IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Database Monitoring Guide and Reference
Updated September, 2010

SC27-2458-02

IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Database Monitoring Guide and Reference
Updated September, 2010

SC27-2458-02

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|
[page 1013,

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About thisbook Xix

Part 1. Monitoring interfaces. 1
Chapter 1. Database monitoring 3

Chapter 2. Monitor table functions
overview
Monitoring system information using table functlons
Monitoring activities using table functions
Monitoring data objects using table functions

N oo G

Chapter 3. Interfaces that return monitor
datain XMLdocuments.9
Interfaces for viewing XML monitor information as

formatted text13
Viewing metrics monltor elements from XML
documents as rows ina table18

Chapter 4. Event monitors 23
Event monitors that write to an unformatted event

table.25
Unformatted event table column def1n1t10ns .27
db2evmonfmt tool for reading event monitor
data.30
Monitoring database locklng B £
Monitoring package cache events 68
Monitoring unit of work events93
Capturing system monitor elements using the
statistics event monitor 128
Capturing activity monitor elements usmg the
activity event monitor 163

Event monitors that write to tables, f11es and plpes 197
Collecting information about database system

events.198
Creating an event monitor200
Event monitor sample output215

Chapter 5. Reports generated using
the MONREPORT module 223

Chapter 6. Determining the date a
database object was last used 227

Chapter 7. Time-spent monitor
elements229

Hierarchy of time-spent monitor elements. . . . 230

Retrieving and working with time- spent monitor

element data 238
Seeing where time is spent across the system 238
Determining where time is spent during SQL
statement execution 242

© Copyright IBM Corp. 1993, 2010

Chapter 8. Snapshot monitor. 245
Access to system monitor data: SYSMON authority 245
Capturing database system snapshots using

snapshot administrative views and table functions . 246
Capturing database system snapshot information

to a file using the SNAP_WRITE_FILE stored
procedure 248
Accessing database system snapshots usmg

snapshot table functions in SQL queries (with file

access).250
Snapshot monitor SQL Admlnlstratlve Vlews . . 251
SQL access to database system snapshots 254
Capturing a database snapshot from the CLP. . . 255
Snapshot monitor CLP commands 255
Capturing a database snapshot from a client
application258
Snapshot monitor API request types 259
Snapshot monitor sample output. 261
Subsection snapshots. 263
Global snapshots on partitioned database systems 264
Snapshot monitor self-describing data stream. . . 265
Monitoring with db2top in interactive mode
commands . . . o207
.db2toprc Conﬁguratlon ﬁle 0200

Chapter 9. Switch-based monitoring

concepts273

System monitor switches 273
Setting system monitor switches from the CLP 275
Setting system monitor switches from a client

application 277

System monitor sw1tches self descrlblng data

stream. 278
Database system momtor data orgamzatlon ... 279
Counter status and visibility 280
System monitor output: the self- descrlblng data
stream. 2281
Memory requ1rements for momtor data ... 2281
Monitoring buffer pool activity284
Database system monitor interfaces 286

Chapter 10. Deprecated monitoring
tools289

Health monitor. . . oo o289
Monitoring database health Coe ... 289
Health indicators A |

Working with the Memory Vlsuahzer N 2 Y4
Memory Visualizer overview 349

Activity Monitor overview352
Monitoring scenarios.355
Setting up an activity monitor. 358
Progress monitoring of the rollback process . . 358
Using snapshot monitor data to monitor the
reorganization of a partitioned table. 359

iii

Inactive statement tracking for DEADLOCK

WITH DETAILS HISTORY event monitors. . 367
Introduction to Windows Management
Instrumentation (WMI) . . 368
DB2 database system integration w1th Wlndows
Management Instrumentation . .. 369
Windows performance monitor mtroductlon . . 370
Indoubt Transaction Manager overview . 374
Part 2. Monitor elements 377
Chapter 11. Monitor elements reported
in monitor table functions . . 379
Chapter 12. Request monitor elements 391
Chapter 13. Activity monitor elements 393
Chapter 14. Data object monitor
elements . 395
Chapter 15. Monitor elements reported
by the unit of work event monitor . 397
Chapter 16. Monitor elements reported
by the locking event monitor. . 399
Chapter 17. Monitor elements reported
by the package cache event monitor . 401
Chapter 18. Hierarchy of time-spent
monitor elements. . 403
Chapter 19. Logical data groups . 41
Snapshot monitor interface mappings to logical
data groups . . . 411
Snapshot monitor log1cal data groups and momtor
elements . . . 415
Event type mappmgs to loglcal data groups . . 446
Event monitor loglcal data groups and monitor
elements . . . 449
Logical data groups affected by COLLECT
ACTIVITY DATA settings .. . 470
Chapter 20. Database system monitor
elements . 473
acc_curs_blk - Accepted Block Cursor Requests .. 474
act_aborted_total - Total aborted activities monitor
element . .. 474
act_completed_total - Total completed act1V1t1es
monitor element . 475
act_cpu_time_top — Act1v1ty CPU tlme top momtor
element . . . 476
act_exec_time - Act1V1ty executlon t1me monrtor
element . 477

1V Database Monitoring Guide and Reference

act_rejected_total - Total rejected activities monitor
element .

act_remapped_in - Act1v1t1es remapped n mon1tor
element .

act_remapped_ out - Act1V1t1es remapped out
monitor element . .
act_rows_read_top - Act1v1ty rows read top
monitor element .o S
act_rqsts_total - Total activity requests monitor
elements .

act_total - Act1v1t1es total mon1tor element
activate_timestamp - Activate t1mestamp monitor
element .

active_hash_joins - Act1ve hash]oms
active_olap_funcs - Active OLAP Functions
monitor element .

active_sorts - Active Sorts

activity_collected - Activity collected mon1tor
element . .
activity_id - Act1V1ty ID mon1tor element .
activity_secondary_id - Activity secondary ID
monitor element

activity_state - Activity state mon1tor element
activity_type - Activity type monitor element.
activitytotaltime_threshold_id - Activity total time
threshold ID monitor element .
activitytotaltime_threshold_value - Act1v1ty total
time threshold value monitor element .
activitytotaltime_threshold_violated - Act1v1ty total
time threshold violated monitor element

address - IP address from which the connection
was initiated .

agent_id - Application handle (agent lD) monrtor
element

agent_id holdlng lock Agent ID Hold1ng Lock
agent_pid - Engine dispatchable unit (EDU)
identifier monitor element .

agent_status - DCS Application Agents
agent_sys_cpu_time - System CPU Time used by
Agent .

agent_usr_cpu_ t1me User CPU Trme used by
Agent . .
agent_wait_time - Agent wa1t t1me mon1tor
element .

agent_waits_total - Total agent wa1ts mon1tor
element

agents_created empty pool Agents Created Due
to Empty Agent Pool .

agents_from_pool - Agents Assrgned From Pool
agents_registered - Agents Registered .
agents_registered_top - Maximum Number of
Agents Registered . .

agents_stolen - Stolen Agents .

agents_top - Number of Agents Created
agents_waiting_on_token - Agents Waiting for a
Token .

agents_waiting_ top Maxrmum Number of Agents
Waiting monitor element

agg temp_tablespace_top - Aggregate temporary
table space top monitor element .

. 477

. 478

. 478

. 479

. 479
. 480

. 480
. 481

. 481
. 481

. 481
. 482

. 482
. 483
. 483

. 484

. 484

. 485

. 485

. 485

487

. 487
. 488

. 488

. 489

. 489

. 490

. 491

492

. 492

. 493
. 493
. 493

. 494

. 494

. 495

aggsqltempspace_threshold_id - Aggregate SQL
temporary space threshold ID monitor element .
aggsqltempspace_threshold_value - AggSQL
temporary space threshold value monitor element
aggsqltempspace_threshold_violated - AggSQL
temporary space threshold violated monitor
element

app_rqsts_ completed total Total appl1cat1on
requests completed monitor element.
appl_con_time - Connection Request Start
Timestamp

appl_id - Appl1cat1on ID mon1tor element
appl_id_holding_lk - Application ID Holding Lock
appl_id_oldest_xact - Application with Oldest
Transaction . . .
appl_idle_time - Appllcatlon Idle T1me
appl_name - Application name monitor element
appl_priority - Application Agent Priority .
appl_priority_type - Application Priority Type
appl_section_inserts - Section Inserts monitor
element .

appl_section, lookups - Sect1on Lookups
appl_status - Application Status .
application_handle - Application handle mon1tor
element

appls_cur_cons - Appl1cat1ons Connected Currently

appls_in_db2 - Applications Executmg in the
Database Currently .
arm_correlator - Application response
measurement correlator monitor element .
associated_agents_top - Maximum Number of
Associated Agents. .
async_runstats — Total number of asynchronous
RUNSTATS requests monitor element .
audit_events_total - Total audit events monitor
element ..

audit_file_write_wait t1me Aud1t f1le wr1te wa1t
time monitor element. .
audit_file_writes_total - Total aud1t f1les wr1tten
monitor element

time monitor element. .
audit_subsystem_waits_total - Total aud1t
subsystem waits monitor element

auth_id - Authorization ID .

authority_bitmap - User authorization level
monitor element .

authority_lvl - User authorrzatlon level momtor
element

auto_storage_ hybr1d Hybr1d automat1c storage
table space indicator monitor element .
automatic - Buffer pool automatic monitor element
bin_id - Histogram bin identifier monitor element
binds_precompiles - Binds/Precompiles Attempted
block_ios - Number of block I/O requests monitor
element .

blocking_cursor - Blockmg Cursor
blocks_pending_cleanup - Pending cleanup
rolled-out blocks monitor element

bottom - Histogram bin bottom monitor element

. 495

. 496

. 496

. 496

. 497

. 498
500

. 500
. 501

501

. 502
. 503

. 503
. 503
. 504

. 506
507

. 508
. 508
. 508
. 508
. 509
. 510
. . 511
audit_subsystem_wait t1me Aud1t subsystem wa1t

. 512

. 513
. 514

. 515

. 516

. 517
517
517
517

. 518
. 519

. 519

520

boundary_leaf_node_splits - Boundary leaf node
splits monitor element

bp_cur_buffsz - Current Size of Buffer Pool
bp_id - Buffer pool identifier monitor element
bp_name - Buffer pool name monitor element
bp_new_buffsz - New Buffer Pool Size .
bp_pages_left_to_remove - Number of Pages Left
to Remove

bp_tbsp_use_ count Number of Table Spaces
Mapped to Buffer Pool . .
buff_auto_tuning - FCM buffer auto tun1ng
indicator monitor element . .

buff_free - FCM buffers currently free momtor
element .
buff_free bottom M1n1mum FCM buffers free
monitor element

buff_max - Maximum poss1ble number of FCM
buffers monitor element .

buff_total - Number of currently allocated FCM
buffers monitor element . .
byte_order - Byte Order of Event Data .
cat_cache_inserts - Catalog cache inserts monitor
element

cat_cache lookups Catalog cache lookups monltor
. 526

element .o
cat_cache_overflows - Catalog Cache Overflows

cat_cache_size_top - Catalog cache high watermark
. 528
. 529

monitor element .
catalog_node - Catalog Node Number .
catalog_node_name - Catalog Node Network
Name .

ch_auto tunmg FCM channel auto tunmg
indicator monitor element . .

ch_free - Channels currently free mon1tor element
ch_free_bottom - Minimum channels free monitor
element

ch_max - Max1mum poss1ble number of FCM
channels monitor element . .

ch_total - Number of currently allocated FCM
channels monitor element . .
client_acctng - Client accounting strmg mon1tor
element

client applname Cllent appl1cat10n name monltor

element .
client_db_alias - Database Al1as Used by
Application .

client_hostname - Cl1ent hostname monltor element

client_idle_wait_time - Client idle wait time
monitor element .
client_pid - Client process ID mon1tor element

element .

client_port_: number Cllent port number mon1tor
element

client_prdid - Cllent product and version ID
monitor element .

client_protocol - Client commun1cat1on protocol
monitor element ..

client_userid - Client user ID mon1tor element
client_wrkstnname - Client workstation name
monitor element

Contents

. 520
. 520
. 520
. 521
. 521
. 521
. 522
. 522
. 522
. 523
. 523

. 523
. 524

. 525

527

. 529

. 530

530

. 530

. 531

. 531

. 532

. 533

. 533
534

. 534
. 535
client_platform - Client operating platform monitor

. 536
. 537
. 537

. 538
. 538

. 539

A\

codepage_id - ID of Code Page Used by
Application .

comm_private_mem - Commrtted Prlvate Memory
commit_sql_stmts - Commit Statements Attempted

comp_env_desc - Compilation environment

monitor element

completion_status - Complet1on status momtor

element

con_elapsed_time - Most Recent Connectlon

Elapsed Time

con_local_dbases - Local Databases w1th Current

Connects .

con_response_time - Most Recent Response Tnne

for Connect .

concurrent_act_top - Concurrent act1v1ty top

monitor element

top monitor element .

concurrent_wlo_act_top - Concurrent WLO act1v1ty

top monitor element .

concurrent_wlo_top - Concurrent workload

occurrences top monitor element .

concurrentdbcoordactivities_db_threshold_ 1d -
Concurrent database coordinator activities database

threshold ID monitor element . .
concurrentdbcoordactivities_db threshold queued

- Concurrent database coordinator activities
database threshold queued monitor element .

concurrentdbcoordactivities_db_threshold _value -

Concurrent database coordinator activities database

threshold value monitor element .

concurrentdbcoordactivities_db_threshold Vlolated
- Concurrent database coordinator activities
database threshold violated monitor element .
concurrentdbcoordactivities_subclass_threshold
- Concurrent database coordinator activities service

subclass threshold ID monitor element .
concurrentdbcoordactivities_subclass_
threshold_queued - Concurrent database

coordinator activities service subclass threshold

queued monitor element .
concurrentdbcoordactivities_: subclass
threshold_value - Concurrent database coordinator
activities service subclass threshold value monitor
element .
concurrentdbcoordact1v1t1es subclass
threshold_violated - Concurrent database

coordinator activities service subclass threshold

violated monitor element .
concurrentdbcoordactivities superclass

threshold_id - Concurrent database coordinator

_id

activities service superclass threshold ID monitor
element . .
concurrentdbcoordacthltles superclass

threshold_queued - Concurrent database
coordinator activities service superclass threshold
queued monitor element .
concurrentdbcoordactivities superclass

threshold_value - Concurrent database coordinator

activities service superclass threshold value

monitor element

vi

Database Monitoring Guide and Reference

. 540

541
541

. 542
. 542
. 543
. 543
. 543

. . 544
concurrent_connection _top - Concurrent connectlon

. 544

. 544

. 545

. 545

. 545

. 546

. 546

. 547

. 547

. 547

. 548

. 548

. 549

. 549

concurrentdbcoordactivities_superclass_
threshold_violated - Concurrent database
coordinator activities service superclass threshold
violated monitor element - .
concurrentdbcoordactivities_wl_was_ threshold _id
- Concurrent database coordinator activities
workload work action set threshold ID monitor
element -

concurrentdbco0rdact1V1t1es wl _was_ threshold
_queued - Concurrent database coordinator
activities workload work action set threshold
queued monitor element .
concurrentdbcoordactivities_wl_was_ threshold
_value - Concurrent database coordinator activities
workload work action set threshold value monitor
element

concurrentdbcoordact1v1t1es wl _was_ threshold
_violated - Concurrent database coordinator
activities workload work action set threshold
violated monitor element ..
concurrentdbcoordactivities_work_. actron set
threshold_id - Concurrent database coordinator
activities work action set threshold ID monitor
element ..

concurrentdbcoordact1v1t1es work actron set
threshold_queued - Concurrent database
coordinator activities work action set threshold
queued monitor element .
concurrentdbcoordactivities_work_. actron set
threshold_value - Concurrent database coordinator
activities work action set threshold value monitor
element ..

concurrentdbcoordact1v1t1es work actron set
threshold_violated - Concurrent database
coordinator activities work action set threshold
violated monitor element .
conn_complete_time - Connection Request
Completion Timestamp . S
conn_time - Time of database connectlon monitor
element .

connection_start_ t1me Connectlon start tlme
monitor element .
connection_status - Connectlon status momtor
element

connections_top - Max1mum Number of
Concurrent Connections .

consistency_token - Package cons1stency token
monitor element . .
container_accessible - Access1b1hty of contamer
monitor element .
container_id - Container 1dent1f1cat10n monrtor
element

container_name - Contalner name m0n1tor element
container_stripe_set - Container strlpe set monitor
element .. .
container_total pages Total pages in contalner
monitor element

container_type - Container type Inonltor elernent
container_usable_pages - Usable pages in container
monitor element

. 550

. 550

. 551

. 551

. 552

. 552

. 553

. 553

. 554

. 554

. 554

. 555

. 555

. 556

. 556

. 557

. 557
557

. 558

. 558

559

. 559

coord_act_aborted_total - Coordinator activities
aborted total monitor element . .
coord_act_completed_total - Coordinator act1v1t1es
completed total monitor element . .
coord_act_est_cost_avg - Coordinator acthlty
estimated cost average monitor element
coord_act_exec_time_avg - Coordinator activities
execution time average monitor element
coord_act_interarrival_time_avg - Coordinator
activity arrival time average monitor element
coord_act_lifetime_avg - Coordinator activity
lifetime average monitor element. .
coord_act_lifetime_top - Coordinator activity
lifetime top monitor element .
coord_act_queue_time_avg - Coordinator act1V1ty
queue time average monitor element .
coord_act_rejected_total - Coordinator activities
rejected total monitor element . . .
coord_agent_pid - Coordinator agent 1dent1f1er
monitor element .
coord_agents_top - Maximum Number of
Coordinating Agents . .
coord_member - Coordinator member mon1tor
element
coord_node - Coordinating Node. .
coord_partition_num - Coordinator partition
number monitor element
coord_stmt_exec_time - Execution t1me for
statement by coordinator agent monitor element
corr_token - DRDA Correlation Token .
cost_estimate_top - Cost estimate top monitor
element
count - Number of Event Monitor Overflows.
cputime_threshold_id - CPU time threshold ID
monitor element
cputime_threshold Value CPU t1me threshold
value monitor element
cputime_threshold_violated - CPU t1me threshold
violated monitor element . .
cputimeinsc_threshold_id - CPU t1me in service
class threshold ID monitor element . .o
cputimeinsc_threshold_value - CPU time in service
class threshold value monitor element . .
cputimeinsc_threshold_violated - CPU time in
service class threshold violated monitor element.
create_nickname - Create Nicknames
create_nickname_time - Create Nickname Response
Time
creator - Applrcatlon Creator .
current_active_log - Current Active Log F1le
Number . . .
current_archive_log - Current Archrve Log Flle
Number . .
current_extent - Extent Currently bemg moved
monitor element
cursor_name - Cursor Name .o
data_object_pages - Data Object Pages .
data_partition_id - Data partition identifier monltor
element . .
datasource_name - Data Source Name .
db2_status - Status of DB2 Instance .

. 559

. 560

. 560

. 561

. 562

. 563

. 563

. 564

. 565

. 565

. 565

. 566
. 566

. 567

. 567
. 567

. 568
. 568

. 569

. 569

. 569

. 570

. 570

. 570
. 571

. 571
. 571

. 572

. 572

. 573
. 573

. 574

. 574
. 575
. 575

db2start_time - Start Database Manager Timestamp
db_conn_time - Database activation timestamp
monitor element

db_heap_top - Max1mum Database Heap Allocated
db_location - Database Location . L.
db_name - Database Name .

db_path - Database Path.

db_status - Status of Database. .
db_storage_path - Automatic storage path momtor
element

db_storage._- path state Storage path state monltor
element

db_storage_ path w1th dpe Storage path
including database partition expression monitor
element .

db_work_action_: set 1d Database work actlon set
ID monitor element A
db_work_class_id - Database work Class lD
monitor element .
des_appl_status - DCS Apphcatlon Status .
dcs_db_name - DCS Database Name
ddl_sql_stmts - Data Definition Language (DDL)
SQL Statements. .
deadlock_id - Deadlock Event Identlfrer
deadlock_node - Partition Number Where
Deadlock Occurred .o

deadlocks - Deadlocks detected mon1tor element
degree_parallelism - Degree of Parallelism.
del_keys_cleaned - Pseudo deleted keys cleaned
monitor element Lo
delete_sql_stmts - Deletes

delete_time - Delete Response Time .
destination_service_class_id — Destination service
class ID monitor element .
diaglog_write_wait_time - Dlagnostlc log flle wr1te
wait time monitor element . .
diaglog_writes_total - Total dlagnostrc log frle
writes monitor element . .
direct_read_reqs - Direct read requests monltor
element ..

direct_read_time - D1rect read t1me momtor
element
direct_reads
element
direct_write_regs - D1rect wr1te requests monrtor
element .
direct_write_time - Dlrect wrlte t1me monrtor
element .

direct_writes - Direct wrrtes to database monltor
element .

disconn_time - Database Deactrvatron Tlmestamp
disconnects - Disconnects

dl_conns - Connections involved in deadlock
monitor element

dynamic_sql_stmts - Dynamlc SQL Statements
Attempted .

eff_stmt_text - Effective statement text mon1t0r
element -

effective_isolation - Effectrve 1solat10n momtor
element

- Direct reads from database monitor

Contents

576

. 576
576

. 577
. 577
. 578
. 578

. 579

. 579

. 580

. 580
. 580
. 581
. 581

. 582
. 582

. 583

583

. 585

. 585
. 586
. 586

. 587

. 587

. 588

. 589

. 591

. 592

. 594

. 596

. 597

599

. 599

. 600

. 600

. 601

. 601

vii

effective_lock_timeout - Effective lock timeout
monitor element . .
effective_query_degree - Effect1ve query degree
monitor element .

elapsed_exec_time - Statement Executlon Elapsed
Time .

empty_pages_ deleted Empty pages deleted
monitor element .
empty_pages_reused - Empty pages reused
monitor element .

entry_time - Entry time mon1tor element .

estimatedsqlcost_threshold_id - Estimated SQL cost

threshold ID monitor element .
estimatedsqlcost_threshold_value - Est1mated SQL
cost threshold value monitor element
estimatedsqlcost_threshold_violated - Estlmated
SQL cost threshold violated monitor element .
event_monitor_name - Event Monitor Name .
event_time - Event Time. .
evmon_activates - Number of Event Monltor
Activations .

evmon_flushes - Number of Event Mon1tor Flushes
. 606
. 607
. 607

executable_id - Executable ID monitor element .
execution_id - User Login ID .

failed_sql_stmts - Failed Statement Operatlons
fcm_message_recv_volume - FCM message
received volume monitor element .
fcm_message_recv_wait_time - FCM message
received wait time monitor element . .
fcm_message_recvs_total - Total FCM message
receives monitor element .
fcm_message_send_volume - FCM message send
volume monitor element.

fcm_message_send_wait_time - FCM message send

wait time monitor element . . .
fcm_message_sends_total - Total FCM message
sends monitor element .
fecm_recv_volume - FCM rece1ved Volume mon1tor
element -
fcm_recv_wait_time - FCM rece1ved wa1t t1me
monitor element . .
fecm_recvs_total - FCM receives total mon1tor
element ..
fcm_send_volume - FCM send volume mon1tor
element

element

fcm_sends_total - FCM sends total monltor element

fem_tq_recv_volume - FCM table queue received
volume monitor element

fem_tq_recv_wait_time - FCM table queue recelved

wait time monitor element .

fem_tq_recvs_total - FCM table queue receives total
. 623

monitor element -
fem_tq_send_volume - FCM table queue send
volume monitor element
fem_tq_send_wait_time - FCM table queue send
wait time monitor element .

fem_tq_sends_total - FCM table queue send total
monitor element . .
fetch_count - Number of Successful Fetches .

viili Database Monitoring Guide and Reference

. 602

. 602

. 602

. 603

. 603

. 603

. 604

. 604

. 604
. 605
. 605

. 605
606

. 608
. 609
. 610
. 611
. 612
. 613
. 614
. 615
. 616

) . 618
fcm_send_wait_ t1me FCM send wa1t t1me momtor

. 619
620

. 621

. 622

. 624

. 625

. 626
. 627

files_closed - Database files closed monitor element 627

first_active_log - First Active Log File Number .
first_overflow_time - Time of First Event Overflow
fs_caching - File system caching monitor element
fs_id - Unique file system identification number
monitor element . .
fs_total_size - Total size of a flle system mon1tor
element .

fs_type - File System Type .

fs_used_size - Amount of space used on a frle
system monitor element .

gw_comm_error_time - Communlcatlon Error T1me
. 631

gw_comm_errors - Communication Errors.
gw_con_time - DB2 Connect Gateway First
Connect Initiated . .
gw_connections_top - Max1mum Number of
Concurrent Connections to Host Database.
gw_cons_wait_client - Number of Connections
Waiting for the Client to Send Request .
gw_cons_wait_host - Number of Connections
Waiting for the Host to Reply .

gw_cur_cons - Current Number of Connect1ons for

DB2 Connect

gw_db_alias - Database Ahas at the Gateway
gw_exec_time - Elapsed Time Spent on DB2
Connect Gateway Processing .

gw_total_cons - Total Number of Attempted
Connections for DB2 Connect .
hadr_connect_status - HADR Connect1on Status
monitor element .

hadr_connect_time - HADR Connect1on T1me
monitor element

hadr_heartbeat - HADR Heartbeat mon1tor element

hadr_local_host - HADR Local Host monitor
element - .
hadr_local_service - HADR Local Serv1ce mon1tor
element .
hadr_log_gap - HADR Log Gap .

hadr_peer_window - HADR peer window mon1tor

element

hadr_peer_ wmdow end HADR peer wmdow end
. 638

monitor element
hadr_primary_log_file -
monitor element
hadr_primary_log_lsn - HADR Pr1mary Log LSN
monitor element

HADR Primary Log File

hadr_primary_log_page - HADR Prlmary Log Page

monitor element

hadr_remote_host - HADR Remote Host mon1tor
element - .
hadr_remote 1nstance HADR Remote Instance
monitor element

hadr_remote_service - HADR Remote Serv1ce
monitor element .

hadr_role - HADR Role . Lo
hadr_standby_log_file - HADR Standby Log File
monitor element

hadr_standby_log_Isn - HADR Standby Log LSN

monitor element

hadr_standby_log_page - HADR Standby Log Page

monitor element

. 628

629
629

. 629

. 630
. 630

. 631

631

. 632

. 632

. 632

. 633

. 633
. 633

. 634

. 634

. 634

. 635
636

. 636

. 637

. 637

. 638

. 639

. 639

. 639

. 640

. 640

. 640
. 641

. 641

. 642

. 642

hadr_state - HADR State monitor element.
hadr_syncmode - HADR Synchronization Mode
monitor element .

hadr_timeout - HADR T1meout m0n1tor element
hash_join_overflows - Hash Join Overflows
hash_join_small_overflows - Hash Join Small
Overflows

histogram_type - H1stogram type mon1t0r element
hld_application_handle - Identifier for the
application holding the lock monitor element.
hld_member - Database member for application
holding lock.

host_ccsid - Host Coded Character Set ID
host_db_name - Host Database Name .
host_prdid - Host Product/Version ID .
host_response_time - Host Response Time.
hostname - Host name monitor element
idle_agents - Number of Idle Agents

iid - Index identifier monitor element .
inbound_bytes_received - Inbound Number of
Bytes Received .

inbound_bytes_sent - Inbound Number of Bytes
Sent

inbound_comm_ address Inbound Communlcatlon
Address . .
include_col updates Include Column updates
monitor element

index_object_pages - Index Ob]ect Pages
index_only_scans - Index- only scans monitor
element .

index_scans - Index scans mon1tor element
index_tbsp_id - Index table space ID monitor
element .
input_db_alias - Input Database Alras .
insert_sql_stmts - Inserts

insert_time - Insert Response Time .
insert_timestamp - Insert timestamp monitor
element .

int_auto_rebinds - Internal Automat1c Reb1nds
int_commits - Internal commits monitor element
int_deadlock_rollbacks - Internal Rollbacks Due To
Deadlock . ..

int_node_splits - Intermedlate node sphts mon1tor
element ..

int_rollbacks - Internal rollbacks mon1tor element
int_rows_deleted - Internal Rows Deleted .
int_rows_inserted - Internal Rows Inserted
int_rows_updated - Internal Rows Updated
invocation_id - Invocation ID monitor element .
ipc_recv_volume - Interprocess communication
received volume monitor element .
ipc_recv_wait_time - Interprocess communlcatlon
received wait time monitor element .
ipc_recvs_total - Interprocess communication
receives total monitor element. L.
ipc_send_volume - Interprocess communication
send volume monitor element . .o
ipc_send_wait_time - Interprocess communication
send wait time monitor element .
ipc_sends_total - Interprocess communrcatron send
total monitor element.

. 642

. 643

644

. 644

. 644

645

. 646

. 646
. 647
. 647
. 647
. 648
. 648
. 648
. 649

. 649

. 649

. 649

. 650
. 650

. 650
. 650

. 651
. 651
. 651
. 652

. 652
. 653

654

. 655

. 656

656

. 658
. 658
. 659
. 659
. 660
. 661
. 662
. 663
. 664

. 664

is_system_appl - Is System Application monitor
element .

key_updates - Key updates mon1tor element
last_active_log - Last Active Log File Number
last_backup - Last Backup Timestamp .
last_executable_id - Last executable 1dent1f1er
monitor element .

last_extent - Last extent moved m0n1tor element
last_metrics_update - Metrics last update
timestamp monitor element ;
last_overflow_time - Time of Last Event Overflow
last_reference_time - Last reference time monitor
element .
last_request_type - Last request type monrtor
element . .

last_reset - Last Reset Tlmestamp
last_wlm_reset - Time of last reset momtor element
lob_object_pages - LOB Object Pages

local_cons - Local Connections
local_cons_in_exec - Local Connections Executmg
in the Database Manager

local_start_time - Local start time m0n1tor element
lock_attributes - Lock attributes monitor element
lock_count - Lock count monitor element .
lock_current_mode - Original lock mode before
conversion monitor element .
lock_escalation - Lock escalation mon1t0r element
lock_escals - Number of lock escalations monitor
element ..

lock_hold_count - Lock hold Count mon1tor
element . -
lock_list_in_use - Total lock llst memory in use
monitor element . .
lock_mode - Lock mode mon1tor element
lock_mode_requested - Lock mode requested
monitor element .. .
lock_name - Lock name monrtor element .
lock_node - Lock Node . .
lock_object_name - Lock Object Name .
lock_object_type - Lock object type waited on
monitor element

lock_release_flags - Lock release flags m0n1tor
element - .
lock_status - Lock status monltor element
lock_timeout_val - Lock timeout value monitor
element . -
lock_timeouts - Number of lock tlmeouts mon1tor
element ..

lock_wait_end_time - Lock wa1t end trmestamp
monitor element .

lock_wait_start_time - Lock wa1t start tlmestamp
monitor element .. .
lock_wait_time - Time warted on locks m0n1tor
element . -
lock_wait_time top Lock Wa1t tlme top monltor
element . .
lock_waits - Lock wa1ts monltor element .
locks_held - Locks held monitor element .
locks_held_top - Maximum number of locks held
monitor element

locks_in_list - Number of Locks Reported

Contents

. 665
. 666
. 666
. 666

. 667

667

. 667

667

. 668

. 668

. 669
669

. 670
. 670

. 670

671
671

. 672

. 673

674

. 675

. 677

. 678
. 678

. 679
. 680
. 681
. 681
. 682

. 684
. 685

. 686
. 686
. 688
. 688
. 689
. 690
. 691
. 692

. 693
. 694

ix

locks_waiting - Current agents waiting on locks
monitor element .
log_buffer_wait_time - Log buffer wa1t t1me
monitor element . .
log_disk_wait_time - Log disk walt t1me monltor
element .

log_disk_waits_total - Total log drsk walts monltor
element

log_held_ by_dlrty pages Amount of Log Space
Accounted for by Dirty Pages .

log_read_time - Log Read Time .

log_reads - Number of Log Pages Read
log_to_redo_for_recovery - Amount of Log to be
Redone for Recovery . .
log_write_time - Log Write Trme .

log_writes - Number of Log Pages Wr1tten
long_object_pages - Long Object Pages .
long_tbsp_id - Long table space ID monitor
element .

max_agent_t overﬂows - Maxrmum Agent
Overflows .

max_data_received_ 1024 Number of Statements
with Outbound Bytes Received Between 513 and
1024 Bytes

max_data_received_ 128 Number of Statements
with Outbound Bytes Received Between 1 and 128
Bytes .

max_data_ recelved 16384 Number of Statements
with Outbound Bytes Received Between 8193 and
16384 Bytes .

max_data_received 2048 Number of Statements
with Outbound Bytes Received Between 1025 and
2048 Bytes

max_data_received 256 Number of Statements
with Outbound Bytes Received Between 129 and
256 Bytes.

max_data recelved 31999 Number of Statements
with Outbound Bytes Received Between 16385 and
31999 Bytes monitor element . .o
max_data_received_4096 - Number of Statements
with Outbound Bytes Received Between 2049 and
4096 Bytes

max_data_received 512 Number of Statements
with Outbound Bytes Received Between 257 and
512 Bytes.

max_data recelved 64000 Number of Statements
with Outbound Bytes Received Between 32000 and
64000 Bytes monitor element . .
max_data_received_8192 - Number of Statements
with Outbound Bytes Received Between 4097 and
8192 Bytes .
max_data_received gt64000 Number of
Statements with Outbound Bytes Received Greater
than 64000 Bytes

max_data_sent_1024 - Number of Statements w1th

Outbound Bytes Sent Between 513 and 1024 Bytes .

max_data_sent_128 - Number of Statements with
Outbound Bytes Sent Between 1 and 128 Bytes .
max_data_sent_16384 - Number of Statements with
Outbound Bytes Sent Between 8193 and 16384
Bytes .

X Database Monitoring Guide and Reference

. 694
. 694
. 695
. 696
. 697
. 698
. 698
. 699
. 699
. 700
. 700
. 701

. 701

. 701

. 702

. 702

. 703

. 703

. 704

. 704

. 704

. 705

. 705

. 706

706

. 706

. 707

max_data_sent_2048 - Number of Statements with
Outbound Bytes Sent Between 1025 and 2048 Bytes
max_data_sent_256 - Number of Statements with
Outbound Bytes Sent Between 129 and 256 Bytes
max_data_sent_31999 - Number of Statements with
Outbound Bytes Sent Between 16385 and 31999
Bytes .

max_data_sent_. 4096 Number of Statements w1th
Outbound Bytes Sent Between 2049 and 4096 Bytes
max_data_sent_512 - Number of Statements with
Outbound Bytes Sent Between 257 and 512 Bytes
max_data_sent_64000 - Number of Statements with
Outbound Bytes Sent Between 32000 and 64000
Bytes .

max_data_sent_ 8192 Number of Statements w1th
Outbound Bytes Sent Between 4097 and 8192 Bytes
max_data_sent_gt64000 - Number of Statements
with Outbound Bytes Sent Greater than 64000
Bytes . .o
max_network_ t1me 100 _ms - Number of
Statements with Network Time between 16 and 100
max_network_time_16_ms - Number of Statements
with Network Time between 4 and 16 ms .
max_network_time_1_ms - Number of Statements
with Network Time of up to 1 ms
max_network_time_4_ms - Number of Statements
with Network Time between 1 and 4 ms
max_network_time_500_ms - Number of
Statements with Network Time between 100 and
500 ms

max_network_ t1me gt500 ms - Number of
Statements with Network Time greater than 500 ms
member - Database member monitor element
message - Control Table Message. .
message_time - Timestamp Control Table Message
nesting_level - Nesting level monitor element
network_time_bottom - Minimum Network Time
for Statement .

network_time_top - Max1mum Network Trme for
Statement

nleaf - Number of leaf pages m0n1t0r element
nlevels - Number of index levels monitor element
node_number - Node Number
nonboundary_leaf_node_splits - Non-boundary leaf
node splits monitor element . .
num_agents - Number of Agents Workmg on a
Statement .

num_assoc_agents - Number of Assoc1ated Agents
num_compilations - Statement Compilations .
num_coord_exec - Number of executions by
coordinator agent monitor element .
num_coord_exec_with_metrics - Number of
executions by coordinator agent with metrics
monitor element .. .
num_db_storage_paths - Number of automatlc
storage paths . .
num_exec_with_metrics - Number of executlons
with metrics collected monitor element.
num_executions - Statement executions monitor
element

707

. 708

. 708

709

. 709

. 709

710

. 710

.71

. 711

. 712

. 712

. 712

713

. 713
. 715

715

. 715

. 716

. 716
. 717

717
. 717

. 718

. 718
718

. 719

. 719

. 720

. 720

. 720

. 721

num_extents_left - Number of extents left to
process monitor element. .
num_extents_moved - Number of extents moved
monitor element - .
num_gw_conn_ switches - Connectlon Swrtches .
num_indoubt_trans - Number of Indoubt
Transactions .

num_log_buffer_full - Number of full log buffers
monitor element ..
num_log_data_found_in buffer - Number of Log
Data Found In Buffer. .
num_log_part_page_io - Number of Part1al Log
Page Writes .

num_log_read_io - Number of Log Reads
num_log_write_io - Number of Log Writes
num_lw_thresh_exceeded - Number of lock wait
thresholds exceeded monitor element

num_nodes_in_db2_instance - Number of Nodes in

Partition .

num_remaps - Number of remaps mon1tor element

num_threshold_violations - Number of threshold
violations monitor element . . .
num_transmissions - Number of Transm1ss1ons .
num_transmissions_group - Number of
Transmissions Group .

number_in_bin - Number in b1n mon1tor element
olap_func_overflows - OLAP Function Overflows
monitor element .
open_cursors - Number of Open Cursors .
open_loc_curs - Open Local Cursors.
open_loc_curs_blk - Open Local Cursors w1th
Blocking .

open_rem_curs - Open Remote Cursors .
open_rem_curs_blk - Open Remote Cursors with
Blocking . .

outbound_appl_ 1d Outbound Apphcatron ID
outbound_bytes_received - Outbound Number of
Bytes Received . . .o
outbound_bytes_received bottom M1n1rnum
Outbound Number of Bytes Received .
outbound_bytes_received_top - Maximum
Outbound Number of Bytes Received .

outbound_bytes_sent - Outbound Number of Bytes

Sent .
outbound bytes sent bottom M1n1mum
Outbound Number of Bytes Sent .
outbound_bytes_sent_top - Maximum Outbound
Number of Bytes Sent
outbound_comm_address - Outbound
Communication Address .
outbound_comm_protocol - Outbound
Communication Protocol
outbound_sequence_no - Outbound Sequence
Number .

overflow_accesses - Accesses to overflowed records

monitor element .
overflow_creates - Overflow creates monrtor
element -

package_id - Package 1dent1f1er monrtor element
package_elapsed_time - Package elapsed time
monitor element

. 722

. 722
. 722

. 722

. 723

. 724

. 724

. 725
. 725

. 725

. 726
727

. 727
. 728

. 728

729

. 729
. 729
. 730

. 730
. 731

. 731
. 732

. 732

. 733

. 733

. 734

. 734

. 734

. 735

. 735

. 735

. 735

. 736

736

. 737

package_list_count - Package list count monitor
element .

package_list_ exceeded Package l1st exceeded
monitor element .
package_name - Package name monltor element
package_schema - Package schema monitor
element .

package_version_. 1d Package version rnon1tor
element .o .
page_allocations - Page allocat1ons monrtor
element .
page_reorgs - Page reorganrzatrons monrtor
element .o

pages_from_block_ios - Total number of pages read
by block I/O monitor element. .
pages_from_vectored_ios - Total number of pages
read by vectored I/O monitor element .
pages_merged - Pages merged monitor element
pages_read - Number of pages read monitor
element .

pages_written - Number of pages wrrtten momtor
element .

parent_activity_ 1d Parent act1v1ty ID m0n1tor
element .

parent_uow_id - Parent unrt of work ID momtor
element . .
partial_record - Part1al Record mon1tor element
participant_no - Participant within Deadlock .
participant_no_holding_lk - Participant Holding a
Lock on the Object Required by Application .
partition_number - Partition Number
passthru_time - Pass-Through Time .

passthrus - Pass-Through

piped_sorts_accepted - Piped Sorts Accepted
piped_sorts_requested - Piped Sorts Requested .
pkg_cache_inserts - Package cache inserts monitor
element

pkg_cache_ lookups - Package cache lookups
monitor element .o .
pkg_cache_num_overflows - Package Cache
Overflows .

pkg_cache_size_top - Package cache h1gh
watermark . .
pool_async_data read reqs Buffer pool
asynchronous read requests monitor element .
pool_async_data_reads - Buffer pool asynchronous
data reads monitor element. .
pool_async_data_writes - Buffer pool asynchronous
data writes monitor element .
pool_async_index_read_reqs - Buffer pool

asynchronous index read requests monitor element.

pool_async_index_reads - Buffer pool
asynchronous index reads monitor element
pool_async_index_writes - Buffer pool
asynchronous index writes monitor element .
pool_async_read_time - Buffer Pool Asynchronous
Read Time

pool_async_write_ t1rne Buffer pool asynchronous
write time monitor element. .
pool_async_xda_read_reqs - Buffer pool

asynchronous XDA read requests monitor element .

