
IBM DB2 9.7

for Linux, UNIX, and Windows

Developing Perl, PHP, Python, and Ruby on Rails Applications

SC27-2447-00

���

IBM DB2 9.7

for Linux, UNIX, and Windows

Developing Perl, PHP, Python, and Ruby on Rails Applications

SC27-2447-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 89.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Part 1. Developing Perl Applications 1

Chapter 1. Programming considerations

for Perl 3

Perl downloads and related resources 3

Database connections in Perl 4

Fetching results in Perl 5

Parameter markers in Perl 6

SQLSTATE and SQLCODE variables in Perl 6

Perl Restrictions 7

pureXML and Perl 7

Running Perl sample programs 9

Executing routines from Perl applications 10

Part 2. Developing PHP applications 13

Chapter 2. PHP application

development for IBM data servers . . . 15

PHP downloads and related resources 15

Setting up the PHP environment 16

Setting up the PHP environment on Windows . . 16

Setting up the PHP environment on Linux or

UNIX 17

Application development in PHP (ibm_db2) . . . 19

Connecting to an IBM data server database in

PHP (ibm_db2) 19

Executing SQL statements in PHP (ibm_db2) . . 21

Reading query result sets 25

Calling stored procedures in PHP (ibm_db2) . . 27

Commit modes in PHP applications (ibm_db2) 30

Error-handling functions in PHP applications

(ibm_db2) 31

Database metadata retrieval functions in PHP

(ibm_db2) 32

Application development in PHP (PDO) 35

Connecting to an IBM data server database with

PHP (PDO) 35

Executing SQL statements in PHP (PDO) . . . 36

Reading query result sets 40

Calling stored procedures in PHP (PDO) . . . 43

Commit modes in PHP (PDO) 45

Handling errors and warnings in PHP (PDO) . . 46

Part 3. Developing Python

applications 47

Chapter 3. Python and SQLAlchemy

application development for IBM data

servers 49

Python downloads and related resources 49

Setting up the Python environment for IBM data

servers 50

Application development in Python with ibm_db . . 52

Connecting to an IBM data server database in

Python 52

Executing SQL statements in Python 53

Fetching rows or columns from result sets in

Python 55

Calling stored procedures in Python 57

Retrieving multiple result sets from a stored

procedure in Python 59

Commit modes in Python applications 60

Error-handling functions in Python 61

Database metadata retrieval functions in Python 62

Part 4. Developing Ruby on Rails

applications 65

Chapter 4. The IBM_DB Ruby driver

and Rails adapter 67

Getting started with IBM data servers on Rails . . 67

Setting up an integrated development

environment for Rails 68

Installing the IBM_DB adapter and driver as a Ruby

gem 68

Verifying installation with DB2 Express-C . . . 70

Verifying installation with IBM data servers on

Rails applications 71

Configuring Rails application connections to IBM

data servers 72

IBM Ruby driver and trusted contexts 73

IBM_DB Rails adapter dependencies and

consequences 73

The IBM_DB Ruby driver and Rails adapter are not

supported on JRuby 74

ActiveRecord-JDBC versus IBM_DB adapter . . . 75

Heap size considerations with DB2 on Rails . . . 75

Part 5. Appendixes 77

Appendix A. Overview of the DB2

technical information 79

DB2 technical library in hardcopy or PDF format . . 79

Ordering printed DB2 books 82

Displaying SQL state help from the command line

processor 83

Accessing different versions of the DB2 Information

Center 83

Displaying topics in your preferred language in the

DB2 Information Center 83

Updating the DB2 Information Center installed on

your computer or intranet server 84

Manually updating the DB2 Information Center

installed on your computer or intranet server . . . 85

DB2 tutorials 87

© Copyright IBM Corp. 2006, 2009 iii

DB2 troubleshooting information 87

Terms and Conditions 88

Appendix B. Notices 89

Index 93

iv Developing Perl, PHP, Python, and Ruby on Rails Applications

Part 1. Developing Perl Applications

© Copyright IBM Corp. 2006, 2009 1

2 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 1. Programming considerations for Perl

Perl Database Interface (DBI) is an open standard application programming

interface (API) that provides database access for client applications written in Perl.

Perl DBI defines a set of functions, variables, and conventions that provide a

platform-independent database interface.

You can use the IBM® DB2® Database Driver for Perl DBI (the DBD::DB2 driver)

available from http://www.ibm.com/software/data/db2/perl along with the Perl

DBI Module available from http://www.perl.com to create DB2 applications that

use Perl.

Because Perl is an interpreted language and the Perl DBI module uses dynamic

SQL, Perl is an ideal language for quickly creating and revising prototypes of DB2

applications. The Perl DBI module uses an interface that is quite similar to the CLI

and JDBC interfaces, which makes it easy for you to port your Perl prototypes to

CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI module, which

means that you can also use Perl to create applications that access data from many

different database servers. For example, you can write a Perl DB2 application that

connects to an Oracle database using the DBD::Oracle database driver, fetch data

from the Oracle database, and insert the data into a DB2 database using the

DBD::DB2 database driver.

For information about supported database servers, installation instructions, and

prerequisites, see http://www.ibm.com/software/data/db2/perl

Perl downloads and related resources

Several resources are available to help you develop Perl applications that access

IBM data servers.

 Table 1. Perl downloads and related resources

Downloads

Perl Database Interface (DBI) Module http://www.perl.com

DBD::DB2 driver http://www.ibm.com/software/data/db2/
perl

IBM data server clients http://www-01.ibm.com/software/data/
db2/ad/deploy.html

Fix Packs and client downloads http://www-01.ibm.com/support/
docview.wss?rs=71&uid=swg27007053

API documentation

DBI API documentation http://search.cpan.org/~timb/DBI/DBI.pm

Related resources

DB2 Perl Database Interface for LUW

technote, including readme and installation

instructions

http://www.ibm.com/software/data/db2/
perl

Perl driver bug reporting system http://rt.cpan.org/

© Copyright IBM Corp. 2006, 2009 3

http://www.ibm.com/software/data/db2/perl
http://www.perl.com
http://www.ibm.com/software/data/db2/perl
http://www.perl.com
http://www.ibm.com/software/data/db2/perl
http://www.ibm.com/software/data/db2/perl
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://search.cpan.org/~timb/DBI/DBI.pm
http://www.ibm.com/software/data/db2/perl
http://www.ibm.com/software/data/db2/perl
http://rt.cpan.org/

Table 1. Perl downloads and related resources (continued)

Downloads

Reporting bugs to the Open Source team at

IBM

opendev@us.ibm.com

Database connections in Perl

The DBD::DB2 driver provides support for standard database connection functions

defined by the DBI API.

