IBM DB2 9.7
for Linux, UNIX, and Windows

| ® o
TS
() | i :: S
\ -] / |
Y Fs 1
{]

Developing User-defined Routines (SQL and External)

SC27-2448-00

IBM DB2 9.7
for Linux, UNIX, and Windows

| ® o
TS
() | i :: S
\ -] / |
Y Fs 1
{]

Developing User-defined Routines (SQL and External)

SC27-2448-00

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

¢ To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About thisbook. Vi

Who should use this bookvii
Chapter 1. Developing Routines .1
Routines. .2
Chapter 2. Overview of routines . 3
Benefits of using routines . .3
Types of routines . .4

System-defined and user-deﬁned routmes .6

Functional types of routines .9

Implementations of routines . . 19
Usage of routines . 30

Administration of databases w1th system deflned

routines30

Extension of SQL functlon support w1th

user-defined functions. . . B 1 |

Auditing using SQL table functlons N 72
Tools for developing routines . . . 34

IBM Data Studio routine development support 34
SQL statements that can be executed in routines . . 35

SQL access levels in routines40

Determining what SQL statements can be

executed in routines41
Portability of routines42
Interoperability of routines43
Performance of routines43
Security of routines.50

Securing routines . . . 51
Authorizations and binding of routlnes that contaln
SQL . . 52
Data conflicts when procedures read from or write
totables55

Chapter 3. External routines 59

External routine features59
External function and method features60
SQL in external routines69
External routine parameter styles71

Supported routine programming languages. . . .75

Comparison of supported APIs and
programming languages for external routine

development77
Performance considerations for developlng routlnes 82
Security considerations for routines85
Routine code page considerations 87

32-bit and 64-bit application and routine support . 88
32-bit and 64-bit support for external routines. . 89
Performance of routines with 32-bit libraries on

64-bit database servers.9
XML data type support in external routlnes .. .9
Restrictions on external routines91
Creating external routines93

Writing routines.9

Debugging routines.96

© Copyright IBM Corp. 1993, 2009

Returning error messages from SQL procedures
External routine library and class management

Deployment of external routine libraries and

classes .

Security of external routlne 11brary or class flles

Resolution of external routine libraries and

classes .

Modifications to external routlne hbrary and

class files.

Backup and restore of external routrne hbrary

and class files .

External routine library rnanagement and

performance.

Chapter 4. .NET common language
runtime (CLR) routines .
Support for external routine development in NET
CLR languages . .
Tools for developing NET CLR routlnes
Designing .NET CLR routines .
SQL data type representation in NET CLR
routines .
Parameters in NET CLR routlnes
Returning result sets from .NET CLR procedures
Security and execution modes for CLR routines
Restrictions on .NET CLR routines
Creating .NET CLR routines
Creating .NET CLR routines from DBZ
Command Window .
Building .NET CLR routine Code .
Building .NET common language runtlme (CLR)
routine code using sample build scripts
Building .NET common language runtime (CLR)
routine code from DB2 Command Window
CLR .NET routine compile and link options .
Debugging .NET CLR routines .o
Errors related to .NET CLR routrnes
Examples of .NET CLR routines . .
Examples of C# NET CLR procedures .
Examples of Visual Basic .NET CLR functions
Examples of Visual Basic .NET CLR procedures
Example: XML and XQuery support in C# .NET
CLR procedure . .
Example: XML and XQuery support in C
procedure .
Examples of C# NET CLR functlons

Chapter 5. C and C++ routines .
Support for external routine development in C .
Support for external routine development in C++
Tools for developing C and C++ routines .
Designing C and C++ routines

Include file required for C and C++ routlne

development (sqludfh) .

Parameters in C and C++ routines

97

. 98

. 98

99

. 99
. 100
. 101

. 101

. 103
. 103
. 104
. 104

. 105

. 107
109
110

111
. 113

. 113

. 115

. 116

. 117
. 119
. 120
. 121
. 123
. 124

135
140

. 150

. 154
. 158

. 165
. 166

166

. 166
. 166

. 167
. 168

iii

Supported SQL data types in C and C++

routines . . . 180
SQL data type handhng in C and C++ routmes 183
Passing arguments to C, C++, OLE, or COBOL

routines 191

Graphic host Varrables in C and C++ routmes 203

C++ type decoration 203

Returning result sets from C and C++

procedures . . . Co.205
Creating C and C++ routmes 206
Building C and C++ routine code 208

Building C and C++ routine code using sample

bldrtn scripts 208

Building C and C++ routme code from DBZ

Command Window 214

Compile and link options for C and C++

routines . . . 216

Building embedded SQL stored procedures in C

or C++ with configuration files 225

Building user-defined functions in C or C++

with configuration files (AIX)226

Rebuilding DB2 routine shared libraries . . . 227

Updating the database manager configuration

file.228

Chapter 6. COBOL procedures 229

Support for external procedure development in

cosBoL 231

Supported SQL data types in COBOL embedded

SQL applications 231

Building COBOL routmes . . 234
Compile and link options for COBOL routrnes 234
Building IBM COBOL routines on AIX 239

Building UNIX Micro Focus COBOL routines 240
Building IBM COBOL routines on Windows . . 241
Building Micro Focus COBOL routines on

Windows.242

Chapter 7. Java routines 245

Supported Java routine development software . . 245

JDBC and SQLJ application programming interface

support for Java routines 246

Specification of an SDK for Java routlne

development (UNIX). 246

Specification of a driver for Java routmes ... 247

Tools for developing Java (]DBC and SQL])

routines 248

Designing Java routmes .o .. 248
Supported SQL data types in]ava routrnes .. 249
Connection contexts in SQLJ routines 250
Parameters in Java routines. . . . 251
Passing parameters of data type ARRAY to]ava
routines 262
Returning result sets from]DBC procedures .. 202
Returning result sets from SQLJ procedures . . 263
Receiving procedure result sets in JDBC
applications and routines 2064
Receiving procedure result sets in SQL]
applications and routines265
Restrictions on Java routines 266

iv Developing User-defined Routines (SQL and External)

Table function execution model for Java . . . 266
Creating Java routines 267

Creating Java routines from the command 11ne 268
Building Java routinecode270

Building JDBC routines271

Building SQL routines 272

Compile and link options for]ava (SQL])

routines . . . 272
Deploying Java routlne Class flles to DB2 database
servers 273

JAR file adm1n1strat10n on the database server 274

Updating Java routine classes275
Examples of Java (JDBC) routines 276

Example: Array data type in Java (]DBC)

procedure 276

Example: XML and XQuery support in]ava

(JDBC) procedure 276

Chapter 8. OLE automation routine
design..............281

Creating OLE automation routines 281
OLE routine object instances and scratchpad

considerations 282
Supported SQL data types in OLE automatron .. 282
OLE automation routines in BASIC and C++. . . 283

Chapter 9. OLE DB user-defined table

functions . . . - 287
Creating an OLE DB table UDF o287
Fully qualified rowset names 289
Supported SQL data types in OLE DB29

Chapter 10. Invoking routines 293

Authorizations and binding of routines that

contain SQL.. . . . A L
Routine names and paths e 297
Nested routine invocations 298
Invoking 32-bit routines on a 64-bit database server 299
References to procedures299
Calling procedures300
References to functions312
Function selection. . . . 313
Distinct types as UDF or method parameters 314
LOB values as UDF parameters315
Invoking scalar functions or methods 316
Invoking user-defined table functions 316

Appendix A. Overview of the DB2
technical information. 319
DB2 technical library in hardcopy or PDF format 319

Ordering printed DB2 books 322
Displaying SQL state help from the command hne
processor.323
Accessing dlfferent versions of the DB2

Information Center 323
Displaying topics in your preferred language in the
DB2 Information Center. . . . 323
Updating the DB2 Information Center 1nsta11ed on

your computer or intranet server. 324

Manually updating the DB2 Information Center
installed on your computer or intranet server
DB2 tutorials e

DB2 troubleshooting information .