Contents

. 737

. 737

737

. 738

. 738

. 739

. 739

. 740

. 741

741

. 742

. 742

. 742

. 743

743

. 744
. 744
. 745
. 745
. 745
. 746
. 746
. 747
. 748
. 750
. 750

. 751

. 752

. 753

753

. 754

. 755

. 756

. 757

757

xi

pool_async_xda_reads - Buffer pool asynchronous
XDA data reads monitor element.
pool_async_xda_writes - Buffer pool asynchronous
XDA data writes monitor element

pool_config_size - Configured Size of Memory Pool
. 760

pool_cur_size - Current Size of Memory Pool.
pool_data_I_reads - Buffer pool data logical reads
monitor element

pool_data_p_reads - Buffer pool data physrcal
reads monitor element .
pool_data_writes - Buffer pool data wrltes monrtor
element

pool_drty_ pg_steal Clns - Buffer pool V1ct1m page
cleaners triggered monitor element . .
pool_drty_pg_thrsh_clns - Buffer pool threshold
cleaners triggered monitor element . .
pool_id - Memory Pool Identifier. .
pool_index_I_reads - Buffer pool index logrcal
reads monitor element

pool_index_p_reads - Buffer pool 1ndex phys1cal
reads monitor element . .
pool_index_writes - Buffer pool 1ndex wrrtes
monitor element . .
pool_lsn_gap_clns - Buffer pool log space cleaners
triggered monitor element . .
pool_no_victim_buffer - Buffer pool no V1ct1m
buffers monitor element .

pool_read_time - Total buffer pool phys1cal read
time monitor element. .
pool_secondary_id - Memory Pool Secondary
Identifier .

pool_temp_data_l reads - Buffer pool temporary
data logical reads monitor element . .
pool_temp_data_p_reads - Buffer pool temporary
data physical reads monitor element
pool_temp_index_l_reads - Buffer pool temporary
index logical reads monitor element . .
pool_temp_index_p_reads - Buffer pool temporary
index physical reads monitor element .
pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads monitor element
pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads monitor element.
pool_watermark - Memory Pool Watermark .
pool_write_time - Total buffer pool physical write
time monitor element.

pool_xda_I_reads - Buffer pool XDA data loglcal
reads monitor element

pool_xda_p_reads - Buffer pool XDA data physrcal
reads monitor element .
pool_xda_writes - Buffer pool XDA data wr1tes
monitor element

post_shrthreshold_hash]oms - Post threshold hash

joins
post_. shrthreshold sorts - Post shared threshold
sorts monitor element

post_threshold_hash_joins - Hash]om Threshold
post_threshold_olap_funcs - OLAP Function
Threshold monitor element.

post_threshold_sorts - Post threshold sorts monrtor

element

xil Database Monitoring Guide and Reference

. 758

. 759
760

. 761

. 763

. 764

. 767

. 768
. 769

. 770

. 772

. 773

. 776

. 777

. 778

. 779

. 780

. 782

. 784

. 786

. 787

. 789
. 791

. 792

. 793

. 795

. 797

. 799

. 800

801

. 801

. 802

prefetch_wait_time - Time waited for prefetch
monitor element

prep_time - Preparation t1me mon1tor element
prep_time_best - Statement best preparation time
monitor element .o
prep_time_worst - Statement worst preparatron
time monitor element. .
prev_uow_stop_time - Previous Un1t of Work
Completion Timestamp . .
priv_workspace_num_ overflows Prrvate
Workspace Overflows

priv_workspace_section_ mserts - Pr1vate
Workspace Section Inserts .
priv_workspace_section_lookups - Prrvate
Workspace Section Lookups .
priv_workspace_size_top - Maximum Pr1vate
Workspace Size. .

product_name - Product Name .
progress_completed_units - Completed Progress
Work Units . .

progress_description - Progress Descrrptron

progress_list_attr - Current Progress List Attributes

progress_list_cur_seq_num - Current Progress List
Sequence Number . .

progress_seq_num - Progress Sequence Number
progress_start_time - Progress Start Time .
progress_total_units - Total Progress Work Units
progress_work_metric - Progress Work Metric
pseudo_deletes - Pseudo deletes monitor element
pseudo_empty_pages - Pseudo empty pages
monitor element

qp_query_id - Query patroller query ID monrtor
element .
query_card_ estlmate Query Number of Rows
Estimate .

query_cost_ estrmate Query cost estlmate monrtor
element

queue_ ass1gnments total - Queue ass1gnments total
. 814

monitor element

queue_size_top - Queue size top momtor element
queue_time_total - Queue time total monitor
element .

quiescer_agent_id - Qu1escer Agent Ident1f1cat10n
quiescer_auth_id - Quiescer User Authorization
Identification .
quiescer_obj_id - Qu1escer Ob]ect Ident1f1cat10n .
quiescer_state - Quiescer State.

quiescer_ts_id - Quiescer Table Space Identrfrcatron

range_adjustment - Range Adjustment .
range_container_id - Range Container .
range_end_stripe - End Stripe . .
range_max_extent - Maximum Extent in Range .
range_max_page_number - Maximum Page in
Range .

range_num_ contamers Number of Contamers in
Range . .
range_number - Range Number .

range_offset - Range Offset .

range_start_stripe - Start Stripe .
range_stripe_set_number - Stripe Set Number

. 804
. 804

. 805

. 805

. 805

. 806

. 806

. 807

. 808
. 808

. 809
. 809

809

. 810

810

. 810

811

. 811

811

. 812

. 812

. 812

. 813

814

. 814

815

. 815
. 815
. 815

816

. 816
. 816
. 817
. 817

. 817

. 817
. 817
. 818
. 818
. 818

reclaimable_space_enabled - Reclaimable space
enabled indicator monitor element .
rej_curs_blk - Rejected Block Cursor Requests
rem_cons_in - Remote Connections To Database
Manager . .

rem_cons_in_exec - Remote Connectrons Executmg
in the Database Manager .
remote_lock_time - Remote Lock Tlme .
remote_locks - Remote Locks .

remote_member - Remote member monrtor
element .

reorg_completion - Reorgan1zat1on Complet1on
Flag . S
reorg_current_ counter Reorganrze Progress
reorg_end - Table Reorganize End Time
reorg_index_id - Index Used to Reorganize the
Table . . .
reorg_long_tbspc_ 1d Table Space Where Long
Objects are Reorganized monitor element .
reorg_max_counter - Total Amount of
Reorganization .

reorg_max_phase - Max1mum Reorganrze Phase
reorg_phase - Table reorganization phase monitor
element .

reorg_phase_start - Reorganrze Phase Start T1me
reorg_rows_compressed - Rows Compressed .
reorg_rows_rejected_for_compression - Rows
Rejected for Compression .
reorg_start - Table Reorganize Start Trme .
reorg_status - Table Reorganize Status .
reorg_tbspc_id - Table Space Where Table or Data
partition is Reorganized . .
reorg_type - Table Reorganize Attrrbutes
reorg_xml_regions_compressed — XML regions
compressed monitor element . .
reorg_xml_regions_rejected_for_compression —
XML regions rejected for compression monitor
element . .
req_agent_tid - Thread 1dent1f1er for agent wa1t1ng
to acquire lock monitor element .
req_application_handle - Identifier for applrcatlon
waiting to acquire lock monitor element
req_executable_id - Identifier for statement section
waiting to acquire lock monitor element
req_member - Member of application waiting to
acquire lock monitor element . .o
request_exec_time_avg - Request executlon time
average monitor element

rf_log_num - Log Being Rolled Forward

rf_status - Log Phase . .

rf_timestamp - Rollforward Tlmestamp

rf_type - Rollforward Type .

rollback_sql_stmts - Rollback Statements
Attempted .

rolled_back_agent_ 1d Rolled Back Agent
rolled_back_appl_id - Rolled Back Application
rolled_back_participant_no - Rolled back
application participant monitor element
rolled_back_sequence_no - Rolled Back Sequence
Number .

. 818
. 818

. 819
. 819
. 820
. 820
. 821
. 821
. 821
. 822
. 822
. 822

. 822

823

. 823

824

. 824
. 824
. 824
. 825

. 825
. 825

. 826

. 826
. 827
. 827
. 827
. 827
. 828
. 828
. 828
. 829
. 829
. 829
. 830
. 831
. 831

. 831

root_node_splits - Root node splits monitor
element .

routine_id - Routme ID mon1tor element
rows_deleted - Rows deleted monitor element
rows_fetched - Rows fetched monitor element
rows_inserted - Rows inserted monitor element
rows_modified - Rows modified monitor element
rows_read - Rows read monitor element .
rows_returned - Rows returned monitor element
rows_returned_top - Actual rows returned top
monitor element

rows_selected - Rows Selected -
rows_updated - Rows updated monitor element
rows_written - Rows Written .
rgsts_completed_total - Total requests completed
monitor element ..

sc_work_action_set_id - Seerce class work actlon
set ID monitor element . .
sc_work_class_id - Service class work class ID
monitor element ..

sec_log_used_top - Maximum Secondary Log
Space Used .

sec_logs_allocated - Secondary Logs Allocated
Currently. .
section_actuals - Section actuals monitor element
section_env - Section environment monitor element
section_number - Section number monitor element
section_type - Section type indicator monitor
element .

select_sql_stmts - Select SQL Statements Executed
select_time - Query Response Time .
sequence_no - Sequence number monitor element
sequence_no_holding_lk - Sequence Number
Holding Lock .

server_db2_type - Database Manager Type at
Monitored (Server) Node .
server_instance_name - Server Instance Name
server_platform - Server Operating System
server_prdid - Server Product/Version ID .
server_version - Server Version

service_class_id - Service class ID monrtor element
service_level - Service Level . .
service_subclass_name - Service subclass name
monitor element ..
service_superclass_name - Servrce superclass name
monitor element .

session_auth_id - Session authorlzatlon ID momtor
element ..

shr_workspace_num_ overflows Shared
Workspace Overflows

shr_workspace_section_ mserts - Shared Workspace
Section Inserts . .
shr_workspace_section lookups - Shared
Workspace Section Lookups . .
shr_workspace_size_top - Maximum Shared
Workspace Size. .
smallest_log_avail_node - Node w1th Least
Available Log Space . .

sort_heap_allocated - Total Sort Heap Allocated
sort_heap_top - Sort private heap high watermark
sort_overflows - Sort overflows monitor element

Contents

. 832
. 832
. 832
. 833

833
834

. 835

837

. 838
. 839

840

. 840

. 841

. 842

. 842

. 843

. 843

844
844
845

. 846

846

. 847

847

. 848

. 848
. 849
. 849
. 850
. 850

851

. 852

. 852

. 853

. 853

. 854

. 855

. 855

. 856

. 857

857
858
858

xiii

sort_shrheap_allocated - Sort Share Heap Currently
Allocated .
sort_shrheap_top - Sort share heap h1gh watermark
source_service_class_id - Source service class ID
monitor element .o
sp_rows_selected - Rows Returned by Stored
Procedures
sql_chains - Number of SQL Cha1ns Attempted
sql_req_id - Request Identifier for SQL Statement
sql_reqgs_since_commit - SQL Requests Since Last
Commit .
sql_stmts - Number of SQL Statements Attempted
sqlca - SQL Communications Area (SQLCA) .
sqlrowsread_threshold_id - SQL rows read
threshold ID monitor element . .
sqlrowsread_threshold_value - SQL rows read
threshold value monitor element . .
sqlrowsread_threshold_violated - SQL rows read
threshold violated monitor element . .
sqlrowsreadinsc_threshold_id - SQL rows read in
service class threshold ID monitor element
sqlrowsreadinsc_threshold_value - SQL rows read
in service class threshold value monitor element
sqlrowsreadinsc_threshold_violated - SQL rows
read in service class threshold violated monitor
element
sqlrowsreturned threshold 1d SQL rows read
returned threshold ID monitor element.
sqlrowsreturned_threshold_value - SQL rows read
returned threshold value monitor element.
sqlrowsreturned_threshold_violated - SQL rows
read returned threshold violated monitor element
sqltempspace_threshold_id - SQL temporary space
threshold ID monitor element . .
sqltempspace_threshold_value - SQL temporary
space threshold value monitor element .
sqltempspace_threshold_violated - SQL temporary
space threshold violated monitor element .
ss_exec_time - Subsection Execution Elapsed Time
ss_node_number - Subsection Node Number .
ss_number - Subsection number monitor element
ss_status - Subsection Status .
ss_sys_cpu_time - System CPU Time used by
Subsection .
ss_usr_cpu_time - User CPU T1me used by
Subsection
start_time - Event Start T1me
static_sql_stmts - Static SQL Statements Attempted
statistics_timestamp - Statistics timestamp monitor
element .o
stats_cache_size — Slze of statlstlcs cache monltor
element
stats_fabricate_ t1me - Total t1me spent on statlst1cs
fabrication activities monitor element
stats_fabrications — Total number of statistics
fabrications monitor elements . .
status_change_time - Application Status Change
Time
stmt_elapsed_ tlme Most Recent Statement
Elapsed Time

Xiv Database Monitoring Guide and Reference

. 860
860

. 860

. 861
. 861

862

. 862

862

. 863

. 863

. 864

. 864

. 864

. 865

. 865

. 865

. 866

. 866

. 866

. 867

. 867

867

. 868

868

. 868

. 869

. 869
. 870

870

. 870

. 871

. 871

. 872

. 873

. 873

stmt_exec_time - Statement execution time monitor
element . .
stmt_first_use_ t1me Statement f1rst use t1mestamp
monitor element
stmt_history_id - Statement h1story 1dent1f1er
inact_stmthist_sz - Statement history list size .
stmt_invocation_id - Statement invocation
identifier monitor element .
stmt_isolation - Statement isolation . .
stmt_last_use_time - Statement last use t1mestamp
monitor element .
stmt_lock_timeout - Statement lock tlmeout
monitor element ..
stmt_nest_level - Statement nestmg level mon1tor
element .
stmt_node number - Statement Node
stmt_operation/operation - Statement operation
monitor element
stmt_pkgcache_id - Statement package cache
identifier monitor element . R
stmt_query_id - Statement query 1dent1f1er momtor
element .
stmt_sorts - Statement Sorts .
stmt_source_id - Statement source 1dent1f1er .
stmt_start - Statement Operation Start Timestamp
stmt_stop - Statement Operation Stop Timestamp
stmt_sys_cpu_time - System CPU Time used by
Statement .
stmt_text - SQL statement text monltor element
stmt_type - Statement type monitor element .
stmt_type_id - Statement type identifier monitor
element
stmt_usr_cpu_ t1me User CPU T1me used by
Statement . .
stmt_value_data - Value data .
stmt_value_index - Value index .
stmt_value_isnull - Value has null value monltor
element .
stmt_value 1sreopt Var1ab1e used for statement
reopt1mlzat10n monitor element . .
stmt_value_type - Value type monitor element
sto_path_free_sz - Automatic storage path free
space monitor element
stop_time - Event Stop Time
stored_proc_time - Stored Procedure T1me
stored_procs - Stored Procedures . .
sync_runstats — Total number of synchronous
RUNSTATS activities monitor element .
sync_runstats_time — Total time spent on
synchronous RUNSTATS activities monitor element
system_auth_id - System authorization identifier
monitor element
system_cpu_time - System CPU T1me
tab_file_id - Table file ID monitor element.
tab_type - Table type monitor element .
table_file_id - Table file ID monitor element .
table_name - Table name monitor element.
table_scans - Table scans monitor element .
table_schema - Table schema name monitor
element
table_type - Table type mon1tor element

. 873
. 874
. 874
. 875

. 875
. 876

. 876

. 877

. 877
. 878

. 878
. 879
. 880

. 880
. 881

882
882

. 882

883

. 884
. 885
. 886
. 886
. 887
. 887

. 888
. 888

. 889
. 889
. 889
. 890

. 890

891

. 891
. 892
. 892
. 892
. 893
. 893
. 894

. 895
. 896

tablespace_auto_resize_enabled - Table space
automatic resizing enabled monitor element .
tablespace_content_type - Table space content type
monitor element .o .
tablespace_cur_pool_id - Buffer pool currently
being used monitor element .
tablespace_current_size - Current table space size
tablespace_extent_size - Table space extent size
monitor element .
tablespace_free_pages - Free pages in table space
monitor element .
tablespace_id - Table space 1dent1f1cat1on m0n1tor
element S .
tablespace_increase_size - Increase size in bytes
tablespace_increase_size_percent - Increase size by
percent monitor element.
tablespace_initial_size - Initial table space size
tablespace_last_resrze_farled Last resize attempt
failed .
tablespace_last_resize t1me T1me of last successful
resize . . .
tablespace_max_size - Max1mum table space size
tablespace_min_recovery_time - Minimum recovery
time for rollforward monitor element
tablespace_name - Table space name monitor
element
tablespace_next pool 1d Buffer pool that w1ll be
used at next startup monitor element
tablespace_num_containers - Number of
Containers in Table Space
tablespace_num_quiescers - Number of Qu1escers
tablespace_num_ranges - Number of Ranges in the
Table Space Map .
tablespace_page_size - Table space page size
monitor element
tablespace_page_top - Table space hlgh watermark
monitor element .
tablespace_paths_ dropped Table space us1ng
dropped path monitor element
tablespace_pending_free_pages - Pendmg free
pages in table space monitor element .
tablespace_prefetch_size - Table space prefetch size
monitor element .
tablespace_rebalancer_extents processed Number
of Extents the Rebalancer has Processed
tablespace_rebalancer_extents_remaining - Total
Number of Extents to be Processed by the
Rebalancer
tablespace_ rebalancer last extent moved Last
Extent Moved by the Rebalancer . .
tablespace_rebalancer_mode - Rebalancer mode
monitor element .
tablespace_ rebalancer_pr10r1ty Current Rebalancer
Priority .
tablespace_ rebalancer restart t1me Rebalancer
Restart Time.
tablespace_ rebalancer start t1me Rebalancer Start
Time
tablespace_ state Table space state monrtor
element

. 897

. 897

. 898

898

. 898

. 899

. 899

900

. 900
. 901

. 901

. 901

901

. 902

. 902

. 903

. 904

904

. 904

. 904

. 905

. 905

. 906

. 906

. 906

. 907

. 907

. 908

. 909

. 909

. 909

. 910

tablespace_state change_object_id - State Change
Object Identification .
tablespace_state_change_ts_id - State Change Table
Space Identification .
tablespace_total_pages - Total pages in table space
monitor element .

tablespace_type - Table space type mon1tor element
tablespace_usable_pages - Usable pages in table
space monitor element

tablespace_used_pages - Used pages in table space
monitor element . .
tablespace_using_auto storage Table space
enabled for automatic storage monitor element .
tbsp_max_page_top - Maximum table space page
high watermark monitor element.
tepip_recv_volume - TCP/IP received Volume
monitor element .o
tepip_recv_wait_time - TCP/ IP recerved wa1t t1me
monitor element .

tepip_recvs_total - TCP/ IP receives total monltor
element .o

tcpip_send_volume - TCP / IP send volume mon1tor
element .
tepip_send wa1t t1me TCP/ IP send wa1t t1me
monitor element . .
tcpip_sends_total - TCP / P sends total mon1tor
element

temp_ tablespace top Temporary table space top
monitor element . .
territory_code - Database Terrltory Code
thresh_violations - Number of threshold violations
monitor element

threshold_action - Threshold actron mon1tor
element . .
threshold domam Threshold domaln momtor
element .o

threshold_maxvalue - Threshold maximum Value
monitor element .

threshold_name - Threshold name mon1tor element
threshold_predicate - Threshold predlcate monitor
element .

threshold_queue51ze Threshold queue size
monitor element .
thresholdid - Threshold ID monrtor element .
time_completed - Time completed monitor element
time_created - Time created monitor element .
time_of_violation - Time of violation monitor
element

time_stamp - Snapshot T1me .
time_started - Time started monitor element
time_zone_disp - Time Zone Displacement

top - Histogram bin top monitor element .
tot_log_used_top - Maximum Total Log Space
Used .

total_act_time - Total act1V1ty t1me monltor element
total_act_wait_time - Total activity wait time
monitor element .

total_app_commits - Total appl1cat1on comm1ts
monitor elements .

total_app_rollbacks - Total apphcat1on rollbacks
monitor element o

Contents

. 911

. 912

. 912
913

. 913

. 914

. 914

. 915

. 915

. 916

. 917

. 917

. 918

. 919

. 920
. 920

. 921

. 922

. 922

. 923
923

. 923

. 924
. 924

924

. 925

. 925
. 925
. 925
. 926
. 926

. 926
927

. 928

. 929

. 930

XV

total_app_rgst_time - Total application request time
monitor element .o
total_app_section_executions - Total application
section executions monitor element . .
total_buffers_rcvd - Total FCM buffers received
monitor element ..

total_buffers_sent - Total FCM buffers sent monitor
element - -
total _commit_proc_ time Total commits processmg
time monitor element. . .
total_commit_time - Total commit time monitor
element - .
total_compilations - Total compilations monitor
element . ..
total compile_proc time Total compile processmg
time monitor element. . .
total_compile_time - Total compile time monitor
element . .
total_cons - Connects Since Database Activation
total_cpu_time - Total CPU time monitor element
total_exec_time - Elapsed Statement Execution
Time

total_hash]oms Total Hash]oms
total_hash_loops - Total Hash Loops.
total_implicit_compilations - Total implicit
complications monitor element .
total_implicit_compile_proc_time - Total 1mplic1t
compile processmg time monitor element .
total_implicit_compile_time - Total implicit compile
time monitor element. . .
total_load_proc_time - Total load processmg time
monitor element ..

total_load_time - Total load time monitor element
total_loads - Total loads monitor element .
total_log_available - Total Log Available
total_log_used - Total Log Space Used .
total_move_time - Total extent move time monitor
element .
total_olap_funcs -
element ..
total_reorg_proc_ time Total reorganization
processing time monitor element .

total_reorg_time - Total reorganization time
monitor element .o

total_reorgs - Total reorganizations monitor
element -

total_rollback_proc_ time Total rollback processmg
time monitor element.

total_rollback_time - Total rollback time monitor
element -

total_routine_ invocations Total routine
invocations monitor elements . .
total_routine_non_sect_proc_time - Non—section
processing time monitor element . .
total_routine_non_sect_time - Non-section routine
execution time monitor elements .
total_routine_time - Total routine time monitor
element .

total_routine_user._ Code proc time Total routine
user code processing time monitor element

Total OLAP Functions monitor

XVl Database Monitoring Guide and Reference

. 931

. 931

. 932

. 933

. 933

. 934

. 935

. 936

. 937

938
938

. 939
. 939
. 940
. 941
. 941
. 942

. 943

944

. 945

. 946

. 946

. 947

. 947

. 947

. 948

. 949

. 950

. 951

. 951

. 952

. 953

. 954

. 955

total_routine_user_code_time - Total routine user
code time monitor element .

total_rqst_mapped_in - Total request mapped-in
monitor element

total_rqst_mapped_out - Total request mapped out
monitor element .

total_rqst_time - Total request time monitor
element .

total_runstats - Total runtime statistics monitor
element .

total runstats_proc time Total runtime statistics
processing time monitor element .
total_runstats_time - Total runtime statistics time
monitor element .

total_sec_cons - Secondary Connections
total_section_proc_time - Total section processmg
time monitor element. . .
total_section_sort_proc_time - Total section sort
processing time monitor element . .
total_section_sort_time - Total section sort time
monitor element .o .o
total_section_sorts - Total section sorts monitor
element .
total_section_time - Total section time monitor
element .o

total_sort_time - Total sort time monitor element
total_sorts - Total sorts monitor element
total_sys_cpu_time - Total system CPU time for a
statement monitor element . . .
total_usr_cpu_time - Total user CPU time for a
statement monitor element .

total_wait_time - Total wait time monitor element
tpmon_acc_str - TP monitor client accounting
string monitor element .
tpmon_client_app - TP monitor client application
name monitor element .o
tpmon_client_userid - TP monitor client user ID
monitor element .

tpmon_client_wkstn - TP monitor client
workstation name monitor element . .
tq_cur_send_spills - Current number of table queue
buffers overflowed monitor element. .
tq_id_waiting_on - Waited on node on a table
queue monitor element . .
tq_max_send_spills - Maximum number of table
queue buffers overflows.

tq_node_waited_for - Waited for node on a table

queue .

tq_rows_read - Number of Rows Read from table
queues

tq_rows written Number of Trows written to table
queues

tq_tot_send spills - Total number of table queue
buffers overflowed monitor element. .
tq_wait_for_any - Waiting for any node to send on
a table queue .

ts_name - Table space being rolled forward
monitor element

uid_sql_stmts - Update/ Insert/ Delete SQL
Statements Executed .

. 956

. 957

. 957

. 958

. 958

. 959

. 960
. 961

. 961

. 963

. 964

. 965

. 967

968

. 969

. 970

. 971

971

. 972

. 972

. 973

. 973

. 974

. 975

. 975

. 975

. 976

. 976

. 977

. 978

. 978

. 978

unread_prefetch_pages - Unread prefetch pages
monitor element . .
uow_comp_status - Unit of Work Complet1on
Status . .
uow_elapsed_ tlme Most Recent Un1t of Work
Elapsed Time

uow_id - Unit of work ID mon1tor element
uow_lock_wait_time - Total time unit of work
waited on locks monitor element . .
uow_log_space_used - Unit of work log space used
monitor element .

uow_start_time - Unit of work start t1mestamp
monitor element .

uow_status - Unit of Work Status .
uow_stop_time - Unit of work stop tlmestamp
monitor element .

uow_total_time_top - UOW total tlme top monltor
element

update_sql_ stmts - Updates .
update_time - Update Response T1me .
user_cpu_time - User CPU Time . .
utility_dbname - Database Operated on by Ut1hty
utility_description - Utility Description .

utility_id - Utility ID . .
utility_invoker_type - Utility Invoker Type
utility_priority - Utility Priority

utility_start_time - Utility Start Time

utility_state - Utility State

utility_type - Utility Type

valid - Section validity indicator mon1tor element
vectored_ios - Number of vectored 1/0 requests
monitor element .

version - Version of Monitor Data
wl_work_action_set_id - Workload work act1on set
identifier monitor element . .
wl_work_class_id - Workload work class 1dent1f1er
monitor element .
wlm_queue_assignments_ total Workload manager
total queue assignments monitor element .
wlm_queue_time_total - Workload manager total
queue time monitor element . .
wlo_completed_total - Workload occurrences
completed total monitor element . .
work_action_set_id - Work action set ID monltor
element

. 979

. 980

. 980
. 981

. 981

. 982

. 982
. 983

. 984

. 984
. 985
. 985
. 986

986

. 986
. 986
. 987
. 987
. 987
. 987
. 988

988

. 989
. 989

. 989

. 990

. 990

. 992

. 993

. 993

work_action_set_name - Work action set name

monitor element . . 993
work_class_id - Work class ID mon1tor element . 994
work_class_name - Work class name monitor

element .. . 994
workload_id - Workload lD monltor element . 994
workload_name - Workload name monitor element 995
workload_occurrence_id - Workload occurrence
identifier monitor element . .o .. 99
workload_occurrence_state - Workload occurrence

state monitor element . . 996
x_lock_escals - Exclusive lock escalatlons mon1tor
element . . 997
xda_object_ pages XDA Ob]ect Pages . . 998
xid - Transaction ID . . 998
xquery_stmts - XQuery Statements Attempted . 999
Part 3. Appendixes 1001
Appendix A. Overview of the DB2

technical information 1003
DB2 technical library in hardcopy or PDF format 1003
Ordering printed DB2 books . . . 1006
Displaying SQL state help from the command hne
processor . . 1007
Accessing different versions of the DB2

Information Center . . 1007
Displaying topics in your preferred language in

the DB2 Information Center . . 1007
Updating the DB2 Information Center 1nstalled on

your computer or intranet server . 1008
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1009
DB2 tutorials . . . 1011
DB2 troubleshooting 1nformat10n . 1011
Terms and Conditions . . 1012

Appendix B. Notices.1

Index1

Contents

013

017

xvii

Xxviil Database Monitoring Guide and Reference

About this book

The System Monitor Guide and Reference describes how to collect different kinds of
information about your database and the database manager.

It also explains how you can use the information you collected to understand
database activity, improve performance, and determine the cause of problems.

© Copyright IBM Corp. 1993, 2010 xix

XX Database Monitoring Guide and Reference

Part 1. Monitoring interfaces

© Copyright IBM Corp. 1993, 2010

2 Database Monitoring Guide and Reference

Chapter 1. Database monitoring

Database monitoring is a vital activity for the maintenance of the performance and
health of your database management system. To facilitate monitoring, DB2® collects
information from the database manager, its databases, and any connected
applications. With this information you can do the following, and more:

Forecast hardware requirements based on database usage patterns.
Analyze the performance of individual applications or SQL queries.
Track the usage of indexes and tables.

Pinpoint the cause of poor system performance.

Assess the impact of optimization activities (for instance, altering database
manager configuration parameters, adding indexes, or modifying SQL queries).

© Copyright IBM Corp. 1993, 2010 3

4 Database Monitoring Guide and Reference

Chapter 2. Monitor table functions overview

Starting with DB2 Version 9.7, you can access monitor data through a light-weight
alternative to the traditional system monitor. Use monitor table functions to collect
and view data for systems, activities, or data objects.

Data for monitored elements are continually accumulated in memory and available
for querying. You can choose to receive data for a single object (for example,
service class A or table TABLE1) or for all objects.

When using these table functions in a database partitioned environment, you can
choose to receive data for a single partition or for all partitions. If you choose to
receive data for all partitions, the table functions return one row for each partition.
Using SQL, you can sum the values across partitions to obtain the value of a
monitor element across partitions.

Monitoring system information using table functions

The system monitoring perspective encompasses the complete volume of work and
effort expended by the data server to process application requests. From this
perspective, you can determine what the data server is doing as a whole as well as
for particular subsets of application requests.

Monitor elements for this perspective, referred to as request monitor elements,
cover the entire range of data server operations associated with processing
requests.

Request monitor elements are continually accumulated and aggregated in memory
so they are immediately available for querying. Request monitor elements are
aggregated across requests at various levels of the workload management (WLM)
object hierarchy: by unit of work, by workload, by service class. They are also
aggregated by connection.

Use the following table functions for accessing current system monitoring
information:

* MON_GET_SERVICE_SUBCLASS and
MON_GET_SERVICE_SUBCLASS_DETAILS

* MON_GET_WORKLOAD and MON_GET_WORKLOAD_DETAILS
* MON_GET_CONNECTION and MON_GET_CONNECTION_DETAILS
* MON_GET_UNIT_OF_WORK and MON_GET_UNIT_OF_WORK_DETAILS

This set of table functions enables you to drill down or focus on request monitor
elements at a particular level of aggregation. Table functions are provided in pairs:
one for relational access to commonly used data and the other for XML access to
the complete set of available monitor elements.

The system monitoring information is collected by these table functions by default
for a new database. You can change default settings using one or both of the
following settings:

* The database configuration parameter mon_req_metrics specifies the minimum
level of collection in all service classes.

© Copyright IBM Corp. 1993, 2010 5

* The COLLECT REQUEST METRICS clause of the CREATE/ALTER SERVICE
CLASS statement specifies the level of collection for a service superclass. Use
this setting to increase the level of collection for a given service class over the
minimum level of collection set for all service classes.

The possible values for each setting are the following:
None No request monitor elements are collected
Base All request monitor elements are collected

For example, to collect system monitoring information for only a subset of service
classes, do the following;:

1. Set the database configuration parameter mon_req_metrics to NONE.

2. For each desired service class, set the COLLECT REQUEST METRICS clause of
the CREATE/ALTER SERVICE CLASS statement to BASE.

Monitoring activities using table functions

The activity monitoring perspective focuses on the subset of data server processing
related to executing activities. In the context of SQL statements, the term activity
refers to the execution of the section for a SQL statement.

Monitor elements for this perspective, referred to as activity monitor elements, are
a subset of the request monitor elements. Activity monitor elements measure
aspects of work done for statement section execution. Activity monitoring includes
other information such as SQL statement text for the activity.

For activities in progress, activity metrics are accumulated in memory. For activities
that are SQL statements, activity metrics are also accumulated in the package
cache. In the package cache activity metrics are aggregated over all executions of
each SQL statement section.

Use the following table functions to access current data for activities:

MON_GET_ACTIVITY_DETAILS
Returns data about the individual activities in progress when the table
function is called. Data is returned in XML format.

MON_GET_PKG_CACHE_STMT
Returns data for individual SQL statement section aggregated over all
executions of the section. Data is returned in a relational form.

Activity monitoring information is collected by default for a new database. You can
change default settings using one or both of the following settings:

e The mon_act_metrics database configuration parameter specifies the minimum
level of collection in all workloads.

* The COLLECT ACTIVITY METRICS clause of the CREATE/ALTER
WORKLOAD statement specifies the level of collection for a given workload
over the minimum level of collection set for all workloads.

The possible values for each setting are the following:

None No activity monitor elements are collected

Base All activity monitor elements are collected

6 Database Monitoring Guide and Reference

For example, to collect activity monitor elements for only selected workloads, do
the following:

1. Set the mon_act_metrics database configuration parameter to NONE.
2. Set the COLLECT ACTIVITY METRICS clause of the CREATE/ALTER

WORKLOAD statement to BASE. By default, the values for other workloads is
NONE.

Monitoring data objects using table functions

The data object monitoring perspective provides information about operations
performed on data objects, that is tables, indexes, buffer pools, table spaces, and
containers.

A different set of monitor elements is available for each object type. Monitor
elements for a data object are incremented each time a request involves processing
that object. For example, when processing a request that involves reading rows
from a particular table, the metric for rows read is incremented for that table.

Use the following table functions to access current details for data objects:
* MON_GET_BUFFERPOOL

* MON_GET_TABLESPACE

¢ MON_GET_CONTAINER

* MON_GET_TABLE

* MON_GET_INDEX

These table functions return data in a relational form.
You cannot access historical data for data objects.

Data object monitor elements are collected by default for new databases. You can
use the mon_obj_metrics database configuration parameter to reduce the amount
of data collected by the table functions.

The possible values for this configuration parameter are the following;:
None No data object monitor elements are collected

Base All data object monitor elements are collected

Regardless of the what you set the mon_obj_metrics parameter to, data is always
collected for monitor elements reported by the following table functions:

* MON_GET_TABLE
« MON_GET_INDEX

To stop collecting data object monitor elements reported by the following table
functions, set the mon_obj_metrics configuration parameter to NONE.

* MON_GET_BUFFERPOOL
* MON_GET_TABLESPACE
* MON_GET_CONTAINER

Chapter 2. Monitor table functions 7

8 Database Monitoring Guide and Reference

Chapter 3. Interfaces that return monitor data in XML
documents

Starting in DB2 Version 9.7, some monitor data is reported as elements in XML
documents.

Using XML to report monitor information provides improved extensibility and

flexibility. New monitor elements can be added to the product without having to

add new columns to an output table. Also, XML documents can be processed in a

number of ways, depending on your needs. For example:

* You can use XQuery to run queries against the XML document.

* You can use the XSLTRANSFORM scalar function to transform the document
into other formats.

* You can view their contents as formatted text using built-in
MON_FORMAT_XML_* formatting functions, or the XMLTABLE table function.

XML documents containing monitor elements are produced by several monitoring
interfaces. The sections that follow describe how results are returned as XML
documents.

* [“Monitor table functions with names that end with _DETAILS’]

+ ["XML data returned by event monitors” on page 10,

Monitor table functions with names that end with “_ DETAILS”

Examples of these table functions include:

* MON_GET_PKG_CACHE_STMT_DETAILS
* MON_GET_WORKLOAD_DETAILS

* MON_GET_CONNECTION_DETAILS

* MON_GET_SERVICE_SUBCLASS_DETAILS
* MON_GET_ACTIVITY_DETAILS

* MON_GET_UNIT_OF_WORK_DETAILS

These table functions return monitor elements from the system and the activity
monitoring perspectives. Most of the monitor elements returned by these functions
are contained in an XML document. For example, the
MON_GET_CONNECTION_DETAILS table function returns the following
columns:

* APPLICATION_HANDLE
* MEMBER
* DETAILS

The DETAILS column of each row contains an XML document that contains
monitor element data. This XML document is composed of several document
elements that correspond to monitor elements. [Figure 1 on page 10| illustrates the
DETAILS column containing the XML documents. In addition, it show monitor
elements returned in the XML documents in the DETAILS column.

© Copyright IBM Corp. 1993, 2010 9

APPLICATION_HANDLE MEMBER DETAILS

Legend

Other content

H <?xml version="1.0" encoding="windows-1252" ?=
- «db2_connection xmins="http:/ fwww.ibm.com/xmlns/prod/db2/mon" release="907nnnn">
<application_handle»>52</application_handle>
<member=0</member=
- «<system_metrics release="9070100">

<wim_gueue_time_total=0</wim_gqueue_time_total=
<wlm_queue_assignments_total>0</wlm_queue_assignments_total>
<fcm_tq_recv_wait_time=0</fcm_tq_recv_wait_time=
<fcm_message_recv_wait_time>0</fcm_message_recv_wait_time=>
«fcm_tq_send_wait_time=0</fcm_tg_send_wait_time=>
<fcm_message_send_wait_time=0</fcm_message_send_wait_time=
<agent_wait_time>0</agent_wait_time=>

Figure 1. Table returned by MON_GET_CONNECTION_DETAILS, showing the DETAILS
column containing XML documents. The contents of the XML document in the third row ()
are shown following the table.

In the preceding example, the <agent_wait_time> XML document element
corresponds to agent_wait_time monitor element.

The schema for the XML document that is returned in the DETAILS column is
available in the file sq11ib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sq11ib/misc/DB2MonCommon.xsd.

Some of the monitor elements contained in the document in the DETAILS column
might be grouped into higher-level document elements. For example, monitor
elements that report on activity-related metrics are part of the activity_metrics
element. Similarly, system-level metrics are part of the system_metrics element.

XML data returned by event monitors
Several event monitors return data in XML format. They are summarized in |Table 1

Details about the XML documents returned by the various event
monitor are described in the sections that follow.

10 Database Monitoring Guide and Reference

Table 1. XML documents returned by various event monitors

Event monitor

Event monitor output
format

XML document returned

“Statistics event
imonitor”

Relational table
File
Named pipe

DETAILS_XML

|"Activity evena

[monitor” on pagel

I

Relational table
File
Named pipe

DETAILS_XML

|”Package cacha

[event monitor” on|

|Eage 13|

Unformatted event (UE)
table

METRICS

This document can be viewed only after
the UE table has been transformed to either
XML or relational tables.

[“Unit of work event|
[monitor” on page]

Unformatted event (UE)
table

METRICS

This document can be viewed only after
the UE table has been transformed to either
XML or relational tables.

Statistics event monitor

When you create a statistics event monitor to report on monitor elements in either
the event_scstats and event wlstats logical data groups (see [“event_scstats logicall

[data group” on page 463 |[“event_wlstats logical data group” on page 468), one of

the columns produced is DETAILS_XML. If the event monitor is written to a table,
DETAILS_XML is a column. If it is written to a file or named pipe, DETAILS_XML
is part of the self-describing data stream. The document contains the
system_metrics monitor element, which, in turn, contains a number of monitor
elements that report on metrics related to system. [Figure 2 on page 12| shows the
XML documents in the DETAILS_XML column of the table produced by the
statistics event monitor:

Chapter 3. Interfaces that return monitor data in XML documents

11

PARTITION_KEY | ACT_CPU_TIME_TOP | ACT_ROWS_READ_TOP | CONCURRENT_WLO_ACT_TOP | --- | DETAILS_XML | LAST_WLM_RESET

Legend

Other content

H <?xml version="1.0" encoding="windows-1252" ?>
- <activity_metrics release="907nnnn" xmins="http:/ fwww.ibm.com/xmins/prod/db2/mon">

<wlm_gqueue_time_total=0</wim_queue_time_total>
<wlm_gueue_assignments_total=0</wlm_gueue_assignments_total>
<fcm_tq_recv_wait_time=0</fcm_tg_recv_wait_time=>
<fcm_message_recv_wait_time=0</fcm_message_recv_wait_time>
<fcm_tq_send_wait_time>0</fcm_tq_send_wait_time=>
<fcm_message_send_wait_time>=0</fcm_message_send_wait_time=>
<lock_wait_time=0</lock_wait_time>
<lock_waits=0</lock_waits>
<direct_read_time=0</direct_read_time=

Figure 2. Output of statistics event monitor (when written to a table), showing the
DETAILS_XML column. The contents of the XML document in the third row ([l) are shown
following the table.

See [“Information written to XML for system_metrics and activity_metrics monitor|
felements” on page 12§[for the schema for the XML output from a statistics event
monitor.

Note: system_metrics as reported in the XML document in the DETAILS_XML
column produced by the statistics event monitor is also a part of the XML
document contained in the DETAILS column returned by the
MON_GET_SERVICE_SUBCLASS_DETAILS and

MON_GET WORKLOAD_DETAILS table functions.

Activity event monitor

When you create an activity event monitor to report on monitor elements in the
event_activity logical data group (see [“event_activity logical data group” on page]
, one of the columns produced is DETAILS_XML. If the event monitor is
written to a table, DETAILS XML is a column. If it is written to a file or named
pipe, DETAILS_XML is part of the self-describing data stream. Either way, the
document contains the activity_metrics monitor element, which, in turn, contains a
number of monitor elements that report on metrics related to activities. See
“Information written to XML for system_metrics and activity_metrics monitor]
elements” on page 128 for the schema for the XML output from an activity event
monitor.

Note: activity_metrics as reported in the XML document in the DETAILS_XML
column produced by the activity event monitor is also a part of the XML document
contained in the DETAILS column returned by the
MON_GET_ACTIVITY_DETAILS table function.

