.
7. Put your file on the server by using the put command. Use the following file

naming convention to name your file and put it on the server. Your PMR will
be updated to list where the files are stored using the format:
xxxx.bbb.ccc.yyy.yyy. (xxx is the PMR number, bbb is the branch, ccc is the
territory code, and yyy.yyy is the description of the file type such as tar.Z or
xyz.zip.) You can send files to the FTP server, but you cannot update them.
Any time that you must subsequently change the file, you must create a new
file name.

8. Enter the quit command.
v To submit files using the ESR tool:

Chapter 11. Support 557

http://www-306.ibm.com/software/support/probsub.html
http://www-306.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#worldwide

1. Sign onto ESR.
2. On the Welcome page, enter your PMR number in the Enter a report

number field, and click Go.
3. Scroll down to the Attach Relevant File field.
4. Click Browse to locate the log, trace, or other diagnostic file that you want to

submit to IBM Software Support.
5. Click Submit. Your file is transferred to IBM Software Support through FTP,

and it is associated with your PMR.

For more information about the EcuRep service, see IBM EMEA Centralized
Customer Data Store Service.

For more information about ESR, see Electronic Service Request (ESR) help.

558 Troubleshooting and Tuning Database Performance

Part 3. Appendixes

© Copyright IBM Corp. 2006, 2010 559

560 Troubleshooting and Tuning Database Performance

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 9.7 manuals in PDF format can be downloaded
from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2006, 2010 561

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 85. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-02 Yes September, 2010

Administrative Routines
and Views

SC27-2436-02 No September, 2010

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-02 Yes September, 2010

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-02 Yes September, 2010

Command Reference SC27-2439-02 Yes September, 2010

Data Movement Utilities
Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High
Availability Guide and
Reference

SC27-2441-02 Yes September, 2010

Database Administration
Concepts and
Configuration Reference

SC27-2442-02 Yes September, 2010

Database Monitoring
Guide and Reference

SC27-2458-02 Yes September, 2010

Database Security Guide SC27-2443-01 Yes November, 2009

DB2 Text Search Guide SC27-2459-02 Yes September, 2010

Developing ADO.NET
and OLE DB
Applications

SC27-2444-01 Yes November, 2009

Developing Embedded
SQL Applications

SC27-2445-01 Yes November, 2009

Developing Java
Applications

SC27-2446-02 Yes September, 2010

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-01 No September, 2010

Developing User-defined
Routines (SQL and
External)

SC27-2448-01 Yes November, 2009

Getting Started with
Database Application
Development

GI11-9410-01 Yes November, 2009

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

562 Troubleshooting and Tuning Database Performance

Table 85. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-02 Yes September, 2010

Installing IBM Data
Server Clients

GC27-2454-01 No September, 2010

Message Reference
Volume 1

SC27-2450-00 No August, 2009

Message Reference
Volume 2

SC27-2451-00 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-01 Yes November, 2009

pureXML Guide SC27-2465-01 Yes November, 2009

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-01 No September, 2010

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-02 Yes September, 2010

SQL Reference, Volume 1 SC27-2456-02 Yes September, 2010

SQL Reference, Volume 2 SC27-2457-02 Yes September, 2010

Troubleshooting and
Tuning Database
Performance

SC27-2461-02 Yes September, 2010

Upgrading to DB2
Version 9.7

SC27-2452-02 Yes September, 2010

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-02 Yes September, 2010

Workload Manager
Guide and Reference

SC27-2464-02 Yes September, 2010

XQuery Reference SC27-2466-01 No November, 2009

Table 86. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-02 Yes September, 2010

Installing and
Configuring DB2
Connect Servers

SC27-2433-02 Yes September, 2010

Appendix A. Overview of the DB2 technical information 563

Table 86. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 87. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:

564 Troubleshooting and Tuning Database Performance

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the
following Web sites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications Web site at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 561.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

Appendix A. Overview of the DB2 technical information 565

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

566 Troubleshooting and Tuning Database Performance

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the ic-update script:

ic-update

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the ic-update.bat file:

ic-update.bat

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.

Appendix A. Overview of the DB2 technical information 567

If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript™ must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:
v On Windows, navigate to the installation directory's doc\bin directory, and

run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

568 Troubleshooting and Tuning Database Performance

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. There you will find information about how to isolate
and identify problems using DB2 diagnostic tools and utilities, solutions to
some of the most common problems, and other advice on how to solve
problems you might encounter with your DB2 database products.

DB2 Technical Support Web site
Refer to the DB2 Technical Support Web site if you are experiencing
problems and want help finding possible causes and solutions. The
Technical Support site has links to the latest DB2 publications, TechNotes,

Appendix A. Overview of the DB2 technical information 569

http://publib.boulder.ibm.com/infocenter/db2luw/v9

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and
other resources. You can search through this knowledge base to find
possible solutions to your problems.

Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

570 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2010 571

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

572 Troubleshooting and Tuning Database Performance

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 573

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

574 Troubleshooting and Tuning Database Performance

Index

Special characters
instance_name.nfy log file 522

A
about this book vii
access plans

column correlation for multiple predicates 350
grouping 231
indexes

scans 209
structure 61

information capture
explain facility 245

locks
granularity 163
modes 167
modes for standard tables 169

REFRESH TABLE statements 262
reusing

details 287
SET INTEGRITY statements 262
sharing 286
sorting 231

access request elements
ACCESS 335
IXAND 337
IXOR 339
IXSCAN 340
LPREFETCH 341
TBSCAN 342
XANDOR 342
XISCAN 343

access type
explain information 260

ACCRDB command 450
ACCRDBRM command 450
ACCSEC command 450
administration notification log