Terms and Conditions

. 325
. 327
. 327
. 328

Appendix B. Notices

Index .

. 329

. 333

Contents

A\

vi Developing User-defined Routines (SQL and External)

About this book

This book provides information concerning the development of user-defined
routines when a system-defined routine that provides the required functionality is
not available.

Who should use this book

This book is intended for database architects, database administrators, and
application developers of all levels.

* Database architects interested in learning about how routine objects can be
created and used to modularize SQL and related logic that can be reused in
multiple contexts within the database architecture.

* Database administrators interested in learning how to create, manage, deploy,
secure, troubleshoot, and improve system performance by using user-defined
routines within a database management system.

* Application developers interested in learning how and when to encapsulate SQL
statements and application logic into routines so as to improve application
modularity and performance as well as the step by step method of designing,
creating, and building user-defined routines. Application developers should have
experience writing SQL statements and programming experience using one of
the supported programming languages for routine development (C, C++, Java,
COBOL, C#, Visual Basic, or another .NET CLR supported programming
language).

© Copyright IBM Corp. 1993, 2009 vii

viii Developing User-defined Routines (SQL and External)

Chapter 1. Developing Routines

Development of routines is often done when there is no system-defined routine
available that provides the functionality that is required.

There are different functional types of routines and routine implementations,
however the basic steps for developing routines are generally common for all
routines. You must determine what type of routine to create, what implementation
to use, define the interface for the routine, develop the routine logic, execute SQL
to create the routine, test your routine, and then deploy it for general use.

Depending on what type of routine you choose to develop there are some specific
procedures you must follow. This topic will direct you to the appropriate topics for
getting started with routine development.
Prerequisites

* Read and understand basic routine concepts:

— To learn about types of routines, useful applications of routines, tools
for developing routines, routine best practices and more, see the topic:

- [Chapter 2, “Overview of routines,” on page 3|

* Learn about the available routine development tools that make it faster
and easier to develop routines:

— To learn about the available tools for routine development, see the
topic:

- [“Tools for developing routines” on page 34|

Procedure

1. Determine if an existing system-defined routine already meets your routine
needs.

* If a system-defined routine meets your needs, you might want to refer to
[Chapter 10, “Invoking routines,” on page 293

2. Determine what functional type of routine to develop.
3. Determine what routine implementation to use.

 If a SQL routine is required, refer to the information about SQL routines
(SQL PL).
* If an external routine is required, refer to the information about

The development of SQL and external routines is similar, but there are differences.
For both types of routines, you must first design your logic, and then to create the
routine in the database you must execute a routine functional type specific
CREATE statement. These routine creation statements include CREATE
PROCEDURE, CREATE FUNCTION, and CREATE METHOD. The clauses specific
to each of the CREATE statements define characteristics of the routine, including
the routine name, the number and type of routine parameters, and details about
the routine logic. DB2® uses the information provided by the clauses to identify
and run the routine when it is invoked. Upon successful execution of the CREATE
statement for a routine, the routine is created in the database. The characteristics of
the routine are stored in DB2’s system catalog tables that users can query.
Executing the CREATE statement to create a routine is also referred to as defining
a routine or registering a routine.

© Copyright IBM Corp. 1993, 2009 1

Because external routines have their logic implemented in user-created libraries or
classes located in the database file system, additional steps are required to program
the logic, build it, and properly locate the resulting library or class file.

Once you have developed routines, you might want to:
* Debug routines

* Deploy routines to production environments

* Grant privileges to execute routines to users

¢ Invoke routines

* Tune the performance of routines

Routines

Routines are database objects that can encapsulate programming and database
logic that can be invoked like a programming sub-routine from a variety of SQL
interfaces. Routines can be system-defined, which means that they are provided
with the product, or user-defined, which means that users can create them.
Routines can be implemented using SQL statements, a programming language, or
a mix of both. Different types of routines provide different interfaces that can be
used to extend the functionality of SQL statements, client applications, and some
database objects.

For a complete view of the types of routines and implementations that are
supported by DB2, refer to the topic: [“Types of routines” on page 4.

The many features of routines are part of why there are so many useful
applications of routines.

2 Developing User-defined Routines (SQL and External)

Chapter 2. Overview of routines

Routines are a type of database object that you can use to encapsulate logic that
can be invoked like a programming subroutine. There are many useful applications
of routines within a database or database application architecture. You can use
routines to improve overall database design, database performance, and data
security, as well as to implement basic auditing mechanisms, and more.

Benefits of using routines

The following benefits can be gained by using routines:

Encapsulate application logic that can be invoked from an SQL interface
In an environment containing many different client applications that have
common requirements, the effective use of routines can simplify code
reuse, code standardization, and code maintenance. If a particular aspect of
common application behavior needs to be changed in an environment
where routines are used, only the affected routine that encapsulates the
behavior requires modification. Without routines, application logic changes
are required in each application.

Enable controlled access to other database objects
Routines can be used to control access to database objects. A user might
not have permission to generally issue a particular SQL statement, such as
CREATE TABLE; however the user can be given permission to invoke
routines that contain one or more specific implementations of the
statement, thus simplifying privilege management through encapsulation
of privileges.

Improve application performance by reducing network traffic
When applications run on a client computer, each SQL statement is sent
separately from the client computer to the database server computer to be
executed and each result set is returned separately. This can result in high
levels of network traffic. If a piece of work can be identified that requires
extensive database interaction and little user interaction, it makes sense to
install this piece of work on the server to minimize the quantity of
network traffic and to allow the work to be done on the more powerful
database servers.

Allow for faster, more efficient SQL execution
Because routines are database objects, they are more efficient at
transmitting SQL requests and data than client applications. Therefore, SQL
statements executed within routines can perform better than if executed in
client applications. Routines that are created with the NOT FENCED clause
run in the same process as the database manager, and can therefore use
shared memory for communication, which can result in improved
application performance.

Allow the interoperability of logic implemented in different programming
languages
Because code modules might be implemented by different programmers in
different programming languages, and because it is generally desirable to
reuse code when possible, DB2 routines support a high degree of
interoperability.

© Copyright IBM Corp. 1993, 2009 3

* Client applications in one programming language can invoke routines
that are implemented in a different programming language. For example
C client applications can invoke .NET common language runtime
routines.

* Routines can invoke other routines regardless of the routine type or
routine implementation. For example a Java procedure can invoke an
embedded SQL scalar function.

* Routines created in a database server on one operating system can be
invoked from a DB2 client running on a different operating system.

The benefits described above are just some of the many benefits of using routines.
Using routines can be beneficial to a variety of users including database
administrators, database architects, and database application developers. For this
reason there are many useful applications of routines that you might want to
explore.

There are various kinds of routines that address particular functional needs and
various routine implementations. The choice of routine type and implementation
can impact the degree to which the above benefits are exhibited. In general,
routines are a powerful way of encapsulating logic so that you can extend your
SQL, and improve the structure, maintenance, and potentially the performance of
your applications.

Types of routines

There are many different types of routines. Routines can be grouped in different
ways, but are primarily grouped by their system or user definitions, by their
functionality, and by their implementation.

The supported routine definitions are:

* |“System-defined routines” on page 6|

* [“User-defined routines” on page 6|

The supported functional types of routines are:

+ [“Routines: Procedures” on page 10| (also called stored procedures)

+ [“Routines: Functions” on page 11|

+ [“Routines: Methods” on page 15|

The supported routine implementations are:

* [“Built-in routine implementation” on page 19|

+ [“Sourced routine implementation” on page 20|

* |“SQL routine implementation” on page 20|

+ [“External routine implementation” on page 20|

The following diagram illustrates the classification hierarchy of routines. All
routines can be either system-defined or user-defined. The functional types of
routines are in dark grey/blue boxes and the supported routine implementations
are in light grey/orange boxes. Built-in routine implementations are emphasized,
because this type of implementation is unique.