12 Database Monitoring Guide and Reference

Package cache event monitor

The package cache event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table using the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
PKGCACHE_EVENT. This table contains a METRICS column. In each row, this
column contains an XML document with elements associated with package cache
event monitor elements.

Note: Starting in DB2 Version 9.7 Fix Pack 1, EVMON_FORMAT_UE_TO_TABLES
also creates a separate table for the metrics collected by this event monitor called
PKGCACHE_METRICS. This table contains the same information reported in the
METRICS column of the PKGCACHE_EVENT table. So, you can retrieve metrics
from the columns of the PKGCACHE_METRICS table, or you can use the use the
XML document contained in the METRICS column of the PKGCACHE_EVENT
table. See [“Information written to relational tables for a package cache event|
[monitor” on page 87| for details.

The EVMON_FORMAT_UE_TO_XML function also produces an XML document
with elements associated with package cache event monitor elements. For example,
the XML document element <num_executions> corresponds to the
num_executions monitor element. See [“Information written to XML for a package|
[cache event monitor” on page 80| for the schema for the XML output from a
package cache event monitor.

Unit of work event monitor

The unit of work event monitor writes its output to an unformatted event (UE)
table. If you convert the data in this table using the
EVMON_FORMAT_UE_TO_TABLES table function, one of the tables produced is
UOW_EVENT. This table contains a METRICS column, which contains an XML
document with elements associated with unit of work event monitor elements.

Note: Starting in DB2 Version 9.7 Fix Pack 1, EVMON_FORMAT_UE_TO_TABLES
also creates a separate table for the metrics collected by this event monitor called
UOW_METRICS. This table contains the same information reported in the
METRICS column of the UOW_EVENT table. So, you can retrieve metrics from the
columns of the UOW_METRICS table, or you can use the use the XML document
contained in the METRICS column of the UOW_EVENT table. See |”Inf0rmatio£|
[written to relational tables for a unit of work event monitor” on page 119 for
detalils.

The EVMON_FORMAT_UE_TO_XML function also produces an XML document
with elements associated with unit of work event monitor elements. For example,
the XML document element <workload_name> corresponds to the workload_name
monitor element. See |[“Information written to XML for a unit of work eventf
[monitor” on page 107 for the schema for the XML output from a unit of work
event monitor.

Interfaces for viewing XML monitor information as formatted text

You can view the data contained in the XML documents produced by monitor
interfaces in several ways, depending on how you want to view or use the data.
You can use XQuery to query and manipulate the XML documents returned by
monitoring interfaces. You can also use table functions to format the XML
documents for easier reading.

Chapter 3. Interfaces that return monitor data in XML documents 13

XQuery provides a powerful and flexible interface for querying and manipulating
XML data. However, there are times where you might want to view element data
in a text-based format. Depending on your needs, you can view monitor elements
contained in an XML document in column- or row-oriented format. The former is
useful if you know which monitor elements you want to see. The latter is useful if
you do not know ahead of time which monitor elements you want to examine,
such as when you want to see the top five types of wait times. The sections that
follow describe two ways that you can view monitor data contained in XML
documents as formatted text.

* [“Viewing monitor elements in column-oriented format”|

+ [“Viewing monitor elements in row-oriented format” on page 15|

Viewing monitor elements in column-oriented format

The XMLTABLE table function takes an XML document as input and coverts it
into a relational table such that each of the selected XML document elements
appears as a column. This approach is useful if you know which monitor elements
you want to display. For example, assume that you have created a statistics event
monitor called DBSTATS to collect information from the event_scstats logical data
group. (See [“event_scstats logical data group” on page 463| for more information
about the monitor elements associated with this logical data group.) The monitor
elements in this logical group include details_xml,' which is actually an XML
document that itself contains the metrics that comprise the system_metrics monitor
element. (See [“system_metrics” on page 129| for more information about the
monitor elements associated with the system_metrics monitor element.) To view
specific system_metrics monitor elements contained in details_xml, such as
rows_returned, total_section_time, or total_cpu_time, you can use the XMLTABLE
table function to format selected monitor elements from the details_xml documents
returned by the statistics event monitor. The example that follows illustrates this.
(For presentation purposes, the SQL returns results only for a specific service
class.)

SELECT partition_number,
service_class_id,
statistics_timestamp,
event.rows_returned,
event.total_section_time,
event.total cpu_time

FROM SCSTATS_DBSTATS as DBSTATS,
XMLTABLE (XMLNAMESPACES(DEFAULT 'http://www.ibm.com/xmlns/prod/db2/mon'),
"$metrics/system metrics' PASSING XMLPARSE(DOCUMENT DBSTATS.details.xml) as "metrics"

COLUMNS

rows_returned BIGINT PATH 'rows_returned',
total_section_time BIGINT PATH 'total_section_time',
total_cpu_time BIGINT PATH 'total_cpu_time'

) AS EVENT

WHERE service_class_id = 12;

The following output shows the results for this query:

PARTITION_NUMBER SERVICE_CLASS_ID STATISTICS_TIMESTAMP ROWS_RETURNED TOTAL_SECTION_TIME TOTAL_CPU_TIME
0 12 2010-01-05-12.14.37.001717 402 990 1531250
0 12 2010-01-05-12.15.00.035409 402 990 1531250
0 12 2010-01-05-12.20.00.021884 412 1064 1609375
0 12 2010-01-05-12.25.00.039175 422 1075 1687500
0 12 2010-01-05-12.29.59.950137 432 1104 1765625
0 12 2010-01-05-12.34.59.948979 442 1130 1796875

1. Note: In these topics, when details_xml appears in lower-case letters, it refers to the XML document details_xml. DETAILS_XML,
in upper-letters, refers to a column in a relational table called DETAILS_XML that contains the details_xml documents.

14 Database Monitoring Guide and Reference

[cNoNoNo)

10 record(s) selected.

12 2010-01-05-12.39.59.903928 452 1149 1890625

12 2010-01-05-12.44.59.953596 462 1178 1953125
12 2010-01-05-12.49.59.970059 473 1207 2062500
12 2010-01-05-12.54.59.971990 483 1230 2109375

In this case, the first three columns are displayed directly from the table
SCSTATS_DBSTATS table produced by the statistics event monitor. The last three
columns are metrics monitor elements extracted from the XML document in the
DETAILS XML column of the table.

For more information about using XMLTABLE, refer to the documentation for that
function. You can also see examples of using XMLTABLE to view monitor elements
in the documentation for the various MON_GET_*_DETAILS functions.

Viewing monitor elements in row-oriented format

The table functions with names of the form MON_FORMAT XML_* _BY_ROW
introduced in DB2 Version 9.7 Fix Pack 1 provide a quick way to display the
metrics monitor elements contained in an XML document. They report metrics in a
row-based format, with each monitor element appearing in a row by itself. The
following functions are included in this group:

* MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW

* MON_FORMAT_XML_TIMES_BY_ROW

* MON_FORMAT_XML_WAIT_TIMES_BY_ROW

* MON_FORMAT_XML_METRICS_BY_ROW

For example, the XML document returned by the statistics event monitor,
DETAILS_XML, might look something like the one shown in the first part of
[Figure 3 on page 16} If you use the MON_FORMAT _XML_WAIT_TIMES_BY_ROW
function to format the content of DETAILS_XML, the output would look like the
table at the bottom of the diagram.

Chapter 3. Interfaces that return monitor data in XML documents 15

<?xml version="1.0" encoding="windows-1252" ?=

- <system_metrics xmins="http:/ /www._ibm.com/xmlins/prod/db2/mon" release="907nnnn">
<wlm_gueue_time_total=0</wim_gqueue_time_total=
<wlm_gueue_assignments_total=0</wlm_gueue_assignments_total=
=fcm_tq_recv_wait_time=0</fcm_tq_recv_wait_time:=
=fcm_message_recv_wait_time=0</fcm_message_recv_wait_time:=
=fcm_tg_send_wait_time=0</fcm_tq_send_wait_time=
<fcm_message_send_wait_time=0</fcm_message_send_wait_time:=
<agent_wait_time:=0</agent_wait_time:
<agent_waits_total=0</agent_waits_total=
<lock_wait_time:»0</lock_wait_time:

| :
v

MON_FORMAT_XML_WAIT_TIMES_BY_ROW(DETAILS_XML) |

v

METRIC_NAME TOTAL_TIME_VALUE COUNT PARENT_METRIC_NAME
WLM_QUEUE_TIME_TOTAL 0 0 TOTAL_WAIT_TIME
FCM_TQ_RECV_WAIT TIME 0 0 FCM_RECV_WAIT_TIME
FCM_MESSAGE_RECV_WAIT_TIME 0 0 FCM_RECV_WAIT_TIME
FCM_TQ_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
FCM_MESSAGE_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
AGENT_WAIT_TIME 0 0 TOTAL_WAIT TIME
LOCK_WAIT TIME 0 0 TOTAL WAIT TIME
DIRECT READ_TIME 0 0 TOTAL_WAIT_TIME
DIRECT WRITE_TIME 0 0 TOTAL_WAIT_TIME
LOG_BUFFER WAIT TIME 0 0 TOTAL_WAIT_TIME
LOG_DISK_WAIT_TIME 0 0 TOTAL_WAIT_TIME

Figure 3. An XML file containing monitoring data, processed by one of the MON_FORMAT_XML_* functions. This
example shows the use of the MON_FORMAT_XML_WAIT_TIMES_BY_ROW function. Only wait times are returned;
other metrics contained in the XML file, such as wim_queue_assignments_total are excluded by this particular
function.

The number of columns returned varies by the specific function that you use. For
example MON_FORMAT_XML_METRICS_BY_ROW returns two columns, one for
the metric name, and one for its corresponding value:

METRIC_NAME VALUE
WLM_QUEUE_TIME_TOTAL 0
WLM_QUEUE_ASSIGNMENTS_TOT 0
FCM_TQ_RECV_WAIT_TIME 0
FCM_MESSAGE_RECV_WAIT TIM 0
FCM_TQ_SEND_WAIT TIME 0

By comparison, MON_FORMAT_XML_TIMES_BY_ROW returns four columns:
METRIC_NAME TOTAL_TIME_VALUE ~ COUNT PARENT_METRIC_NAME

WLM_QUEUE_TIME_TOTAL 0 0 TOTAL_WAIT_TIME

FCM_TQ_RECV_WAIT_TIME 0 O FCM_RECV_WAIT_TIME
FCM_MESSAGE_RECV_WAIT_TIME 0 0 FCM_RECV_WAIT_TIME
FCM_TQ_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME
FCM_MESSAGE_SEND_WAIT_TIME 0 0 FCM_SEND_WAIT_TIME

The MON_FORMAT_XML_* _BY_ROW functions are useful when you do not
know which elements you want to view. For example, you might want to see the

16 Database Monitoring Guide and Reference

top 10 wait-time monitor elements for the workload named CLPWORKLOAD. To
collect this information, you can create a statistics event monitor called DBSTATS
(event_wlstats logical data group). Assuming you set up this event monitor to
write to a table, it records metrics in a column called DETAILS_XML. Once the
output table from the event monitor is populated with monitor data, you can
construct a query that uses the MON_FORMAT_XML_WAIT_TIMES_BY_ROW
function to extract the monitor elements you want to see:

SELECT SUBSTR(STATS.WORKLOAD_NAME,1,15) AS WORKLOAD_NAME,
SUBSTR(METRICS.METRIC_NAME,1,30) AS METRIC_NAME,
SUM(METRICS.TOTAL_TIME_VALUE) AS TOTAL_TIME_VALUE

FROM WLSTATS_DBSTATS AS STATS,

TABLE (MON_FORMAT_XML_WAIT_TIMES_BY_ROW(STATS.DETAILS_XML)) AS METRICS

WHERE WORKLOAD_NAME="'CLPWORKLOAD' AND (PARENT_METRIC_NAME='TOTAL_WAIT_TIME')

GROUP BY WORKLOAD_NAME,METRIC_NAME

ORDER BY TOTAL_TIME_VALUE DESC

FETCH FIRST 10 ROWS ONLY

Remember: Time spent monitor elements are organized into hierarchies. In this
example, to avoid double-counting wait times, only the monitor elements that
roll-up to total_wait_time are included (see the WHERE clause in the preceding
SQL statement). Otherwise, total_wait_time itself would be included in the results,
which includes several individual wait times.

The output that follows shows what the results of the preceding query might look
like:

WORKLOAD_NAME ~ METRIC_NAME TOTAL_TIME_VALUE

CLPWORKLOAD LOCK_WAIT_TIME 15138541
CLPWORKLOAD DIRECT_READ_TIME 6116231
CLPWORKLOAD POOL_READ_TIME 6079458
CLPWORKLOAD DIRECT_WRITE_TIME 452627
CLPWORKLOAD POOL_WRITE_TIME 386208
CLPWORKLOAD IPC_SEND_WAIT TIME 283172
CLPWORKLOAD LOG_DISK WAIT TIME 103888
CLPWORKLOAD DIAGLOG_WRITE WAIT TIME 78198
CLPWORKLOAD IPC_RECV WAIT TIME 15612
CLPWORKLOAD TCPIP_SEND_WAIT TIME 3291

10 record(s) selected.

Note: The MON_FORMAT_XML_* BY_ROW functions return only monitor
elements that track measurements or metrics. These include monitor elements that
track wait and component times, as well as counters. They do not return
non-metrics monitor elements contained in the XML document, such as uow_id, or
activity_id.

You can use the XMLTABLE function to view any of the elements (including
non-metrics elements) contained in the XML document. However, the most
frequently used, non-metrics monitor elements are returned as columns by the
monitor functions that begin with MON_GET_*, such as
MON_GET_UNIT_OF_WORK, or MON_GET_CONNECTION. If you are not
familiar with XML, you might find it faster and easier to create queries using these
functions than using the XMLTABLE function to extract monitor elements from an
XML document.

To summarize: if you are interested in viewing non-metrics monitor elements, the
MON_GET_* series of table functions might be a good alternative to the
XMLTABLE function. If you are interested in viewing metrics monitor elements,
the MON_FORMAT_XML_*_BY_ROW table functions might suit your needs.

Chapter 3. Interfaces that return monitor data in XML documents 17

Viewing metrics monitor elements from XML documents as
rows in a table

One way to view metrics-related information contained in an XML document
returned from an event monitor is to convert it into a format where each monitor
element is displayed in a row by itself. This format is useful if you want to view
the information in a text-based format, but do not know specifically which monitor
elements you want to examine.

To view metrics information in row-based format from the XML documents
returned by various monitoring interfaces, use the MON_FORMAT_XML_* _BY
ROW table functions. These functions were introduced in DB2 Version 9.7 Fix Pack
1.

The example shown in this task uses the MON_FORMAT_XML_TIMES_BY_ROW
table function to view component times for a statement as tracked by the package
cache event monitor. It assumes that a package cache event monitor called
PKGCACHEEVENTS has been created and activated. The package cache event
monitor writes its output to an unformatted event (UE) table. Before it can be
used, the data in the UE table must be converted to either relational tables using
the EVMON_FORMAT_UE_TO_TABLES stored procedure, or to XML using the
EVMON_FORMAT_UE_TO_XML table function. This task shows the first of these
two approaches.

1. First, convert the unformatted event (UE) table that the package cache event
monitor writes to into relational tables using the
EVMON_FORMAT_UE_TO_TABLES procedure:

call EVMON_FORMAT _UE_TO TABLES ('PkgCache',NULL,NULL,NULL,NULL,NULL,NULL,0, " 'SELECT * FROM PKGCACHEEVENTS')

This procedure creates two tables:

* One is called PKGCACHE_EVENT, which contains a column called
METRICS. This column, in turn, contains XML documents with metrics
monitor elements.

e The other is called PKGCACHE_METRICS.

Note: You could view the metrics directly from the columns in
PKGCACHE_METRICS, rather than extract metrics from the METRICS
column of the PKGCACHE_EVENT table. However, when you examine
PKGCACHE_METRICS, the metrics are displayed in columns, rather than
rows; it is not as easy to get a ranking of, say, the metrics with the highest
values.

2. Query the two tables produced in the preceding step to determine which
statement is the most expensive in terms of execution times:

SELECT EVENTS.EXECUTABLE_ID,
SUM(METRICS.STMT_EXEC_TIME) AS TOTAL_STMT_EXEC_TIME
FROM PKGCACHE_EVENT AS EVENTS,
PKGCACHE_METRICS AS METRICS
WHERE EVENTS.XMLID = METRICS.XMLID
GROUP BY EVENTS.EXECUTABLE_ID
ORDER BY TOTAL_STMT_EXEC_TIME DESC
FETCH FIRST 5 ROWS ONLY

In the preceding query, the two tables produced in step |1| are joined so that the

statement IDs from the PKGCACHE_EVENT table can be associated with their
execution times in the PKGCACHE_METRICS table:

18 Database Monitoring Guide and Reference

EXECUTABLE_ID TOTAL_STMT_EXEC_TIME

x'01000000000000001A0300000000000000000000020020091215115933859000" 250
x'0100000000000000150300000000000000000000020020091215115850328000' 191
x'0100000000000000216200000000000000000000020020091215115818343001" 129
x'0100000000000000C40200000000000000000000020020091215115838578000 41
x'0100000000000000B06200000000000000000000020020091215115838203000" 38

5 record(s) selected.

The first item in the results represents the statement with the largest overall
execution time.

3. Optional: If you like, you can display the text for the statement using the
following SQL:
SELECT SUBSTR(STMT_TEXT,1,60) AS STMT_TEXT

FROM PKGCACHE_EVENT
WHERE EXECUTABLE_ID = x'01000000000000001A0300000000000000000000020020091215115933859000'

Results:
STMT_TEXT

DROP XSROBJECT MYSCHEMA.EVMON_PKGCACHE_SCHEMA_SQL09070

1 record(s) selected.

4. Use the MON_FORMAT_XML_TIMES _BY_ROW table function to view a listin
of the time-spent monitor elements for the statement you identified in step
SELECT SUBSTR(XMLMETRICS.METRIC_NAME,1,30) AS METRIC_NAME,

XMLMETRICS.TOTAL TIME_VALUE,

SUBSTR(XMLMETRICS.PARENT_METRIC_NAME,1,30) AS PARENT_METRIC_NAME
FROM PKGCACHE_EVENT AS EVENTS,

TABLE(MON_FORMAT_XML_TIMES_BY_ROW(EVENTS.METRICS)) AS XMLMETRICS
WHERE
EVENTS.EXECUTABLE_ID=x'01000000000000001A0300000000000000000000020020091215115933859000"

AND PARENT_METRIC_NAME='STMT_EXEC_TIME'
ORDER BY XMLMETRICS.TOTAL_ TIME_VALUE DESC

Notes:

* Remember that time-spent monitor elements are organized into hierarchies.
To eliminate double-counting, only those metrics that roll-up to
stmt_exec_time are included in the results. Otherwise, stmt_exec_time itself
would be included in the results, which include several individual
component times.

* PARENT_METRIC_NAME, one of the columns returned by
MON_FORMAT_XML_TIMES_BY_ROW is included for illustrative purposes.

When run, the following results are returned by this query:

METRIC_NAME TOTAL_TIME_VALUE PARENT METRIC_NAME
TOTAL_ACT WAIT_TIME 234 STMT_EXEC_TIME
TOTAL_SECTION_PROC_TIME 15 STMT_EXEC_TIME

Here, you can see that the total processing time adds up to 249 ms. Compare
this time to the total time of 250 shown in step the extra
millisecond is accounted for by other times (for example, waits) not included in
stmt_exec_time.

In the results from the preceding example, you can see the arrangement of the
metrics: they are displayed in row-oriented format, one metric per row. The
advantage of using this approach is that you do not need to know ahead of time
which metrics or monitor elements you want to see. If you are interested in the top

Chapter 3. Interfaces that return monitor data in XML documents 19

or botto

m 71 metrics, or the metrics that fall within a specific range of values, you

can easily create a query to return the results you are interested in.By contrast, if

you use
need to

Viewing
table fun

APPLICATION_HANDLE METRIC_NAME
52 TOTAL_SECTI

52 TOTAL_COMPI

52 TOTAL_COMMI

52 TOTAL_ROLLB

496 TOTAL_COMPI

496 TOTAL_SECTI

496 TOTAL_IMPLI

7 record(s) selected.

APPLICATION_HANDLE METRIC_NAME

52 TOTAL_SECTI
52 TOTAL_COMPI
52 TOTAL_SECTI

the XMLTABLE function to display the monitor elements as columns, you
specify which monitor elements to display (or display them all).

the contents of the DETAILS column produced by a MON_GET_*_DETAILS
ction

You can also use the MON_FORMAT_XML_*_BY_ROW functions to view
the contents of the DETAILS column returned by any of the
MON_GET_*_DETAILS functions. For example,
MON_GET_CONNECTION_DETAILS returns a DETAILS column that
contains an XML document with metrics that pertain to a database
connection.

For example, to view the non-zero component times for each connection
across all members, you could use the following query:

SELECT CONDETAILS.APPLICATION_HANDLE,
SUBSTR(XMLMETRICS .METRIC_NAME,1,30) AS METRIC_NAME,
SUM(XMLMETRICS.TOTAL_TIME_VALUE) AS TOTAL_TIME_VALUE,
SUBSTR (XMLMETRICS.PARENT_METRIC_NAME,1,30) AS PARENT_METRIC_NAME
FROM TABLE(MON_GET_CONNECTION_DETAILS(NULL,-1)) AS CONDETAILS,

TABLE (MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW(CONDETAILS.DETAILS))AS XMLMETRICS
WHERE TOTAL_TIME_VALUE > O AND XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME'
GROUP BY CONDETAILS.APPLICATION_HANDLE,

XMLMETRICS.PARENT_METRIC_NAME,
XMLMETRICS.METRIC_NAME
ORDER BY CONDETAILS.APPLICATION_HANDLE ASC, TOTAL_TIME_VALUE DESC

Notes:

* To eliminate double-counting, only those metrics that roll-up to
total_rqst_time are included in the results (WHERE
XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME'). Otherwise,
total_rgst_time itself would be included in the results, which include
several individual component times.

¢ PARENT_METRIC_NAME, one of the columns returned by
MON_FORMAT_XML_COMPONENT_TIMES _BY_ROW is included for
illustrative purposes.

The preceding query returns the following results:
TOTAL_TIME_VALUE PARENT_METRIC_NAME

ON_TIME 3936 TOTAL_RQST_TIME
LE_TIME 482 TOTAL_RQST_TIME
T_TIME 15 TOTAL_RQST_TIME
ACK_TIME 1 TOTAL_RQST_TIME
LE_TIME 251 TOTAL_RQST_TIME
ON_TIME 46 TOTAL_RQST_TIME
CIT_COMPILE_TIME 5 TOTAL_RQST_TIME

As this example shows, only metrics that comprise total_rqst_time are
included. Had the WHERE
XMLMETRICS.PARENT_METRIC_NAME='TOTAL_RQST_TIME' clause not been
included in the query, the results would look like those that follow:

TOTAL_TIME_VALUE PARENT_METRIC_NAME

52 TOTAL_RQST_TIME 4603 -
ON_TIME 3942 TOTAL_RQST TIME
LE_TIME 537 TOTAL_RQST TIME
ON_SORT_TIME 299 TOTAL_SECTION_TIME
T _TIME 15 TOTAL_RQST_TIME

52 TOTAL_COMMI

20 Database Monitoring Guide and Reference

52 TOTAL_ROLLBACK_TIME 1 TOTAL_RQST_TIME

496 TOTAL_RQST_TIME 341 -

496 TOTAL_COMPILE_TIME 251 TOTAL_RQST_TIME
496 TOTAL_SECTION_TIME 46 TOTAL_RQST_TIME
496 TOTAL_IMPLICIT COMPILE_TIME 5 TOTAL_RQST_TIME
496 TOTAL_SECTION_SORT TIME 2 TOTAL_SECTION_TIME

11 record(s) selected.

In this case, the values for total_rqst_time for each connection are included
in the results, which includes the values for all other elements for which it
is the parent. Similarly, the values for items in italics roll up to the
total_section_time. Had they not been excluded in the WHERE clause,
they would have been triple-counted in the results, as total_section_time
itself rolls up to total_rqst_time.

Chapter 3. Interfaces that return monitor data in XML documents 21

22 Database Monitoring Guide and Reference

Chapter 4. Event monitors

Table 2. Event Types

Event monitors return information for the event types specified in the CREATE
EVENT MONITOR statement. For each event type, monitoring information is
collected at a certain point in time.

The following table lists available event types, when the monitoring data is
collected, and the information available for each event type. The available event
types in the first column correspond to the keywords used in the CREATE EVENT
MONITOR statement, where the event type is defined.

In addition to the defined events where data occurs, you can use the FLUSH
EVENT MONITOR SQL statement to generate events. The events generated by this
method are written with the current database monitor values for all the monitor
types (except for DEADLOCKS and DEADLOCKS WITH DETAILS) associated
with the flushed event monitor.

When monitoring the execution of SQL procedures using statement event monitors:

¢ Data manipulation language (DML) statements, such as INSERT, SELECT,
DELETE, and UPDATE, generate events.

* Procedural statements, such as variable assignments and control structures (for
example, WHILE or IF), do not generate events in a deterministic fashion.

DETAILS!

Event type When data is collected Available information

DEADLOCKS' Detection of a deadlock Applications involved, and locks in
contention.

DEADLOCKS WITH Detection of a deadlock Comprehensive information regarding

applications involved, including the
identification of participating statements
(and statement text) and a list of locks
being held. Using a DEADLOCKS WITH
DETAILS event monitor instead of a
DEADLOCKS event monitor will incur a
performance cost when deadlocks occur,
due to the extra information that is
collected.

DEADLOCKS WITH
DETAILS HISTORY"

Detection of a deadlock All information reported in a
DEADLOCKS WITH DETAILS event
monitor, along with the statement history
for the current unit of work of each
application owning a lock participating in
a deadlock scenario for the database
partition where that lock is held. Using a
DEADLOCKS WITH DETAILS HISTORY
event monitor will incur a minor
performance cost when activated due to
statement history tracking.

DEADLOCKS WITH
DETAILS HISTORY
VALUES!

Detection of a deadlock All information reported in a deadlock
with details and history, along with the
values provided for any parameter
markers at the time of execution of a
statement. Using a DEADLOCKS WITH
DETAILS HISTORY VALUES event
monitor will incur a more significant
performance cost when activated due to
extra copying of data values.

© Copyright IBM Corp. 1993, 2010 23

Table 2. Event Types (continued)

Event type When data is collected Available information

STATEMENTS End of SQL statement Statement start or stop time, CPU used,
text of dynamic SQL, SQLCA (return code
of SQL statement), and other metrics such
as fetch count.

Note: Statement start or stop time is
unavailable when the Timestamp switch is
off.

End of subsection For partitioned databases: CPU consumed,
execution time, table and table queue
information.

TRANSACTIONS? End of unit of work UOW work start or stop time, previous
UOW time, CPU consumed, locking and
logging metrics. Transaction records are
not generated if running with XA.

CONNECTIONS End of connection All application level counters.

DATABASE Database deactivation All database level counters.

BUFFERPOOLS Database deactivation Counters for buffer pool, prefetchers, page
cleaners and direct I/O for each buffer
pool.

TABLESPACES Database deactivation Counters for buffer pool, prefetchers, page
cleaners and direct I/O for each table
space.

TABLES Database deactivation Rows read or written for each table.

Activities Completion of an activity that executed in a service Activity level data. If WITH DETAILS was

class, workload or work class that had its COLLECT specified as part of COLLECT ACTIVITY

ACTIVITY DATA option turned on. Data is also DATA, this will include statement and

collected for the targeted activity at the instant the compilation environment information for

WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored those activities that have it. If AND

procedure is executed. VALUES was also specified, this will also
include input data values for those

Data is also collected if the activity violates a threshold activities that have it.

that has the COLLECT ACTIVITY DATA option enabled.

Statistics Every period minutes, where period is the length of time Statistics computed from the activities that

over which statistics are gathered. This period is defined executed within each service class,
in the WLM_COLLECT_INT database configuration workload, or work class that exists on the
parameter. system.

Data is also collected when the WLM_COLLECT_STATS
stored procedure is called.

Threshold violations

Upon detection of a threshold violation. Threshold violation information.

Locking

Upon detection of any of the following event types, Lock event records.
depending on configuration settings : lock timeout,
deadlock, lock wait beyond a specified duration.

Unit of work

Upon completion of a unit of work Unit of work event records. Option to
include request metrics in the record.

This option has been deprecated. Its use is no longer recommended and
might be removed in a future release. Use the CREATE EVENT MONITOR
FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

This option has been deprecated. Its use is no longer recommended and
might be removed in a future release. Use the CREATE EVENT MONITOR
FOR UNIT OF WORK statement to monitor transaction events.

Note: A detailed deadlock event monitor is created for each newly created
database. This event monitor, named DB2DETAILDEADLOCK, starts when the
database is activated and will write to files in the database directory. You can avoid

24 Database Monitoring Guide and Reference

the overhead this event monitor incurs by dropping it. The
DB2DETAILDEADLOCK event monitor is deprecated. Its use is no longer
recommended and might be removed in a future release. Use the CREATE EVENT
MONITOR FOR LOCKING statement to monitor lock-related events, such as lock
timeouts, lock waits, and deadlocks.

Event monitors that write to an unformatted event table

DB2 9.7 introduces some event monitors with a new type of target, the
unformatted event table. This type of event monitor provides better performance,
new CREATE EVENT MONITOR statement options, and the new interfaces to
access data for analysis.

Characteristics of unformatted event table event monitors affect how you can
perform the following tasks:

* Creating the event monitor and configuring data collection
* Managing event monitor operations

* Accessing event data captured by the event monitor

Typically, you can achieve all your monitoring needs by creating a single event
monitor per database for a given type of event (for example, lock events). You can
alter settings to increase or decrease the amount of data that you can collect with
the monitor to address changing monitoring needs. This contrasts with some older
event monitors where a more common practice is to create a multiple event
monitors, each geared to collect a particular monitoring need.

Creating the unformatted event table associated with an event
monitor

One aspect of creating an event monitor is specifying where to write the data that
the monitor collects. This type of event monitor always writes data in binary
format to an unformatted event table. The unformatted event table is a target type
introduced in DB2 9.7. An unformatted event table is created implicitly each time
you create an event monitor. The CREATE EVENT statement for this type of event
monitor includes the clause WRITE TO UNFORMATTED EVENT TABLE.

The CREATE EVENT MONITOR statement includes the following options for
configuring the unformatted event table:

* table name - By default, the unformatted event table is named based on the
event monitor name.

* tablespace name - By default, the unformatted table is created in the table space
IBMDEFAULTGROUP over which the user has USE privilege if it exists.
However, the recommended practice is to define a tablespace optimized for your
event monitors, as described below.

* PCTDEACTIVATE - The default value is 100, which means that the event
monitor deactivates when the table space becomes full.

The following considerations about the table space for the unformatted event table

must be taken:

* Create a table space for your event monitor unformatted event tables that is
configured for performance. Use the following clauses with the CREATE
TABLESPACE statement:

— Specify a page size (PAGESIZE) as large as possible, up to and including
32KB.

— Specify the NO FILE CACHING SYSTEM option.

Chapter 4. Event monitors 25

In a partitioned database environment, consider on which partitions the table
space exists. If a table space for a target unformatted event table does not exist
on some database partition, data for that target unformatted event table is
ignored. This behavior allows users to choose a subset of database partitions for
monitoring to be chosen, by creating a table space that exists only on certain
database partitions.

Other useful information about unformatted event tables includes the following:

The SYSCAT.EVENTTABLES catalog view lists event monitors, their associated
unformatted table, and other details.

The columns of the unformatted event table are described in a topic listed in the
related links.

Configuring data collection for an event monitor

Setting up an event monitor involves specifying what data to collect. Aspects
include which subset of the system workload to monitor, what type of events to
collect, how much detail to collect for each event, and enabling/disabling data
capture (turning the data capture on and off). Considerations for configuring data
collection are the following:

With this type of event monitor, you configure data collection primarily by
setting properties of individual workload definitions using the CREATE/ALTER
WORKLOAD statement. That is, you can specify different data collection
settings for different workloads. The CREATE/ALTER WORKLOAD statement
includes clauses specific to particular types of event monitor.

By default, this type of event monitor is automatically activated. You can specify
that the event monitor be activated manually by specifying the MANUALSTART
keyword in the CREATE EVENT MONITOR statement. You can then control the
event monitor with the SET EVENT MONITOR STATE statement.

As mentioned in another context, in a partitioned database environment you can
choose a subset of database partitions to monitor with your event monitor.
When you create the event monitor, specify a table space for the unformatted
event table that resides only on those partitions you want to monitor. If the
unformatted event table does not exist on a given database partition, the event
monitor will not collect data for that partition.

Data collection for this type of event monitor is not affected by system monitor
switch settings set using the UPDATE MONITOR SWITCHES statement nor is
event capture is turned on and off using the SET EVENT MONITOR STATE
statement.

Managing event monitor operations

The following points provide guidance for managing ongoing operation of an
event monitor:

At any time, you can change your specification of what data to collect by using
the ALTER WORKLOAD statement.

If you specified the MANUALSTART option in the CREATE EVENT MONITOR
statement, you can start and stop data collection using the SET EVENT
MONITOR STATE statement.

Unformatted event tables must be manually pruned.

If an unformatted event table reaches the maximum space allotted, the event
monitor will deactivate.

26 Database Monitoring Guide and Reference

 If an event monitor is no longer needed, use the DROP statement to drop an
event monitor. Issuing the DROP statement does not drop the unformatted event
table that is associated with the event monitor. The associated unformatted event
table must be manually dropped after the event monitor is dropped. If you don't
drop the unformatted event table, you will encounter difficulties if you
subsequently try to create another event monitor whose unformatted event table
has the same name as an existing one.

Accessing event data captured by an event monitor

This type of event monitor writes data in a binary format to an unformatted event
table. You can access this data using the db2evmonfmt command or routines
provided for this purpose.

With the db2evmonfmt command you can:

* select events of interest based on the following attributes: event ID, event type,
time period, application, workload, or service class.

* choose whether to receive the output in the form of a text report or a formatted
XML document.

* completely control the output format by creating your own XSLT style sheets
instead of using the ones provided with db2evmonfmt.

You can also extract data from an unformatted event table using the following
routines:

« EVMON_FORMAT _UE_TO_XML - extracts data from an unformatted event
table into an XML document.

¢ EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

With these routines, you can use a SELECT statement to specify the exact rows
from the unformatted event table that you want to extract.

Unformatted event table column definitions

An unformatted event table is created when you issue a CREATE EVENT
MONITOR statement that includes the clause WRITE TO UNFORMATTED EVENT
TABLE. The column definitions are useful when you want to extract data to
analyze or prune a table of unneeded data.

The column definitions for the unformatted event table are useful when you want
to extract data from an unformatted event table using one of the following
routines:

« EVMON_FORMAT _UE_TO_XML - extracts data from an unformatted event
table into an XML document.

¢ EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

The call to these routines accepts a SELECT statement that specifies the rows that
you want to extract. Use the unformatted event table column definitions to assist
with composing your SELECT statement.

There is no automatic purging of the event data written to an unformatted event
table. You must manually purge data from the table. The column definitions for the

Chapter 4. Event monitors 27

unformatted event table are useful when you want to purge a targeted set of
records. Another option is to remove all the table rows using the TRUNCATE

TABLE statement.

As part of the CREATE EVENT MONITOR statement, you can specify what to
name the associated unformatted event table. If not specified, the name defaults to
the same name as the event monitor. The SYSCAT.EVENTTABLES catalog view
lists event monitors, their associated unformatted table, and other details.

The table below describes the columns in the unformatted event table. The key
column is the event_data column. The other columns represent identifiers that you
can use to locate events of interest. For further attributes of table columns, issue a

DESCRIBE statement.

Table 3. Unformatted event table column definitions

Column name

Column data type

Column description

appl_id

VARCHAR

The identifier of the
application within which the
event occurred. A NULL
value indicates that the
application ID was not
available.

appl_name

VARCHAR

The name of the application
within which the event
occurred. A NULL value
indicates that the application
name was not available.

event_correlation_id

BIT DATA

An optional event correlation
ID. A NULL value indicates
that the event correlation ID
was not available.

The value is based on the
event monitor type:

* LOCKING - Reserved for
future use

* UOW- Reserved for future
use

event_data

BLOB

The entire event record data
for an event captured by the
event monitor, stored in its
original binary form.

28 Database Monitoring Guide and Reference

Table 3. Unformatted event table column definitions (continued)

Column name

Column data type

Column description

event_id

INTEGER

For locking event monitor
records, an event identifer
that is unique across the
database. The ID is recycled
at database activation time.
Uniqueness is guaranteed by
the combination of
event_timestamp, event_id,
member, and event_type.

For UOW event monitor
records, an alias of the UOW
ID that is unique per
connection. Uniqueness is
guaranteed by the
combination of
event_timestamp, event_id,
member, event_type and
appl_id.

event_timestamp

TIMESTAMP

The timestamp when the
event was generated by the
event monitorAll child
records will share the same
timestamp as the parent
record.

event_type

VARCHAR

The event type that occurred
at the member of detection.

member

SMALLINT

The member where the event
occurred.

partitioning_key

INTEGER

The partitioning key for the
table, so that insert
operations are performed
locally on the database
partition where the event
monitor is running.

record_seq_num

INTEGER

The sequence number of the
record that is stored within
the event_data column.

record_type

INTEGER

The type of record that is
stored within the event_data
column.

service_subclass_name

VARCHAR

The name of the service
subclass within which the
event occurred. A NULL
value indicates that the
service subclass name was
not available.

service_superclass_name

VARCHAR

The name of the service
superclass within which the
event occurred. A NULL
value indicates that the
service superclass name was
not available.

Chapter 4. Event monitors 29

Table 3. Unformatted event table column definitions (continued)

Column name Column data type Column description

workload_name VARCHAR The name of the workload
within which the event
occurred. A NULL value
indicates that the workload
name was not available.

db2evmonfmt tool for reading event monitor data

The Java''-based, generic XML parser tool, db2evmonfmt, produces a readable
flat-text output (text version) or a formatted XML output from the data generated
by an event monitor that uses the unformatted event table. Based on the
parameters that you specify, the db2evmonfmt tool determines how to parse the
event monitor data and the type of output to create.

The db2evmonfmt tool is provided as Java source code. You must setup and
compile this tool, before you can use it, by performing the following steps:

1. Locate the source code in the sql1ib/samples/java/jdbc directory
2. Follow the instructions embedded in the Java source file to setup and compile
the tool

You can modify the source code to change the output to your liking.

The tool uses XSLT style sheets to transform the event data into formatted text.
You do not need to understand these style sheets. The tool will automatically load
the correct style sheet, based on the event monitor type, and transform the event
data. Each event monitor will provide default style sheets within the
sql1ib/samples/xml/data directory. The tool will also provide the following
filtering options:

* Event ID

* Event timestamp

* Event type

* Workload name

* Service class name

* Application name

Tool syntax
»»>—java—db2evmonfmt connect filter options i
El XML file ’:l
-h

connect:

v
A

|—-d—db_name—-ue—table_name B] I
-u—user_id—-p—password

XML file:

f—-f—xml_filename I

30 Database Monitoring Guide and Reference

filter options:

fxml

[

|—-ftext | |—-1‘d—event‘_z’d—|
l—— ss—styleshee t_name—l

»
>

v

I——type—event‘_t‘ype—| |——hour‘s—num_hours—| I——w—workZoad_name—I

\

|—-a—app Z_name—| l—- s—srvc_subcl ass_name—|

Tool parameters

java

To run the db2evmonfmt Java-based tool successfully, the java keyword must

precede the tool name. The proper Java version to successfully run this tool is

installed from the sqllib/java/jdk64 directory during the DB2 product
installation.

-d db_name
Specifies the database name to which a connection is made

-ue fable_name
Specifies the name of the unformatted event table

-u user_id
Specifies the user ID

-p password
Specifies the password

-f xml_filename
Specifies the name of the input XML file to format

-fxml
Produces a formatted XML document (pipe to stdout)

-ftext
Formats an XML document to a text document (pipe to stdout)

-ss stylesheet_name
Specifies the XSLT style sheet to use to transform the XML document

-id event_id
Displays all events matching the specified event ID

-type event_type
Displays all events matching the specified event type

-hours num_hours
Displays all events that have occurred within the specified last number of
hours

-w workload_name
Displays all events that are part of the specified workload

-a appl_name
Displays all events that are part of the specified application

-s sruc_subclass_name
Displays all events that are part of the specified service subclass

Chapter 4. Event monitors

31

XSLT style sheets

The DB2 database manager provides default XSLT style sheets (see Table 1) which
can be found in the sqllib/samples/java/jdbc directory. You can change these
style sheets to produce the desired output.

Table 4. Default XSLT style sheets for event monitors

Event monitor Default XSLT style sheet
Locking DB2EvmonLocking.xsl
Unit of work DB2EvmonUOW.xsl

You can create your own XSLT style sheet to transform XML documents. You can
pass these style sheets into the Java-based tool using the -ss stylesheet_name
option.