details 522
first occurrence data capture (FODC) 535
interpreting 523

administrative task scheduler
troubleshooting 483

agents
client connections 44
managing 38
partitioned databases 45
worker agent types 37

aggregate functions
db2expln command 281

aggregation
data

DISTINCT keyword 148
AIX

configuration
best practices 46

application design
application performance 129

application processes
details 130
effect on locks 166

applications
performance

application design 129
lock management 163
modeling using catalog statistics 400
modeling using manually adjusted catalog

statistics 399
architecture

overview 31
asynchronous index cleanup

details 64
audit facility

troubleshooting 541
authorized program analysis reports (APARs) 513
automatic memory tuning 90
automatic reorganization

details 128
enabling 129

automatic statistics collection
enabling 372
storage 374

automatic statistics profiling
storage 374

B
benchmarking

db2batch command 7
executing 8
overview 5
preparing 6
sample report 10
SQL statements for 6

best practices
queries 143

binding
isolation levels 137

block identifiers
preparing before table access 280

block-based buffer pools 103
blocking

row 159
books

ordering 564
buffer pools

advantages of large 97
block-based 103
managing multiple 97
memory

allocation at startup 97
overview 94
page-cleaning methods 99
tuning

page cleaners 95

© Copyright IBM Corp. 2006, 2010 575

C
call level interface (CLI)

applications
trace facility configuration 460

isolation levels 137
trace facility

starting 460
trace files

troubleshooting overview 459
cardinality estimates

statistical views 354
catalog statistics

avoiding manual updates 400
catalog table descriptions 362
collecting

distribution statistics on specific columns 392
general 381
guidelines 380
index statistics 387

detailed index data 386
distribution statistics 389, 393
index cluster ratio 214
manual adjustments for modeling 399
manual update rules

column statistics 385
distribution statistics 397
general 384
index statistics 387
nickname statistics 385
table statistics 385

modeling production databases 400
overview 359
sub-elements in columns 383
user-defined functions 397

classic table reorganization 114
clustering indexes

partitioned tables 78
code pages

best practices 46
collations

best practices 46
columns

distribution statistics
collecting 392

group statistics 350
joining 146
statistics 385
sub-element statistics 383

Command Editor
troubleshooting 542

commands
ACCRDB 450
ACCRDBRM 450
ACCSEC 450
commit 450
db2dart

INSPECT command comparison 418
overview 418

db2diag
analyzing db2diag log files 421

db2drdat
overview 449

db2gov
starting DB2 Governor 17
stopping DB2 Governor 29

db2has 553

commands (continued)
db2inspf

formatting inspection results 491
db2level

determining version and service level 424
db2look

creating similar databases 425
db2ls

listing DB2 products and features 428
db2pd

examples 430
run by db2cos command 533

db2pdcfg
overview 538

db2support
collecting environment information 442
example 530

db2trc
formatting trace file 448
obtaining trace 446

EXCSAT 450
EXCSATRD 450
INSPECT

db2dart command comparison 418
SECCHK 450

commit command 450
commits

lock releasing 130
compilation key 326
compilation time

DB2_REDUCED_OPTIMIZATION registry variable 154
dynamic queries

using parameter markers to reduce 153
compiler rewrites

adding implied predicates 196
correlated subqueries 192
merge view 190

compilers
capturing information using explain facility 245

compression
data

performance effects 401
index

performance effects 401
concentrator

statement 286
concurrency

federated databases 131
improving 139
issues 131
locks 163

configuration
IOCP (AIX) 107

Configuration Advisor
performance tuning 54

configuration files
governor utility

rule clauses 21
rule details 18

configuration settings
best practices 46

connection concentrator
agents in partitioned database 45
client-connection improvements 44

connections
first-user scenarios 108

576 Troubleshooting and Tuning Database Performance

consistency
points 130

constraints
improving query optimization 151

Control Center
tracing 457

coordinating agents
connection-concentrator use 44

coordinator agents
details 32, 40

core files
Linux systems 549
problem determination 503
UNIX systems 549

correlation
simple equality predicates 351

cross-partition monitoring 11
cur_commit database configuration parameter

overview 139
CURRENT EXPLAIN MODE special register

explain data 247
CURRENT EXPLAIN SNAPSHOT special register

explain data 247
CURRENT LOCK TIMEOUT special register

lock wait mode strategy 184
cursor stability (CS)

details 132

D
daemons

governor utility 17
data

access
methods 208
scan sharing 214

compacting 110
compression

performance effects 401
inconsistencies 491
sampling in queries 161

data objects
explain information 266

data operators
explain information 267

data pages
standard tables 57

data partition elimination 237
data sources

performance 205
data stream information

db2expln command 279
data types

join column mismatches 146
Data Warehouse Center

troubleshooting 542
database agents

managing 38
database analysis and reporting tool command

overview 418
database engine processes 500
database manager

shared memory 83
database partition groups

query optimization impact 349
Database Partitioning Feature (DPF)

best practices 46

database partitions
creating 499

database_memory database configuration parameter
self-tuning 88

databases
corrupt 491
deactivating

first-user connection scenarios 108
names

RDBNAM object 450
DB2 Governor

configuration file 18
daemons 17
log files 26
overview 16
rule clauses 21
starting 17
stopping 29
troubleshooting 541

