IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Troubleshooting and Tuning Database Performance
Updated September, 2010

SC27-2461-02

IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Troubleshooting and Tuning Database Performance
Updated September, 2010

SC27-2461-02

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book.

How this book is structured.

. Vil
. vil

Part 1. Performance overview 1
Chapter 1. Performance tuning tools and
methodology . 5
Benchmark testing . .5
Benchmark preparation . . 6
Benchmark test creation .7
Benchmark test execution . . 8
Benchmark test analysis example .9
Chapter 2. Performance monitoring
tools and methodology. . M
Operational monitoring of system performance .11
Basic set of system performance monitor
elements . .12
Abnormal values in monltorlng data .15
The governor utility . 16
Starting and stopping the governor . 16
The governor daemon . . .17
The governor configuration flle .18
Governor rule clauses . .21
Governor log files . . 26
Stopping the governor. . 29
Chapter 3. Factors affecting
performance . 31
System architecture. . . . 31
DB2 architecture and process overview . . 31
The DB2 process model .32
Database agents . . . 37
Configuring for good performance . 46
Instance configuration . . 53
Table space design . . . 54
Disk-storage performance factors . . . 54
Table space impact on query optimization . . 55
Database design . . 57
Tables . 57
Indexes. . 61
Partitioning and clusterlng .72
Federated databases . 80
Resource utilization. . 80
Memory allocation . . . 80
Self-tuning memory overview . . 87
Buffer pool management . . . 94
Database deactivation behavior in f1rst—user
connection scenarios . . 107
Tuning sort performance . 108
Data organization . . 110
Table reorganization . . 110
Index reorganization . . 120

© Copyright IBM Corp. 2006, 2010

Determining when to reorganize tables and

indexes . 123
Costs of table and 1ndex reorganrzatron . 126
Reducing the need to reorganize tables and
indexes . . . 127
Automatic reorganrzatron . 128
Application design o . 129
Application processes, concurrency, and
recovery . . 129
Concurrency issues . 131
Writing and tuning queries for optrmal
performance. . . 143
Improving insert performance . 154
Efficient SELECT statements . . . 155
Guidelines for restricting SELECT statements 156
Specifying row blocking to reduce overhead . . 159
Data sampling in queries . . 160
Parallel processing for apphcatlons . . 161
Lock management. . 162
Locks and concurrency control . 163
Lock granularity . le4
Lock attributes . . 165
Factors that affect lockmg . 166
Lock type compatibility . . 167
Next-key locking . . 168
Lock modes and access plans for standard
tables . . 168

Lock modes for MDC table and RID 1ndex scans 172

Lock modes for MDC block index scans . 177
Locking behavior on partitioned tables . . 180
Lock conversion . 182
Lock waits and timeouts . 183
Deadlocks . 184
Query optimization . 186
The SQL and XQuery comprler process . 186
Data-access methods . .o . 208
Joins . .o . 216
Effects of sorting and grouprng on query
optimization. .o . 231
Optimization strategies . . 233

Improving query optimization w1th materrahzed

query tables . . 242
Explain facility . . . 245
Optimizing query access plans . 286
Statistical views . 352
Catalog statistics . 359
Minimizing runstats 1mpact . 401
Data compression and performance . . . 401
Reducing logging overhead to improve DML
performance. e . 402
Inline LOBs improve performance . 403
Chapter 4. Establishing a performance
tuning strategy. . 405
The Design Advisor . . 405
iii

Using the Design Advisor 408
Defining a workload for the Design Advrsor .. 408
Using the Design Advisor to convert from a

single-partition to a multi-partition database . . 410
Design Advisor limitations and restrictions . . 410

Part 2. Troubleshooting a problem 413

Chapter 5. Tools for troubleshooting 417
Overview of the db2dart tool 418
Comparison of INSPECT and db2dart ... 418
Analyzing db2diag log files using db2diag tool . . 420
Displaying and altering the Global Reg1stry (UNIX)

using db2greg 424

Identifying the version and service level of your

product . . . oo . 424

Mimicking databases usmg db2100k . .. 425

Listing DB2 database products installed on your

system (Linux and UNIX) 428

Monitoring and troubleshooting using depd

command 430

Collecting environment 1nformat1on usmg

db2support command 442

Basic trace diagnostics445
DB2 traces446
DRDA trace files449
Control Center traces.457
JDBC trace files.457
CLI trace files45

Platform-specific tools . . o 1%
Diagnostic tools (Wrndows) S 464
Diagnostic tools (Linux and UNIX) 465

Chapter 6. Troubleshooting DB2
database 467

Collecting data for DB2 467
Collecting data for data movement problems 468
Collecting data for DAS and instance
management problems 468

Analyzing data for DB2 469

Diagnosing and resolving locking problems ... 469
Diagnosing a lock wait problem 471
Diagnosing a deadlock problem 474
Diagnosing a lock timeout problem 477
Diagnosing a lock escalation problem 479

Recovering from sustained traps 482

Troubleshooting administrative task scheduler .. 483

Troubleshooting compression 484
Data compression dictionary is not
automatically created. 484
Row compression not reducing disk storage
space for temporary tables 485
Data replication process cannot decompress a
compressed row image48

Troubleshooting global variable problems488

Troubleshooting high availability 49

Tivoli System Automation for Multrplatforms

(SA MP) Base Component is not installed by

DB2 Version 9.5 GAon AIX6.149
Troubleshooting inconsistencies 491

iv Troubleshooting and Tuning Database Performance

Troubleshooting data inconsistencies .

Troubleshooting index to data inconsistencies
Troubleshooting installation of DB2 database
systems .

Collecting data for 1nstallatlon problems

Analyzing data for installation problems

Known problems and solutions
Troubleshooting license issues . .

Analyzing DB2 license compliance reports
Troubleshooting optimization guidelines and
profiles

Troubleshooting part1t1oned database enV1ronments

FCM problems related to 127.0.0.2 (Lrnux and
UNIX). . .
Creating a database part1t1on on an encrypted
file system (AIX)
Troubleshooting scripts .
Recompile the static section to collect sect1on
actuals after applying Fix Pack 1 .
Troubleshooting storage key support

Chapter 7. Troubleshooting DB2

Connect.

Diagnostic tools L.

Gathering relevant 1nformatron

Initial connection is not successful

Problems encountered after an initial connectlon
Unsupported DDM commands

Common DB2 Connect problems .

Chapter 8. Searching knowledge
bases. .
How to search effectwely for known problems
Troubleshooting resources .

Chapter 9. Getting DB2 product fixes

Getting fixes. .
Fix packs, interim f1x packs and test flxes .
Applying test fixes

Chapter 10. Learning more about
troubleshooting
Learning more .
Diagnostic data drrectory path
Administration notification log
DB2 diagnostic (db2diag) log files
Combining DB2 database and OS d1agnost1cs
db2cos (callout script) output files .
Dump files . .
First occurrence data capture 1nformat1on .
Internal return codes .
Introduction to messages . .
Platform-specific error log 1nformat1on
Trap files .

Chapter 11. Support

DB2 Health Advisor Service .
How to use the DB2 Health Advrsor Serv1ce .

Contacting IBM Software Support

. 491

491

. 492
. 492
. 493
. 493
. 495
. 495

. 497

499

. 499

. 499
. 500

. 500
. 501

. 503
. 503
. 503
. 504

505

. 506
. 507

. 511
. 511
. 511

513

. 513
. 513
. 515

. 517
. 517
. 518
. 522
. 525

530

. 533
. 535
. 535
. 544
. 545
. 548
. 551

. 553
. 553
. 553
. 556

Submitting data to IBM Software Support. . . 557

Part 3. Appendixes 559

Appendix A. Overview of the DB2
technical information 561
DB2 technical library in hardcopy or PDF format 561

Ordering printed DB2 books564
Displaying SQL state help from the command line
processor.565
Accessing dlfferent versions of the DB2

Information Center 565
Displaying topics in your preferred language in the
DB2 Information Center.D565

Updating the DB2 Information Center installed on

your computer or intranet server. . . . 566
Manually updating the DB2 Information Center

installed on your computer or intranet server . . 567
DB2 tutorials 569
DB2 troubleshooting mformatron .
Terms and Conditions570

Appendix B. Notices 571

Index.b75

Contents V

vi Troubleshooting and Tuning Database Performance

About this book

This guide provides information about tuning database performance and solving
problems with DB2® database clients and servers.

It helps you to:

* Develop a performance monitoring and tuning strategy

* Develop a troubleshooting strategy for day-to-day operations
¢ Adjust the configuration of the database server

* Make changes to the applications that use the database server
* Identify problems and errors in a concise manner

* Solve problems based on their symptoms

* Learn about available diagnostic tools

Who should use this book?

This guide is intended for customers, users, system administrators, database
administrators (DBAs), communication specialists, application developers, and
technical support representatives who are interested in tuning database
performance and troubleshooting problems with DB2 database clients and servers.
To use it, you should be familiar with:

¢ Communications, relational database, and local area network (LAN) concepts
¢ Hardware and software requirements and options

* The overall configuration of your network

¢ Application programs and other facilities that run on your network

* Basic DB2 database administrative tasks

* The information on installation and early tasks described in the Quick Beginnings
guides for the products you have installed.

How this book is structured

To assist you in performance monitoring and tuning of the database system, the
information provided here contains the necessary background material to
understand the factors affecting database performance and instructions to help you
tune the performance of your system. To help you understand, isolate, and resolve
problems with your DB2 software, the troubleshooting and support information
contains instructions for using the problem determination resources that are
provided with your DB2 products.

Part 1. Tuning database performance

As a database administrator, you might encounter a situation in which users
anecdotally report that their database applications are running slow. The
information provided here describes how to develop a performance monitoring
strategy to obtain objective assessments of database system performance in
comparison with historical results, how to adjust the configuration of the database
server, and how to make changes to the applications that use the database server;
all with the goal of improving the database system performance without increasing
processing costs and without degrading service to users.

© Copyright IBM Corp. 2006, 2010 vii

viii

* Chapter 1, “Performance tuning tools and methodology,” describes how to
design and implement a benchmark testing program to help you improve
performance.

* Chapter 2, “Performance monitoring tools and methodology,” provides
information about the importance of an operational monitoring strategy that
collects key system performance data on a periodic basis.

* Chapter 3, “Factors affecting performance,” contains information about the
various factors that can affect database system performance. Some of these
factors can be tuned or reconfigured.

* Chapter 4, “Establishing a performance tuning strategy,” describes the DB2
Design Advisor tool that can help you significantly improve your workload
performance.

Part 2. Troubleshooting a problem

To assist you to resolve a problem on your own, the information contained in this
section describes how to identify the source of a problem, how to gather diagnostic
information, where to get fixes, and which knowledge bases to search for
additional information. If you must contact IBM Software Support, there is
information here that describes how to contact support and what diagnostic
information the service technicians require to help you address a problem.

* Chapter 5, “Tools for troubleshooting,” describes the troubleshooting tools that
can be used to help in the systematic approach to solving a problem. The goal is
to determine why something does not work as expected and how to resolve the
problem.

 Chapter 6, “Troubleshooting DB2 database,” provides information about various
known problems that can arise and how to troubleshoot them.

* Chapter 7, “Troubleshooting DB2 Connect ,” provides information about various
known problems that can arise and how to troubleshoot them.

* Chapter 8, “Searching knowledge bases,” provides information about how to
find solutions to problems by searching IBM knowledge bases. This chapter
describes how to optimize your results by using available resources, support
tools, and search methods.

* Chapter 9, “Getting DB2 product fixes,” presents information about obtaining a
product fix that might already be available to resolve your problem. You can get
fixes by following the steps outlined here.

* Chapter 10, “Learning more about troubleshooting,” describes how the following
topics can help you acquire the conceptual information that you require to
effectively troubleshoot problems with DB2 database server.

* Chapter 11, “Contacting IBM Software Support,” provides information about
how to contact IBM Software Support and what information they will require
from you to assist you in resolving product defects and database problems.

Part 3. Appendixes
* Appendix A, “Overview of the DB2 technical information”
* Appendix B, “Notices”

Troubleshooting and Tuning Database Performance

Part 1. Performance overview

Performance refers to the way that a computer system behaves in response to a
particular workload. Performance is measured in terms of system response time,
throughput, and resource utilization.

Performance is also affected by:
* The resources that are available on the system
* How well those resources are used and shared

In general, you will want to tune your system to improve its cost-benefit ratio.
Specific goals could include:

* Processing larger, or more demanding, workloads without increasing processing
costs

* Obtaining faster system response times, or higher throughput, without
increasing processing costs

* Reducing processing costs without degrading service to users

Some benefits of performance tuning, such as a more efficient use of resources and
the ability to add more users to the system, are tangible. Other benefits, such as
greater user satisfaction because of quicker response times, are intangible.

Performance tuning guidelines

Keep the following guidelines in mind when developing an overall approach to
performance tuning.

* Remember the law of diminishing returns: The greatest performance benefits
usually come from your initial efforts.

* Do not tune just for the sake of tuning: Tune to relieve identified constraints.
Tuning resources that are not the primary cause of performance problems can
actually make subsequent tuning work more difficult.

* Consider the whole system: You cannot tune one parameter or resource in
isolation. Before you make an adjustment, consider how the change will affect
the system as a whole. Performance tuning requires trade-offs among various
system resources. For example, you might increase buffer pool sizes to achieve
improved I/O performance, but larger buffer pools require more memory, and
that might degrade other aspects of performance.

* Change one parameter at a time: Do not change more than one factor at a time.
Even if you are sure that all the changes will be beneficial, you will have no way
of assessing the contribution of each change.

* Measure and configure by levels: Tune one level of your system at a time.
System levels include:

- Hardware

- Operating system

— Application server and requester
— Database manager

- SQL and XQuery statements

— Application programs

© Copyright IBM Corp. 2006, 2010 1

* Check for hardware as well as software problems: Some performance problems
can be corrected by applying service to your hardware, your software, or both.
Do not spend excessive time monitoring and tuning your system before
applying service to the hardware or software.

* Understand the problem before you upgrade your hardware: Even if it seems
that additional storage or processor power could immediately improve
performance, take the time to understand where your bottlenecks are. You might
spend money on additional disk storage, only to find that you do not have the
processing power or the channels to exploit it.

* Put fallback procedures in place before you start tuning: If tuning efforts result
in unexpected performance degradation, the changes made should be reversed
before you attempt an alternative approach. Save your original settings so that
you can easily undo changes that you do not want to keep.

Developing a performance improvement process

The performance improvement process is an iterative approach to monitoring and
tuning aspects of performance. Depending on the results of this performance
monitoring, you will adjust the configuration of the database server and make
changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the
kinds of applications that use the data and on your understanding of patterns of
data access. Different kinds of applications have different performance
requirements.

Any performance improvement process includes the following fundamental steps:

1. Define the performance objectives.

2. Establish performance indicators for the major constraints in the system.

3. Develop and execute a performance monitoring plan.

4. Continually analyze monitoring results to determine which resources require
tuning.

5. Make one adjustment at a time.

If, at some point, you can no longer improve performance by tuning the database
server or applications, it might be time to upgrade the hardware.

Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If
you do not have enough time to set performance objectives and to monitor and
tune in a comprehensive manner, you can address performance issues by listening
to your users. Start by asking a few simple questions, such as the following;:

* What do you mean by “slow response”? Is it 10% slower than you expect it to
be, or tens of times slower?

* When did you notice the problem? Is it recent, or has it always been there?

* Do other users have the same problem? Are these users one or two individuals
or a whole group?

 If a group of users is experiencing the same problem, are these users connected
to the same local area network?

* Does the problem seem to be related to a specific type of transaction or
application program?

2 Troubleshooting and Tuning Database Performance

* Do you notice any pattern of occurrence? For example, does the problem occur
at a specific time of day, or is it continuous?

Performance tuning limits

The benefits of performance tuning are limited. When considering how much time
and money should be spent on improving system performance, be sure to assess
the degree to which the investment of additional time and money will help the
users of the system.

Tuning can often improve performance if the system is encountering response time
or throughput problems. However, there is a point beyond which additional tuning
cannot help. At this point, consider revising your goals and expectations. For more
significant performance improvements, you might need to add more disk storage,
faster CPUs, additional CPUs, more main memory, faster communication links, or
a combination of these.

Part 1.Performance tuning 3

4 Troubleshooting and Tuning Database Performance

Chapter 1. Performance tuning tools and methodology

Benchmark testing

Benchmark testing is a normal part of the application development life cycle. It is a
team effort that involves both application developers and database administrators
(DBAs).

Benchmark testing is performed against a system to determine current performance
and can be used to improve application performance. If the application code has
been written as efficiently as possible, additional performance gains might be
realized by tuning database and database manager configuration parameters.

Different types of benchmark tests are used to discover specific kinds of
information. For example:

* An infrastructure benchmark determines the throughput capabilities of the
database manager under certain limited laboratory conditions.

* An application benchmark determines the throughput capabilities of the database
manager under conditions that more closely reflect a production environment.

Benchmark testing to tune configuration parameters is based upon controlled
conditions. Such testing involves repeatedly running SQL from your application
and changing the system configuration (and perhaps the SQL) until the application
runs as efficiently as possible.

The same approach can be used to tune other factors that affect performance, such
as indexes, table space configuration, and hardware configuration, to name a few.

Benchmark testing helps you to understand how the database manager responds to
different conditions. You can create scenarios that test deadlock handling, utility
performance, different methods of loading data, transaction rate characteristics as
more users are added, and even the effect on the application of using a new
release of the database product.

Benchmark tests are based on a repeatable environment so that the same test run
under the same conditions will yield results that you can legitimately compare.
You might begin by running the test application in a normal environment. As you
narrow down a performance problem, you can develop specialized test cases that
limit the scope of the function that you are testing. The specialized test cases need
not emulate an entire application to obtain valuable information. Start with simple
measurements, and increase the complexity only if necessary.

Characteristics of good benchmarks include:

¢ The tests are repeatable

* Each iteration of a test starts in the same system state

* No other functions or applications are unintentionally active in the system

* The hardware and software used for benchmark testing match your production
environment

Note that started applications use memory even when they are idle. This increases
the probability that paging will skew the results of the benchmark and violates the

repeatability criterion.

© Copyright IBM Corp. 2006, 2010 5

Benchmark preparation

There are certain prerequisites that must be satisfied before performance
benchmark testing can be initiated.

Before you start performance benchmark testing;:

e Complete both the logical and physical design of the database against which
your application will run

¢ Create tables, views, and indexes

* Normalize tables, bind application packages, and populate tables with realistic
data; ensure that appropriate statistics are available

¢ Plan to run against a production-size database, so that the application can test
representative memory requirements; if this is not possible, try to ensure that the
proportions of available system resources to data in the test and production
systems are the same (for example, if the test system has 10% of the data, use
10% of the processor time and 10% of the memory that is available to the
production system)

* Place database objects in their final disk locations, size log files, determine the
location of work files and backup images, and test backup procedures

¢ Check packages to ensure that performance options, such as row blocking, are
enabled when possible

Although the practical limits of an application might be revealed during
benchmark testing, the purpose of the benchmark is to measure performance, not
to detect defects.

Your benchmark testing program should run in an accurate representation of the
final production environment. Ideally, it should run on the same server model with
the same memory and disk configurations. This is especially important if the
application will ultimately serve large numbers of users and process large amounts
of data. The operating system and any communications or storage facilities used
directly by the benchmark testing program should also have been tuned
previously.

SQL statements to be benchmark tested should be either representative SQL or
worst-case SQL, as described below.

Representative SQL
Representative SQL includes those statements that are executed during
typical operations of the application that is being benchmark tested. Which
statements are selected depends on the nature of the application. For
example, a data-entry application might test an INSERT statement, whereas
a banking transaction might test a FETCH, an UPDATE, and several
INSERT statements.

Worst-case SQL
Statements falling under this category include:
* Statements that are executed frequently
* Statements that are processing high volumes of data

¢ Statements that are time-critical. For example, statements in an
application that runs to retrieve and update customer information while
the customer is waiting on the telephone.

+ Statements with a large number of joins, or the most complex statements
in the application. For example, statements in a banking application that
produces summaries of monthly activity for all of a customer's accounts.

6 Troubleshooting and Tuning Database Performance

A common table might list the customer's address and account numbers;
however, several other tables must be joined to process and integrate all
of the necessary account transaction information.

 Statements that have a poor access path, such as one that is not
supported by an available index

* Statements that have a long execution time

 Statements that are executed only at application initialization time, but
that have disproportionately large resource requirements. For example,
statements in an application that generates a list of account work that
must be processed during the day. When the application starts, the first
major SQL statement causes a seven-way join, which creates a very large
list of all the accounts for which this application user is responsible. This
statement might only run a few times each day, but it takes several
minutes to run if it has not been tuned properly.

Benchmark test creation

You will need to consider a variety of factors when designing and implementing a
benchmark testing program.

Because the main purpose of the testing program is to simulate a user application,
the overall structure of the program will vary. You might use the entire application
as the benchmark and simply introduce a means for timing the SQL statements
that are to be analyzed. For large or complex applications, it might be more
practical to include only blocks that contain the important statements. To test the
performance of specific SQL statements, you can include only those statements in
the benchmark testing program, along with the necessary CONNECT, PREPARE,
OPEN, and other statements, as well as a timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to run a
set of SQL statements repeatedly over a certain time interval. The number of
statements executed over this time interval is a measure of the throughput for the
application. Another option is to simply determine the time required to execute
individual SQL statements.

For all benchmark testing, you need a reliable and appropriate way to measure
elapsed time. To simulate an application in which individual SQL statements
execute in isolation, measuring the time to PREPARE, EXECUTE, or OPEN,
FETCH, or CLOSE for each statement might be best. For other applications,
measuring the transaction time from the first SQL statement to the COMMIT
statement might be more appropriate.

Although the elapsed time for each query is an important factor in performance
analysis, it might not necessarily reveal bottlenecks. For example, information on
CPU usage, locking, and buffer pool I/O might show that the application is I/O
bound and not using the CPU at full capacity. A benchmark testing program
should enable you to obtain this kind of data for a more detailed analysis, if
needed.

Not all applications send the entire set of rows retrieved from a query to some
output device. For example, the result set might be input for another application.
Formatting data for screen output usually has a high CPU cost and might not
reflect user needs. To provide an accurate simulation, a benchmark testing program
should reflect the specific row handling activities of the application. If rows are
sent to an output device, inefficient formatting could consume the majority of CPU
time and misrepresent the actual performance of the SQL statement itself.

Chapter 1. Performance tuning tools and methodology 7

Although it is very easy to use, the DB2 command line processor (CLP) is not
suited to benchmarking because of the processing overhead that it adds. A
benchmark tool (db2batch) is provided in the bin subdirectory of your instance
sq11ib directory. This tool can read SQL statements from either a flat file or from
standard input, dynamically prepare and execute the statements, and return a
result set. It also enables you to control the number of rows that are returned to
db2batch and the number of rows that are displayed. You can specify the level of
performance-related information that is returned, including elapsed time, processor
time, buffer pool usage, locking, and other statistics collected from the database
monitor. If you are timing a set of SQL statements, db2batch also summarizes the
performance results and provides both arithmetic and geometric means.

By wrapping db2batch invocations in a Perl or Korn shell script, you can easily
simulate a multiuser environment. Ensure that connection attributes, such as the
isolation level, are the same by selecting the appropriate db2batch options.

Note that in partitioned database environments, db2batch is suitable only for
measuring elapsed time; other information that is returned pertains only to activity
on the coordinator database partition.

You can write a driver program to help you with your benchmark testing. On
Linux® or UNIX® systems, a driver program can be written using shell programs.
A driver program can execute the benchmark program, pass the appropriate
parameters, drive the test through multiple iterations, restore the environment to a
consistent state, set up the next test with new parameter values, and collect and
consolidate the test results. Driver programs can be flexible enough to run an
entire set of benchmark tests, analyze the results, and provide a report of the best
parameter values for a given test.

Benchmark test execution

In the most common type of benchmark testing, you choose a configuration
parameter and run the test with different values for that parameter until the
maximum benefit is achieved.

A single test should include repeated execution of the application (for example,
five or ten iterations) with the same parameter value. This enables you to obtain a
more reliable average performance value against which to compare the results
from other parameter values.

The first run, called a warmup run, should be considered separately from
subsequent runs, which are called normal runs. The warmup run includes some
startup activities, such as initializing the buffer pool, and consequently, takes
somewhat longer to complete than normal runs. The information from a warmup
run is not statistically valid. When calculating averages for a specific set of
parameter values, use only the results from normal runs. It is often a good idea to
drop the high and low values before calculating averages.

For the greatest consistency between runs, ensure that the buffer pool returns to a
known state before each new run. Testing can cause the buffer pool to become
loaded with data, which can make subsequent runs faster because less disk 1/0O is
required. The buffer pool contents can be forced out by reading other irrelevant
data into the buffer pool, or by de-allocating the buffer pool when all database
connections are temporarily removed.

8 Troubleshooting and Tuning Database Performance

After you complete testing with a single set of parameter values, you can change
the value of one parameter. Between each iteration, perform the following tasks to
restore the benchmark environment to its original state:

* If the catalog statistics were updated for the test, ensure that the same values for
the statistics are used for every iteration.

* The test data must be consistent if it is being updated during testing. This can
be done by:

— Using the restore utility to restore the entire database. The backup copy of the
database contains its previous state, ready for the next test.

— Using the import or load utility to restore an exported copy of the data. This
method enables you to restore only the data that has been affected. The reorg
and runstats utilities should be run against the tables and indexes that contain
this data.

In summary, follow these steps to benchmark test a database application:

Step 1 Leave the DB2 registry, database and database manager configuration
parameters, and buffer pools at their standard recommended values, which
can include:

* Values that are known to be required for proper and error-free
application execution
* Values that provided performance improvements during prior tuning
¢ Values that were suggested by the AUTOCONFIGURE command
* Default values; however, these might not be appropriate:
— For parameters that are significant to the workload and to the
objectives of the test
— For log sizes, which should be determined during unit and system
testing of your application

— For any parameters that must be changed to enable your application
to run

Run your set of iterations for this initial case and calculate the average
elapsed time, throughput, or processor time. The results should be as
consistent as possible, ideally differing by no more than a few percentage
points from run to run. Performance measurements that vary significantly
from run to run can make tuning very difficult.

Step 2 Select one and only one method or tuning parameter to be tested, and
change its value.

Step 3 Run another set of iterations and calculate the average elapsed time or
processor time.

Step 4 Depending on the results of the benchmark test, do one of the following:

¢ If performance improves, change the value of the same parameter and
return to Step 3. Keep changing this parameter until the maximum
benefit is shown.

¢ If performance degrades or remains unchanged, return the parameter to
its previous value, return to Step 2, and select a new parameter. Repeat
this procedure until all parameters have been tested.

Benchmark test analysis example

Output from a benchmark testing program should include an identifier for each
test, iteration numbers, statement numbers, and the elapsed times for each
execution.

Chapter 1. Performance tuning tools and methodology ~ 9

Note that the data in these sample reports is shown for illustrative purposes only.
It does not represent actual measured results.

A summary of benchmark testing results might look like the following;:

Test
Numb
002
002
002
002
002
002
002
002
002
002
002

r

Iter.
Numbr
05

Stmt
Numbr

Ti

ming

(hh:mm:ss.ss)

00:

Figure 1. Sample Benchmark Testing Results

SQL Statement

CONNECT TO SAMPLE
OPEN cursor_01
FETCH cursor_01
FETCH cursor_01
FETCH cursor_01
FETCH cursor_01
FETCH cursor_01
FETCH cursor_01
FETCH cursor_01
CLOSE cursor_01
CONNECT RESET

Analysis shows that the CONNECT (statement 01) took 1.34 seconds to complete,
the OPEN CURSOR (statement 10) took 2 minutes and 8.15 seconds, the FETCH
(statement 15) returned seven rows, with the longest delay being 0.28 seconds, the
CLOSE CURSOR (statement 20) took 0.84 seconds, and the CONNECT RESET
(statement 99) took 0.03 seconds to complete.

If your program can output data in a delimited ASCII format, the data could later
be imported into a database table or a spreadsheet for further statistical analysis.