Examples

Example 1
To obtain a formatted text output for all events that have occurred in the
last 32 hours from the package cache unformatted event table PKG in
database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue pkg -ftext -hours 32

Example 2
To obtain a formatted text output for all events of type LOCKTIMEOUT
that have occurred in the last 24 hours from unformatted event table
LOCK in database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue LOCK -ftext -hours 24 —type locktimeout
Example 3
To obtain a formatted text output from the XML source file LOCK.XML,

extracting all events that match the event type LOCKWAIT in the last 5
hours, issue the following command:

java db2evmonfmt -f Tock.xml -ftext -type lockwait -hours 5
Example 4
To obtain a formatted text output using the created XSLT style sheet

SUMMARY.XSL for all events in the unformatted event table UOW in
database SAMPLE, issue the following command:

java db2evmonfmt -d sample -ue uow -ftext -ss summary.xsl
Sample formatted flat-text output

The following sample of formatted flat-text output was generated from the locking
event monitor XSLT style sheet:

Event Entry : 0
Event ID : 1
Event Type : Locktimeout

Event Timestamp : 2008-05-23-12.00.14.132329000

Lock Name : 02000401000000000000000054
Lock Type : Table

Lock Attributes : 00000000

Lock Count : 1

32 Database Monitoring Guide and Reference

Lock Hold Count :
Lock rrIID
Lock Status
Cursor Bitmap
TabTespace Name :
TabTe Name

Attributes
Application Handle
Application ID
Application Name
Authentication ID
Requesting Agent
Coordinating Agent
Application Status
Lock Timeout
Workload Name
Service Subclass
Current Request
Lock Mode

tpmon Userid

tpmon Wkstn

tpmon App

tpmon Accstring

Lock Requestor Cur
Activity ID

Uow ID
Package
Package
Package
Package
Package
Reopt
Eff Isolation
Eff Locktimeout :
Eff Degree
Nesting Level
Stmt Unicode
Stmt Flag
Stmt Type
Stmt Text

ID
SectNo
Name
Schema
Version :

Lock Requestor Pas
Activity ID

Uow ID
Package
Package
Package
Package
Package
Reopt
Eff Isolation
Eff Locktimeout :
Eff Degree
Nesting Level
Stmt Unicode
Stmt Flag
Stmt Type
Stmt Text

1D
SectNo
Name
Schema
Version :

Lock Holder Curren

: NEWTON

0

: 0
: Waiting
: 00000000

USERSPACE1
. SARAH

Requestor

[0-35]
*LOCAL.horton.080523160016
xapTus0001
NEWTON

65

65
SQLM_CONNECTPEND
5000
XAPLUS0010_WLO2
XAPLUS0010_SC02
Execute

Intent Exclusive

rent Activities

: 65426E4D4B584659
: 3

: NEWTON

: AKINTERF

. always
: Cursor Stability

5

: 0

: 0

: No

: Dynamic

: DML, Insert/Update/Delete

: INSERT INTO SARAH VALUES(:H00008,

t Activities

: 65426E4D4B584659
H

: NEWTON

: AKINTERF

: always
: Cursor Stability

5

: 0

: 0

: No

: Dynamic

: DML, Insert/Update/Delete

: INSERT INTO NADIA VALUES(:H00007)

t Activities

[0-16]
*[0CAL.horton.080523155938

db2bp

HORTON

21

21

SQLM_CONNECTPEND

0

SYSDEFAULTUSERWORKLOAD
SYSDEFAULTSUBCLASS

Execute Immediate
Exclusive

:HO0013, :HO0014)

Chapter 4. Event monitors

33

Activity ID
Uow ID

Package ID
Package SectNo
Package Name
Package Schema

Reopt

Eff Isolation
Eff Locktimeout
Eff Degree
Nesting Level
Stmt Unicode
Stmt Flag

Stmt Type

Stmt Text

Activity ID
Uow ID

Package ID
Package SectNo
Package Name
Package Schema

Reopt
Eff Isolation

Eff Locktimeout :
: 0

: 0

: No

: Dynamic

: DML, Lock Table

: Tock table newton.sarah in exclusive mode

Eff Degree
Nesting Level
Stmt Unicode
Stmt Flag
Stmt Type
Stmt Text

Event Entry
Event ID
Event Type

Event Timestamp :

Usage notes

: 41414141414E4758

. 201

: NULLID

: SQLC2G13

Package Version :

: none

: Cursor Stability

: 5

: 0

: 0

: No

: Dynamic

: DML, Select (blockable)
: select * from newton.sarah

: 2

: 2

: 41414141414E4758
: 203

: NULLID

: SQLC2G13

Package Version :

: none

: Cursor Stability

5

: Locktimeout

2008-05-23-12.04.42.144896000

The db2evmonfmt utility is a Java-based tool which must be preceded by the java
keyword in order to run successfully. The Java version required is that which is
installed with the DB2 product from the sql11ib/java/jdk64 directory.

Note: You can also use the EVMON_FORMAT_UE_TO_XML table function to
format the binary events, contained in the unformatted event table BLOB column,
into an XML document.

Monitoring database locking

Diagnosing and correcting lock contention situations in large DB2 environments
can be complex and time consuming. The lock event monitor and other facilities
are designed to simplify this task by collecting locking data.

34 Database Monitoring Guide and Reference

Introduction

The lock event monitor is used to capture descriptive information about lock
events at the time that they occur. The information captured identifies the key
applications involved in the lock contention that resulted in the lock event.
Information is captured for both the lock requestor (the application that received
the deadlock or lock timeout error, or waited for a lock for more than the specified
amount of time) and the current lock owner.

The information collected by the lock event monitor is written in binary format to
an unformatted event table in the database. The captured data is processed in a
post-capture step improving the efficiency of the capture process.

You can also directly access DB2 relational monitoring interfaces (table functions)
to collect lock event information by using either dynamic or static SQL.

Determining if a deadlock or lock timeout has occurred is also simplified.
Messages are written to the administration notification log when either of these
events occurs; this supplements the SQL0911N (sqlcode -911) error returned to the
application. In addition, a notification of lock escalations is also written to the
administration notification log; this information can be useful in adjusting the size
of the lock table and the amount of the table an application can use. There are also
counters for lock timeouts (lock_timeouts), lock waits (lock_waits), and deadlocks
(deadlocks) that can be checked.

The types of activities for which locking data can be captured include the
following:

* SQL statements, such as:
- DML
- DDL
- CALL
* LOAD command
* REORG command
* BACKUP DATABASE command
 Utility requests

The lock event monitor replaces the deprecated deadlock event monitors (CREATE
EVENT MONITOR FOR DEADLOCKS statement and DB2DETAILDEADLOCK)
and the deprecated lock timeout reporting feature
(DB2_CAPTURE_LOCKTIMEOUT registry variable) with a simplified and
consistent interface for gathering locking event data, and adds the ability to
capture data on lock waits.

Functional overview

Two steps are required to enable the capturing of lock event data using the locking
event monitor:

1. You must create a LOCK EVENT monitor using the CREATE EVENT
MONITOR FOR LOCKING statement. You provide a name for the monitor and
the name of an unformatted event table into which the lock event data will be
written.

2. You must specify the level for which you want lock event data captured by
using one of the following methods:

Chapter 4. Event monitors 35

* You can specify particular workloads by either altering an existing workload,
or by creating a new workload using the CREATE or ALTER WORKLOAD
statements. At the workload level you must specify the type of lock event
data you want captured (deadlock, lock timeout or lock wait), and whether
you want the SQL statement history and input values for the applications
involved in the locking. For lock waits you must also specify the amount of
time that an application will wait for a lock, after which data is captured for
the lock wait.

* You can collect data at the database level and affect all DB2 workloads by
setting the appropriate database configuration parameter:

mon_lockwait
This parameter controls the generation of lock wait events

Best practice is to enable lock wait data collection at the workload
level.

mon_timeout
This parameter controls the generation of lock timeout events

Best practice is to enable lock timeout data collection at the database
level if they are unexpected by the application. Otherwise enable at
workload level.

mon_deadlock
This parameter controls the generation of deadlock events

Best practice is to enable deadlock data collection at the database
level.

mon_lw_thresh
This parameter controls the amount of time spent in lock wait before
an event for mon_lockwait is generated

The capturing of SQL statement history and input values incurs additional
overhead, but this level of detail is often needed to successfully debug a locking
problem.

After a locking event has occurred, the binary data in the unformatted event table
can be transformed into an XML or a text document using a supplied Java-based
application called db2evmonfmt. In addition, you can format the binary event data
in the unformatted event table BLOB column into either an XML report document,
using the EVMON_FORMAT_UE_TO_XML table function, or into a relational
table, using the EVMON_FORMAT_UE_TO_TABLES procedure.

To aid in the determination of what workloads should be monitored for locking
events, the administration notification log can be reviewed. Each time a deadlock
or lock timeout is encountered, a message is written to the log. These messages
identify the workload in which the lock requestor and lock owner or owners are
running, and the type of locking event. There are also counters at the workload
level for lock timeouts (lock_timeouts), lock waits (lock_waits), and deadlocks
(deadlocks) that can be checked.

Information collected for a locking event

Some of the information for lock events collected by the lock event monitor
include the following:

* The lock that resulted in an event
* The application holding the lock that resulted in the lock event

36 Database Monitoring Guide and Reference

* The applications that were waiting for or requesting the lock that result in the
lock event

* What the applications were doing during the lock event

Limitations

* There is no automatic purging of the lock event data written to the unformatted
event table. You must periodically purge data from the table.

* You can output the collected event monitor data to only the unformatted event
table. Outputs to file, pipe, and table are not supported.

* It is suggested that you create only one locking event monitor per database.
Each additional event monitor only creates a copy of the same data.

Deprecated lock monitoring functionality

The deprecated detailed deadlock event monitor, DB2DETAILDEADLOCK, is
created by default for each database and starts when the database is activated. The
DB2DETAILDEADLOCK event monitor must be disabled and removed, otherwise
both the deprecated and new event monitors will be collecting data and will
significantly affect performance.

To remove the DB2DETAILDEADLOCK event monitor, issue the following SQL
statements:

SET EVENT MONITOR DB2DETAILDEADLOCK state 0
DROP EVENT MONITOR DB2DETAILDEADLOCK

Collecting lock event data and generating reports

You can use the lock event monitor to collect lock timeout, lock wait, and deadlock
information to help identify and resolve locking problems. After the lock event
data has been collected in an unreadable form in an unformatted event table, this
task describes how to obtain a readable text report.

To create the locking event monitor and collect lock event monitor data, you must
have DBADM, or SQLADM authority.

The lock event monitor collects relevant information that helps with the
identification and resolution of locking problems. For example, some of the
information the lock event monitor collects for a lock event is as follows:

* The lock that resulted in a lock event
* The applications requesting or holding the lock that resulted in a lock event
¢ What the applications were doing during the lock event

This task provides instructions for collecting lock event data for a given workload.
You might want to collect lock event data under the following conditions:

* You notice that lock wait values are longer than usual when using the
MON_GET_WORKLOAD table function.

* An application returns a -911 SQL return code with reason code 68 in the
administration notification log, stating that "The transaction was rolled back due
to a lock timeout." See also message SQL0911N for further details.

* You notice a deadlock event message in the administration notification log (-911
SQL return code with reason code 2, stating that "The transaction was rolled
back due to a deadlock.”). The log message indicates that the lock event
occurred between two applications, for example, Application A and B, where A
is part of workload FINANCE and B is part of workload PAYROLL. See also
message SQLO911N for further details.

Chapter 4. Event monitors 37

Restrictions

To view data values, you need the EXECUTE privilege on the
EVMON_FORMAT_UE_* routines, which the SQLADM and DBADM authorities
hold implicitly. You also need SELECT privilege on the unformatted event table
table, which by default is held by users with the DATAACCESS authority and by
the creator of the event monitor and the associated unformatted event table.

To collect detailed information regarding potential future lock events, perform the
following steps:

1. Create a lock event monitor called Tockevmon by using the CREATE EVENT
MONITOR FOR LOCKING statement, as shown in the following example:

CREATE EVENT MONITOR lockevmon FOR LOCKING
WRITE TO UNFORMATTED EVENT TABLE

Note: The following lists important points to remember when creating an event
monitor:

* You can create event monitors ahead of time and not worry about using up
disk space since nothing is written until you activate the data collection at
the database or workload level

¢ In a partitioned database environment, ensure that the event monitors are
placed in a partitioned table space across all nodes. Otherwise, lock events
will be missed at partitions where the partitioned table space is not present.

* Ensure that you set up a table space and bufferpool to minimize the
interference on high performance work caused by ongoing work during
accesses to the tables to obtain data.

2. Activate the lock event monitor called Tockevmon by running the following
statement:

SET EVENT MONITOR lockevmon STATE 1

3. To enable the lock event data collection at the workload level, issue the ALTER
WORKLOAD statement with one of the following COLLECT clauses:
COLLECT LOCK TIMEOUT DATA, COLLECT DEADLOCK DATA, or
COLLECT LOCK WAIT DATA. Specify the WITH HISTORY option on the
COLLECT clause. Setting the database configuration parameter affects the lock
event data collection at the database level and all workloads are affected.

For lock wait events
To collect lock wait data for any lock acquired after 5 seconds for the
FINANCE application and to collect lock wait data for any lock
acquired after 10 seconds for the PAYROLL application, issue the
following statements:
ALTER WORKLOAD finance COLLECT LOCK WAIT DATA WITH HISTORY AND VALUES
FOR LOCKS WAITING MORE THAN 5 SECONDS

ALTER WORKLOAD payroll COLLECT LOCK WAIT DATA
FOR LOCKS WAITING MORE THAN 10 SECONDS WITH HISTORY

To set the mon_lockwait database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, and
to set the mon_lw_thresh database configuration parameter for 10
seconds, issue the following commands:

db2 update db cfg for sample using mon_lockwait hist_and_values
db2 update db cfg for sample using mon_lw_thresh 10000000

For lock timeout events
To collect lock timeout data for the FINANCE and PAYROLL
applications, issue the following statements:

38 Database Monitoring Guide and Reference

ALTER WORKLOAD finance COLLECT LOCK TIMEOUT DATA WITH HISTORY
ALTER WORKLOAD payroll COLLECT LOCK TIMEOUT DATA WITH HISTORY

To set the mon_locktimeout database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, issue
the following command:

db2 update db cfg for sample using mon_locktimeout hist_and_values

For deadlock events

To collect data for the FINANCE and PAYROLL applications, issue the
following statements:

ALTER WORKLOAD finance COLLECT DEADLOCK DATA WITH HISTORY
ALTER WORKLOAD payroll COLLECT DEADLOCK DATA WITH HISTORY

To set the mon_deadlock database configuration parameter with
HIST_AND_VALUES input data value for the SAMPLE database, issue
the following command:

db2 update db cfg for sample using mon_deadlock hist_and_values

Rerun the workload in order to receive another lock event notification.

Connect to the database.

Obtain the locking event report using one of the following approaches:

a.

Use the XML parser tool, db2evmonfmt, to produce a flat-text report based
on the event data collected in the unformatted event table and using the
default stylesheet, for example:

java db2evmonfmt -d db_name -ue table_name -ftext -u user_id -p password
Use the EVMON_FORMAT UE_TO_ XML table function to obtain an XML
document.

Use the EVMON_FORMAT_UE_TO_TABLES procedure to output the data
into a relational table.

Analyze the report to determine the reason for the lock event problem and
resolve it.

Turn OFF lock data collection for both FINANCE and PAYROLL applications
by running the following statements or resetting the database configuration
parameters:

For lock wait events

ALTER WORKLOAD finance COLLECT LOCK WAIT DATA NONE
ALTER WORKLOAD payroll COLLECT LOCK WAIT DATA NONE

To reset the mon_lockwait database configuration parameter with the
default NONE input data value for the SAMPLE database, and to reset
the mon_lw_thresh database configuration parameter back to its
default value of 5 seconds, issue the following command:

db2 update db cfg for sample using mon_lockwait none
db2 update db cfg for sample using mon_lw_thresh 5000000

For lock timeout events

ALTER WORKLOAD finance COLLECT LOCK TIMEOUT DATA NONE
ALTER WORKLOAD payroll COLLECT LOCK TIMEOUT DATA NONE

To reset the mon_locktimeout database configuration parameter with
the default NONE input data value for the SAMPLE database, issue the
following command:

db2 update db cfg for sample using mon_locktimeout none

Chapter 4. Event monitors 39

For deadlock events
ALTER WORKLOAD finance COLLECT DEADLOCK DATA NONE
ALTER WORKLOAD payroll COLLECT DEADLOCK DATA NONE

To reset the mon_deadlock database configuration parameter with the
default WITHOUT_HIST input data value for the SAMPLE database,
issue the following command:

db2 update db cfg for sample using mon_deadlock without hist

Rerun the application or applications to ensure that the locking problem has been
eliminated.

Information written to XML for a locking event monitor
Information written for a locking event monitor from the

EVMON_FORMAT UE_TO_XML table function. This is also documented in the
sq11ib/misc/DB2EvmonLocking.xsd file.

db2_lock_event

The main schema that describes a lock timeout, lock wait or deadlock event in
details.

Element content: (([db2_deadlock_graph| {zero or one times (?)} ,|db2_participant]
{one or more (+)}) | (|[db2_message|,|db2_event file|))

Attributes:

QOName Type Fixed Default Use Annotation
id xs:long required
type xs:string - Max required

length: 32

(LOCKTIMEOUT,

DEADLOCK,

LOCKWAIT)
timestamp xs:dateTime required
member member_type required
release xs:long required
ANY attribute
from ANY
namespace

db2_deadlock_graph

Schema element represents the DB2 Deadlock Graph. The graph outlines all the
participants involved in the deadlock.

Contained by{db2_lock_even

Element content: ([db2_participant| {one or more (+)})

Attributes:

40 Database Monitoring Guide and Reference

QName Type Fixed Default Use Annotation
dl_conns xs:int required

rolled_back_ xs:int required

participant_no

type xs:string - Max required

length: 10 (local,

global)
ANY attribute
from ANY
namespace
db2_participant
Schema element represents the application information of the all the participants
involved in a lock event.
Contained byidb2_lock_event|[db2_deadlock_graphl|
Element content: ([db2_object_requested| {zero or one times (?)} ,|db2_app_details|,
|db2_activitz| {zero or more (*)})
Attributes:
QName Type Fixed Default Use Annotation
no xs:int required
type xs:string - Max required
length: 32
(Requester,
Owner)
participant_no_ | xs:int optional
holding_lk
ANY attribute
from ANY
namespace
db2_message
Error message
Contained by: |[db2_lock_event
Element content:
Type Facet
xs:string Max length: 1024

db2_event_file

Fully qualified path to file where event has been written.

Contained by: [db2_lock_eventj

Chapter 4. Event monitors 41

Element content:

Type Facet

xs:string Max length: 1024
application_handle
A system-wide unique ID for the application. See monitor element |”agent_id :l
[Application handle (agent ID) monitor element” on page 485| for more details.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:long
appl_id
This identifier is generated when the application connects to the database at the
database manager. See monitor element [“appl_id - Application ID monitor]
[element” on page 498| for more details.
Contained byidb2_app_details|
Element content:

Type Facet

xs:string Max length: 128
appl_name
The name of the application running at the client, as known to the database. See
monitor element [“appl_name - Application name monitor element” on page 501 for
more details.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:string Max length: 128

auth_id

The authorization ID of the user who invoked the application that is being

monitored. See monitor element [“auth_id - Authorization ID” on page 514| for

more details.

Contained by: [db2_app_details|

Element content:

42 Database Monitoring Guide and Reference

Type

Facet

xs:string Max length: 128
agent_tid
The unique identifier for the engine dispatchable unit (EDU) for the agent. See
monitor element [“agent_pid - Engine dispatchable unit (EDU) identifier monitor|
[element” on page 487| for more details.
Contained byidb2_app_details|
Element content:
Type Facet
xs:long
coord_agent_tid
The engine dispatchable unit (EDU) identifier of the coordinator agent for the
application. See monitor element [“coord_agent_pid - Coordinator agent identifier|
[monitor element” on page 565| for more details.
Contained by: [db2_app_details|
Element content:
Type Facet
xs:long
agent_status
The current status of the application. See monitor element
[Application Status” on page 504] for more details.
Contained byidb2_app_details|
Element content:
Type Facet
xs:string Max length: 32
Attributes:
QName Type Fixed Default Use Annotation
id xs:int optional

Chapter 4. Event monitors

43

appl_action

The action/request that the client application is performing.

Contained byidb2_app_details|

Element content:

Type Facet

xs:string Max length: 32
Attributes:

OName Type Fixed Default Use Annotation

id xs:int optional
lock_timeout_val
The database configuration parameter lock timeout. Value in seconds. See monitor
element [“lock_timeout_val - Lock timeout value monitor element” on page 686| for
more details.
Contained byidb2_app_details|
Element content:

Type Facet

xs:long
lock_wait_val
The lock wait parameter in effect during the lock event. This is either the database
configuration parameter mon_lkwait_thrsh or the COLLECT LOCK WAIT DATA
setting specified at the workload level. Value in milliseconds.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:long

tentry_state

TEntry state. Internal use only.

Contained by: [db2_app_details|

Element content:

44 Database Monitoring Guide and Reference

Type

Facet

xs:string Max length: 32
Attributes:
QName Type Fixed Default Use Annotation
id xs:int optional
tentry_flag1
TEntry flagsl. Internal use only.
Contained by: [db2_app_details|
Element content:
Type Facet

xs:hexBinary

Max length: 8

tentry_flag2

TEntry flags2. Internal use only.

Contained by: [db2_app_details|

Element content:

Type

Facet

xs:hexBinary

Max length: 8

xid

XID - Global transaction identifier

Contained by: [db2_app_details|

Element content:

Type

Facet

xs:hexBinary

Max length: 140

workload_id

ID of the workload to which this application belongs. See monitor element

[‘workload_id - Workload ID monitor element” on page 994 for more details.

Contained by: [db2_app_details|

Element content:

Chapter 4. Event monitors

45

Type Facet

xs:int
workload_name
Name of the workload to which this application belongs. See monitor element
[‘workload_name - Workload name monitor element” on page 995| for more details.
Contained by: [db2_app_details|
Element content:
Type Facet
xs:string Max length: 128
service_class_id
ID of the service subclass to which this application belongs. See monitor element
[“service_class_id - Service class ID monitor element” on page 851| for more details.
Contained by: [db2_app_details|
Element content:
Type Facet
xs:int
service_subclass_name
Name of the service subclass to which this application belongs. See monitor
element [“service_subclass_name - Service subclass name monitor element” on page|
for more details.
Contained by: [db2_app_details|
Element content:
Type Facet
xs:string Max length: 128
current_request
The operation currently being processed or most recently processed.
Contained byidb2_app_details|
Element content:
Type Facet
xs:string Max length: 32

46 Database Monitoring Guide and Reference

lock escalation

Indicates whether a lock request was made as part of a lock escalation. See monitor
element [“lock_escalation - Lock escalation monitor element” on page 674 for more
details. Possible values: Yes or No.

Contained by: [db2_app_details|

Element content:

Type Facet

xs:string Max length: 3
past_activities_wrapped
Indicates whether the activities list has wrapped. The default limit on the number
of past activities to be kept by any one application is 250. This default can be
overridden using the registry variable DB2_MAX_INACT_STMTS. Users may
want to choose a different value for the limit to increase or reduce the amount of
system monitor heap used for inactive statement information.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:string Max length: 3
client_userid
The client user ID generated by a transaction manager and provided to the server.
See monitor element [“client_userid - Client user ID monitor element” on page 538|
for more details.
Contained byidb2_app_details|
Element content:

Type Facet

xs:string Max length: 255

client_wrkstnname

Identifies the client system or workstation, if the sqleseti API was issued in this
connection. See monitor element |“client_wrkstnname - Client workstation name|
[monitor element” on page 539| for more details.

Contained by: [db2_app_details|

Element content:

Chapter 4. Event monitors 47

Type Facet

xs:string Max length: 255
client_applname
Identifies the server transaction program performing the transaction, if the sqleseti
API was issued in this connection. See monitor element [“client_applname - Client|
[application name monitor element” on page 533| for more details.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:string Max length: 255
client_acctng
The data passed to the target database for logging and diagnostic purposes, if the
sqleseti API was issued in this connection. See monitor element
[Client accounting string monitor element” on page 532| for more details.
Contained by: [db2_app_details|
Element content:

Type Facet

xs:string Max length: 255
db2_object_requested
Schema element represents the DB2 lock that the Requestor is attempting to
acquire, which is being held by the Owner.
Contained by: [db2_participant]
Element content: (([lock_name|, [lock_object_type|, [lock_specifics , [lock_attributes|,
lock_current_mode|, [lock_mode_requested|, [lock_modé|, [lock_count],
lock_hold_count], [lock_rriid[, lock_status], [lock_release_flags|, [tablespace_name],
table_name| , |table_schema| , Ilock_obiect_type_id| , Ilock_wait_start_time| ,
lock_wait_end_time|, ANY content (skip) {zero or more (*)}) | (|threshold_name¢],
threshold_id|, [queued_agents|, [queue_start_time|, ANY content (skip) {zero or
more ()}))
Attributes:

QName Type Fixed Default Use Annotation

type xs:string - Max required

length: 10 (lock,
ticket)

48 Database Monitoring Guide and Reference

db2_app_details

Schema element represents the details regarding this participant.

Contained by: [db2_participant]

Element content: (application_handle|, lappl_id|, lappl_name],

auth_id|, lagent_tid|,

coord_agent_tid|, lagent_status|, lappl_action[, lock_timeout_vall

tentry_state|, Jtentry_flagl|, Jtentry flag2|, [xid|, [workload_id|, [workload_name],

service_class_id|, |service_subclass_name| , |current_request| ,llock_escalation|,

past_activities_wrapped|, [client_userid|, |client_wrkstnnam

db2_activity

Client_acctngl , ANY content (skip) {zero or more (*)})

List of all DB2 activities the application is currently executing or has executed.

Contained by: [db2_participant]

Element content: ([db2_activity_details|, [db2_input_variable| {zero or more (*)})

, |lock_wait_val| ,

,|client_applname],

Attributes:
QName Type Fixed Default Use Annotation
type xs:string - Max required
length: 10
(current, past)
ANY attribute
from ANY
hamespace
lock_name
Internal binary lock name. This element serves as a unique identifier for locks. See
monitor element [“lock_name - Lock name monitor element” on page 680| for more
details.
Contained by: [db2_object_requested|
Element content:
Type Facet

xs:hexBinary

Max length: 16

lock_object_type

The type of object the application is waiting to obtain a lock. See monitor element

[“lock_object_type - Lock object type waited on monitor element” on page 682 for

more details.

Contained by: [db2_object_requested|

Element content:

Chapter 4. Event monitors

49

Type Facet

xs:string Max length: 32

Attributes:
OName Type Fixed Default Use Annotation
id xs:long optional

lock_specifics

Internal specifics about the lock. For information use only.

Contained by: [db2_object_requested|

Element content:

Type Facet

xs:string Max length: 128

lock_attributes

Lock attributes. See monitor element [“lock_attributes - Lock attributes monitor
[element” on page 671| for more details.

Contained by: [db2_object_requested]

Element content:

Type Facet

xs:hexBinary Max length: 4

lock_current_mode

Original lock before conversion. See monitor element [“lock_current_mode —|
[Original lock mode before conversion monitor element” on page 673 for more
details.

Contained byidb2_object_requested|

Element content:

Type Facet
xs:string Max length: 32
Attributes:
QOName Type Fixed Default Use Annotation
id xs:long optional
mode db2_string_type_6 optional

50 Database Monitoring Guide and Reference

lock_mode_requested

The lock mode being requested by this participant. See monitor element

[lock_mode_requested - Lock mode requested monitor element” on page 679| for

more details.

Contained byidb2_object_requested|

Element content:

Type Facet
xs:string Max length: 32
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
mode db2_string_type_6 optional
lock_mode
The type of lock being held. See monitor element [“lock_mode - Lock mode|
[monitor element” on page 678| for more details.
Contained byidb2_object_requested|
Element content:
Type Facet
xs:string Max length: 32
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
mode db2_string_type_6 optional
lock_count
The number of locks on the lock being held. See monitor element
[Lock count monitor element” on page 672| for more details.
Contained byidb2_object_requested|
Element content:
Type Facet
xs:long

Chapter 4. Event monitors

51

lock _hold_count

The number of holds placed on the lock. See monitor element [“lock_hold_count -
[Lock hold count monitor element” on page 677] for more details.

Contained by: [db2_object_requested|

Element content:

Type Facet

xs:long

lock_rriid

IID for Row locking. Internal use only.

Contained by: [db2_object_requested|

Element content:

Type Facet

xs:long

lock_status

Indicates the internal status of the lock. See monitor element [“lock_status - Lock|
[status monitor element” on page 685 for more details.

Contained by: [db2_object_requested|

Element content:

Type Facet
xs:string Max length: 32
Attributes:
OName Type Fixed Default Use Annotation
id xs:int optional

lock_release_flags

Lock release flags. See monitor element [“lock_release_flags - Lock release flags|
[monitor element” on page 684| for more details.

Contained by: [db2_object_requested|

Element content:

Type Facet

xs:hexBinary Max length: 4

52 Database Monitoring Guide and Reference

tablespace_name

The name of the table space where the lock is held. See monitor element

[“tablespace_name - Table space name monitor element” on page 902 for more

details.

Contained by: [db2_object_requested|

Element content:

Type Facet
xs:string Max length: 128
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
table_name
The name of the table where the lock is held. See monitor element
[Table name monitor element” on page 893 for more details.
Contained by: [db2_object_requested|
Element content:
Type Facet
xs:string Max length: 128
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
data_member_id |member_type optional

The identifier of
the data member
for which
information is
returned.

table_schema

The schema of the table. See monitor element [“table_schema - Table schema name|

[monitor element” on page 895| for more details.

Contained by: [db2_object_requested]

Element content:

Type

Facet

xs:string

Max length: 128

Chapter 4. Event monitors 53

lock_object_type_id

The type of object the application is waiting to obtain a lock. See monitor element
[“lock_object_type - Lock object type waited on monitor element” on page 682 for
more details.

Contained by: [db2_object_requested]

Element content:

Type

Facet

xs:hexBinary

Max length: 1

lock_wait_start_time

The data and time the application started waiting to obtain a lock on the object
that is currently locked by the lock owner. See monitor element
[“lock_wait_start_time - Lock wait start timestamp monitor element” on page 68|
for more details.

Contained by: [db2_object_requested|

Element content:

Type

Facet

xs:dateTime

lock_wait_end_time

The data and time the application stopped waiting to obtain a lock on the object
that is currently locked by the lock owner.

Contained by: [db2_object_requested|

Element content:

Type Facet
xs:dateTime
threshold_name
The name of the threshold queue.
Contained by: [db2_object_requested|
Element content:
Type Facet
xs:string Max length: 128

54 Database Monitoring Guide and Reference

threshold id

The ID of the threshold queue.

Contained by: [db2_object_requested|

Element content:

Type Facet
xs:int
queued_agents
The total number of agents currently queued in the threshold.
Contained by: [db2_object_requested|
Element content:
Type Facet
xs:long
queue_start_time
The data and time the application started waiting in the queue to obtain a
threshold ticket.
Contained by: [db2_object_requested|
Element content:
Type Facet

xs:dateTime

db2_participant

Schema element represents a single stack entry in a deadlock graph.

Contained by: [db2_lock_event|[db2_deadlock_graphl|

Attributes:
QName Type Fixed Default Use Annotation
no xs:int required
deadlock_member |member_type required
participant_no_ xs:int required
holding_lk
application_handle | application_handle_type required
ANY attribute
from ANY
namespace

Chapter 4. Event monitors

55

activity_id

Counter which uniquely identifies an activity for an application within a given
unit of work. See monitor element |“activity_id - Activity ID monitor element” on|
page 482| for more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:int
uow_id
The unit of work ID to which this activity record applies. See monitor element
[“uow_id - Unit of work ID monitor element” on page 981| for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:int
package_name
The name of the package that contains the SQL statement currently executing. See
monitor element [“package_name - Package name monitor element” on page 737
for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:string Max length: 128
package_schema
The schema name of the package associated with an SQL statement. See monitor
element [“package_schema - Package schema monitor element” on page 738|for
more details.
Contained by: |db2_activity_details|
Element content:

Type Facet

xs:string Max length: 128

56 Database Monitoring Guide and Reference

package_version_id

The package version identifies the version identifier of the package that contains
the SQL statement currently executing. See monitor element [“package_version_id
[Package version monitor element” on page 738| for more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:string Max length: 64
consistency_token
The package consistency token helps to identify the version of the package that
contains the SQL statement currently executing. See monitor element
[“consistency_token - Package consistency token monitor element” on page 556| for
more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:string Max length: 8
section_number
The internal section number in the package for the SQL statement currently
processing or most recently processed. See monitor element [“section_number -
[Section number monitor element” on page 845| for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:long
reopt
The REOPT bind option used to precompile this package. Possible values are:
NONE, ONCE, and ALWAYS. See the REOPT bind options for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:string Max length: 10

Chapter 4. Event monitors 57

incremental_bind

The package was incrementally bound at execution time. Possible values: Yes or
No.

Contained by: [db2_activity_details|

Element content:

Type Facet
xs:string Max length: 3
effective_isolation
The isolation value in effect for the SQL statement while it was being run. See
monitor element [“effective_isolation - Effective isolation monitor element” on page
for more details.
Contained by: [db2_activity_details|
Element content:
Type Facet
xs:string Max length: 2
Attributes:
OName Type Fixed Default Use Annotation
id xs:long optional
effective_query_degree
The degree value in effect for the SQL statement while it was being run. See
monitor element [“effective_query_degree - Effective query degree monitor|
felement” on page 602 for more details.
Contained by: [db2_activity_details|
Element content:
Type Facet
xs:long

stmt_unicode

The SQL statement Unicode flag. Possible values: Yes or No.

Contained by{db2_activity_details|

Element content:

58 Database Monitoring Guide and Reference

Type

Facet

xs:string Max length: 3
stmt_lock_timeout
The locktimeout value in effect for the SQL statement while it was being run. See
monitor element |“stmt_lock_timeout - Statement lock timeout monitor element” on|
for more details.
Contained by: |db2_activity_details|
Element content:
Type Facet
xs:int
stmt_type
The type of SQL statement processed. Possible values: Dynamic or Static. See
monitor element [“stmt_type - Statement type monitor element” on page 884| for
more details.
Contained by: [db2_activity_details|
Element content:
Type Facet
xs:string Max length: 10
Attributes:
QName Type Fixed Default Use Annotation
id xs:long required
stmt_operation
See monitor element [‘stmt_operation/operation - Statement operation monitor|
[element” on page 878| for more details.
Contained by: [db2_activity_details|
Element content:
Type Facet
xs:string Max length: 128

Chapter 4. Event monitors 59

stmt_query_id

Internal query identifier given to any SQL statement. See monitor element
[stmt_query_id - Statement query identifier monitor element” on page 880| for
more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:long

stmt_nest_level

This element shows the level of nesting or recursion in effect when the statement
was run. See monitor element [“stmt_nest_level - Statement nesting level monitor
felement” on page 877| for more details.

Contained by: |db2_activity_details|

Element content:

Type Facet

xs:long

stmt_invocation_id

This element shows the identifier of the routine invocation in which the SQL
statement was run. See monitor element [“stmt_invocation_id - Statement|
[invocation identifier monitor element” on page 875| for more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:long

stmt_source_id

This element shows the internal identifier given to the source of the SQL statement
that was run. See monitor element |“stmt_source_id - Statement source identifier”|

for more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:long

60 Database Monitoring Guide and Reference

stmt_pkgcache_id

This element shows the internal package cache identifier of a dynamic SQL
statement. See monitor element [‘stmt_pkgcache_id - Statement package cache|
lidentifier monitor element” on page 879| for more details.

Contained by: [db2_activity_details|

Element content:

Type Facet

xs:long
stmt_text
The text of the SQL statement. See monitor element [“stmt_text - SQL statement text]
[monitor element” on page 883| for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:string Max length: 2097152
stmt_first_use_time
This element shows the first time the statement entry was processed. For cursor
operations, [“stmt_first_use_time - Statement first use timestamp monitor element”|
fon page 874]shows when the cursor was opened. At application coordination
nodes, this value reflects the application requests; at non-coordinator nodes, this
value reflects when requests were received from the originating node. See monitor
element stmt_first_use_time for more details.
Contained by: [db2_activity_details|
Element content:

Type Facet

xs:dateTime

stmt_last _use_time

This element shows the last time the statement entry was processed. For cursor
operations, [“stmt_last_use_time - Statement last use timestamp monitor element”]
|0n page 876| shows the time of the last action on the cursor where that action could
be an open, fetch, or close. At application coordination nodes, this value reflects
the application requests; at non-coordinator nodes, this value reflects when
requests were received from the originating node. See monitor element
stmt_last_use_time for more details.

Contained by: [db2_activity_details|

Chapter 4. Event monitors 61

Element content:

Type

Facet

xs:dateTime

db2_activity_details

Schema represents the details regarding this activity.

Contained by:

Element content: (Jactivity id|, juow_id|, [package name], [package schemal,
[package version_id|, fconsistency_token|, [section_number|, [reopt, [incremental_bind|
leffective_isolation], leffective_query_degree|, [stmt_unicode], [stmt_lock_timeout|,
stmt_type|, [stmt_operation], [stmt_query_id|, [stmt_nest_level|, stmt_invocation_id],
stmt_source_id| , |stmt_pkgcache_id| , |stmt_text| , |stmt_ﬁrst_use_time| ,
stmt_last_use_time|, ANY content (skip) {zero or more (*)})

db2_input_variable

Schema element represents the list of input variables associated with the SQL
statement.

Contained by:

Element content: (Istmt_value_index| , |stmt_value_isreopﬂ , |stmt_value_isnull| ,
[stmt_value_type|, stmt_value_data|, ANY content (skip) {zero or more (*)})

stmt_value_index

The element represents the position of the input parameter marker or host variable
used in the SQL statement. See monitor element [“stmt_value_index - Value index”|

for more details.

Contained by: [db2_input_variable|

Element content:

Type Facet

xs:int
stmt_value_isreopt
The element shows whether the variable was used during statement
reoptimization. See monitor element [“stmt_value_isreopt - Variable used for]
[statement reoptimization monitor element” on page 888| for more details.
Contained by: [db2_input_variable|
Element content:

Type Facet

xs:string Max length: 3

62 Database Monitoring Guide and Reference

Attributes:

QName Type Fixed Default Use Annotation

id xs:int required
stmt_value_isnull
The element shows whether a data value associated with the SQL statement is the
NULL value. See monitor element |“stmt_value_isnull - Value has null Value|
[monitor element” on page 887| for more details.
Contained by: [db2_input_variable|
Element content:

Type Facet

xs:string Max length: 3
Attributes:

QName Type Fixed Default Use Annotation

id xs:int required
stmt_value_type
The element contains a string representation of the type of data value associated
with an SQL statement. See monitor element [“stmt_value_type - Value type]
[monitor element” on page 888| for more details.
Contained byidb2_input_variable|
Element content:

Type Facet

xs:string Max length: 16
stmt_value_data
The element contains a string representation of a data value associated with an
SQL statement. See monitor element [“stmt_value_data - Value data” on page 886|
for more details.
Contained by: [db2_input_variable|
Element content:

Type Facet

xs:string Max length: 32768

Chapter 4. Event monitors 63

Information written to relational tables for a locking event

monitor

Information written for a locking event monitor from the
EVMON_FORMAT UE_TO_TABLES table function. This is also documented in the
sq11ib/misc/DB2EvmonLocking.xsd file.