To enable Perl to load the DBI module, you must include the following line in

your application:

 use DBI;

The DBI module automatically loads the DBD::DB2 driver when you create a

database handle using the DBI->connect statement with the following syntax:

 my $dbhandle = DBI->connect(‘dbi:DB2:dsn’, $userID, $password);

where:

$dbhandle

represents the database handle returned by the connect statement

dsn

 for local connections, represents a DB2 alias cataloged in your DB2

database directory

for remote connections, represents a complete connection string that

includes the host name, port number, protocol, user ID, and password for

connecting to the remote host

$userID

represents the user ID used to connect to the database

$password

represents the password for the user ID used to connect to the database

For more information about the DBI API, see http://search.cpan.org/~timb/DBI/
DBI.pm.

Example

Example 1: Connect to a database on the local host (client and server are on the

same workstation)

use DBI;

$DATABASE = ’dbname’;

$USERID = ’username’;

$PASSWORD = ’password’;

my $dbh = DBI->connect("dbi:DB2:$DATABASE", $USERID, $PASSWORD, {PrintError => 0})

or die "Couldn’t connect to database: " . DBI->errstr;

$dbh->disconnect;

Example 2: Connect to a database on the remote host (client and server are on

different workstations)

4 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://search.cpan.org/~timb/DBI/DBI.pm
http://search.cpan.org/~timb/DBI/DBI.pm

use DBI;

$DSN="DATABASE=sample; HOSTNAME=host; PORT=60000; PROTOCOL=TCPIP; UID=username;

PWD=password";

my $dbh = DBI->connect("dbi:DB2:$DSN", $USERID, $PASSWORD, {PrintError => 0})

or die "Couldn’t connect to database: " . DBI->errstr;

$dbh->disconnect;

Fetching results in Perl

The Perl DBI module provides methods for connecting to a database, preparing

and issuing SQL statements, and fetching rows from result sets.

About this task

This procedure fetches results from an SQL query.

Restriction: Because the Perl DBI module supports only dynamic SQL, you cannot

use host variables in your Perl DB2 applications.

Procedure

To fetch results:

1. Create a database handle by connecting to the database with the DBI->connect

statement.

2. Create a statement handle from the database handle. For example, you can

return the statement handle $sth from the database handle by calling the

prepare method and passing an SQL statement as a string argument, as

demonstrated in the following Perl statement:

 my $sth = $dbhandle->prepare(

 ’SELECT firstnme, lastname

 FROM employee ’

);

3. Issue the SQL statement by calling the execute method on the statement handle.

A successful call to the execute method associates a result set with the

statement handle. For example, you can run the statement prepared in the

previous example by using the following Perl statement:

 #Note: $rc represents the return code for the execute call

 my $rc = $sth->execute();

4. Fetch a row from the result set associated with the statement handle by calling

the fetchrow method. The Perl DBI returns a row as an array with one value

per column. For example, you can return all of the rows from the statement

handle in the previous example by using the following Perl statement:

 while (($firstnme, $lastname) = $sth->fetchrow()) {

 print "$firstnme $lastname\n";

 }

Example

The following example shows how to connect to a database and issue a SELECT

statement from an application written in Perl.

 #!/usr/bin/perl

 use DBI;

 my $database=’dbi:DB2:sample’;

Chapter 1. Perl 5

my $user=’’;

 my $password=’’;

 my $dbh = DBI->connect($database, $user, $password)

 or die "Can’t connect to $database: $DBI::errstr";

 my $sth = $dbh->prepare(

 q{ SELECT firstnme, lastname

 FROM employee }

)

 or die "Can’t prepare statement: $DBI::errstr";

 my $rc = $sth->execute

 or die "Can’t execute statement: $DBI::errstr";

 print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";

 print "$sth->{NAME}->[0]: $sth->{NAME}->[1]\n";

 while (($firstnme, $lastname) = $sth->fetchrow()) {

 print "$firstnme: $lastname\n";

 }

 # check for problems that might have terminated the fetch early

 warn $DBI::errstr if $DBI::err;

 $sth->finish;

 $dbh->disconnect;

Parameter markers in Perl

The Perl DBI module supports executing a prepared statement that includes

parameter markers for variable input. To include a parameter marker in an SQL

statement, use the question mark (?) character or a colon followed by a name

(:name).

The following Perl code creates a statement handle that accepts a parameter

marker for the WHERE clause of a SELECT statement. The code then executes the

statement twice using the input values 25000 and 35000 to replace the parameter

marker.

 my $sth = $dbhandle->prepare(

 ’SELECT firstnme, lastname

 FROM employee

 WHERE salary > ?’

);

 my $rc = $sth->execute(25000);

•

•

•

 my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE variables in Perl

The Perl DBI module provides methods for returning the SQLSTATE and

SQLCODE associated with a Perl DBI database or statement handle.

To return the SQLSTATE associated with a Perl DBI database handle or statement

handle, call the state method. For example, to return the SQLSTATE associated

with the database handle $dbhandle, include the following Perl statement in your

application:

6 Developing Perl, PHP, Python, and Ruby on Rails Applications

my $sqlstate = $dbhandle->state;

To return the SQLCODE associated with a Perl DBI database handle or statement

handle, call the err method. To return the message for an SQLCODE associated

with a Perl DBI database handle or statement handle, call the errstr method. For

example, to return the SQLCODE associated with the database handle $dbhandle,

include the following Perl statement in your application:

 my $sqlcode = $dbhandle->err;

Perl Restrictions

Some restrictions apply to the support that is available for application

development in Perl.

The Perl DBI module supports only dynamic SQL. When you must execute a

statement multiple times, you can improve the performance of your Perl

applications by issuing a prepare call to prepare the statement.

Perl does not support multiple-thread database access.

For current information on the restrictions of the version of the DBD::DB2 driver

that you install on your workstation, refer to the CAVEATS file in the DBD::DB2

driver package.

pureXML and Perl

The DBD::DB2 driver supports DB2 pureXML®. Support for pureXML allows more

direct access to your data through the DBD::DB2 driver and helps to decrease

application logic by providing more transparent communication between your

application and database.