DB2 Health Advisor Service
collecting data 553

DB2 Health Advisor Service data collector command 553
DB2 Information Center

languages 565
updating 566, 567
versions 565

DB2 JDBC Type 2 Driver
trace facility configuration 457

DB2 products
list 428

DB2 Universal JDBC Driver
trace facility configuration 459

DB2_EVALUNCOMMITTED registry variable
deferral of row locks 141

DB2_REDUCED_OPTIMIZATION registry variable
reducing compilation time 154

DB2_SKIPINSERTED registry variable
details 140

DB2_USE_ALTERNATE_PAGE_CLEANING registry variable
proactive page cleaning 99

db2batch command
overview 7

db2cli.ini file
trace configuration 460

db2cos script 533
db2dart command

INSPECT command comparison 418
troubleshooting overview 418

db2diag command
examples 421

db2diag log files
interpreting

informational record 529
db2diag logs

details 525
first occurrence data capture (FODC) information 535
interpreting

overview 526
using db2diag tool 421

db2drdat command
output file 449

db2expln command
information displayed

aggregation 281
block identifier preparation 280
data stream 279
delete 279

Index 577

db2expln command (continued)
information displayed (continued)

federated query 283
insert 279
join 277
miscellaneous 285
parallel processing 281
row identifier preparation 280
table access 271
temporary table 275
update 279

output description 270
DB2FODC registry variable

collecting diagnostic information 538
db2gov command

details 16
starting DB2 Governor 17
stopping DB2 Governor 29

db2inspf command
troubleshooting 491

db2level command
service-level identification 424
version-level identification 424

db2licm command
compliance report 495

db2look command
creating databases 425

db2ls command
listing installed products and features 428

db2mtrk command
sample output 94

db2pd command
output collected by default db2cos script 533
troubleshooting examples 430

db2pdcfg command
setting options in DB2FODC registry variable 538

db2support command
details 442
running 530

db2trc command
dumping trace output 447
formatting trace output 448
overview 446

ddcstrc utility 450
deadlock detector 184
deadlocks

avoiding 139
overview 184

decision support system (DSS) 449
deferred index cleanup

monitoring 65
defragmentation

index 67
DEGREE general request element 328
Design Advisor

converting single-partition to multipartition databases 410
defining workloads 409
details 405
restrictions 410
running 408

diaglevel configuration parameter
updating 530

diagnostic information
analyzing 469, 495
applications 548
data movement problems 468
DB2 administration server (DAS) problems 468

diagnostic information (continued)
Dr. Watson logs 551
first occurrence data capture (FODC)

configuring 539
details 538
files 535

hardware 548
installation problems 492
instance management problems 468
Linux

diagnostic tools 465
obtaining information 548
system core file 549

overview 467, 503
submitting to IBM Software Support 557
UNIX

diagnostic tools 465
obtaining information 548
system core file 549

Windows
diagnostic tools 464
event logs 550
obtaining information 548

dirty read 132
disks

storage performance factors 54
Distributed Data Management (DDM)

db2drdat output 449
unsupported commands 506

distribution statistics
details 389
examples 393
manual update rules 397
query optimization 391

documentation
overview 561
PDF files 561
printed 561
terms and conditions of use 570

DPFXMLMOVEMENT general request element 328
dump files

error reports 535
dumping trace to file

overview 447
dynamic queries

setting the optimization class 292
using parameter markers to reduce compilation time 153

dynamic SQL
isolation levels 137

E
ECF return codes 544
end unit of work reply message (ENDUOWRM) 450
equality predicates 351
error messages

DB2 Connect 507
errors

troubleshooting 503
event monitors

troubleshooting 541
exchange server attributes command 450
EXCSAT command 450
EXCSATRD command 450
explain

capturing section explain information 249
EXPLAIN statement 250

578 Troubleshooting and Tuning Database Performance

explain (continued)
section explain 250

explain facility
analyzing information 260
capturing information 247
capturing section actuals information 252
creating snapshots 247
data object information 266
data operator information 267
db2exfmt command 263
db2expln command 263
determining where federated queries are evaluated 203
explain output

section actuals 258
federated databases 207
guidelines for using information 259
instance information 267
overview 245, 263, 270
tuning SQL 245

explain tables
organization 264

expressions
over columns 145
search conditions 144

EXTNAM object 450

F
fast communication manager (FCM)

memory requirements 86
federated databases

concurrency control 131
determining where queries are evaluated 203
global analysis of queries 207
global optimization 205
pushdown analysis 199
server options 80

federated query information
db2expln command 283

FETCH FIRST N ROWS ONLY clause
using with OPTIMIZE FOR N ROWS clause 150

first failure data capture (FFDC) trap files 551
first occurrence data capture (FODC)

data generation 540
details 535
dump files 535
platform-specific 548
subdirectories 540
trap files 552

fix packs
acquiring 513
overview 513

fragment elimination
see data partition elimination 237

free space control record (FSCR)
MDC tables 59
standard tables 57

frequent-value distribution statistics 389

G
general optimization guidelines 324
global optimization

guidelines 324
global registry

altering 424

global variables
troubleshooting 488

granularity
lock 164

grouping effect on access plans 231

H
hardware

configuration best practices 46
hash joins

details 217
help

configuring language 565
SQL statements 565

how this book is structured vii
HP-UX

configuration best practices 46

I
I/O

parallelism
managing 106
prefetching 104

I/O completion ports (IOCPs)
AIX 107
configuring 107

IBM
contacting 557

IBM Data Server
messages 545

IN (Intent None) 165
index compression

database performance 401
index reorganization

automatic 129
costs 126
overview 110, 120
reducing need 127

index scans
details 209
lock modes 169
previous leaf pointers 61
search processes 61

indexes
advantages 67
asynchronous cleanup 64, 65
catalog statistics 387
cluster ratio 214
clustering

details 78
data consistency 491
data-access methods 212
deferred cleanup 65
Design Adviser 405
explain information to analyze use 260
managing