A summary benchmark report might look like the following:

PARAMETER
TEST NUMBER
locklist
maxappls
applheapsz

dbheap

sortheap
max1locks
stmtheap
SQL STMT

01

VALUES FOR EACH BENCHMARK TEST

001
63

8

48
128
256
22
1024

AVERAGE

01.34
02.15
00.22
00.84
00.03

002
63

8

48
128
256
22
1024
TIMINGS
01.34
02.00
00.22
00.84
00.03

003
63

8

48
128
256
22
1024
(seco
01.35
01.55
00.22
00.84
00.03

Figure 2. Sample Benchmark Timings Report

10 Troubleshooting and Tuning Database Performance

004 005

63 63

8 8

48 48
128 128
256 256
22 22
1024 1024

nds)

01.35 01.36
01.24 01.00
00.22 00.22
00.84 00.84
00.03 00.03

Chapter 2. Performance monitoring tools and methodology

Operational monitoring of system performance

Operational monitoring refers to collecting key system performance metrics at
periodic intervals over time. This information gives you critical data to refine that
initial configuration to be more tailored to your requirements, and also prepares
you to address new problems that might appear on their own or following
software upgrades, increases in data or user volumes, or new application
deployments.

Operational monitoring considerations
An operational monitoring strategy needs to address several considerations.

Operational monitoring needs to be very light weight (not consuming much of the
system it is measuring) and generic (keeping a broad “eye” out for potential
problems that could appear anywhere in the system).

Because you plan regular collection of operational metrics throughout the life of
the system, it is important to have a way to manage all that data. For many of the
possible uses you have for your data, such as long-term trending of performance,
you want to be able to do comparisons between arbitrary collections of data that
are potentially many months apart. The DB2 product itself facilitates this kind of
data management very well. Analysis and comparison of monitoring data becomes
very straightforward, and you already have a robust infrastructure in place for
long-term data storage and organization.

A DB2 database (“DB2”) system provides some excellent sources of monitoring
data. The primary ones are snapshot monitors and, in DB2 Version 9.5 and later,
workload management (WLM) table functions for data aggregation. Both of these
focus on summary data, where tools like counters, timers, and histograms maintain
running totals of activity in the system. By sampling these monitor elements over
time, you can derive the average activity that has taken place between the start
and end times, which can be very informative.

There is no reason to limit yourself to just metrics that the DB2 product provides.
In fact, non-DB2 data is more than just a nice-to-have. Contextual information is
key for performance problem determination. The users, the application, the
operating system, the storage subsystem, and the network — all of these can
provide valuable information about system performance. Including metrics from
outside of the DB2 database software is an important part of producing a complete
overall picture of system performance.

The trend in recent releases of the DB2 database product has been to make more
and more monitoring data available through SQL interfaces. This makes
management of monitoring data with DB2 very straightforward, because you can
easily redirect the data from the administration views, for example, right back into
DB2 tables. For deeper dives, event and activity monitor data can also be written
to DB2 tables, providing similar benefits. With the vast majority of our monitoring
data so easy to store in DB2, a small investment to store system metrics (such as
CPU utilization from vmstat) in DB2 is manageable as well.

© Copyright IBM Corp. 2006, 2010 11

Types of data to collect for operational monitoring

Several types of data are useful to collect for ongoing operational monitoring.
* A basic set of DB2 system performance monitoring metrics.
* DB2 configuration information

Taking regular copies of database and database manager configuration, DB2
registry variables, and the schema definition helps provide a history of any
changes that have been made, and can help to explain changes that arise in
monitoring data.

¢ Opverall system load

If CPU or I/0 utilization is allowed to approach saturation, this can create a
system bottleneck that might be difficult to detect using just DB2 snapshots. As a
result, the best practice is to regularly monitor system load with vmstat and
iostat (and possibly netstat for network issues) on UNIX-based systems, and
perfmon on Windows®. You can also use the administrative views, such as
ENV_SYS_RESOURCES, to retrieve operating system, CPU, memory, and other
information related to the system. Typically you look for changes in what is
normal for your system, rather than for specific one-size-fits-all values.

* Throughput and response time measured at the business logic level

An application view of performance, measured above DB2, at the business logic
level, has the advantage of being most relevant to the end user, plus it typically
includes everything that could create a bottleneck, such as presentation logic,
application servers, web servers, multiple network layers, and so on. This data
can be vital to the process of setting or verifying a service level agreement
(SLA).

The DB2 system performance monitoring elements and system load data are
compact enough that even if they are collected every five to fifteen minutes, the
total data volume over time is irrelevant in most systems. Likewise, the overhead
of collecting this data is typically in the one to three percent range of additional
CPU consumption, which is a small price to pay for a continuous history of
important system metrics. Configuration information typically changes relatively
rarely, so collecting this once a day is usually frequent enough to be useful without
creating an excessive amount of data.

Basic set of system performance monitor elements

About 10 metrics of system performance provide a good basic set to use in an
on-going operational monitoring effort.

There are hundreds of metrics to choose from, but collecting all of them can be
counter-productive due to the sheer volume of data produced. You want metrics
that are:

* Easy to collect — You don't want to have to use complex or expensive tools for
everyday monitoring, and you don't want the act of monitoring to significantly
burden the system.

* Easy to understand - You don't want to have to look up the meaning of the
metric each time you see it.

* Relevant to your system — Not all metrics provide meaningful information in all
environments.

* Sensitive, but not too sensitive — A change in the metric should indicate a real
change in the system; the metric should not fluctuate on its own.

This starter set includes about 10 metrics:

12 Troubleshooting and Tuning Database Performance

¢ The number of transactions executed:
TOTAL_COMMITS

This provides an excellent base level measurement of system activity.
* Buffer pool hit ratios, measured separately for data, index, and temporary data:

100 * (POOL_DATA_L_READS — POOL_DATA_P_READS) / POOL_DATA_L_READS

100 * (POOL_INDEX_L_READS — POOL_INDEX_P_READS) / POOL_INDEX_L_READS

100 * (POOL_TEMP_DATA_L READS - POOL_TEMP_DATA_P_READS) / POOL_TEMP_DATA L READS
100 * (POOL_TEMP_INDEX_ L READS - POOL_TEMP_INDEX_P_READS)

/ POOL_TEMP_INDEX_L_READS

Buffer pool hit ratios are one of the most fundamental metrics, and give an
important overall measure of how effectively the system is exploiting memory to
avoid disk I/0O. Hit ratios of 80-85% or better for data and 90-95% or better for
indexes are generally considered good for an OLTP environment, and of course
these ratios can be calculated for individual buffer pools using data from the
buffer pool snapshot.

Although these metrics are generally useful, for systems such as data
warehouses that frequently perform large table scans, data hit ratios are often
irretrievably low, because data is read into the buffer pool and then not used
again before being evicted to make room for other data.

* Buffer pool physical reads and writes per transaction:

(POOL_DATA_P_READS + POOL_INDEX_P_READS +
POOL_TEMP_DATA_P_READS + POOL_TEMP_INDEX_P_READS)
/ TOTAL_COMMITS

(POOL_DATA_WRITES + POOL_INDEX WRITES)
/ TOTAL_COMMITS

These metrics are closely related to buffer pool hit ratios, but have a slightly
different purpose. Although you can consider target values for hit ratios, there
are no possible targets for reads and writes per transaction. Why bother with
these calculations? Because disk I/O is such a major factor in database
performance, it is useful to have multiple ways of looking at it. As well, these
calculations include writes, whereas hit ratios only deal with reads. Lastly, in
isolation, it is difficult to know, for example, whether a 94% index hit ratio is
worth trying to improve. If there are only 100 logical index reads per hour, and
94 of them are in the buffer pool, working to keep those last 6 from turning into
physical reads is not a good use of time. However, if a 94% index hit ratio were
accompanied by a statistic that each transaction did twenty physical reads
(which could be further broken down by data and index, regular and
temporary), the buffer pool hit ratios might well deserve some investigation.

The metrics are not just physical reads and writes, but are normalized per
transaction. This trend is followed through many of the metrics. The purpose is
to decouple metrics from the length of time data was collected, and from
whether the system was very busy or less busy at that time. In general, this
helps ensure that similar values for metrics are obtained, regardless of how and
when monitoring data is collected. Some amount of consistency in the timing
and duration of data collection is a good thing; however, normalization reduces
it from being critical to being a good idea.

e The ratio of database rows read to rows selected:
ROWS_READ / ROWS_RETURNED

This calculation gives an indication of the average number of rows that are read
from database tables in order to find the rows that qualify. Low numbers are an
indication of efficiency in locating data, and generally show that indexes are

Chapter 2. Performance monitoring tools and methodology ~ 13

being used effectively. For example, this number can be very high in the case
where the system does many table scans, and millions of rows need to be
inspected to determine if they qualify for the result set. On the other hand, this
statistic can be very low in the case of access to a table through a fully-qualified
unique index. Index-only access plans (where no rows need to be read from the
table) do not cause ROWS_READ to increase.

In an OLTP environment, this metric is generally no higher than 2 or 3,
indicating that most access is through indexes instead of table scans. This metric
is a simple way to monitor plan stability over time — an unexpected increase is
often an indication that an index is no longer being used and should be
investigated.

e The amount of time spent sorting per transaction:
TOTAL_SORT_TIME / TOTAL_COMMITS

This is an efficient way to handle sort statistics, because any extra overhead due
to spilled sorts automatically gets included here. That said, you might also want
to collect TOTAL_SORTS and SORT_OVERFLOWS for ease of analysis,
especially if your system has a history of sorting issues.

¢ The amount of lock wait time accumulated per thousand transactions:
1000 * LOCK_WAIT_TIME / TOTAL_COMMITS

Excessive lock wait time often translates into poor response time, so it is
important to monitor. The value is normalized to one thousand transactions
because lock wait time on a single transaction is typically quite low. Scaling up
to one thousand transactions simply provides measurements that are easier to
handle.

* The number of deadlocks and lock timeouts per thousand transactions:
1000 * (DEADLOCKS + LOCK_TIMEOUTS) / TOTAL_COMMITS

Although deadlocks are comparatively rare in most production systems, lock
timeouts can be more common. The application usually has to handle them in a
similar way: re-executing the transaction from the beginning. Monitoring the rate
at which this happens helps avoid the case where many deadlocks or lock
timeouts drive significant extra load on the system without the DBA being
aware.

* The number of dirty steal triggers per thousand transactions:
1000 * POOL_DRTY_PG_STEAL CLNS / TOTAL_COMMITS

A “dirty steal” is the least preferred way to trigger buffer pool cleaning.
Essentially, the processing of an SQL statement that is in need of a new buffer
pool page is interrupted while updates on the victim page are written to disk. If
dirty steals are allowed to happen frequently, they can have a significant impact
on throughput and response time.

* The number of package cache inserts per thousand transactions:
1000 * PKG_CACHE_INSERTS / TOTAL_COMMITS

Package cache insertions are part of normal execution of the system; however, in
large numbers, they can represent a significant consumer of CPU time. In many
well-designed systems, after the system is running at steady-state, very few
package cache inserts occur, because the system is using or reusing static SQL or
previously prepared dynamic SQL statements. In systems with a high traffic of
ad hoc dynamic SQL statements, SQL compilation and package cache inserts are
unavoidable. However, this metric is intended to watch for a third type of

14 Troubleshooting and Tuning Database Performance

situation, one in which applications unintentionally cause package cache churn
by not reusing prepared statements, or by not using parameter markers in their
frequently executed SQL.

¢ The time an agent waits for log records to be flushed to disk:

LOG_WRITE_TIME
/ TOTAL_COMMITS

The transaction log has significant potential to be a system bottleneck, whether
due to high levels of activity, or to improper configuration, or other causes. By
monitoring log activity, you can detect problems both from the DB2 side
(meaning an increase in number of log requests driven by the application) and
from the system side (often due to a decrease in log subsystem performance
caused by hardware or configuration problems).

* In partitioned database environments, the number of fast communication
manager (FCM) buffers sent and received between partitions:

FCM_SENDS_TOTAL, FCM_RECVS_TOTAL

These give the rate of flow of data between different partitions in the cluster,
and in particular, whether the flow is balanced. Significant differences in the
numbers of buffers received from different partitions might indicate a skew in
the amount of data that has been hashed to each partition.

Cross-partition monitoring in partitioned database environments

Almost all of the individual monitoring element values mentioned above are
reported on a per-partition basis.

In general, you expect most monitoring statistics to be fairly uniform across all
partitions in the same DB2 partition group. Significant differences might indicate
data skew. Sample cross-partition comparisons to track include:

* Logical and physical buffer pool reads for data, indexes, and temporary tables
* Rows read, at the partition level and for large tables

+ Sort time and sort overflows

* FCM buffer sends and receives

e CPU and I/O utilization

Abnormal values in monitoring data

Being able to identify abnormal values is key to interpreting system performance
monitoring data when troubleshooting performance problems.

A monitor element provides a clue to the nature of a performance problem when
its value is worse than normal, that is, the value is abnormal. Generally, a worse
value is one that is higher than expected, for example higher lock wait time.
However, an abnormal value can also be lower than expected, such as lower buffer
pool hit ratio. Depending on the situation, you can use one or more methods to
determine if a value is worse than normal.

One approach is to rely on industry rules of thumb or best practices. For example,
a rule of thumb is that buffer pool hit ratios of 80-85% or better for data are
generally considered good for an OLTP environment. Note that this rule of thumb
applies to OLTP environments and would not serve as a useful guide for data
warehouses where data hit ratios are often much lower due to the nature of the
system.

Chapter 2. Performance monitoring tools and methodology ~ 15

Another approach is to compare current values to baseline values collected
previously. This approach is often most definitive and relies on having an adequate
operational monitoring strategy to collect and store key performance metrics
during normal conditions. For example, you might notice that your current buffer
pool hit ratio is 85%. This would be considered normal according to industry
norms but abnormal when compared to the 99% value recorded before the
performance problem was reported.

A final approach is to compare current values with current values on a comparable
system. For example, a current buffer pool hit ratio of 85% would be considered
abnormal if comparable systems have a buffer pool ratio of 99%.

The governor utility

The governor monitors the behavior of applications that run against a database
and can change that behavior, depending on the rules that you specify in the
governor configuration file.

Important: With the new strategic DB2 workload manager features introduced in
DB2 Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and
might be removed in a future release. For more information about the deprecation
of the governor utility, see “DB2 Governor and Query Patroller have been
deprecated”. To learn more about DB2 workload manager and how it replaces the
governor utility, see “Introduction to DB2 workload manager concepts” and
“Frequently asked questions about DB2 workload manager”.

A governor instance consists of a frontend utility and one or more daemons. Each
instance of the governor is specific to an instance of the database manager. By
default, when you start the governor, a governor daemon starts on each database
partition of a partitioned database. However, you can specify that a daemon be
started on a single database partition that you want to monitor.

The governor manages application transactions according to rules in the governor
configuration file. For example, applying a rule might reveal that an application is
using too much of a particular resource. The rule would also specify the action to
take, such as changing the priority of the application, or forcing it to disconnect
from the database.

If the action associated with a rule changes the priority of the application, the
governor changes the priority of agents on the database partition where the
resource violation occurred. In a partitioned database, if the application is forced to
disconnect from the database, the action occurs even if the daemon that detected
the violation is running on the coordinator node of the application.

The governor logs any actions that it takes.

Note: When the governor is active, its snapshot requests might affect database
manager performance. To improve performance, increase the governor wake-up
interval to reduce its CPU usage.

Starting and stopping the governor

The governor utility monitors applications that are connected to a database, and
changes the behavior of those applications according to rules that you specify in a
governor configuration file for that database.

16 Troubleshooting and Tuning Database Performance

Important: With the new workload management features introduced in DB2
Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and might
be removed in a future release. For more information, see the “DB2 Governor and
Query Patroller have been deprecated” topic in the What’s New for DB2 Version 9.7
book.

Before you start the governor, you must create a governor configuration file.
To start the governor, you must have sysadm or sysctrl authorization.

To start the governor, use the db2gov command, specifying the following required
parameters:

START database-name
The database name that you specify must match the name of the database in
the governor configuration file.

config-file
The name of the governor configuration file for this database. If the file is not
in the default location, which is the sq11ib directory, you must include the file
path as well as the file name.

log-file
The base name of the log file for this governor. For a partitioned database, the
database partition number is added for each database partition on which a
daemon is running for this instance of the governor.

To start the governor on a single database partition of a partitioned database,
specify the dbpartitionnum option.

For example, to start the governor on database partition 3 of a database named
SALES, using a configuration file named salescfg and a log file called saleslog,
enter the following command:

db2gov start sales dbpartitionnum 3 salescfg saleslog

To start the governor on all database partitions, enter the following command:
db2gov start sales salescfg saleslog

The governor daemon

The governor daemon collects information about applications that run against a
database.

The governor daemon runs the following task loop whenever it starts.

1. The daemon checks whether its governor configuration file has changed or has
not yet been read. If either condition is true, the daemon reads the rules in the
file. This allows you to change the behavior of the governor daemon while it is
running.

2. The daemon requests snapshot information about resource use statistics for
each application and agent that is working on the database.

3. The daemon checks the statistics for each application against the rules in the
governor configuration file. If a rule applies, the governor performs the
specified action. The governor compares accumulated information with values
that are defined in the configuration file. This means that if the configuration
file is updated with new values that an application might have already
breached, the rules concerning that breach are applied to the application during
the next governor interval.

Chapter 2. Performance monitoring tools and methodology 17

4. The daemon writes a record in the governor log file for any action that it takes.

When the governor finishes its tasks, it sleeps for an interval that is specified in the
configuration file. When that interval elapses, the governor wakes up and begins
the task loop again.

If the governor encounters an error or stop signal, it performs cleanup processing
before stopping. Using a list of applications whose priorities have been set, cleanup
processing resets all application agent priorities. It then resets the priorities of any
agents that are no longer working on an application. This ensures that agents do
not remain running with non-default priorities after the governor ends. If an error
occurs, the governor writes a message to the administration notification log,
indicating that it ended abnormally.

The governor cannot be used to adjust agent priorities if the value of the agentpri
database manager configuration parameter is not the system default.

Although the governor daemon is not a database application, and therefore does
not maintain a connection to the database, it does have an instance attachment.
Because it can issue snapshot requests, the governor daemon can detect when the
database manager ends.

The governor configuration file

The governor configuration file contains rules governing applications that run
against a database.

The governor evaluates each rule and takes specified actions when a rule evaluates
to true.

The governor configuration file contains general clauses that identify the database
to be monitored (required), the interval at which account records containing CPU
usage statistics are written, and the sleep interval for governor daemons. The
configuration file might also contain one or more optional application monitoring
rule statements. The following guidelines apply to both general clauses and rule
statements:

* Delimit general comments with braces ({ }).

* In most cases, specify values using uppercase, lowercase, or mixed case
characters. The exception is application name (specified following the applname
clause), which is case sensitive.

* Terminate each general clause or rule statement with a semicolon (;).

If a rule needs to be updated, edit the configuration file without stopping the
governor. Each governor daemon detects that the file has changed, and rereads it.

In a partitioned database environment, the governor configuration file must be
created in a directory that is mounted across all database partitions so that the
governor daemon on each database partition can read the same configuration file.

General clauses

The following clauses cannot be specified more than once in a governor
configuration file.

dbname
The name or alias of the database to be monitored. This clause is required.

18 Troubleshooting and Tuning Database Performance

account n
The interval, in minutes, after which account records containing CPU
usage statistics for each connection are written. This option is not available
on Windows operating systems. On some platforms, CPU statistics are not
available from the snapshot monitor. If this is the case, the account clause
is ignored.

If a short session occurs entirely within the account interval, no log record
is written. When log records are written, they contain CPU statistics that
reflect CPU usage since the previous log record for the connection. If the
governor is stopped and then restarted, CPU usage might be reflected in
two log records; these can be identified through the application IDs in the
log records.

interval n
The interval, in seconds, after which the daemon wakes up. If you do not
specify this clause, the default value of 120 seconds is used.

Rule clauses

Rule statements specify how applications are to be governed, and are assembled
from smaller components called rule clauses. If used, rule clauses must appear in a
specific order in the rule statement, as follows:

1. desc: A comment about the rule, enclosed by single or double quotation marks
2. time: The time at which the rule is evaluated

3. authid: One or more authorization IDs under which the application executes
statements

4. applname: The name of the executable or object file that connects to the
database. This name is case sensitive. If the application name contains spaces,
the name must be enclosed by double quotation marks.

5. setlimit: Limits that the governor checks; for example, CPU time, number of
rows returned, or idle time. On some platforms, CPU statistics are not available
from the snapshot monitor. If this is the case, the setlimit clause is ignored.

6. action: The action that is to be taken when a limit is reached. If no action is
specified, the governor reduces the priority of agents working for the
application by 10 when a limit is reached. Actions that can be taken against an
application include reducing its agent priority, forcing it to disconnect from the
database, or setting scheduling options for its operations.

Combine the rule clauses to form a rule statement, using a specific clause no more
than once in each rule statement.

desc "Allow no UOW to run for more than an hour"
setlimit uowtime 3600 action force;

If more than one rule applies to an application, all are applied. Usually, the action
that is associated with the first limit encountered is the action that is applied first.
An exception occurs if you specify a value of -1 for a rule clause: A subsequently
specified value for the same clause can only override the previously specified
value; other clauses in the previous rule statement are still operative.

For example, one rule statement uses the rowssel 100000 and uowtime 3600 clauses
to specify that the priority of an application is decreased if its elapsed time is
greater than 1 hour or if it selects more than 100 000 rows. A subsequent rule uses
the uowtime -1 clause to specify that the same application can have unlimited
elapsed time. In this case, if the application runs for more than 1 hour, its priority

Chapter 2. Performance monitoring tools and methodology ~ 19

is not changed. That is, uowtime -1 overrides uowtime 3600. However, if it selects
more than 100 000 rows, its priority is lowered because rowssel 100000 still
applies.

Order of rule application

The governor processes rules from the top of the configuration file to the bottom.
However, if the setlimit clause in a particular rule statement is more relaxed than
the same clause in a preceding rule statement, the more restrictive rule applies. In
the following example, ADMIN continues to be limited to 5000 rows, because the
first rule is more restrictive.

desc "Force anyone who selects 5000 or more rows."
setlimit rowssel 5000 action force;

desc "Allow user admin to select more rows."
authid admin setlimit rowssel 10000 action force;

To ensure that a less restrictive rule overrides a more restrictive previous rule,
specify -1 to clear the previous rule before applying the new one. For example, in
the following configuration file, the initial rule limits all users to 5000 rows. The
second rule clears this limit for ADMIN, and the third rule resets the limit for
ADMIN to 10000 rows.

desc "Force anyone who selects 5000 or more rows."
setlimit rowssel 5000 action force;

desc "Clear the rowssel limit for admin."
authid admin setTimit rowssel -1;

desc "Now set the higher rowssel Timit for admin"
authid admin setlimit rowssel 10000 action force;

Example of a governor configuration file

{ The database name is SAMPLE; do accounting every 30 minutes;
wake up once a second. }
dbname sample; account 30; interval 1;

desc "CPU restrictions apply to everyone 24 hours a day."
setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "ATlow no UOW to run for more than an hour."
setlimit uowtime 3600 action force;

desc 'STow down a subset of applications.'
applname jointA, jointB, jointC, quryA
setlimit cpu 3 Tocks 1000 rowssel 500 rowsread 5000;

desc "Have the governor prioritize these 6 long apps in 1 class."
applname longql, longq2, longqg3, Tongg4, Tongg5, longqgb

setlimit cpu -1

action schedule class;

desc "Schedule all applications run by the planning department."
authid planidl, planid2, planid3, planid4, planid5

setlimit cpu -1

action schedule;

desc "Schedule all CPU hogs in one class, which will control consumption."”
setlimit cpu 3600
action schedule class;

desc "STow down the use of the DB2 CLP by the novice user."
authid novice

20 Troubleshooting and Tuning Database Performance

applname db2bp.exe
setlimit cpu 5 Tocks 100 rowssel 250;

desc "During the day, do not let anyone run for more than 10 seconds."
time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of
their applications during the lunch hour."

time 12:00 13:00 authid ming, geoffrey, john, bill

applname tpccl, tpcc2, tpcA, tpvG

setlimit cpu 600 rowssel 120000 action force;

desc "Increase the priority of an important application so it always
completes quickly."
applname Vlapp setlimit cpu 1 Tocks 1 rowssel 1 action priority -20;

desc "Some people, such as the database administrator (and others),
should not be Timited. Because this is the Tast specification
in the file, it will override what came before."
authid gene, hershel, janet setlimit cpu -1 Tocks -1 rowssel -1 uowtime -1;

Governor rule clauses

Each rule in the governor configuration file is made up of clauses that specify the
conditions for applying the rule and the action that results if the rule evaluates to
true.

The rule clauses must be specified in the order shown.

Optional beginning clauses

desc Specifies a description for the rule. The description must be enclosed by
either single or double quotation marks.

time Specifies the time period during which the rule is to be evaluated. The
time period must be specified in the following format: time hh:mm hh:mm;
for example, time 8:00 18:00. If this clause is not specified, the rule is
evaluated 24 hours a day.

authid Specifies one or more authorization IDs under which the application is
executing. Multiple authorization IDs must be separated by a comma (,);
for example: authid gene, michael, james. If this clause is not specified,
the rule applies to all authorization IDs.

applname
Specifies the name of the executable or object file that is connected to the
database. Multiple application names must be separated by a comma (,);
for example: appTname db2bp, batch, geneprog. If this clause is not
specified, the rule applies to all application names.

Note:
1. Application names are case sensitive.

2. The database manager truncates all application names to 20 characters.
You should ensure that the application that you want to govern is
uniquely identified by the first 20 characters of its application name.
Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

Limit clauses

setlimit
Specifies one or more limits for the governor to check. The limits must be

Chapter 2. Performance monitoring tools and methodology 21

-1 or greater than O (for example, cpu -1 Tocks 1000 rowssel 10000). At
least one limit must be specified, and any limit that is not specified in a
rule statement is not limited by that rule. The governor can check the
following limits:

cpu n Specifies the number of CPU seconds that can be consumed by an
application. If you specify -1, the application's CPU usage is not
limited.

idle n Specifies the number of idle seconds that are allowed for a
connection. If you specify -1, the connection's idle time is not
limited.

Note: Some database utilities, such as backup and restore, establish
a connection to the database and then perform work through
engine dispatchable units (EDUs) that are not visible to the
governor. These database connections appear to be idle and might
exceed the idle time limit. To prevent the governor from taking
action against these utilities, specify -1 for them through the
authorization ID that invoked them. For example, to prevent the
governor from taking action against utilities that are running under
authorization ID DB2SYS, specify authid DB2SYS setlimit idle

-1

locks n
Specifies the number of locks that an application can hold. If you
specify -1, the number of locks held by the application is not
limited.

rowsread 1
Specifies the number of rows that an application can select. If you
specify -1, the number of rows the application can select is not
limited. The maximum value that can be specified is
4 294 967 298.

Note: This limit is not the same as rowssel. The difference is that
rowsread is the number of rows that must be read to return the
result set. This number includes engine reads of the catalog tables
and can be reduced when indexes are used.

rowssel n
Specifies the number of rows that can be returned to an
application. This value is non-zero only at the coordinator database
partition. If you specify -1, the number of rows that can be
returned is not limited. The maximum value that can be specified
is 4 294 967 298.

uowtime n
Specifies the number of seconds that can elapse from the time that
a unit of work (UOW) first becomes active. If you specify -1, the
elapsed time is not limited.

Note: If you used the sqlmon API to deactivate the unit of work
monitor switch or the timestamp monitor switch, this will affect
the ability of the governor to govern applications based on the unit
of work elapsed time. The governor uses the monitor to collect
information about the system. If a unit of work (UOW) of the
application has been started before the Governor starts, then the
Governor will not govern that UOW.

22 Troubleshooting and Tuning Database Performance

Action clauses

action Specifies the action that is to be taken if one or more specified limits is
exceeded. If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the application by 10.

force

nice n

Specifies that the agent servicing the application is to be forced.
(The FORCE APPLICATION command terminates the coordinator
agent.)

Note: In partitioned database environments, the force action is
only carried out when the governor daemon is running on the
application's coordinator database partition. Therefore, if a
governor daemon is running on database partition A and a limit is
exceeded for some application whose coordinator database
partition is database partition B, the force action is skipped.

Specifies a change to the relative priority of agents working for the
application. Valid values range from -20 to +20 on UNIX-based
systems, and from -1 to 6 on Windows platforms.

* On UNIX-based systems, the agentpri database manager
configuration parameter must be set to the default value;
otherwise, it overrides the nice value.

* On Windows platforms, the agentpri database manager
configuration parameter and the nice value can be used
together.

You can use the governor to control the priority of applications
that run in the default user service superclass,
SYSDEFAULTUSERCLASS. If you use the governor to lower the
priority of an application that runs in this service superclass, the
agent disassociates itself from its outbound correlator (if it is
associated with one) and sets its relative priority according to the
agent priority specified by the governor. You cannot use the
governor to alter the priority of agents in user-defined service
superclasses and subclasses. Instead, you must use the agent
priority setting for the service superclass or subclass to control
applications that run in these service classes. You can, however, use
the governor to force connections in any service class.