Table 5. Information returned for a locking event monitor: Table name: LOCK_EVENT

Column Name Data Type Description

XMLID VARCHAR(1000) NOT NULL

EVENT_ID BIGINT NOT NULL

EVENT_TYPE VARCHAR(128) NOT NULL

EVENT_TIMESTAMP TIMESTAMP NOT NULL

MEMBER SMALLINT NOT NULL “member - Database member|
monitor element” on page 713

DL_CONNS INTEGER “dl_conns - Connections|
involved in deadlock monitor|
element” on page 600|

ROLLED_BACK_PARTICIPANT_NO INTEGER “rolled_back_participant_no -

Rolled back application|

participant monitor element” on|

page 831|

Table 6. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS

Column Name

Data Type

Description

XMLID

VARCHAR(1000) NOT NULL

PARTICIPANT_NO

INTEGER

“participant_no - Participant]

within Deadlock” on page 744]

PARTICIPANT_TYPE VARCHAR(10)

PARTICIPANT_NO_HOLDING_LK INTEGER “participant_no_holding 1k -
Participant Holding a Lock on|
the Object Required by]
Application” on page 744

APPLICATION_HANDLE BIGINT “application_handle -
[Application handle monitor|
element” on page 506|

APPL_ID VARCHAR(128) “appl_id - Application 1D|
monitor element” on page 498

APPL_NAME VARCHAR(128) “appl_name - Application name|
monitor element” on page 501

AUTH_ID VARCHAR(128) “auth_id - Authorization ID” onl
[page 514|

AGENT_TID BIGINT

COORD_AGENT_TID BIGINT

AGENT_STATUS INTEGER “agent_status - DCS Application|
[Agents” on page 488

LOCK_TIMEOUT_VAL BIGINT “lock_timeout_val - Lock|
timeout value monitor element”]
on page 68§|

LOCK_WAIT_VAL BIGINT

64 Database Monitoring Guide and Reference

Table 6. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS (continued)

Column Name Data Type Description

WORKLOAD_ID INTEGER “workload_id - Workload ID|
monitor element” on page 994

WORKLOAD_NAME VARCHAR(128) “workload_name - Workload|
name monitor element” on page|
995

SERVICE_CLASS_ID INTEGER “service_class_id - Service class|
ID monitor element” on page|
851

SERVICE_SUBCLASS_NAME VARCHAR(128) “service_subclass_name -|
Service subclass name monitor|
lelement” on page 852|

CURRENT_REQUEST VARCHAR(32)

LOCK_ESCALATION CHAR(3) “lock_escalation - Lock]
lescalation monitor element” on|
page 674|

PAST_ACTIVITIES_WRAPPED CHAR(3)

CLIENT_USERID VARCHAR(255) “client_userid - Client user ID)|
monitor element” on page 538|

CLIENT_WRKSTNNAME VARCHAR(255) “client_wrkstnname - Client|
workstation name monitor|
element” on page 539

CLIENT_APPLNAME VARCHAR(255) “client_applname - Client]
application name monitor|
lelement” on page 533

CLIENT_ACCTNG VARCHAR(255) “client_acctng - Client]
laccounting string monitor|
lelement” on page 532|

OBJECT_REQUESTED VARCHAR(10)

LOCK_NAME CHAR(32) “lock_name - Lock name]
monitor element” on page 680|

LOCK_OBJECT_TYPE VARCHAR(32) “lock_object_type - Lock object]

type waited on monitor]

lelement” on page 682|

LOCK_OBJECT_TYPE_ID

CHAR(1) FOR BIT DATA

LOCK_ATTRIBUTES

CHAR(8)

“lock_attributes - Lock]

attributes monitor element” on|

page 671|

LOCK_CURRENT_MODE

BIGINT

“lock_current_mode - Original|

lock mode before conversion|

monitor element” on page 673|

LOCK_MODE_REQUESTED

BIGINT

“lock_mode_requested - Lock|

mode requested monitor|

element” on page 679

LOCK_MODE

BIGINT

“lock_mode - Lock mode|

monitor element” on page 678

LOCK_COUNT

BIGINT

“lock_count - Lock count|

monitor element” on page 672|

Chapter 4. Event monitors 65

Table 6. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANTS (continued)

Column Name Data Type Description

LOCK_HOLD_COUNT BIGINT “lock_hold_count - Lock hold|
count monitor element” on pagel
67

LOCK_RRIID BIGINT

LOCK_STATUS BIGINT “lock_status - Lock status]
monitor element” on page 685

LOCK_RELEASE_FLAGS CHAR(8) “lock_release_flags - Lock|
release flags monitor element”]
on page 684

LOCK_WAIT_START_TIME TIMESTAMP “lock_wait_start_time - Lock|
wait start timestamp monitor|
element” on page 688

LOCK_WAIT_END_TIME TIMESTAMP

TABLE_FILE_ID BIGINT “table_file_id - Table file ID|
monitor element” on page 893|

TABLE_NAME VARCHAR(128) “table_name - Table name|
monitor element” on page 893

TABLE_SCHEMA VARCHAR(128) “table_schema - Table schema|
name monitor element” on pagel
895

TABLESPACE_NAME VARCHAR(128) “tablespace_name - Table space]
name monitor element” on pagel
90

THRESHOLD_ID INTEGER

THRESHOLD_NAME VARCHAR(128) “threshold_name - Threshold|

name monitor element” on page|

923

Table 7. Information returned for a locking event monitor: Table name: LOCK_PARTICIPANT_ACTIVITIES

Column Name

Data Type

Description

XMLID

VARCHAR(1000) NOT NULL

PARTICIPANT_NO

INTEGER

“participant_no - Participant]

within Deadlock” on page 744|

ACTIVITY_ID INTEGER “activity_id - Activity ID|
monitor element” on page 482|
ACTIVITY_TYPE VARCHAR(10) “activity_type - Activity type|
monitor element” on page 483|
UOW_ID INTEGER “uow_id - Unit of work ID|
monitor element” on page 981
PACKAGE_NAME VARCHAR(128) “package_name - Package name]|
monitor element” on page 737
PACKAGE_SCHEMA VARCHAR(128) “package_schema - Package]
schema monitor element” on|
page 738|
PACKAGE_VERSION_ID VARCHAR(64) “package_version_id - Packagel

version monitor element” on|

page 738|

66 Database Monitoring Guide and Reference

Table 7. Information returned for a locking event monitor: Table name:

LOCK_PARTICIPANT_ACTIVITIES (continued)

Column Name

Data Type

Description

CONSISTENCY_TOKEN

VARCHAR(S)

“consistency_token - Packagel

consistency token monitor]

lelement” on page 556|

SECTION_NUMBER

BIGINT

“section_number - Section|

number monitor element” on|

page 845|

REOPT

VARCHAR(10)

INCREMENTAL_BIND

CHAR(3)

EFFECTIVE_ISOLATION

CHAR(2)

“effective_isolation - Effective|

isolation monitor element” on|

page 601

EFFECTIVE_QUERY_DEGREE

BIGINT

“effective_query_degree -

Effective query degree monitor|

lelement” on page 602|

STMT_LOCK_TIMEOUT

INTEGER

“stmt_lock_timeout - Statement]

lock timeout monitor element”|

on page 877]

STMT_TYPE

BIGINT

“stmt_type - Statement type]

monitor element” on page 884

STMT_QUERY_ID

BIGINT

“stmt_query_id - Statement|

query identifier monitor|

lelement” on page 880|

STMT_NEST_LEVEL

BIGINT

“stmt_nest_level - Statement]

nesting level monitor element”|

on page 877]

STMT_INVOCATION_ID

BIGINT

“stmt_invocation_id - Statement|

invocation identifier monitor]

lelement” on page 875|

STMT_SOURCE_ID

BIGINT

“stmt_source_id - Statement]

source identifier” on page 881]

STMT_PKGCACHE_ID

BIGINT

“stmt_pkgcache_id - Statement]

package cache identifier]

monitor element” on page 879

STMT_FIRST_USE_TIME

TIMESTAMP

“stmt_first_use_time - Statement|

first use timestamp monitor|

lelement” on page 874|

STMT_LAST_USE_TIME

TIMESTAMP

“stmt_last_use_time - Statement|

last use timestamp monitor]

lelement” on page 876|

STMT_TEXT

CLOB(2097152)

“stmt_text - SQL statement text]

monitor element” on page 883

Table 8. Information returned for a locking event m

onitor: Table name: LOCK_ACTIVITY_VALUES

Column Name

Data Type

Description

XMLID

VARCHAR(1000) NOT NULL

PARTICIPANT_NO

INTEGER

“participant_no - Participant|

within Deadlock” on page 744]

Chapter 4. Event monitors 67

Table 8. Information returned for a locking event monitor: Table name: LOCK_ACTIVITY_VALUES (continued)

Column Name Data Type Description

ACTIVITY_ID INTEGER “activity_id - Activity ID|
monitor element” on page 482

UOW_ID INTEGER “uow_id - Unit of work ID)|
monitor element” on page 981

STMT_VALUE_INDEX INTEGER “stmt_value_index - Value]
index” on page 887

STMT_VALUE_ISREOPT INTEGER “stmt_value_isreopt - Variable]

used for statement|
reoptimization monitor|
element” on page 888

STMT_VALUE_ISNULL INTEGER “stmt_value_isnull - Value has|
null value monitor element” on|

page 882|

STMT_VALUE_TYPE CHAR(16) “stmt_value_type - Value typ
monitor element” on page 888
STMT_VALUE_DATA CLOB(32K) “stmt_value_data - Value data”|

on page 88§|

Monitoring package cache events

The package cache event monitor captures data related to statement entries that
have been flushed from the database package cache. This event monitor provides
the history of the contents of the package cache which can help with SQL query
performance and problem determination issues.

Overview

The package cache event monitor collects the same information as the
MON_GET_PKG_CACHE_STMT table function, including the full set of available
activity metrics and the executable section information of an entry.

Two control mechanisms, on the CREATE EVENT MONITOR statement, help limit
the volume of data that can be captured. The two control mechanisms provide the
following capabilities:

1. Filter entries with the WHERE clause based on one or more of the following;:

* Whether the last update of the metrics for an entry occurs after a specific
time before it is evicted (UPDATED_SINCE_BOUNDARY_TIME). An entry
will only be collected if the time that the metrics were last updated is more
recent than boundary time defined for the event monitor. The boundary time
for an event monitor can be set using the MON_GET_PKG_CACHE_STMT
table function. If no boundary time has been set for the event monitor, the
UPDATED_SINCE_BOUNDARY_TIME clause will have no effect.

¢ The number of times the section of an entry was executed
(NUM_EXECUTIONS)

* The total aggregated amount of time spent executing the statement
(STMT_EXEC_TIME)

2. COLLECT DATA clause options:
* COLLECT BASE DATA

Same information collected as the MON_GET PKG_CACHE_STMT table
function, as well as the full set of available activity metrics

68 Database Monitoring Guide and Reference

* COLLECT DETAILED DATA

Collects the same information gathered with the COLLECT BASE DATA
clause and includes the executable section of the entry

When you need to investigate the individual execution of an SQL statement, you
can use the MON_GET_PKG_CACHE_STMT table function (if the entries are still
in the package cache) to compare the behavior of a cached entry relative to others.
The execution metrics, compilation environment, and detailed descriptions for a
cached entry are available for diagnostic purposes.

If an entry has already been flushed from the package cache, you can use the
package cache event monitor to review the history of the cached entries which
were flushed from the package cache. The history data contains the same
information that the MON_GET_PKG_CACHE_STMT table function provides. In
addition, the event monitor also provides the executable section of the statement.
All of this applies to both dynamic and static SQL statements.

Creating a package cache event monitor

To create the package cache event monitor and collect package cache event monitor
data, you must have DBADM or SQLADM authority.

The package cache event monitor only has the unformatted event table as the
output option.

Before you create a package cache event monitor, identify the table space where
you plan to store the unformatted event table for your event monitor. The
recommended practice is to have a table space dedicated and configured to store
the unformatted event table associated with any event monitor. Create the package
cache event monitor in a tablespace with at least 8K pagesize to ensure that the
event data is contained within the inlined BLOB column of the unformatted event
table. If the BLOB column is not inlined, then the performance of writing and
reading the events to the unformatted event table might not be efficient.

The database manager attempts to inline the event_data BLOB column in the
unformatted event table, but this is not always possible. To check that the rows in
the unformatted event table have been inlined, use the ADMIN_IS INLINED
function. If the rows have not been inlined, use the
ADMIN_EST_INLINE_LENGTH functions to determine how much space the rows
need.

Your other options, when you create an event monitor, are to specify any existing
table space or to not specify any and have one chosen by default.

To setup a package cache event monitor using defaults and best practices, complete
the following steps:

* Create the event monitor by issuing the CREATE EVENT MONITOR statement.
The following example uses defaults where possible and specifies to store the
unformatted event table in an existing table space MY_EVMON_TABLESPACE:

CREATE EVENT MONITOR MY_PKGCACHE_EVMON
FOR PACKAGE CACHE
WRITE TO UNFORMATTED EVENT TABLE (IN MY_EVMON_TABLESPACE)

Chapter 4. Event monitors 69

Enabling data collection

To enable data collection, you must activate the event monitor using the SET
EVENT MONITOR STATE statement. The package cache event monitor is not
passive; following activation, it automatically starts collecting data whenever a
statement is flushed from the package cache and meets the filter criteria set at the
time of creation of the package cache event monitor.

Accessing event data captured by a package cache event
monitor

This type of event monitor writes data in a binary format to an unformatted event
table. You can access this data using the following table functions:

¢ EVMON_FORMAT UE_TO_XML - extracts data from an unformatted event
table into an XML document.

e EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

The schema file ~/sql11ib/misc/DB2EvmonPkgCache.xsd is used to document the
expected output of the package cache event monitor report in an XML document.
The schema file will reference a common monitor schema file (DB2MonCommon . xsd)
to avoid duplicating the common contents.

An XML stylesheet is provided in ~/sql11ib/samples/jdbc/DB2EvmonPkgCache.xs1.

Use these table functions to specify the data to extract using a SELECT statement.
You have full control over selection, ordering, and other aspects provided by the
SELECT statement.

You can also use the db2evmonfmt command to perform the following tasks:

* Select events of interest based on the following attributes: executable ID, section
type, query cost estimate, statement package cache ID, and flush time.

* Choose whether to receive the output in the form of a text report or a formatted
XML document.

* Control the output format by creating your own XSLT style sheets instead of
using the ones provided by the db2evmonfmt command.

For example, the following command provides a package cache report that:

1. Selects package cache events that have occurred in the past 24 hours in the
database SAMPLE. These event records are obtained from the unformatted
event table called SAMPLE_PKGCACHE_EVENTS.

2. Provides formatted text output using the DB2EvmonPkgCache.xs1 style sheet.

java db2evmonfmt -d SAMPLE -ue SAMPLE_PKGCACHE_EVENTS -ftext -ss DB2EvmonPkgCache.xsl -hours 24

Collecting package cache event data and generating reports

You can use the package cache event monitor to collect data about statement
entries that were flushed from the database package cache. After the package cache
event data has been collected in an unformatted event table, follow the directions
in this task to obtain a text report.

To collect package cache event monitor data, you must have DBADM or SQLADM
authority.

70 Database Monitoring Guide and Reference

Event ID

Event Type
Event Timestamp
Member

Release

Section Type
Insert Timestamp
Executable ID
Package Schema

The package cache event monitor collects relevant history information about what
was in the package cache to help with query performance and problem
determination issues related to SQL statements. For example, some of the
information the package cache event monitor collects from the database package
cache is as follows:

* Executable ID (EXECUTABLE_ID)

* The estimated cost of the query (QUERY_COST_ESTIMATE)

* The time that the entry was flushed from the package cache (Event Timestamp)
This task provides instructions for collecting package cache event data.
Restrictions

Input data values are not viewable if you do not have DBADM or SQLADM
authority.

To collect detailed information regarding package cache events, perform the

following steps:

1. Create a package cache event monitor called cachestmtevmon by using the
CREATE EVENT MONITOR FOR PACKAGE CACHE statement, as shown in
the following example:

CREATE EVENT MONITOR cachestmtevmon FOR PACKAGE CACHE
WRITE TO UNFORMATTED EVENT TABLE

2. Activate the package cache event monitor called cachestmtevmon by running the
following statement:
SET EVENT MONITOR cachestmtevmon STATE 1

3. Unlike the locking and the unit of work event monitors, the package cache
event monitor automatically starts collecting data after the event monitor is
activated.

4. Connect to the database.

5. Run the application, workload or SQL statements for which you want to collect
event monitor information.

6. If you want to turn OFF package cache data collection, deactivate the event
monitor by running the following command:
SET EVENT MONITOR cachestmtevmon STATE 0

7. Obtain the package cache event report using the XML parser tool,

db2evmonfmt, to produce a flat-text report based on the event data collected in
the unformatted event table, for example:

java db2evmonfmt -d db_name -ue table_name -ftext -u user_id -p password

8. Analyze the report.

The following is an example of a report obtained by using the db2evmonfmt
Java-based report tool to convert data in the unformatted event table collected by
the package cache event monitor:

: PKGCACHEBASE

: 2009-11-06-12.32.06.442020
HC)

: 9070100

1 2009-11-06-12.28.04.246930
: 0100000000000000010000000000000000000000020020091106122804246932

Chapter 4. Event monitors 71

Package Name

Package Version ID
Section Number
Effective Isolation
Number Of Executions

Number Of Executions With Metrics

Prep Time
Last Metrics Update

Executions By Coordinator

: CS
1
H !

: 9
: 2009-11-06-12.28.07.905942
1

Executions By Coordinator With Metrics :
: DDL, (not Set Constraints)

1

: 1151051235329

: create event monitor cachestmtevmon for package cache write to unformatted event table

: 47454E5F434D504C010000000E000000800100000000000000000000000000000100000004000000000100000

Statement Type
Query Cost Estimate

Statement Package Cache ID

Statement Text
Compilation Environment

Section Environment

Metrics

WLM_QUEUE_TIME_TOTAL

WLM_QUEUE_ASSIGNMENTS_TOTAL

FCM_TQ_RECV_WAIT_TIME

FCM_MESSAGE_RECV_WAIT_TIME

FCM_TQ_SEND_WAIT_TIME

FCM_MESSAGE_SEND_WAIT_TIME

LOCK_WAIT_TIME
LOCK_WAITS
DIRECT_READ_TIME
DIRECT_READ_REQS
DIRECT_WRITE_TIME
DIRECT_WRITE_REQS
LOG_BUFFER_WAIT_TIME
NUM_LOG_BUFFER_FULL
LOG_DISK_WAIT_TIME
LOG_DISK_WAITS_TOTAL
POOL_WRITE_TIME
POOL_READ_TIME

AUDIT_FILE_WRITE_WAIT_TIME

AUDIT_FILE_WRITES_TOTAL

AUDIT_SUBSYSTEM_WAIT_TIME
AUDIT_SUBSYSTEM_WAITS_TOTAL

DIAGLOG_WRITE_WAIT_TIME
DIAGLOG_WRITES_TOTAL
FCM_SEND_WAIT_TIME
FCM_RECV_WAIT_TIME
TOTAL_ACT_WAIT_TIME

TOTAL_SECTION_SORT PROC_TIME

TOTAL_SECTION_SORTS
TOTAL_SECTION_SORT_TIME
TOTAL_ACT_TIME
TOTAL_ROUTINE_TIME
STMT_EXEC_TIME
COORD_STMT_EXEC_TIME

TOTAL_ROUTINE_NON_SECTION_PROC_TIME :
TOTAL_ROUTINE_NON_SECTION_TIME

TOTAL_SECTION_PROC_TIME
TOTAL_SECTION_TIME

TOTAL_ROUTINE_USER_CODE_PROC_TIME
TOTAL_ROUTINE_USER_CODE_TIME

ROWS_READ
ROWS_MODIFIED
POOL_DATA_L_READS
POOL_INDEX_L_READS
POOL_TEMP_DATA_L_READS
POOL_TEMP_INDEX_L_READS
POOL_XDA_L_READS
POOL_TEMP_XDA_L_READS
TOTAL_CPU_TIME
POOL_DATA_P_READS
POOL_TEMP_DATA_P_READS
POOL_XDA_P_READS
POOL_TEMP_XDA_P_READS
POOL_INDEX_P_READS
POOL_TEMP_TNDEX_P_READS
POOL_DATA_WRITES
POOL_XDA_WRITES
POOL_INDEX_WRITES
DIRECT_READS
DIRECT_WRITES
ROWS_RETURNED

DEADLOCKS

LOCK_TIMEOUTS

O WO OO WO DD OO OWOODODODOHWOODODODODODD D DD

COONOCOCODODODWO DD

1

0000000020000000400000008010000000000000300000008000000100100000000BOFA040000000100000018
010000B804BOFA050000000100000020010000B8040000060000000100000028010000B804000007000000010
0000030010000B8040000080000000100000038010000B8040000090000000500000040010000B80400000A00
00000800000048010000B80400000B000000OBOOOOO50010000B8040000100000000A00000060010000B8040
000130000000400000070010000000000000FO000000400000078010000000000000100000000000000050000
00000000000000000000000000300000000000000030000000000000004E000000000000004E0000000000000
04E0000000000000031202020200000002020444444444444000000000000000000000C000000000020091106

12280400000000000000000000000000000000000100000000000000

[}

=N

[}

72 Database Monitoring Guide and Reference

LOCK_ESCALS
FCM_SENDS_TOTAL
FCM_RECVS_TOTAL
FCM_SEND_VOLUME
FCM_RECV_VOLUME
FCM_MESSAGE_SENDS_TOTAL
FCM_MESSAGE_RECVS_TOTAL
FCM_MESSAGE_SEND_VOLUME
FCM_MESSAGE_RECV_VOLUME
FCM_TQ_SENDS_TOTAL
FCM_TQ_RECVS_TOTAL
FCM_TQ_SEND_VOLUME
FCM_TQ_RECV_VOLUME
TQ_TOT_SEND_SPILLS
POST_THRESHOLD_SORTS
POST_SHRTHRESHOLD_SORTS
SORT_OVERFLOWS
AUDIT_EVENTS_TOTAL
TOTAL_SORTS
THRESH_VIOLATIONS
NUM_LW_THRESH_EXCEEDED
TOTAL_ROUTINE_INVOCATIONS

[ER-NoNoNoRoNoNo No No Yo o Ro o Ro R Ro R o k= RN No)

Using package cache information to identify statements that are candidates for
performance tuning:

You can use the package cache event monitor along with in-memory metrics to
identify which statements from the package cache are costly to run. Once you
know which statements take a long time to run, you can do performance tuning on
them.

* You must have a table space in which to store event monitor output before you
attempt to create the event monitor. A table space with a page size of at least 8k
to store the unformatted event (UE) table produced by the event monitor is
recommended. However, even with an 8k page size, the BLOB column used for
storing the unformatted event data might not be stored inline within the table. If
you want improved performance, consider using a table space with a large page
size, such as 32k.

* For partitioned database environments, the table space must extend across all
partitions.

* Unless a table space is explicitly named in the CREATE EVENT MONITOR
command, the default table space for the database is used.

This task shows how you can examine all work done on the system between two
points in time to find the costliest statements in terms of total CPU time. Using the
package cache event monitor together with package cache information reflected in
in-memory monitor elements (as returned by the MON_GET_PKG_CACHE_STMT
or MON_GET_PKG_CACHE_STMT_DETAILS table functions) is useful because
you can see both statements in the cache as well as statements that have been
evicted from the cache. Once the costly statements have been identified, you can
then do performance tuning on these statements.

Note: You can choose from a number of monitor elements to use when
determining which statements are costly to run. In this example, CPU time is used
(“total_cpu_time - Total CPU time monitor element” on page 938). This
measurement shows actual CPU resources consumed; it does not reflect things like
lock wait time or other time spent during statement execution. You might instead
choose to use statement execution time (]”stmt_exec_time - Statement executionl
[fime monitor element” on page 873), which includes the time spent by all agents in
the section, and includes wait times, among other things. You can also choose from
many of the other time-spent elements returned by the package cache event
monitor. See [“Information written to relational tables for a package cache event]

Chapter 4. Event monitors 73

monitor” on page 87| or [“Information written to XML for a package cache event|
monitor” on page 80| for more information about which monitor elements you can
choose from.

Restrictions

In this particular example, the length of the analyzed statements is limited to 3000
characters. This limitation is due to the use of the GROUP BY clause used in the
statement, which cannot be used with LOB values, such as the stmt_text monitor
element.

1. Create a package cache event monitor to capture statements as they are
removed (evicted) from the package cache. For example, to create an event
monitor called EXPENSIVESTMTS, you could use the following SQL:

CREATE EVENT MONITOR EXPENSIVESTMTS FOR PACKAGE CACHE WRITE TO UNFORMATTED EVENT TABLE

This statement creates a package cache event monitor that writes to a UE table
with the same name as the event monitor, EXPENSIVESTMTS, in the default
table space for the database. You can override the default name for the UE
table using the TABLE table-name clause. You can also override the table space
used for the UE table by using the IN tablespace-name clause.

By default, all statements evicted from the package cache are captured by the
package cache event monitor. To limit the amount of information collected, you
can specify options as part of the CREATE EVENT MONITOR statement that
restrict the information collected. Refer to the documentation for the CREATE
EVENT MONITOR (package cache) statement for more information.

2. Next, activate the event monitor:
SET EVENT MONITOR EXPENSIVESTMTS STATE 1

Note: By default, this event monitor starts automatically upon database
activation, because the AUTOSTART option is applied by default. However,
because this event monitor is being created in an already-active database, you
must use the SET EVENT MONITOR command to start it manually.

3. Connect to the database and run whichever statements, workload or
applications for which you are interested in doing performance analysis. You
can collect as much information as you like. However, this type of performance
tuning works best when you have applications or workloads that run on a
regular basis; otherwise adjustments you make for previously executed
statements might not have any impact on statements that run in the future.

4. When you are finished collecting data, deactivate the event monitor:
SET EVENT MONITOR EXPENSIVESTMTS STATE 0

5. Extract the data from the UE table that was populated by the event monitor
using the EVMON_FORMAT_UE_TO_TABLES procedure.

CALL EVMON_FORMAT_UE_TO_TABLES ('PKGCACHE', NULL, NULL, NULL, NULL, NULL, NULL, -1,
'SELECT * FROM EXPENSIVESTMTS')

This procedure examines the UE table TRACKSTMTS produced by the event
monitor. It selects all of the records from the UE table, and from them, creates
two relational tables from the data collected by the package cache event
monitor:

* PKGCACHE_EVENT

* PCKCACHE_METRICS

The first table contains the most frequently used monitor elements and metrics
associated with each event captured. The second contains detailed metrics for
each event.

74 Database Monitoring Guide and Reference

Note: The values in the columns of PKGCACHE_METRICS can also be found
in the XML document contained in the METRICS column of the
PKGCACHE_EVENT table. They are provided in the PKGCACHE_METRICS
table for more convenient, column-oriented access.

6. Query the output from the event monitor to determine which statements took
the longest time to run. In this example, total CPU time (“total_cpu_time - Totall
[CPU time monitor element” on page 938) is the time-spent monitor element
used to determine overall cost:

WITH STMTS AS
(

SELECT SUM(TOTAL_CPU_TIME) AS TOTAL_CPU_TIME, EXECUTABLE_ID, VARCHAR(STMT_TEXT, 3000) AS STMT_TEXT
1] [FROM TABLE(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-2)) AS T

GROUP BY EXECUTABLE_ID, VARCHAR(STMT_TEXT, 3000)

UNION ALL

SELECT SUM(TOTAL_CPU_TIME) AS TOTAL_CPU_TIME, EXECUTABLE_ID, VARCHAR(STMT_TEXT, 3000) AS STMT_TEXT
2] [FROM PKGCACHE_EVENT E, PKGCACHE METRICS M WHERE E.XMLID = M.XMLID

GROUP BY EXECUTABLE_ID VARCHAR(STMT_TEXT 3000)

)
SELECT SUM(TOTAL_CPU_TIME) AS TOTAL_CPU_TIME, STMT_TEXT
FROM STMTS
GROUP BY EXECUTABLE_ID, STMT_TEXT
ORDER BY TOTAL_EXEC_TIME DESC
FETCH FIRST 10 ROWS ONLY;

In the preceding example, both the data returned from by the
MON_GET_PKG_CACHE_STMT table function (see) and the package cache
event monitor (see) are retrieved. Looking at both data sets lets you see
data for statements that still exist in the package cache, as well as data for
statements that have been evicted from the package cache. Doing so assures
that when you evaluate which statements are costly to run that all the
statements run between two points in time are considered. The preceding query
returns the following results:

Note: For the purposes of printing, the font size of the characters that comprise
the sample output that follows has been reduced. This output might be easier
to read from the online version of the topic (“Using package cache information
to identify statements that are candidates for performance tuning”) in the DB2
Information Center.

TOTAL_CPU_TIME STMT_TEXT

97796875 select xmlparse(document details_xml) from WLSTATS_TEST3 AS STATS, TABLE(MON_FORMAT_XML_WAIT_TIMES_BY_ROW(STATS.DETAILS_XML)) as t
94234375 select xmlparse(document details_xml) from WLSTATS_TEST3 AS STATS, TABLE(MON_FORMAT_XML_WAIT_TIMES_BY_ ROW(STATS.DETAILS_XML)) as t
32765625 select xmlparse(document details_xml) from WLSTATS_TEST3 AS STATS, TABLE(MON_FORMAT_XML_WAIT_TIMES_BY_ROW(STATS.DETAILS_XML)) as t
8375000 select xmlparse(document metrics) from PKGCACHE EVENT AS EVENTS, table (MON_FORMAT _ XML TIMES BY ROW(EVENTS METRICS)) as t
1953125 SELECT SUBSTR(METRICS.METRIC_NAME,1,25) AS METRIC NAME, TOTAL_TIME_VALUE FROM WLSTATS TESTSTAT AS STATS, TABLE(MON_FORMAT_XML_WAIT
1625000 WITH STMTS AS (" SELECT SUM(TOTAL CPU, TIME) AS TOTAL CPU TIME EXECUTABLE_ID, VARCHAR(STMT_TEXT, 3000) AS STMT_TEXT FROM TABLE(MON_
890625 SELECT SUBSTR(METRICS.METRIC_NAME,1,25) AS METRIC_NAME, TOTAL_TIME_VALUE FROM WLSTATS_TEST3 AS DBSTATS, TABLE(MON FORMAT_XML_TIMES
843750 INSERT INTO "ASRISK "."SYSSECTION" SELECT * FROM "SYSIBM"."SYSSECTION"
671875 SELECT SUBSTR(METRICS.METRIC_NAME,1,25) AS METRIC_NAME, (TOTAL_TIME_VALUE) FROM WLSTATS_TESTSTAT AS STATS, TABLE(MON_FORMAT_XML_WA

10 record(s) selected

Note: The STMT_TEXT column has been truncated for presentation purposes.

Use the output from the query shown in step El to determine which statements to
tune.

Using package cache information and db2advis to look for performance
improvement opportunities:

The DB2 Design Advisor can analyze SQL statements to make recommendations
for how to improve database performance. You can use statements from the
package cache (including statements captured by the package cache event monitor)
as input to the Design Advisor to identify changes you can make to improve the
performance for a given workload, or even for all statements run between two
points in time.

Chapter 4. Event monitors 75

* You must have a table space in which to store event monitor output before you
attempt to create the event monitor. A table space with a page size of at least 8k
to store the unformatted event (UE) table produced by the event monitor is
recommended. However, even with an 8k page size, the BLOB column used for
storing the unformatted event data might not be stored inline within the table. If
you want improved performance, consider using a table space with a large page
size, such as 32k.

* For partitioned database environments, the table space must extend across all
partitions.

* Unless a table space is explicitly named in the CREATE EVENT MONITOR
command, the default table space for the database is used.
* You must have created the explain tables required by the Design Advisor.

This task shows how you can use the package cache event monitor to track all
work done on the system between two points in time, and then use the db2advis
command to analyze high-cost statements that were run during that period. The
output of the db2advis command suggests adjustments or changes you can make
to your database to improve its performance, based on the statements run while
the package cache event monitor was active. Using the package cache event
monitor to capture these statements is useful if the statements in question are no
longer in the package cache.

Restrictions

In this particular example, the length of the analyzed statements is limited to 3000
characters. This limitation is due to the use of the GROUP BY clause used in the
statement, which cannot be used with LOB values, such as the stmt_text monitor
element.

1. Create a package cache event monitor to capture statements as they are
removed (evicted) from the package cache. For example, to create an event
monitor called TRACKSTMTS, you could use the following SQL:

CREATE EVENT MONITOR TRACKSTMTS FOR PACKAGE CACHE WRITE TO UNFORMATTED EVENT TABLE
This statement creates a package cache event monitor that writes to a UE table
with the same name as the event monitor, TRACKSTMTS.

2. Next, activate the event monitor:

SET EVENT MONITOR TRACKSTMTS STATE 1

3. Connect to the database and run whichever statements, workload or
applications for which you are interested in doing performance analysis. You
can collect as much information as you like. However, this type of performance
tuning works best when you have applications or workloads that run on a
regular basis; otherwise adjustments you make for previously executed
statements might not have any impact on statements that run in the future.

4. When you are finished collecting data, deactivate the event monitor:

SET EVENT MONITOR TRACKSTMTS STATE 0

5. Extract the data from the UE table that was populated by the event monitor

using the EVMON_FORMAT_UE_TO_TABLES procedure.

CALL EVMON_FORMAT UE_TO_TABLES
('PKGCACHE', NULL, NULL, NULL, NULL, NULL, NULL, -1,
'SELECT * FROM TRACKSTMTS')

This procedure creates two relational tables from the data collected by the
package cache event monitor:

 PKGCACHE_EVENT

76 Database Monitoring Guide and Reference

WITH STMTS AS

* PCKCACHE_METRICS

The first table contains the most frequently used monitor elements and metrics
associated with each event captured. The second contains detailed metrics for
each event.

Note: The values in the columns of PKGCACHE_METRICS can also be found
in the XML document contained in the METRICS column of the
PKGCACHE_EVENT table. They are provided in the PKGCACHE_METRICS
table for more convenient, column-oriented access.

Query the output from the event monitor to determine which statements took
the longest time to run. In this example, statement execution time
(“stmt_exec_time - Statement execution time monitor element” on page 873) is
the time-spent monitor element used to determine overall cost. This monitor
element is summed across all database partitions.

Tip: Save the output from the query into a text file. You will us this file in the
next step.

SELECT SUM(TOTAL_STMT_EXEC_TIME)/SUM(TOTAL_NUM_COORD_EXEC_WITH_METRICS) AS AVG_TIME_PER_EXEC,
STMT_TEXT, SUM(NUM_EXECUTIONS) AS NUM_EXECUTIONS, STMT_TYPE_ID

FROM (

SELECT SUM(STMT_EXEC_TIME) AS TOTAL_STMT_EXEC_TIME,
SUM(NUM_COORD_EXEC_WITH METRICS) AS TOTAL_NUM_COORD_EXEC WITH METRICS,
SUM(NUM_COORD_EXEC) AS NUM_EXECUTIONS,

VARCHAR(STMT TEXT, 3000) AS STMT_TEXT,
STMT_TYPE_ID

FROM PKGCACHE_EVENT AS E, PKGCACHE_METRICS AS M
WHERE E.XMLID = M.XMLID
AND NUM_COORD_EXEC_WITH_METRICS > 0

GROUP BY VARCHAR(STMT_TEXT, 3000),STMT TYPE_ID
ORDER BY TOTAL_NUM_COORD_EXEC_WITH_METRICS DESC
FETCH FIRST 50 ROWS ONLY

)
UNION ALL

SELECT SUM(STMT_EXEC_TIME) AS TOTAL_STMT EXEC_TIME,
SUM(NUM_COORD_EXEC_WITH_METRICS) AS TOTAL_NUM_COORD_EXEC_WITH_METRICS,
SUM(NUM_COORD_EXEC) AS NUM_EXECUTIONS,

VARCHAR(STMT TEXT, 3000) AS STMT_TEXT,
STMT_TYPE_ID

FROM TABLE (MON_GET_PKG_CACHE_STMT (NULL,NULL,NULL,-2)) AS T

WHERE NUM_COORD_EXEC_WITH_METRICS > 0

GROUP BY VARCHAR(STMT TEXT, 3000),STMT_TYPE_ID

ORDER BY TOTAL_NUM_COORD_EXEC_WITH_METRICS DESC

FETCH FIRST 50 ROWS ONLY

)
) AS Q_UA
GROUP BY STMT_TEXT, STMT_TYPE_ID
)
SELECT '--# SET FREQUENCY ' || NUM_EXECUTIONS || X'OA' || STMT_TEXT || ';°
FROM STMTS WHERE STMT_TYPE_ID LIKE 'DML, Select%' OR STMT_TYPE_ID LIKE 'DML, Insert%'

ORDER BY AVG_TIME_PER_EXEC DESC

FETCH FIRST 50 ROWS ONLY;

In the preceding sample statement, both the data from the package cache event
monitor and the in-memory information from the
MON_GET_PKG_CACHE_STMT table function are retrieved. Looking at both
data sets lets you see data for statements evicted from the package cache, as
well as statements that still exist in the package cache. Doing so assures that
when you evaluate which statements are costly to run that you also include
statements not yet evicted from the cache. In each case, the query retrieves the
top 50 statements from both the active package cache, and the package cache
event monitor, based on the number of times the statements ran. Then, from
these statements, the top 50 SELECT or INSERT statements are chosen
based on the average length of time the statements ran for.

Chapter 4. Event monitors 77

Note: You can choose from a number of monitor elements to use when
determining which statements are costly to run. In this example, statement
execution time is used. This measurement includes shows the amount of time
spent in execution by all members and agents executing this section, and
includes things like wait time. You might instead choose to use CPU time
(“total_cpu_time - Total CPU time monitor element” on page 938), which
reports only the time spent by the CPU processing the statement. You could
also choose from many of the other time-spent elements returned by the
package cache event monitor. See [“Information written to relational tables for a
package cache event monitor” on page 87| or [‘Information written to XML for a|
package cache event monitor” on page 80| for more information about which
monitor elements you can choose from.

In addition, the query presents the output in the --# SET FREQUENCY format the
Design Advisor uses for its analysis. The preceding query returns results like
the ones that follow:

--# SET FREQUENCY 1

WITH STMTS AS (SELECT SUM(TOTAL_STMT_EXEC_TIME)/SUM(TOTAL_NUM_COORD_EXEC_WITH_METRICS) AS AVG_TIME_PER_EXEC, STMT
--# SET FREQUENCY 2

WITH STMTS AS (SELECT SUM(TOTAL_CPU_TIME) AS TOTAL_CPU_TIME, EXECUTABLE_ID, VARCHAR(STMT TEXT, 3000) AS STMT_TEXT
--# SET FREQUENCY 1055

SELECT POLICY FROM SYSTOOLS.POLICY WHERE MED='DB2CommonMED' AND DECISION='NOP' AND NAME='CommonPolicy';

--# SET FREQUENCY 99

SELECT CREATOR, NAME, CTIME FROM SYSIBM.SYSTABLES WHERE TYPE='T' OR TYPE='S' OR TYPE='N' WITH UR;

--# SET FREQUENCY 1

UPDATE SYSTOOLS.HMON_ATM_INFO SET STATS_LOCK = 'N', REORG_LOCK = 'N';

--# SET FREQUENCY 1

UPDATE SYSTOOLS.HMON_ATM_INFO AS ATM SET STATS_FLAG = 'N', REORG_FLAG = 'N' WHERE (ATM.SCHEMA, ATM.NAME) IN (SEL
--# SET FREQUENCY 1

SELECT POLICY FROM SYSTOOLS.POLICY WHERE MED='DB2TableMaintenanceMED' AND DECISION='TableRunstatsDecision' AND NAM
--# SET FREQUENCY 83

WITH JTAB(JSCHEMA,JNAME) AS (VALUES(TABLE_SCHEMA(CAST(? AS varchar(128)), CAST(? AS varchar(128))), TABLE_NAME (CA
--# SET FREQUENCY 122

WITH VTYPED (NAME, SCHEMA) AS (VALUES(TABLE_NAME (CAST(? AS varchar(128)), CAST(? AS varchar(128))), TABLE_SCHEMA(
--# SET FREQUENCY 1210

SELECT COLNAME, TYPENAME FROM SYSCAT.COLUMNS WHERE TABNAME='POLICY' AND TABSCHEMA='SYSTOOLS';

--# SET FREQUENCY 105

SELECT TABNAME FROM SYSCAT.TABLES WHERE TABNAME='HMON_ATM_INFO' AND TABSCHEMA='SYSTOOLS';

--# SET FREQUENCY 104

DELETE FROM SYSTOOLS.HMON_ATM_INFO AS ATM WHERE NOT EXISTS (SELECT * FROM SYSIBM.SYSTABLES AS IBM WHERE ATM.NAME
--# SET FREQUENCY 1118

VALUES (SUBSTR(:H00003 ,:H00014, :HO0O15)) INTO :HO0009:HOO017 ;

--# SET FREQUENCY 274

INSERT INTO "ASRISK"."PKGCACHE_EVENT"("EVENT_ID","XMLID","EVENT_TYPE","EVENT_TIMESTAMP","MEMBER","SECTION_TYPE","I
--# SET FREQUENCY 1

SELECT IBM.TID, IBM.FID FROM SYSIBM.SYSTABLES AS IBM, SYSTOOLS.HMON_ATM_INFO AS ATM WHERE ATM.STATS_FLAG <> 'Y' AN
--# SET FREQUENCY 115

VALUES (SUBSTR(CAST(? AS CLOB(162)),CAST(? AS INTEGER),CAST(? AS INTEGER)));

--# SET FREQUENCY 8227

-# SET FREQUENCY 532

SELECT TBNAME, TBCREATOR FROM "ASRISK ".SYSINDEXES WHERE NAME = 'INDCOLUMNSO1' AND CREATOR = 'SYSIBM ';

--# SET FREQUENCY 105

SELECT TABNAME FROM SYSCAT.TABLES WHERE TABNAME='HMON_COLLECTION' AND TABSCHEMA='SYSTOOLS';

--# SET FREQUENCY 4091

SELECT STATS_LOCK, REORG_LOCK FROM SYSTOOLS.HMON_ATM_INFO WHERE SCHEMA = ? AND NAME = ? AND CREATE_TIME = ? FOR UP
--# SET FREQUENCY 17100

SELECT CREATE_TIME FROM SYSTOOLS.HMON_ATM_INFO WHERE SCHEMA = ? AND NAME = ? FOR UPDATE;

--# SET FREQUENCY 524

SELECT COUNT(*) FROM "SYSIBM".SYSTABLES WHERE NAME = 'SYSDATAPARTITIONEXPRESSION' AND CREATOR = 'SYSIBM ' AND TYP
--# SET FREQUENCY 532

SELECT COUNT(*) FROM "SYSIBM".SYSTABLES WHERE NAME = 'SYSCOLUMNS' AND CREATOR = 'SYSIBM ' AND TYPE = 'S';

47 record(s) selected

Note: The lines in the preceding sample output have been truncated for
presentation purposes.

7. Create an input file for the db2advis command using the statements returned
by the query in step (For more information about creating input
files for the db2advis command, refer to the reference documentation for that
command.)