MDC tables 59
overview 62
standard tables 57

online defragmentation 67
partitioned tables

details 72
performance tips 71
planning 69

Index 579

indexes (continued)
statistics

detailed 386
manual update rules 387

structure 61
inline LOBs 403
INLIST2JOIN query rewrite request element 331
inplace table reorganization 117
inserting data

disregarding uncommitted insertions 140
performance 154

INSPECT command
CHECK clause 491
db2dart comparison 418

installation
DB2 products

known problems 494, 495
troubleshooting 492

error logs 492
Information Center

problems 495
listing DB2 database products 428
problems

analyzing 493
troubleshooting 494

instances
explain information 264, 267

interim fix packs
details 513

intra-partition parallelism
details 161
optimization strategies 233

IOCPs (I/O completion ports)
AIX 107

IS (Intent Share) 165
isolation levels

comparison 132
cursor stability (CS) 132
lock granularity 163
performance 132
read stability (RS) 132
repeatable read (RR) 132
specifying 137
uncommitted read (UR) 132

ISV applications
best practices 46

IX (Intent Exclusive) lock mode 165

J
JDBC

applications
trace facility configuration 457, 459

isolation levels 137
join predicates 147
join request elements

HSJOIN 346
JOIN 345
MSJOIN 346
NLJOIN 347

joins
data type mismatches 146
explain information 260, 277
hash 217
merge 217
methods 226
nested-loop 217

joins (continued)
optimizer selection 220
overview 217
partitioned database environments

methods 226
table queue strategy 224

shared aggregation 190
star schema 150
subquery transformation by optimizer 190
unnecessary outer 149

K
keys

compilation 326
statement 326

L
large objects (LOBs)

inline 403
License Center

compliance
report 495

licenses
compliance

report 495
Linux

configuring
best practices 46

listing DB2 database products 428
list prefetching 103
lock granularity

factors affecting 166
overview 164

lock modes
compatibility 167
details 165
IN (Intent None) 165
IS (Intent Share) 165
IX (Intent Exclusive) 165
multidimensional clustering (MDC) tables

block index scans 177
RID index scans 172
table scans 172

NS (Scan Share) 165
NW (Next Key Weak Exclusive) 165
S (Share) 165
SIX (Share with Intent Exclusive) 165
U (Update) 165
X (Exclusive) 165
Z (Super Exclusive) 165

locklist configuration parameter
lock granularity 163

locks
application performance 163
application type effect 166
concurrency control 163
conversion 182
data-access plan effect 167
deadlocks 184
deferral 141
granting simultaneously 167
isolation levels 132
lock count 165
next-key locking 168

580 Troubleshooting and Tuning Database Performance

locks (continued)
objects 165
overview 130
partitioned tables 180
standard tables 169
timeouts

avoiding 139
overview 183

waits
overview 183
resolving 184

log buffers
improving DML performance 402

log sequence numbers (LSNs)
gap 99

logical partitions
multiple 40

logs
administering 522
archive 402
circular logging 402
governor utility 26
statistics 374, 379

M
materialized query tables (MQTs)

automatic summary tables 242
partitioned databases 223
replicated 223

maxappls configuration parameter
effect on memory use 80

maxcoordagents configuration parameter 80
memory

allocating
overview 80
parameters 86

bufferpool allocation at startup 97
database manager 83
FCM buffer pool 86
partitioned database environments 93
self-tuning 87, 88

Memory Tracker command
sample output 94

merge joins
details 217

messages 545
monitoring

abnormal values 15
application behavior 16
capturing section explain information 249
cross-partition 11
system performance 11, 12

multidimensional clustering (MDC) tables
block-level locking 163
deferred index cleanup 65
lock modes

block index scans 177
table and RID index scans 172

management of tables and indexes 59
optimization strategies 235
rollout deletion 235

multiple-partition databases
converting from single-partition databases 410

N
nested-loop joins

details 217
next-key locks 168
nicknames

statistics 385
no-op expressions 146
non-repeatable reads

concurrency control 131
isolation levels 132

NOTEX2AJ query rewrite request element 331
notices 571
notify level configuration parameter

updating 524
NOTIN2AJ query rewrite request element 332
NS (Scan Share) lock mode 165
numdb database manager configuration parameter

effect on memory use 80
NW (Next Key Weak Exclusive) lock mode 165

O
ODBC

applications
trace facility configuration 460

specifying isolation level 137
offline index reorganization

space requirements 126
offline table reorganization

advantages 111
disadvantages 111
failure 115
improving performance 116
locking conditions 114
performing 115
phases 114
recovery 115
space requirements 126
temporary files created during 114

online index reorganization
concurrency 122
locking 122
log space requirements 126

online table reorganization
advantages 111
concurrency 119
details 117
disadvantages 111
locking 119
log space requirements 126
pausing 119
performing 118
recovery 118
restarting 119

operations
merged by optimizer 189
moved by optimizer 189

OPTGUIDELINES element
global 322
statement-level 326

optimization
access plans

column correlation 350
effect of sorting and grouping 231
index access methods 212
using indexes 209

Index 581

optimization (continued)
classes

choosing 290
details 288
setting 292

data-access methods 208
guidelines

general 301
plan 305
query rewrite 301
table references 309
troubleshooting 497
types 301
verifying use 313

intra-partition parallelism 233
join strategies 220
joins in partitioned database environments 226
MDC tables 235
partitioned tables 237
queries

improving through constraints 151
query rewriting methods 189
reorganizing tables and indexes 110
statistics 354

optimization classes
overview 288

optimization guidelines
overview 293
statement-level 308
XML schema

general optimization guidelines 327
plan optimization guidelines 332
query rewrite optimization guidelines 331

optimization profile cache 348
optimization profiles

binding to package 299
configuring data server to use 297
creating 297
deleting 300
details 295
managing 349
modifying 299
overview 293
specifying for application 298
specifying for optimizer 298
SYSTOOLS.OPT_PROFILE table 347
troubleshooting 497
XML schema 314