Note: On AIX® 5.3, the instance owner must have the
CAP_NUMA_ATTACH capability to raise the relative priority of
agents working for the application. To grant this capability, logon
as root and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE
On Solaris 10 or higher, the instance owner must have the
proc_priocntl privilege to be able to raise the relative priority of

agents working for the application. To grant this privilege, logon as
root and run the following command:

usermod -K defaultpri=basic,proc_priocntl db2user

In this example, proc_priocntl is added to the default privilege set
of user db2user.

Chapter 2. Performance monitoring tools and methodology ~ 23

Moreover, when DB2 is running in a non-global zone of Solaris, the
proc_priocntl privilege must be added to the zone's limit privilege
set. To grant this privilege to the zone, logon as root and run the
following command:

global# zonecfg -z db2zone
zonecfg:db2zone> set limitpriv="default,proc_priocntl"

In this example, proc_priocntl is added to the limit privilege set of
zone db2zone.

On Solaris 9, there is no facility for DB2 to raise the relative
priority of agents. Upgrade to Solaris 10 or higher to use the
ACTION NICE clause of DB2 governor.

schedule [class]
Scheduling improves the priorities of agents working on
applications. The goal is to minimize the average response time
while maintaining fairness across all applications.

The governor chooses the top applications for scheduling on the
basis of the following criteria:

* The application holding the greatest number of locks (an attempt
to reduce the number of lock waits)

* The oldest application

* The application with the shortest estimated remaining run time
(an attempt to allow as many short-lived statements as possible
to complete during the interval)

The top three applications in each criterion are given higher
priorities than all other applications. That is, the top application in
each criterion group is given the highest priority, the next highest
application is given the second highest priority, and the
third-highest application is given the third highest priority. If a
single application is ranked in the top three for more than one
criterion, it is given the appropriate priority for the criterion in
which it ranked highest, and the next highest application is given
the next highest priority for the other criteria. For example, if
application A holds the most locks but has the third shortest
estimated remaining run time, it is given the highest priority for
the first criterion. The fourth ranked application with the shortest
estimated remaining run time is given the third highest priority for
that criterion.

The applications that are selected by this governor rule are divided
up into three classes. For each class, the governor chooses nine
applications, which are the top three applications from each class,
based on the criteria described above. If you specify the class
option, all applications that are selected by this rule are considered
to be a single class, and nine applications are chosen and given
higher priorities as described above.

If an application is selected in more than one governor rule, it is
governed by the last rule in which is it selected.

Note: If you used the sqlmon API to deactivate the statement
switch, this will affect the ability of the governor to govern
applications based on the statement elapsed time. The governor
uses the monitor to collect information about the system. If you

24 Troubleshooting and Tuning Database Performance

turn off the switches in the database manager configuration file,
they are turned off for the entire instance, and the governor no
longer receives this information.

The schedule action can:

* Ensure that applications in different groups get time, without all
applications splitting time evenly. For example, if 14 applications
(three short, five medium, and six long) are running at the same
time, they might all have poor response times because they are
splitting the CPU. The database administrator can set up two
groups, medium-length applications and long-length
applications. Using priorities, the governor permits all the short
applications to run, and ensures that at most three medium and
three long applications run simultaneously. To achieve this, the
governor configuration file contains one rule for medium-length
applications, and another rule for long applications.

The following example shows a portion of a governor
configuration file that illustrates this point:

desc "Group together medium applications in 1 schedule class."
applname medql, medq2, medq3, medq4, medq5

setlimit cpu -1

action schedule class;

desc "Group together long applications in 1 schedule class."
applname longql, longq2, Tongq3, Tongg4, longg5, longqb
setlimit cpu -1

action schedule class;

* Ensure that each of several user groups (for example,
organizational departments) gets equal prioritization. If one
group is running a large number of applications, the
administrator can ensure that other groups are still able to obtain
reasonable response times for their applications. For example, in
a case involving three departments (Finance, Inventory, and
Planning), all the Finance users could be put into one group, all
the Inventory users could be put into a second group, and all
the Planning users could be put into a third group. The
processing power would be split more or less evenly among the
three departments.

The following example shows a portion of a governor
configuration file that illustrates this point:

desc "Group together Finance department users."

authid tom, dick, harry, mo, larry, curly

setlimit cpu -1

action schedule class;

desc "Group together Inventory department users."
authid pat, chris, jack, jill

setlimit cpu -1

action schedule class;

desc "Group together Planning department users."
authid tara, dianne, henrietta, maureen, linda, candy
setlimit cpu -1

action schedule class;

* Let the governor schedule all applications.

If the class option is not specified, the governor creates its own
classes based on how many active applications fall under the
schedule action, and puts applications into different classes
based on the query compiler's cost estimate for the query the

Chapter 2. Performance monitoring tools and methodology ~ 25

application is running. The administrator can choose to have all
applications scheduled by not qualifying which applications are
chosen; that is, by not specifying appTname, authid, or setTimit
clauses.

Governor log files

Whenever a governor daemon performs an action, it writes a record to its log file.

Actions include the following;:

* Starting or stopping the governor

* Reading the governor configuration file
* Changing an application's priority

* Forcing an application

* Encountering an error or warning

Each governor daemon has a separate log file, which prevents file-locking
bottlenecks that might result when many governor daemons try to write to the
same file simultaneously. To query the governor log files, use the db2govlg
command.

The log files are stored in the 1og subdirectory of the sql1ib directory, except on
Windows operating systems, where the 1og subdirectory is located under the
Common Application Data directory that Windows operating systems use to host
application log files. You provide the base name for the log file when you start the
governor with the db2gov command. Ensure that the log file name contains the
database name to distinguish log files on each database partition that is governed.
To ensure that the file name is unique for each governor in a partitioned database
environment, the number of the database partition on which the governor daemon
runs is automatically appended to the log file name.

Log file record format

Each record in the log file has the following format:
Date Time DBPartitionNum RecType Message

The format of the Date and Time fields is yyyy-mm-dd-hh.mm.ss. You can merge the
log files for each database partition by sorting on this field. The DBPartitionNum
field contains the number of the database partition on which the governor is
running.

The RecType field contains different values, depending on the type of record being
written to the log. The values that can be recorded are:

* ACCOUNT: the application accounting statistics

¢ ERROR: an error occurred

¢ FORCE: an application was forced

* NICE: the priority of an application was changed

* READCFG: the governor read the configuration file
* SCHEDGRP: a change in agent priorities occurred
* START: the governor was started

* STOP: the governor was stopped

* WARNING: a warning occurred

26 Troubleshooting and Tuning Database Performance

Some of these values are described in more detail below.

ACCOUNT
An ACCOUNT record is written in the following situations:

¢ The value of the agent_usr_cpu_time or agent_sys_cpu_time monitor
element for an application has changed since the last ACCOUNT record
was written for this application.

* An application is no longer active.

The ACCOUNT record has the following format:
<auth_id> <appl_id> <applname> <connect_time> <agent_usr_cpu_delta>
<agent_sys_cpu_delta>

ERROR
An ERROR record is written when the governor daemon needs to shut
down.

FORCE
A FORCE record is written when the governor forces an application, based
on rules in the governor configuration file. The FORCE record has the
following format:

<appl_name> <auth_id> <appl_id> <coord_partition> <cfg_line>
<restriction_exceeded>

where:

coord_partition
Specifies the number of the application's coordinator database
partition.

cfg_line

Specifies the line number in the governor configuration file where
the rule causing the application to be forced is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:

* CPU: the total application USR CPU plus SYS CPU time, in
seconds

* Locks: the total number of locks held by the application

* Rowssel: the total number of rows selected by the application

* Rowsread: the total number of rows read by the application

¢ Idle: the amount of time during which the application was idle

* ET: the elapsed time since the application's current unit of work
started (the uowtime setlimit was exceeded)

NICE A NICE record is written when the governor changes the priority of an
application, based on rules in the governor configuration file. The NICE
record has the following format:

<appl_name> <auth_id> <appl_id> <nice_value> <cfg_line>
<restriction_exceeded>

where:

nice_value
Specifies the increment or decrement that will be made to the
priority value for the application's agent process.

Chapter 2. Performance monitoring tools and methodology 27

cfg_line
Specifies the line number in the governor configuration file where
the rule causing the application's priority to be changed is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:

* CPU: the total application USR CPU plus SYS CPU time, in
seconds

* Locks: the total number of locks held by the application

* Rowssel: the total number of rows selected by the application

* Rowsread: the total number of rows read by the application

* Idle: the amount of time during which the application was idle

* ET: the elapsed time since the application's current unit of work
started (the uowtime setlimit was exceeded)

SCHEDGRP
A SCHEDGRP record is written when an application is added to a
scheduling group or an application is moved from one scheduling group to
another. The SCHEDGRP record has the following format:

<appl_name> <auth_id> <appl_id> <cfg_line> <restriction_exceeded>

where:

cfg_line
Specifies the line number in the governor configuration file where
the rule causing the application to be scheduled is located.

restriction_exceeded
Provides details about how the rule was violated. Valid values are:

* CPU: the total application USR CPU plus SYS CPU time, in
seconds

* Locks: the total number of locks held by the application

* Rowssel: the total number of rows selected by the application
* Rowsread: the total number of rows read by the application

* Idle: the amount of time during which the application was idle

* ET: the elapsed time since the application's current unit of work
started (the uowtime setlimit was exceeded)

START
A START record is written when the governor starts. The START record
has the following format:

Database = <database_name>
STOP A STOP record is written when the governor stops. It has the following
format:
Database = <database_name>
WARNING
A WARNING record is written in the following situations:

* The sqlefrce API was called to force an application, but it returned a
positive SQLCODE.

* A snapshot call returned a positive SQLCODE that was not 1611
(SQL1611W).

28 Troubleshooting and Tuning Database Performance

* A snapshot call returned a negative SQLCODE that was not -1224
(SQL1224N) or -1032 (SQL1032N). These return codes occur when a
previously active instance has been stopped.

* In a UNIX-based environment, an attempt to install a signal handler has
failed.

Because standard values are written, you can query the log files for different types
of actions. The Message field provides other nonstandard information that depends
on the type of record. For example, a FORCE or NICE record includes application
information in the Message field, whereas an ERROR record includes an error
message.

A governor log file might look like the following example:

2007-12-11-14.54.52 0 START Database = TQTEST

2007-12-11-14.54.52 0 READCFG Config = /u/db2instance/sql1ib/tqtest.cfg
2007-12-11-14.54.53 0 ERROR SQLMON Error: SQLCode = -1032
2007-12-11-14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

Stopping the governor

The governor utility monitors applications that are connected to a database, and
changes the behavior of those applications according to rules that you specify in a
governor configuration file for that database.

Important: With the new workload management features introduced in DB2
Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and might
be removed in a future release. For more information, see the “DB2 Governor and
Query Patroller have been deprecated” topic in the What’s New for DB2 Version 9.7
book.

To stop the governor, you must have sysadm or sysctrl authorization.
To stop the governor, use the db2gov command, specifying the STOP option.

For example, to stop the governor on all database partitions of the SALES
database, enter the following command:

db2gov STOP sales

To stop the governor on only database partition 3, enter the following command:
db2gov START sales nodenum 3

Chapter 2. Performance monitoring tools and methodology ~ 29

30 Troubleshooting and Tuning Database Performance

Chapter 3. Factors affecting performance

System architecture

DB2 architecture and process overview

On the client side, local or remote applications are linked with the DB2 client
library. Local clients communicate using shared memory and semaphores; remote
clients use a protocol, such as named pipes (NPIPE) or TCP/IP. On the server side,
activity is controlled by engine dispatchable units (EDUs).

shows a general overview of the DB2 architecture and processes.

Clients

Client Client
application application

H—11— -

Shared memory and semaphores,
TCPIP, Named pipes, IPX/SPX

DB2 Client

=

DB2 server l g l .
Log buffer ‘
E% <« -Writelog __ Coordinator Coordinator
requests agent agent------— |
Async I/O
prefetch requests
|m—————— »> Subagents Subagents i
! v
Victim Common prefetch
notifications Buffer T request queue
v ! Pool(s)
Deadlock
Loggers
o detector Prefetchers
Scatter/Gather f
Parallel, big-block,
= read requests
e)
gl I
1
Hard drive B Hard [Hard | [JHard
disks disks : disks
1
I

| _ Parallel, page . _ _

. Page cleaners
write requests

Figure 3. Client connections and database server components

EDUs are shown as circles or groups of circles.

© Copyright IBM Corp. 2006, 2010 31

EDUs are implemented as threads on all platforms. DB2 agents are the most
common type of EDU. These agents perform most of the SQL and XQuery
processing on behalf of applications. Prefetchers and page cleaners are other
common EDUs.

A set of subagents might be assigned to process client application requests.
Multiple subagents can be assigned if the machine on which the server resides has
multiple processors or is part of a partitioned database environment. For example,
in a symmetric multiprocessing (SMP) environment, multiple SMP subagents can
exploit multiple processors.

All agents and subagents are managed by a pooling algorithm that minimizes the
creation and destruction of EDUs.

Buffer pools are areas of database server memory where pages of user data, index
data, and catalog data are temporarily moved and can be modified. Buffer pools
are a key determinant of database performance, because data can be accessed
much faster from memory than from disk.

The configuration of buffer pools, as well as prefetcher and page cleaner EDUs,
controls how quickly data can be accessed by applications.

* Prefetchers retrieve data from disk and move it into a buffer pool before
applications need the data. For example, applications that need to scan through
large volumes of data would have to wait for data to be moved from disk into a
buffer pool if there were no data prefetchers. Agents of the application send
asynchronous read-ahead requests to a common prefetch queue. As prefetchers
become available, they implement those requests by using big-block or
scatter-read input operations to bring the requested pages from disk into the
buffer pool. If you have multiple disks for data storage, the data can be striped
across those disks. Striping enables the prefetchers to use multiple disks to
retrieve data simultaneously.

* Page cleaners move data from a buffer pool back to disk. Page cleaners are
background EDUs that are independent of the application agents. They look for
pages that have been modified, and write those changed pages out to disk. Page
cleaners ensure that there is room in the buffer pool for pages that are being
retrieved by prefetchers.

Without the independent prefetchers and page cleaner EDUs, the application
agents would have to do all of the reading and writing of data between a buffer
pool and disk storage.

The DB2 process model

Knowledge of the DB2 process model will help you to understand how the
database manager and its associated components interact, and this can help you to
troubleshoot problems that might arise.

The process model that is used by all DB2 database servers facilitates
communication between database servers and clients. It also ensures that database
applications are isolated from resources, such as database control blocks and
critical database files.

The DB2 database server must perform many different tasks, such as processing

database application requests or ensuring that log records are written out to disk.
Each task is typically performed by a separate engine dispatchable unit (EDU).

32 Troubleshooting and Tuning Database Performance

There are many advantages to using a multithreaded architecture for the DB2
database server. A new thread requires less memory and fewer operating system
resources than a process, because some operating system resources can be shared
among all threads within the same process. Moreover, on some platforms, the
context switch time for threads is less than that for processes, which can improve
performance. Using a threaded model on all platforms makes the DB2 database
server easier to configure, because it is simpler to allocate more EDUs when
needed, and it is possible to dynamically allocate memory that must be shared by
multiple EDUs.

For each database being accessed, separate EDUs are started to deal with various
database tasks such as prefetching, communication, and logging. Database agents
are a special class of EDU that are created to handle application requests for a
database.

In general, you can rely on the DB2 database server to manage the set of EDUs.
However, there are DB2 tools that look at the EDUs. For example, you can use the
db2pd command with the -edus option to list all EDU threads that are active.

Each client application connection has a single coordinator agent that operates on a
database. A coordinator agent works on behalf of an application, and communicates
to other agents using private memory, interprocess communication (IPC), or remote
communication protocols, as needed.

The DB2 architecture provides a firewall so that applications run in a different
address space than the DB2 database server (Figure 4 on page 34). The firewall
protects the database and the database manager from applications, stored
procedures, and user-defined functions (UDFs). The firewall maintains the integrity
of the data in the databases, because it prevents application programming errors
from overwriting internal buffers or database manager files. The firewall also
improves reliability, because application errors cannot crash the database manager.

Chapter 3. Factors affecting performance 33

Per instance

Per connection

Per database

l l db2agntp db2pfchr
Remote client
program db2tcpecm db2agent
T T T T db2agntp
| | db2pcinr
l l db2agntp
Local client : db2loggr
program db2ipccm db2agent 99
T T T T db2agntp
—I db2loggw
db2fmp db2sysc Agent pool
db2logts
Other threads
and processes
db2vend db2dlock

Firewall

Figure 4. Process model for DB2 database systems

Client programs

Client programs can be remote or local, running on the same machine as the
database server. Client programs make first contact with a database through a
communication listener.

Listeners

Communication listeners start when the DB2 database server starts. There is a
listener for each configured communications protocol, and an interprocess
communications (IPC) listener (db2ipccm) for local client programs. Listeners
include:

* db2ipccm, for local client connections

e db2tcpem, for TCP/IP connections

* db2tcpdm, for TCP/IP discovery tool requests
Agents

All connection requests from local or remote client programs (applications) are
allocated a corresponding coordinator agent (db2agent). When the coordinator
agent is created, it performs all database requests on behalf of the application.

In partitioned database environments, or systems on which intraquery parallelism
has been enabled, the coordinator agent distributes database requests to subagents
(db2agntp and db2agnts, respectively). Subagents that are associated with an
application but that are currently idle are named db2agnta.

34 Troubleshooting and Tuning Database Performance

A coordinator agent might be:

* Connected to the database with an alias; for example, db2agent (DATA1) is
connected to the database alias DATAL.

 Attached to an instance; for example, db2agent (userl) is attached to the instance
userl.

The DB2 database server will instantiate other types of agents, such as
independent coordinator agents or subcoordinator agents, to execute specific
operations. For example, the independent coordinator agent db2agnti is used to
run event monitors, and the subcoordinator agent db2agnsc is used to parallelize
database restart operations following an abnormal shutdown.

A gateway agent (db2agentg) is an agent associated to a remote database. It
provides indirect connectivity that allows clients to access the host database.

Idle agents reside in an agent pool. These agents are available for requests from
coordinator agents operating on behalf of client programs, or from subagents
operating on behalf of existing coordinator agents. Having an appropriately-sized
idle agent pool can improve performance when there are significant application
workloads. In this case, idle agents can be used as soon as they are required, and
there is no need to allocate a completely new agent for each application
connection, which involves creating a thread and allocating and initializing
memory and other resources. The DB2 database server automatically manages the
size of the idle agent pool.

A pooled agent can be associated to a remote database or a local database. An
agent pooled on a remote database is referred to as a pooled gateway agent
(db2agntgp). An agent pooled on a local database is referred to as a pooled
database agent (db2agentdp).

db2fmp

The fenced mode process is responsible for executing fenced stored procedures and
user-defined functions outside of the firewall. The db2fmp process is always a
separate process, but might be multithreaded, depending on the types of routines
that it executes.

db2vend

This is a process to execute vendor code on behalf of an EDU; for example, to
execute a user exit program for log archiving (UNIX only).

Database EDUs

The following list includes some of the important EDUs that are used by each
database:

* db2dlock, for deadlock detection. In a partitioned database environment, an
additional thread (db2glock) is used to coordinate the information that is
collected by the db2dlock EDU on each partition; db2glock runs only on the
catalog partition.

 db2fw, the event monitor fast writer; which is used for high volume, parallel
writing of event monitor data to tables, files, or pipes

 db2hadrp, the high availability disaster recovery (HADR) primary server thread
¢ db2hadrs, the HADR standby server thread

Chapter 3. Factors affecting performance 35

* db2lfr, for log file readers that process individual log files

* db2loggr, for manipulating log files to handle transaction processing and
recovery

* db2loggw, for writing log records to the log files
* db2logmgr, for the log manager. Manages log files for a recoverable database.

* db2logts, for tracking which table spaces have log records in which log files.
This information is recorded in the DB2TSCHG.HIS file in the database directory.

* db2lused, for updating object usage
 db2pfchr, for buffer pool prefetchers
* db2pclnr, for buffer pool page cleaners

* db2redom, for the redo master. During recovery, it processes redo log records
and assigns log records to redo workers for processing.

* db2redow, for the redo workers. During recovery, it processes redo log records at
the request of the redo master.

* db2shred, for processing individual log records within log pages
* db2stmm, for the self-tuning memory management feature

 db2taskd, for the distribution of background database tasks. These tasks are
executed by threads called db2taskp.

* db2wlmd, for automatic collection of workload management statistics
* Event monitor threads are identified as follows:
— db2evm%1%2 (%3)
where %1 can be:
- g - global file event monitor
- gp - global piped event monitor
- 1-local file event monitor
- lp - local piped event monitor
- t - table event monitor

and %2 can be:
- i - coordinator

- p - not coordinator

and %3 is the event monitor name
* Backup and restore threads are identified as follows:

- db2bm.%1.%2 (backup and restore buffer manipulator) and db2med.%1.%2
(backup and restore media controller), where:

- %1 is the EDU ID of the agent that controls the backup or restore session
- %2 is a sequential value that is used to distinguish among (possibly many)
threads belonging to a particular backup or restore session

For example: db2bm.13579.2 identifies the second db2bm thread that is
controlled by the db2agent thread with EDU ID 13579.

Database server threads and processes
The system controller (db2sysc on UNIX and db2syscs.exe on Windows operating

systems) must exist if the database server is to function. The following threads and
processes carry out a variety of tasks:

36 Troubleshooting and Tuning Database Performance

¢ db2acd, an autonomic computing daemon that hosts the health monitor,
automatic maintenance utilities, and the administrative task scheduler. This
process was formerly known as db2hmon.

* db2aiothr, manages asynchronous 1/O requests for a database partition (UNIX
only)

* db2alarm, notifies EDUs when their requested timer has expired (UNIX only)

* db2cart, for archiving log files (when the userexit database configuration
parameter is enabled)

+ db2disp, the client connection concentrator dispatcher

* db2fcms, the fast communications manager sender daemon

* db2fcmr, the fast communications manager receiver daemon

e db2fmd, the fault monitor daemon

* db2fmtlg, for formatting log files (when the logretain database configuration

parameter is enabled and the userexit database configuration parameter is
disabled)

¢ db2licc, manages installed DB2 licenses

* db2panic, the panic agent, which handles urgent requests after agent limits have
been reached at a particular database partition (used only in a partitioned
database environment)

* db2pdbc, the parallel system controller, which handles parallel requests from
remote database partitions (used only in a partitioned database environment)

* db2resync, the resync agent that scans the global resync list
* db2sysc, the main system controller EDU; it handles critical DB2 server events
* db2thcln, recycles resources when an EDU terminates (UNIX only)

* db2wdog, the watchdog on UNIX and Linux operating systems that handles
abnormal terminations

Database agents

When an application accesses a database, several processes or threads begin to
perform the various application tasks. These tasks include logging, communication,
and prefetching. Database agents are threads within the database manager that are
used to service application requests. In Version 9.5, agents are run as threads on all
platforms.

The maximum number of application connections is controlled by the
max_connections database manager configuration parameter. The work of each
application connection is coordinated by a single worker agent. A worker agent
carries out application requests but has no permanent attachment to any particular
application. Coordinator agents exhibit the longest association with an application,
because they remain attached to it until the application disconnects. The only
exception to this rule occurs when the engine concentrator is enabled, in which
case a coordinator agent can terminate that association at transaction boundaries
(COMMIT or ROLLBACK).

There are three types of worker agents:
* Idle agents

This is the simplest form of worker agent. It does not have an outbound
connection, and it does not have a local database connection or an instance
attachment.

* Active coordinator agents

Chapter 3. Factors affecting performance 37

Each database connection from a client application has a single active agent that
coordinates its work on the database. After the coordinator agent is created, it
performs all database requests on behalf of its application, and communicates to
other agents using interprocess communication (IPC) or remote communication
protocols. Each agent operates with its own private memory and shares database
manager and database global resources, such as the buffer pool, with other
agents. When a transaction completes, the active coordinator agent might
become an inactive agent. When a client disconnects from a database or detaches
from an instance, its coordinator agent will be:

— An active coordinator agent if other connections are waiting

— Freed and marked as idle if no connections are waiting, and the maximum
number of pool agents is being automatically managed or has not been
reached

— Terminated and its storage freed if no connections are waiting, and the
maximum number of pool agents has been reached

* Subagents

The coordinator agent distributes database requests to subagents, and these
subagents perform the requests for the application. After the coordinator agent is
created, it handles all database requests on behalf of its application by
coordinating the subagents that perform requests against the database. In DB2
Version 9.5, subagents can also exist in nonpartitioned environments and in
environments where intraquery parallelism is not enabled.

Agents that are not performing work for any application and that are waiting to be
assigned are considered to be idle agents and reside in an agent pool. These agents
are available for requests from coordinator agents operating on behalf of client
programs, or for subagents operating on behalf of existing coordinator agents. The
number of available agents depends on the value of the num_poolagents database
manager configuration parameter.

If no idle agents exist when an agent is required, a new agent is created
dynamically. Because creating a new agent requires a certain amount of overhead,
CONNECT and ATTACH performance is better if an idle agent can be activated
for a client.

When a subagent is performing work for an application, it is associated with that
application. After it completes the assigned work, it can be placed in the agent
pool, but it remains associated with the original application. When the application
requests additional work, the database manager first checks the idle pool for
associated agents before it creates a new agent.

Database agent management

Most applications establish a one-to-one relationship between the number of
connected applications and the number of application requests that can be
processed by the database server. Your environment, however, might require a
many-to-one relationship between the number of connected applications and the
number of application requests that can be processed.

Two database manager configuration parameters control these factors separately:

* The max_connections parameter specifies the maximum number of connected
applications

* The max_coordagents parameter specifies the maximum number of application
requests that can be processed concurrently

38 Troubleshooting and Tuning Database Performance

The connection concentrator is enabled when the value of max_connections is
greater than the value of max_coordagents. Because each active coordinating agent
requires global database resource overhead, the greater the number of these agents,
the greater the chance that the upper limits of available global resources will be
reached. To prevent this from occurring, set the value of max_connections to be
higher than the value of max_coordagents, or set both parameters to
AUTOMATIC.

There are two specific scenarios in which setting these parameters to AUTOMATIC

is a good idea:

* If you are confident that your system can handle all of the connections that
might be needed, but you want to limit the amount of global resources that are
used (by limiting the number of coordinating agents), set max_connections to
AUTOMATIC. When max_connections is greater than max_coordagents, the
connection concentrator is enabled.

* If you do not want to limit the maximum number of connections or coordinating
agents, but you know that your system requires or would benefit from a
many-to-one relationship between the number of connected applications and the
number of application requests that are processed, set both parameters to
AUTOMATIC. When both parameters are set to AUTOMATIC, the database
manager uses the values that you specify as an ideal ratio of connections to
coordinating agents. Note that both of these parameters can be configured with
a starting value and an AUTOMATIC setting. For example, the following
command associates both a value of 200 and AUTOMATIC with the
max_coordagents parameter:update dbm config using max_coordagents 200
automatic.

Example

Consider the following scenario:
¢ The max_connections parameter is set to AUTOMATIC and has a current value
of 300

* The max_coordagents parameter is set to AUTOMATIC and has a current value
of 100

The ratio of max_connections to max_coordagents is 300:100. The database
manager creates new coordinating agents as connections come in, and connection
concentration is applied only when needed. These settings result in the following
actions:

* Connections 1 to 100 create new coordinating agents

* Connections 101 to 300 do not create new coordinating agents; they share the
100 agents that have been created already

* Connections 301 to 400 create new coordinating agents

* Connections 401 to 600 do not create new coordinating agents; they share the
200 agents that have been created already

* and so on...

In this example, it is assumed that the connected applications are driving enough
work to warrant creation of new coordinating agents at each step. After some
period of time, if the connected applications are no longer driving sufficient
amounts of work, coordinating agents will become inactive and might be
terminated.

Chapter 3. Factors affecting performance 39

If the number of connections is reduced, but the amount of work being driven by
the remaining connections is high, the number of coordinating agents might not be
reduced right away. The max_connections and max_coordagents parameters do
not directly affect agent pooling or agent termination. Normal agent termination
rules still apply, meaning that the connections to coordinating agents ratio might
not correspond exactly to the values that you specified. Agents might return to the
agent pool to be reused before they are terminated.