4 Developing User-defined Routines (SQL and External)

Built-in
aggregate
functions

Aggregate
functions

Sourced
aggregate
functions

SQL
procedures

Built-in
External scalar
procedures functions

Sourced
scalar
functions

— Procedures

Scalar
functions

SQL scalar
Routines Functions . functions

L Methods — External
scalar

functions

Row SQL row
functions functions

SQL table
functions

Table
functions

External
table
functions

SQL
scalar
methods
Scalar
methods

External
scalar
methods

Figure 1. Classifications of routines

The various types of routines provide extensive support for extending SQL
language functionality and for developing more modular database applications.

Chapter 2. Overview of routines

System-defined and user-defined routines

One of the most straight-forward ways of categorizing routines is to divide them
into [“System-defined routines”| and |[“User-defined routines.”]

System-defined routines are routines that are provided with the product. These
routines provide a wide variety of support for tasks ranging from administrative
functions to database system and catalog reporting. They are immediately
ready-to-use and require no prerequisite setup or registration steps, although users
require the necessary privileges to invoke these routines.

User-defined routines are routines that users create themselves. User-defined
routines provide a means for users to extend the SQL language beyond the support
which is currently available. User-defined routines can be implemented in a variety
of ways which include sourcing (re-using the logic of) built-in routines, using SQL
statements only, or using SQL with another programming language.

System-defined routines

System-defined routines are routines that are provided with the product. These
routines provide a wide variety of routine support for tasks ranging from
administrative functions to database system and catalog reporting. They are
characterized by the fact that they are immediately ready-to-use, require no
prerequisite setup or routine registration steps, although users require privileges to
invoke these routines. These can include built-in and system-defined routines,
previously called SQL Administrative Routines.

Built-in system-defined routines provide standard operator support and basic
scalar function and aggregate function support. Built-in routines are the first choice
of routine that you should use because they are strongly typed and will provide
the best performance. Do not create external routines that duplicate the behavior of
built-in routines. External routines cannot perform as well or be as secure as
built-in routines.

Other system-defined routines that you can use are provided with DB2 in the
SYSPROC, SYSFUN, and SYSTOOLS schemas. These routines are essentially SQL
and external routines that are defined by the system and provided with the
product. Although these additional routines are shipped with DB2, they are not
built-in routines. Instead they are implemented as pre-installed user-defined
routines. These routines typically encapsulate a utility function. Some examples of
these include: SNAP_GET_TAB_V91, HEALTH_DB_HI, SNAP_WRITE_FILE, and
REBIND_ROUTINE_PACKAGE. You can immediately use these functions and
procedures, provided that you have the SYSPROC schema and SYSFUN schema in
your CURRENT PATH special register. It is a good idea to peruse the set of DB2
provided system-defined routines if you are considering implementing an external
routine that performs administrative functionality.

Of particular interest, you might find the ADMIN_CMD procedure useful as it
provides a standard interface for executing many popular DB2 commands through
an SQL interface.

System-defined routines make it faster and easier for you to implement complex
SQL queries and powerful database applications because they are ready-to-use.

User-defined routines

DB2 provides routines that capture the functionality of most commonly used
arithmetic, string, and casting functions. However, DB2 also allows you to create
routines to encapsulate logic of your own. These routines are called user-defined

6 Developing User-defined Routines (SQL and External)

routines. You can create your own [“Routines: Procedures” on page 10)[“Routines|
[Functions” on page 11|and |“Routines: Methods” on page 15in any of the
supported implementation styles for the routine type. Generally the prefix
‘user-defined’ is not used when referring to procedures and methods. User-defined
functions are also commonly called UDFs.

User-defined routine creation

User-defined procedures, functions and methods are created in the database by
executing the appropriate CREATE statement for the routine type. These routine
creation statements include:

¢ “CREATE PROCEDURE statement” in the SQL Reference
* “CREATE FUNCTION statement” in the SQL Reference
¢ “CREATE METHOD statement” in the SQL Reference

The clauses specific to each of the CREATE statements define characteristics of the
routine, such as the routine name, the number and type of routine arguments, and
details about the routine logic. DB2 uses the information provided by the clauses
to identify and run the routine when it is invoked. Upon successful execution of
the CREATE statement for a routine, the routine is created in the database. The
characteristics of the routine are stored in the DB2 catalog views that users can
query. Executing the CREATE statement to create a routine is also referred to as
defining a routine or registering a routine.

User-defined routine definitions are stored in the SYSTOOLS system catalog table
schema.

User-defined routine logic implementation

There are three implementation styles that can be used to specify the logic of a
routine:

+ [“Sourced routine implementation” on page 20} user-defined routines can be
sourced from the logic of existing built-in routines.

* [“SQL routine implementation” on page 20} user-defined routines can be
implemented using only SQL statements.

+ |“External routine implementation” on page 20} user-defined routines can be
implemented using one of a set of supported programming languages.

When routines are created in a non-SQL programming language, the library or
class built from the code is associated with the routine definition by the value
specified in the EXTERNAL NAME clause. When the routine is invoked the
library or class associated with the routine is run.

User-defined routines can include a variety of SQL statements, but not all SQL
statements.

User-defined routines are strongly typed, but type handling and error-handling
mechanisms must be developed or enhanced by routine developers.

After a database upgrade, it may be necessary to verify or update routine
implementations.

In general, user-defined routines perform well, but not as well as system-defined
routines.

Chapter 2. Overview of routines 7

User-defined routines can invoke system-defined routines and other user-defined
routines implemented in any of the supported formats. This flexibility allows users
to essentially have the freedom to build a complete library of routine modules that
can be re-used.

In general, user-defined routines provide a means for extending the SQL language
and for modularizing logic that will be re-used by multiple queries or database
applications where system-defined routines do not exist.

Comparison of system-defined and user-defined routines
Understanding the differences between system-defined and user-defined routines
can help you determine whether you actually need to build your own routines or
whether you can re-use existing routines. The ability to determine when to re-use
existing routines and when to develop your own routines can save you time and
effort as well as ensure that you are maximizing routine performance.

System-defined routines and user-defined routines differ in a variety of ways.
These differences are summarized in the following table:

Table 1. Comparison of system-defined and user-defined routines

Characteristic

System-defined routines

User-defined routines

Feature support

Extensive numerical operator, string
manipulation, and administrative
functionality available for immediate
use.

To use these routines, simply invoke
the routines from supported
interfaces.

Although not all SQL statements are
supported within user-defined
routines, a great many are supported.
You can also wrap calls to
system-defined routines within
user-defined routines if you want to
extend the functionality of the
system-defined routines. User-defined
routines provide a limitless
opportunity for routine logic
implementation.

To use these routines, you must first
develop them and then you can
invoke them from supported
interfaces.

Maintenance No maintenance is required. External routines require that you
manage the associated external
routine libraries.

Upgrade No or little upgrade impact. Release to release upgrades might
require you to verify your routines.

Performance Perform better than equivalent Generally do not perform as well as

user-defined routines. equivalent system-defined routines.

Stability Error handling. Error handling must be programmed

by the routine developer.

Whenever it is possible to do so, you should choose to use the system-defined
routines. These are provided to facilitate SQL statement formulation and
application development and are optimized to perform well. User-defined routines
give you the flexibility to build your own routines where no system-defined
routine performs the specific business logic that you want to implement.

8 Developing User-defined Routines (SQL and External)

Determining when to use system-defined or user-defined
routines

[System-defined routines| provide you with time-saving ready-to-use encapsulated
functionality whereas Juser-defined routines| provide you with the flexibility to
define your own routines when no system-defined routine adequately contains the
functionality that you require.