OPTIMIZE FOR N ROWS clause 150
optimizer

statistical views
creating 353
overview 352

tuning 293
OPTPROFILE element 322
ordering DB2 books 564
outer joins

unnecessary 149
overflow records

performance effect 123
standard tables 57

P
page cleaners

tuning 95

pages
overview 57

parallelism
db2expln command information 281
I/O

managing 106
I/O server configuration 104
intra-partition

optimization strategies 233
overview 161

non-SMP environments 161
parameter markers

reducing compilation time for dynamic queries 153
parameters

autonomic
best practices 46

memory allocation 86
PRDID 450

partitioned database environments
decorrelation of queries 192
join methods 226
join strategies 224
replicated materialized query tables 223
self-tuning memory 91, 93

partitioned tables
clustering indexes 78
indexes 72
locking 180
optimization strategies 237

performance
analyzing changes 245
application design 129
db2batch command 7
disk-storage factors 54
enhancements

relational indexes 71
explain information 259
isolation level effect 132
locks

managing 163
overview 1
queries 143, 186
runstats

improving 401
system

monitoring 11, 12
troubleshooting 1

performance tuning
Configuration Advisor 54
evaluating 245
guidelines 1
limits 1
SQL query

using section actuals 254
phantom reads

concurrency control 131
isolation levels 132

physical database design
best practices 46

points of consistency
database 130

PRDID parameter 450
precompiling

specifying isolation level 137
predicate pushdown query optimization

combined SQL/XQuery statements 194

582 Troubleshooting and Tuning Database Performance

predicates
avoiding redundant 151
characteristics 197
implied

example 196
join

non-equality 147
on expressions 145

local
with expressions over columns 145

no-op expressions 146
simple equality 351
translation by optimizer 189

prefetching
block-based buffer pools 103
I/O server configuration 104
list 103
parallel I/O 104
performance effects 101
sequential 101

problem determination
connection 504
diagnostic tools

overview 503
information available 569
installation problems 492
post-connection 505, 506
tutorials 569

process model
details 32, 40

process status utility
command 450, 503

processes
overview 31

profiles
optimization

details 295
overview 293

statistics 373
ps command

EXTNAM object 450
overview 503

pushdown analysis
federated database queries 199

Q
QRYOPT general request element 329
quantile distribution statistics 389
queries

criteria for star schema joins 150
dynamic 153
input variables 152
tuning

restricting SELECT statements 156
SELECT statements 155

query optimization
catalog statistics 349
classes 288, 290
database partition group effects 349
distribution statistics 391
improving through constraints 151
no-op expressions in predicates 146
performance 186
profiles 293
table space effects 55

Query Patroller
troubleshooting 541

query rewrite
examples 192
optimization guidelines 301

R
read stability (RS)

details 132
RECEIVE BUFFER 449
record identifiers (RIDs)

standard tables 57
relational indexes

advantages 67
REOPT bind option 152
REOPT general request element 330
REORG TABLE command

performing offline 115
reorganization

automatic 128
error handling 120
indexes

automatic 129
costs 126
determining need 123
online (locking and concurrency) 122
overview 120
procedure 110

methods 111
monitoring 120
reducing need 127
tables

automatic 129
costs 126
determining need 123
necessity 110
offline (compared with online) 111
offline (details) 114
offline (failure and recovery) 115
offline (improving performance) 116
online (details) 117
online (failure and recovery) 118
online (locking and concurrency) 119
online (pausing and restarting) 119
online (procedure) 118
procedure 110

repeatable read (RR)
details 132

return codes
internal 544

REXX language
specifying isolation level 137

rollbacks
overview 130

rollout deletion
deferred cleanup 65

row blocking
specifying 159

row identifiers
preparing before table access 280

RTS general request element 330
RUNSTATS command

automatic statistics collection 368
sampling statistics 382

RUNSTATS utility
automatic statistics collection 372

Index 583

RUNSTATS utility (continued)
improving performance 401
information about sub-elements 384
statistics collected 359

S
S (Share) lock mode

details 165
sampling

data 161
SARGable predicates

overview 197
scan sharing

overview 214
scenarios

access plans 262
improving cardinality estimates 354

scripts
troubleshooting 500

SECCHK command 450
SELECT statement

eliminating DISTINCT clauses 192
prioritizing output for 156

self-tuning memory
details 88
disabling 89
enabling 88
monitoring 90
overview 87
partitioned database environments 91, 93

Self-tuning Memory Manager (STMM)
see self-tuning memory 87

send buffer
tracing data 449

sequential prefetching 101
SET CURRENT QUERY OPTIMIZATION statement

setting query optimization class 292
shadow paging

long objects 402
SIX (Share with Intent Exclusive) lock mode 165
snapshot monitoring

system performance 11
Solaris operating systems

configuration best practices 46
sorting

access plans 231
performance tuning 108

SQL compiler
process details 186

SQL statements
benchmarking 6
explain tool 270
help

displaying 565
isolation levels 137
rewriting 189
tuning

explain facility 245
restricting SELECT statements 156
SELECT statements 155

writing
best practices 144

SQL0965 error code 507
SQL0969 error code 507
SQL30020 error code 507
SQL30060 error code 507