If finer granularity of control is needed, specify a simpler ratio. For example, the
ratio of 300:100 from the previous example can be expressed as 3:1. If
max_connections is set to 3 (AUTOMATIC) and max_coordagents is set to 1
(AUTOMATIC), one coordinating agent can be created for every three connections.

Client-server processing model

Both local and remote application processes can work with the same database. A
remote application is one that initiates a database action from a machine that is
remote from the machine on which the database server resides. Local applications
are directly attached to the database at the server machine.

How client connections are managed depends on whether the connection
concentrator is on or off. The connection concentrator is on whenever the value of
the max_connections database manager configuration parameter is larger than the
value of the max_coordagents configuration parameter.

e If the connection concentrator is off, each client application is assigned a unique
engine dispatchable unit (EDU) called a coordinator agent that coordinates the
processing for that application and communicates with it.

¢ If the connection concentrator is on, each coordinator agent can manage many
client connections, one at a time, and might coordinate the other worker agents
to do this work. For internet applications with many relatively transient
connections, or applications with many relatively small transactions, the
connection concentrator improves performance by allowing many more client
applications to be connected concurrently. It also reduces system resource use for
each connection.

In [Figure 5 on page 41} each circle in the DB2 server represents an EDU that is
implemented using operating system threads.

40 Troubleshooting and Tuning Database Performance

Server machine

Local client EDUs per instance EDUs per connection
Application A Application A
]

—A4

shared memory
and semaphores db2agntp

A

Al Coordinator
agent
L
S %As— db2agent
| logical
A2 agents db2agntp
. > db2ipccm
Remote client
Application B db2tcpem Application B
T » —B2—»
B1 | Active subagents
1 B3
db2agntp
B|5 Coordinator
agent
— — B4— db2agent
Unassociated

idle agents Idle subagents

db2agent db2agntp

Figure 5. Client-server processing model overview

* At Al, a local client establishes communications through db2ipcem.

e At A2, db2ipccm works with a db2agent EDU, which becomes the coordinator
agent for application requests from the local client.

* At A3, the coordinator agent contacts the client application to establish shared
memory communications between the client application and the coordinator.

* At A4, the application at the local client connects to the database.

* At Bl, a remote client establishes communications through db2tcpcm. If another
communications protocol was chosen, the appropriate communications manager
is used.

e At B2, db2tcpcm works with a db2agent EDU, which becomes the coordinator
agent for the application and passes the connection to this agent.

* At B4, the coordinator agent contacts the remote client application.
* At B5, the remote client application connects to the database.

Note also that:

Chapter 3. Factors affecting performance 41

* Worker agents carry out application requests. There are four types of worker
agents: active coordinator agents, active subagents, associated subagents, and
idle agents.

* Each client connection is linked to an active coordinator agent.

* In a partitioned database environment, or an environment in which
intra-partition parallelism is enabled, the coordinator agents distribute database
requests to subagents (db2agntp).

* There is an agent pool (db2agent) where idle agents wait for new work.

* Other EDUs manage client connections, logs, two-phase commit operations,
backup and restore operations, and other tasks.

shows additional EDUs that are part of the server machine environment.
Each active database has its own shared pool of prefetchers (db2pfchr) and page
cleaners (db2pclnr), and its own logger (db2loggr) and deadlock detector
(db2dlock).

Server machine

. EDUs per EDUs per
EDUs per connection active database request
App A TEST database
Coordinator
agent db2agntp db2pclnr
do2agent db2bm, db2med, . .
db2pfchr
db2agntp
—————— 1
db2loggr db2dlock :_Fenced processes |
| Fenced UDF |
| processes [
App B Active PROD database | |
subagents | |
db2udfp
. db2pclnr | |
Coordinator db2agntp | |
agent | |
db2agent db2pfchr | Fenced stored |
ldle | procedure |
subagents | processes |
db2agntp db2loggr db2dlock | :
: db2fmp I
I I
_ e — — — — — —

Figure 6. EDUs in the database server

Fenced user-defined functions (UDFs) and stored procedures, which are not shown
in the figure, are managed to minimize costs that are associated with their creation
and destruction. The default value of the keepfenced database manager
configuration parameter is YES, which keeps the stored procedure process
available for reuse at the next procedure call.

42 Troubleshooting and Tuning Database Performance

Note: Unfenced UDFs and stored procedures run directly in an agent's address
space for better performance. However, because they have unrestricted access to
the agent's address space, they must be rigorously tested before being used.

Figure 7| shows the similarities and differences between the single database
partition processing model and the multiple database partition processing model.

App A DB2 create database PROD App B DB2 create database TEST
DB2 connect to PROD DB2 connect to TEST
DB2 load ... DB2 load . ..
DB2 select . .. DB2 select . ..
h h
Node0000 Node0001
db2pdbc db2fcmd db2pdbc db2fcmd
VREREN VREREN VREREN VREREN
I 1 I 1 I 1 I 1
\ ’ \ ’ \ ’ \ ’
App A App B App A App B
PROD database TEST database PROD database TEST database
db2glock db2glock

Catalog database partition for PROD Catalog database partition for TEST

Figure 7. Process model for multiple database partitions

In a multiple database partition environment, the database partition on which the
CREATE DATABASE command was issued is called the catalog database partition. It
is on this database partition that the system catalog tables are stored. The system
catalog is a repository of all of the information about objects in the database.

As shown in because Application A creates the PROD database on
Node0000, the catalog for the PROD database is also created on this database
partition. Similarly, because Application B creates the TEST database on Node0001,
the catalog for the TEST database is created on this database partition. It is a good
idea to create your databases on different database partitions to balance the extra
activity that is associated with the catalog for each database across the database
partitions in your environment.

Chapter 3. Factors affecting performance 43

There are additional EDUs (db2pdbc and db2fcmd) that are associated with the
instance, and these are found on each database partition in a multiple database
partition environment. These EDUs are needed to coordinate requests across
database partitions and to enable the fast communication manager (FCM).

There is an additional EDU (db2glock) that is associated with the catalog database
partition. This EDU controls global deadlocks across the database partitions on
which the active database is located.

Each connect request from an application is represented by a connection that is
associated with a coordinator agent. The coordinator agent is the agent that
communicates with the application, receiving requests and sending replies. It can
satisfy a request itself or coordinate multiple subagents to work on the request.
The database partition on which the coordinator agent resides is called the
coordinator database partition of that application.

Parts of the database requests from an application are sent by the coordinator
database partition to subagents at the other database partitions. All of the results
are consolidated at the coordinator database partition before being sent back to the
application.

Any number of database partitions can be configured to run on the same machine.
This is known as a multiple logical partition configuration. Such a configuration is
very useful on large symmetric multiprocessor (SMP) machines with very large
main memory. In this environment, communications between database partitions
can be optimized to use shared memory and semaphores.

Connection-concentrator improvements for client connections
The connection concentrator improves the performance of applications that have
frequent but relatively transient connections by enabling many concurrent client
connections to be processed efficiently. It also reduces memory use during each
connection and decreases the number of context switches.

The connection concentrator is enabled when the value of the max_connections
database manager configuration parameter is greater than the value of the
max_coordagents configuration parameter.

In an environment that requires many simultaneous user connections, you can
enable the connection concentrator for more efficient use of system resources. This
feature incorporates advantages that were formerly found only in DB2 Connect
connection pooling. After the first connection, the connection concentrator reduces
the time that is required to connect to a host. When disconnection from a host is
requested, the inbound connection is dropped, but the outbound connection to the
host is kept within a pool. When a new connection request is received, the
database manager attempts to reuse an existing outbound connection from the
pool.

For best performance of applications that use connection pooling or the connection
concentrator, tune the parameters that control the size of the block of data that is
cached. For more information, see the DB2 Connect product documentation.

Examples

* Consider a single-partition database to which, on average, 1000 users are
connected simultaneously. At times, the number of connected users might be
higher. The number of concurrent transactions can be as high as 200, but it is
never higher than 250. Transactions are short.

44 Troubleshooting and Tuning Database Performance

For this workload, you could set the following database manager configuration
parameters:

— Set max_coordagents to 250 to support the maximum number of concurrent
transactions.

— Set max_connections to AUTOMATIC with a value of 1000 to ensure support
for any number of connections; in this example, any value greater than 250
will ensure that the connection concentrator is enabled.

— Leave num_poolagents at the default value, which should ensure that
database agents are available to service incoming client requests, and that
little overhead will result from the creation of new agents.

* Consider a single-partition database to which, on average, 1000 users are
connected simultaneously. At times, the number of connected users might reach
2000. An average of 500 users are expected to be executing work at any given
time. The number of concurrent transactions is approximately 250. Five hundred
coordinating agents would generally be too many; for 1000 connected users, 250
coordinating agents should suffice.

For this workload, you could update the database manager configuration as
follows:

update dbm cfg using max_connections 1000 automatic
update dbm cfg using max_coordagents 250 automatic

This means that as the number of connections beyond 1000 increases, additional
coordinating agents will be created as needed, with a maximum to be
determined by the total number of connections. As the workload increases, the
database manager attempts to maintain a relatively stable ratio of connections to
coordinating agents.

* Suppose that you do not want to enable the connection concentrator, but you do
want to limit the number of connected users. To limit the number of
simultaneously connected users to 250, for example, you could set the following
database manager configuration parameters:

— Set max_coordagents to 250.
— Set max_connections to 250.

* Suppose that you do not want to enable the connection concentrator, and you do
not want to limit the number of connected users. You could update the database
manager configuration as follows:

update dbm cfg using max_connections automatic
update dbm cfg using max_coordagents automatic

Agents in a partitioned database

In a partitioned database environment, or an environment in which intra-partition
parallelism has been enabled, each database partition has its own pool of agents
from which subagents are drawn.

Because of this pool, subagents do not have to be created and destroyed each time
one is needed or has finished its work. The subagents can remain as associated
agents in the pool and can be used by the database manager for new requests from
the application with which they are associated or from new applications.

The impact on both performance and memory consumption within the system is
strongly related to how your agent pool is tuned. The database manager
configuration parameter for agent pool size (num_poolagents) affects the total
number of agents and subagents that can be kept associated with applications on a
database partition. If the pool size is too small and the pool is full, a subagent

Chapter 3. Factors affecting performance 45

disassociates itself from the application it is working on and terminates. Because
subagents must be constantly created and reassociated with applications,
performance suffers.

By default, num_poolagents is set to AUTOMATIC with a value of 100, and the
database manager automatically manages the number of idle agents to pool.

If the value of num_poolagents is manually set too low, one application could fill
the pool with associated subagents. Then, when another application requires a new
subagent and has no subagents in its agent pool, it will recycle inactive subagents
from the agent pools of other applications. This behavior ensures that resources are
fully utilized.

If the value of num_poolagents is manually set too high, associated subagents
might sit unused in the pool for long periods of time, using database manager
resources that are not available for other tasks.

When the connection concentrator is enabled, the value of num_poolagents does
not necessarily reflect the exact number of agents that might be idle in the pool at
any one time. Agents might be needed temporarily to handle higher workload
activity.

In addition to database agents, other asynchronous database manager activities run
as their own process or thread, including;:

* Database I/0O servers or 1/O prefetchers
* Database asynchronous page cleaners

* Database loggers

* Database deadlock detectors

e Communication and IPC listeners

* Table space container rebalancers

Configuring for good performance

Some types of DB2 deployment, such as the InfoSphere " Balanced Warehouse®
(BW), or those within SAP systems, have configurations that are highly specified.

In the BW case, hardware factors, such as the number of CPUs, the ratio of
memory to CPU, the number and configuration of disks, and versions are
pre-specified, based on thorough testing to determine the optimal configuration. In
the SAP case, hardware configuration is not as precisely specified; however, there
are a great many sample configurations available. In addition, SAP best practice
provides recommended DB2 configuration settings. If you are using a DB2
deployment for a system that provides well-tested configuration guidelines, you
should generally take advantage of the guidelines in place of more general
rules-of-thumb.

Consider a proposed system for which you do not already have a detailed
hardware configuration. Your goal is to identify a few key configuration decisions
that get the system well on its way to good performance. This step typically occurs
before the system is up and running, so you might have limited knowledge of how
it will actually behave. In a way, you have to make a “best guess,” based on your
knowledge of what the system will be doing.

46 Troubleshooting and Tuning Database Performance

Hardware configuration

CPU capacity is one of the main independent variables in configuring a system for
performance. Because all other hardware configuration typically flows from it, it is
not easy to predict how much CPU capacity is required for a given workload. In
business intelligence (BI) environments, 200-300 GB of active raw data per
processor core is a reasonable estimate. For other environments, a sound approach
is to gauge the amount of CPU required, based on one or more existing DB2
systems. For example, if the new system needs to handle 50% more users, each
running SQL that is at least as complex as that on an existing system, it would be
reasonable to assume that 50% more CPU capacity is required. Likewise, other
factors that predict a change in CPU usage, such as different throughput
requirements or changes in the use of triggers or referential integrity, should be
taken into account as well.

After you have the best idea of CPU requirements (derived from available
information), other aspects of hardware configuration start to fall into place.
Although you must consider the required system disk capacity in gigabytes or
terabytes, the most important factors regarding performance are the capacity in
I/0s per second (IOPS), or in megabytes per second of data transfer. In practical
terms, this is determined by the number of individual disks involved.

Why is that the case? The evolution of CPUs over the past decade has seen
incredible increases in speed, whereas the evolution of disks has been more in
terms of their capacity and cost. There have been improvements in disk seek time
and transfer rate, but they haven't kept pace with CPU speeds. So to achieve the
aggregate performance needed with modern systems, using multiple disks is more
important than ever, especially for systems that will drive a significant amount of
random disk I/O. Often, the temptation is to use close to the minimum number of
disks that can contain the total amount of data in the system, but this generally
leads to very poor performance.

In the case of RAID storage, or for individually addressable drives, a rule-of-thumb
is to configure at least ten to twenty disks per processor core. For storage servers, a
similar number is recommended; however, in this case, a bit of extra caution is
warranted. Allocation of space on storage servers is often done more with an eye
to capacity rather than throughput. It is a very good idea to understand the
physical layout of database storage, to ensure that the inadvertent overlap of
logically separate storage does not occur. For example, a reasonable allocation for a
4-way system might be eight arrays of eight drives each. However, if all eight
arrays share the same eight underlying physical drives, the throughput of the
configuration would be drastically reduced, compared to eight arrays spread over
64 physical drives.

It is good practice to set aside some dedicated (unshared) disk for the DB2
transaction logs. This is because the I/O characteristics of the logs are very
different from DB2 containers, for example, and the competition between log 1/0
and other types of I/O can result in a logging bottleneck, especially in systems
with a high degree of write activity.

In general, a RAID-1 pair of disks can provide enough logging throughput for up
to 400 reasonably write-intensive DB2 transactions per second. Greater throughput
rates, or high-volume logging (for example, during bulk inserts), requires greater
log throughput, which can be provided by additional disks in a RAID-10
configuration, connected to the system through a write-caching disk controller.

Chapter 3. Factors affecting performance 47

Because CPUs and disks effectively operate on different time scales — nanoseconds
versus microseconds — you need to decouple them to enable reasonable processing
performance. This is where memory comes into play. In a database system, the
main purpose of memory is to avoid 1/0, and so up to a point, the more memory
a system has, the better it can perform. Fortunately, memory costs have dropped
significantly over the last several years, and systems with tens to hundreds of
gigabytes (GB) of RAM are not uncommon. In general, four to eight gigabytes per
processor core should be adequate for most applications.

AIX configuration

There are relatively few AIX parameters that need to be changed to achieve good
performance. For the purpose of these recommendations, assume an AIX level of
5.3 or later. Again, if there are specific settings already in place for your system (for
example, a BW or SAP configuration), those should take precedence over the
following general guidelines.

* The VMO parameter LRU_FILE_REPAGE should be set to 0. This parameter
controls whether AIX victimizes computational pages or file system cache pages.
In addition, minperm should be set to 3. These are both default values in AIX
6.1.

* The AIO parameter maxservers can be initially left at the default value of ten
per CPU. After the system is active, maxservers is tuned as follows:

1. Collect the output of the ps —elfk | grep aio command and determine if all
asynchronous 1/O (AIO) kernel processes (aioservers) are consuming the
same amount of CPU time.

2. If they are, maxservers might be set too low. Increase maxservers by 10%,
and repeat step 1.

3. If some aioservers are using less CPU time than others, the system has at
least as many of them as it needs. If more than 10% of aioservers are using
less CPU, reduce maxservers by 10% and repeat step 1.

* The AIO parameter maxreqs should be set to MAX(NUM_IOCLEANERS x 256, 4096
). This parameter controls the maximum number of outstanding AIO requests.

e The hdisk parameter queue_depth should be based on the number of physical
disks in the array. For example, for IBM® disks, the default value for
queue_depth is 3, and the recommended value would be 3 x number-of-devices.
This parameter controls the number of queuable disk requests.

e The disk adapter parameter num_cmd_elems should be set to the sum of
queue_depth for all devices connected to the adapter. This parameter controls
the number of requests that can be queued to the adapter.

Solaris and HP-UX configuration

For DB2 running on Solaris or HP-UX, the db2osconf utility is available to check
and recommend kernel parameters based on the system size. The db2osconf utility
allows you to specify the kernel parameters based on memory and CPU, or with a
general scaling factor that compares the current system configuration to an
expected future configuration. A good approach is to use a scaling factor of 2 or
higher if running large systems, such as SAP applications. In general, db2osconf
gives you a good initial starting point to configure Solaris and HP-UX, but it does
not deliver the optimal value, because it cannot consider current and future
workloads.

48 Troubleshooting and Tuning Database Performance

Linux configuration

When a Linux system is used as a DB2 server, some of the Linux kernel
parameters might have to be changed. Because Linux distributions change, and
because this environment is highly flexible, only some of the most important
settings that need to be validated on the basis of the Linux implementation are
considered.

SHMMAX (maximum size of a shared memory segment) on a 64-bit system must
be set to a minimum of 1 GB — 1 073 741 824 bytes — whereas the parameter
SHMALL should be set to 90% of the available memory on the database server.
SHMALL is 8 GB by default. Other important Linux kernel configuration
parameters and their recommended values for DB2 are:

* kernel.sem (specifying four kernel semaphore settings — SEMMSL, SEMMNS,
SEMOPM, and SEMMNI): 250 256000 32 1024

* kernel.msgmni (number of message queue identifiers): 1024
* kernel.msgmax (maximum size of a message, in bytes): 65536

* kernel.msgmnb (default size of a message queue, in bytes): 65536
DB2 Database Partitioning Feature

The decision to use the DB2 Database Partitioning Feature (DPF) is not generally
made based purely on data volume, but more on the basis of the workload. As a
general guideline, most DPF deployments are in the area of data warehousing and
business intelligence. The DPF is highly recommended for large complex query
environments, because its shared-nothing architecture allows for outstanding
scalability. For smaller data marts (up to about 300 GB), which are unlikely to
grow rapidly, a DB2 Enterprise Server Edition (ESE) configuration is often a good
choice. However, large or fast-growing Bl environments benefit greatly from the
DPF.

A typical partitioned database system usually has one processor core per data
partition. For example, a system with n processor cores would likely have the
catalog on partition 0, and have n additional data partitions. If the catalog partition
will be heavily used (for example, to hold single partition dimension tables), it
might be allocated a processor core as well. If the system will support very many
concurrent active users, two cores per partition might be required.

In terms of a general guide, you should plan on about 250 GB of active raw data
per partition.

The InfoSphere Balanced Warehouse documentation contains in-depth information
regarding partitioned database configuration best practices. This documentation
contains useful information for non-Balanced Warehouse deployments as well.

Choice of code page and collation

As well as affecting database behavior, choice of code page or code set and
collating sequence can have a strong impact on performance. The use of Unicode
has become very widespread because it allows you to represent a greater variety of
character strings in your database than has been the case with traditional
single-byte code pages. Unicode is the default for new databases in DB2 Version
9.5. However, because Unicode code sets use multiple bytes to represent some
individual characters, there can be increased disk and memory requirements. For
example, the UTF-8 code set, which is one of the most common Unicode code sets,

Chapter 3. Factors affecting performance 49

uses from one to four bytes per character. An average string expansion factor due
to migration from a single-byte code set to UTF-8 is very difficult to estimate
because it depends on how frequently multibyte characters are used. For typical
North American content, there is usually no expansion. For most western
European languages, the use of accented characters typically introduces an
expansion of around 10%.

On top of this, the use of Unicode can cause extra CPU consumption relative to
single-byte code pages. First, if expansion occurs, the longer strings require more
work to manipulate. Second, and more significantly, the algorithms used by the
more sophisticated Unicode collating sequences, such as UCA500R1_NO, can be
much more expensive than the typical SYSTEM collation used with single-byte
code pages. This increased expense is due to the complexity of sorting Unicode
strings in a culturally-correct way. Operations that are impacted include sorting,
string comparisons, LIKE processing, and index creation.

If Unicode is required to properly represent your data, choose the collating
sequence with care.

* If the database will contain data in multiple languages, and correct sort order of
that data is of paramount importance, use one of the culturally correct collations
(for example, UCA500R1_*). Depending on the data and the application, this
could have a performance overhead of 1.5 to 3 times more, relative to the
IDENTITY sequence.

* There are both normalized and non-normalized varieties of culturally-correct
collation. Normalized collations (for example, UCA500R1_NO) have additional
checks to handle malformed characters, whereas non-normalized collations (for
example, UCA500r1_NX) do not. Unless the handling of malformed characters is
an issue, use the non-normalized version, because there is a performance benefit
in avoiding the normalization code. That said, even non-normalized culturally
correct collations are very expensive.

 If a database is being moved from a single-byte environment to a Unicode
environment, but does not have rigorous requirements about hosting a variety of
languages (most deployments will be in this category), language aware collation
might be appropriate. Language aware collations (for example, SYSTEM_819_BE)
take advantage of the fact that many Unicode databases contain data in only one
language. They use the same lookup table-based collation algorithm as
single-byte collations such as SYSTEM_819, and so are very efficient. As a
general rule, if the collation behavior in the original single-byte database was
acceptable, then as long as the language content does not change significantly
following the move to Unicode, culturally aware collation should be considered.
This can provide very large performance benefits relative to culturally correct
collation.

Physical database design

* In general, file-based database managed storage (DMS) regular table spaces give
better performance than system managed storage (SMS) regular table spaces.
SMS is often used for temporary table spaces, especially when the temporary
tables are very small; however, the performance advantage of SMS in this case is
shrinking over time.

* In the past, DMS raw device table spaces had a fairly substantial performance
advantage over DMS file table spaces; however, with the introduction of direct
I/0 (now defaulted through the NO FILE SYSTEM CACHING clause in the
CREATE TABLESPACE and the ALTER TABLESPACE statements), DMS file
table spaces provide virtually the same performance as DMS raw device table
spaces.

50 Troubleshooting and Tuning Database Performance

Initial DB2 configuration settings

The DB2 configuration advisor, also known as the AUTOCONFIGURE command,
takes basic system guidelines that you provide, and determines a good starting set
of DB2 configuration values. The AUTOCONFIGURE command can provide real
improvements over the default configuration settings, and is recommended as a
way to obtain initial configuration values. Some additional fine-tuning of the
recommendations generated by the AUTOCONFIGURE command is often
required, based on the characteristics of the system.

Here are some suggestions for using the AUTOCONFIGURE command:

* Even though, starting in DB2 Version 9.1, the AUTOCONFIGURE command is
run automatically at database creation time, it is still a good idea to run the
AUTOCONFIGURE command explicitly. This is because you then have the
ability to specify keyword/value pairs that help customize the results for your
system.

* Run (or rerun) the AUTOCONFIGURE command after the database is populated
with an appropriate amount of active data. This provides the tool with more
information about the nature of the database. The amount of data that you use
to populate the database is important, because it can affect such things as buffer
pool size calculations, for example. Too much or too little data makes these
calculations less accurate.

e Try different values for important AUTOCONFIGURE command keywords, such
as mem_percent, tpm, and num_stmts to get an idea of which, and to what
degree, configuration values are affected by these changes.

 If you are experimenting with different keywords and values, use the APPLY
NONE option. This gives you a chance to compare the recommendations with
the current settings.

* Specify values for all keywords, because the defaults might not suit your system.
For example, mem_percent defaults to 25%, which is too low for a dedicated
DB2 server; 85% is the recommended value in this case.

DB2 autonomics and automatic parameters

Recent releases of DB2 database products have significantly increased the number
of parameters that are either automatically set at instance or database startup time,
or that are dynamically tuned during operation. For most systems, automatic
settings provide better performance than all but the very carefully hand-tuned
systems. This is particularly due to the DB2 self-tuning memory manager (STMM),
which dynamically tunes total database memory allocation as well as four of the
main memory consumers in a DB2 system: the buffer pools, the lock list, the
package cache, and the sort heap.

Because these parameters apply on a partition-by-partition basis, using the STMM
in a partitioned database environment should be done with some caution. On
partitioned database systems, the STMM continuously measures memory
requirements on a single partition (automatically chosen by the DB2 system, but
that choice can be overridden), and ‘pushes out' heap size updates to all partitions
on which the STMM is enabled. Because the same values are used on all partitions,
the STMM works best in partitioned database environments where the amounts of
data, the memory requirements, and the general levels of activity are very uniform
across partitions. If a small number of partitions have skewed data volumes or
different memory requirements, the STMM should be disabled on those partitions,
and allowed to tune the more uniform ones. For example, the STMM should
generally be disabled on the catalog partition.

Chapter 3. Factors affecting performance 51

For partitioned database environments with skewed data distribution, where

continuous cross-cluster memory tuning is not advised, the STMM can be used

selectively and temporarily during a ‘tuning phase' to help determine good manual

heap settings:

* Enable the STMM on one ‘typical' partition. Other partitions continue to have
the STMM disabled.

 After memory settings have stabilized, disable the STMM and manually ‘harden'
the affected parameters at their tuned values.

* Deploy the tuned values on other database partitions with similar data volumes
and memory requirements (for example, partitions in the same partition group).

* Repeat the process if there are multiple disjointed sets of database partitions
containing similar volumes and types of data and performing similar roles in the
system.

The configuration advisor generally chooses to enable autonomic settings where
applicable. This includes automatic statistics updates from the RUNSTATS
command (very useful), but excludes automatic reorganization and automatic
backup. These can be very useful as well, but need to be configured according to
your environment and schedule for best results. Automatic statistics profiling
should remain disabled by default. It has quite high overhead and is intended to
be used temporarily under controlled conditions and with complex statements.

Explicit configuration settings

Some parameters do not have automatic settings, and are not set by the
configuration advisor. These need to be dealt with explicitly. Only parameters that
have performance implications are considered here.

* logpath or newlogpath determines the location of the transaction log. Even the
configuration advisor cannot decide for you where the logs should go. As
mentioned above, the most important point is that they should not share disk
devices with other DB2 objects, such as table spaces, or be allowed to remain in
the default location, which is under the database path. Ideally, transaction logs
should be placed on dedicated storage with sufficient throughput capacity to
ensure that a bottleneck will not be created.

* logbufsz determines the size of the transaction logger internal buffer, in 4-KB
pages. The default value of only eight pages is far too small for good
performance in a production environment. The configuration advisor always
increases it, but possibly not enough, depending on the input parameters. A
value of 256-1000 pages is a good general range, and represents only a very
small total amount of memory in the overall scheme of a database server.

* mincommit controls group commit, which causes a DB2 system to try to batch
together n committing transactions. With the current transaction logger design,
this is rarely the desired behavior. Leave mincommit at the default value of 1.

* buffpage determines the number of pages allocated to each buffer pool that is
defined with a size of -1. The best practice is to ignore buffpage, and either
explicitly set the size of buffer pools that have an entry in
SYSCAT.BUFFERPOOLS, or let the STMM tune buffer pool sizes automatically.

 diagpath determines the location of various useful DB2 diagnostic files. It
generally has little impact on performance, except possibly in a partitioned
database environment. The default location of diagpath on all partitions is
typically on a shared, NFS-mounted path. The best practice is to override
diagpath to a local, non-NFS directory for each partition. This prevents all
partitions from trying to update the same file with diagnostic messages. Instead,
these are kept local to each partition, and contention is greatly reduced.