With pureXML support, you can directly insert XML documents into your DB2

database. Your application no longer needs to parse XML documents because the

pureXML parser is automatically run when you insert XML data into the database.

Having document parsing handled outside your application improves application

performance and reduces maintenance efforts. Retrieval of XML stored data with

the DBD::DB2 driver is easy as well; you can access the data using a BLOB or

record.

For information about the DB2 Perl Database Interface and how to download the

latest DBD::DB2 driver, see http://www.ibm.com/software/data/db2/perl.

Example

The following example is a Perl program that uses pureXML:

#!/usr/bin/perl

use DBI;

use strict ;

Use DBD:DB2 module:

to create a simple DB2 table with an XML column

Add one row of data

retreive the XML data as a record or a LOB (based on $datatype).

NOTE: the DB2 SAMPLE database must already exist.

my $database=’dbi:DB2:sample’;

my $user=’’;

Chapter 1. Perl 7

http://www.ibm.com/software/data/db2/perl

my $password=’’;

my $datatype = "record" ;

$datatype = "LOB" ;

my $dbh = DBI->connect($database, $user, $password)

 or die "Can’t connect to $database: $DBI::errstr";

For LOB datatype, LongReadLen = 0 -- no data is retrieved on initial fetch

$dbh->{LongReadLen} = 0 if $datatype eq "LOB" ;

SQL CREATE TABLE to create test table

my $stmt = "CREATE TABLE xmlTest (id INTEGER, data XML)";

my $sth = $dbh->prepare($stmt);

$sth->execute();

#insert one row of data into table

insertData() ;

SQL SELECT statement returns home phone element from XML data

$stmt = qq(

 SELECT XMLQUERY (’

 \$d/*:customerinfo/*:phone[\@type = "home"] ’

 passing data as "d")

 FROM xmlTest

) ;

prepare and execute SELECT statement

$sth = $dbh->prepare($stmt);

$sth->execute();

Print data returned from select statement

if($datatype eq "LOB") {

 printLOB() ;

}

else {

 printRecord() ;

}

Drop table

$stmt = "DROP TABLE xmlTest" ;

$sth = $dbh->prepare($stmt);

$sth->execute();

warn $DBI::errstr if $DBI::err;

$sth->finish;

$dbh->disconnect;

##############

sub printRecord {

 print "output data as as record\n" ;

 while(my @row = $sth->fetchrow)

 {

 print $row[0] . "\n";

 }

 warn $DBI::errstr if $DBI::err;

}

sub printLOB {

8 Developing Perl, PHP, Python, and Ruby on Rails Applications

print "output as Blob data\n" ;

 my $offset = 0;

 my $buff="";

 $sth->fetch();

 while($buff = $sth->blob_read(1,$offset,1000000)) {

 print $buff;

 $offset+=length($buff);

 $buff="";

 }

 warn $DBI::errstr if $DBI::err;

}

sub insertData {

 # insert a row of data

 my $xmlInfo = qq(\’

 <customerinfo xmlns="http://posample.org" Cid="1011">

 <name>Bill Jones</name>

 <addr country="Canada">

 <street>5 Redwood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E9</pcode-zip>

 </addr>

 <phone type="work">416-555-9911</phone>

 <phone type="home">416-555-1212</phone>

 </customerinfo>

 \’) ;

 my $catID = 1011 ;

 # SQL statement to insert data.

 my $Sql = qq(

 INSERT INTO xmlTest (id, data)

 VALUES($catID, $xmlInfo)

);

 $sth = $dbh->prepare($Sql)

 or die "Can’t prepare statement: $DBI::errstr";

 my $rc = $sth->execute

 or die "Can’t execute statement: $DBI::errstr";

 # check for problems

 warn $DBI::errstr if $DBI::err;

}

Running Perl sample programs

Perl sample programs are available that demonstrate how to build a Perl

application.

Before you begin

Before running the Perl sample programs, you must install the latest DB2::DB2

driver for Perl DBI. For information about how to obtain the latest driver, see

http://www.ibm.com/software/data/db2/perl.

About this task

The Perl sample programs for DB2 database are available in the

sqllib/samples/perl directory.

Chapter 1. Perl 9

http://www.ibm.com/software/data/db2/perl

Procedure

To run the Perl interpreter on a Perl sample program on the command line:

Enter the interpreter name and the program name (including the file extension):

v If connecting locally on the server:

 perl dbauth.pl

v If connecting from a remote client:

 perl dbauth.pl sample <userid> <password>

Some of the sample programs require you to run support files. For example, the

tbsel sample program requires several tables that are created by the

tbselcreate.db2 CLP script. The tbselinit script (UNIX®), or the tbselinit.bat

batch file (Windows®), first calls tbseldrop.db2 to drop the tables if they exist, and

then calls tbselcreate.db2 to create them. Therefore, to run the tbsel sample

program, you would issue the following commands:

v If connecting locally on the server:

 tbselinit

 perl tbsel.pl

v If connecting from a remote client:

 tbselinit

 perl tbsel.pl sample <userid> <password>

Note: For a remote client, you need to modify the connect statement in the

tbselinit or tbselinit.bat file to hardcode your user ID and password: db2

connect to sample user <userid> using <password>

Executing routines from Perl applications

DB2 client applications can access routines (stored procedures and user-defined

functions) that are created by supported host languages or by SQL procedures. For

example, the sample program spclient.pl can access the SQL procedures spserver

shared library, if it exists in the database.

Before you begin

To build a host language routine, you must have the appropriate compiler set up

on the server. SQL procedures do not require a compiler. The shared library can be

built on the server only, and not from a remote client.

Procedure

To create SQL procedures in a shared library and then accesses the procedures

from a Perl application:

1. Create and catalog the SQL procedures in the library. For example, go to the

samples/sqlpl directory on the server, and run the following commands to

create and catalog the SQL procedures in the spserver library:

 db2 connect to sample

 db2 -td@ -vf spserver.db2

2. Go back to the perl samples directory (this can be on a remote client

workstation), and run the Perl interpreter on the client program to access the

spserver shared library:

v If connecting locally on the server:

 perl spclient

10 Developing Perl, PHP, Python, and Ruby on Rails Applications

v If connecting from a remote client:

 perl spclient sample <userid> <password>

Chapter 1. Perl 11

12 Developing Perl, PHP, Python, and Ruby on Rails Applications

Part 2. Developing PHP applications

© Copyright IBM Corp. 2006, 2009 13

14 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 2. PHP application development for IBM data servers

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language that

is widely used for developing Web applications. PHP has become a popular

language for Web development because it is easy to learn, focuses on practical

solutions, and supports the most commonly required functionality in Web

applications.