To determine whether to use a system-defined or user-defined routine, do the
following:

1. Determine what functionality you want the routine to encapsulate.

2. Check the list of available system-defined routines to see if there are any that
meet some or all of your requirements.

* If there is a system-defined routine that meets some, but not all of your
requirements:

— Determine if the functionality that is missing, is functionality that you can
add simply to your application? If so, use the system-defined routine and
modify your application to cover the missing functionality. If the missing
functionality is not easily added to your application or if the missing
functionality would have to be repeated in many places consider creating
a user-defined routine that contains the missing functionality and that
invokes the system-defined routine.

— If you expect that your routine requirements will evolve and that you
might have to frequently modify the routine definition, consider using a
user-defined routine rather than the system-defined routine.

— Determine if there are additional parameters that you might want to pass
into or out of the routine. If there are, consider creating a user-defined
routine that encapsulates an invocation to the system-defined routine.

¢ If no system-defined routine adequately captures the functionality that you
want to encapsulate, create a user-defined routine.

To save time and effort, whenever possible consider using system-defined routines.
There will be times when the functionality that you require will not be available
within a system-defined routine. For these cases you must create a user-defined
routine. Other times it might be possible to include a call to system-defined routine
from a user-defined routine that covers the extra functionality that you require.

Functional types of routines

There are different functional types of routines. Each functional type provides
support for invoking routines from different interfaces for different purposes. Each
functional type of routine provides a different set of features and SQL support.

. also called stored procedures, serve as sub-routine extensions to
client applications, routines, triggers, and dynamic compound statements.
Procedures are invoked by executing the CALL statement with a reference to a
procedure. Procedures can have input, output, and input-output parameters, can
execute a wide variety of SQL statements, and return multiple result sets to the
caller.

. are relationships between sets of input data values and a set of result
values. Functions enable you to extend and customize SQL. Functions are
invoked from within elements of SQL statements such as a select-list, expression,
or a FROM clause. There are four types of functions: aggregate functions, scalar
functions, row functions, and table functions.

Chapter 2. Overview of routines 9

. allow you to access user-defined type attributes as well as to define
additional behaviors for user-defined types. A structured type is a user-defined
data type containing one or more named attributes, each of which has a data
type. Attributes are properties that describe an instance of a type. A geometric
shape, for example, might have attributes such as its list of Cartesian
coordinates. A method is generally implemented for a structured type as an
operation on the attributes of the structured type. For a geometric shape a
method might calculate the volume of the shape.

For specific details on each of the functional routine types refer to the topics for
each routine type.

Routines: Procedures

Procedures, also called stored procedures, are database objects created by executing
the CREATE PROCEDURE statement. Procedures can encapsulate logic and SQL
statement and can serve as sub-routine extensions to client applications, routines,
triggers, and dynamic compound statements. Procedures are invoked by executing
the CALL statement with a reference to a procedure. Procedures can take input,
output, and input-output parameters, execute a wide variety of SQL statements,
and return multiple result sets to the caller.

Features

Enable the encapsulation of logic elements and SQL statements that
formulate a particular subroutine module

Can be called from client applications, other routines, triggers, and
dynamic compound statements - from anywhere that the CALL
statement can be executed.

Return multiple result-sets

Support the execution of a large set of SQL statements including SQL
statements that read or modify table data in both single and multiple
partition databases

Parameter support for input, output, and input-output parameters
Nested procedure calls and function invocations are supported
Recursive calls to procedures are supported

Savepoints and transaction control are supported within procedures

Limitations

Procedures cannot be invoked from within SQL statements other than
the CALL statement. As an alternative, functions can be used to express
logic that transforms column values.

Output parameter values and result sets of procedure calls cannot be
directly used by another SQL statement. Application logic must be used
to assign these to variables that can be used in subsequent SQL
statements.

Procedures cannot preserve state between invocations.

— Refer to the topic "Restrictions on procedures”

Common uses

Standardization of application logic

— If multiple applications must similarly access or modify the database,
a procedure can provide a single interface for the logic. The procedure
is then available for re-use. Should the interface need to change to
accommodate a change in business logic, only the single procedure
must be modified.

10 Developing User-defined Routines (SQL and External)

* Isolation of database operations from non-database logic within
applications

— Procedures facilitate the implementation of sub-routines that
encapsulate the logic and database accesses associated with a
particular task that can be reused in multiple instances. For example,
an employee management application can encapsulate the database
operations specific to the task of hiring an employee. Such a
procedure might insert employee information into multiple tables,
calculate the employee’s weekly pay based on an input parameter,
and return the weekly pay value as an output parameter. Another
procedure could do statistical analysis of data in a table and return
result sets that contain the results of the analysis.

* Simplification of the management of privileges for a group of SQL
statements

— By allowing a grouping of multiple SQL statements to be
encapsulated into one named database object, procedures allow
database administrators to manage fewer privileges. Instead of having
to grant the privileges required to execute each of the SQL statements
in the routine, they must only manage the privilege to invoke the
routine.

Supported implementations
* There are system-defined procedures that are ready-to-use, or users can
create user-defined procedures. The following user-defined
implementations are supported for procedures:
- SQL implementation
— External implementation
- Refer to the topic, "Supported external routine implementation
programming languages”.

Routines: Functions

Functions are relationships between sets of input data values and a set of result
values. They enable you to extend and customize SQL. Functions are invoked from
within elements of SQL statements such as a select-list or a FROM clause. There
are four types of functions:

* “Aggregate functions” in SQL Reference, Volume 1

* [Scalar functions|

* |Row functions
* [Table functions

Aggregate functions
Also called a column function, this type of function returns a scalar value
that is the result of an evaluation over a set of like input values. The
similar input values can, for example, be specified by a column within a
table, or by tuples in a VALUES clause. This set of values is called the
argument set. For example, the following query finds the total quantity of
bolts that are in stock or on order by using the SUM aggregate function:

SELECT SUM (ginstock + gonorder)

FROM inventory
WHERE description LIKE '%Bolt%'

Scalar functions
A scalar function is a function that, for each set of one or more scalar
parameters, returns a single scalar value. Examples of scalar functions
include the LENGTH function, and the SUBSTR function. Scalar functions

Chapter 2. Overview of routines 11

can also be created that do complex mathematical calculations on function
input parameters. Scalar functions can be referenced anywhere that an
expression is valid within an SQL statement, such as in a select-list, or in a
FROM clause. The following example shows a query that references the
built-in LENGTH scalar function:

SELECT lastname, LENGTH(Tastname)
FROM employee

Row functions

A row function is a function that for each set of one or more scalar
parameters returns a single row. Row functions can only be used as a
transform function mapping attributes of a structured type into built-in
data type values in a row.

Table functions

Table functions are functions that for a group of sets of one or more
parameters, return a table to the SQL statement that references it. Table
functions can only be referenced in the FROM clause of a SELECT
statement. The table that is returned by a table function can participate in
joins, grouping operations, set operations such as UNION, and any
operation that could be applied to a read-only view. The following
example demonstrates an SQL table function that updates an inventory
table and returns the result set of a query on the updated inventory table:
CREATE FUNCTION updateInv(itemNo VARCHAR(20), amount INTEGER)

RETURNS TABLE (productName VARCHAR(20),

quantity INTEGER)
LANGUAGE SQL

MODIFIES SQL DATA
BEGIN ATOMIC

UPDATE Inventory as I
SET quantity = quantity + amount
WHERE I.itemID = itemNo;

RETURN
SELECT I.itemName, I.quantity
FROM Inventory as I
WHERE I.itemID = itemNo;
END

Functions provide support for the following features:

Functions are supported across the DB2 brand database products including,
among others, DB2, DB2 for z/ 0S®, and DB2 Database for System i®

Moderate support for SQL statement execution

Parameter support for input parameters and scalar or aggregate function return
values

Efficient compilation of function logic into queries that reference functions

External functions provide support for storing intermediate values between the
individual function sub-invocations for each row or value

There are system-defined functions that are ready-to-use, or users can create
user-defined functions. Functions can be implemented as SQL functions or as
external functions. SQL functions can be either compiled or inlined. Inlined
functions perform faster than compiled functions, but can execute only a subset of
the SQL PL language. See the CREATE FUNCTION statement for more
information.