52 Troubleshooting and Tuning Database Performance

* DB2_PARALLEL_IO is not a configuration parameter, but a DB2 registry
variable. It is very common for DB2 systems to use storage consisting of arrays
of disks, which are presented to the operating system as a single device, or to
use file systems that span multiple devices. The consequence is that by default, a
DB2 database system makes only one prefetch request at a time to a table space
container. This is done with the understanding that multiple requests to a single
device are serialized anyway. But if a container resides on an array of disks,
there is an opportunity to dispatch multiple prefetch requests to it
simultaneously, without serialization. This is where DB2_PARALLEL_IO comes
in. It tells the DB2 system that prefetch requests can be issued to a single
container in parallel. The simplest setting is DB2_PARALLEL_IO=* (meaning that all
containers reside on multiple — assumed in this case to be seven — disks), but
other settings also control the degree of parallelism and which table spaces are
affected. For example, if you know that your containers reside on a RAID-5
array of four disks, you might set DB2_PARALLEL_IO to *:3. Whether or not
particular values benefit performance also depends on the extent size, the RAID
segment size, and how many containers use the same set of disks.

Considerations for SAP and other ISV environments

If you are running a DB2 database server for an ISV application such as SAP, some
best practice guidelines that take into account the specific application might be
available. The most straightforward mechanism is the DB2 registry variable
DB2_WORKLOAD, which can be set to a value that enables aggregated registry
variables to be optimized for specific environments and workloads. Valid settings
for DB2_WORKLOAD include: 1C, CM, COGNOS_CS, FILENET_CM, MAXIMO,
MDM, SAP, TPM, WAS, WC, and WP .

Other recommendations and best practices might apply, such as the choice of a
code page or code set and collating sequence, because they must be set to a
predetermined value. Refer to the application vendor's documentation for details.

For many ISV applications, such as SAP Business One, the AUTOCONFIGURE
command can be successfully used to define the initial configuration. However, it
should not be used in SAP NetWeaver installations, because an initial set of DB2
configuration parameters is applied during SAP installation. In addition, SAP has a
powerful alternative best practices approach (SAP Notes) that describes the
preferred DB2 parameter settings; for example, SAP Note 1086130 - DB6: DB2 9.5
Standard Parameter Settings.

Pay special attention to SAP applications when using the DB2 DPF feature. SAP
uses DPF mainly in its SAP NetWeaver Business Intelligence (Business Warehouse)
product. The recommended layout has the DB2 system catalog, the dimension and
master tables, plus the SAP base tables on Partition 0. This leads to a different
workload on this partition compared to other DB2 DPF installations. Because the
SAP application server runs on this partition, up to eight processors might be
assigned to just this partition. As the SAP BW workload becomes more highly
parallelized, with many short queries running concurrently, the number of
partitions for SAP BI is typically smaller than for other applications. In other
words, more than one CPU per data partition is required.

Instance configuration

When you start a new DB2 instance, there are a number of steps that you can
follow to establish a basic configuration.

Chapter 3. Factors affecting performance 53

* You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters. To use the Configuration Advisor, specify the
AUTOCONFIGURE command for an existing database, or specify
AUTOCONFIGURE as an option on the CREATE DATABASE command. You
can display the recommended values or apply them by using the APPLY option
on the CREATE DATABASE command. The recommendations are based on
input that you provide and system information that the advisor gathers.

* You can use the Configuration Assistant to configure and maintain your
database objects, add new objects, bind applications, set database manager
configuration parameters, and import and export configuration information. To
open the Configuration Assistant, invoke the db2ca command. For instance
configuration, the Configuration Assistant helps you to set database manager
configuration parameters, set DB2 registry variables, configure another instance,
or reset the configuration.

* Consult the summary tables (see “Configuration parameters summary”) that list
and briefly describe each configuration parameter that is available to the
database manager or a database. These summary tables contain a column that
indicates whether tuning a particular parameter is likely to produce a high,
medium, low, or no performance change. Use these tables to find the parameters
that might help you to realize the largest performance improvements in your
environment.

* Use the ACTIVATE DATABASE command to activate a database and starts up
all necessary database services, so that the database is available for connection
and use by any application. In a partitioned database environment, this
command activates the database on all database partitions and avoids the
startup time that is required to initialize the database when the first application
connects.

Table space design

Disk-storage performance factors

Hardware characteristics, such as disk-storage configuration, can strongly influence
the performance of your system.

Performance can be affected by one or more of the following aspects of
disk-storage configuration:
* Division of storage

How well you divide a limited amount of storage between indexes and data and

among table spaces determines to a large degree how the system will perform in
different situations.

e Distribution of disk I/O

How well you balance the demand for disk I/O across several devices and
controllers can affect the speed with which the database manager is able to
retrieve data from disk.

* Disk subsystem core performance metrics

The number of disk operations per second, or the capacity in megabytes
transferred per second, has a very strong impact on the performance of the
overall system.

54 Troubleshooting and Tuning Database Performance

Table space impact on query optimization

Certain characteristics of your table spaces can affect the access plans that are
chosen by the query compiler.

These characteristics include:

¢ Container characteristics

Container characteristics can have a significant impact on the I/O cost that is
associated with query execution. When it selects an access plan, the query
optimizer considers these 1/O costs, including any cost differences when
accessing data from different table spaces. Two columns in the
SYSCAT.TABLESPACES catalog view are used by the optimizer to help estimate
the I/O costs of accessing data from a table space:

— OVERHEAD provides an estimate of the time (in milliseconds) that is
required by the container before any data is read into memory. This overhead
activity includes the container's I/O controller overhead as well as the disk
latency time, which includes the disk seek time.

You can use the following formula to estimate the overhead cost:

OVERHEAD = average seek time in milliseconds
+ (0.5 * rotational latency)

where:

0.5 represents the average overhead of one half rotation

Rotational latency (in milliseconds) is calculated for each full rotation, as
follows:

(1 / RPM) * 60 * 1000

where:

* You divide by rotations per minute to get minutes per rotation
* You multiply by 60 seconds per minute

* You multiply by 1000 milliseconds per second

For example, assume that a disk performs 7200 rotations per minute. Using
the rotational-latency formula:

(1 / 7200) * 60 * 1000 = 8.328 milliseconds

This value can be used to estimate the overhead as follows, assuming an
average seek time of 11 milliseconds:

OVERHEAD = 11 + (0.5 * 8.328)

15.164

— TRANSFERRATE provides an estimate of the time (in milliseconds) that is
required to read one page of data into memory.

If each table space container is a single physical disk, you can use the
following formula to estimate the transfer cost in milliseconds per page:

TRANSFERRATE = (1 / spec_rate) * 1000 / 1024000 * page_size

where:

You divide by spec_rate, which represents the disk specification for the
transfer rate (in megabytes per second), to get seconds per megabyte

You multiply by 1000 milliseconds per second

You divide by 1 024 000 bytes per megabyte

You multiply by the page size (in bytes); for example, 4096 bytes for a 4-KB
page

Chapter 3. Factors affecting performance 55

For example, suppose that the specification rate for a disk is 3 megabytes per
second. Then:

TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096

1.333248

or about 1.3 milliseconds per page.

If the table space containers are not single physical disks, but are arrays of
disks (such as RAID), you must take additional considerations into account
when estimating the TRANSFERRATE.

If the array is relatively small, you can multiply the spec_rate by the number
of disks, assuming that the bottleneck is at the disk level. However, if the
array is large, the bottleneck might not be at the disk level, but at one of the
other I/O subsystem components, such as disk controllers, I/O busses, or the
system bus. In this case, you cannot assume that the I/O throughput capacity
is the product of the spec_rate and the number of disks. Instead, you must
measure the actual I/O rate (in megabytes) during a sequential scan. For
example, a sequential scan resulting from select count(*) from big_table
could be several megabytes in size. In this case, divide the result by the
number of containers that make up the table space in which BIG_TABLE
resides. Use this result as a substitute for spec_rate in the formula given above.
For example, a measured sequential 1/O rate of 100 megabytes while
scanning a table in a four-container table space would imply 25 megabytes
per container, or a TRANSFERRATE of (1 / 25) * 1000 / 1 024 000 * 4096 =
0.16 milliseconds per page.

Containers that are assigned to a table space might reside on different physical
disks. For best results, all physical disks that are used for a given table space
should have the same OVERHEAD and TRANSFERRATE characteristics. If these
characteristics are not the same, you should use average values when setting
OVERHEAD and TRANSFERRATE.

You can obtain media-specific values for these columns from hardware
specifications or through experimentation. These values can be specified on the
CREATE TABLESPACE and ALTER TABLESPACE statements.

* Prefetching

When considering the I/O cost of accessing data in a table space, the optimizer
also considers the potential impact that prefetching data and index pages from
disk can have on query performance. Prefetching can reduce the overhead that is
associated with reading data into the buffer pool.

The optimizer uses information from the PREFETCHSIZE and EXTENTSIZE
columns of the SYSCAT.TABLESPACES catalog view to estimate the amount of
prefetching that will occur.

— EXTENTSIZE can only be set when creating a table space. An extent size of 4
or 8 pages is usually sufficient.

— PREFETCHSIZE can be set when you create or alter a table space. The default
prefetch size is determined by the value of the dft_prefetch_sz database
configuration parameter. Review the recommendations for sizing this
parameter and make changes as needed, or set it to AUTOMATIC.

After making changes to your table spaces, consider executing the runstats utility

to collect the latest statistics about indexes and to ensure that the query optimizer
chooses the best possible data-access plans before rebinding your applications.

56 Troubleshooting and Tuning Database Performance

Database design

Tables

Table and index management for standard tables
In standard tables, data is logically organized as a list of data pages. These data
pages are logically grouped together based on the extent size of the table space.

For example, if the extent size is four, pages zero to three are part of the first
extent, pages four to seven are part of the second extent, and so on.

The number of records contained within each data page can vary, based on the size
of the data page and the size of the records. Most pages contain only user records.
However, a small number of pages include special internal records that are used
by the data server to manage the table. For example, in a standard table, there is a
free space control record (FSCR) on every 500th data page . These records
map the free space that is available for new records on each of the following 500
data pages (until the next FSCR).

Logical Physical Logical view of index
table view table view
0 4020
1 4021
2 4022
3 4023
RID (record ID) = Page 4023, Slot 2
Data page format
4 252 Page Header
U e Record 2
500 876 | ¥ Record 1
Legend
[reserved for system records
[] FSCrR
[userrecords

Figure 8. Logical table, record, and index structure for standard tables

Logically, index pages are organized as a B-tree that can efficiently locate table
records that have a specific key value. The number of entities on an index page is
not fixed, but depends on the size of the key. For tables in database managed space
(DMS) table spaces, record identifiers (RIDs) in the index pages use table

Chapter 3. Factors affecting performance 57

space-relative page numbers, not object-relative page numbers. This enables an
index scan to directly access the data pages without requiring an extent map page
(EMP) for mapping.

Each data page has the same format. A page begins with a page header; this is
followed by a slot directory. Each entry in the slot directory corresponds to a
different record on the page. An entry in the slot directory represents the
byte-offset on the data page where a record begins. Entries of -1 correspond to
deleted records.

Record identifiers and pages

Record identifiers consist of a page number followed by a slot number .
Index records contain an additional field called the ridFlag. The ridFlag stores
information about the status of keys in the index, such as whether they have been
marked deleted. After the index is used to identify a RID, the RID is used to
identify the correct data page and slot number on that page. After a record is
assigned a RID, the RID does not change until the table is reorganized.

Data page and RID format

Page # slot #

-{ e] 0 Jmo

Page 473
- [Page Header Supported page sizes:
4KB, 8KB,

3800| -1 | 3400] 16KB, 32KB
Free space ——— b \\ Set on table space creation.
(usable without page \ _Ii Each table space must be
reorganization *) AN assigned a buffer pool with

\ Record 2 a matching page size.

Embedded free space —» [* -» Record 1

(usable after online
page reorganization®)

* Exception: Any space reserved by an uncommitted
DELETE is not usable.

Figure 9. Data page and record ID (RID) format

When a table page is reorganized, embedded free space that is left on the page
after a record is physically deleted is converted to usable free space.

The DB2 data server supports different page sizes. Use larger page sizes for
workloads that tend to access rows sequentially. For example, sequential access is
commonly used for decision support applications, or when temporary tables are
being used extensively. Use smaller page sizes for workloads that tend to access
rows randomly. For example, random access is often used in online transaction
processing (OLTP) environments.

Index management in standard tables
DB2 indexes use an optimized B-tree implementation that is based on an efficient
and high concurrency index management method using write-ahead logging. A

B-tree index is arranged as a balanced hierarchy of pages that minimizes access
time by realigning data keys as items are inserted or deleted.

58 Troubleshooting and Tuning Database Performance

The optimized B-tree implementation has bidirectional pointers on the leaf pages
that allow a single index to support scans in either forward or reverse direction.
Index pages are usually split in half, except at the high-key page where a 90/10
split is used, meaning that the highest ten percent of index keys are placed on a
new page. This type of index page split is useful for workloads in which insert
operations are often completed with new high-key values.

Deleted index keys are removed from an index page only if there is an X lock on
the table. If keys cannot be removed immediately, they are marked deleted and
physically removed later.

If you enabled online index defragmentation by specifying a positive value for
MINPCTUSED when the index was created, index leaf pages can be merged
online. MINPCTUSED represents the minimum percentage of used space on an
index leaf page. If the amount of used space on an index page falls below this
value after a key is removed, the database manager attempts to merge the
remaining keys with those of a neighboring page. If there is sufficient room, the
merge is performed and an index leaf page is deleted. Because online
defragmentation occurs only when keys are removed from an index page, this does
not occur if keys are merely marked deleted, but have not been physically
removed from the page. Online index defragmentation can improve space reuse,
but if the MINPCTUSED value is too high, the time that is needed for a merge
increases, and a successful merge becomes less likely. The recommended value for
MINPCTUSED is fifty percent or less.

The INCLUDE clause of the CREATE INDEX statement lets you specify one or
more columns (beyond the key columns) for the index leaf pages. These include
columns, which are not involved in ordering operations against the index B-tree,
can increase the number of queries that are eligible for index-only access. However,
they can also increase index space requirements and, possibly, index maintenance
costs if the included columns are updated frequently. The maintenance cost of
updating include columns is less than the cost of updating key columns, but more
than the cost of updating columns that are not part of an index.

Table and index management for MDC tables
Table and index organization for multidimensional clustering (MDC) tables is
based on the same logical structures as standard table organization.

Like standard tables, MDC tables are organized into pages that contain rows of
data divided into columns. The rows on each page are identified by record IDs
(RIDs). However, the pages for MDC tables are grouped into extent-sized blocks.
For example, [Figure 10 on page 60} shows a table with an extent size of four. The
first four pages, numbered 0 through 3, represent the first block in the table. The
next four pages, numbered 4 through 7, represent the second block in the table.

Chapter 3. Factors affecting performance 59

Logical Physical Logical view of

table view table view dimension block index
0 4020
1 4021
block 0
2 4022
3 4023
BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)
4 252 <—J
5 Logical view of block map
258 for first 3 blocks
012 ..
block 1
6 254
7 255
8 1488
9 1489
Legend
block 2
[reserved for system records
10 1490 [] FSCR
[] user records
X reserved
11 1491 U in use
F free

Figure 10. Logical table, record, and index structure for MDC tables

The first block contains special internal records, including the free space control
record (FSCR), that are used by the DB2 server to manage the table. In subsequent
blocks, the first page contains the FSCR. An FSCR maps the free space for new
records that exists on each page of the block. This available free space is used
when inserting records into the table.

As the name implies, MDC tables cluster data on more than one dimension. Each

dimension is determined by a column or set of columns that you specify in the

ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. When you

create an MDC table, the following two indexes are created automatically:

* A dimension-block index, which contains pointers to each occupied block for a
single dimension

60 Troubleshooting and Tuning Database Performance

* A composite-block index, which contains all dimension key columns, and which
is used to maintain clustering during insert and update activity

The optimizer considers access plans that use dimension-block indexes when it
determines the most efficient access plan for a particular query. When queries have
predicates on dimension values, the optimizer can use the dimension-block index
to identify—and fetch from—the extents that contain these values. Because extents
are physically contiguous pages on disk, this minimizes I/O and leads to better
performance.

You can also create specific RID indexes if analysis of data access plans indicates
that such indexes would improve query performance.

Indexes

Index structure
The database manager uses a B+ tree structure for index storage.

A B+ tree has several levels, as shown in “rid” refers to a record ID

(RID).
ROOT NODE
IEI INI IZI
INTERMEDIATE
NODES
IFI ILI INI
LEAF
NODES
(F' rid) ('G",rid) (M’ rid)
(1" rid) (N',rid)
(K rid)

Figure 11. Structure of a B+ Tree Index

The top level is known as the root node. The bottom level consists of leaf nodes that
store index key values with pointers to the table rows that contain the
corresponding data. Levels between the root and leaf node levels are known as
intermediate nodes.

Chapter 3. Factors affecting performance 61

When it looks for a particular index key value, the index manager searches the
index tree, starting at the root node. The root node contains one key for each
(intermediate) node in the next level. The value of each of these keys is the largest
existing key value for the corresponding node at the next level. For example,
suppose that an index has three levels, as shown in the figure. To find a particular
index key value, the index manager searches the root node for the first key value
that is greater than or equal to the search key value. The root node key points to a
specific intermediate node. The index manager follows this procedure through each
intermediate node until it finds the leaf node that contains the index key that it
needs.

Suppose that the key being looked for in [Figure 11 on page 61|is “I”. The first key
in the root node that is greater than or equal to “I” is “N”, which points to the
middle node at the next level. The first key in that intermediate node that is
greater than or equal to “I” is “L”, which, in turn, points to a specific leaf node on
which the index key for “I” and its corresponding RID can be found. The RID
identifies the corresponding row in the base table.

The leaf node level can also contain pointers to previous leaf nodes. These pointers
enable the index manager to scan across leaf nodes in either direction to retrieve a
range of values after it finds one value in the range. The ability to scan in either
direction is possible only if the index was created with the ALLOW REVERSE
SCANS option.

In the case of a multidimensional clustering (MDC) table, a block index is created
automatically for each clustering dimension that you specify for the table. A
composite block index is also created; this index contains a key part for each
column that is involved in any dimension of the table. Such indexes contain
pointers to block IDs (BIDs) instead of RIDs, and provide data-access
improvements.

A one-byte ridFlag, stored for each RID on the leaf page of an index, is used to
mark the RID as logically deleted, so that it can be physically removed later. For
each variable-length column in the index, one additional byte stores the actual
length of the column value. After an update or delete operation commits, the keys
that are marked as deleted can be removed.

Index cleanup and maintenance
After you create an index, performance might degrade with time unless you keep
the index compact and well organized.

The following recommendations will help you to keep indexes as small and
efficient as possible:

* Enable online index defragmentation

Create indexes with the MINPCTUSED clause. Drop and recreate existing
indexes, if necessary.

¢ Perform frequent commits, or acquire table-level X locks, either explicitly or
through lock escalation, if frequent commits are not possible.

Index keys that are marked deleted can be physically removed from the table
after a commit. X locks on tables enable the deleted keys to be physically
removed when they are marked deleted, as explained below.

* Use the REORGCHK command to help determine when to reorganize indexes or
tables, and when to use the REORG INDEXES command with the CLEANUP
ONLY clause.

62 Troubleshooting and Tuning Database Performance

To allow read and write access to the index during reorganization, use the
REORG INDEXES command with the ALLOW WRITE ACCESS option.

To allow read and write access to the index during cleanup, use the REORG
INDEXES command with the ALLOW WRITE ACCESS option. For a partitioned
table, the ALLOW WRITE ACCESS clause on the REORG INDEXES...ALL
command cannot be specified unless the CLEANUP ONLY option or the ON
DATA PARTITION option is specified.

With DB2 Version 9.7 Fix Pack 1 and later releases, issue the REORG INDEXES
command with the ON DATA PARTITION clause on a data partitioned table to
reorganize the partitioned indexes of the specified partition. During index
reorganization, the unaffected partitions remain read and write accessible access
is restricted only to the affected partition.

Index keys that are marked deleted are cleaned up:
* During subsequent insert, update, or delete activity
During key insertion, keys that are marked deleted and that are known to have

been committed are cleaned up if that might avoid the need to perform a page
split and prevent the index from increasing in size.

During key deletion, when all keys on a page have been marked deleted, an
attempt is made to find another index page where all the keys are marked
deleted and all those deletions have committed. If such a page is found, it is
deleted from the index tree. If there is an X lock on the table when a key is
deleted, the key is physically deleted instead of just being marked deleted.
During physical deletion, any deleted keys on the same page are also removed if
they are marked deleted and known to be committed.

* When you execute the REORG INDEXES command with CLEANUP options
The CLEANUP ONLY PAGES option searches for and frees index pages on
which all keys are marked deleted and known to be committed.

The CLEANUP ONLY ALL option frees not only index pages on which all keys
are marked deleted and known to be committed, but it also removes record
identifiers (RIDs) that are marked deleted and known to be committed from
pages that contain some non-deleted RIDs. This option also tries to merge
adjacent leaf pages if doing so results in a merged leaf page that has at least
PCTEREE free space. The PCTFREE value is defined when an index is created.
The default PCTFREE value is ten percent. If two pages can be merged, one of
the pages is freed.

For data partitioned tables, it is recommended that you invoke the RUNSTATS
command after an asynchronous index cleanup has completed. To determine
whether there are detached data partitions in the table, query the STATUS field
in the SYSCAT.DATAPARTITIONS catalog view and look for the value 'L’
(logically detached), 'D' (detached partition having detach dependent tables such
as a materialized query tables) or T (index cleanup).

* When an index is rebuilt (or, in the case of data partitioned indexes, when an
index partition is rebuilt)

Utilities that rebuild indexes include the following:

— REORG INDEXES without any of the CLEANUP options
— REORG INDEXES with the ON DATA PARTITION clause
— REORG TABLE with the ON DATA PARTITION clause

— REORG TABLE without the INPLACE option

— IMPORT with the REPLACE option

- LOAD with the INDEXING MODE REBUILD option

Chapter 3. Factors affecting performance 63

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with
the application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner

appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:

64 Troubleshooting and Tuning Database Performance

ID 2

Type ASYNCHRONOUS INDEX CLEANUP
Database Name WSDB

Partition Number 0

Description Table: USER1.SALES, Index: USER1.I2

Start Time 12/15/2005 11:15:01.967939
State Executing
Invocation Type = Automatic
Throttling:
Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.979033
1D =1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number =0

Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:
Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1, and the other is processing index 12. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion—an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)
tables—by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing
the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index
cleanup rollout operation, blocks are marked as rolled out without an update to

Chapter 3. Factors affecting performance 65

the RID indexes until after the transaction commits. Block identifier (BID) indexes
are cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2 MDC_ROLLOUT registry variable is set to DEFER, or if
the CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2 MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total
number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
SYSPROC.ADMIN_GET _TAB_INFO_V095 table function or the GET SNAPSHOT
command.

In the following sample output for the LIST UTILITIES SHOW DETAILS
command, progress is indicated by the number of pages in each index that have
been cleaned up. Each phase represents one RID index.

ID 2

Type MDC ROLLOUT INDEX CLEANUP
Database Name WSDB

Partition Number 0

Description TABLE.<schema_name>.<table name>

Start Time 06/12/2006 08:56:33.390158
State Executing
Invocation Type Automatic
Throttling:
Priority = 50
Progress Monitoring:
Estimated Percentage Complete = 83

1
<schema_name>.<index_name>

Phase Number
Description

Total Work 13 pages

Completed Work 13 pages

Start Time 06/12/2006 08:56:33.391566
Phase Number 2

66 Troubleshooting and Tuning Database Performance

Description <schema_name>.<index_name>

Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391577
Phase Number =3
Description = <schema_name>.<index_name>
Total Work = 9 pages
Completed Work = 3 pages
Start Time = 06/12/2006 08:56:33.391587

Online index defragmentation
Online index defragmentation is enabled by the user-definable threshold for the
minimum amount of used space on an index leaf page.

When an index key is deleted from a leaf page and this threshold is exceeded, the
neighboring index leaf pages are checked to determine whether two leaf pages can
be merged. If there is sufficient space on a page, and the merging of two
neighboring pages is possible, the merge occurs immediately in the background,
and the resulting empty index leaf page is deleted.

If existing indexes require the ability to be merged online, they must be dropped
and then recreated with the MINPCTUSED clause specified on the CREATE
INDEX statement. The recommended value for MINPCTUSED is less than 50,
because the goal is to merge two neighboring index leaf pages. A value of zero,
which is the default, disables online defragmentation.

Index nonleaf pages are not merged during online index defragmentation.
However, empty nonleaf pages are deleted and made available for reuse by other
indexes on the same table. To free these nonleaf pages for other objects in a
database managed space (DMS) storage model, or to free disk space in a system
managed space (SMS) storage model, perform a full reorganization of the table and
indexes, which will make the indexes as small as possible. The number of levels in
an index is not reduced during online index defragmentation.

When there is an X lock on a table, keys are physically removed from a page
during key deletion; in this case, online index defragmentation is effective.
However, if there is no X lock on the table during key deletion, keys are marked
deleted but are not physically removed from the index page, and index
defragmentation is not attempted.

To defragment indexes regardless of the value of MINPCTUSED, invoke the
REORG INDEXES command with the CLEANUP ONLY ALL option. Two
neighboring leaf pages are merged if at least PCTFREE free space will be left on
the merged page. PCTFREE can be specified at index creation time; its default
value is 10 (percent).

Using relational indexes to improve performance

Indexes can be used to improve performance when accessing table data. Relational
indexes are used when accessing relational data, and indexes over XML data are
used when accessing XML data.

Although the query optimizer decides whether to use a relational index to access
relational table data, it is up to you to decide which indexes might improve
performance and to create those indexes. The only exceptions to this are the
dimension block indexes and the composite block index that are created

automatically for each dimension when you create a multidimensional clustering
(MDCQ) table.

Chapter 3. Factors affecting performance 67

Execute the runstats utility to collect new index statistics after you create a
relational index or after you change the prefetch size. You should execute the
runstats utility at regular intervals to keep the statistics current; without up-to-date
statistics about indexes, the optimizer cannot determine the best data-access plan
for queries.

To determine whether a relational index is used in a specific package, use the
explain facility. To get advice about relational indexes that could be exploited by
one or more SQL statements, use the db2advis command to launch the Design
Adpvisor.

Advantages of a relational index over no index

If no index on a table exists, a table scan must be performed for each table that is
referenced in an SQL query. The larger the table, the longer such a scan will take,
because a table scan requires that each row be accessed sequentially. Although a
table scan might be more efficient for a complex query that requires most of the
rows in a table, an index scan can access table rows more efficiently for a query
that returns only some table rows.

The optimizer chooses an index scan if the relational index columns are referenced
in the SELECT statement and if the optimizer estimates that an index scan will be
faster than a table scan. Index files are generally smaller and require less time to
read than an entire table, especially when the table is large. Moreover, it might not
be necessary to scan an entire index. Any predicates that are applied to the index
will reduce the number of rows that must be read from data pages.

If an ordering requirement on the output can be matched with an index column,
scanning the index in column order will enable the rows to be retrieved in the
correct order without the need for a sort operation. Note that the existence of a
relational index on the table being queried does not guarantee an ordered result
set. Only an ORDER BY clause ensures the order of a result set.

A relational index can also contain include columns, which are non-indexed
columns in an indexed row. Such columns can make it possible for the optimizer
to retrieve required information from the index alone, without having to access the
table itself.

Disadvantages of a relational index over no index

Although indexes can reduce access time significantly, they can also have adverse
effects on performance. Before you create indexes, consider the effects of multiple
indexes on disk space and processing time. Choose indexes carefully to address the
needs of your application programs.

* Each index requires storage space. The exact amount depends on the size of the
table and the size and number of columns in the relational index.

* Each insert or delete operation against a table requires additional updating of
each index on that table. This is also true for each update operation that changes
the value of an index key.

* Each relational index represents another potential access plan for the optimizer
to consider, which increases query compilation time.

Relational index planning tips
A well-designed index can make it easier for queries to access relational data.

68 Troubleshooting and Tuning Database Performance

Use the Design Advisor (db2advis command) to find the best indexes for a specific

query or for the set of queries that defines a workload. This tool can make

performance-enhancing recommendations, such as include columns or indexes that

are enabled for reverse scans.

The following guidelines can also help you to create useful relational indexes.
* Retrieving data efficiently

— To improve data retrieval, add include columns to unique indexes. Good
candidates are columns that:

- Are accessed frequently and would benefit from index-only access
- Are not required to limit the range of index scans

- Do not affect the ordering or uniqueness of the index key

For example:
create unique index idx on employee (workdept) include (lastname)

Specifying LASTNAME as an include column rather than part of the index

key means that LASTNAME is stored only on the leaf pages of the index.

— Create relational indexes on columns that are used in the WHERE clauses of

frequently run queries.