PHP is a modular language that enables you to customize the available

functionality through the use of extensions. These extensions can simplify tasks

such as reading, writing, and manipulating XML, creating SOAP clients and

servers, and encrypting communications between server and browser. The most

popular extensions for PHP, however, provide read and write access to databases

so that you can easily create a dynamic database-driven Web site.

IBM provides the following PHP extensions for accessing IBM data server

databases:

ibm_db2

A procedural application programming interface (API) that, in addition to

the normal create, read, update, and write database operations, also offers

extensive access to the database metadata. You can compile the ibm_db2

extension with either PHP 4 or PHP 5. This extension is written,

maintained, and supported by IBM.

pdo_ibm

A driver for the PHP Data Objects (PDO) extension that offers access to

IBM data server databases through the standard object-oriented database

interface introduced in PHP 5.1.

 These extensions are included as part of the IBM Data Server Client. The most

recent versions of ibm_db2 and pdo_ibm are also available from the PHP

Extension Community Library (PECL) http://pecl.php.net/.

PHP applications can access the following IBM data server databases:

v IBM DB2 Version 9.1 for Linux®, UNIX, and Windows, Fix Pack 2 and later

v IBM DB2® Universal Database™ (DB2 UDB) Version 8 for Linux, UNIX, and

Windows, Fixpak 15 and later

v Remote connections to IBM DB2 Universal Database on i5/OS® V5R3

v Remote connections to IBM DB2 for IBM i 5.4 and later

v Remote connections to IBM DB2 for z/OS®, Version 8 and Version 9

A third extension, Unified ODBC, has historically offered access to DB2 database

systems. For new applications, however, you should use either ibm_db2 and

pdo_ibm because they offer significant performance and stability benefits over

Unified ODBC. The ibm_db2 extension API makes porting an application that was

previously written for Unified ODBC almost as easy as globally changing the

odbc_ function name to db2_ throughout the source code of your application.

PHP downloads and related resources

Many resources are available to help you develop PHP applications for IBM data

servers.

© Copyright IBM Corp. 2006, 2009 15

http://pecl.php.net/

Table 2. PHP downloads and related resources

Downloads

Complete PHP source code (Includes

Windows binaries. Most Linux® distributions

come with PHP already precompiled.)

http://www.php.net/downloads.php

ibm_db2 and pdo_ibm from the PHP

Extension Community Library (PECL)

http://pecl.php.net/

IBM data server clients http://www-01.ibm.com/software/data/
db2/ad/deploy.html

Fix Packs and client downloads http://www-01.ibm.com/support/
docview.wss?rs=71&uid=swg27007053

Zend Server http://www.zend.com/en/products/
server/downloads

Documentation

PHP Manual http://www.php.net/docs.php

ibm_db2 API documentation http://www.php.net/ibm_db2

PDO API documentation http://php.net/manual/en/book.pdo.php

Related resources

PHP Web site http://www.php.net/

Setting up the PHP environment

You can set up the PHP environment on Linux, UNIX, or Windows operating

systems by installing a precompiled binary version of PHP and enabling support

for IBM data servers.

For the easiest installation and configuration experience on Linux, UNIX, or

Windows operating systems, you can download and install Zend Server for use in

production systems at http://www.zend.com/en/products/server/downloads.

Packaging details are available at http://www.zend.com/en/products/server/
editions.

On Windows, precompiled binary versions of PHP are available for download

from http://www.php.net/downloads.php. Most Linux distributions include a

precompiled version of PHP. On UNIX operating systems that do not include a

precompiled version of PHP, you can compile your own version of PHP.

For more information about installing and configuring PHP, see

http://www.php.net/manual/en/install.php.

Setting up the PHP environment on Windows

Before you can connect to an IBM data server and execute SQL statements, you

need to set up the PHP environment.

Before you begin

You must have the following software installed on your system:

v An Apache HTTP Server

v One of the following client types: IBM Data Server Driver Package, IBM Data

Server Client, or IBM Data Server Driver for ODBC and CLI

16 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/downloads.php
http://pecl.php.net/
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/downloads
http://www.php.net/docs.php
http://www.php.net/ibm_db2
http://php.net/manual/en/book.pdo.php
http://www.php.net/
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/editions
http://www.zend.com/en/products/server/editions
http://www.php.net/downloads.php
http://www.php.net/manual/en/install.php

About this task

This procedure manually installs a precompiled binary version of PHP and enables

support for IBM data servers on Windows.

Procedure

To set up the PHP environment on Windows:

1. Download the latest version of the PHP zip package and the collection of PECL

modules zip package from http://www.php.net/downloads.php.

2. Extract the PHP zip package into an installation directory.

3. Extract the collection of PECL modules zip package into the \ext\ subdirectory

of your PHP installation directory.

4. Create a new file named php.ini in your installation directory by making a

copy of the php.ini-recommended file.

5. Open the php.ini file in a text editor and add the following lines.

v To enable the PDO extension and pdo_ibm driver:

extension=php_pdo.dll

extension=php_pdo_ibm.dll

v To enable the ibm_db2 extension:

extension=php_ibm_db2.dll

6. If you are using Apache HTTP Server 2.x., enable PHP support by adding the

following lines to your httpd.conf file, in which phpdir refers to the PHP

installation directory:

LoadModule php5_module ’phpdir/php5apache2.dll’

AddType application/x-httpd-php .php

PHPIniDir ’phpdir’

7. Restart the Apache HTTP Server to enable the changed configuration.

Results

The PHP extensions are now installed on your system and ready to use.

What to do next

Connect to the data server and begin executing SQL statements.

Setting up the PHP environment on Linux or UNIX

Before you can connect to an IBM data server and execute SQL statements, you

must set up the PHP environment.

Before you begin

DB2 supports database access for client applications written in the PHP

programming language using either or both of the ibm_db2 extension and the

pdo_ibm driver for the PHP Data Objects (PDO) extension.

You must have the following software and files installed on your system:

v The Apache HTTP Server

v The DB2 Database development header files and libraries

v The gcc compiler and the following development packages: apache-devel,

autoconf, automake, bison, flex, gcc, and libxml2-devel package

Chapter 2. Introduction 17

http://www.php.net/downloads.php

v One of the following client types: IBM Data Server Driver Package, IBM Data

Server Client, or IBM Data Server Driver for ODBC and CLI

About this task

This procedure manually compiles and installs PHP from source with support for

DB2 on Linux or UNIX.