12 Developing User-defined Routines (SQL and External)

Routines: Scalar functions: A scalar function is a function that, for each set of one
or more scalar parameters, returns a single scalar value. Examples of scalar
functions include the LENGTH function, and the SUBSTR function. Scalar
functions can also be created that do complex mathematical calculations on
function input parameters. Scalar functions can be referenced anywhere that an
expression is valid within an SQL statement, such as in a select-list, or in a FROM
clause.
Features

* Built-in scalar functions perform well.

* Built-in scalar functions are strongly typed.

* Can be referenced with SQL statements wherever expressions are
supported.

* Logic is executed on the server as part of the SQL statement that
references it.

¢ Output of a scalar UDF can be used directly by the statement that
references the function.

* When used in predicates, scalar UDF usage can improve overall query
performance. When a scalar functions are applied to a set of candidate
rows at the server, it can act as a filter, thus limiting the number of rows
that must be returned to the client.

* For external scalar user-defined functions, state can be maintained
between the iterative invocations of the function by using a scratchpad.
Limitations
* By design, they only return a single scalar value.

* Transaction management is not supported within scalar functions.
Commits and rollbacks cannot be executed within scalar function bodies.

* Result sets cannot be returned from scalar functions.

* In a single partition database user-defined external scalar UDFs can
contain SQL statements. These statements can read data from tables, but
cannot modify data in tables.

* In a multi-partition database environment, user-defined scalar UDFs
cannot contain SQL statements.

e Refer to: Restrictions on scalar functions.

Common uses

* To manipulate strings within SQL statements.

* To perform basic mathematical operations within SQL statements.

* User-defined scalar functions can be created to extend the existing set of
built-in scalar functions. For example, you can create a complex
mathematical function, by re-using the existing built-in scalar functions
along with other logic.

Supported implementations
* Sourced implementation

* External implementation

— Refer to the topic, [“Comparison of supported APIs and programming]|
llanguages for external routine development” on page 21

Routines: Row functions: A row function is a function, which can only be used
with user-defined structured types, that for each set of one or more scalar
parameters returns a single row. Row functions can only be used as a transform

Chapter 2. Overview of routines 13

function mapping attributes of a structured type into built-in data type values in a
row. Row functions cannot be used in a standalone manner or within SQL
statements outside of the context of abstract data types.
Features
* Allows you to map structured type attributes to a row of built-in data
type values.
Limitations

* Cannot be used in a standalone manner or in SQL statements outside of
the context of user-defined structured types.

* Refer to the topic: "Restrictions on row functions”

Common uses
To make structured type attributes accessible in queries or operations. For
example, consider a user-defined structured data type named, ‘'manager’
that extends another structured type person and that has a combination of
person attributes and manager specific attributes. If you wanted to refer to
these values in a query, you qould create a row function to translate the
attribute values into a row of values that can be referenced.

Supported implementations
¢ SQL implementation

Routines: Table functions: Table functions are functions that for a group of sets
of one or more parameters, returns a table to the SQL statement that references it.
Table functions can only be referenced in the FROM clause of a SELECT statement.
The table that is returned by a table function can participate in joins, grouping
operations, set operation such as UNION, and any operation that could be applied
to a read-only view.
Features

* Returns a set of data values for processing.

* Can be referenced as part of a SQL query.

* Can make operating system calls, read data from files or even access
data across a network in a single partitioned database.

* Results of table function invocations can be directly accessed by the SQL
statement that references the table function.

* SQL table functions can encapsulate SQL statements that modify SQL
table data. External table functions cannot encapsulate SQL statements.

* For a single table function reference, a table function can be iteratively
invoked multiple times and maintain state between these invocations by
using a scratchpad.

Limitations

* Transaction management is not supported within user-defined table
functions. Commits and rollbacks cannot be executed within table UDFs.

* Result sets cannot be returned from table functions.
* Not designed for single invocations.
* Can only be referenced in the FROM clause of a query.

* User-defined external table functions can read SQL data, but cannot
modify SQL data. As an alternative SQL table functions can be used to
contain SQL statements that modify SQL data.

* Refer to the topic, "Restrictions on table functions”.

Common uses

14 Developing User-defined Routines (SQL and External)

¢ Encapsulate a complex, but commonly used sub-query.

* Provide a tabular interface to non-relational data. For example a
user-defined external table function can read a spreadsheet and produce
a table of values that can be directly inserted into a table or directly and
immediately accessed within a query.

Supported implementations
¢ SQL implementation
* External implementation

Routines: Methods

Methods allow you to access structured type attributes as well as to define
additional behaviors for structured types. A structured type is a user-defined data
type containing one or more named attributes, each of which has a data type.
Attributes are properties that describe an instance of a type. A geometric shape, for
example, might have attributes such as its list of Cartesian coordinates.

Methods are generally implemented for a structured type to represent operations
on the attributes of the structured type. For a geometric shape a method might
calculate the volume of the shape. Methods share all of the features of scalar
functions.
Features

* Ability to access structured type attributes

* Ability to set structured type attributes

* Ability to create operations on structured type attributes and return a
function value

* Sensitive to the dynamic type of the subject type

Limitations
* Can only return a scalar value
¢ Can only be used with structured types
* Cannot be invoked for typed tables

Common uses
* Create operations on structured types
* Encapsulate the structured type
Supported implementations
There are no system-defined methods. Users can create user-defined

methods for existing user-defined structured types. Methods can be
implemented using one of the following implementations:

“SQL routine implementation” on page 20|

* [“External routine implementation” on page 20f C, C++, Java, C# (using
OLE API), Visual Basic (using OLE API)

SQL methods are easy to implement, but are generally designed in conjunction
with the design of a structured type. External methods provide greater support for
flexible logic implementation and allow a user to develop method logic in their
preferred programming language.

Comparison of functional types of routines

Understanding the differences between procedures, functions, and methods can
help you determine which functional type to implement when building your own

Chapter 2. Overview of routines 15

routines and can help you determine where and how you can reference existing
routines. This can save you time and effort as well as ensure that you are
maximizing the functionality and performance of routines.

“Routines: Procedures” on page 10)[“Routines: Functions” on page 11|and

Table 2. Comparison of the functional types of routine

“Routines: Methods” on page 15[differ in a variety of ways. These differences are
outlined in the following table:

Characteristic

Procedures

Functions

Methods

Unique functional
characteristics and useful
applications

Enable the encapsulation
of logic and SQL
statements.

Serve as sub-routine
extensions to client
applications, routines,
triggers, and dynamic
compound statements.

Procedures are invoked
by executing the CALL
statement with a
reference to a procedure.
Nested procedure calls
are supported

Recursive procedure calls
are supported
Parameter support for
input, output, and
input-output parameters
Extensive support for
SQL statement execution

Can return one or more
result-sets

Savepoints and
transaction control

Enable the encapsulation
of logic and SQL
statements.

Functions are
relationships between
sets of input data values

and a set of result values.

Functions enable you to
extend and customize
SQL.

Functions are invoked
from within elements of
SQL statements such as a
select-list or a FROM
clause.

Moderate support for
SQL statement execution.

Parameter support for
input parameters and
scalar or aggregate
function return values.

External functions
provide support for
storing intermediate
values between the
individual function
sub-invocations for each
row or value using a
scratchpad.