78 Database Monitoring Guide and Reference

8. Run the db2advis command using the input file created in step
For example, if the input file you create is called pkgcache_stmts.txt, run a

command like the one that follows:
db2advis -d customer -i pkgcache stmts.txt -m MICP

where

* -d CUSTOMER identifies the name of the database for which you are
getting recommendations

* -i pkgcache_stmts.txt identifies the name of the input file for db2advis

¢ -m MICP is a directive to the db2advis command to produce the following
recommendations to improve performance:
M New materialized query tables
I New indexes
C Converting standard tables to multidimensional clustering tables (MQTs)
P Repartitioning existing indexes

The Design Advisor returns recommendations like ones that follow:

execution started at timestamp 2010-03-16-14.25.57.562000
Using the default table space name USERSPACE1
found [47] SQL statements from the input file
excluding statement [0] from the workload.
excluding statement [1] from the workload.
excluding statement [19] from the workload.
excluding statement [39] from the workload.
Recommending indexes...
Recommending MQTs...
Recommending Multi-Dimensional Clusterings...
Found 19 user defined views in the catalog table
Found [17] candidate MQTs
Getting cost of workload with MQTs
total disk space needed for initial set [0.159] MB
total disk space constrained to [69.215] MB
2 indexes in current solution
0 MQTs in current solution
total disk space needed for initial set [0.024] MB
total disk space constrained to [103.822] MB
No useful Multi-dimensional Clustering dimensions for this workload
[5651.8281] timerons (without recommendations)
[5519.8281] timerons (with current solution)
[2.34%] improvement

-- LIST OF MODIFIED CREATE-TABLE STATEMENTS WITH RECOMMENDED PARTITIONING KEYS AND TABLESPACES AND/OR RECOMMENDED MULTI-DIMENSIONAL CLUSTERINGS

-- No new partitioning keys or tablespaces are recommended for this workload.

-- LIST OF RECOMMENDED MQTs

-- RECOMMENDED EXISTING MQTs

-- UNUSED EXISTING MQTs

-- DROP TABLE "ASRISK "."ADEFUSR";

-- RECOMMENDED CLUSTERING INDEXES

-- LIST OF RECOMMENDED INDEXES

-- index[1], 0.024MB

Chapter 4. Event monitors 79

CREATE INDEX "ASRISK

"."IDX003161830530000" ON "ASRISK "."SYSINDEXES"

("CREATOR" ASC, "NAME" ASC, "TBCREATOR" ASC, "TBNAME"
ASC) ALLOW REVERSE SCANS COLLECT SAMPLED DETAILED STATISTICS;

COMMIT WORK

-- RECOMMENDED

EXISTING INDEXES

-- RUNSTATS ON
-- COMMIT WORK
-- RUNSTATS ON

-- COMMIT WORK ;

-- RUNSTATS ON
-- COMMIT WORK
-- RUNSTATS ON
-- COMMIT WORK
-- RUNSTATS ON

-- COMMIT WORK ;

-- RUNSTATS ON
-- COMMIT WORK
-- RUNSTATS ON
-- COMMIT WORK
-- RUNSTATS ON
-- COMMIT WORK

TABLE
%ABLE
%ABLE
%ABLE
%ABLE
%ABLE
%ABLE

TABLE

"SYSTOOLS"."POLICY" FOR SAMPLED DETAILED INDEX "SYSTOOLS"."POLICY_UNQ" ;

"SYSTOOLS"."HMON_ATM_INFO" FOR SAMPLED DETAILED INDEX "SYSTOOLS"."ATM_UNIQ" ;

"SYSIBM

"SYSIBM

"SYSIBM

"SYSIBM

"SYSIBM

"SYSIBM

-- UNUSED EXISTING INDEXES

."SYSDATAPARTITIONS" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDDATAPARTITIONSO3" ;

."SYSTABLES" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDTABLESO1" ;

."SYSTABLESPACES" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDTABLESPACESO4" ;

."SYSCOLUMNS" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDCOLUMNSO1" ;

."SYSINDEXES" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDINDEXESO2" ;

."SYSTRIGGERS" FOR SAMPLED DETAILED INDEX "SYSIBM "."INDTRIGGERS02" ;

-- DROP INDEX "ASRISK

" "PKGCACHE_EVENT_IND1";

Note: The output from the Design Advisor has been truncated for presentation
purposes.

Use the output from the Design Advisor to help when deciding what changes to
make to your database to improve performance.

Information written to XML for a package cache event monitor
Information written for a package cache event monitor from the
EVMON_FORMAT UE_TO_XML table function. This is also documented in the
DB2EvmonPkgCache.xsd file.

db2_pkgcache_event

The main schema that describes a package cache event in details.

Element content: ([section_type|, finsert_timestamp], [executable_id|,
[package_schemal, [package name|, [package version_id|, [section_number] {zero or
one times (?)} , leffective_isolation|, num_executions| lhum_exec_with_metrics|,
[prep_timel, [last_metrics_update|, Jnum_coord_exed, jnum_coord_exec_with_metrics|
,lstmt_type_id|, |query_cost_estimate], [stmt_pke cache_id|, |stmt_text|,
[comp_env_desd, [section_env], [activity_metrics|, ANY content (skip) {zero or
more (*)})

Attributes:

QName

Type

Fixed Default | Use Annotation

id

xs:long required

80 Database Monitoring Guide and Reference

QName Type Fixed |Default |Use Annotation
type xs:string - Max length: 32 required
(PKGCACHE_BASE,
PKGCACHE_DETAILED)
timestamp xs:dateTime required
member member_type required
release xs:long required
ANY attribute
from ANY
hamespace
section_type
The type of SQL statement processed. Possible values: D:Dynamic or S:Static. See
monitor element [“section_type - Section type indicator monitor element” on page|
for more details.
Contained by: [db2_pkgcache_event]
Element content:
Type Facet
xs:string Max length: 1
insert_timestamp
The time when the variation or section was inserted into the cache. See monitor
element [“insert_timestamp - Insert timestamp monitor element” on page 652 for
more details.
Contained by: [db2_pkgcache_event]
Element content:
Type Facet

xs:dateTime

executable id

A binary token generated on the data server that uniquely identifies the SQL
statement section that was executed. See monitor element [“executable_id -

[Executable ID monitor element” on page 606 for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type

Facet

xs:hexBinary

Max length: 32

Chapter 4. Event monitors

81

package_schema

The schema name of the package associated with an SQL statement. See monitor
element [“package_schema - Package schema monitor element” on page 738|for
more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:string Max length: 128

package_name

The name of the package that contains the SQL statement currently executing. See
monitor element [“package name - Package name monitor element” on page 737
for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:string Max length: 128

package_version_id

The package version identifies the version identifier of the package that contains
the SQL statement currently executing. See monitor element [“package_version_id -|
[Package version monitor element” on page 738| for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:string Max length: 64

section_number

The internal section number in the package for the SQL statement currently
processing or most recently processed. See monitor element [“section_number -
[Section number monitor element” on page 845|for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:long

82 Database Monitoring Guide and Reference

effective isolation

The isolation value in effect for the SQL statement while it was being run. See
monitor element |“effective_isolation - Effective isolation monitor element” on page|

for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:string Max length: 2
Attributes:

QName Type Fixed Default Use Annotation

id xs:long optional
num_executions
The number times the SQL statement has been executed. See monitor element
[‘num_executions - Statement executions monitor element” on page 721| for more
details.
Contained by: [db2_pkgcache_event]
Element content:

Type Facet

xs:long
num_exec_with_metrics
The number times the SQL statement has been executed with the metrics collected.
See monitor element [‘num_exec_with_metrics - Number of executions with metrics|
fcollected monitor element” on page 720| for more details.
Contained by: [db2_pkegcache_event]
Element content:

Type Facet

xs:long

prep_time

Time in milliseconds required to prepare an SQL statement if the activity is an SQL
statement. See monitor element [“prep_time - Preparation time monitor element” on|
page 804| for more details.

Contained by: [db2_pkegcache_event

Chapter 4. Event monitors 83

Element content:

Type Facet

xs:long

last_metrics_update

Timestamp reflecting the last time metrics were updated for this cache entry. See
monitor element [“last_metrics_update - Metrics last update timestamp monitor|
felement” on page 667 for more details.

Contained by: [db2_pkegcache_event]

Element content:

Type Facet

xs:dateTime

num_coord_exec

The number of times this section was executed by a coordinator agent. See monitor
element jnum_coord_exed for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type Facet

xs:long

num_coord_exec_with_metrics

The number of times this section was executed by a coordinator agent and
monitoring metrics were being captured. See monitor element
“num_coord_exec_with_metrics - Number of executions by coordinator agent withl
metrics monitor element” on page 720| for more details.

Contained by: [db2_pkegcache_event]

Element content:

Type Facet

xs:long

stmt_type_id

Statement type identifier. See monitor element [“stmt_type_id - Statement type|
lidentifier monitor element” on page 885| for more details.

Contained by: [db2_pkgcache_event]

Element content:

84 Database Monitoring Guide and Reference

Type

Facet

xs:string Max length: 32
Attributes:
QName Type Fixed Default Use Annotation
id xs:long optional
query_cost_estimate
Estimated cost for a query, as determined by the SQL compiler. See monitor
element [“query_cost_estimate - Query cost estimate monitor element” on page 813|
for more details.
Contained by: [db2_pkgcache_event]
Element content:
Type Facet
xs:long
stmt_pkg_cache_id
See monitor element [“stmt_pkegcache_id - Statement package cache identifier|
[monitor element” on page 879| for more details.
Contained by: [db2_pkgcache_event]
Element content:
Type Facet
xs:long
stmt_text
The text of the SQL statement. See monitor element
[‘stmt_text - SQL statement text monitor element” on page 883| for more details.
Contained by: [db2_pkgcache_event]
Element content:
Type Facet
xs:string Max length: 2097152

comp_env_desc

[‘comp_env_desc - Compilation environment monitor element” on page 542|

Contained by: [db2_pkegcache_event

Chapter 4. Event monitors 85

Element content:

Type

Facet

xs:hexBinary

Max length: 10240

section_env

A BLOB that contains the section for an SQL statement. See monitor element
[“section_env - Section environment monitor element” on page 844| for more details.

Contained by: [db2_pkgcache_event]

Element content:

Type

Facet

xs:hexBinary

Max length: 157286400

activity_metrics

The activity metrics for this cache entry.

Contained by: [db2_pkgcache_event]

Element content: ([wlm_queue_time_totall, [wlm_queue_assignments_total|,
fcm_tg_recv_wait_time], Jfcm_message_recv_wait_time|, |fcm_tq_send_wait_time| ,
fcm_message_send_wait_time], lock_wait_time|, [lock_waits|, [direct_read_time],
direct_read_reqs|, [direct write_timel, [direct_write_reqs|, [log_buffer wait time|,
num_log buffer_fulll, [log disk_wait_time[, log_disk_waits_totall, [pool_write_time|,
pool_read_timel, laudit_file_write_wait_time|, [audit_file_writes_totall,
audit_subsystem_wait_time], laudit_subsystem_waits_total|,
diaglog write_wait_time|, [diaglog writes_totall, [fem_send_wait_time/,
fcm_recv_wait_time], [total_act_wait_time|, Jtotal_section_sort_proc_time|,
total_section_sort_time| , |total_section_sorts , Itotal_act_timel , |rows_read| ,
rows_modified|, [pool_data_l_reads], [pool_index_I_reads|, |pool_temp_data_l_reads| ,
pool_temp_index_1_reads|, [pool_xda_l_reads|, [pool_temp_xda_l_reads|,
total cpu_timel, [pool data_p_reads|, |pool_temp_data_p_reads| , |pool_xda_p_reads| ,
pool_temp_xda_p_reads|, [pool_index_p_reads|, [pool_temp_index_p_reads|,
pool_data_writes|, [pool_xda_writes|, [pool_index_writes|, [direct_reads]|,
direct_writes|, [rows_returned|, [deadlocks], lock_timeouts|, [lock_escals|,
fcm_sends_totall, [fcm_recvs_totall, [fem_send_volume], lfcm_recv_volume|,
fcm_message_sends_total|, [fcm_message_recvs_totall, [fcm_message_send_volume|,
fcm_message_recv_volume| , Ifcm_tq_sends_tota]l , |fcm_tq_recvs_total| ,
fcm_tq_send_volumel ffem_tq_recv_volume], |tq_tot_send_spills| ,
post_threshold_sorts| , |post_shrthreshold_sorts| , |sort_0verflows| , |audit_events_t0tal|
[total_sorts|, [stmt_exec_time|, [coord_stmt_exec_time|{zero or one times (?)} ,
total_routine_non_sect_proc_time| , |t0tal_routine_non_sect_time| ,
total_section_proc_time|, Jtotal_section_time], |t0tal_app_section_executions| ,
total_routine_user_code_proc_time|, [total_routine_user _code_time],
total_routine_time|, thresh_violations|, jnum_Iw_thresh_exceeded],
total_routine_invocations|, ANY content (skip) {zero or more (*)})

Attributes:

86 Database Monitoring Guide and Reference

QName Type Fixed Default Use Annotation
release xs:long required

ANY attribute

from ANY

namespace

Information written to relational tables for a package cache event

monitor

Information written for a package cache event monitor from the
EVMON_FORMAT UE_TO_TABLES table function. This is also documented in the
DB2EvmonPkgCache.xsd file.

Table 9. Information returned for a package cache event monitor: Table name: PKGCACHE_EVENT

Column Name

Data Type

Description

XMLID VARCHAR(1000) NOT
NULL

EVENT_ID BIGINT NOT NULL

EVENT_TYPE VARCHAR(128) NOT

NULL

EVENT_TIMESTAMP

TIMESTAMP NOT NULL

MEMBER

SMALLINT NOT NULL

“member - Database member monitor|

element” on page 713

SECTION_TYPE CHAR(1) “section_type - Section type indicator]
monitor element” on page 846|
INSERT_TIMESTAMP TIMESTAMP “insert_timestamp - Insert timestamp]|

Imonitor element” on page 652

EXECUTABLE_ID

VARCHAR(32) FOR BIT

“executable_id - Executable ID monitor]

DATA element” on page 606|
PACKAGE_SCHEMA VARCHAR(128) “package_schema - Package schemal
monitor element” on page 738|
PACKAGE_NAME VARCHAR(128) “package_name - Package name monitor|
element” on page 737
PACKAGE_VERSION_ID VARCHAR(64) “package_version_id - Package version|
monitor element” on page 738
SECTION_NUMBER BIGINT “section_number - Section number]|
monitor element” on page 845
EFFECTIVE_ISOLATION CHAR(2) “effective_isolation - Effective isolation|
monitor element” on page 601
NUM_EXECUTIONS BIGINT “num_executions - Statement executions|
monitor element” on page 721
NUM_EXEC_WITH_METRICS BIGINT “num_exec_with_metrics - Number of]
executions with metrics collected monitor]
element” on page 720
PREP_TIME BIGINT “prep_time - Preparation time monitor
element” on page 804|
LAST_METRICS_UPDATE TIMESTAMP “last_metrics_update - Metrics last update|
timestamp monitor element” on page 667
NUM_COORD_EXEC BIGINT “num_coord_exec - Number of executions|

by coordinator agent monitor element” on|

page 719|

Chapter 4. Event monitors 87

Table 9. Information returned for a package cache event monitor: Table name: PKGCACHE_EVENT (continued)

Column Name

Data Type

Description

NUM_COORD_EXEC_WITH_METRICS

BIGINT

“num_coord_exec_with_metrics - Number]|

of executions by coordinator agent with|

metrics monitor element” on page 720

STMT_TYPE_ID

VARCHAR(32)

“stmt_type_id - Statement type identifier]

monitor element” on page 885|

QUERY_COST_ESTIMATE

BIGINT

“query_cost_estimate - Query cost|

estimate monitor element” on page 813|

STMT_PKG_CACHE_ID

BIGINT

STMT_TEXT

CLOB(2M)

“stmt_text - SQL statement text monitor]

element” on page 883

COMP_ENV_DESC

BLOB(10K)

“comp_env_desc - Compilation]

environment monitor element” on page

542

METRICS

BLOB(1M)

XML document containing metrics-related
monitor elements. The metrics in this
document are the same as those described
in the PKGCACHE_METRICS table that
appears later in this topic. See [Chapter 3]

“Interfaces that return monitor data in|

XML documents,” on page 9| for more

information.

SECTION_ENV

BLOB(150M)

“section_env - Section environment|

monitor element” on page 844|

Table 10. Information returned for a package cache event monitor: Table name: PKGCACHE_METRICS. The metrics
in this table are the same as those returned in the METRICS monitor element in the PKGCACHE_EVENT table

Column Name

Data Type

Description

XMLID

VARCHAR(1000) NOT
NULL

TOTAL_ACT_TIME

BIGINT

“total_act_time - Total activity time|

monitor element” on page 927

TOTAL_ACT_WAIT_TIME

BIGINT

“total_act_wait_time - Total activity wait]

time monitor element” on page 928

TOTAL_CPU_TIME

BIGINT

“total_cpu_time - Total CPU time monitor]

element” on page 938

POOL_READ_TIME

BIGINT

“pool_read_time - Total buffer pooll

[physical read time monitor element” on|

page 778|

POOL_WRITE_TIME

BIGINT

“pool_write_time - Total buffer pooll

physical write time monitor element” on|

page 792|

DIRECT_READ_TIME

BIGINT

“direct_read_time - Direct read time|

monitor element” on page 591|

DIRECT_WRITE_TIME

BIGINT

“direct_write_time - Direct write time]

monitor element” on page 596|

LOCK_WAIT_TIME

BIGINT

“lock_wait_time - Time waited on locks|

monitor element” on page 689

TOTAL_SECTION_SORT_TIME

BIGINT

“total_section_sort_time - Total section|

sort time monitor element” on page 964|

88 Database Monitoring Guide and Reference

Table 10. Information returned for a package cache event monitor: Table name:
PKGCACHE_METRICS (continued). The metrics in this table are the same as those returned in the METRICS
monitor element in the PKGCACHE_EVENT table

Column Name

Data Type

Description

TOTAL_SECTION_SORT_PROC_TIME

BIGINT

“total_section_sort_proc_time - Totall

section sort processing time monito

element” on page 963

TOTAL_SECTION_SORTS

BIGINT

“total_section_sorts - Total section sorts|

monitor element” on page 965|

LOCK_ESCALS

BIGINT

“lock_escals - Number of lock escalations|

monitor element” on page 675|

LOCK_WAITS

BIGINT

“lock_waits - Lock waits monitod

element” on page 691

ROWS_MODIFIED

BIGINT

“rows_modified - Rows modified monitod

element” on page 834|

ROWS_READ

BIGINT

“rows_read - Rows read monitor element”|

on page 835|

ROWS_RETURNED

BIGINT

“rows_returned - Rows returned monitor]|

element” on page 837

DIRECT_READS

BIGINT

“direct_reads - Direct reads from database|

monitor element” on page 592|

DIRECT_READ_REQS

BIGINT

“direct_read_regs - Direct read requests|

monitor element” on page 589

DIRECT_WRITES

BIGINT

“direct_writes - Direct writes to database|

monitor element” on page 597

DIRECT_WRITE_REQS

BIGINT

“direct_write_reqs - Direct write requests|

monitor element” on page 594

POOL_DATA_L_READS

BIGINT

“pool_data_l_reads - Buffer pool datal

logical reads monitor element” on page

761

POOL_TEMP_DATA_L_READS

BIGINT

“pool_temp_data_l_reads - Buffer pool

temporary data logical reads monitor]

element” on page 780|

POOL_XDA_L_READS

BIGINT

“pool_xda_l_reads - Buffer pool XDA datal

logical reads monitor element” on page|

793

POOL_TEMP_XDA_L_READS

BIGINT

“pool_temp_xda_l_reads - Buffer pooll

temporary XDA data logical reads|

monitor element” on page 787

POOL_INDEX_L_READS

BIGINT

“pool_index_l_reads - Buffer pool index|

logical reads monitor element” on page|

77

POOL_TEMP_INDEX_L_READS

BIGINT

“pool_temp_index_l_reads - Buffer pool|

temporary index logical reads monitor|

element” on page 784|

POOL_DATA_P_READS

BIGINT

“pool_data_p_reads - Buffer pool datal

physical reads monitor element” on page]

763

POOL_TEMP_DATA_P_READS

BIGINT

“pool_temp_data_p_reads - Buffer pooll

temporary data physical reads monitor]

element” on page 782|

Chapter 4. Event monitors 89

Table 10. Information returned for a package cache event monitor: Table name:
PKGCACHE_METRICS (continued). The metrics in this table are the same as those returned in the METRICS
monitor element in the PKGCACHE_EVENT table

Column Name

Data Type

Description

POOL_XDA_P_READS

BIGINT

“pool_xda_p_reads - Buffer pool XDA|

data physical reads monitor element” on|

[page 795|

POOL_TEMP_XDA_P_READS

BIGINT

“pool_temp_xda_p_reads - Buffer pool|

temporary XDA data physical reads|

monitor element” on page 789

POOL_INDEX_P_READS

BIGINT

“pool_index_p_reads - Buffer pool index|

physical reads monitor element” on page|

772

POOL_TEMP_INDEX_P_READS

BIGINT

“pool_temp_index_p_reads - Buffer pool|

temporary index physical reads monitor|

element” on page 786|

POOL_DATA_WRITES

BIGINT

“pool_data_writes - Buffer pool datal

writes monitor element” on page 764|

POOL_XDA_WRITES

BIGINT

“pool_xda_writes - Buffer pool XDA datal

writes monitor element” on page 797

POOL_INDEX_WRITES

BIGINT

“pool_index_writes - Buffer pool index|

writes monitor element” on page 773

TOTAL_SORTS

BIGINT

“total_sorts - Total sorts monitor element”]|

on page 969|

POST_THRESHOLD_SORTS

BIGINT

“post_threshold_sorts - Post threshold|

sorts monitor element” on page 802|

POST_SHRTHRESHOLD_SORTS

BIGINT

“post_shrthreshold_sorts - Post shared|

threshold sorts monitor element” on page|

800

SORT_OVERFLOWS

BIGINT

“sort_overflows - Sort overflows monitor

element” on page 858

WLM_QUEUE_TIME_TOTAL

BIGINT

“wlm_queue_time_total - Workload|

Imanager total queue time monitor|

element” on page 992|

WLM_QUEUE_ASSIGNMENTS_TOTAL

BIGINT

“wlm_queue_assignments_total -

Workload manager total queue|

assignments monitor element” on page

990

DEADLOCKS

BIGINT

“deadlocks - Deadlocks detected monitor|

element” on page 583

FCM_RECV_VOLUME

BIGINT

“fcm_recv_volume - FCM received|

volume monitor element” on page 614

FCM_RECVS_TOTAL

BIGINT

“fcm_recvs_total - FCM receives totall

monitor element” on page 616|

FCM_SEND_VOLUME

BIGINT

“fcm_send_volume - FCM send volumel

monitor element” on page 618|

FCM_SENDS_TOTAL

BIGINT

“fcm_sends_total - FCM sends total|

monitor element” on page 620

FCM_RECV_WAIT_TIME

BIGINT

“fcm_recv_wait_time - FCM received wait|

time monitor element” on page 615

90 Database Monitoring Guide and Reference

Table 10. Information returned for a package cache event monitor: Table name:
PKGCACHE_METRICS (continued). The metrics in this table are the same as those returned in the METRICS
monitor element in the PKGCACHE_EVENT table

Column Name

Data Type

Description

FCM_SEND_WAIT_TIME

BIGINT

“fcm_send_wait_time - FCM send wait]

time monitor element” on page 619

LOCK_TIMEOUTS

BIGINT

“lock_timeouts - Number of lock timeouts|

monitor element” on page 686]

LOG_BUFFER_WAIT_TIME

BIGINT

“log_buffer_wait_time - Log buffer waiﬂ

time monitor element” on page 694|

NUM_LOG_BUFFER_FULL

BIGINT

“num_log_buffer_full - Number of full log|

buffers monitor element” on page 723|

LOG_DISK_WAIT_TIME

BIGINT

“log_disk_wait_time - Log disk wait time]

monitor element” on page 695

LOG_DISK_WAITS_TOTAL

BIGINT

“log_disk_waits_total - Total log disk|

waits monitor element” on page 696|

TOTAL_ROUTINE_TIME

BIGINT

“total_routine_time - Total routine timel

monitor element” on page 954|

TOTAL_ROUTINE_INVOCATIONS

BIGINT

“total_routine_invocations - Total routine|

invocations monitor elements” on page|

951

COORD_STMT_EXEC_TIME

BIGINT

“coord_stmt_exec_time - Execution time

for statement by coordinator agent]

monitor element” on page 567

STMT_EXEC_TIME

BIGINT

“stmt_exec_time - Statement executionl

time monitor element” on page 873

TOTAL_SECTION_TIME

BIGINT

“total_section_time - Total section time]

monitor element” on page 967

TOTAL_SECTION_PROC_TIME

BIGINT

“total_section_proc_time - Total section|

[processing time monitor element” on page

961

TOTAL_ROUTINE_NON_SECT_TIME

BIGINT

“total_routine_non_sect_time -

[Non-section routine execution time]

monitor elements” on page 953

TOTAL_ROUTINE_NON_SECT_
PROC_TIME

BIGINT

“total_routine_non_sect_proc_time -|

[Non-section processing time monitor|

element” on page 952|

FCM_TQ_RECV_WAIT_TIME

BIGINT

“fcm_tq_recv_wait_time - FCM table|

queue received wait time monitor|

element” on page 622|

FCM_MESSAGE_RECV_WAIT_TIME

BIGINT

“fcm_message_recv_wait_time - FCM|

message received wait time monitor

element” on page 609

FCM_TQ_SEND_WAIT_TIME

BIGINT

“fcm_tq_send_wait_time - FCM table]

queue send wait time monitor element”|

on page 625|

FCM_MESSAGE_SEND_WAIT_TIME

BIGINT

“fcm_message_send_wait_time - FCM|

imessage send wait time monitor element”]

on page 612]

Chapter 4. Event monitors 91

Table 10. Information returned for a package cache event monitor: Table name:
PKGCACHE_METRICS (continued). The metrics in this table are the same as those returned in the METRICS
monitor element in the PKGCACHE_EVENT table

Column Name

Data Type

Description

AUDIT_FILE_WRITE_WAIT_TIME

BIGINT

“audit_file_write_wait_time - Audit file]

write wait time monitor element” on page

510

AUDIT_FILE_WRITES_TOTAL

BIGINT

“audit_file_writes_total - Total audit files|

written monitor element” on page 511

AUDIT_SUBSYSTEM_WAIT_TIME

BIGINT

“audit_subsystem_wait_time - Audit]

subsystem wait time monitor element” on|

page 512|

AUDIT_SUBSYSTEM_WAITS_TOTAL

BIGINT

“audit_subsystem_waits_total - Total auditf

subsystem waits monitor element” on|

page 513

DIAGLOG_WRITE_WAIT_TIME

BIGINT

“diaglog_write_wait_time - Diagnostic log]|

file write wait time monitor element” on|

[page 582|

DIAGLOG_WRITES_TOTAL

BIGINT

“diaglog_writes_total - Total diagnostid|

log file writes monitor element” on page]

588

FCM_MESSAGE_SENDS_TOTAL

BIGINT

"“fcm_message_sends_total - Total FCM|

Imessage sends monitor element” on pagel

613]

FCM_MESSAGE_RECVS_TOTAL

BIGINT

“fcm_message_recvs_total - Total FCM|

message receives monitor element” o

page 610|

FCM_MESSAGE_SEND_VOLUME

BIGINT

“fcm_message_send_volume - FCM]

message send volume monitor element’]

on page 611]

FCM_MESSAGE_RECV_VOLUME

BIGINT

“fcm_message_recv_volume - FCM|

message received volume monitor]

element” on page 60|

FCM_TQ_SENDS_TOTAL

BIGINT

“fcm_tq_sends_total - FCM table queue|

send total monitor element” on page 626|

FCM_TQ_RECVS_TOTAL

BIGINT

“fcm_tq_recvs_total - FCM table queue

receives total monitor element” on pagel

623]

FCM_TQ_SEND_VOLUME

BIGINT

“fcm_tq_send_volume - FCM table queue

send volume monitor element” on page|

624

FCM_TQ_RECV_VOLUME

BIGINT

“fcm_tq_recv_volume - FCM table queue|

received volume monitor element” on|

page 621

TQ_TOT_SEND_SPILLS

BIGINT

“tq_tot_send_spills - Total number of table|

queue buffers overflowed monitor|

element” on page 977

AUDIT_EVENTS_TOTAL

BIGINT

“audit_events_total - Total audit events|

monitor element” on page 509

TOTAL_APP_SECTION_EXECUTIONS

BIGINT

“total_app_section_executions - Total|

application section executions monitor|

element” on page 931]

92 Database Monitoring Guide and Reference

Table 10. Information returned for a package cache event monitor: Table name:
PKGCACHE_METRICS (continued). The metrics in this table are the same as those returned in the METRICS
monitor element in the PKGCACHE_EVENT table

Column Name Data Type Description

TOTAL_ROUTINE_USER_CODE_ BIGINT “total_routine_user_code_proc_time -

PROC_TIME Total routine user code processing time|
monitor element” on page 955|

TOTAL_ROUTINE_USER_CODE_TIME BIGINT “total_routine_user_code_time - Totall
routine user code time monitor element”
on page 95§|

THRESH_VIOLATIONS BIGINT “thresh_violations - Number of threshold|
violations monitor element” on page 921

NUM_LW_THRESH_EXCEEDED BIGINT “num_lw_thresh_exceeded - Number of

lock wait thresholds exceeded monitor|

element” on page 725|

Monitoring unit of work events

The unit of work event monitor records an event whenever a unit of work is
completed, that is, whenever there is a commit or a rollback. This historical
information about individual units of work is useful for chargeback purposes
(charging by CPU usage) and for monitoring compliance with response time
service level objectives.

The unit of work event monitor is one way to perform system perspective
monitoring with request metrics. The most closely related alternatives or
complements to the unit of work event monitor are either the statistics event
monitor or the MON_GET_UNIT_OF_WORK and
MON_GET_UNIT_OF_WORK_DETAILS table functions.

Starting with DB2 Version 9.7 Fix Pack 1, using the unit of work event monitor,
you can collect a listing of packages used within a unit of work, as well as the
nesting level at which it was used, to help facilitate stored procedure

troubleshooting.

To create the unit of work event monitor and collect unit of work event monitor
data, you must have DBADM or SQLADM authority.

Creating a unit of work event monitor and configuring data

collection

Before you create a unit of work event monitor, identify the table space where you
plan to store the unformatted event table for your event monitor. The
recommended practice is to have a table space dedicated and configured to store
the unformatted event table associated with any event monitor. Create the unit of
work event monitor in a tablespace with at least 8K pagesize to ensure that the
event data is contained within the inlined BLOB column of the unformatted event
table. If the BLOB column is not inlined, then the performance of writing and
reading the events to the unformatted event table might not be efficient.

The database manager attempts to inline the event_data BLOB column in the
unformatted event table, but this is not always possible. To check that the rows in
the unformatted event table have been inlined, use the ADMIN_IS_INLINED

Chapter 4. Event monitors 93

function. If the rows have not been inlined, use the
ADMIN_EST_INLINE_LENGTH functions to determine how much space the rows
need.

Your other options when you create an event monitor are to specify any existing
table space or to not specify any and have one chosen by default.

To setup a unit of work event monitor using defaults and best practices, complete

the following steps:

1. Create the event monitor by issuing the CREATE EVENT MONITOR statement.
The following example uses defaults where possible and specifies to store the
unformatted event table in an existing table space:

CREATE EVENT MONITOR MY_UOW_EVMON
FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE (IN MY_EVMON_TABLESPACE)
2. Configure what data to collect. The following statement illustrates a simple
approach:

db2 update db cfg for dbname using mon uow_data base
Configuring data collection

To configure data collection, you must also specify the subset of the system
workload for which to capture events and how much detail to collect for each
event. By default unit of work data is not collected. You can change the default
settings by using one of the following settings:

e The mon_uow_data database configuration parameter

e The COLLECT UNIT OF WORK DATA clause of the CREATE and ALTER
WORKLOAD statements.

The following levels for data collection are available to you:

NONE
No unit of work data collected.

BASE Basic unit of work data collected.

PACKAGE LIST
The package list for transactions associated with this unit of work, as well
as the basic unit of work data, is collected.

If either the mon_uow_data database configuration parameter or the COLLECT
UNIT OF WORK DATA clause of the CREATE/ALTER WORKLOAD statement is
set to BASE, then that is the effective setting for the workload.

If you want to enable data collection for only selected workloads, then set
mon_uow_data database configuration parameter to NONE and set the level to
BASE for the desired workloads.

Requests metrics is one of the types of information that you can collect with a unit
of work event monitor. The unit of work event monitor is one of the interfaces
affected by the setting for request metric collection. By default, request metrics are
collected and reported in applicable table functions and event monitors, including
the unit of work event monitor. You can change the default setting by using one of
the following settings:

* The mon_req_metrics database configuration parameter

94 Database Monitoring Guide and Reference

* The COLLECT REQUEST METRICS clause of the CREATE/ALTER SERVICE
CLASS statement for a service superclass.

Changing these settings affects any table function or event monitor that can report
request metrics.

Accessing event data captured by a unit of work event monitor

This type of event monitor writes data in a binary format to an unformatted event
table. You can access this data using the following table functions:

e EVMON_FORMAT UE_TO_XML - extracts data from an unformatted event
table into an XML document.

¢ EVMON_FORMAT UE_TO_TABLES - extracts data from an unformatted event
table into a set of relational tables.

Use these table functions to specify the data to extract using a SELECT statement.
You have full control over selection, ordering, and other aspects provided by the
SELECT statement.

If you are generating package listing information,
EVMON_FORMAT_UE_TO_XML generates a single XML document that contains
both the basic unit of work event monitor data as well as the package listing.
EVMON_FORMAT_UE_TO_TABLES produces two tables, one for the base unit of
work event monitor information, and another for the package listing information.
You can join the two using the values contained in the MEMBER,
APPLICATION_ID and UOW_ID columns.

You can also use the db2evmonfmt command to perform the following tasks:

* Select events of interest based on the following attributes: event ID, event type,
time period, application, workload, or service class.

* Choose whether to receive the output in the form of a text report or a formatted
XML document.

* Control the output format by creating your own XSLT style sheets instead of
using the ones provided by the db2evmonfmt command.

For example, the following command provides a unit of work report that:

1. Selects unit of work events that have occurred in the past 24 hours in the
database SAMPLE. These event records are obtained from the unformatted
event table called SAMPLE_UOW_EVENTS.

2. Provides formatted text output using the DB2EvmonUOW.xsl style sheet.
java db2evmonfmt -d SAMPLE -ue SAMPLE_UOW_EVENTS -ftext -ss DB2EvmonUOW.xs1 -hours 24

Collecting unit of work event data and generating reports

You can use the unit of work event monitor to collect data about transactions that
can be used for chargeback purposes. After the transaction event data has been
collected in an unreadable form in an unformatted event table, this task describes
how to obtain a readable text report.

To collect unit of work event monitor data, you must have SYSADM or SYSCTRL
authority.

The unit of work event monitor collects relevant information that identifies
application transactions and the corresponding CPU usage that can be used for
chargeback purposes. For example, some of the information the unit of work event
monitor collects for a transaction event is as follows:

Chapter 4. Event monitors 95

* Total CPU usage time (TOTAL_CPU_TIME)
* Application handle (APPLICATION_HANDLE)

This task provides instructions for collecting unit of work event data for a given
workload.

Restrictions

Input data values are not viewable if you do not have SYSADM or SYSCTRL
authority.

To collect detailed information regarding unit of work events, perform the
following steps:

1. Create a unit of work event monitor called uowevmon by using the CREATE
EVENT MONITOR FOR UNIT OF WORK statement, as shown in the following
example:

CREATE EVENT MONITOR uowevmon FOR UNIT OF WORK
WRITE TO UNFORMATTED EVENT TABLE

2. Activate the unit of work event monitor called uowevmon by running the
following statement:
SET EVENT MONITOR uowevmon STATE 1

3. Enable the unit of work event data collection at the workload level using the
ALTER WORKLOAD statement with statement history. To collect unit of work
data for the FINANCE and PAYROLL applications, issue the following
statements:

ALTER WORKLOAD finance COLLECT UNIT OF WORK DATA WITH HISTORY
ALTER WORKLOAD payroll COLLECT UNIT OF WORK DATA WITH HISTORY

4. Rerun the workload in order to collect unit of work transaction events.
5. Connect to the database.
6. Obtain the unit of work event report using the following approach:

a. Use the XML parser tool, db2evmonfmt, to produce a flat-text report based
on the event data collected in the unformatted event table, for example:
java db2evmonfmt -d db_name -ue table_name -ftext -u user_id -p password

7. Analyze the report to determine how much CPU time applications are using so
that appropriate charges can be billed.

8. If you want to turn OFF unit of work data collection for both FINANCE and
PAYROLL applications, run the following statements:

ALTER WORKLOAD finance COLLECT UNIT OF WORK DATA NONE
ALTER WORKLOAD payroll COLLECT UNIT OF WORK DATA NONE

The following is an example of a report obtained by using the db2evmonfmt
Java-based report tool to convert data in the unformatted event table collected by
the unit of work event monitor:

Event ID 1

Event Type : uow

Event Timestamp : 2008-10-31-13.29.04.130849
Member of detection : 0

Member Activation Time : 2008-10-31T13:28:48.538973
Coordinator Member : 0

96 Database Monitoring Guide and Reference

Connection Level Details

Application ID

: *LOCAL.gstager.081031172848

Application Handle : 20

Application Name : db2bp

Session Authorization ID : GSTAGER

System Authorization ID : GSTAGER

Connection Timestamp : 2008-10-31713:28:48.538973
Client Process ID . 28167

Client Platform : 30

Client Product ID : SQLO9070

Client Hostname : gilera

Client Port Number : 30143

UOW Level Details

Start Time : 2008-10-31T13:28:51.560138
Stop Time : 2008-10-31T13:29:04.130849
Completion Status : COMMIT

UOW ID : 5

Workoad Occurrence ID 01

Workload Name : SYSDEFAULTUSERWORKLOAD
Workoad ID 01

Client userid :

Client Workstation Name

Client Application Name

Client Accounting String :

Local Transaction ID : 00000000000000EB

Global Transaction ID : 00
Log Space Used : 0

UOW Metrics

TOTAL_CPU_TIME : 7459

TOTAL_WAIT_TIME : 0

ACT_ABORTED_TOTAL : 0

Package List

Package List Count : 13

Package List Exceeded : yes/no

PACKAGE_ID NESTING_LEVEL ROUTINE_ID INVOCATON_ID ELAPSED_TIME

274 0 0 0 153
145 0 49378 0 8276
145 1 321 1 72617

Calculating the CPU time used by different applications or workloads with the
unit of work event monitor:

This topic shows one way that you can use the unit of work event monitor in
day-to-day database operations.

In some business environments, departments are billed for the processing time
their applications use. You can use the unit of work event to record the CPU time
used by different application, workloads, or service classes. This information can,
in turn, be used in accounting applications that perform billing for system
resources.

* You must have a table space in which to store event monitor output before you
attempt to create the event monitor. A table space with a page size of at least 8k

Chapter 4. Event monitors 97

to store the unformatted event (UE) table produced by the event monitor is
recommended. However, even with an 8k page size, the BLOB column used for
storing the unformatted event data might not be stored inline within the table. If
you want improved performance, consider using a table space with a large page
size, such as 32k.

* For partitioned database environments, the table space must extend across all
partitions.

¢ Unless a table space is explicitly named in the CREATE EVENT MONITOR
command, the default table space for the database is used.

This task describes a basic scenario for “charge-back” accounting. In the example
that follows, all work performed on the system is tracked. From the data gathered,
reports are created that show the CPU time used by different applications.

Depending on how your organization is set up, tracking system time based on
workload might be appropriate. Alternatively, you can also look at the CPU time
used in different service super classes, by specific workloads, or even by different
users. If the data is written to relational tables, as the example in this task shows,
you can use SQL to query and present the data in almost limitless ways.

Note: Activities within a unit of work can run in different service subclasses. For
this reason, it is not appropriate to aggregate unit of work information by service
subclass. If you want to aggregate CPU time by service class, use the activity event
monitor instead.

1. Create a unit of work event monitor to capture information about units of work
as they finish. For example, to create an event monitor called TRACKWORK,
you might could use the following SQL:

CREATE EVENT MONITOR TRACKWORK FOR UNIT OF WORK WRITE TO UNFORMATTED EVENT TABLE

This statement creates a unit of work event monitor that writes to an
unformatted event (UE) table. The UE table has the same name as the event
monitor itself, TRACKWORK, and it is stored in the default table space.

2. Tell the database manager that you want to collect event information for all
units of work completed on the database by running the following command:

UPDATE DATABASE CONFIGURATION FOR dbname USING MON_UOW_DATA BASE

This command causes information about all units of work executed on the data
server to be sent to the active unit of work event monitors when the units of
work complete. See [“Configuring data collection” on page 94| for more
information about controlling the scope of the unit of work data that is
collected.

3. Next, activate the event monitor:
SET EVENT MONITOR TRACKWORK STATE 1

Note: By default, this event monitor starts automatically upon database
activation, because the AUTOSTART option is applied by default. However,
because this event monitor is being created in an already-active database, you
must use the SET EVENT MONITOR command to start it manually.

From this point on, the unit of work event monitor captures information for
each unit of work as it runs to completion. As each unit of work completes, the
event monitor adds a record for the event to the UE table TRACKWORK.