Procedure

To set up the PHP environment on Linux or UNIX:

 1. Download the latest version of the PHP tarball containing the complete source

code from http://www.php.net.

 2. Untar the file by issuing the following command:

tar -xjf php-5.x.x.tar.bz2

 3. Change directories to the newly created php-5.x.x directory.

 4. Configure the makefile by issuing the configure command. Specify the

features and extensions you want to include in your custom version of PHP. A

typical configure command includes the following options:

./configure --enable-cli --disable-cgi --with-apxs2=/usr/sbin/apxs2

--with-zlib --with-pdo-ibm=<sqllib>

The configure options have the following effects:

--enable-cli

Enables the command line mode of PHP access.

--disable-cgi

Disables the Common Gateway Interface (CGI) mode of PHP access.

--with-apxs2=/usr/sbin/apxs2

Enables the Apache 2 dynamic server object (DSO) mode of PHP

access.

--with-zlib

Enables zlib compression support.

--with-pdo-ibm=<sqllib>

Enables the pdo_ibm driver using the DB2 CLI library to access

database systems. The <sqllib> setting refers to the directory in which

DB2 is installed.
 5. Compile the files by issuing the make command.

 6. Install the files by issuing the make install command. Depending on how

you configured the PHP installation directory using the configure command,

you might need root authority to successfully issue this command. This

should install the executable files and update the Apache HTTP Server

configuration to support PHP.

 7. Install the ibm_db2 extension by issuing the following command as a user

with root authority:

pecl install ibm_db2

This command downloads, configures, compiles, and installs the ibm_db2

extension for PHP.

 8. Copy the php.ini-recommended file to the configuration file path for your new

PHP installation. To determine the configuration file path, issue the php -i

command, and look for the php.ini keyword. Rename the file to php.ini.

18 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/

9. Open the new php.ini file in a text editor and add the following lines, where

instance refers to the name of the DB2 instance on Linux or UNIX.

v To set the DB2 environment for pdo_ibm:

PDO_IBM.db2_instance_name=instance

v To enable the ibm_db2 extension and set the DB2 environment:

extension=ibm_db2.so

ibm_db2.instance_name=instance

10. Restart the Apache HTTP Server to enable the changed configuration.

Application development in PHP (ibm_db2)

The ibm_db2 extension provides a variety of useful PHP functions for accessing

and manipulating data in an IBM data server database. The extension includes

functions for connecting to a database, executing and preparing SQL statements,

fetching rows from result sets, calling stored procedures, handling errors, and

retrieving metadata.

Connecting to an IBM data server database in PHP (ibm_db2)

Before you can issue SQL statements to create, update, delete, or retrieve data, you

need to connect to a database from your PHP application. You can use the

ibm_db2 API to connect to an IBM data server database through either a cataloged

connection or a direct TCP/IP connection. To improve performance, you can also

create a persistent connection.

Before you begin

Before connecting to an IBM data server database through the ibm_db2 extension,

you must set up the PHP environment on your system and enable the ibm_db2

extension.

Procedure

To return a connection resource that you can use to call SQL statements, call one of

the following connection functions:

 Table 3. ibm_db2 connection functions

Function Description

db2_connect Creates a non-persistent connection.

db2_pconnect Creates a persistent connection. A persistent

connection remains open between PHP

requests, which allows subsequent PHP

script requests to reuse the connection if

they have an identical set of credentials.

The database values that you pass as arguments to these functions can specify

either a cataloged database name or a complete database connection string for a

direct TCP/IP connection. You can specify optional arguments that control when

transactions are committed, the case of the column names that are returned, and

the cursor type.
If the connection attempt fails, you can retrieve diagnostic information by calling

the db2_conn_error or db2_stmt_errormsg function.
When you create a connection by calling the db2_connect function, PHP closes the

connection to the database when one of the following events occurs:

v You call the db2_close function for the connection

v You set the connection resource to NULL

Chapter 2. Introduction 19

v The PHP script finishes

When you create a connection by calling the db2_pconnect function, PHP ignores

any calls to the db2_close function for the specified connection resource, and keeps

the connection to the database open for subsequent PHP scripts.
For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Connect to a cataloged database.

<?php

$database = "sample";

$user = "db2inst1";

$password = "";

$conn = db2_connect($database, $user, $password);

if ($conn) {

echo "Connection succeeded.";

db2_close($conn);

}

else {

echo "Connection failed.";

}

?>

What to do next

If the connection attempt is successful, you can use the connection resource when

you call ibm_db2 functions that execute SQL statements. Next, prepare and execute

SQL statements.

Trusted contexts in PHP applications (ibm_db2)

Starting in Version 9.5 Fix Pack 3 (or later), the ibm_db2 extension supports trusted

contexts by using connection string keywords.

Trusted contexts provide a way of building much faster and more secure three-tier

applications. The user’s identity is always preserved for auditing and security

purposes. When you need secure connections, trusted contexts improve

performance because you do not have to get new connections.

Example

Enable trusted contexts, switch users, and get the current user ID.

<?php

$database = "SAMPLE";

$user = "db2inst1";

$password = "ibmdb2";

$conn = db2_connect($database, $user, $password);

if($conn) {

 $createTable = "CREATE TABLE lastInsertID

 (id integer GENERATED BY DEFAULT AS IDENTITY,

 name varchar(20))";

 $insertTable = "INSERT INTO lastInsertID (name) VALUES (’Temp Name’)";

 $stmt = @db2_exec($conn, $createTable);

 /* Checking for single row inserted. */

 $stmt = db2_exec($conn, $insertTable);

20 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

$ret = db2_last_insert_id($conn);

 if($ret) {

 echo "Last Insert ID is : " . $ret . "\n";

 } else {

 echo "No Last insert ID.\n";

 }

 db2_close($conn);

}

else {

 echo "Connection failed.";

}

?>

Executing SQL statements in PHP (ibm_db2)

After connecting to a database, use functions available in the ibm_db2 API to

prepare and execute SQL statements. The SQL statements can contain static text,

XQuery expressions, or parameter markers that represent variable input.

Executing a single SQL statement in PHP (ibm_db2)

To prepare and execute a single SQL statement that accepts no input parameters,

use the db2_exec function. A typical use of the db2_exec function is to set the

default schema for your application in a common include file or base class.