Efficient compilation of
function logic into
queries that reference
functions.

Enable the encapsulation
of logic and SQL
statements.

Methods allow you to
access structured type
attributes as well as to
define additional
behaviors for structured

types.

Ability to access
structured type
attributes.

Ability to set structured
type attributes.

Ability to create
operations on structured
type attributes and
return a function value.

Functional sub-types of
routine

Not applicable

Scalar functions
Aggregate functions
Row functions

Table functions

Not applicable

16 Developing User-defined Routines (SQL and External)

Table 2. Comparison of the functional types of routine (continued)

Characteristic

Procedures

Functions

Methods

Invocation interface

e Invocation is done
through execution of the
CALL statement with a
reference to the
procedure.

* Procedure invocation
supported wherever
CALL statement is

* Invocation is done within
an SQL statement within
a column select-list, an
expression, or in a FROM
clause of a select
statement, among other
locations.

* Invocation is done within
an SQL statement that
references the structured
type associated with the
method.

supported.
dArs thsre any SYStfen;l. * Yes, many. * Yes, many. * No
t; 1er;e routines of this * See the SQL reference for |* See the SQL reference for
pe! a list of system-defined a list of system-defined
procedures. functions.
Supported user-defined .+ SQL « SQL « SQL
routine implementations ¢ External e External e External
- C/C++ (with - C/C++ - C
embedded SQL or CLI — Java (JDBC) — C++
API calls)
COBOL - Java (5QL)
B OB - NET CLR
- Java JDBC) — OLE DB: Visual Basic,
— Java (SQLJ) Visual C++ (table
- .NET CLR functions only)
— OLE: Visual Basic,
Visual C++
Nested call support * Yes * No, however functions * No

are repeatedly invoked
for every value in the
input set and
intermediate values can
be stored using a
scratchpad.

Performance

* Perform well if routine
logic is efficient and best
practices are adopted.

Perform well if routine
logic is efficient and best
practices are adopted.

* Can perform better than
a logically equivalent
procedure, if the logic
only queries data and
does not modify data.

* Good performance

Portability

* Highly portable

* Particularly portable if
SQL implementation is
used.

* 32-bit and 64-bit external
routines supported in a
variety of programming
languages

Highly portable

Particularly portable if
SQL implementation is
used.

32-bit and 64-bit external
routines supported in a
variety of programming
languages

* Highly portable

Chapter 2. Overview of routines

17

Table 2. Comparison of the functional types of routine (continued)

Characteristic Procedures Functions Methods
Interoperability e Procedures can call other |* Functions can contain * Methods can invoke
procedures and can SQL statements that functions with an SQL
contain SQL statements invoke other functions access level less than or
that invoke functions and can call procedures equal to the SQL access
with SQL access levels with SQL access levels level of the method.
less than or equal to the less than or equal to the |. Methods cannot call
SQL access level of the SQL access level of the procedures or other
procedure. function. methods
Restrictions * Table functions can only
return a single
table-reference that must
be referenced in the
FROM clause of a
SELECT statement.
output.

In general the functional characteristics and applications of routines determine
what routine type should be used. However, performance and the supported
routine implementations also play an important role in determining what routine

type should be used.

Determining what functional type of routine to use

[Procedures| [functions| and jmethods| provide different functional routine and
feature support. Determining what routine type to use or implement will
determine where and how you can reference and invoke the routine functionality,
influence what routine implementations you can use, and can influence what types
of functionality your routine can contain. Determining what routine type is best
suited to your needs before beginning to implement it will save you time and
possible frustration later.

Read about the functional types of routines to learn about their characteristics.

To determine whether to use a procedure, function, or method, do the following;:

1. Determine what functionality you want the routine to encapsulate, what
interface you want to invoke the routine from, and what routine
implementation you want to use.

* See the following topic:

- [“Comparison of functional types of routines” on page 15|

to determine what functional routine types support these requirements.
2. Determine what SQL statements you want to include in the routine.

* See the following topic:

- [“SQL statements that can be executed in routines” on page 35|

¢ Determine what functional routines support the execution of the required
SQL statements.

3. If the routine will only include one or more queries, consider using SQL
functions. SQL functions perform well in this situation because they are
compiled in-line with the SQL statements that reference them, unlike
procedures, which are compiled and invoked separately.

18 Developing User-defined Routines (SQL and External)

4. Determine whether in the future you might need to extend the functionality of
the routine to include functionality of another routine type (for example,
procedures support more SQL statements and in general more SQL features
than do functions). To avoid having to rewrite a function into a procedure later,
consider implementing a procedure now.

In general functional and SQL requirements motivate the choice of what functional
type of routine to implement. However, there are cases where it is possible to
create logically equivalent routines with different functional types. For example, it
is possible to rewrite most basic procedures that return a single result-set as a table
function. You can also easily rewrite basic procedures with only a single output
parameter as scalar functions.

Once you have determined what functional type of routine to use, you might be
interested in learning more about routine implementations or in determining what
routine implementation to use.

Implementations of routines

Routines can be implemented in a variety of ways. A routine implementation is
essentially the underlying form of the routine that contains the logic that is run
when a routine is invoked. Understanding the different supported routine
implementations can help you understand how routines work and help you
determine which routine implementation to choose when implementing
user-defined routines.

The available routine implementations include:

* [Built-in routines|

* [Sourced routines|

.

» [External routines|

[System-defined routines| can be implemented as built-in routines, SQL routines, or
external routines. However, their implementation is essentially invisible to the user
and in general is of little concern to the user.

[User-defined routines| can be implemented as sourced routines, SQL routines, or
external routines.

The characteristics of each of the implementations differ and can result in more or
less functionality support. Before deciding on a particular implementation, it is a
good idea to review the supported functionality and restrictions associated with
each implementation, by reading about each of the implementations and then by
reading the topic:

+ [“Comparison of routine implementations” on page 27]

A good understanding of the routine implementations can help you make good
implementation decisions as well as help you to debug and troubleshoot existing
routines.

Built-in routine implementation

Built-in routines are built into the code of the DB2 database manager. These
routines are strongly typed and perform well because their logic is native to the
database code. These routines are found in the SYSIBM schema. Some examples of
built-in scalar and aggregate functions include:

Chapter 2. Overview of routines 19

* Built-in scalar functions: +, -, *, /, substr, concat, length, char, decimal, days

* Built-in aggregate functions: avg, count, min, max, stdev, sum, variance

Built-in functions comprise most of the commonly required casting, string
manipulation, and arithmetic functionality. You can immediately use these
functions in your SQL statements. For a complete list of available built-in
functions, see the SQL Reference.

Sourced routine implementation

A routine that is implemented with a sourced routine implementation is one that
duplicates the semantics of another function, called its source function. Currently
only scalar and aggregate functions can be sourced functions. Sourced functions
are particularly useful for allowing a distinct type to selectively inherit the
semantics of its source type. Sourced functions are essentially a special form of an
SQL implementation for a function.

SQAL routine implementation

A SQL routine implementation is composed entirely of SQL statements. SQL
routine implementations are characterized by the fact that the SQL statements that
define the logic of the routines are included within the CREATE statement used to
create the routine in the database. SQL routines are quick and easy to implement

because of their simple syntax, and perform well due to their close relationship
with DB2.

The SQL Procedural Language (SQL PL) is a language extension of basic SQL that
consists of statements and language elements that can be used to implement
programming logic in SQL. SQL PL includes a set of statements for declaring
variables and condition handlers (DECLARE statement) assigning values to
variables (assignment-statement), and for implementing procedural logic
(control-statements) such as IF, WHILE, FOR, GOTO, LOOP, SIGNAL, and others.
SQL and SQL PL can be used to create SQL procedures, functions, triggers, and
compound SQL statements. SQL procedures and functions, along with SQL global
variables, user-defined conditions, and data-types, can be grouped together in
modules.