4. When you are ready to collect data for reporting purposes, you must extract
the records from the TRACKWORK UE table.

98 Database Monitoring Guide and Reference

CLIENT_ID CLIENT_APP

You can view this information in XML or relational format, using either the
EVMON_FORMAT_UE_TO_XML or the EVMON_FORMAT_UE_TO_TABLES
procedure to convert the data in the UE table. Alternatively, you can use the
db2evmonfmt tool to create a text report of the information returned by the
event monitor. This example shows the use of
EVMON_FORMAT_UE_TO_TABLES to create relational tables that you can
query in whatever way suits your needs.

CALL EVMON_FORMAT_UE_TO_TABLES
("UOW', NULL, NULL, NULL, NULL, NULL, NULL, -1, 'SELECT % FROM TRACKWORK')

The EVMON_FORMAT_UE_TO_TABLES procedure examines the UE table
TRACKWORK produced by the event monitor; it selects each of the records
from the UE table, and from them, creates rows containing the data collected
by the unit of work event monitor in two relational tables:

e UOW_EVENT
« UOW_METRICS

The first table contains the most frequently used monitor elements and metrics
associated with each event captured. The second contains detailed metrics for
each event.

Notes:

* If you specify PKGLIST rather than BASE for the MON_UOW_DATA
configuration parameter in step the
EVMON_FORMAT_UE_TO_TABLES procedure creates a third table called
UOW_PACKAGE_LIST. This table contains package list information related
to the units of work. However, in this example, because only basic monitor
elements are collected (see step |§ on page 98iD, this table will not contain any
data. (See [“Unit of work event monitor package listing information” on page
for more information about how the package list information can be
used.)

* The values in the columns of UOW_METRICS can also be found in the XML
document contained in the METRICS column of the UOW_EVENT table.
They are provided in the UOW_METRICS table for more convenient,
column-oriented access.

. Query the tables produced in the previous step to see how CPU time was used

by applications. The statement that follows returns a breakdown of total CPU
time used by different users on the system since the unit of work event monitor
was initialized. (This example assumes that client applications have identified
themselves to the database using the sqleseti API, or through whatever
application development environment you might be using, such as IBM®
Rational® Application Developer for WebSphere® Software.

SELECT SUBSTR(E.CLIENT_USERID,1,10) AS CLIENT_ID,
SUBSTR(E.CLIENT_APPLNAME,1,80) AS CLIENT_APP,
SUBSTR(E.CLIENT_WRKSTNNAME,1,10) AS WKSTN,
SUM(M.TOTAL_CPU_TIME) AS CPU_TIME
FROM UOW_EVENT E, UOW_METRICS M

WHERE M.APPLICATION_ID = E.APPLICATION_ID

AND M.UOW_ID = E.UOW_ID

AND M.MEMBER = E.MEMBER
GROUP BY E.CLIENT_USERID, E.CLIENT_APPLNAME, E.CLIENT_WRKSTNNAME
ORDER BY CPU_TIME DESC;

The preceding query returns the following results:
WKSTN CPU_TIME

987770013

Chapter 4. Event monitors 99

DB2BATCH 249375000

CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003021324173 91181678
CLP C:\DOCUME~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1004201047173 66097348
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191536588 28824420
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191536434 27555568
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221122075 16203116
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221118191 15759227
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221531062 15630121
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221117466 15236718
CLP C:\DOCUME™1\ALLUSE~I\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221116141 14607249
CLP C:\DOCUME~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003251550366 14427883
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003051054311 1312500
CLP C:\DOCUME™1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003051053301 1296875
CLP C:\DOCUME™1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003051139066 1296875
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003051152281 1281250
CLP C:\DOCUME™1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003041230283 1046875

asrisk2 1031250
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003291503479 515625
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003251506219 484375
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221444488 453125
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003021323249 406250
CLP C:\DOCUME™1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003251544498 296875
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003171431559 171875
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003041227488 156250
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003221117188 109375
CLP C:\DOCUME~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003021333329 62500
CLP C:\DOCUME™~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191502148 62500
CLP C:\DOCUME~1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191527385 62500
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191528492 62500
CLP C:\DOCUME™1\ALLUSE~1\APPLIC™~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191530518 62500
CLP C:\DOCUME™1\ALLUSE~1\APPLIC~1\IBM\DB2\DB2COPY1\DB2\TMP\CCSCRIPT1003191533265 62500
CLP C:\Documents and Settings\A11 Users\Application Data\IBM\DB2\DB2COPY1\DB2DAS 62500

6. At this point, the unit of work event monitor TRACKWORK is still collecting
information. Depending on how you want to track CPU time used by different
applications, users or workloads, you can choose to take one of the following
courses of action:

* If you want to calculate CPU usage on a daily basis, you can leave this unit
of work event monitor active. Each day, run the
EVMON_FORMAT_UE_TO_TABLES procedure to retrieve just the time-spent
metrics for the preceding day:

CALL EVMON_FORMAT UE_TO_TABLES
("UOW", NULL, NULL, NULL, NULL, NULL, NULL, -1,
'SELECT * FROM TRACKWORK
WHERE (DATE(EVENT TIMESTAMP)=(CURRENT DATE - 1 DAY))'
)

With this approach, the three relational tables produced by the
EVMON_FORMAT_UE_TO_TABLES procedure continue to grow, providing
a history of CPU usage over time. The query in step returns the
cumulative totals for CPU time since the tables were first created with the

EVMON_FORMAT_UE_TO_TABLES procedure. You can modify that query
to show only the results from the previous day as follows:

SELECT SUBSTR(E.CLIENT USERID,1,10) AS CLIENT ID,
SUBSTR(E.CLIENT APPLNAME,1,80) AS CLIENT APP,
SUBSTR(E.CLIENT_WRKSTNNAME,1,10) AS WKSTN,
SUM(M.TOTAL_CPU_TIME) AS CPU_TIME
FROM UOW_EVENT E, UOW_METRICS M

WHERE M.APPLICATION_ID = E.APPLICATION_ID

AND M.UOW_ID = E.UOW_ID

AND M.MEMBER = E.MEMBER

AND (DATE (E.EVENT_TIMESTAMP)=(CURRENT DATE - 1 DAY))
GROUP BY E.CLIENT USERID, E.CLIENT APPLNAME, E.CLIENT WRKSTNNAME
ORDER BY CPU_TIME DESC;

Tip: If you want to track CPU usage on a daily basis, but also want to
manage how much data you collect on your system, remove data you no
longer need from the UE table after you have updated the relational tables.

100 Database Monitoring Guide and Reference

For example, to delete the data collected on the previous day from the UE
table TRACKWORK, use a DELETE statement similar to the one that follows:

DELETE FROM TRACKWORK WHERE (DATE(EVENT_TIMESTAMP)=(CURRENT DATE - 1 DAY))

While an event monitor is active, it holds an intention exclusive (IX) table
lock on any tables to which it writes information to prevent those tables from
being dropped while it is using them. When a large number of rows is being
deleted, the DELETE statement acquires a large number of row locks. In this
situation, lock escalation might occur, as row locks might be converted to a
table lock. This request for table lock can cause the DELETE statement to
hang, since the event monitor already has a lock on the table.

To avoid this situation, consider setting a lock timeout before issuing the
DELETE statement:

SET CURRENT LOCK TIMEOUT 60

If increasing the lock timeout period does not resolve the problem, try
deleting smaller subsets of the data, such as the records for smaller time
periods (for example, 6 or 12 hours). This approach requires fewer locks,
which will reduce the chance of lock escalation happening.

You can also prune the relational tables produced by
EVMON_FORMAT_UE_TO_TABLES as needed to balance storage
requirements with the need to view historical data.

If you are finished calculating CPU time, you can stop the collection of event
monitor information, and drop the event monitor and its related tables by
performing the following steps:

a. Disable the collection of unit of work for this event monitor information
using the SET EVENT MONITOR TRACKWORK STATE 0 command.

b. Drop the event monitor itself using the DROP EVENT MONITOR
statement.

c. Drop the tables related to the event monitor using a DROP TABLE
statement. In this case, there are four tables in total to drop:
— TRACKWORK, the UE table used to collect information from the event

monitor

- UOW_EVENT
- UOW_METRICS
- UOW_PACKAGE_LIST

d. Optional. If there are no remaining active event monitors, you might

want to update the database configuration such that no unit of work
event information is collected using the following command:

UPDATE DATABASE CONFIGURATION FOR dbname USING MON_UOW_DATA NONE

Variation: Collecting metrics for specific workloads

The previous example illustrates how you can capture unit of work metrics for all
work done on the system. Setting the scope of data collected using the UPDATE
DATABASE CONFIGURATION command might cause more information to be
collected than you need. You might, for example, want to track only work done by
specific workloads. In this case, rather than enable collection of unit of work
information across the whole database as shown in step you can
specify the COLLECT UNIT OF WORK DATA clause with the CREATE or ALTER
WORKLOAD statements. This clause causes only data for the workload specified

Chapter 4. Event monitors 101

to be collected by the event monitor. For example, to collect unit of work data for
the workload named PAYROLL, use the following statement:

ALTER WORKLOAD PAYROLL COLLNECT UNIT OF WORK DATA BASE

You can collect data for multiple workloads by running an ALTER WORKLOAD
statement for each.

The remaining steps are the same, except for step where you would
change the query to resemble the one that follows:

SELECT E.WORKLOAD_NAME,
SUM(M.TOTAL_CPU_TIME) AS CPU_TIME
FROM UOW_EVENT E, UOW_METRICS M
WHERE M.APPLICATION ID = E.APPLICATION_ID
AND M.UOW_ID = E.UOW_ID
AND M.MEMBER = E.MEMBER
GROUP BY E.WORKLOAD_NAME
ORDER BY CPU_TIME DESC

The preceding statement reports the CPU time for each workload for which
metrics collection is enabled:

WORKLOAD CPU_TIME
PAYROLL 2143292042
MARKETING 492784916

2 record(s) selected.
Unit of work event monitor package listing information:

The unit of work event monitor can collect a listing of packages used within a unit
of work. This information can be used to determine which stored procedures
within an application might be taking more time than expected to run.

Starting with DB2 Version 9.7 Fix Pack 1, you can have information about the
packages used within units of work included in the data the event monitor
collects. This information is written to the unformatted event table along with the
rest of the information associated with the event when the unit of work ends.

There are two ways to control the capture of this information:

¢ The PACKAGE LIST option for the COLLECT UNIT OF WORK DATA clause of
the CREATE or ALTER WORKLOAD statements controls the collection of this
information for specific workloads. If this option is specified, information for the
units of work that are executed under the workload identified in the CREATE or
ALTER WORKLOAD statements, including package list information, is sent to
the active unit of work event monitors.

e The PKGLIST option for the mon_uow_data configuration parameter can be set
so that information about all units of work executed on the data server,
including package list information is sent to active unit of work event monitors.

The following data is collected for the package listing:

Package ID (“package_id - Package identifier monitor element” on page 736)
A unique ID that identifies a package.

Nesting level (“nesting level - Nesting level monitor element” on page 715)
The level of nesting or recursion in effect when the statement was being
run. Each level of nesting corresponds to nested or recursive invocation of
a stored procedure or user-defined function (UDF).

102 Database Monitoring Guide and Reference

Routine ID (“routine_id - Routine ID monitor element” on page 832)
A unique routine identifier. It returns zero if the activity is not part of a
routine.

Invocation ID (“invocation_id - Invocation ID monitor element” on page 659)
An identifier that distinguishes one invocation of a routine from others at
the same nesting level within a unit of work. It is unique within a unit of
work for a specific nesting level.

Package elapsed time (“package_elapsed_time - Package elapsed time monitor]
[element” on page 737)
The elapsed time spent executing sections within the package.

As the list of information collected for the package listing suggests, information is
captured not only for each package but also for each invocation of a routine within
a package.

Elapsed time is also tracked. The time calculated for a given invocation starts from
the first execution of a section within a package until the database manager
switches to another package. See [“Examples” on page 106/ to see more about how
elapsed time is tracked.

How package lists are written to unformatted event tables

When you enable the collection of package list information, the unit of work event
monitor writes two records to the unformatted event (UE) table for each unit of
work. The first record contains the basic unit of work event monitor data. The next
record contains the package listing information.

Package list information is stored in the UE table in a BLOB column. A list with 32
entries can be stored as an inline BLOB when the page size for the table space is
4k (the default). The number of entries that can be written to the package list is
controlled by the mon_pkglist_sz configuration parameter. The default for this
parameter is 32, which means that up to 32 entries can be included in the package
listing. If you want to increase the number of entries that can be included in the
package list, ensure that the UE table used to store the event monitor output is
created in a table space with a larger page size. Assume that every increase of 32
in the size of the package list requires an increase of 4k in the page size of the
table space. So, for example, if you want to have up to 64 entries in the package
list, ensure that the page size for the table space is at least 8k. If you increase
mon_pkglist_sz without increasing the page size of the table space, the package
list is still created, however the BLOB is not stored inline in the table, which might
affect performance.

Note: You can use the ADMIN_IS_INLINED administrative function to determine
whether the BLOB that contains the package list information is stored inline.

Package listing output

As stated earlier, when collecting package information, the unit of work event
monitor writes two records to the UE table. Each of the interfaces for displaying
the data in a UE table provides a mechanism for viewing the information
contained in the two records together. For example, the db2evmonfmt tool
combines the information in each record into a single report. If you use the
EVMON_FORMAT_UE_TO_TABLES procedure, it produces two relational tables
that you can join, EVMON_FORMAT_UE_TO_XML produces a single XML

Chapter 4. Event monitors 103

document that contains the information from both records. For more information,
see [“Accessing event data captured by a unit of work event monitor” on page 95

Note: In a partitioned database environment, the package list is only reported in
the unit of work event generated by the coordinator agent and reflects the time
spent in each package by that agent specifically; it does not reflect time spent in
those packages by any other agent at any other partition.

[Figure 4 on page 105/shows the information produced by the unit of work event
monitor, as formatted by the db2evmonfmt tool.

104 Database Monitoring Guide and Reference

Event ID 2 12

Event Type : Uow

Event Timestamp : 2009-12-08-14.44.39.162707
Member HC)

Release : 9070200

Database Member Activation Time : 2009-12-08-14.41.55.089416
Coordinator Member : 0

Connection Level Details

Application ID : *LOCAL.gstager.091208194155
Application Handle 221
Application Name : db2bp

Session Authorization ID
System Authorization ID :
Connection Timestamp : 2009-12-08-14.41.55.089416

Client Process ID : 13043
Client Platform : LINUXX8664
Client Product ID : SQLO9O72
Client Protocol : LOCAL
Client Hostname : HOSTX
Client Port Number : 0

UOW Level Details

Start Time : 2009-12-08-14.44.39.160651
Stop Time : 2009-12-08-14.44.39.162707
Completion Status : COMMIT

UowW ID : 12

Workoad Occurrence ID H

WorkToad Name : SYSDEFAULTUSERWORKLOAD
Workoad ID Ht

Service Superclass Name : SYSDEFAULTUSERCLASS
Service Subclass Name : SYSDEFAULTSUBCLASS

Service Class ID : 13
Client Userid :

Client Workstation Name

Client Application Name

Client Accounting String :

Local Transaction ID : 000000000000013B

Global Transaction ID : 00
Log Space Used : 124

UOW Metrics

TOTAL_CPU_TIME : 1501
TOTAL_WAIT TIME : 8363
ACT_ABORTED_TOTAL : 0
ACT_COMPLETED_TOTAL i1
ACT_REJECTED_TOTAL: : 0
AGENT_WAIT_TIME : 87
AGENT WAITS_TOTAL i1

1

APP_RQSTS_COMPLETED_TOTAL :

Package List

Package List Size : 2

Package List Exceeded : no

PACKAGE_ID NESTING_LEVEL ROUTINE_ID INVOCATION_ID PACKAGE_ELAPSED_TIME
240 0 0 0 0

330 1 66539 1 1

Note: Some of the metrics in the “UOW Metrics” section have been excluded.

Figure 4. Sample output from the unit of work event monitor, with package listing information
The number of packages that appear in the package list for a given unit of work is
reflected in the package_list_count monitor element (“Package List Size” in the

preceding report), which is included with the base unit of work event monitor
data. If the number of packages used with the unit of work exceeds the value

Chapter 4. Event monitors 105

specified in the mon_pkglist_sz configuration parameter, the additional packages
are not included in the package listing. However, the package_list_exceeded
monitor element indicates whether there were more packages than would fit into
the package list. This monitor element is returned along with the base information
for the unit of work event monitor (“Package List Exceeded” in [Figure 4 on page|
. If the value for this monitor element is YES, you can increase the value for
mon_pkglist_sz to have a larger number of packages included in the package list.

Examples

Each of the examples that follow show the information returned for the package
listing as it would be displayed by the db2evmonfmt tool.

Example 1: An application that executes one or more sections in a single package

In this example, one package with a package ID of 300 was run for this
unit of work.

PACKAGE_ID NESTING_LEVEL ROUTINE_ID INVOCATION_ID ELAPSED_TIME

In this case, there is one entry on the package list, which reflects the
execution of one or more sections in the package. All sections executed
from the same package are considered to be part of the same package
invocation.

Example 2: An application calls a stored procedure in a package

In this example, the package with a package ID of 300 calls a stored
procedure with an ID of 806. Three sections are executed within the stored
procedure.

PACKAGE_ID NESTING_LEVEL ROUTINE_ID INOVATION_ID ELAPSED_TIME

This output shows two entries in the list. One entry is for the call to the
stored procedure, and one for the execution of the three sections within the
stored procedure. The NESTING_LEVEL for the second entry in the list
reflects the fact that the stored procedure was called from another package.

Example 3: An application executes sections in two different packages

In this example, an application executes sections from one package, then
another package, and then back to the first package. No stored procedures
are called. The pseudocode that follows is a representation of this unit of
work:
Application

EXEC PACKAGEA

EXEC PACKAGEB
EXEC PACKAGEA

Assume also that each of these invocations require 100 ms, 25 ms, and 460

ms, respectively. The following output shows what the package listing
would look like:

PACKAGE_ID NESTING_LEVEL ROUTINE_ID INVOCATION_ID ELAPSED_TIME

In this case, there are two entries in the list. Package A, with
PACKAGE_ID 300 had sections that ran for 560 ms in total. Package B ran

106 Database Monitoring Guide and Reference

for 25 ms. Package A is represented by a single line because each
invocation has the same INVOCATION_ID and NESTING_LEVEL.
INVOCATION_ID and NESTING_LEVEL remain at 0, because no stored
procedures were called in either package.

Example 4: An application executes sections and stored procedures in multiple packages

In this example, there are 3 packages with IDs 100, 101, and 102. The
application is in package 100. There are two stored procedures with IDs
201 and 202. The first stored procedure (SP1) is in package 101, and the
second (SP2) is in package 102. The pseudocode that follows is a
representation of this unit of work:
Application
cALL sP1HY
INSERT INTO T1 VALUES(7)
CALL sr2
INSERT INTO T2 VALUES(8)
CALL sP2 8]
INSERT INTO T2 VALUES(8)

The package listing for this unit of work would be as follows:
PACKAGE_ID NESTING_LEVEL ROUTINE_ID INVOCATION_ID ELAPSED_TIME

100 0 0 5} 21
101 1P 201 1 40
102 v 2 202 1 35
102 2 202 3 35

In the preceding output, there are four entries:

* The first corresponds to the execution of the call to SP1 within the first
package, line [} in the pseudocode that represents the unit of work.

* The second corresponds to the execution of the sections within the
stored procedure with ID 201 in package 101. These sections include
lines [J, B, and El. The nesting level increases to 1, as shown by H.

* The third entry represents the execution of the first of the INSERT INTO
T2 statements in SP2, as called from SP1. The nesting level increases
again (H).

* The fourth entry in the list represents the execution of the second of the
INSERT INTO T2 statements in SP2. The nesting level remains the same,
because like the previous call to SP2, this stored procedure is called from
SP1. However, because these two statements occur within separate
invocations of the stored procedure, they each have separate invocation
IDs (). Thus, there are two separate entries in the package listing.

Information written to XML for a unit of work event monitor
Information written for a unit of work event monitor from the
EVMON_FORMAT UE_TO_XML table function. This is also documented in the
sq11ib/misc/DB2EvmonUOW. xsd file.

db2_uow_event

The main schema that describes a unit of work event.

Element content: (|completion_status|, |start_time], [stop_time|, [connection_time],
application_name| , [application_handle|, [application_id|, fuow_id|,
workload_occurrence_id|, lcoord_member], member_activation_time| ,
workload_name|, [workload_id]|, [service_superclass_name| {zero or one times (?)} ,
service_subclass_name| {zero or one times (?)}, |service_class_id| {zero or one times

Chapter 4. Event monitors 107

)}, |session_authid| {zero or one times (?)} , [system_authid|, |client_pid|,
client_product_id[, [client_platform|, client_protocoll {zero or one times (?)} ,
client_userid| {zero or one times (?)} , [client_wrkstnname| {zero or one times (?)},
client_applnamel {zero or one times (?)}, [client_acctng] {zero or one times (?)},
local_transaction_id|, lelobal_transaction_id|, [system_metrics|, client_hostname],
client_port_number|, juow_log_space_used|, [package_list], ANY content (skip)
{zero or more (*)})

Attributes:
QName Type Fixed Default Use Annotation
id xs:long required
type xs:string - Max required
length: 32 (UOW
)
timestamp xs:dateTime required
member member_type required
release xs:long required
ANY attribute
from ANY
namespace
package_id
>
See monitor element [package_id| for more details.
Contained by: [package_entryj
Element content:
Type Facet
xs:long
package_elapsed_time
See monitor element [package_elapsed_time| for more details.
Contained by: [package_entry
Element content:
Type Facet
xs:long

invocation_id

See monitor element [invocation_id| for more details.

Contained by: [package_entryj

108 Database Monitoring Guide and Reference

Element content:

Type Facet
xs:int
routine_id
See monitor element for more details.
Contained by: [package_entryj
Element content:
Type Facet
xs:int
nesting_level
See monitor element for more details.
Contained by: [package_entryj
Element content:
Type Facet
xs:int
package_entry
Contained by: [package_list_entries|
Element content: ([package_id|, [package_elapsed_time|, [invocation_id|, froutine_id|,
Igesting_leve1| , ANY content (skip) {zero or more (*)})
Attributes:
QName Type Fixed Default Use Annotation
ANY attribute
from ANY
nhamespace
package_list_size
Contained by:
Element content:
Type Facet
xs:int

Chapter 4. Event monitors

109

package_list_exceeded

See monitor element [package_list_exceeded| for more information.

Contained by:

Element content:

Type Facet

xs:string Max length: 3

package_list_entries

Contained by:

Element content: ([package_entry| {zero or more (*)})

Attributes:
OName Type Fixed Default Use Annotation
ANY attribute
from ANY
nhamespace
completion_status
The completion status of the unit of work. Possible values are: UNKNOWN,
COMMIT, ROLLBACK, GLOBAL_COMMIT, GLOBAL ROLLBACK, XA_END,
XA_PREPARE
Contained by: |db2_uow_evenﬂ
Element content:
Type Facet
xs:string Max length: 128
start_time
The start time of the unit of work. See monitor element for more
details.
Contained by: [db2_uow_event|
Element content:
Type Facet

xs:dateTime

110 Database Monitoring Guide and Reference

stop_time

The stop time of the unit of work. See monitor element for more
details.

Contained by: [db2_uow_event|

Element content:

Type Facet

xs:dateTime

connection_time

The time the application connected to the database member. See monitor element

for more details.

Contained by: |db2_u0w_event|

Element content:

Type Facet

xs:dateTime

application_name
The name of the application running at the client, as known to the database. See
monitor element for more details.

Contained by: [db2_uow_event|

Element content:

Type Facet

xs:string Max length: 128

application_handle

A system-wide unique ID for the application. See monitor element for
more details.

Contained by: |db2_uow_evenﬂ

Element content:

Type Facet

xs:long

application_id

This identifier is generated when the application connects to the database at the
database manager. See monitor element IaEEl_idl for more details.

Chapter 4. Event monitors 111

Contained by: |db2_u0w_event|

Element content:

Type Facet

xs:string Max length: 128

uow_id

The unit of work ID to which this activity record applies. See monitor element

for more details.

Contained by: [db2_uow_event|

Element content:

Type Facet

xs:int

workload_occurrence_id

The workload occurrence ID to which this activity record applies. See monitor
element [workload_occurrence_id| for more details.

Contained by: |db2_uow_evenﬂ

Element content:

Type Facet

xs:int

coord _member

See monitor element |coord_member| for more details.

Contained by: [db2_uow_event]

Element content:

Type Facet

xs:short Max inclusive: 999

member_activation_time

The time this database member was activated. See monitor element
for more details.

Contained by: [db2_uow_event|

Element content:

112 Database Monitoring Guide and Reference

Type

Facet

xs:dateTime

workload_name

The name of the workload under which the unit of work completed. See monitor
element [workload_name| for more details.

Contained by: |db2_uow_event|

Element content:

Type Facet
xs:string Max length: 128
workload_id
The workload ID of the workload under which the unit of work completed. See
monitor element for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:int
service_superclass_name
The name of the service super class under which the unit of work completed. See
monitor element [service_superclass_name| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 128
service_subclass_name
The name of the service sub class under which the unit of work completed. See
monitor element |service_subclass_name| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 128

Chapter 4. Event monitors 113

service_class id

The service class ID of the service class under which the unit of work completed.
See monitor element [service_class_id| for more details.

Contained by: [db2_uow_event|

Element content:

Type Facet
xs:int
session_authid
The session authorization ID of the user who invoked the application that is being
monitored. See monitor element [session_auth_id| for more details.
Contained by: |db2_u0w_event|
Element content:
Type Facet
xs:string Max length: 128
system_authid
The system authorization ID of the user who invoked the application that is being
monitored. See monitor element [system_auth_id| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 128
client_pid
The process ID reported by the client. See monitor element for more
details.
Contained by: |db2_uow_evenﬂ
Element content:
Type Facet
xs:long

114 Database Monitoring Guide and Reference

client_product_id

The product ID of the client. See monitor element for more details.

Contained by: [db2_uow_event|

Element content:

Type Facet
xs:string Max length: 128
client_platform
The platform of the client. See monitor element [client_platform| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 12
Attributes:
QName Type Fixed Default Use Annotation
id xs:short optional
client_protocol
The product ID of the client. See monitor element for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 10
client_userid
The client user ID generated by a transaction manager and provided to the server.
See monitor element for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 255

Chapter 4. Event monitors

115

client_wrkstnname

Identifies the client system or workstation, if the sqleseti API was issued in this
connection. See monitor element [client_wrkstnname| for more details.

Contained by: [db2_uow_event|

Element content:

Type Facet
xs:string Max length: 255
client_applname
Identifies the server transaction program performing the transaction, if the sqleseti
API was issued in this connection. See monitor element [client_applname| for more
details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 255
client_acctng
The data passed to the target database for logging and diagnostic purposes, if the
sqleseti API was issued in this connection. See monitor element for
more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 255
local_transaction_id
The local transaction id for the unit of work.
Contained by: |db2_u0w_event|
Element content:
Type Facet

xs:hexBinary

Max length: 8

116 Database Monitoring Guide and Reference

global_transaction_id

The global transaction ID for the unit of work.

Contained by: [db2_uow_event|

Element content:

Type

Facet

xs:hexBinary

Max length: 20

system_metrics

The metrics for the unit of work.

Contained by: [db2_uow_event|

Element content: ([wlm_queue_time_totall, [wlm_queue_assignments_total|,
fcm_tq_recv_wait_time| , Ifcm_message_recv_wait_time| , |fcm_tq_send_wait_time| ,
fcm_message_send_wait_time|, Jagent_wait_time], [agent_waits_totall,
lock_wait_time], [lock_waits|, [direct_read_time], |direct_read_reqs|, [direct_write_time
,|direct_write_reqs|, [log_buffer wait_time|, jhnum_log buffer full,
Ilog_disk_wait_time| , Ilog_disk_waits_total , Itc ip_recv_wait_time| , |tcpip_recvs_tota]]
,lclient_idle_wait_time|, fipc_recv_wait_time|, [ipc_recvs_totall, [ipc_send_wait_time],
ipc_sends_total|, [tcpip_send_wait_time], Jtcpip_sends_total|, [pool_write_time|,
pool_read_timel, laudit_file_write_wait_time|, |audit_file_writes_total| ,
audit_subsystem_wait_time|, audit_subsystem_waits_total|,
diaglog_write_wait_time], [diaglog writes_totall, [fcm_send_wait_time],
fcm_recv_wait_time], Jtotal wait_timel, Jtotal rqst_time], [rqsts_completed_totall,
total_app_rgst_time|, fapp_rgsts_completed_total|, total_section_sort_proc_time],
total_section_sort_time|, [total_section_sorts|, [rows_read|, [rows_modified],
pool_data_l_reads|, [pool_index_l_reads|, [pool_temp_data_l_reads|,
pool_temp_index_1 reads|, [pool_xda_l_reads], [pool_temp_xda_l_reads|,
total_cpu_time| , |act_com leted_total| , |pool_data_p_reads| ,
pool_temp_data_p_reads|, [pool xda_p_reads|, |pool_temp_xda_p_reads| ,
pool_index_p_reads], [pool_temp_index_p_reads|, [pool_data_writes|,
pool_xda_writes], [pool_index_writes|, |direct_reads], [direct_writes], [rows_returned|,
deadlocks|, [lock_timeouts|, Ilock_escals| ,lfem_sends_total|, |fcm_recvs_total| ,
fcm_send_volume|, [fem_recv_volume], [fcm_message sends_total|,
fcm_message_recvs_total|, [fcm_message_send_volume|, [fem_message _recv_volume]
,lfem_tq_sends_totall, [fcm_tq_recvs_total|, [fem_tq_send_volume],
[fcm_tg_recv_volume|, [tq_tot_send_spilld|, Jtcpip_send_volume], ftcpip_recv_volume]
lipc_send_volume], lipc_recv_volume|, [post_threshold_sorts|,
post_shrthreshold_sorts| , |sort_overflows| , |audit_events_tota]l ,
total_rgst_mapped_in| {zero or one times (?)} , ltotal_rgst_mapped_out| {zero or one
times (?)} , lact_rejected_totall, lact_aborted_totall, Jtotal_sorts|, [total_routine_time|,
total_compile_proc_time], Jtotal_compile_time], [total_compilations|,

total implicit_compile_proc_time|, Jtotal_implicit_compile_time],
total_implicit_compilations], Jtotal_runstats_proc_time], Jtotal_runstats_time],
total_runstats|, Jtotal_reorg proc_time|, [total reorg timel, Jtotal reorgs|,
total_load_proc_time|, [total _load_time], Jtotal loads|, [total_section_proc_time|,
total_section_time]|, [total_app_section_executions|, [total commit_proc_time|,
total_commit_time|, [total_app_commits|, |total_rollback_proc_time| ,
total_rollback_time], [total_ap 3_r011backs| , |total_r0utine_user_code_proc_timel ,
total_routine_user_code_time|, |thresh_violations| , lnum_lw_thresh_exceedecﬂ ,

Chapter 4. Event monitors 117

total_routine_invocations| , |int_commits| , |int_rollbacks| , |cat_cache_inserts| ,
cat_cache lookups|, [pke cache_inserts|, [pkg_cache_lookups|, act_rgsts_totall,
total_act_wait_time|, |total_act_time|{, ANY content (skip) {zero or more (*)})

Attributes:
OName Type Fixed Default Use Annotation
release xs:long required
ANY attribute
from ANY
namespace
client_hostname
The host name of the client. See monitor element [client_hostname| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:string Max length: 255
client_port_number
The port number of the client. See monitor element [client_port_number for more
details.
Contained by: |db2_u0w_ever1t|
Element content:
Type Facet
xs:int
uow_log_space_used
The amount of log space used during the unit of work. See monitor element
[uow_log_space_used| for more details.
Contained by: [db2_uow_event|
Element content:
Type Facet
xs:long

package_list

The package list for the unit of work.

Contained by: [db2_uow_event|

118 Database Monitoring Guide and Reference

Element content: ([package list_size|, [package list_exceeded|, [package_list_entries|

, ANY content (skip) {zero or more (*)})

Attributes:
QName Type Fixed Default Use Annotation
ANY attribute
from ANY
namespace

Information written to relational tables for a unit of work event

monitor

Information written for a unit of work event monitor from the
EVMON_FORMAT UE_TO_TABLES table function. This is also documented in the
sq11ib/misc/DB2EvmonUOW. xsd file.

Table 11. Information returned for a unit of work event monitor: Table name: UOW_EVENT

Column Name Data Type Description

EVENT_ID INTEGER NOT NULL

TYPE VARCHAR(128) NOT

NULL

EVENT_TIMESTAMP TIMESTAMP NOT NULL

MEMBER SMALLINT “member - Database member monitor|
element” on page 713

COORD_MEMBER SMALLINT “coord_member - Coordinator member|
monitor element” on page 566|

COMPLETION_STATUS VARCHAR(128) “completion_status - Completion status|
monitor element” on page 542|

START_TIME TIMESTAMP “start_time - Event Start Time” on page|
87

STOP_TIME TIMESTAMP “stop_time - Event Stop Time” on page|
889

WORKLOAD_NAME VARCHAR(128) “workload_name - Workload name]|
monitor element” on page 995|

WORKLOAD_ID INTEGER “workload_id - Workload ID monitor]
element” on page 994|

SERVICE_SUPERCLASS_NAME VARCHAR(128) “service_superclass_name - Service|
superclass name monitor element” on|
[page 853|

SERVICE_SUBCLASS_NAME VARCHAR(128) “service_subclass_name - Service subclass|
Ihame monitor element” on page 852

SERVICE_CLASS_ID INTEGER “service_class_id - Service class ID|
monitor element” on page 851]

UOW_ID INTEGER “uow_id - Unit of work ID monitor|
element” on page 981|

WORKLOAD_OCCURRENCE_ID INTEGER “workload_occurrence_id - Workload|
occurrence identifier monitor element” on|
[page 996|

CONNECTION_TIME TIMESTAMP

MEMBER_ACTIVATION_TIME TIMESTAMP

Chapter 4. Event monitors 119

Table 11. Information returned for a unit of work event monitor: Table name: UOW_EVENT (continued)

Column Name Data Type Description

APPLICATION_ID VARCHAR(128)

APPLICATION_HANDLE BIGINT “application_handle - Application handle]
monitor element” on page 506|

APPLICATION_NAME VARCHAR(128)

SYSTEM_AUTHID VARCHAR(128)

SESSION_AUTHID VARCHAR(128)

CLIENT_PLATFORM VARCHAR(12) “client_platform - Client operating]
platform monitor element” on page 536|

CLIENT_PID BIGINT “client_pid - Client process ID monitor|
element” on page 535|

CLIENT_PRODUCT_ID VARCHAR(128)

CLIENT_PROTOCOL VARCHAR(10) “client_protocol - Client communication|
[protocol monitor element” on page 53§|

CLIENT_HOSTNAME VARCHAR(255) “client_hostname - Client hostname]|
monitor element” on page 534|

CLIENT_PORT_NUMBER INTEGER “client_port_number - Client port number|
monitor element” on page 537

CLIENT_WRKSTNNAME VARCHAR(255) “client_wrkstnname - Client workstation|
hame monitor element” on page 539

CLIENT_ACCTNG VARCHAR(255) “client_acctng - Client accounting string]|
monitor element” on page 532|

CLIENT_USERID VARCHAR(255) “client_userid - Client user ID monitor|
element” on page 538

CLIENT_APPLNAME VARCHAR(255) “client_applname - Client application|
hame monitor element” on page 533|

LOCAL_TRANSACTION_ID VARCHAR(16)

GLOBAL_TRANSACTION_ID VARCHAR(40)

UOW_LOG_SPACE_USED BIGINT “uow_log_space_used - Unit of work log]
space used monitor element” on page 982|

PACKAGE_LIST_SIZE INTEGER

PACKAGE_LIST_EXCEEDED CHAR(3)

METRICS BLOB(1M) XML document containing metrics-related

monitor elements. The metrics in this
document are the same as those described
in the UOW_METRICS table that appears

later in this topic. See I(_Zhapter 3,|

“Interfaces that return monitor data in|

XML documents,” on page 9| for more

information.