To avoid the security threat of SQL injection attacks, use the db2_exec function

only to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db2 API.

Procedure

To prepare and execute a single SQL statement, call the db2_exec function, passing

the following arguments:

connection

A valid database connection resource returned from the db2_connect or

db2_pconnect function.

statement

A string that contains the SQL statement. This string can include an XQuery

expression that is called by the XMLQUERY function.

options

Optional: An associative array that specifies statement options:

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be returned

to the application. By default, the case is set to DB2_CASE_NATURAL,

which returns column names as they are returned by the database. You can

set this parameter to DB2_CASE_LOWER to force column names to lower

case, or to DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result sets. By

Chapter 2. Introduction 21

default, ibm_db2 returns a forward-only cursor (DB2_FORWARD_ONLY)

which returns the next row in a result set for every call to db2_fetch_array,

db2_fetch_assoc, db2_fetch_both, db2_fetch_object, or db2_fetch_row. You

can set this parameter to DB2_SCROLLABLE to request a scrollable cursor

so that the ibm_db2 fetch functions accept a second argument specifying

the absolute position of the row that you want to access within the result

set.

If the function call succeeds, it returns a statement resource that you can use in

subsequent function calls related to this query.
If the function call fails (returns False), you can use the db2_stmt_error or

db2_stmt_errormsg function to retrieve diagnostic information about the error.
For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Example 1: Executing a single SQL statement.

<?php

$conn = db2_connect("sample", "db2inst1", "");

$sql = "SELECT * FROM DEPT";

$stmt = db2_exec($conn, $sql);

db2_close($conn);

?>

Example 2: Executing an XQuery expression

<?php

$xquery = ’$doc/customerinfo/phone’;

$stmt = db2_exec($conn, "select xmlquery(’$xquery’

PASSING INFO AS \"doc\") from customer");?>

What to do next

If the SQL statement selected rows using a scrollable cursor, or inserted, updated,

or deleted rows, you can call the db2_num_rows function to return the number of

rows that the statement returned or affected. If the SQL statement returned a result

set, you can begin fetching rows.

Preparing and executing SQL statements with variable input in

PHP (ibm_db2)

To prepare and execute an SQL statement that includes variable input, use the

db2_prepare, db2_bind_param, and db2_execute functions. Preparing a statement

improves performance because the database server creates an optimized access

plan for data retrieval that it can reuse if the statement is executed again.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db2 API.

Procedure

To prepare and execute an SQL statement that includes parameter markers:

Procedure

1. Call the db2_prepare function, passing the following arguments:

22 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

connection

A valid database connection resource returned from the db2_connect or

db2_pconnect function.

statement

A string that contains the SQL statement, including question marks (?) as

parameter markers for any column or predicate values that require variable

input. This string can include an XQuery expression that is called the

XMLQUERY function. You can only use parameter markers as a place

holder for column or predicate values. The SQL compiler is unable to create

an access plan for a statement that uses parameter markers in place of

column names, table names, or other SQL identifiers.

options

Optional: An associative array that specifies statement options:

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by the database. You can set this parameter to

DB2_CASE_LOWER to force column names to lower case, or to

DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result sets.

By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set for

every call to db2_fetch_array, db2_fetch_assoc, db2_fetch_both,

db2_fetch_object, or db2_fetch_row. You can set this parameter to

DB2_SCROLLABLE to request a scrollable cursor so that the ibm_db2

fetch functions accept a second argument specifying the absolute

position of the row that you want to access within the result set.
If the function call succeeds, it returns a statement handle resource that you can

use in subsequent function calls that are related to this query.

If the function call fails (returns False), you can use the db2_stmt_error or

db2_stmt_errormsg function to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the

db2_bind_param function, passing the following arguments. Binding input

values to parameter markers ensures that each input value is treated as a single

parameter, which prevents SQL injection attacks against your application.

stmt

A prepared statement returned by the call to the db2_prepare function.

parameter-number

An integer that represents the position of the parameter marker in the SQL

statement.

variable-name

A string that specifies the name of the PHP variable to bind to the

parameter specified by parameter-number.
3. Call the db2_execute function, passing the following arguments:

stmt

A prepared statement returned by the db2_prepare function.

Chapter 2. Introduction 23

parameters

Optional: An array that contains the values to use in place of the parameter

markers, in order.
For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Example

Prepare and execute a statement that includes variable input.

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = db2_prepare($conn, $sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

db2_bind_param($stmt, 1, $_POST[’lower’]);

db2_bind_param($stmt, 2, $_POST[’upper’]);

db2_execute($stmt);

// Process results

// Invoke prepared statement again using dynamically bound parameters

db2_execute($stmt, array($_POST[’lower’], $_POST[’upper’]));

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows

from the statement resource.

Inserting large objects in PHP (ibm_db2)

When you insert a large object into the database, rather than loading all of the data

for a large object into a PHP string and passing it to the IBM data server database

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db2 API.

Procedure

To insert a large object into the database directly from a file:

1. Call the db2_prepare function to prepare an INSERT statement with a

parameter marker that represents the large object column.

2. Set the value of a PHP variable to the path and name of the file that contains

the data for the large object. The path can be relative or absolute, and is subject

to the access permissions of the PHP executable file.

3. Call the db2_bind_param function to bind the parameter marker to the

variable. The third argument to this function is a string representing the name

of the PHP variable that holds the path and name of the file. The fourth

argument is DB2_PARAM_FILE, which tells the ibm_db2 extension to retrieve

the data from a file.

4. Call the db2_execute function to issue the INSERT statement.

24 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php
http://www.php.net/docs.php

Example

Insert a large object into the database.

$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = "/opt/albums/spook/grooming.jpg";

$rc = db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

Reading query result sets

Fetching rows or columns from result sets in PHP (ibm_db2)

After executing a statement that returns one or more result sets, use one of the

functions available in the ibm_db2 API to iterate through the returned rows of each

result set. If your result set includes columns that contain extremely large data, you

can retrieve the data on a column-by-column basis to avoid using too much

memory.

Before you begin

You must have a statement resource returned by either the db2_exec or

db2_execute function that has one or more associated result sets.

Procedure

To fetch data from a result set:

1. Fetch data from a result set by calling one of the fetch functions.

 Table 4. ibm_db2 fetch functions

Function Description

db2_fetch_array Returns an array, indexed by column

position, representing a row in a result set.