SQL30061 error code 507
SQL30073 error code 507
SQL30081N error code 507
SQL30082 error code 507
SQL5043N error code 507
SQLCA

buffers of data 449
SQLCODE field 449

SQLCODE
field in SQLCA 449

SQLJ
isolation levels 137

SRVNAM object 450
statement concentrator

details 286
statement keys 326
states

lock modes 165
static queries

setting optimization class 292
static SQL

isolation levels 137
statistical views

creating 353
improving cardinality estimates 354
optimization statistics 354
overview 352

statistics
catalog

avoid manual updates 400
details 359

collection
automatic 368, 372
based on sample table data 382
guidelines 380

column group 350
query optimization 349
updating manually 384

statistics profile 373
STMTKEY element 325
STMTKEY field 297
STMTPROFILE element 325
storage keys

troubleshooting 501
sub-element statistics

runstats utility 384
SUBQ2JOIN query rewrite request element

XML schema 332
subqueries

correlated 192
summary tables

materialized query tables (MQTs) 242
system commands

dbx (UNIX) 549
gdb (Linux) 549
xdb (HP-UX) 549

system core files
Linux

accessing information 549
overview 549

UNIX
accessing information 549
overview 549

system performance
monitoring 11

system processes 32
SYSTOOLS.OPT_PROFILE table 347

584 Troubleshooting and Tuning Database Performance

T
table spaces

query optimization 55
tables

access information 271
join strategies in partitioned databases 224
lock modes 169
multidimensional clustering (MDC) 59
offline reorganization

details 114
improving performance 116
recovery 115

online reorganization
details 117
pausing and restarting 119
recovery 118

overview 110
partitioned

clustering indexes 78
queues 224
reorganization

automatic 129
costs 126
determining need for 123
error handling 120
methods 111
monitoring 120
offline 115
online 118
overview 110
procedure 110
reducing the need for 127

standard
managing 57

statistics
manual update rules 385

tasks
troubleshooting 483

TCP/IP
ACCSEC command 450
SECCHK command 450

temporary table information
db2expln command 275

terms and conditions
publications 570

test fixes
applying 515
details 513
types 515

threads
process model 32, 40
troubleshooting scripts 500

timeouts
lock 183

Tivoli System Automation for Multiplatforms
high-availability 490

tools
diagnostic

Linux 465
UNIX 465
Windows 464

trace utility (db2drdat) 449
traces

CLI
analyzing 461, 462, 463, 464
obtaining 460
overview 459

traces (continued)
Control Center 457
data between DB2 Connect and server 449
DB2 446, 447, 448
DRDA

buffer information 456
interpreting 449
samples 452

JDBC applications
DB2 JDBC Type 2 Driver 457
DB2 Universal JDBC Driver 459

output file 449, 450
output file samples 452
overview 445
troubleshooting overview 445

trap files
formatting (Windows) 552
overview 551

troubleshooting
administrative task scheduler 483
beta versions of products 494
compression dictionary not automatically created 484
connections 504, 505
contacting IBM Support 556
database creation 499
DB2 Connect 503, 507
DB2 database products 467
db2diag log file entry interpretation 526
DDM commands 506
deadlock problems

diagnosing 474
resolving 476

diagnostic data
automatic collection 538
collecting base set 467
configuring collection 539
DAS 468
data movement 468
directory path 518
installation 492
instance management 468
manual collection 538
splitting by database partition server, database partition,

or both 519
diagnostic logs 525
disk storage space for temporary tables 485
FCM problems 499
gathering information 424, 430, 442, 467, 503, 557
getting fixes 513
high-availability problems 490
installation problems 492, 494, 495
internal return codes 544
lock problems

lock escalations 479, 480
lock timeouts 477, 478
lock wait 471, 473
overview 470

log record decompression 486
online information 569
overview 413, 517
problem re-creation 425
resource-related problems 530
resources 512
searching for solutions to problems 511
section actuals collection 500
storage keys 501
sustained traps 482

Index 585

troubleshooting (continued)
tasks 483
tools 417
traces

CLI applications 459, 460
Control Center 457
DRDA 452, 456
JDBC applications 457, 459
obtaining using db2trc command 446
ODBC applications 459, 460
overview 445

tutorials 569
tuning

guidelines 1
limitations 1
queries 143
sorts 108
SQL with explain facility 245

tuning partition
determining 93

tutorials
list 569
problem determination 569
troubleshooting 569
Visual Explain 569

U
U (Update) lock mode 165
uncommitted data

concurrency control 131
uncommitted read (UR) isolation level

details 132
units of work (UOW)

overview 130
UNIX

listing DB2 database products 428
updates

data
performance 100

DB2 Information Center 566, 567
lost

concurrency control 131
user-defined functions (UDFs)

entering statistics for 397
utilities

db2drdat 449
ps (process status) 450, 503
trace 449

V
views

merging by optimizer 190
predicate pushdown by optimizer 192

W
workloads

performance tuning
Design Advisor 405, 409

writing queries
best practices 143

X
X (Exclusive) lock mode 165
XML data

partitioned indexes 72
XML schemas

ACCESS access request element 335
access request elements 333
accessRequest group 333
computationalPartitionGroupOptimizationChoices

group 324
current optimization profile 314
DEGREE general request element 328
DPFXMLMOVEMENT general request element 328
general optimization guidelines 327
generalRequest group 327
global OPTGUIDELINES element 322
HSJOIN join request element 346
INLIST2JOIN query rewrite request element 331
IXAND access request element 337
IXOR access request element 339
IXSCAN access request element 340
JOIN join request element 345
join request elements 344
joinRequest group 344
LPREFETCH access request element 341
MQTOptimizationChoices group 323
MSJOIN join request element 346
NLJOIN join request element 347
NOTEX2AJ query rewrite request element 331
NOTIN2AJ query rewrite request element 332
OPTGUIDELINES element 326
OPTPROFILE element 322
plan optimization guidelines 332
QRYOPT general request element 329
query rewrite optimization guidelines 331
REOPT general request element 330
rewriteRequest group 331
RTS general request element 330
STMTKEY element 325
STMTPROFILE element 325
SUBQ2JOIN query rewrite request element 332
TBSCAN access request element 342
XANDOR access request element 342
XISCAN access request element 343