External routine implementation

An external routine implementation is one in which the routine logic is defined by
programming language code that resides external to the database. As with other
routine implementations, routines with external implementations are created in the
database by executing a CREATE statement. The routine logic stored in a compiled
library resides on the database server in a special directory path. The association of
the routine name with the external code application is asserted by the specification
of the EXTERNAL clause in the CREATE statement.

External routines can be written in any of the [supported external routine]
[programming languages|

External routine implementation can be somewhat more complex than SQL routine
implementation. However, they are extremely powerful because they allow you to
harness the full functionality and performance of the chosen implementation
programming language. External functions also have the advantage of being able
to access and manipulate entities that reside outside of the database, such as the
network or file system. For routines that require a smaller degree of interaction
with the DB2 database, but that must contain a lot of logic or very complex logic,
an external routine implementation is a good choice.

20 Developing User-defined Routines (SQL and External)

As an example, external routines are ideal to use to implement new functions that
operate on and enhance the utility of built-in data types, such as a new string
function that operate on a VARCHAR data type or a complicated mathematical
function that operates on a DOUBLE data type. External routine implementations
are also ideal for logic that might involve an external action, such as sending an
email.

If you are already comfortable programming in one of the supported external
routine programming languages, and need to encapsulate logic with a greater
emphasis on programming logic than data access, once you learn the steps
involved in creating routines with external implementation, you will soon discover
just how powerful they can be.

Supported APIs and programming languages for external routine development:
You can develop DB2 external routines (procedures and functions) using the
following APIs and associated programming languages:

* ADO.NET
— .NET Common Language Runtime programming languages
« CLI
* Embedded SQL
- C
- C++
— COBOL (Only supported for procedures)
« JDBC
— Java
* OLE
— Visual Basic
— Visual C++
— Any other programming language that supports this APL
¢ OLE DB (Only supported for table functions)
— Any programming language that supports this APIL
* SQLJ

— Java

Comparison of supported APIs and programming languages for external routine
development: It is important to consider the characteristics and limitations of the
various supported external routine application programming interfaces (APIs) and
programming languages before you start implementing external routines. This will
ensure that you choose the right implementation from the start and that the
routine features that you require are available.

Chapter 2. Overview of routines 21

Table 3. Comparison of external routine APls and programming languages

API and

programming

language Feature support |Performance Security Scalability Limitations

SQL (includes * SQLis a high |* Very good. * Very safe. + Highly Cannot access

QL PL) level. language |. SQL routines « SQL procedures scalable. the data}base

that is easy to perform better always run in server file
learn and use, than Java the same system.
WhiCh make§ routines. memory as the ¢ Cannot invoke
1mplementat10n « SQL routines database applications
go quickly. manager. This that reside

* SQL Procedural
Language (SQL
PL) elements
allow for
control-flow
logic around
SQL operations
and queries.

perform as well
as C and C++
external
routines
created with
the NOT
FENCED
clause.

corresponds to
the routine
being created
by default with
the keywords
NOT FENCED.

outside of the
database.

22 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APls and programming languages (continued)

API and
programming
language Feature support |Performance Security Scalability Limitations
Embedded SQL . [ow level, but |+ Very good. e Cand C++ * Scalability is * There are
(includes C and powerful e Cand C++t routines are reduced when multiple
C+4) programming routines prone to C and C++ supported
language. perform better programming routines are parameter
than Java errors. created with passing styles
routines. Programmers the FENCED which can be
and NOT confusing.
" Cand Gt mustbe | THREADSAFE | Users should
routmceis ith fo avoid clauses. These use parameter
:;Zaf\? O"I"N it making routines are style SQL as
FENCED common run in an mucb as
clause perform memory and isolated db2fmp possible.
as well as SOL pointer process apart
routines. manipulation from the
errors which database
make routine manager

implementation
more tedious
and time
consuming.

e Cand C++
routines should
be created with
the FENCED
clause and the
NOT
THREADSAFE
clause to avoid
the disruption
of the database
manager
should an
exception occur
in the routine
at run time.
These are
default clauses.
The use of
these clauses
can somewhat
negatively
impact
performance,
but ensure safe
execution. See:
Security of
routines.

process. One
db2fmp process
is required per
concurrently
executed
routine.

Chapter 2. Overview of routines

23

Table 3. Comparison of external routine APIs and programming languages (continued)

language good
for developing
business,
typically file
oriented,
applications.

Pervasively
used in the
past for
production
business
applications,
although its
popularity is
decreasing.
COBOL does
not contain
pointer support
and is a linear

perform as well
as routines
created with
any of the
other external
routine
implementation
options.

API and

programming

language Feature support |Performance Security Scalability Limitations
Embedded SQL |. High-level + COBOL * No information |+ No information |* You can create
(COBOL) programming routines do not | at this time. at this time. and invoke

32-bit COBOL
procedures in
64-bit DB2
instances,
however these
routines will
not perform as
well as 64-bit
COBOL
procedures
within a 64-bit
DB2 instance.

Java objects
and data types
facilitate the
establishment
of database
connections,
execution of
SQL
statements, and
manipulation
of data.

Machine (JVM).
This increases
reliability and
makes it very
difficult for the
code of one
Java routine to
harm another
routine running
in the same
process.

Java routines
will share a
few JVMs.
More than one
JVM might be
in use on the
system if the
Java heap of a
particular
db2fmp process
is approaching
exhaustion.

iterative
programming
language.
JDBC (Java) and | High-level * Java routines Java routines |+ Good * To avoid
SQLJ (Java) object-oriented do not perform | are safer than scalability potentially
programming as well as C Cand C++ Java routines dangerous
language and C++ routines, created with operations,
suitable for routines or SQL | because the the FENCED Java Native
developing routines. control of THREADSAFE Interface (JNI)
standalone dangerous clause (the calls from Java
applications, operations is default) scale routines are not
applets, and handled by the well. All fenced | permitted.
servlets. Java Virtual

24 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APls and programming languages (continued)

API and
programming
language

Feature support

Performance

Security

Scalability

Limitations

NET common

language runtime

supported
languages
(includes C#,

Visual Basic, and

others)

Part of the
Microsoft®
NET model of
managed code.

Source code is
compiled into
intermediate
language (IL)
byte code that
can be
interpreted by
the Microsoft
NET
Framework
common
language
runtime.

CLR assemblies
can be built up
from
sub-assemblies
that were
compiled from
different NET
programming
language
source code,
which allows
users to re-use
and integrate
code modules
written in
various
languages.

CLR routines
can only be
created with
the FENCED
NOT
THREADSAFE
clause so as to
minimize the
possibility of
database
manager
interruption at
runtime. This
can somewhat
negatively
impact
performance
Use of the
default clause
values
minimizes the
possibility of
database
manager
interruption at
runtime;
however
because CLR
routines must
run as
FENCED, they
might perform
slightly more
slowly than
other external
routines that
can be
specified as

NOT FENCED.

¢ CLR routines

can only be
created with
the FENCED
NOT
THREADSAFE
clause. They
are therefore
safe because
they will be
run outside of
the database
manager in a
separate
db2fmp
process.

¢ No information
available.

Refer to the
topic,
"Restrictions on
NET CLR
routines”.

Chapter 2. Overview of routines 25

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support |Performance Security Scalability Limitations

* OLE * OLE routines |+ The speed of |¢ No information |* No information |* No information

can be
implemented in
Visual C++,
Visual Basic,
and other
languages
supported by
OLE.

OLE automated
routines
depends on the
language used
to implement
them. In
general they
are slower than
non-OLE
C/C++
routines.

OLE routines
can only run in
FENCED NOT
THREADSAFE
mode, and
therefore OLE
automated
routines do not
scale well.

available.

available.

available.