In the following example, the WHERE clause will likely benefit from an index

on WORKDEPT, unless the WORKDEPT column contains many duplicate
values.

where workdept='A01"' or workdept='E21'
— Create relational indexes with a compound key that names each column

referenced in a query. When an index is specified in this way, relational data

can be retrieved from the index only, which is more efficient than accessing

the table.
For example, consider the following query:

select Tastname
from employee
where workdept in ('A0GO','D11','D21')

If a relational index is defined on the WORKDEPT and LASTNAME columns
of the EMPLOYEE table, the query might be processed more efficiently by
scanning the index rather than the entire table. Because the predicate
references WORKDEPT, this column should be the first key column of the

relational index.

* Searching tables efficiently

Decide between ascending and descending key order, depending on the order

that will be used most often. Although values can be searched in reverse

direction if you specify the ALLOW REVERSE SCANS option on the CREATE

INDEX statement, scans in the specified index order perform slightly better than

reverse scans.
* Accessing larger tables efficiently

Use relational indexes to optimize frequent queries against tables with more
than a few data pages, as recorded in the NPAGES column of the
SYSCAT.TABLES catalog view. You should:

— Create an index on any column that you will use to join tables.

— Create an index on any column that you will be searching for specific values

on a regular basis.
¢ Improving the performance of update or delete operations

Chapter 3. Factors affecting performance

69

— To improve the performance of such operations against a parent table, create
relational indexes on foreign keys.

— To improve the performance of such operations against REFRESH
IMMEDIATE and INCREMENTAL materialized query tables (MQTs), create
unique relational indexes on the implied unique key of the MQT, which is
composed of the columns in the GROUP BY clause of the MQT definition.

¢ Improving join performance
If you have more than one choice for the first key column in a multiple-column
relational index, use the column that is most often specified with an equijoin
predicate (expressionl = expression2) or the column with the greatest number
of distinct values as the first key column.

* Sorting
— For fast sort operations, create relational indexes on columns that are

frequently used to sort the relational data.

— To avoid some sorts, use the CREATE INDEX statement to define primary
keys and unique keys whenever possible.

— Create a relational index to order the rows in whatever sequence is required
by a frequently run query. Ordering is required by the DISTINCT, GROUP BY,
and ORDER BY clauses.

The following example uses the DISTINCT clause:

select distinct workdept
from employee

The database manager can use an index that is defined on the WORKDEPT
column to eliminate duplicate values. The same index could also be used to
group values, as in the following example that uses a GROUP BY clause:

select workdept, average(salary)
from employee
group by workdept

* Keeping newly inserted rows clustered and avoiding page splits
Define a clustering index, which should significantly reduce the need to
reorganize the table. Use the PCTFREE option on the CREATE TABLE statement
to specify how much free space should be left on each page so that rows can be
inserted appropriately. You can also specify the pagefreespace file type modifier
on the LOAD command.

* Saving index maintenance costs and storage space

— Avoid creating indexes that are partial keys of other existing indexes. For
example, if there is an index on columns A, B, and C, another index on
columns A and B is generally not useful.

— Do not create arbitrary indexes on many columns. Unnecessary indexes not
only waste space, but also cause lengthy prepare times.

- For online transaction processing (OLTP) environments, create one or two
indexes per table.

- For read-only query environments, you might create more than five indexes
per table.

- For mixed query and OLTP environments, between two and five indexes
per table is likely appropriate.

* Enabling online index defragmentation

Use the MINPCTUSED option when you create relational indexes.
MINPCTUSED enables online index defragmentation; it specifies the minimum
amount of space that must be in use on an index leaf page.

70 Troubleshooting and Tuning Database Performance

Relational index performance tips
There are a number of actions that you can take to ensure that your relational
indexes perform well.

* Specify a large utility heap
If you expect a lot of update activity against the table on which a relational
index is being created or reorganized, consider configuring a large utility heap
(util_heap_sz database configuration parameter), which will help to speed up
these operations.

* To avoid sort overflows in a symmetric multiprocessor (SMP) environment,
increase the value of the sheapthres database manager configuration parameter

* Create separate table spaces for relational indexes

You can create index table spaces on faster physical devices, or assign index
table spaces to a different buffer pool, which might keep the index pages in the
buffer longer because they do not compete with data pages.

If you use a different table space for indexes, you can optimize the configuration
of that table space for indexes. Because indexes are usually smaller than tables
and are spread over fewer containers, indexes often have smaller extent sizes.
The query optimizer considers the speed of the device that contains a table
space when it chooses an access plan.

* Ensure a high degree of clustering

If your SQL statement requires ordering of the result (for example, if it contains
an ORDER BY, GROUP BY, or DISTINCT clause), the optimizer might not
choose an available index if:

— Index clustering is poor. For information about the degree of clustering in a
specific index, query the CLUSTERRATIO and CLUSTERFACTOR columns of
the SYSCAT.INDEXES catalog view.

— The table is so small that it is cheaper to scan the table and to sort the result
set in memory.

— There are competing indexes for accessing the table.

A clustering index attempts to maintain a particular order of the data, improving
the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by the
runstats utility. After you create a clustering index, perform an offline table reorg
operation. In general, a table can only be clustered on one index. Build
additional indexes after you build the clustering index.

A table's PCTFREE value determines the amount of space on a page that is to
remain empty for future data insertions, so that this inserted data can be
clustered appropriately. If you do not specify a PCTFREE value for a table,
reorganization eliminates all extra space.

Except in the case of range-clustered tables, data clustering is not maintained
during update operations. That is, if you update a record so that its key value in
the clustering index changes, the record is not necessarily moved to a new page
to maintain the clustering order. To maintain clustering, delete the record and
then insert an updated version of the record, instead of using an update
operation.

* Keep table and index statistics up-to-date

After you create a new relational index, execute the runstats utility to collect
index statistics. These statistics help the optimizer to determine whether using
the index can improve data-access performance.

* Enable online index defragmentation

Online index defragmentation is enabled if MINPCTUSED for the relational
index is set to a value that is greater than zero. Online index defragmentation

Chapter 3. Factors affecting performance 71

enables indexes to be compacted through the merging of index leaf pages when
the amount of free space on a page falls below the specified MINPCTUSED
value.

* Reorganize relational indexes as necessary

To get the best performance from your indexes, consider reorganizing them
periodically, because updates to tables can cause index page prefetching to
become less effective.

To reorganize an index, either drop it and recreate it, or use the reorg utility.

To reduce the need for frequent reorganization, specify an appropriate PCTFREE
value on the CREATE INDEX statement to leave sufficient free space on each
index leaf page as it is being created. During future activity, records can be
inserted into the index with less likelihood of index page splitting, which
decreases page contiguity and, therefore, the efficiency of index page
prefetching. The PCTFREE value that is specified when you create a relational
index is preserved when the index is reorganized.

* Analyze explain information about relational index use

Periodically issue EXPLAIN statements against your most frequently used
queries and verify that each of your relational indexes is being used at least
once. If an index is not being used by any query, consider dropping that index.

Explain information also lets you determine whether a large table being scanned
is processed as the inner table of a nested-loop join. If it is, an index on the
join-predicate column is either missing or considered to be ineffective for
applying the join predicate.

* Declare tables that vary widely in size as “volatile”

A volatile table is a table whose cardinality at run time can vary greatly. For this
kind of table, the optimizer might generate an access plan that favors a table
scan instead of an index scan.

Use the ALTER TABLE statement with the VOLATILE clause to declare such a
table as volatile. The optimizer will use an index scan instead of a table scan
against such tables, regardless of statistics, if:

— All referenced columns are part of the index
— The index can apply a predicate during the index scan

In the case of typed tables, the ALTER TABLE...VOLATILE statement is
supported only for the root table of a typed table hierarchy.

Partitioning and clustering

Index behavior on partitioned tables

Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables,
however they are stored using a different storage model, depending on whether
they are partitioned or nonpartitioned indexes.

Whereas the indexes for a regular nonpartitioned table all reside in a shared index
object, a nonpartitioned index on a partitioned table is created in its own index
object in a single table space, even if the data partitions span multiple table spaces.
Both database managed space (DMS) and system managed space (SMS) table
spaces support the use of indexes in a different location than the table data. Each
nonpartitioned index can be placed in its own table space, including large table
spaces. Each index table space must use the same storage mechanism as the data
partitions, either DMS or SMS. Indexes in large table spaces can contain up to 2%
pages. All of the table spaces must be in the same database partition group.

72 Troubleshooting and Tuning Database Performance

A partitioned index uses an index organization scheme in which index data is
divided across multiple index partitions, according to the partitioning scheme of the
table. Each index partition only refers to table rows in the corresponding data
partition. All index partitions for a given data partition reside in the same index
object.

Starting in DB2 Version 9.7 Fix Pack 1, user-created indexes over XML data on
XML columns in partitioned tables can be either partitioned or nonpartitioned. The
default is partitioned. System-generated XML region indexes are always
partitioned, and system-generated column path indexes are always nonpartitioned.
In DB2 V9.7, indexes over XML data are nonpartitioned.

Benefits of a nonpartitioned index include:

* The ability to define different table space characteristics for each index (for
example, different page sizes might help to ensure better space utilization)

* The fact that indexes can be reorganized independently of one another
* Improved performance of drop index operations

* Reduced I/O contention, which helps to provide more efficient concurrent access
to the index data

* The fact that when individual indexes are dropped, space becomes immediately
available to the system without the need for index reorganization

Benefits of a partitioned index include:

¢ Improved data roll-in and roll-out performance

* Less contention on index pages, because the index is partitioned

* An index B-tree structure for each index partition, which can result in:

— Improved insert, update, delete, and scan performance, because the B-tree for
an index partition normally contains fewer levels than an index that
references all data in the table

— Improved scan performance and concurrency when partition elimination is in
effect; although partition elimination can by used for both partitioned and
nonpartitioned index scans, it is more effective for partitioned index scans,
because each index partition contains keys for only the corresponding data
partition. This can result in having to scan fewer keys and fewer index pages
than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a
partitioned index might lose some order across partitions in certain scenarios; for
example, if the partitioning columns do not match the index columns, and more
than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is
permitted. After such an index has been built, changes that were made to the table
during index creation are applied to the new index. Write access to the table is
blocked until index creation completes and the transaction commits. In the case of
partitioned indexes, each data partition is quiesced to read-only access only while
changes that were made to that data partition (during the creation of the index
partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling
data in using the ALTER TABLE...ATTACH PARTITION statement. If
nonpartitioned indexes exist (not including the XML columns path index, if the
table has XML data), issue a SET INTEGRITY statement after partition attachment.

Chapter 3. Factors affecting performance 73

This is necessary for nonpartitioned index maintenance, range validation,
constraints checking, and materialized query table (MQT) maintenance.
Nonpartitioned index maintenance can be time-consuming and require large
amounts of log space. Use partitioned indexes to avoid this maintenance cost.

shows two nonpartitioned indexes on a partitioned table, with each
index residing in a separate table space.

Table space (ts1) Table space (ts2)

Index (x1) Index (x2)

Table space (ts3)

Legend

= Data partition

Figure 12. Nonpartitioned indexes on a partitioned table

[Figure 13 on page 75|shows a partitioned index on a partitioned table spanning
two database partitions and residing in a single table space.

74 Troubleshooting and Tuning Database Performance

Database partition group (dbgroup1)

Database partition (dbpart1)

= Data partition

Table space (ts1) Table space (ts2)
Index (x1) Index (x2)
Table space (ts3)
TableA____
] I
| n | |
NN
| e, !
e
—> —
L =]
] |
1 1
I
Database partition (dbpart2) | !
] |
Table space (ts1) : : Table space (ts2)
: :
] |
] |
] |
Index (x1) ! : Index (x2)
I :
Y | | —|—=[=
Table space (ts3)
=]
] I
| n P |
| N
| =
| P o]
‘ - . ‘
] I
Legend

Figure 13. Nonpartitioned index on a table that is both distributed and partitioned

[Figure 14 on page 76| shows a mix of partitioned and nonpartitioned indexes on a

partitioned table.

Chapter 3. Factors affecting performance

75

Table space (ts3)

Ly 4J_| Index (x2)

]
1
1
i
' Part0 | Index (x3)
i i
I [}
! !
! !

Table space (ts2) Table space (ts1) Table space (ts5)
I
|
L
I

e] —-> Index (x2)

Index (x3)

Table space (ts4)

Index (x3)

Index (x2)

[}
I
1
1
1
:
1
1
1
[}
[}
I
1
1
1
1
i
> .., 4_,_|i Index (x2)
1
1
1
1
[}
[}
I
1
1
[}
I

Index (x3)

Figure 14. Partitioned and nonpartitioned indexes on a partitioned table

The nonpartitioned index X1 refers to rows in all of the data partitions. By
contrast, the partitioned indexes X2 and X3 only refer to rows in the data partition
with which they are associated. Table space TS3 also shows the index partitions
sharing the table space of the data partitions with which they are associated. This
is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes,
although the way that you do this is different for each. With nonpartitioned
indexes, you can specify a table space when you create the index; for partitioned
indexes, you need to determine which table spaces index partitions will be stored
in when you create the table.

Nonpartitioned indexes

To override the index location for nonpartitioned indexes, use the IN
clause on the CREATE INDEX statement, which enables you to specify an
alternative table space location for the index. You can place different

76 Troubleshooting and Tuning Database Performance

indexes in different table spaces, as required. If you create a partitioned
table without specifying where to place its nonpartitioned indexes, and
you then create an index using a CREATE INDEX statement that does not
specify a table space, the index is created in the table space of the first
attached or visible data partition. Each of the following three possible cases
is evaluated in order, starting with case 1, to determine where the index is
to be created. This evaluation to determine table space placement for the
index stops when a matching case is found.

Case 1:
When an index table space is specified in the CREATE INDEX...IN
tbspace statement, use the specified table space for this index.

Case 2:

When an index table space is specified in the CREATE TABLE...
INDEX IN tbspace statement, use the specified

table space for this index.

Case 3:
When no table space is specified, choose the table space that is used
by the first attached or visible data partition.

Partitioned indexes

By default, index partitions are placed in the same table space as the data
partitions that they reference. To override this default behavior, you must
use the INDEX IN clause for each data partition that you define using the
CREATE TABLE statement. In other words, if you plan to use partitioned
indexes for a partitioned table, you must anticipate where you want the
index partitions to be stored when you create the table. If you try to use
the INDEX IN clause when creating a partitioned index, you will receive
an error message.

Example 1: Given partitioned table SALES (a int, b int, ¢ int), create a unique index
A_IDX.

create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx will also be created as a
partitioned index.

Example 2: Create index B_IDX.
create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned
index, use the INDEX IN clause for each partition that you define when creating
the partitioned table. In the example that follows, indexes for the table Z are
created in table space TS3.
create table z (a int, b int)

partition by range (a) (starting from (1)

ending at (100) index in ts3)

create index c_idx on z (a) partitioned

Clustering of nonpartitioned indexes on partitioned tables
Clustering indexes offer the same benefits for partitioned tables as they do for
regular tables. However, care must be taken with the table partitioning key
definitions when choosing a clustering index.

Chapter 3. Factors affecting performance 77

You can create a clustering index on a partitioned table using any clustering key.
The database server attempts to use the clustering index to cluster data locally
within each data partition. During a clustered insert operation, an index lookup is
performed to find a suitable record identifier (RID). This RID is used as a starting
point in the table when looking for space in which to insert the record. To achieve
optimal clustering with good performance, there should be a correlation between
the index columns and the table partitioning key columns. One way to ensure such
correlation is to prefix the index columns with the table partitioning key columns,
as shown in the following example:

partition by range (month, region)

create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an
expectation that all keys in the index will be grouped together by partition IDs to
achieve good clustering. For example, suppose that a table is partitioned on
QUARTER and a clustering index is defined on DATE. There is a relationship
between QUARTER and DATE, and optimal clustering of the data with good
performance can be achieved because all keys of any data partition are grouped
together within the index. [Figure 15 on page 79 shows that optimal scan
performance is achieved only when clustering correlates with the table partitioning
key.

78 Troubleshooting and Tuning Database Performance

Clustering with the
partitioning key as prefix (correlated)

Index

S\

Data Data Data
Partition A Partition B Partition C

Clustering does not
match partitioning key (locally clustered)

Index

Data Data Data
| Partition A Partition B ‘ Partition C
No clustering
Index
Data Data Data
Partition A Partition B Partition C

Legend

= Data partition

Figure 15. The possible effects of a clustered index on a partitioned table.

Benefits of clustering include:
* Rows are in key order within each data partition.

* Clustering indexes improve the performance of scans that traverse the table in
key order, because the scanner fetches the first row of the first page, then each
row in that same page before moving on to the next page. This means that only
one page of the table needs to be in the buffer pool at any given time. In

Chapter 3. Factors affecting performance 79

contrast, if the table is not clustered, rows are likely fetched from different
pages. Unless the buffer pool can hold the entire table, most pages will likely be
fetched more than once, greatly slowing down the scan.

If the clustering key is not correlated with the table partitioning key, but the data is
locally clustered, you can still achieve the full benefit of the clustered index if there
is enough space in the buffer pool to hold one page of each data partition. This is
because each fetched row from a particular data partition is near the row that was

previously fetched from that same partition (see the second example in
H

Federated databases

Server options that affect federated databases

A federated database system is composed of a DB2 data server (the federated
database) and one or more data sources. You identify the data sources to the
federated database when you issue CREATE SERVER statements. You can also
specify server options that refine and control various aspects of federated system
operation.

You must install the distributed join installation option and set the federated
database manager configuration parameter to YES before you can create servers
and specify server options. To change server options later, use the ALTER SERVER
statement.

The server option values that you specify on the CREATE SERVER statement affect
query pushdown analysis, global optimization, and other aspects of federated
database operations. For example, you can specify performance statistics as server
option values. The cpu_ratio option specifies the relative speeds of the processors at
the data source and the federated server, and the io_ratio option specifies the
relative rates of the data I/O divides at the data source and the federated server.

Server option values are written to the system catalog (SYSCAT.SERVEROPTIONS),
and the optimizer uses this information when it develops access plans for the data
source. If a statistic changes (for example, when a data source processor is
upgraded), use the ALTER SERVER statement to update the catalog with the new
value.

Resource utilization

Memory allocation

Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

[Figure 16 on page 81|shows the different memory areas that the database manager
allocates for various uses and the configuration parameters that enable you to
control the size of these memory areas. Note that in a partitioned database
environment, each database partition has its own database manager shared
memory set.

80 Troubleshooting and Tuning Database Performance

Database Manager
Shared Memory

Application Global Memory Application

Global Memory

Application Application
Heap Heap

i I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
: I (1) I (max_connections) :
| ies 1
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

Global Memory

Database Global Memory

I
I
I
I
I
I
I
I
I
I
I
I
I
: Database
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T (1) T (numdb)

Figure 16. Types of memory allocated by the database manager

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount
of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:

* Buffer pools (using the ALTER BUFFERPOOL statement)

 Database heap (including log buffers)

 Utility heap

* Package cache

 Catalog cache

* Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres

cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

Chapter 3. Factors affecting performance 81

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the appl_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb
This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxappls and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

The memory tracker, invoked by the db2mtrk command, enables you to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_DBP_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. The GET
SNAPSHOT command enables you to examine current memory usage at the
instance, database, or application level.

82 Troubleshooting and Tuning Database Performance

On Unix and Linux, although the ipcs command can be used to list all the shared
memory segments, it does not accurately reflect the amount of resources
consumed. You can use the db2mtrk command as an alternative to ipcs.

Database manager shared memory
Database manager shared memory is organized into several different memory
areas. Configuration parameters enable you to control the sizes of these areas.

[Figure 17 on page 84| shows how database manager shared memory is allocated.

Chapter 3. Factors affecting performance 83

Database manager shared memory (including FCM)

Monitor heap (mon_heap_sz) Audit buffer size (audit_buf_sz)

Database global memory (database_memory)

Utility heap Sort heap threshold Database heap
(util_heap_sz) for shared sort (dbheap)
memory consumers
(sheapthres_shr)

Backup buffer Sort heap (sortheap) Log buffer (logbufsz)

Pack h
(;;k;g;;:g) e Lock list (locklist) Buffer pools

Catalog cache
(catalogcache _sz)

Application global memory (appl_memory)

Shared application memory Application-specific memory

Application heap (applheapsz)
Statistics heap (stat_heap_sz)

Statement heap (stmtheap)

Agent private memory

Agent stack Sort heap threshold Java heap
(agent_stack_sz) for private sort (java_heap_sz)
memory consumers
(sheapthres)
Sort heap (sortheap) Client I/O block
(rgrioblk) (remote)
Agent/Application shared memory
Application support Client I/O block
layer heap (aslheapsz) (rqrioblk) (local)

Note: Box size does not indicate relative size of memory.

Figure 17. How memory is used by the database manager

Database Manager Shared Memory

Database Manager Shared Memory is affected by the following
configuration parameters:

* The audit_buf_sz configuration parameter determines the size of the
buffer used in database auditing activities.

84 Troubleshooting and Tuning Database Performance

¢ The mon_heap_sz configuration parameter determines the size of the
memory area used for database system monitoring data.

* For partitioned database systems, the Fast Communications Manager
(FCM) requires substantial memory space, especially if the value of
fcm_num_buffers is large. The FCM memory requirements are allocated
from the FCM Buffer Pool.

Database global memory
Database global memory is affected by the size of the buffer pools and by
the following database configuration parameters:

* catalogcache_sz
* database_memory
* dbheap
* locklist
* pckcachesz
* sheapthres_shr
* util_heap_sz
Application global memory
Application global memory can be controlled by the appl_memory
configuration parameter. The following database configuration parameters

can be used to limit the amount of memory that any one application can
consume:

* applheapsz
* stat_heap_sz
* stmtheap

Agent private memory
Each agent requires its own private memory region. The data server creates
as many agents as it needs and in accordance with configured memory
resources. You can control the maximum number of coordinator agents
using the max_coordagents database manager configuration parameter.

The maximum size of each agent's private memory region is determined
by the values of the following configuration parameters:

* agent_stack_sz
* sheapthres and sortheap
Agent/Application shared memory

The total number of agent/application shared memory segments for local
clients is limited by the lesser of the following two values:

* The total value of the maxappls database configuration parameter for all
active databases

* The value of the max_coordagents database configuration parameter

Note: In configurations where engine concentration is enabled
(max_connections > max_coordagents), application memory consumption
is limited by max_connections.

Agent/Application shared memory is also affected by the following
database configuration parameters:
* aslheapsz

* rqrioblk

Chapter 3. Factors affecting performance 85

The FCM buffer pool and memory requirements
In a partitioned database system, the fast communication manager (FCM) buffer
shared memory is allocated from the database manager shared memory.

This is shown in

Database Manager Shared Memory**

FCM Buffer
Shared Memory*

FCM Channels**

FCM Buffers (fcm_num_buffers)*

Legend

* one shared by all logical partitions
** one for each logical partition

Figure 18. The FCM buffer pool when multiple logical partitions are used

The number of FCM bulffers for each database partition is controlled by the
fcm_num_buffers database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
buff _free and buff free_bottom system monitor elements.

The number of FCM channels for each database partition is controlled by the
fcm_num_channels database manager configuration parameter. By default, this
parameter is set to automatic. To tune this parameter manually, use data from the
ch_free and ch_free_bottom system monitor elements.

The DB2 database manager can automatically manage FCM memory resources by
allocating more FCM buffers and channels as needed. This leads to improved
performance and prevents “out of FCM resource” runtime errors. On the Linux
operating system, the database manager can preallocate a larger amount of system
memory for FCM buffers and channels, up to a maximum default amount of 2 GB.
Memory space is impacted only when additional FCM buffers or channels are
required. To enable this behavior, set the FCM_MAXIMIZE_SET_SIZE option of the
DB2_FCM_SETTINGS registry variable to YES (or TRUE). YES is the default
value.

Guidelines for tuning parameters that affect memory usage
When tuning memory manually (that is, when not using the self-tuning memory
manager), benchmark tests provide the best information about setting appropriate
values for memory parameters.

In benchmark testing, representative and worst-case SQL statements are run
against the server, and the values of memory parameters are changed until a point

86 Troubleshooting and Tuning Database Performance

of diminishing returns for performance is found. This is the point at which
additional memory allocation provides no further performance value to the
application.

The upper memory allocation limits for several parameters might be beyond the
scope of existing hardware and operating systems. These limits allow for future
growth. It is good practice to not set memory parameters at their highest values
unless those values can be justified. This applies even to systems that have plenty
of available memory. The idea is to prevent the database manager from quickly
taking up all of the available memory on a system. Moreover, managing large
amounts of memory incurs additional overhead.

For most configuration parameters, memory is committed as it is required, and the
parameter settings determine the maximum size of a particular memory heap. For
buffer pools and the following configuration parameters, however, all of the
specified memory is allocated:

* aslheapsz

¢ fcm_num_buffers
* fcm_num_channels
* locklist

Some operating systems allocate swap space whenever a process allocates memory,
not when that memory needs to be paged out to swap space. For these systems, it
is typically recommended to provide at least twice as much paging space as total
memory on the system.

For valid parameter ranges, refer to the detailed information about each parameter.

Self-tuning memory overview

Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

Self-tuning memory is enabled through the self_tuning mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:

* database_memory - Database shared memory size

* locklist - Maximum storage for lock list

* maxlocks - Maximum percent of lock list before escalation
* pckcachesz - Package cache size

* sheapthres_shr - Sort heap threshold for shared sorts

* sortheap - Sort heap size

Self-tuning memory

Starting in DB2 Version 9, a memory-tuning feature simplifies the task of memory
configuration by automatically setting values for several memory configuration
parameters. When enabled, the memory tuner dynamically distributes available
memory resources among the following memory consumers: buffer pools, locking
memory, package cache, and sort memory.

Chapter 3. Factors affecting performance 87

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,
distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:

* For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL
statement (specifying the AUTOMATIC keyword)

* For locking memory, use the locklist or the maxlocks database configuration
parameter (specifying a value of AUTOMATIC)

 For the package cache, use the pckcachesz database configuration parameter
(specifying a value of AUTOMATIC)

* For sort memory, use the sheapthres_shr or the sortheap database configuration
parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Enabling self-tuning memory
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.

1. Enable self-tuning memory for the database by setting the self_tuning_mem
database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APL

88 Troubleshooting and Tuning Database Performance

2. To enable the self tuning of memory areas that are controlled by memory

configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or
the db2CfgSet APIL.

To enable the self tuning of a buffer pool, set the buffer pool size to
AUTOMATIC using the CREATE BUFFERPOOL statement or the ALTER
BUFFERPOOL statement. In a partitioned database environment, that buffer
pool should not have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Note:

1.

Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning mem database configuration parameter is ON) when one of the
following conditions is true:

* One configuration parameter or buffer pool size is set to AUTOMATIC, and
the database_memory database configuration parameter is set to either a
numeric value or to AUTOMATIC

¢ Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set to
AUTOMATIC

¢ The sortheap database configuration parameter is set to AUTOMATIC

The value of the locklist database configuration parameter is tuned together
with the maxlocks database configuration parameter. Disabling self tuning of
the locklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary
server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory
Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Chapter 3. Factors affecting performance 89

1. Disable self-tuning memory for the database by setting the self_tuning_mem
database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APL

2. To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet APL

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Note:

* In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the locklist or the
sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self

tuning

You can view the self-tuning memory settings that are controlled by configuration

parameters or that apply to buffer pools.

* To view the settings for configuration parameters from the command line, use
the GET DATABASE CONFIGURATION command, specifying the SHOW
DETAIL option. The memory consumers that can be enabled for self tuning are
grouped together in the output as follows:

Description Parameter Current Value Delayed Value

Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for Tock Tist (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC (256)

* You can also use the db2CfgGet API to determine whether or not tuning is
enabled. The following values are returned:

SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

To view the self-tuning settings for buffer pools, use one of the following methods.
* To retrieve a list of the buffer pools that are enabled for self tuning from the
command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the buffer
pool.

* To determine the current size of buffer pools that are enabled for self tuning, use
the GET SNAPSHOT command and examine the current size of the buffer pools
(the value of the bp_cur_buffsz monitor element):

GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

90 Troubleshooting and Tuning Database Performance

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC.