The columns are 0-indexed.

db2_fetch_assoc Returns an array, indexed by column name,

representing a row in a result set.

db2_fetch_both Returns an array, indexed by both column

name and position, representing a row in a

result set

db2_fetch_row Sets the result set pointer to the next row or

requested row. Use this function to iterate

through a result set.

db2_fetch_object Returns an object with properties

representing columns in the fetched row.

The properties of the object map to the

names of the columns in the result set.

These functions accept the following arguments:

stmt

A valid statement resource.

row_number

The number of the row that you want to retrieve from the result set. Row

numbering begins with 1. Specify a value for this optional parameter if you

Chapter 2. Introduction 25

requested a scrollable cursor when you called the db2_exec or db2_prepare

function. With the default forward-only cursor, each call to a fetch method

returns the next row in the result set.
2. Optional: If you called the db2_fetch_row function, for each iteration over the

result set, retrieve a value from the specified column by calling the db2_result

function. You can specify the column by either passing an integer that

represents the position of the column in the row (starting with 0), or a string

that represents the name of column.

3. Continue fetching rows until the fetch function returns False, which indicates

that you have reached the end of the result set.

For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Example

Example 1: Fetch rows from a result set by calling the db2_fetch_object function

<?php

$conn = db2_connect("sample", "db2inst1", "");

$sql = ’SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(’000010’));

while ($row = db2_fetch_object($stmt)) {

 print "Name:

 {$row->FIRSTNME} {$row->LASTNAME}

 ";

 }

db2_close($conn);

?>

Example 2: Fetch rows from a result set by calling the db2_fetch_row function

<?php

$conn = db2_connect("sample", "db2inst1", "");

$sql = ’SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(’000010’));

while (db2_fetch_row($stmt)) {

 $fname = db2_result($stmt, 0);

 $lname = db2_result($stmt, ’LASTNAME’);

 print "

 Name: $fname $lname

 ";

 }

db2_close($conn);

?>

Example 3: Fetch rows from a result set by calling the db2_fetch_both function

<?php

$conn = db2_connect("sample", "db2inst1", "");

$sql = ’SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(’000010’));

while ($row = db2_fetch_both($stmt)) {

 print "

 NAME: $row[0] $row[1]

 ";

 print "

 NAME: " . $row[’FIRSTNME’] . " " . $row[’LASTNAME’] . "

26 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php
http://www.php.net/docs.php

";

 }

db2_close($conn);

?>

What to do next

When you are ready to close the connection to the database, call the db2_close

function. If you attempt to close a persistent connection that you created by using

db2_pconnect, the close request returns TRUE, and the IBM data server client

connection remains available for the next caller.

Fetching large objects in PHP (ibm_db2)

When you fetch a large object from a result set, rather than treating the large object

as a PHP string, you can save system resources by fetching large objects directly

into a file on your PHP server.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db2 API.

Procedure

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, assign the return

value from a call to the fopen function to a variable.

2. Create a SELECT statement by calling the db2_prepare function.

3. Bind the output column for the large object to the PHP variable representing

the stream by calling the db2_bind_param function. The third argument to this

function is a string representing the name of the PHP variable that holds the

path and name of the file. The fourth argument is DB2_PARAM_FILE, which

tells the ibm_db2 extension to write the data into a file.

4. Issue the SQL statement by calling the db2_execute function.

5. Retrieve the next row in the result set by calling an ibm_db2 fetch function (for

example, db2_fetch_object).

For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Example

Fetch a large object from the database.

$stmt = db2_prepare($conn, "SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$rc = db2_bind_param($stmt, 1, "nickname", DB2_CHAR, 32);

$rc = db2_bind_param($stmt, 2, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

$rc = db2_fetch_object($stmt);

Calling stored procedures in PHP (ibm_db2)

To call a stored procedure from a PHP application, you prepare and execute an

SQL CALL statement. The procedure that you call can include input parameters

(IN), output parameters (OUT), and input and output parameters (INOUT).

Before you begin

Chapter 2. Introduction 27

http://www.php.net/docs.php
http://www.php.net/docs.php

Obtain a connection resource by calling one of the connection functions in the

ibm_db2 API.

Procedure

To call a stored procedure:

1. Call the db2_prepare function, passing the following arguments:

connection

A valid database connection resource returned from db2_connect or

db2_pconnect.

statement

A string that contains the SQL CALL statement, including parameter

markers (?) for any input or output parameters

options

Optional: A associative array that specifies the type of cursor to return for

result sets. You can use this parameter to request a scrollable cursor on

database servers that support this type of cursor. By default, a forward-only

cursor is returned.
2. For each parameter marker in the CALL statement, call the db2_bind_param

function, passing the following arguments:

stmt

The prepared statement returned by the call to the db2_prepare function.

parameter-number

An integer that represents the position of the parameter marker in the SQL

statement.

variable-name

The name of the PHP variable to bind to the parameter specified by

parameter-number.

parameter-type

A constant that specifies whether to bind the PHP variable to the SQL

parameter as an input parameter (DB2_PARAM_INPUT), an output

parameter (DB2_PARAM_OUTPUT), or a parameter that accepts input and

returns output (DB2_PARAM_INPUT_OUTPUT).
This step binds each parameter marker to the name of a PHP variable that will

hold the output.

3. Call the db2_execute function, passing the prepared statement as an argument.

For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Example

Prepare and execute an SQL CALL statement.

$sql = ’CALL match_animal(?, ?)’;

$stmt = db2_prepare($conn, $sql);

$second_name = "Rickety Ride";

$weight = 0;

db2_bind_param($stmt, 1, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 2, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

28 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php
http://www.php.net/docs.php

db2_execute($stmt);

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

What to do next

If the procedure call returns one or more result sets, you can begin fetching rows

from the statement resource.

Retrieving multiple result sets from a stored procedure in PHP

(ibm_db2)

When a single call to a stored procedure returns more than one result set, you can

use the db2_next_result function of the ibm_db2 API to retrieve the result sets.

Before you begin

You must have a statement resource returned by the db2_exec or db2_execute

function that has multiple result sets.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one

of the following ibm_db2 fetch functions, passing the statement resource as an

argument. (The first result set that is returned from the procedure is associated

with the statement resource.)

 Table 5. ibm_db2 fetch functions

Function Description

db2_fetch_array Returns an array, indexed by column

position, representing a row in a result set.