26 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APls and programming languages (continued)

API and

programming

language Feature support |Performance Security Scalability Limitations
 OLE DB * OLE DB can be |* Performance of |* No information |* No information |+ OLE DB can

used to create
user-defined
table functions.

« OLE DB
functions
connect to
external OLE
DB data
sources.

OLE DB
functions
depends on the
OLE DB
provider,
however in
general OLE
DB functions
perform better
than logically
equivalent Java
functions, but
slower than
logically
equivalent C,
C++, or SQL
functions.
However some
predicates from
the query
where the
function is
invoked might
be evaluated at
the OLE DB
provider,
therefore
reducing the
number of
rows that DB2
has to process
which can
frequently
result in
improved
performance.

available.

available.

only be used to
create
user-defined
table functions.

Comparison of routine implementations
Understanding the differences between the supported routine implementations can
help you determine which routine implementation to use when building your own
routines. This can save you time and effort as well as ensure that you are

maximizing the functionality and performance of routines

Built-in, sourced, SQL, and external routine implementations differ in a variety of
ways. These differences are outlined in the following table:

Chapter 2. Overview of routines

27

Table 4. Comparison of routine implementations

Characteristic

Built-in

Sourced

SQL

External

Features and uses

* Perform very well
because their logic
is native to the
database manager
code.

* Many common
casting, string
manipulation, and
arithmetic built-in
functions are
located in the
SYSIBM schema.

* Used to provide
basic extensions to
the functionality of
built-in functions.

* SQL and SQL PL
provide high level
programming
language support
that makes
implementing
routine logic fast
and easy.

Used to extend the
set of built-in
functions with
more complex
functions that can
execute SQL
statements.

* Developers can
program logic in
the supported
programming
language of their
choice.

* Complicated logic
can be
implemented.

¢ External actions,
actions with impact
outside of the
database, are
directly supported.
This can include
reading from or
writing to the
server file system,
invoking an
application or
script on the server,
and issuing SQL
statements that are
not supported in
the SQL, sourced,
or built-in
implementations.

Implementation is
built into the
database manager
code?

* Yes

* No

* No

Supported functional
routine types that can
have this

* Not applicable

¢ Functions

— Scalar functions

¢ Procedures

* Functions

¢ Procedures

* Functions

be executed in
routines.

* Refer to the topic,
"SQL statements
that can be
executed in
routines”.

implementation - Aggregate ¢ Methods * Methods
functions
Supported SQL * Not applicable * Not applicable * Most SQL * Many SQL
statements statements, statements,
including all SQL including a sub-set
PL statements, can of SQL PL

statements, can be
executed in
routines.

* Refer to the topic,
"SQL statements
that can be
executed in
routines”.

28 Developing User-defined Routines (SQL and External)

Table 4. Comparison of routine implementations (continued)

Characteristic Built-in Sourced SQL External

Performance * Very fast * In general, about as |* Very good * Very good
fast as built-in performance if the performance if the
functions. SQL is efficiently programming logic

written, database is efficiently
operations are written and
emphasized more external routine
than programming best practices are
logic, and SQL adopted.
routi1.1e best * Refer to the topic,
practices are "External routine
adopted. best practices”.

* Refer to the topic,
"SQL routine best
practices”.

Portability * Not applicable * Sourced functions |°* SQL functions can |¢ External functions
can easily be be easily dropped can be dropped
dropped and and re-created in and re-created in
recreated in other other databases. other databases,
DB2 databases. however care must

be taken to ensure
that the
environment is
compatible and
that the required
supported software
is available.

* Refer to the topic,
"Deploying
external routines”.

Interoperability * Not applicable * They can be * SQL routines can | External routines
referenced be referenced in can invoke external

wherever built-in
functions can be
referenced. Sourced
functions cannot
invoke other
functions.

many parts of SQL
statements. A SQL
routine can invoke
other SQL and
external routines
with SQL access
levels that are
equal to or less
than the SQL
access level of the
SQL routine.

routines and other
SQL routines with
SQL access levels
that are equal to or
less than the SQL
access level of the
external routine.

In general the functional characteristics and applications of routines determine
what routine type should be used. However, performance and the supported
routine implementations also play an important role in determining what routine
type should be used.

Determining what routine implementation to use

The choice of using or creating a routine with a built-in, sourced, SQL, or external
routine implementation can influence what functionality the routine can provide,
the performance of the routine, and the likelihood of runtime problems that might

require debugging.

Chapter 2. Overview of routines

29

Whenever possible, if there is an existing system-defined routine that provides the
support that you require, use it. Use existing built-in routines whenever possible. If
the functionality you require is very similar to that of an existing built-in function,
consider creating a sourced function that extends it.

If you must create a routine, follow the procedure below. It is important to
determine what routine implementation to use before proceeding too far with
routine design.

To determine whether to use a sourced, SQL, or external routine implementation
when creating a routine, do the following:

1. Determine whether you want to create a procedure, function, or method. This
should always be your first step when developing a routine. Also determine
what are the support implementations for that routine type. See:

» [“Comparison of functional types of routines” on page 15|

2. Determine what SQL statements you want to include in the routine. The set of
SQL statements that you want to execute in a routine can limit your choice of
routine implementation. See:

* [“Determining what SQL statements can be executed in routines” on page 41|

3. Determine if now or in the future the routine logic must access data, files, or
applications that reside external to the database. The data, files, or applications
might reside in the file system of the database server or in the available
network.

* If the routine logic must access entities outside of the database, you must use
an external routine implementation.

4. Determine the number of queries to be included in the routine relative to the
quantity of procedural flow logic.
e If the routine logic contains primarily procedural flow logic and very few
queries, create an external routine.

¢ If the routine logic contains many queries and a minimal amount of
procedural flow logic, create an SQL routine.

Usage of routines

Routines can be used to solve many common problems faced by database
architects, database administrators, and application developers alike. They can help
improve the structure, maintenance, and performance of your applications. Some
examples of scenarios in which you might use routines are listed below:

* Administering databases with routines
* Extending SQL function support with user-defined functions
* Auditing data changes using routines and other SQL features

Administration of databases with system-defined routines

Administering databases through applications is possible and has become easier
with the introduction of system-defined routines for the explicit purpose of doing
administrative functions. As of Version 8.1, DB2 provides a set of system-defined
procedures and functions in the SYSPROC, SYSFUN, and SYSTOOLS schemas that
are ready-to-use for doing administrative tasks, including the execution of DB2
commands through an SQL interface, modification of configuration parameters,
package management, snapshot related tasks, and more. You might choose to use
system-defined administrative routines if you require an application to perform
administrative tasks or if you want to access the results of administrative tasks

30 Developing User-defined Routines (SQL and External)

through an SQL interface so that you filter, sort, modify, or reuse the results in
another query and if you don’t want to create your own routines to do this.

Beginning with DB2 for Linux®, UNIX® and Windows® Version 9.1, there is a new
system-defined administrative routine, named the ADMIN_CMD. It along with the
many other system-defined routines provide comprehensive administration
support.

ADMIN_CMD for invoking DB2 commands through a SQL interface

As of Version 9.1, there is a new system-defined administrative routine
called the ADMIN_CMD that allows you to execute DB2 commands
through an SQL interface. Essentially this routine allows you to pass in as
an argument a DB2 command with appropriate flags and values as a string
parameter. The routine executes the string containing the DB2 command
and returns the results in a tabular or scalar format that can be used as
part of a larger query or operation. This functionality makes it easier than
ever to write administrative database applications.

System-defined administrative routines

Examples of other system-defined routines include: SNAPSHOT_TABLE,
HEALTH_DB_HI, SNAPSHOT_FILEW, REBIND_ROUTINE_PACKAGE.
These and many more system-defined routines can be used from the CLP
or in database applications wherever invocation of the spec