Table 12. Information returned for a unit of work event monitor: Table name: UOW_PACKAGE_LIST

Column Name Data Type Description

MEMBER SMALLINT “member - Database member monitor|
element” on page 713)|

UOW_ID INTEGER “uow_id - Unit of work ID monitor|

element” on page 981]

120 Database Monitoring Guide and Reference

Table 12. Information returned for a unit of work event monitor: Table name: UOW_PACKAGE_LIST (continued)

Column Name Data Type Description

APPLICATION_ID VARCHAR(128)

PACKAGE_ID BIGINT

NESTING_LEVEL INTEGER “nesting_level - Nesting level monitor]
element” on page 715|

ROUTINE_ID INTEGER “routine_id - Routine ID monitor element”|
on page 832]

INVOCATION_ID INTEGER “invocation_id - Invocation ID monitor
element” on page 659

PACKAGE_ELAPSED_TIME BIGINT

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS. The metrics in this
table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name Data Type Description

MEMBER SMALLINT “member - Database member monitor|
element” on page 713

UOW_ID INTEGER “uow_id - Unit of work ID monitorl
element” on page 981]

APPLICATION_ID VARCHAR(128)

ACT_ABORTED_TOTAL BIGINT “act_aborted_total - Total aborted|
activities monitor element” on page 474|

ACT_COMPLETED_TOTAL BIGINT “act_completed_total - Total completed|
activities monitor element” on page 475

ACT_REJECTED_TOTAL BIGINT “act_rejected_total - Total rejected|
activities monitor element” on page 477]

AGENT_WAIT_TIME BIGINT “agent_wait_time - Agent wait time|
monitor element” on page 489

AGENT_WAITS_TOTAL BIGINT “agent_waits_total - Total agent waits|
monitor element” on page 490|

POOL_DATA_L_READS BIGINT “pool_data_l_reads - Buffer pool datal
logical reads monitor element” on pagel
761

POOL_INDEX_L_READS BIGINT “pool_index_l_reads - Buffer pool index|
logical reads monitor element” on page|
77,

POOL_TEMP_DATA_L_READS BIGINT “pool_temp_data_l_reads - Buffer pool|
temporary data logical reads monitor|
element” on page 780|

POOL_TEMP_INDEX_L._READS BIGINT “pool_temp_index_l_reads - Buffer pool|
temporary index logical reads monitor|
element” on page 784|

POOL_TEMP_XDA_L_READS BIGINT “pool_temp_xda_l_reads - Buffer pool|
temporary XDA data logical reads|
monitor element” on page 787

POOL_XDA_L_READS BIGINT “pool_xda_l_reads - Buffer pool XDA datal

logical reads monitor element” on page|

793

Chapter 4. Event monitors 121

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name

Data Type

Description

POOL_DATA_P_READS

BIGINT

“pool_data_p_reads - Buffer pool datal

physical reads monitor element” on page]

763]

POOL_INDEX_P_READS

BIGINT

“pool_index_p_reads - Buffer pool index|

physical reads monitor element” on page]

772

POOL_TEMP_DATA_P_READS

BIGINT

“pool_temp_data_p_reads - Buffer pooll

temporary data physical reads monitor]

element” on page 782|

POOL_TEMP_INDEX_P_READS

BIGINT

“pool_temp_index_p_reads - Buffer pool|

temporary index physical reads monitor|

element” on page 786|

POOL_TEMP_XDA_P_READS

BIGINT

“pool_temp_xda_p_reads - Buffer pool|

temporary XDA data physical reads|

monitor element” on page 789

POOL_XDA_P_READS

BIGINT

“pool_xda_p_reads - Buffer pool XDA|

data physical reads monitor element” on|

[page 795|

POOL_DATA_WRITES

BIGINT

“pool_data_writes - Buffer pool datal

writes monitor element” on page 764|

POOL_INDEX_WRITES

BIGINT

“pool_index_writes - Buffer pool index|

writes monitor element” on page 773)|

POOL_XDA_WRITES

BIGINT

“pool_xda_writes - Buffer pool XDA datal

writes monitor element” on page 797

POOL_READ_TIME

BIGINT

“pool_read_time - Total buffer pooll

[physical read time monitor element” onf

[page 778|

POOL_WRITE_TIME

BIGINT

“pool_write_time - Total buffer pooll

[physical write time monitor element” on|

page 792

CLIENT_IDLE_WAIT_TIME

BIGINT

“client_idle_wait_time - Client idle wait]

time monitor element” on page 534|

DEADLOCKS

BIGINT

“deadlocks - Deadlocks detected monitor|

element” on page 583

DIRECT_READS

BIGINT

“direct_reads - Direct reads from database|

monitor element” on page 592

DIRECT_READ_TIME

BIGINT

“direct_read_time - Direct read time|

monitor element” on page 591|

DIRECT_WRITES

BIGINT

“direct_writes - Direct writes to database|

monitor element” on page 597

DIRECT_WRITE_TIME

BIGINT

“direct_write_time - Direct write time

monitor element” on page 596|

DIRECT_READ_REQS

BIGINT

“direct_read_reqgs - Direct read requests|

monitor element” on page 589

DIRECT_WRITE_REQS

BIGINT

“direct_write_reqs - Direct write requests|

monitor element” on page 594|

FCM_RECV_VOLUME

BIGINT

“fcm_recv_volume - FCM received|

volume monitor element” on page 614|

122 Database Monitoring Guide and Reference

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name Data Type Description
FCM_RECVS_TOTAL BIGINT “fcm_recvs_total - FCM receives totall
monitor element” on page 616
FCM_SEND_VOLUME BIGINT “fcm_send_volume - FCM send volume|
monitor element” on page 618|
FCM_SENDS_TOTAL BIGINT “fcm_sends_total - FCM sends totall
monitor element” on page 620
FCM_RECV_WAIT_TIME BIGINT “fcm_recv_wait_time - FCM received wait]
time monitor element” on page 615
FCM_SEND_WAIT_TIME BIGINT “fcm_send_wait_time - FCM send waif|
time monitor element” on page 619|
IPC_RECV_VOLUME BIGINT “ipc_recv_volume - Interprocess|
communication received volume monitor|
element” on page 660)|
IPC_RECV_WAIT_TIME BIGINT “ipc_recv_wait_time - Interprocess
communication received wait time
monitor element” on page 661
IPC_RECVS_TOTAL BIGINT “ipc_recvs_total - Interprocess|
communication receives total monitor|
element” on page 662|
IPC_SEND_VOLUME BIGINT “ipc_send_volume - Interprocess|
communication send volume monitor
element” on page 663
IPC_SEND_WAIT_TIME BIGINT “ipc_send_wait_time - Interprocess|
communication send wait time monitor]
element” on page 664|
IPC_SENDS_TOTAL BIGINT “ipc_sends_total - Interprocess|
communication send total monitor|
element” on page 664|
LOCK_ESCALS BIGINT “lock_escals - Number of lock escalations|
Imonitor element” on page 675|
LOCK_TIMEOUTS BIGINT “lock_timeouts - Number of lock timeouts|
monitor element” on page 636|
LOCK_WAIT_TIME BIGINT “lock_wait_time - Time waited on locks|
monitor element” on page 689
LOCK_WAITS BIGINT “lock_waits - Lock waits monitor|
element” on page 691]
LOG_BUFFER_WAIT_TIME BIGINT “log_buffer_wait_time - Log buffer wait]
time monitor element” on page 694
NUM_LOG_BUFFER_FULL BIGINT “num_log_buffer_full - Number of full log]|
buffers monitor element” on page 723)|
LOG_DISK_WAIT_TIME BIGINT “log_disk_wait_time - Log disk wait time|
monitor element” on page 695|
LOG_DISK_WAITS_TOTAL BIGINT “log_disk_waits_total - Total log disk]
waits monitor element” on page 696|
RQSTS_COMPLETED_TOTAL BIGINT “rgsts_completed_total - Total requests|

completed monitor element” on page 841]

Chapter 4. Event monitors 123

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name

Data Type

Description

ROWS_MODIFIED

BIGINT

“rows_modified - Rows modified monitor]

element” on page 834|

ROWS_READ

BIGINT

“rows_read - Rows read monitor element”|

on page 835|

ROWS_RETURNED

BIGINT

“rows_returned - Rows returned monitorl

element” on page 837

TCPIP_RECV_VOLUME

BIGINT

“tcpip_recv_volume - TCP/IP received)|

volume monitor element” on page 915

TCPIP_SEND_VOLUME

BIGINT

“tcpip_send_volume - TCP/IP send|

volume monitor element” on page 917

TCPIP_RECV_WAIT_TIME

BIGINT

“tcpip_recv_wait_time - TCP/IP received|

wait time monitor element” on page 916|

TCPIP_RECVS_TOTAL

BIGINT

“tcpip_recvs_total - TCP/IP receives total|

Imonitor element” on page 917

TCPIP_SEND_WAIT_TIME

BIGINT

“tcpip_send_wait_time - TCP/IP send|

wait time monitor element” on page 918|

TCPIP_SENDS_TOTAL

BIGINT

“tcpip_sends_total - TCP/IP sends totall

monitor element” on page 919|

TOTAL_APP_RQST_TIME

BIGINT

“total_app_rgst_time - Total application|

request time monitor element” on page]

931

TOTAL_RQST_TIME

BIGINT

“total_rgst_time - Total request time]

monitor element” on page 958

WLM_QUEUE_TIME_TOTAL

BIGINT

“wlm_queue_time_total - Workload|

manager total queue time monitor|

element” on page 992|

WLM_QUEUE_ASSIGNMENTS_TOTAL

BIGINT

“wlm_queue_assignments_total —|

Workload manager total queue|

assignments monitor element” on page

990

TOTAL_CPU_TIME

BIGINT

“total_cpu_time - Total CPU time monitor|

element” on page 938

TOTAL_WAIT_TIME

BIGINT

“total_wait_time - Total wait time monitor|

element” on page 971

APP_RQSTS_COMPLETED_TOTAL

BIGINT

“app_rgsts_completed_total - Totall

application requests completed monitor|

element” on page 496|

TOTAL_SECTION_SORT_TIME

BIGINT

“total_section_sort_time - Total section|

sort time monitor element” on page 964|

TOTAL_SECTION_SORT_PROC_TIME

BIGINT

“total_section_sort_proc_time - Totall

section sort processing time monito

element” on page 963

TOTAL_SECTION_SORTS

BIGINT

“total_section_sorts - Total section sorts|

monitor element” on page 965|

TOTAL_SORTS

BIGINT

“total_sorts - Total sorts monitor element”|

on page 969|

124 Database Monitoring Guide and Reference

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name

Data Type

Description

POST_THRESHOLD_SORTS

BIGINT

“post_threshold_sorts - Post threshold|

sorts monitor element” on page 802|

POST_SHRTHRESHOLD_SORTS

BIGINT

“post_shrthreshold_sorts - Post shared|

threshold sorts monitor element” on pagel

500]

SORT_OVERFLOWS

BIGINT

“sort_overflows - Sort overflows monitor

element” on page 858

TOTAL_COMPILE_TIME

BIGINT

“total_compile_time - Total compile time|

monitor element” on page 937

TOTAL_COMPILE_PROC_TIME

BIGINT

“total_compile_proc_time - Total compile]

[processing time monitor element” on page|

93

TOTAL_COMPILATIONS

BIGINT

“total_compilations - Total compilations|

monitor element” on page 935|

TOTAL_IMPLICIT_COMPILE_TIME

BIGINT

“total_implicit_compile_time - Total|

implicit compile time monitor element”]

on page 942)

TOTAL_IMPLICIT_COMPILE_PROC_
TIME

BIGINT

“total_implicit_compile_proc_time - Totall

implicit compile processing time monito

element” on page 941]

TOTAL_IMPLICIT_COMPILATIONS

BIGINT

“total_implicit_compilations - Totall

implicit complications monitor element”]

on page 941|

TOTAL_SECTION_TIME

BIGINT

“total_section_time - Total section time]

monitor element” on page 967

TOTAL_SECTION_PROC_TIME

BIGINT

“total_section_proc_time - Total section|

[processing time monitor element” on page

961

TOTAL_APP_SECTION_EXECUTIONS

BIGINT

“total_app_section_executions - Total|

application section executions monitor|

element” on page 931]

TOTAL_ACT_TIME

BIGINT

“total_act_time - Total activity time|

monitor element” on page 927

TOTAL_ACT_WAIT_TIME

BIGINT

“total_act_wait_time - Total activity wait|

time monitor element” on page 928

ACT_RQSTS_TOTAL

BIGINT

“act_rqsts_total - Total activity requests|

monitor elements” on page 479

TOTAL_ROUTINE_TIME

BIGINT

“total_routine_time - Total routine time|

monitor element” on page 954

TOTAL_ROUTINE_INVOCATIONS

BIGINT

“total_routine_invocations - Total routine|

invocations monitor elements” on pagel

951

TOTAL_COMMIT_TIME

BIGINT

“total_commit_time - Total commit time]

monitor element” on page 934

TOTAL_COMMIT_PROC_TIME

BIGINT

“total_commit_proc_time - Total commits|

processing time monitor element” on page

933

Chapter 4. Event monitors 125

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name Data Type Description

TOTAL_APP_COMMITS BIGINT “total_app_commits - Total application|
commits monitor elements” on page 929

INT_COMMITS BIGINT “int_commits - Internal commits monitor
element” on page 654|

TOTAL_ROLLBACK_TIME BIGINT “total_rollback_time - Total rollback time
monitor element” on page 951

TOTAL_ROLLBACK_PROC_TIME BIGINT “total_rollback_proc_time - Total rollback|
[processing time monitor element” on page|
950

TOTAL_APP_ROLLBACKS BIGINT “total_app_rollbacks - Total application|
rollbacks monitor element” on page 930)|

INT_ROLLBACKS BIGINT “int_rollbacks - Internal rollbacks monitor|
element” on page 656|

TOTAL_RUNSTATS_TIME BIGINT “total_runstats_time - Total runtime]
statistics time monitor element” on pagel
960,

TOTAL_RUNSTATS_PROC_TIME BIGINT “total_runstats_proc_time - Total runtime]
statistics processing time monitor|
element” on page 959|

TOTAL_RUNSTATS BIGINT “total_runstats - Total runtime statistics)
monitor element” on page 958

TOTAL_REORG_TIME BIGINT “total_reorg_time - Total reorganization|
time monitor element” on page 948

TOTAL_REORG_PROC_TIME BIGINT “total_reorg_proc_time - Totall
reorganization processing time monitor|
element” on page 947

TOTAL_REORGS BIGINT “total_reorgs - Total reorganizations|
monitor element” on page 949|

TOTAL_LOAD_TIME BIGINT “total_load_time - Total load time monitor]|
element” on page 944|

TOTAL_LOAD_PROC_TIME BIGINT “total_load_proc_time - Total load|
processing time monitor element” on pagel
943]

TOTAL_LOADS BIGINT “total_loads - Total loads monitor]
element” on page 945|

CAT_CACHE_INSERTS BIGINT “cat_cache_inserts - Catalog cache inserts|
monitor element” on page 525

CAT_CACHE_LOOKUPS BIGINT “cat_cache_lookups - Catalog cache]
lookups monitor element” on page 526|

PKG_CACHE_INSERTS BIGINT “pke_cache_inserts - Package cache inserts|
monitor element” on page 747]

PKG_CACHE_LOOKUPS BIGINT “pkeg_cache_lookups - Package cache]
lookups monitor element” on page 748|

THRESH_VIOLATIONS BIGINT “thresh_violations - Number of threshold|

violations monitor element” on page 921

126 Database Monitoring Guide and Reference

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name

Data Type

Description

NUM_LW_THRESH_EXCEEDED

BIGINT

“num_lw_thresh_exceeded - Number off

lock wait thresholds exceeded monitor|

element” on page 725|

FCM_TQ_RECV_WAIT_TIME

BIGINT

“fcm_tq_recv_wait_time - FCM table]

queue received wait time monitor|

element” on page 622|

FCM_MESSAGE_RECV_WAIT_TIME

BIGINT

“fcm_message_recv_wait_time - FCM|

message received wait time monitor]

element” on page 609

FCM_TQ_SEND_WAIT_TIME

BIGINT

“fcm_tg_send_wait_time - FCM table]

queue send wait time monitor element”|

on page 625|

FCM_MESSAGE_SEND_WAIT_TIME

BIGINT

“fcm_message_send_wait_time - FCM|

message send wait time monitor element”]|

on page 612)

AUDIT_FILE_WRITE_WAIT_TIME

BIGINT

“audit_file_write_wait_time - Audit file]

write wait time monitor element” on page

51

AUDIT_FILE_WRITES_TOTAL

BIGINT

“audit_file_writes_total - Total audit files|

written monitor element” on page 511

AUDIT_SUBSYSTEM_WAIT_TIME

BIGINT

“audit_subsystem_wait_time - Audit]

subsystem wait time monitor element” on|

page 512|

AUDIT_SUBSYSTEM_WAITS_TOTAL

BIGINT

“audit_subsystem_waits_total - Total audit|

subsystem waits monitor element” on|

page 513|

DIAGLOG_WRITE_WAIT_TIME

BIGINT

“diaglog_write_wait_time - Diagnostic log]|

file write wait time monitor element” on|

page 582|

DIAGLOG_WRITES_TOTAL

BIGINT

“diaglog_writes_total - Total diagnostid

log file writes monitor element” on page|

58

FCM_MESSAGE_SENDS_TOTAL

BIGINT

“fcm_message_sends_total - Total FCM|

message sends monitor element” on pagel

613

FCM_MESSAGE_RECVS_TOTAL

BIGINT

“fcm_message_recvs_total - Total FCM|

message receives monitor element” o

[page 610|

FCM_MESSAGE_SEND_VOLUME

BIGINT

“fcm_message_send_volume - FCM|

message send volume monitor element’]

on page 611|

FCM_MESSAGE_RECV_VOLUME

BIGINT

“fcm_message_recv_volume - FCM|

message received volume monitorf

element” on page 608|

FCM_TQ_SENDS_TOTAL

BIGINT

“fcm_tq_sends_total - FCM table queue|

send total monitor element” on page 626|

FCM_TQ_RECVS_TOTAL

BIGINT

“fcm_tq_recvs_total - FCM table queue

receives total monitor element” on page

623

Chapter 4. Event monitors 127

Table 13. Information returned for a unit of work event monitor: Table name: UOW_METRICS (continued). The
metrics in this table are the same as those returned in the METRICS monitor element in the UOW_EVENT table

Column Name Data Type Description

FCM_TQ_SEND_VOLUME BIGINT “fcm_tq_send_volume - FCM table queue
send volume monitor element” on page|
624

FCM_TQ_RECV_VOLUME BIGINT “fcm_tq_recv_volume - FCM table queue|

received volume monitor element” on|

page 621|

TQ_TOT_SEND_SPILLS

BIGINT “tq_tot_send_spills - Total number of table]
queue buffers overflowed monitor|
element” on page 977

AUDIT_EVENTS_TOTAL BIGINT “audit_events_total - Total audit events|
monitor element” on page 509

TOTAL_ROUTINE_USER_CODE_PROC_ |BIGINT “total_routine_user_code_proc_time -

TIME Total routine user code processing time

monitor element” on page 955|

TOTAL_ROUTINE_USER_CODE_TIME BIGINT “total_routine_user_code_time - Totall

routine user code time monitor element”|

on page 956|

Capturing system monitor elements using the statistics event
monitor

The statistics event monitor contains the details_xml monitor element in the
event_scstats and event_wlstats logical data groups. Use this monitor element to
capture information about the system.

The monitor element details_xml is an XML document containing all the system
monitor elements reported by the MON_GET_SERVICE_SUBCLASS_DETAILS and
MON_GET_WORKLOAD_DETAILS table functions. System monitor elements are a
subset of the details document reported in the DETAILS column of the
MON_GET_SERVICE_SUBCLASS_DETAILS and
MON_GET_WORKLOAD_DETAILS table functions.

Request monitor elements are controlled through the COLLECT REQUEST
METRICS clause on service superclasses and the mon_req_metrics database
configuration parameter at the database level. Monitor elements are only collected
for a request if the request is processed by an agent in a service subclass whose
parent service superclass has request monitor element collection enabled, or if
request monitor element collection is enabled for the entire database. If request
monitor element have been disabled at the database level, and for a service
superclass, the metrics reported in the DETAILS_XML document stop increasing
(or remain at 0 if request metrics were disabled at database activation time).

The schema for the XML document that is returned in the DETAILS XML column
is available in the file sq11ib/misc/DB2MonCommon.xsd. The top level element is
system_metrics.

Information written to XML for system_metrics and
activity_metrics monitor elements

The activity_metrics monitor element is reported in the
MON_GET_ACTIVITY_DETAILS table function, the
MON_GET_PKG_CACHE_STMT_DETAILS table function, and the activity event

128 Database Monitoring Guide and Reference

monitor. The system_metrics monitor element is reported in the
MON_GET_CONNECTION_DETAILS, MON_GET_UNIT_OF_WORK_DETAILS,
MON_GET_SERVICE_SUBCLASS_DETAILS, MON_GET_WORKLOAD_DETAILS
table functions, and the statistics event monitor. This is also documented in the
sq11ib/misc/DB2MonCommon. xsd file.

system_metrics

System level metrics.

Element content: ([wlm_queue_time_total|, [wlm_queue_assignments_total|,
fcm_tq_recv_wait_time| , Ifcm_message_recv_wait_time| , |fcm_tq_send_wait_time| ,
fcm_message_send_wait_time|, Jagent_wait_time], [agent_waits_totall,
lock_wait_time], [lock_waits|, [direct_read_time], |direct_read_reqs|, [direct_write_time
,|direct_write_reqs|, [log_buffer wait_time|, jnum_log buffer full,
Ilog_disk_wait_time| , Ilog_disk_waits_total , ltc ip_recv_wait_time| , |tcpip_recvs_tota]]
, |client_idle_wait_time| , Iipc_recv_wait_time , ipc_recvs_total| , Iipc_send_wait_time| ,
ipc_sends_total|, [tcpip_send_wait_time], |tcpip_sends_total| , |pool_write_time| ,
pool_read_timel, laudit_file_write_wait_time|, |audit_file_writes_total| ,
audit_subsystem_wait_time], laudit_subsystem_waits_total|,
diaglog_write_wait_time|, [diaglog_writes_totall, [fcm_send_wait_time],
fcm_recv_wait_time], Jtotal wait_time], Jtotal rqst_time], frqsts_completed_totall,
total_app_rgst_time], [app_rgsts_completed_totall , [total_section_sort_proc_time|,
total_section_sort_time|, [fotal_section_sorts|, [rows_read|, [rows_modified],
pool_data_l_reads|, [pool_index_l_reads|, [pool_temp_data_l_reads|,
pool_temp_index_l_reads| , |'pool_xda_l_reads| , |'pool_temp_xda_l_reads| ,
total_cpu_timel, lact_completed_totall, [pool_data_p_reads|,
pool_temp_data_p_reads|, [pool_xda_p_reads|, |pool_temp_xda_p_reads| ,
pool_index_p_reads|, [pool temp_index_p_readsd|, [pool_data_writes|,
pool_xda_writes], [pool_index_writes|, |direct_reads], |direct_writes], [rows_returned|,
deadlocks] , [lock_timeouts|, [lock_escals|, [fem_sends_totall, [fem_recvs_total|,
fcm_send_volume|, [fem_recv_volume], [fcm_message sends_total|,
fcm_message_recvs_total|, [fcm_message_send_volume|, [fem_message _recv_volume]
,lfem_tg_sends_totall, fcm_tq_recvs_totall, fcm_tq_send_volume|,
Ifcm_tq_recv_volume , |tq_tot_send_spills| , |tcpip_send_volume| , |tcpip_recv_volume|
lipc_send_volume|, lipc_recv_volume|, [post_threshold_sorts|,
post_shrthreshold_sorts| , |sort_0verflows| , |audit_events_tota]l ,
total_rgst_mapped_in| {zero or one times (?)}, [total_rgst_mapped_out] {zero or one
times (?)} , fact_rejected_totall [act_aborted_total[, Jtotal_sorts|, [total_routine_time|,
total_compile_proc_timel, Jtotal compile_time|, [total_compilations|,
total_implicit_compile_proc_time|, Jtotal_implicit_compile_time],
total_implicit_compilations] , Jtotal_runstats_proc_time], [total_runstats_time],
total_runstats|, Jtotal_reorg proc_time|, [total reorg timel, Jtotal reorgs|,
total_load_proc_time| , |total_load_time| , |total_loads| , kotal_section_proc_timd ,
total_section_time| , |total_app_section_executions| , |total_commit_proc_time| ,
total_commit_time|, [total_app_commits|, |t0ta1_rollback_proc_time| ,

total rollback_timel, ftotal app_rollbacks|, |total_r0utine_user_code_proc_time| ,

total routine_user_code_timel, [thresh_violations|, Inum_lw_thresh_exceeded| ,
total_routine_invocations], fint_commits|, [int_rollbacks|, [cat_cache_inserts|,
cat_cache _lookups|, [pke cache_inserts|, [pkg_cache_lookups|, [act_rgsts_totalf,
total_act_wait_time], [total_act_time|, ANY content (skip) {zero or more (*)})

Attributes:

Chapter 4. Event monitors 129

QName

Type Fixed Default Use

Annotation

release

xs:long required

ANY attribute
from ANY
namespace

activity_metrics

Activity level metrics.

Element content: ([wlm_queue_time_totall, [wlm_queue_assignments_total|,

fcm_tq recv_wait_timel, [fcm_message recv_wait_time], |fcm_tq_send_wait_time| ,

fcm_message_send_wait_time], [lock_wait_time|, [lock_waits|, |direct_read_time|,

direct_read_reqsl, [direct_ write_timel, [direct_write_reqs|, [log_buffer wait_time|,

num_log_buffer fulll, [log disk_wait_time|, [log_disk_waits_total|, [pool_write_time|,

pool_read_timel, laudit_file_write_wait_time|, [audit_file_writes_totall,

audit_subsystem_wait_time], laudit_subsystem_waits_total|,

diaglog write_wait_time|, [diaglog writes_totall, [fem_send_wait_time/,

fcm_recv_wait_timel , |total_act_wait_time| , otal_section_sort_proc_timel ,

total_section_sort_time], [total_section_sorts|, Jtotal_act_time], [rows_read|,

rows_modified|, [pool_data_1 reads], [pool index 1 reads|, Ipool_temp_data_l_reads| ,

pool_temp_index_1 reads|, [pool xda_l reads|, [pool_temp _xda_l reads|,

total_cpu_time], [pool_data_p_reads], [pool_temp_data_p_reads], Jpool xda_p_reads|,

pool_temp_xda_p_reads|, [pool_index_p_reads|, [pool_temp_index_p_reads|,

pool_data_writes|, [pool_xda_writes|, [pool_index_writes|, [direct_reads],

direct_writes|, frows_returned|, [deadlocks], [lock_timeouts], Jlock_escals|,

fcm_sends_totall, [fcm_recvs_totall, [fem_send_volume], lfcm_recv_volume|,

fcm_message_sends_total|, [fcm_message_recvs_totall, |fcm_message_send_volume| ,

fcm_message_recv_volumel, lfcm_tq_sends_totall, |fcm_tq_recvs_t0tal| ,

fcm_tq_send_volumel ,[fem_tq_recv_volume], |tq_tot_send_spills| ,

post_threshold_sorts| ,post_shrthreshold_sorts|, |sort_overﬂows| , |audit_events_total|

ltotal_sorts], Jstmt_exec_time|, lcoord_stmt_exec_time| {zero or one times (?)} ,

total_routine_non_sect_proc_time/, [total_routine_non_sect_time],

total_section_proc_timel, Jtotal_section_time], Jtotal_app_section_executions|,

total routine_user_code_proc_time|, [total_routine_user code_time],

total_routine_time|, [thresh_violations|, jnum_lw_thresh_exceeded],

total_routine_invocations|, ANY content (skip) {zero or more (*)})

Attributes:

OName

Type Fixed Default Use

Annotation

release

xs:long required

ANY attribute
from ANY
namespace

agent_wait_time

See monitor element [“agent_wait_time - Agent wait time monitor element” on|

[page 489| for more details.
Contained by:

130 Database Monitoring Guide and Reference

Element content:

Type Facet

xs:long

agent_waits_total

See monitor element [“agent_waits_total - Total agent waits monitor element” on|

page 490| for more details.
Contained by:

Element content:

Type Facet

xs:long

tcpip_recv_wait_time

See monitor element [“tcpip_recv_wait_time - TCP/IP received wait time monitor]
[element” on page 916| for more details.

Contained by:

Element content:

Type Facet

xs:long

tcpip_recvs_total

See monitor element [“tcpip_recvs_total - TCP/IP receives total monitor element”|

for more details.
Contained by:

Element content:

Type Facet

xs:long

client_idle_wait_time

See monitor element [“client_idle_wait_time - Client idle wait time monitor|
felement” on page 534| for more details.

Contained by:

Element content:

Chapter 4. Event monitors 131

Type Facet

xs:long
ipc_recv_wait_time
See monitor element [“ipc_recv_wait_time - Interprocess communication received|
[wait time monitor element” on page 661 for more details.
Contained by:
Element content:
Type Facet
xs:long
ipc_recvs_total
See monitor element |”ipc_recvs_total - Interprocess communication receives totall
[monitor element” on page 662| for more details.
Contained by:
Element content:
Type Facet
xs:long
ipc_send_wait_time
See monitor element [“ipc_send_wait_time - Interprocess communication send wai]
[time monitor element” on page 664] for more details.
Contained by:
Element content:
Type Facet
xs:long
ipc_sends_total
See monitor element [“ipc_sends_total - Interprocess communication send tota1|
[monitor element” on page 664] for more details.
Contained by:
Element content:
Type Facet
xs:long

132 Database Monitoring Guide and Reference

tcepip_send_wait_time

See monitor element [“tcpip_send_wait_time - TCP/IP send wait time monitor]
[element” on page 918| for more details.

Contained by:

Element content:

Type

Facet

xs:long

tcpip_sends_total

See monitor element [“tcpip_sends_total - TCP/IP sends total monitor element” on|

page 919| for more details.
Contained by:

Element content:

Type

Facet

xs:long

total_wait_time

See monitor element [“total_wait_time - Total wait time monitor element” on page
for more details.

Contained by:

Element content:

Type

Facet

xs:long

total_rqst_time

See monitor element [“total_rgst_time - Total request time monitor element” on|

page 958| for more details.
Contained by:

Element content:

Type

Facet

xs:long

rqsts_completed_total

See monitor element [“rgsts_completed_total - Total requests completed monitor|
felement” on page 841|for more details.

Chapter 4. Event monitors 133

Contained by:

Element content:

Type Facet
xs:long
total_app_rqgst_time
See monitor element [“total_app_rgst_time - Total application request time monitor]
felement” on page 931|for more details.
Contained bysystem_metricy
Element content:
Type Facet
xs:long
app_rqsts_completed_total
See monitor element [“app_rgsts_completed_total - Total application requests|
[completed monitor element” on page 496| for more details.
Contained by:
Element content:
Type Facet
xs:long
act_completed_total
See monitor element [“act_completed_total - Total completed activities monitor|
felement” on page 475 for more details.
Contained by:
Element content:
Type Facet
xs:long

tcpip_send_volume

See monitor element [“tcpip_send_volume - TCP/IP send volume monitor element”|

for more details.
Contained by:

Element content:

134 Database Monitoring Guide and Reference

Type Facet
xs:long
tcpip_recv_volume
See monitor element [“tcpip_recv_volume - TCP/IP received volume monitor
felement” on page 915/ for more details.
Contained by:
Element content:
Type Facet
xs:long
ipc_send_volume
See monitor element [“ipc_send_volume - Interprocess communication send Volume|
[monitor element” on page 663| for more details.
Contained by:
Element content:
Type Facet
xs:long
ipc_recv_volume
See monitor element [“ipc_recv_volume - Interprocess communication received|
[volume monitor element” on page 660 for more details.
Contained by:
Element content:
Type Facet
xs:long
total_rqst_mapped_in
See monitor element [“total_rqst_mapped_in - Total request mapped-in monitor|
felement” on page 957| for more details.
Contained by:
Element content:
Type Facet
xs:long

Chapter 4. Event monitors 135

total_rqst_mapped_out

See monitor element [“total_rqst_mapped_out - Total request mapped-out monitor]
[element” on page 957] for more details.

Contained byfystem_metric

Element content:

Type Facet

xs:long

act_rejected_total

See monitor element [“act_rejected_total - Total rejected activities monitor element”|

for more details.
Contained by:

Element content:

Type Facet

xs:long

act_aborted total

See monitor element |”act_aborted_tota1 - Total aborted activities monitor element”|

for more details.
Contained by:

Element content:

Type Facet

xs:long

total_compile_proc_time

See monitor element [“total_compile_proc_time - Total compile processing time]
[monitor element” on page 936| for more details.

Contained by:

Element content:

Type Facet

xs:long

total_compile_time

See monitor element [“total_compile_time - Total compile time monitor element” on|

for more details.

136 Database Monitoring Guide and Reference

Contained by:

Element content:

Type Facet
xs:long
total_compilations
See monitor element [“total_compilations - Total compilations monitor element” on|
page 935| for more details.
Contained by:
Element content:
Type Facet
xs:long
total_implicit_compile_proc_time
See monitor element [“total_implicit_compile_proc_time - Total implicit compile]
[processing time monitor element” on page 941| for more details.
Contained by:
Element content:
Type Facet
xs:long
total_implicit_compile_time
See monitor element [“total_implicit_compile_time - Total implicit compile time|
[monitor element” on page 942| for more details.
Contained by:
Element content:
Type Facet
xs:long

total_implicit_compilations

See monitor element [“total_implicit_compilations - Total implicit complications|
[monitor element” on page 941| for more details.

Contained by:

Element content:

Chapter 4. Event monitors

137

Type Facet
xs:long
total_runstats_proc_time
See monitor element [“total_runstats_proc_time - Total runtime statistics processing]
[time monitor element” on page 959| for more details.
Contained by:
Element content:
Type Facet
xs:long
total_runstats_time
See monitor element |”t0tal_runstats_time - Total runtime statistics time monitoﬂ
[element” on page 960| for more details.
Contained by:
Element content:
Type Facet
xs:long
total_runstats
See monitor element [“total_runstats - Total runtime statistics monitor element” on|
page 958| for more details.
Contained by:
Element content:
Type Facet
xs:long
total_reorg_proc_time
See monitor element [“total_reorg_proc_time - Total reorganization processing time|
[monitor element” on page 947| for more details.
Contained by:
Element content:
Type Facet
xs:long

138 Database Monitoring Guide and Reference

total_reorg_time

See monitor element [“total_reorg_time - Total reorganization time monitor|
felement” on page 948| for more details.

Contained by:

Element content:

Type Facet

xs:long

total_reorgs

See monitor element [“total_reorgs - Total reorganizations monitor element” on|

page 949| for more details.
Contained by:

Element content:

Type Facet

xs:long

total_load_proc_time

See monitor element [“total_load_proc_time - Total load processing time monitor|
felement” on page 943 for more details.

Contained by:

Element content:

Type Facet

xs:long

total_load_time

See monitor element [“total_load_time - Total load time monitor element” on page

for more details.
Contained by:

Element content:

Type Facet

xs:long

total loads

See monitor element [“total_loads - Total loads monitor element” on page 945| for
more details.

Chapter 4. Event monitors 139

Contained bylystem_metric

Element content:

Type Facet

xs:long

total_commit_proc_time

See monitor element [“total_commit_proc_time - Total commits processing time]
[monitor element” on page 933| for more details.

Contained by:

Element content:

Type Facet

xs:long

total_commit_time

See monitor element |”total_commit_time - Total commit time monitor element” on|

page 934] for more details.
Contained by:

Element content:

Type Facet

xs:long

total_app_commits

See monitor element [“total_app_commits - Total application commits monitor]
felements” on page 929 for more details.

Contained by:

Element content:

Type Facet

xs:long

total_rollback_proc_time

See monitor element [“total_rollback_proc_time - Total rollback processing time|
[monitor element” on page 950| for more details.

Contained by:

Element content:

140 Database Monitoring Guide and Reference

Type

Facet

xs:long

total_rollback_time

See monitor element |”total_rollback_time - Total rollback time monitor element” on|
page 951| for more details.

Contained by:

Element content:

Type

Facet

xs:long

total_app_rollbacks

See monitor element [“total_app_rollbacks - Total application rollbacks monitor
felement” on page 930| for more details.

Contained by:

Element content:

Type

Facet

xs:long

int_commits

See monitor element [“int_commits - Internal commits monitor element” on page|

for more details.
Contained byfystem_metrics]

Element content:

Type

Facet

xs:long

int_rollbacks

See monitor element [“int_rollbacks - Internal rollbacks monitor element” on page

for more details.
Contained by:

Element content:

Type

Facet

xs:long

Chapter 4. Event monitors 141

cat_cache_inserts

See monitor element [“cat_cache_inserts - Catalog cache inserts monitor element”]

for more details.
Contained by:

Element content:

Type Facet
xs:long
cat_cache_lookups
See monitor element [“cat_cache_lookups - Catalog cache lookups monitor element”]
for more details.
Contained by:
Element content:
Type Facet
xs:long
pkg_cache_inserts
See monitor element [‘pkg_cache_inserts - Package cache inserts monitor element”]
for more details.
Contained by:
Element content:
Type Facet
xs:long
pkg_cache_lookups
See monitor element [“pkg_cache_lookups - Package cache lookups monitor
felement” on page 748| for more details.
Contained by:
Element content:
Type Facet
xs:long

act_rqgsts_total

See monitor element [“act_rqsts_total - Total activity requests monitor elements” on|

for more details.

142 Database Monitoring Guide and Reference

Contained by:

Element content:

Type Facet

xs:long

wim_queue_time_total

See monitor element [“wlm_queue_time_total - Workload manager total queue time]
[monitor element” on page 992| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

wim_queue_assignments_total

See monitor element [“wlm_queue_assignments_total - Workload manager total|
[queue assignments monitor element” on page 990| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

fem_tq_recv_wait_time

See monitor element |”fcm_tq_recv_wait_time - FCM table queue received wait|
[fime monitor element” on page 622[for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

fcm_message_recv_wait_time

See monitor element [“fcm_message _recv_wait_time - FCM message received wait|
[fime monitor element” on page 609| for more details.

Contained by: [system_metrics|factivity_metrics|

Element content:

Chapter 4. Event monitors 143

Type Facet

xs:long
fcm_tq_send_wait_time
See monitor element [“fcm_tq_send_wait_time - FCM table queue send wait time
[monitor element” on page 625| for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
fcm_message_send_wait_time
See monitor element [“fcm_message _send_wait_time - FCM message send wait|
[fime monitor element” on page 612 for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
lock_wait_time
See monitor element |”lock_wait_time - Time waited on locks monitor element” on|
page 689| for more details.
Contained by: [system_metrics|activity_metrics|
Element content:
Type Facet
xs:long
lock_waits
See monitor element [“lock_waits - Lock waits monitor element” on page 691 for
more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

144 Database Monitoring Guide and Reference

direct_read _time

See monitor element [“direct_read_time - Direct read time monitor element” on|

for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet
xs:long
direct_read_reqs
See monitor element [“direct_read_regs - Direct read requests monitor element” on|
page 589| for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
direct_write_time
See monitor element |”direct_write_time - Direct write time monitor element” 0n|
page 596| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
direct_write_reqs
See monitor element [“direct_write_reqs - Direct write requests monitor element”|
for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

log_buffer_wait_time

See monitor element |”log_buffer_wait_time - Log buffer wait time monitor|

felement” on page 694 for more details.

Chapter 4. Event monitors

145

Contained by: [system_metrics|factivity_metrics

Element content:

Type Facet

xs:long

num_log_buffer_full

See monitor element |”num_log_buffer_full - Number of full log buffers monitoﬂ
felement” on page 723 for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

log_disk_wait_time

See monitor element [“log_disk_wait_time - Log disk wait time monitor element”]

for more details.

Contained by: [system_metrics|activity_metrics|

Element content:

Type Facet

xs:long

log_disk_waits_total

See monitor element [“log_disk_waits_total - Total log disk waits monitor element’]

for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_write_time

See monitor element [“pool_write_time - Total buffer pool physical write time
[monitor element” on page 792| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

146 Database Monitoring Guide and Reference

Type Facet
xs:long
pool_read_time
See monitor element [“pool_read_time - Total buffer pool physical read time|
[monitor element” on page 778| for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
audit_file_write_wait_time
See monitor element [“audit_file_write_wait_time - Audit file write wait time|
[monitor element” on page 510| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
audit_file_writes_total
See monitor element [“audit_file_writes_total - Total audit files written monitor
[element” on page 511| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
audit_subsystem_wait_time
See monitor element |”audit_subsystem_wait_time - Audit subsystem wait time
[monitor element” on page 512[for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

Chapter 4. Event monitors

147

audit_subsystem_waits_total

See monitor element [“audit_subsystem_waits_total - Total audit subsystem waits|
[monitor element” on page 513| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet
xs:long
diaglog_write_wait_time
See monitor element [“diaglog_write_wait_time - Diagnostic log file write wait time
[monitor element” on page 587| for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
diaglog_writes_total
See monitor element [“diaglog_writes_total - Total diagnostic log file writes monitor|
felement” on page 588 for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
fcm_send_wait_time
See monitor element [“fcm_send_wait_time - FCM send wait time monitor element”]
for more details.
Contained by: [system_metrics|activity_metrics|
Element content:
Type Facet
xs:long

fcm_recv_wait_time

See monitor element |”fcm_recv_wait_time - FCM received wait time monitoﬂ
felement” on page 615 for more details.

148 Database Monitoring Guide and Reference

Contained by: [system_metrics|factivity_metrics

Element content:

Type Facet
xs:long
total_act_wait_time
See monitor element [“total_act_wait_time - Total activity wait time monitor{
felement” on page 928 for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
total_section_sort_proc_time
See monitor element [“total_section_sort_proc_time - Total section sort processing|
[fime monitor element” on page 963| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
total_section_sort_time
See monitor element |”total_section_sort_time - Total section sort time rnonitorl
felement” on page 964 for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

total_section_sorts

See monitor element [“total_section_sorts - Total section sorts monitor element” on|
page 965| for more details.

Contained by: [system_metrics|factivity_metrics|

Element content:

Chapter 4. Event monitors 149

Type Facet

xs:long
total_act_time
See monitor element [“total_act_time - Total activity time monitor element” on page
for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
rows_read
See monitor element [“rows_read - Rows read monitor element” on page 835 for
more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
rows_modified
See monitor element [“rows_modified - Rows modified monitor element” on page|
for more details.
Contained by: [system_metrics|activity_metrics|
Element content:
Type Facet
xs:long
pool_data_|_reads
See monitor element [“pool_data_l_reads - Buffer pool data logical reads monitor|
felement” on page 761|for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

150 Database Monitoring Guide and Reference

pool_index_I_reads

See monitor element [“pool_index_l_reads - Buffer pool index logical reads monitor]
felement” on page 770| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_temp_data_I_reads

See monitor element [“pool_temp_data_l_reads - Buffer pool temporary data logical|
[reads monitor element” on page 780 for more details.

Contained by: [system_metrics|factivity_metrics|

Element content:

Type Facet

xs:long

pool_temp_index_I_reads

See monitor element [“pool temp_index 1 reads - Buffer pool temporary index|
[logical reads monitor element” on page 784] for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_xda_|l_reads

See monitor element [“pool_xda_l_reads - Buffer pool XDA data logical reads|
[monitor element” on page 793| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_temp_xda_|l_reads

See monitor element |”p001_temp_xda_l_reads - Buffer pool temporary XDA data|
[logical reads monitor element” on page 787]for more details.

Chapter 4. Event monitors 151

Contained by: [system_metrics|factivity_metrics

Element content:

Type Facet

xs:long

total_cpu_time

See monitor element [“total_cpu_time - Total CPU time monitor element” on page|
for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_data_p_reads

See monitor element [“pool_data_p_reads - Buffer pool data physical reads monitor
felement” on page 763 for more details.

Contained by: [system_metrics|activity_metrics|

Element content:

Type Facet

xs:long

pool_temp_data_p_reads

See monitor element |”pool_temp_data_p_reads - Buffer pool temporary data|
[physical reads monitor element” on page 782[for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_xda_p_reads

See monitor element [“pool_xda_p_reads - Buffer pool XDA data physical reads|
[monitor element” on page 795| for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

152 Database Monitoring Guide and Reference

Type Facet
xs:long
pool_temp_xda_p_reads
See monitor element [“pool_temp_xda_p_reads - Buffer pool temporary XDA datal
[physical reads monitor element” on page 789 for more details.
Contained by: [system_metrics|factivity_metrics|
Element content:
Type Facet
xs:long
pool_index_p_reads
See monitor element [“pool_index_p_reads - Buffer pool index physical reads|
[monitor element” on page 772| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
pool_temp_index_p_reads
See monitor element [“pool_temp_index_p_reads - Buffer pool temporary index|
[physical reads monitor element” on page 786| for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
pool_data_writes
See monitor element [“pool_data_writes - Buffer pool data writes monitor element’]
for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

Chapter 4. Event monitors 153

pool_xda_writes

See monitor element [“pool_xda_writes - Buffer pool XDA data writes monitor]
[element” on page 797]for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

pool_index_writes

See monitor element [“pool_index_writes - Buffer pool index writes monitor
[element” on page 773| for more details.

Contained by: [system_metrics|factivity_metrics|

Element content:

Type Facet

xs:long

direct_reads

See monitor element [“direct_reads - Direct reads from database monitor element”]

for more details.

Contained by: [system_metrics|lactivity_metrics|

Element content:

Type Facet

xs:long

direct_writes

See monitor element [“direct_writes - Direct writes to database monitor element” on|

for more details.

Contained by: [system_metrics|activity_metrics|

Element content:

Type Facet

xs:long

rows_returned

See monitor element [‘rows_returned - Rows returned monitor element” on page]
for more details.

154 Database Monitoring Guide and Reference

Contained by: [system_metrics|factivity_metrics

Element content:

Type Facet
xs:long
deadlocks
See monitor element [“deadlocks - Deadlocks detected monitor element” on pagel
for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
lock_timeouts
See monitor element [“lock_timeouts - Number of lock timeouts monitor element”|
for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long
lock_escals
See monitor element [“lock_escals - Number of lock escalations monitor element”]
for more details.
Contained by: [system_metrics|lactivity_metrics|
Element content:
Type Facet
xs:long

fcm_sends_total

See monitor element [“fcm_sends_total - FCM sends total monitor element” on|
page 620| for more details.

Contained by: [system_metrics|factivity_metrics|

Element content:

Chapter 4. Event monitors 155

Type