XQuery compiler
process details 186

XQuery statements
explain tool for 270
isolation levels 137
rewriting 189

Z
Z (Super Exclusive) lock mode 165
ZRC return codes 544

586 Troubleshooting and Tuning Database Performance

����

Printed in USA

SC27-2461-02

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

9.
7

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

Tr
ou

bl
es

ho
ot

in
g

an
d

Tu
ni

ng
Da

ta
ba

se
Pe

rfo
rm

an
ce

�
�

�

	Contents
	About this book
	How this book is structured

	Part 1. Performance overview
	Chapter 1. Performance tuning tools and methodology
	Benchmark testing
	Benchmark preparation
	Benchmark test creation
	Benchmark test execution
	Benchmark test analysis example

	Chapter 2. Performance monitoring tools and methodology
	Operational monitoring of system performance
	Basic set of system performance monitor elements
	Abnormal values in monitoring data

	The governor utility
	Starting and stopping the governor
	The governor daemon
	The governor configuration file
	Governor rule clauses
	Governor log files
	Stopping the governor

	Chapter 3. Factors affecting performance
	System architecture
	DB2 architecture and process overview
	The DB2 process model
	Database agents
	Database agent management
	Client-server processing model
	Connection-concentrator improvements for client connections
	Agents in a partitioned database

	Configuring for good performance
	Instance configuration
	Table space design
	Disk-storage performance factors
	Table space impact on query optimization

	Database design
	Tables
	Table and index management for standard tables
	Table and index management for MDC tables

	Indexes
	Index structure
	Index cleanup and maintenance
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables
	Online index defragmentation
	Using relational indexes to improve performance
	Relational index planning tips
	Relational index performance tips

	Partitioning and clustering
	Index behavior on partitioned tables
	Clustering of nonpartitioned indexes on partitioned tables

	Federated databases
	Server options that affect federated databases

	Resource utilization
	Memory allocation
	Database manager shared memory
	The FCM buffer pool and memory requirements
	Guidelines for tuning parameters that affect memory usage

	Self-tuning memory overview
	Self-tuning memory
	Enabling self-tuning memory
	Disabling self-tuning memory
	Determining which memory consumers are enabled for self tuning
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Buffer pool management
	Buffer pool management of data pages
	Management of multiple database buffer pools
	Proactive page cleaning
	Improving update performance
	Prefetching data into the buffer pool

	Database deactivation behavior in first-user connection scenarios
	Tuning sort performance

	Data organization
	Table reorganization
	Choosing a table reorganization method
	Classic (offline) table reorganization
	Inplace (online) table reorganization
	Monitoring a table reorganization

	Index reorganization
	Locking and concurrency considerations for online index reorganization

	Determining when to reorganize tables and indexes
	Costs of table and index reorganization
	Reducing the need to reorganize tables and indexes
	Automatic reorganization
	Enabling automatic table and index reorganization

	Application design
	Application processes, concurrency, and recovery
	Concurrency issues
	Isolation levels
	Specifying the isolation level
	Currently committed semantics improve concurrency
	Option to disregard uncommitted insertions
	Evaluate uncommitted data through lock deferral

	Writing and tuning queries for optimal performance
	Writing SQL statements
	Using constraints to improve query optimization
	Using the REOPT bind option with input variables in complex queries
	Using parameter markers to reduce compilation time for dynamic queries
	Setting the DB2_REDUCED_OPTIMIZATION registry variable

	Improving insert performance
	Efficient SELECT statements
	Guidelines for restricting SELECT statements
	Specifying row blocking to reduce overhead
	Data sampling in queries
	Parallel processing for applications

	Lock management
	Locks and concurrency control
	Lock granularity
	Lock attributes
	Factors that affect locking
	Locks and types of application processing
	Locks and data-access methods

	Lock type compatibility
	Next-key locking
	Lock modes and access plans for standard tables
	Lock modes for MDC table and RID index scans
	Lock modes for MDC block index scans
	Locking behavior on partitioned tables
	Lock conversion
	Lock waits and timeouts
	Specifying a lock wait mode strategy

	Deadlocks

	Query optimization
	The SQL and XQuery compiler process
	Query rewriting methods and examples
	Predicate typology and access plans
	Federated database query-compiler phases

	Data-access methods
	Data access through index scans
	Types of index access
	Index access and cluster ratios
	Scan sharing

	Joins
	Join methods
	Strategies for selecting optimal joins
	Replicated materialized query tables in partitioned database environments
	Join strategies for partitioned databases
	Join methods for partitioned databases

	Effects of sorting and grouping on query optimization
	Optimization strategies
	Optimization strategies for intra-partition parallelism
	Optimization strategies for MDC tables
	Optimization strategies for partitioned tables

	Improving query optimization with materialized query tables
	Explain facility
	Tuning SQL statements using the explain facility
	Guidelines for capturing explain information
	Guidelines for capturing section explain information
	Guidelines for using explain information
	Guidelines for analyzing explain information
	Using access plans to self-diagnose performance problems with REFRESH TABLE and SET INTEGRITY statements
	Tools for collecting and analyzing explain information
	The explain tables and organization of explain information
	SQL and XQuery explain tool

	Optimizing query access plans
	Statement concentrator reduces compilation overhead
	Access plan reuse
	Optimization classes
	Using optimization profiles if other tuning options do not produce acceptable results
	Optimization profiles and guidelines
	Database partition group impact on query optimization
	Collecting accurate catalog statistics, including advanced statistics features
	Column group statistics
	Correlation of simple equality predicates

	Statistical views
	Using statistical views
	View statistics that are relevant to optimization
	Scenario: Improving cardinality estimates using statistical views