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Self-tuning memory in partitioned database environments

When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:

* All database partitions are on identical hardware, and there is an even
distribution of multiple logical database partitions to multiple physical database
partitions

* There is a perfect or near-perfect distribution of data

* Workloads are distributed evenly across database partitions, meaning that no
database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Chapter 3. Factors affecting performance 91

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be
configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

Locks held currently

Lock waits

Time database waited on Tocks (ms)
Lock Tist memory in use (Bytes)
Lock escalations

Exclusive lock escalations

Total Shared Sort heap allocated
Shared Sort heap high water mark
Post threshold sorts (shared memory)
Sort overflows

nw - nn
[N oNo Rl

Package cache Tookups

Package cache inserts

Package cache overflows

Package cache high water mark (Bytes)

LI | B | B 1|
[oNoNoNoNo)

Number of hash joins

Number of hash Toops

Number of hash join overflows

Number of small hash join overflows

Post threshold hash joins (shared memory)

Number of OLAP functions
Number of OLAP function overflows
Active OLAP functions

n o n
oo

[}
(<]

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads

Buffer pool data physical reads

Buffer pool index logical reads

Buffer pool index physical reads

Total buffer pool read time (milliseconds)
Total buffer pool write time (milliseconds)

[cNoNoNoNoNo)

92 Troubleshooting and Tuning Database Performance

Using self-tuning memory in partitioned database environments
When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.

* To determine which database partition is currently specified as the tuning
partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD('get stmm tuning dbpartitionnum')
* To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN _CMD('update stmm tuning dbpartitionnum <partitionnum>")

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition

* To disable self-tuning memory for a subset of database partitions, set the
self_tuning mem database configuration parameter to OFF for those database
partitions.

* To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

* To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a

particular database partition will create an exception entry (or update an existing

entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog

view. If an exception entry for a buffer pool exists, that buffer pool will not

participate in self-tuning operations when the default buffer pool size is set to

AUTOMATIC. To remove an exception entry so that a buffer pool can be

enabled for self tuning:

1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL
statement, setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer
pool on this database partition to the default.

3. Enable self tuning for this buffer pool by issuing another ALTER
BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Chapter 3. Factors affecting performance 93

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

Buffer pool management

A bulffer pool provides working memory and cache for database pages.

Buffer pools improve database system performance by allowing data to be
accessed from memory instead of from disk. Because most page data manipulation
takes place in buffer pools, configuring buffer pools is the single most important
tuning area.

When an application accesses a table row, the database manager looks for the page
containing that row in the buffer pool. If the page cannot be found there, the
database manager reads the page from disk and places it in the buffer pool. The
data can then be used to process the query.

Memory is allocated for buffer pools when a database is activated. The first
application to connect might cause an implicit database activation. Buffer pools can
be created, re-sized, or dropped while the database manager is running. The
ALTER BUFFERPOOL statement can be used to increase the size of a buffer pool.
By default, and if sufficient memory is available, the buffer pool is re-sized as soon
as the statement executes. If sufficient memory is unavailable when the statement
executes, memory is allocated when the database reactivates. If you decrease the
size of the buffer pool, memory is deallocated when the transaction commits.
Buffer pool memory is freed when the database deactivates.

To ensure that an appropriate buffer pool is available in all circumstances, DB2
creates small system buffer pools, one with each of the following page sizes: 4 KB,
8 KB, 16 KB, and 32 KB. The size of each buffer pool is 16 pages. These buffer
pools are hidden; they are not in the system catalog or in the buffer pool system
files. You cannot use or alter them directly, but DB2 uses these buffer pools in the
following circumstances:

* When a specified buffer pool is not started because it was created using the
DEFERRED keyword, or when a buffer pool of the required page size is inactive
because insufficient memory is available to create it
A message is written to the administration notification log. If necessary, table
spaces are remapped to a system buffer pool. Performance might be drastically
reduced.

* When buffer pools cannot be brought up during a database connection attempt

This problem is likely to have a serious cause, such as an out-of-memory
condition. Although DB2 will continue to be fully functional because of the

94 Troubleshooting and Tuning Database Performance

system buffer pools, performance will degrade drastically. You should address
this problem immediately. You will receive a warning when this occurs, and a
message is written to the administration notification log.

When you create a buffer pool, the page size will be the one specified when the
database was created, unless you explicitly specify a different page size. Because
pages can be read into a buffer pool only if the table space page size is the same as
the buffer pool page size, the page size of your table spaces should determine the
page size that you specify for buffer pools. You cannot alter the page size of a
buffer pool after you create it.

The memory tracker, which you can invoke by issuing the db2mtrk command,
enables you to view the amount of database memory that has been allocated to
buffer pools. You can also use the GET SNAPSHOT command and examine the
current size of the buffer pools (the value of the bp_cur_buffsz monitor element).

The buffer pool priority for activities can be controlled as part of the larger set of
workload management functionality provided by the DB2 workload manager. For
more information, see “Introduction to DB2 workload manager concepts” and
“Buffer pool priority of service classes”.

Buffer pool management of data pages
Buffer pool pages can be either in-use or not, and dirty or clean.

e In-use pages are pages that are currently being read or updated. If a page is being
updated, it can only be accessed by the updater. However, if the page is not
being updated, there can be numerous concurrent readers.

* Dirty pages contain data that has been changed but not yet written to disk.

Pages remain in the buffer pool until the database shuts down, the space occupied
by a page is required for another page, or the page is explicitly purged from the
buffer pool, for example, as part of dropping an object. The following criteria
determine which page is removed when another page requires its space:

* How recently was the page referenced?

* What is the probability that the page will be referenced again?
* What type of data does the page contain?

* Was the page changed in memory but not written out to disk?

Changed pages are always written out to disk before being overwritten. Changed
pages that are written out to disk are not automatically removed from the buffer
pool unless the space is needed.

Page-cleaner agents

In a well-tuned system, it is usually the page-cleaner agents that write changed or
dirty pages to disk. Page-cleaner agents perform I/O as background processes and
allow applications to run faster because their agents can perform actual transaction
work. Page-cleaner agents are sometimes referred to as asynchronous page cleaners or
asynchronous buffer writers, because they are not coordinated with the work of other
agents and work only when required.

To improve performance for update-intensive workloads, you might want to
enable proactive page cleaning, whereby page cleaners behave more proactively in
choosing which dirty pages get written out at any given point in time. This is
particularly true if snapshots reveal that there are a significant number of

Chapter 3. Factors affecting performance 95

synchronous data-page or index-page writes in relation to the number of
asynchronous data-page or index-page writes.

illustrates how the work of managing the buffer pool can be shared
between page-cleaner agents and database agents.

Without Page Cleaners

Buffer pool
n Noroomfor —
new page N [N [N
«— [P Removes
Database dirty page
agent N TN N
|
. e
I 3 | / Adds new
page
With Page Cleaners
Buffer pool
Database & 5 8
— Adds new
t 1]
agen pas Oh®
7 @
B Removes
dirty pages
7 S : Asynchronous
\ — Writes pages

ﬁ”’-l [to hard disk page cleaner
Hard drive
disk

Figure 19. Asynchronous page cleaning. Dirty pages are written out to disk.

Page cleaning and fast recovery

Database recovery after a system crash is faster if more pages have been written to
disk, because the database manager can rebuild more of the buffer pool from disk
than by replaying transactions from the database log files.

The size of the log that must be read during recovery is the difference between the
location of the following records in the log:

* The most recently written log record
* The log record that describes the oldest change to data in the buffer pool

Page cleaners write dirty pages to disk in such a manner that the size of the log
that would need to be replayed during recovery never exceeds the following:

logfilsiz » softmax / 100 (in 4-KB pages)

where:
* logfilsiz represents the size of the log files

96 Troubleshooting and Tuning Database Performance

* softmax represents the percentage of log files that are to be recovered following
a database crash; for example, if the value of softmax is 250, then 2.5 log files
will contain the changes that need to be recovered if a crash occurs

To minimize log read time during recovery, use the database system monitor to
track the number of times that page cleaning is performed. The pool_lsn_gap_clns
(buffer pool log space cleaners triggered) monitor element provides this
information if you have not enabled proactive page cleaning for your database. If
you have enabled proactive page cleaning, this condition should not occur, and the
value of pool_lsn_gap_clns is 0.

The log_held_by_dirty_pages monitor element can be used to determine whether
the page cleaners are not cleaning enough pages to meet the recovery criteria set
by the user. If log_held_by_dirty_pages is consistently and significantly greater
than logfilsiz * softmax, then either more page cleaners are required, or softmax
needs to be adjusted.

Management of multiple database buffer pools

Although each database requires at least one buffer pool, you can create several
buffer pools, each of a different size or with a different page size, for a single
database that has table spaces of more than one page size.

You can use the ALTER BUFFERPOOL statement to resize a buffer pool.

A new database has a default buffer pool called IBMDEFAULTBP, with a default
page size that is based on the page size that was specified at database creation
time. The default page size is stored as an informational database configuration
parameter called pagesize. When you create a table space with the default page
size, and if you do not assign it to a specific buffer pool, the table space is assigned
to the default buffer pool. You can resize the default buffer pool and change its
attributes, but you cannot drop it.

Page sizes for buffer pools

After you create or upgrade a database, you can create additional buffer pools. If
you create a database with an 8-KB page size as the default, the default buffer pool
is created with the default page size (in this case, 8 KB). Alternatively, you can
create a buffer pool with an 8-KB page size, as well as one or more table spaces
with the same page size. This method does not require that you change the 4-KB
default page size when you create the database. You cannot assign a table space to
a buffer pool that uses a different page size.

Note: If you create a table space with a page size greater than 4 KB (such as 8 KB,
16 KB, or 32 KB), you need to assign it to a buffer pool that uses the same page
size. If this buffer pool is currently not active, DB2 attempts to assign the table
space temporarily to another active buffer pool that uses the same page size, if one
exists, or to one of the default system buffer pools that DB2 creates when the first
client connects to the database. When the database is activated again, and the
originally specified buffer pool is active, DB2 assigns the table space to that buffer
pool.

If, when you create a buffer pool with the CREATE BUFFERPOOL statement, you
do not specify a size, the buffer pool size is set to AUTOMATIC and is managed
by DB2. To change the bufferpool size later, use the ALTER BUFFERPOOL
statement.

Chapter 3. Factors affecting performance 97

In a partitioned database environment, each buffer pool for a database has the
same default definition on all database partitions, unless it was specified otherwise
in the CREATE BUFFERPOOL statement, or the bufferpool size for a particular
database partition was changed by the ALTER BUFFERPOOL statement.

Advantages of large buffer pools

Large buffer pools provide the following advantages:

* They enable frequently requested data pages to be kept in the buffer pool, which
allows quicker access. Fewer 1/O operations can reduce 1/O contention, thereby
providing better response time and reducing the processor resource needed for
1/0O operations.

* They provide the opportunity to achieve higher transaction rates with the same
response time.

e They prevent I/O contention for frequently used disk storage devices, such as
those that store the catalog tables and frequently referenced user tables and
indexes. Sorts required by queries also benefit from reduced I/O contention on
the disk storage devices that contain temporary table spaces.

Advantages of many buffer pools

Use only a single buffer pool if any of the following conditions apply to your
system:

* The total buffer pool space is less than 10 000 4-KB pages

* Persons with the application knowledge to perform specialized tuning are not
available

* You are working on a test system

In all other circumstances, and for the following reasons, consider using more than
one buffer pool:

* Temporary table spaces can be assigned to a separate buffer pool to provide
better performance for queries (especially sort-intensive queries) that require
temporary storage.

 If data must be accessed repeatedly and quickly by many short
update-transaction applications, consider assigning the table space that contains
the data to a separate buffer pool. If this buffer pool is sized appropriately, its
pages have a better chance of being found, contributing to a lower response time
and a lower transaction cost.

* You can isolate data into separate buffer pools to favor certain applications, data,
and indexes. For example, you might want to put tables and indexes that are
updated frequently into a buffer pool that is separate from those tables and
indexes that are frequently queried but infrequently updated.

* You can use smaller buffer pools for data that is accessed by seldom-used
applications, especially applications that require very random access into a very
large table. In such cases, data need not be kept in the buffer pool for longer
than a single query. It is better to keep a small buffer pool for this type of data,
and to free the extra memory for other buffer pools.

After separating your data into different buffer pools, good and relatively
inexpensive performance diagnosis data can be produced from statistics and
accounting traces.

The self-tuning memory manager (STMM) is ideal for tuning systems that have
multiple buffer pools.

98 Troubleshooting and Tuning Database Performance

Buffer pool memory allocation at startup

When you create a buffer pool or alter a buffer pool, the total memory that is
required by all buffer pools must be available to the database manager so that all
of the buffer pools can be allocated when the database starts. If you create or alter
buffer pools while the database manager is online, additional memory should be
available in database global memory. If you specify the DEFERRED keyword when
you create a new buffer pool or increase the size of an existing buffer pool, and the
required memory is unavailable, the database manager executes the changes the
next time the database is activated.

If this memory is not available when the database starts, the database manager
uses only the system buffer pools (one for each page size) with a minimal size of
16 pages, and a warning is returned. The database continues in this state until its
configuration is changed and the database can be fully restarted. Although
performance might be suboptimal, you can connect to the database, re-configure
the buffer pool sizes, or perform other critical tasks. When these tasks are
complete, restart the database. Do not operate the database for an extended time in
this state.

To avoid starting the database with system buffer pools only, use the
DB2_OVERRIDE_BPF registry variable to optimize use of the available memory.

Proactive page cleaning

Starting in DB2 Version 8.1.4, there is an alternate method of configuring page
cleaning in your system. With this approach, page cleaners behave more
proactively in choosing which dirty pages get written out at any given point in
time.

This proactive page cleaning method differs from the default page cleaning method

in two major ways:

* Page cleaners no longer respond to the value of the chngpgs_thresh database
configuration parameter.

When the number of good victim pages drops below an acceptable value, page
cleaners search the entire buffer pool, writing out potential victim pages and
informing the agents of the location of these pages.

* Page cleaners no longer respond to log sequence number (LSN) gap triggers
issued by the logger.

When the amount of log space between the log record that updated the oldest
page in the buffer pool and the current log position exceeds that allowed by the
softmax database configuration parameter, the database is said to be
experiencing an LSN gap.

Under the default page cleaning method, a logger that detects an LSN gap
triggers the page cleaners to write out all the pages that are contributing to the
LSN gap; that is, the page cleaners write out those pages that are older than
what is allowed by the value of softmax. Page cleaners alternate between
idleness and bursts of activity writing large numbers of pages. This can result in
saturation of the I/O subsystem, which then affects other agents that are reading
or writing pages. Moreover, by the time that an LSN gap is detected, the page
cleaners might not be able to clean fast enough, and DB2 might run out of log
space.

The proactive page cleaning method modulates this behavior by distributing the
same number of writes over a longer period of time. The page cleaners do this

Chapter 3. Factors affecting performance 99

by cleaning not only the pages that are contributing to an LSN gap, but also
pages that are likely to contribute to an impending LSN gap, based on the
current level of activity.

To use the new page cleaning method, set the
DB2 _USE_ALTERNATE_PAGE_CLEANING registry variable to on.

Improving update performance
When an agent updates a page, the database manager uses a protocol to minimize
the I/0 that is required by the transaction and to ensure recoverability.

This protocol includes the following steps:

1. The page that is to be updated is pinned and latched with an exclusive lock. A
log record is written to the log buffer, describing how to undo and redo the
change. As part of this action, a log sequence number (LSN) is obtained and
stored in the header of the page that is being updated.

2. The update is applied to the page.

3. The page is unlatched. The page is considered to be “dirty”, because changes to
the page have not yet been written to disk.

4. The log buffer is updated. Both data in the log buffer and the dirty data page
are written to disk.

For better performance, these I/O operations are delayed until there is a lull in
system load, or until they are necessary to ensure recoverability or to limit
recovery time. More specifically, a dirty page is written to disk when:

* Another agent chooses it as a victim
* A page cleaner works on the page. This can occur when:
— Another agent chooses the page as a victim

— The chngpgs_thresh database configuration parameter value is exceeded,
causing asynchronous page cleaners to wake up and write changed pages to
disk. If proactive page cleaning is enabled for the database, this value is
irrelevant and does not trigger page cleaning.

— The softmax database configuration parameter value is exceeded, causing
asynchronous page cleaners to wake up and write changed pages to disk. If
proactive page cleaning is enabled for the database, and the number of page
cleaners has been properly configured for the database, this value should
never be exceeded.

— The number of clean pages drops too low. Page cleaners only react to this
condition under proactive page cleaning.

— A dirty page currently contributes to, or is expected to contribute to an LSN
gap condition. Page cleaners only react to this condition under proactive page
cleaning.

e The page is part of a table that was defined with the NOT LOGGED INITIALLY
clause, and the update is followed by a COMMIT statement. When the COMMIT
statement executes, all changed pages are flushed to disk to ensure
recoverability.

Prefetching data into the buffer pool
Prefetching pages means that one or more pages are retrieved from disk in the
expectation that they will be required by an application.

100 Troubleshooting and Tuning Database Performance

Prefetching index and data pages into the buffer pool can help to improve
performance by reducing I/O wait times. In addition, parallel I/O enhances
prefetching efficiency.

There are two categories of prefetching:

* Sequential prefetching reads consecutive pages into the buffer pool before the
pages are required by the application.

e List prefetching (sometimes called list sequential prefetching) prefetches a set of
nonconsecutive data pages efficiently.

Prefetching data pages is different than a database manager agent read, which is
used when one or a few consecutive pages are retrieved, but only one page of data
is transferred to an application.

Prefetching and intra-partition parallelism

Prefetching has an important influence on the performance of intra-partition
parallelism, which uses multiple subagents when scanning an index or a table.
Such parallel scans result in larger data consumption rates which, in turn, require
higher prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than for serial scans.
If prefetching does not occur during a serial scan, the query runs more slowly
because the agent waits for I/O. If prefetching does not occur during a parallel
scan, all subagents might need to wait while one subagent waits for I/0O.

Because of its importance in this context, prefetching under intra-partition
parallelism is performed more aggressively; the sequential detection mechanism
tolerates larger gaps between adjacent pages, so that the pages can be considered
sequential. The width of these gaps increases with the number of subagents
involved in the scan.

Sequential prefetching:

Reading several consecutive pages into the buffer pool using a single I/O
operation can greatly reduce your application overhead.

Prefetching starts when the database manager determines that sequential I/0O is
appropriate and that prefetching might improve performance. In cases such as
table scans and table sorts, the database manager automatically chooses sequential
prefetching. The following example, which probably requires a table scan, would
be a good candidate for sequential prefetching:

SELECT NAME FROM EMPLOYEE
Sequential detection

Sometimes, it is not immediately apparent that sequential prefetching will improve
performance. In such cases, the database manager can monitor I/O and activate
prefetching if sequential page reading is occurring. This type of sequential
prefetching, known as sequential detection, applies to both index and data pages.
Use the seqdetect database configuration parameter to control whether the
database manager performs sequential detection.

For example, if sequential detection is enabled, the following SQL statement might
benefit from sequential prefetching:

Chapter 3. Factors affecting performance 101

SELECT NAME FROM EMPLOYEE
WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer might have started to scan the table using an index
on the EMPNO column. If the table is highly clustered with respect to this index,
the data page reads will be almost sequential, and prefetching might improve
performance. Similarly, if many index pages must be examined, and the database
manager detects that sequential page reading of the index pages is occurring, index
page prefetching is likely.

Implications of the PREFETCHSIZE option for table spaces

The PREFETCHSIZE clause on either the CREATE TABLESPACE or the ALTER
TABLESPACE statement lets you specify the number of prefetched pages that will
be read from the table space when data prefetching is being performed. The value
that you specify (or 'AUTOMATIC') is stored in the PREFETCHSIZE column of the
SYSCAT.TABLESPACES catalog view.

It is good practice to explicitly set the PREFETCHSIZE value as a multiple of the
number of table space containers, the number of physical disks under each
container (if a RAID device is used), and the EXTENTSIZE value (the number of
pages that the database manager writes to a container before it uses a different
container) for your table space. For example, if the extent size is 16 pages and the
table space has two containers, you might set the prefetch size to 32 pages. If there
are five physical disks per container, you might set the prefetch size to 160 pages.

The database manager monitors buffer pool usage to ensure that prefetching does
not remove pages from the buffer pool if another unit of work needs them. To
avoid problems, the database manager can limit the number of prefetched pages to
be fewer than what was specified for the table space.

The prefetch size can have significant performance implications, particularly for
large table scans. Use the database system monitor and other system monitor tools
to help tune the prefetch size for your table spaces. You can gather information
about whether:

* There are I/O waits for your query, using monitoring tools that are available for
your operating system

* Prefetching is occurring, by looking at the pool_async_data_reads (buffer pool
asynchronous data reads) data element provided by the database system
monitor

If there are I/O waits while a query is prefetching data, you can increase the value
of PREFETCHSIZE. If the prefetcher is not the cause of these I/O waits, increasing
the PREFETCHSIZE value will not improve the performance of your query.

In all types of prefetching, multiple I/O operations might be performed in parallel
if the prefetch size is a multiple of the extent size for the table space, and the
extents are in separate containers. For better performance, configure the containers
to use separate physical devices.

Block-based buffer pools for improved sequential prefetching:

Prefetching pages from disk is expensive because of I/O overhead. Throughput
can be significantly improved if processing overlaps with 1/0O.

102 Troubleshooting and Tuning Database Performance

Most platforms provide high performance primitives that read contiguous pages
from disk into noncontiguous portions of memory. These primitives are usually
called scattered read or vectored 1/O. On some platforms, performance of these
primitives cannot compete with doing I/O in large block sizes.

By default, buffer pools are page-based, which means that contiguous pages on
disk are prefetched into noncontiguous pages in memory. Sequential prefetching
can be enhanced if contiguous pages can be read from disk into contiguous pages
within a buffer pool.

You can create block-based buffer pools for this purpose. A block-based buffer pool
consists of both a page area and a block area. The page area is required for
nonsequential prefetching workloads. The block area consist of blocks; each block
contains a specified number of contiguous pages, which is referred to as the block
size.

The optimal use of a block-based buffer pool depends on the specified block size.
The block size is the granularity at which I/O servers doing sequential prefetching
consider doing block-based I/0. The extent is the granularity at which table spaces
are striped across containers. Because multiple table spaces with different extent
sizes can be bound to a buffer pool defined with the same block size, consider how
the extent size and the block size will interact for efficient use of buffer pool
memory. Buffer pool memory can be wasted if:

¢ The extent size, which determines the prefetch request size, is smaller than the
block size specified for the buffer pool

* Some pages in the prefetch request are already present in the page area of the
buffer pool

The I/0 server allows some wasted pages in each buffer pool block, but if too
many pages would be wasted, the I/O server does non-block-based prefetching
into the page area of the buffer pool, resulting in suboptimal performance.

For optimal performance, bind table spaces of the same extent size to a buffer pool
whose block size equals the table space extent size. Good performance can be
achieved if the extent size is larger than the block size, but not if the extent size is
smaller than the block size.

To create block-based buffer pools, use the CREATE BUFFERPOOL or ALTER
BUFFERPOOL statement.

Note: Block-based buffer pools are intended for sequential prefetching. If your
applications do not use sequential prefetching, the block area of the buffer pool is
wasted.

List prefetching:

List prefetching (or list sequential prefetching) is a way to access data pages efficiently,
even when those pages are not contiguous.

List prefetching can be used in conjunction with either single or multiple index
access.

If the optimizer uses an index to access rows, it can defer reading the data pages
until all of the row identifiers (RIDs) have been obtained from the index. For
example, the optimizer could perform an index scan to determine the rows and
data pages to retrieve.

Chapter 3. Factors affecting performance 103

INDEX IX1: NAME ASC,

DEPT ASC,
MGR DESC,
SALARY DESC,
YEARS ASC

And then use the following search criteria:
WHERE NAME BETWEEN 'A' and 'I'

If the data is not clustered according to this index, list prefetching includes a step
that sorts the list of RIDs that were obtained from the index scan.

I/O server configuration for prefetching and parallelism:

To enable prefetching, the database manager starts separate threads of control,
known as I/O servers, to read data pages.

As a result, query processing is divided into two parallel activities: data processing
(CPU) and data page I/O. The I/O servers wait for prefetch requests from the
CPU activity. These prefetch requests contain a description of the I/O that is
needed to satisfy the query.

Configuring enough I/0 servers (with the num_ioservers database configuration
parameter) can greatly enhance the performance of queries that can benefit from
prefetching. To maximize the opportunity for parallel I/O, set num_ioservers to at
least the number of physical disks in the database.

It is better to overestimate than to underestimate the number of I/O servers. If you
specify extra I/O servers, these servers are not used, and their memory pages are
paged out with no impact on performance. Each I/O server process is numbered.
The database manager always uses the lowest numbered process, and as a result,
some of the higher numbered processes might never be used.

To estimate the number of 1/O servers that you might need, consider the
following:

* The number of database agents that could be writing prefetch requests to the
I/0 server queue concurrently

* The highest degree to which the I/O servers can work in parallel

Consider setting the value of num_ioservers to AUTOMATIC so that the database
manager can choose intelligent values based on the system configuration.

llustration of prefetching with parallel 1/O:

I/0 servers are used to prefetch data into a buffer pool.

This process is shown in [Figure 20 on page 105}

104 Troubleshooting and Tuning Database Performance

User User User
| Application | Hﬁj Application U ‘ 'ﬁj Application
| | |
SQL request SQL request SQL request
v v v
Database Database L Database
Agent Agent Agent
| | |

E Asynchronous T

Prefetch Request

E ﬂ Logical Buffer

1/0 server Read
queue
Buffer Pool
N N [N
= = N [N [N
1/0O Server I/0O Server
A sig Block
Read
Database Database l
Create
@ Table space @ Table space > @] i -

Figure 20. Prefetching data using I/O servers

The user application passes the request to the database agent that has been
assigned to the user application by the database manager.

2 P
The database agent determines that prefetching should be used to obtain
the data that is required to satisfy the request, and writes a prefetch
request to the I/O server queue.

a8
The first available I/O server reads the prefetch request from the queue
and then reads the data from the table space into the buffer pool. The
number of I/O servers that can simultaneously fetch data from a table
space depends on the number of prefetch requests in the queue and the
number of I/O servers specified by the num_ioservers database
configuration parameter.

6 The database agent performs the necessary operations on the data pages in
the buffer pool and returns the result to the user application.

Parallel I/O management:
If multiple containers exist for a table space, the database manager can initiate

parallel 1/O, whereby the database manager uses multiple I/O servers to process
the I/O requirements of a single query.

Chapter 3. Factors affecting performance 105

Each I/0O server processes the I/O workload for a separate container, so that
several containers can be read in parallel. Parallel I/O can result in significant
improvements in I/O throughput.

Although a separate 1/0O server can handle the workload for each container, the
actual number of I/O servers that can perform parallel I/O is limited to the
number of physical devices over which the requested data is spread. For this
reason, you need as many I/0O servers as physical devices.

Parallel I/0O is initiated differently in the following cases:

* For sequential prefetching, parallel 1/O is initiated when the prefetch size is a
multiple of the extent size for a table space. Each prefetch request is divided into
smaller requests along extent boundaries. These small requests are then assigned
to different I/0O servers.

* For list prefetching, each list of pages is divided into smaller lists according to the
container in which the data pages are stored. These small lists are then assigned
to different I/O servers.

* For database or table space backup and restore, the number of parallel I/O requests
is equal to the backup buffer size divided by the extent size, up to a maximum
value that is equal to the number of containers.

* For database or table space restore, the parallel 1/O requests are initiated and
divided the same way as what is done for sequential prefetching. The data is not
restored into a buffer pool; it moves directly from the restore buffer to disk.

* When you load data, you can specify the level of I/O parallelism with the
DISK_PARALLELISM command option. If you do not specify this option, the
database manager uses a default value that is based on the cumulative number
of table space containers for all table spaces that are associated with the table.

For optimal parallel I/O performance, ensure that:

* There are enough I/0O servers. Specify slightly more I/O servers than the
number of containers that are used for all table spaces within the database.

¢ The extent size and the prefetch size are appropriate for the table space. To
prevent overuse of the buffer pool, the prefetch size should not be too large. An
ideal size is a multiple of the extent size, the number of physical disks under
each container (if a RAID device is used), and the number of table space
containers. The extent size should be fairly small, with a good value being in the
range of 8 to 32 pages.

* The containers reside on separate physical drives.
* All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they reduce the potential
for optimized parallel prefetching. Consider the following examples:

— After a smaller container is filled, additional data is stored in the remaining
containers, causing the containers to become unbalanced. Unbalanced
containers reduce the performance of parallel prefetching, because the number
of containers from which data can be prefetched might be less than the total
number of containers.

— If a smaller container is added at a later date and the data is rebalanced, the
smaller container will contain less data than the other containers. Its small
amount of data relative to the other containers will not optimize parallel
prefetching.

— If one container is larger and all of the other containers fill up, the larger
container is the only container to store additional data. The database manager
cannot use parallel prefetching to access this additional data.