	Catalog statistics
	Catalog statistics tables
	Automatic statistics collection
	Guidelines for collecting and updating statistics
	Detailed index statistics
	Distribution statistics
	Statistics for user-defined functions
	Catalog statistics for modeling and what-if planning
	Avoiding manual updates to the catalog statistics

	Minimizing runstats impact

	Data compression and performance
	Reducing logging overhead to improve DML performance
	Inline LOBs improve performance

	Chapter 4. Establishing a performance tuning strategy
	The Design Advisor
	Using the Design Advisor
	Defining a workload for the Design Advisor
	Using the Design Advisor to convert from a single-partition to a multi-partition database
	Design Advisor limitations and restrictions

	Part 2. Troubleshooting a problem
	Chapter 5. Tools for troubleshooting
	Overview of the db2dart tool
	Comparison of INSPECT and db2dart

	Analyzing db2diag log files using db2diag tool
	Displaying and altering the Global Registry (UNIX) using db2greg
	Identifying the version and service level of your product
	Mimicking databases using db2look
	Listing DB2 database products installed on your system (Linux and UNIX)
	Monitoring and troubleshooting using db2pd command
	Collecting environment information using db2support command
	Basic trace diagnostics
	DB2 traces
	Obtaining a DB2 trace using db2trc
	Dumping a DB2 trace file
	Formatting a DB2 trace file

	DRDA trace files
	Trace utility
	Trace output
	Trace output file analysis
	Trace output file samples
	Subsequent buffer information for DRDA traces

	Control Center traces
	JDBC trace files
	Obtaining traces of applications that use the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows
	Obtaining traces of applications that use the DB2 Universal JDBC Driver

	CLI trace files
	Obtaining CLI traces
	Interpreting input and output parameters in CLI trace files
	Analyzing Dynamic SQL in CLI traces
	Interpreting timing information in CLI traces
	Interpreting unknown values in CLI traces
	Interpreting multi-threaded CLI trace output

	Platform-specific tools
	Diagnostic tools (Windows)
	Diagnostic tools (Linux and UNIX)

	Chapter 6. Troubleshooting DB2 database
	Collecting data for DB2
	Collecting data for data movement problems
	Collecting data for DAS and instance management problems

	Analyzing data for DB2
	Diagnosing and resolving locking problems
	Diagnosing a lock wait problem
	Resolving lock wait problems

	Diagnosing a deadlock problem
	Resolving deadlock problems

	Diagnosing a lock timeout problem
	Resolving lock timeout problems

	Diagnosing a lock escalation problem
	Resolving lock escalation problems

	Recovering from sustained traps
	Troubleshooting administrative task scheduler
	Troubleshooting compression
	Data compression dictionary is not automatically created
	Row compression not reducing disk storage space for temporary tables
	Data replication process cannot decompress a compressed row image

	Troubleshooting global variable problems
	Troubleshooting high availability
	Tivoli System Automation for Multiplatforms (SA MP) Base Component is not installed by DB2 Version 9.5 GA on AIX 6.1

	Troubleshooting inconsistencies
	Troubleshooting data inconsistencies
	Troubleshooting index to data inconsistencies

	Troubleshooting installation of DB2 database systems
	Collecting data for installation problems
	Analyzing data for installation problems
	Known problems and solutions
	Errors when installing a DB2 database product as a non-root user to the default path on a system WPAR (AIX)
	Beta and non-beta versions of DB2 database products cannot coexist
	Resolving service name errors when you install DB2 database products

	Troubleshooting license issues
	Analyzing DB2 license compliance reports

	Troubleshooting optimization guidelines and profiles
	Troubleshooting partitioned database environments
	FCM problems related to 127.0.0.2 (Linux and UNIX)
	Creating a database partition on an encrypted file system (AIX)

	Troubleshooting scripts
	Recompile the static section to collect section actuals after applying Fix Pack 1
	Troubleshooting storage key support

	Chapter 7. Troubleshooting DB2 Connect
	Diagnostic tools
	Gathering relevant information
	Initial connection is not successful
	Problems encountered after an initial connection
	Unsupported DDM commands

	Common DB2 Connect problems

	Chapter 8. Searching knowledge bases
	How to search effectively for known problems
	Troubleshooting resources

	Chapter 9. Getting DB2 product fixes
	Getting fixes
	Fix packs, interim fix packs and test fixes
	Applying test fixes

	Chapter 10. Learning more about troubleshooting
	Learning more
	Diagnostic data directory path
	Splitting a diagnostic data directory path by database partition server, database partition, or both

	Administration notification log
	Interpreting administration notification log file entries
	Setting the error capture level for the administration notification log file

	DB2 diagnostic (db2diag) log files
	Interpretation of diagnostic log file entries
	Interpreting the informational record of the db2diag log files
	Setting the error capture level of the diagnostic log files

	Combining DB2 database and OS diagnostics
	db2cos (callout script) output files
	Dump files
	First occurrence data capture information
	Collecting diagnosis information based on common outage problems
	Configuring for automatic collection of diagnostic information
	Data collected as part of FODC and its placement
	Automatic FODC data generation
	DB2 Query Patroller and First Occurrence Data Capture (FODC)
	Monitor and audit facilities using First Occurrence Data Capture (FODC)
	Graphical tools using First Occurrence Data Capture (FODC)

	Internal return codes
	Introduction to messages
	Platform-specific error log information
	System core files (Linux and UNIX)
	Accessing system core file information (Linux and UNIX)
	Accessing event logs (Windows)
	Exporting event logs (Windows)
	Accessing the Dr. Watson log file (Windows)

	Trap files
	Formatting trap files (Windows)

	Chapter 11. Support
	DB2 Health Advisor Service
	How to use the DB2 Health Advisor Service

	Contacting IBM Software Support
	Submitting data to IBM Software Support

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