106 Troubleshooting and Tuning Database Performance

* There is adequate I/O capacity when using intra-partition parallelism. On SMP
machines, intra-partition parallelism can reduce the elapsed time for a query by
running the query on multiple processors. Sufficient I/O capacity is required to
keep each processor busy. Additional physical drives are usually required to
provide that I/O capacity.

The prefetch size must be larger for prefetching to occur at higher rates, and to
use I/O capacity effectively.

The number of physical drives required depends on the speed and capacity of
the drives and the I/O bus, and on the speed of the processors.

Configuring IOCP on AIX:

AIX 5.3 TL9 SP2 and AIX 6.1 TL2 have the I/O completion ports (IOCP) file set
included as part of the base installation. However, if the minimum operating
system requirements were applied using an operating system upgrade rather than
using a new operating system installation, you must configure I/O completion
ports (IOCP) separately.

1. Enter the Islpp command to check whether the IOCP module is installed on
your system.

§ 1slpp -1 bos.iocp.rte

The resulting output should be similar to the following example:
Fileset Level State Description

Path: /usr/1ib/objrepos

bos.iocp.rte 5.3.9.0 APPLIED 1/0 Completion Ports API
Path: /etc/objrepos
bos.iocp.rte 5.3.0.50 COMMITTED I/0 Completion Ports API
2. Enter the Isdev command to check whether the status of the IOCP port is
Available.

$ 1sdev -Cc iocp

The resulting output should match the following example:
jocpd Available 1I/0 Completion Ports

If the IOCP port status is Defined, change the status to Available.
a. Log in to the server as root and issue the following command:
smitty iocp
b. Select Change / Show Characteristics of I/0 Completion Ports.
c. Change the configured state at system restart from Defined to Available.

d. Enter the Isdev command again to confirm that the status of the IOCP port
has changed to Available.

Database deactivation behavior in first-user connection
scenarios

A database is activated when a user first connects to it. In a single-partition
environment, the database is loaded into memory and remains in this state until
the last user disconnects. The same behavior applies to multi-partition
environments, where any first-user connection activates the database on both local
and catalog partitions for that database.

Chapter 3. Factors affecting performance 107

When the last user disconnects, the database shuts down on both local and any
remote partitions where this user is the last active user connection for the database.
This activation and deactivation of the database based on first connection and last
disconnection is known as implicit activation. Activation is initiated by the first user
connection, and the activation remains in effect until the user executes a
CONNECT RESET (or until the user terminates or drops the connection), which
results in the database being implicitly deactivated.

The process of loading a database into memory is very involved. It encompasses
initialization of all database components, including buffer pools, and is the type of
processing that should be minimized, particularly in performance-sensitive
environments. This behavior is of particular importance in multi-partition
environments, where queries that are issued from one database partition reach
other partitions that contain part of the target data set. Those database partitions
are activated or deactivated, depending on the connect and disconnect behavior of
the user applications. When a user issues a query that reaches a database partition
for the first time, the query assumes the cost of first activating that partition. When
that user disconnects, the database is deactivated unless other connections were
previously established against that remote partition. If the next incoming query
needs to access that remote partition, the database on that partition will first have
to be activated. This cost is accrued for each activation and deactivation of the
database (or database partition, where applicable).

The only exception to this behavior occurs if the user chooses to explicitly activate
the database by issuing the ACTIVATE DATABASE command. After this command
completes successfully, the database remains in memory, even if the last user
disconnects. This applies to both single- and multi-partition environments. To
deactivate such a database, issue the DEACTIVATE DATABASE command. Both
commands are global in scope, meaning that they will activate or deactivate the
database on all database partitions, if applicable. Given the processing-intensive
nature of loading a database into memory, consider explicitly activating databases
by using the ACTIVATE DATABASE command, rather than relying on implicit
activation through database connections.

Tuning sort performance

Because queries often require sorted or grouped results, proper configuration of the
sort heap is crucial to good query performance.

Sorting is required when:

* No index that satisfies a requested order exists (for example, a SELECT
statement that uses the ORDER BY clause)

* An index exists, but sorting would be more efficient than using the index
* An index is created

* An index is dropped, which causes index page numbers to be sorted
Elements that affect sorting

The following factors affect sort performance:
* Settings for the following configuration parameters:

— Sort heap size, (sortheap), which specifies the amount of memory to be used
for each sort

— Sort heap threshold (sheapthres) and the sort heap threshold for shared sorts
(sheapthres_shr), which control the total amount of memory that is available
for sorting across the instance

108 Troubleshooting and Tuning Database Performance

¢ The number of statements in a workload that require a large amount of sorting
* The presence or absence of indexes that could help avoid unnecessary sorting
* The use of application logic that does not minimize the need for sorting

* Parallel sorting, which improves sort performance, but which can only occur if
the statement uses intra-partition parallelism

* Whether or not the sort is overflowed. If the sorted data cannot fit into the sort
heap, which is a block of memory that is allocated each time a sort is performed,
the data overflows into a temporary table that is owned by the database.

* Whether or not the results of the sort are piped. If sorted data can return directly
without requiring a temporary table to store the sorted list, it is a piped sort.

In a piped sort, the sort heap is not freed until the application closes the cursor
that is associated with the sort. A piped sort can continue to use up memory
until the cursor is closed.

Although a sort can be performed entirely in sort memory, this might cause
excessive page swapping. In this case, you lose the advantage of a large sort heap.
For this reason, you should use an operating system monitor to track changes in
system paging whenever you adjust the sorting configuration parameters.

Techniques for managing sort performance

Identify particular applications and statements where sorting is a significant
performance problem:

1. Set up event monitors at the application and statement level to help you
identify applications with the longest total sort time.

2. Within each of these applications, find the statements with the longest total sort
time.

You can also search through the explain tables to identify queries that have sort
operations.

3. Use these statements as input to the Design Advisor, which will identify and
can create indexes to reduce the need for sorting.

You can use the self-tuning memory manager (STMM) to automatically and
dynamically allocate and deallocate memory resources required for sorting. To use
this feature:

* Enable self-tuning memory for the database by setting the self_tuning_mem
configuration parameter to ON.

* Set the sortheap and sheapthres_shr configuration parameters to AUTOMATIC.
 Set the sheapthres configuration parameter to 0.

You can also use the database system monitor and benchmarking techniques to
help set the sortheap, sheapthres_shr, and sheapthres configuration parameters.
For each database manager and for each database:

1. Set up and run a representative workload.

2. For each applicable database, collect average values for the following
performance variables over the benchmark workload period:

* Total sort heap in use (the value of the sort_heap_allocated monitor element)

 Active sorts and active hash joins (the values of the active_sorts and
active_hash_joins monitor elements)

3. Set sortheap to the average total sort heap in use for each database.

Chapter 3. Factors affecting performance 109

Note: If long keys are used for sorts, you might need to increase the value of
the sortheap configuration parameter.

4. Set the sheapthres. To estimate an appropriate size:
a. Determine which database in the instance has the largest sortheap value.
b. Determine the average size of the sort heap for this database.
If this is too difficult to determine, use 80% of the maximum sort heap.

C. Set sheapthres to the average number of active sorts, times the average size
of the sort heap computed above. This is a recommended initial setting. You
can then use benchmark techniques to refine this value.

Data organization

Over time, data in your tables can become fragmented, increasing the size of tables
and indexes as records become distributed over more and more data pages. This
can increase the number of pages that need to be read during query execution.
Reorganization of tables and indexes compacts your data, reclaiming wasted space
and improving data access.

The steps to perform a table or index reorganization are as follows:
1. Determine whether you need to reorganize any tables or indexes.
Choose a reorganization method.

Perform the reorganization of identified objects.

Optional: Monitor the progress of reorganization.

Al A

Determine whether or not the reorganization was successful. For offline table
reorganization and any index reorganization, the operation is synchronous, and
the outcome is apparent upon completion of the operation. For online table
reorganization, the operation is asynchronous, and details are available from
the history file.

6. Collect statistics on reorganized objects.

7. Rebind applications that access reorganized objects.

Table reorganization

After many changes to table data, logically sequential data might reside on
nonsequential data pages, so that the database manager must perform additional
read operations to access data. Also, if many rows have been deleted, additional
read operations are also required. In this case, you might consider reorganizing the
table to match the index and to reclaim space.

You can also reorganize the system catalog tables.

Because reorganizing a table usually takes more time than updating statistics, you
could execute the RUNSTATS command to refresh the current statistics for your
data, and then rebind your applications. If refreshed statistics do not improve
performance, reorganization might help.

The following factors can indicate a need for table reorganization:

* There has been a high volume of insert, update, and delete activity against
tables that are accessed by queries.

* There have been significant changes in the performance of queries that use an
index with a high cluster ratio.

* Executing the RUNSTATS command to refresh table statistics does not improve
performance.

110 Troubleshooting and Tuning Database Performance

¢ Output from the REORGCHK command indicates a need for table
reorganization.

Note: With DB2 V9.7 Fix Pack 1 and later releases, higher data availability for a
data partitioned table with only partitioned indexes (except system-generated XML
path indexes) is achieved by reorganizing data for a specific data partition.
Partition-level reorganization performs a table reorganization on a specified data
partition while the remaining data partitions of the table remain accessible. The
output from the REORGCHK command for a partitioned table contains statistics
and recommendations for performing partition-level reorganizations.

REORG TABLE commands and REORG INDEXES ALL commands can be issued
on a data partitioned table to concurrently reorganize different data partitions or
partitioned indexes on a partition. When concurrently reorganizing data partitions
or the partitioned indexes on a partition, users can access the unaffected partitions
but cannot access the affected partitions. All the following criteria must be met to
issue REORG commands that operate concurrently on the same table:

* Each REORG command must specify a different partition with the ON DATA
PARTITION clause.

¢ Each REORG command must use the ALLOW NO ACCESS mode to restrict
access to the data partitions.

* The partitioned table must have only partitioned indexes if issuing REORG
TABLE commands. No nonpartitioned indexes (except system-generated XML
path indexes) can be defined on the table.

Choosing a table reorganization method
There are two approaches to table reorganization: classic reorganization (offline) and
inplace reorganization (online).

Offline reorganization is the default behavior. To specify an online reorganization
operation, use the INPLACE option on the REORG TABLE command.

An alternative approach to inplace reorganization, using online table move stored
procedures, is also available. See “Moving tables online by using the
ADMIN_MOVE_TABLE procedure”.

Each approach has its advantages and drawbacks, which are summarized below.
When choosing a reorganization method, consider which approach offers
advantages that align with your priorities. For example, if recoverability in case of
failure is more important than performance, online reorganization might be
preferable.

Advantages of offline reorganization

This approach offers:

* The fastest table reorganization operations, especially if large object (LOB) or
long field data is not included

* Perfectly clustered tables and indexes upon completion

* Indexes that are automatically rebuilt after a table has been reorganized; there is
no separate step for rebuilding indexes

* The use of a temporary table space for building a shadow copy; this reduces the
space requirements for the table space that contains the target table or index

¢ The use of an index other than the clustering index to re-cluster the data

Chapter 3. Factors affecting performance 111

Disadvantages of offline reorganization

This approach is characterized by:

Limited table access; read access only during the sort and build phase of a reorg
operation

A large space requirement for the shadow copy of the table that is being
reorganized

Less control over the reorg process; an offline reorg operation cannot be paused
and restarted

Advantages of online reorganization

This approach offers:

Full table access, except during the truncation phase of a reorg operation

More control over the reorg process, which runs asynchronously in the
background, and which can be paused, resumed, or stopped; for example, you
can pause an in-progress reorg operation if a large number of update or delete
operations are running against the table

A recoverable process in the event of a failure

A reduced requirement for working storage, because a table is processed
incrementally

Immediate benefits of reorganization, even before a reorg operation completes

Disadvantages of online reorganization

This approach is characterized by:

Imperfect data or index clustering, depending on the type of transactions that
access the table during a reorg operation

Poorer performance than an offline reorg operation

Potentially high logging requirements, depending on the number of rows being

moved, the number of indexes that are defined on the table, and the size of
those indexes

A potential need for subsequent index reorganization, because indexes are
maintained, not rebuilt

Table 1. Comparison of online and offline reorganization

completion

Characteristic Offline reorganization Online reorganization
Performance Fast Slow
Clustering factor of data at | Good Not perfectly clustered

Concurrency (access to the
table)

Ranges from no access to
read-only

Ranges from read-only to full
access

Data storage space
requirement

Significant

Not significant

Logging storage space
requirement

Not significant

Could be significant

User control (ability to
pause, restart process)

Less control

More control

Recoverability

Not recoverable

Recoverable

Index rebuilding

Done

Not done

112 Troubleshooting and Tuning Database Performance

Table 1. Comparison of online and offline reorganization (continued)

Characteristic Offline reorganization Online reorganization
Supported for all types of Yes No

tables

Ability to specify an index Yes No

other than the clustering

index

Use of a temporary table Yes No

space

Table 2. Table types that are supported for online and offline reorganization

Offline reorganization Online reorganization
Table type supported supported
Multidimensional clustering Yes' No
tables (MDC)
Range-clustered tables (RCT) No? No
Append mode tables No No*
Tables with long field or large Yes* No
object (LOB) data
System catalog tables: Yes No
SYSIBM.SYSDBAUTH,
SYSIBM.SYSROUTINEAUTH,
SYSIBM.SYSSEQUENCES,
SYSIBM.SYSTABLES
Notes:

1. Because clustering is automatically maintained through MDC block indexes,
reorganization of an MDC table involves space reclamation only. No indexes can be
specified.

2. The range area of an RCT always remains clustered.

3. Online reorganization can be performed after append mode is disabled.

4. Reorganizing long field or large object (LOB) data can take a significant amount of
time, and does not improve query performance; it should only be done for space
reclamation.

Monitoring the progress of table reorganization

Information about the progress of a current table reorg operation is written to the
history file. The history file contains a record for each reorganization event. To
view this file, execute the LIST HISTORY command against the database that
contains the table being reorganized.

You can also use table snapshots to monitor the progress of table reorg operations.
Table reorganization monitoring data is recorded, regardless of the setting for the
database system monitor table switch.

If an error occurs, an SQLCA message is written to the history file. In the case of
an inplace table reorg operation, the status is recorded as PAUSED.

Classic (offline) table reorganization
Classic table reorganization uses a shadow copy approach, building a full copy of
the table that is being reorganized.

Chapter 3. Factors affecting performance 113

There are four phases in a classic or offline table reorganization operation:

1. SORT - During this phase, if an index was specified on the REORG TABLE
command, or a clustering index was defined on the table, the rows of the table
are first sorted according to that index. If the INDEXSCAN option is specified,
an index scan is used to sort the table; otherwise, a table scan sort is used. This
phase applies only to a clustering table reorg operation. Space reclaiming reorg
operations begin at the build phase.

2. BUILD - During this phase, a reorganized copy of the entire table is built,
either in its table space or in a temporary table space that was specified on the
REORG TABLE command.

3. REPLACE - During this phase, the original table object is replaced by a copy
from the temporary table space, or a pointer is created to the newly built object
within the table space of the table that is being reorganized.

4. RECREATE ALL INDEXES - During this phase, all indexes that were defined
on the table are recreated.

You can monitor the progress of the table reorg operation and identify the current
phase using the snapshot monitor or snapshot administrative views.

The locking conditions are more restrictive in offline mode than in online mode.
Read access to the table is available while the copy is being built. However,
exclusive access to the table is required when the original table is being replaced
by the reorganized copy, or when indexes are being rebuilt.

An IX table space lock is required during the entire table reorg process. During the
build phase, a U lock is acquired and held on the table. A U lock allows the lock
owner to update the data in the table. Although no other application can update
the data, read access is permitted. The U lock is upgraded to a Z lock after the
replace phase starts. During this phase, no other applications can access the data.
This lock is held until the table reorg operation completes.

A number of files are created by the offline reorganization process. These files are
stored in your database directory. Their names are prefixed with the table space
and object IDs; for example, 0030002.RO0R is the state file for a table reorg operation
whose table space ID is 3 and table ID is 2.

The following list shows the temporary files that are created in a system managed
space (SMS) table space during an offline table reorg operation:

¢ .DTR - Data shadow copy file

* .LFR - Long field file

* .LAR - Long field allocation file

* .RLB - LOB data file

* .RBA - LOB allocation file

* .BMR - Block object file for multidimensional clustering (MDC) tables

The following temporary file is created during an index reorg operation:
* .IN1 - Shadow copy file

The following list shows the temporary files that are created in the system
temporary table space during the sort phase:

e TDA - Data file
e TIX - Index file

114 Troubleshooting and Tuning Database Performance

e .TLF - Long field file

* .TLA - Long field allocation file
» .TLB - LOB file

e .TBA - LOB allocation file

* .TBM - Block object file

The files that are associated with the reorganization process should not be
manually removed from your system.

Reorganizing tables offline:

Reorganizing tables offline is the fastest way to defragment your tables.
Reorganization reduces the amount of space that is required for a table and
improves data access and query performance.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.
1. To reorganize a table using the REORG TABLE command, simply specify the
name of the table. For example:
reorg table employee

You can reorganize a table using a specific temporary table space. For example:
reorg table employee use mytemp

You can reorganize a table and have the rows reordered according to a specific
index. For example:

reorg table employee index myindex

2. To reorganize a table using an SQL CALL statement, specify the REORG
TABLE command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd ('reorg table employee')

3. To reorganize a table using the administrative application programming
interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Recovery of an offline table reorganization:

An offline table reorganization is an all-or-nothing process until the beginning of
the replace phase. If your system crashes during the sort or build phase, the reorg
operation is rolled back and will not be redone during crash recovery.

If your system crashes after the beginning of the replace phase, the reorg operation
must complete, because all of the reorganization work has been done and the
original table might no longer be available. During crash recovery, the temporary
file for the reorganized table object is required, but not the temporary table space
that is used for the sort. Recovery will restart the replace phase from the
beginning, and all of the data in the copy object is required for recovery. There is a
difference between system managed space (SMS) and database managed space

Chapter 3. Factors affecting performance 115

(DMS) table spaces in this case: the reorganized table object in SMS must be copied
from one object to the other, but the reorganized table object in DMS is simply
pointed to, and the original table is dropped, if the reorganization was done in the
same table space. Indexes are not rebuilt, but are marked invalid during crash
recovery, and the database will follow the usual rules to determine when they are
rebuilt, either at database restart or upon first index access.

If a crash occurs during the index rebuild phase, nothing is redone because the
new table object already exists. Indexes are handled as described previously.

During rollforward recovery, the reorg operation is redone if the old version of the
table is on disk. The rollforward utility uses the record IDs (RIDs) that are logged
during the build phase to reapply the operations that created the reorganized table,
repeating the build and replace phases. Indexes are handled as described
previously. A temporary table space is required for a copy of the reorganized object
only if a temporary table space was used originally. During rollforward recovery,
multiple reorg operations can be redone concurrently (parallel recovery).

Improving the performance of offline table reorganization:

The performance of an offline table reorganization is largely determined by the
characteristics of the database environment.

There is almost no difference in performance between a reorg operation that is
running in ALLOW NO ACCESS mode and one that is running in ALLOW READ
ACCESS mode. The difference is that during a reorg operation in ALLOW READ
ACCESS mode, the utility might have to wait for other applications to complete
their scans and release their locks before replacing the table. The table is
unavailable during the index rebuild phase of a reorg operation that is running in
either mode.

Tips for improving performance

e If there is enough space to do so, use the same table space for both the original
table and the reorganized copy of the table, instead of using a temporary table
space. This saves the time that is needed to copy the reorganized table from the
temporary table space.

* Consider dropping unnecessary indexes before reorganizing a table so that fewer
indexes need to be maintained during the reorg operation.

* Ensure that the prefetch size of the table spaces on which the reorganized table
resides is set properly.

* Tune the sortheap and sheapthres database configuration parameters to control
the space that is available for sorts. Because each processor will perform a
private sort, the value of sheapthres should be at least sortheap x
number-of-processors.

* Adjust the number of page cleaners to ensure that dirty index pages in the
buffer pool are cleaned as soon as possible.

Inplace (online) table reorganization

Inplace table reorganization enables you to reorganize a table while you have full
access to its data. The cost of this uninterrupted access to the data is a slower table
reorg operation.

116 Troubleshooting and Tuning Database Performance

During an inplace or online table reorg operation, portions of a table are
reorganized sequentially. Data is not copied to a temporary table space; instead,
rows are moved within the existing table object to reestablish clustering, reclaim
free space, and eliminate overflow rows.

There are four main phases in an online table reorg operation:
1. SELECT n pages

During this phase, the database manager selects a range of 1 pages, where n is
the size of an extent with a minimum of 32 sequential pages for reorg
processing.

2. Vacate the range

The reorg utility moves all rows within this range to free pages in the table.
Each row that is moved leaves behind a reorg table pointer (RP) record that
contains the record ID (RID) of the row’s new location. The row is placed on a
free page in the table as a reorg table overflow (RO) record that contains the
data. After the utility has finished moving a set of rows, it waits until all
applications that are accessing data in the table are finished. These “old
scanners” use old RIDs when accessing the table data. Any table access that
starts during this waiting period (a “new scanner”) uses new RIDs to access the
data. After all of the old scanners have completed, the reorg utility cleans up
the moved rows, deleting RP records and converting RO records into regular
records.

3. Fill the range
After all rows in a specific range have been vacated, they are written back in a
reorganized format, sorted according to any indexes that were used, and
obeying any PCTFREE restrictions that were defined. When all of the pages in
the range have been rewritten, the next n sequential pages in the table are
selected, and the process is repeated.

4. Truncate the table
By default, when all pages in the table have been reorganized, the table is
truncated to reclaim space. If the NOTRUNCATE option has been specified, the
reorganized table is not truncated.

Files created during an online table reorg operation

During an online table reorg operation, an .0LR state file is created for each
database partition. This binary file has a name whose format is xxxxyyyy.OLR,
where xxxx is the table space ID and yyyy is the object ID in hexadecimal format.
This file contains the following information that is required to resume an online
reorg operation from the paused state:

* The type of reorg operation

¢ The life log sequence number (LSN) of the table being reorganized

* The next range to be vacated

* Whether the reorg operation is clustering the data or just reclaiming space

* The ID of the index that is being used to cluster the data

A checksum is performed on the .0LR file. If the file becomes corrupted, causing
checksum errors, or if the table LSN does not match the life LSN, a new reorg

operation is initiated, and a new state file is created.

If the .OLR state file is deleted, the reorg process cannot resume, SQL2219N is
returned, and a new reorg operation must be initiated.

Chapter 3. Factors affecting performance 117

The files that are associated with the reorganization process should not be
manually removed from your system.

Reorganizing tables online:

An online or inplace table reorganization allows users to access a table while it is
being reorganized.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table that is to be reorganized. You must also have a
database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the
reorg utility against those tables and, optionally, against any indexes that are
defined on those tables.

1. To reorganize a table online using the REORG TABLE command, simply specify
the name of the table and the INPLACE option. For example:

reorg table employee inplace

2. To reorganize a table online using an SQL CALL statement, specify the REORG
TABLE command with the ADMIN_CMD procedure. For example:

call sysproc.admin_cmd ('reorg table employee inplace')

3. To reorganize a table online using the administrative application programming
interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has
the most accurate data for evaluating query access plans.

Recovery of an online table reorganization:

The failure of an online table reorganization is often due to processing errors, such
as disk full or logging errors. If an online table reorganization fails, an SQLCA
message is written to the history file.

If a failure occurs during run time, the online table reorg operation is paused and
then rolled back during crash recovery. You can subsequently resume the reorg
operation by specifying the RESUME option on the REORG TABLE command.
Because the process is fully logged, online table reorganization is guaranteed to be
recoverable.

Under some circumstances, an online table reorg operation might exceed the limit
that is set by the value of the num_log_span database configuration parameter. In
this case, the database manager will force the reorg utility and put it into PAUSE
state. In snapshot monitor output, the state of the reorg utility will appear as
PAUSED.

The online table reorg pause is interrupt-driven, which means that it can be
triggered either by a user (using the PAUSE option on the REORG TABLE
command, or the FORCE APPLICATION command) or by the database manager in
certain circumstances; for example, in the event of a system crash.

If one or more database partitions in a partitioned database environment
encounters an error, the SQLCODE that is returned will be the one from the first

database partition that reports an error.

Pausing and restarting an online table reorganization:

118 Troubleshooting and Tuning Database Performance

An online table reorganization that is in progress can be paused and restarted by
the user.

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,
or CONTROL privilege on the table whose online reorganization is to be paused or
restarted. You must also have a database connection to pause or restart an online
table reorganization.

1. To pause an online table reorganization using the REORG TABLE command,
specify the name of the table, the INPLACE option, and the PAUSE option. For
example:

reorg table employee inplace pause
2. To restart a paused online table reorganization, specify the RESUME option. For
example:
reorg table employee inplace resume

When an online table reorg operation is paused, you cannot begin a new
reorganization of that table. You must either resume or stop the paused
operation before beginning a new reorganization process.

Following a RESUME request, the reorganization process respects whatever
truncation option is specified on the current RESUME request. For example, if
the NOTRUNCATE option is not specified on the current RESUME request, a
NOTRUNCATE option specified on the original REORG TABLE command—or
with any previous RESUME requests—is ignored.

A table reorg operation cannot resume after a restore and rollforward operation.
Locking and concurrency considerations for online table reorganization:

One of the most important aspects of online table reorganization—because it is so
crucial to application concurrency—is how locking is controlled.

An online table reorg operation can hold the following locks:

* To ensure write access to table spaces, an IX lock is acquired on the table spaces
that are affected by the reorg operation.

* A table lock is acquired and held during the entire reorg operation. The level of
locking is dependent on the access mode that is in effect during reorganization:

- If ALLOW WRITE ACCESS was specified, an IS table lock is acquired.
- If ALLOW READ ACCESS was specified, an S table lock is acquired.

* An S lock on the table is requested during the truncation phase. Until the S lock
is acquired, rows can be inserted by concurrent transactions. These inserted rows
might not be seen by the reorg utility, and could prevent the table from being
truncated. After the S table lock is acquired, rows that prevent the table from
being truncated are moved to compact the table. After the table is compacted, it
is truncated, but only after all transactions that are accessing the table at the
time the truncation point is determined have completed.

¢ A row lock might be acquired, depending on the type of table lock:

— If an S lock is held on the table, there is no need for individual row-level S
locks, and further locking is unnecessary.

— If an IS lock is held on the table, an NS row lock is acquired before the row is
moved, and then released after the move is complete.

¢ Certain internal locks might also be acquired during an online table reorg
operation.

Chapter 3. Factors affecting performance 119

Locking has an impact on the performance of both online table reorg operations
and concurrent user applications. You can use lock snapshot data to help you to
understand the locking activity that occurs during online table reorganizations.

Monitoring a table reorganization

You can use the GET SNAPSHOT command, the SNAPTAB_REORG
administrative view, or the SNAP_GET_TAB_REORG table function to obtain
information about the status of your table reorganization operations.

* To access information about reorganization operations using SQL, use the
SNAPTAB_REORG administrative view. For example, the following query
returns details about table reorganization operations on all database partitions
for the currently connected database. If no tables have been reorganized, no
rows are returned.

select

substr(tabname, 1, 15) as tab_name,
substr(tabschema, 1, 15) as tab_schema,
reorg_phase,
substr(reorg_type, 1, 20) as reorg_type,
reorg_status,
reorg_completion,
dbpartitionnum

from sysibmadm.snaptab_reorg

order by dbpartitionnum

* To access information about reorganization operations using the snapshot
monitor, use the GET SNAPSHOT FOR TABLES command and examine the
values of the table reorganization monitor elements.

Because offline table reorg operations are synchronous, errors are returned to the
caller of the utility (an application or the command line processor). And because
online table reorg operations are asynchronous, error messages in this case are not
returned to the CLP. To view SQL error messages that are returned during an
online table reorg operation, use the LIST HISTORY REORG command.

An online table reorg operation runs in the background as the db2Reorg process.
This process continues running even if the calling application terminates its
database connection.

Index reorganization

As tables are updated, index performance can degrade.

The degradation can occur in the following ways:
* Leaf pages become fragmented. When leaf pages are fragmented, I/O costs
increase because more leaf pages must be read to fetch table pages.

* The physical index page order no longer matches the sequence of keys on those
pages, resulting in a badly clustered index. When leaf pages are badly clustered,
sequential prefetching is inefficient and the number of I/O waits increases.

* The index develops too many levels. In this case, the index should be
reorganized.

Index reorganization requires:
* SYSADM, SYSMAINT, SYSCTRL, DBADM, or SQLADM authority, or
CONTROL privilege on the table and its indexes