The columns are 0-indexed.

db2_fetch_assoc Returns an array, indexed by column name,

representing a row in a result set.

db2_fetch_both Returns an array, indexed by both column

name and position, representing a row in a

result set

db2_fetch_row Sets the result set pointer to the next row or

requested row. Use this function to iterate

through a result set.

db2_fetch_object Returns an object with properties

representing columns in the fetched row.

The properties of the object map to the

names of the columns in the result set.

2. Retrieve the subsequent result sets by passing the original statement resource as

the first argument to the db2_next_result function. You can fetch rows from the

statement resource until no more rows are available in the result set.

The db2_next_result function returns False when no more result sets are

available or if the procedure did not return a result set.

For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Chapter 2. Introduction 29

http://www.php.net/docs.php
http://www.php.net/docs.php

Example

Retrieve multiple result sets from a stored procedure.

$stmt = db2_exec($conn, ’CALL multiResults()’);

print "Fetching first result set\n";

while ($row = db2_fetch_array($stmt)) {

 // work with row

}

print "\nFetching second result set\n";

$result_2 = db2_next_result($stmt);

if ($result_2) {

 while ($row = db2_fetch_array($result_2)) {

 // work with row

 }

}

print "\nFetching third result set\n";

$result_3 = db2_next_result($stmt);

if ($result_3) {

 while ($row = db2_fetch_array($result_3)) {

 // work with row

 }

}

What to do next

When you are ready to close the connection to the database, call the db2_close

function. If you attempt to close a persistent connection that you created by using

db2_pconnect, the close request returns TRUE, and the persistent IBM data server

client connection remains available for the next caller.

Commit modes in PHP applications (ibm_db2)

You can control how groups of SQL statements are committed by specifying a

commit mode for a connection resource. The ibm_db2 extension supports two

commit modes: autocommit and manual commit.

You must use a regular connection resource returned by the db2_connect function

to control database transactions in PHP. Persistent connections always use

autocommit mode.

autocommit mode

In autocommit mode, each SQL statement is a complete transaction, which

is automatically committed. Autocommit mode helps prevent locking

escalation issues that can impede the performance of highly scalable Web

applications. By default, the ibm_db2 extension opens every connection in

autocommit mode.

 You can turn on autocommit mode after disabling it by calling

db2_autocommit($conn, DB2_AUTOCOMMIT_ON), where conn is a valid

connection resource.

Calling the db2_autocommit function might affect the performance of your

PHP scripts because it requires additional communication between PHP

and the database management system.

manual commit mode

In manual commit mode, the transaction ends when you call the

db2_commit or db2_rollback function. This means that all statements

30 Developing Perl, PHP, Python, and Ruby on Rails Applications

executed on the same connection between the start of a transaction and the

call to the commit or rollback function are treated as a single transaction.

 Manual commit mode is useful if you might have to roll back a transaction

that contains one or more SQL statements. If you issue SQL statements in a

transaction, and the script ends without explicitly committing or rolling

back the transaction, the ibm_db2 extension automatically rolls back any

work performed in the transaction.

You can turn off autocommit mode when you create a database connection

by using the ″AUTOCOMMIT″ => DB2_AUTOCOMMIT_OFF setting in

the db2_connect options array. You can also turn off autocommit mode for

an existing connection resource by calling db2_autocommit($conn,

DB2_AUTOCOMMIT_OFF), where conn is a valid connection resource.

 For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

End the transaction when db2_commit or db2_rollback is called.

$conn = db2_connect(’SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 ’AUTOCOMMIT’ => DB2_AUTOCOMMIT_ON));

// Issue one or more SQL statements within the transaction

$result = db2_exec($conn, ’DELETE FROM TABLE employee’);

if ($result === FALSE) {

 print ’<p>Unable to complete transaction!</p>’;

 db2_rollback($conn);

}

else {

 print ’<p>Successfully completed transaction!</p>’;

 db2_commit($conn);

}

Error-handling functions in PHP applications (ibm_db2)

Sometimes errors happen when you attempt to connect to a database or issue an

SQL statement. The username or password might be incorrect, a table or column

name might be misspelled, or the SQL statement might be invalid. The ibm_db2

API provides error-handling functions to help you recover gracefully from these

situations.

Connection errors

Use one of the following functions to retrieve diagnostic information if a

connection attempt fails.

 Table 6. ibm_db2 functions for handling connection errors

Function Description

db2_conn_error Retrieves the SQLSTATE returned by the last

connection attempt

db2_conn_errormsg Retrieves a descriptive error message

appropriate for an application error log

SQL errors

Use one of the following functions to retrieve diagnostic information if an attempt

to prepare or execute an SQL statement or to fetch a result from a result set fails.

Chapter 2. Introduction 31

http://www.php.net/docs.php

Table 7. ibm_db2 functions for handling SQL errors

Function Description

db2_stmt_error Retrieves the SQLSTATE returned by the last

attempt to prepare or execute an SQL

statement or to fetch a result from a result

set

db2_stmt_errormsg Retrieves a descriptive error message

appropriate for an application error log

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Tip: To avoid security vulnerabilities that might result from directly displaying the

raw SQLSTATE returned from the database, and to offer a better overall user

experience in your Web application, use a switch structure to recover from known

error states or return custom error messages. For example:

switch($this->state):

 case ’22001’:

 // More data than allowed for the defined column

 $message = "You entered too many characters for this value.";

 break;

Example

Example 1: Handle connection errors

$connection = db2_connect($database, $user, $password);

if (!$connection) {

 $this->state = db2_conn_error();

 return false;

}

Example 2: Handle SQL errors

$stmt = db2_prepare($connection, "DELETE FROM employee

WHERE firstnme = ?");

if (!$stmt) {

 $this->state = db2_stmt_error();

 return false;

}

Example 3: Handle SQL errors that result from executing prepared statements

$success = db2_execute($stmt, array(’Dan’);

if (!$success) {

 $this->state = db2_stmt_error($stmt);

 return $false;

}

Database metadata retrieval functions in PHP (ibm_db2)

You can use functions in the ibm_db2 API to retrieve metadata for databases

served by DB2 Database for Linux, UNIX, and Windows, IBM Cloudscape®, and,

through DB2® Connect™, DB2 for z/OS and DB2 for i.

Some classes of applications, such as administration interfaces, must dynamically

reflect the structure and SQL objects contained in arbitrary databases. One

approach to retrieving metadata about a database is to issue SELECT statements

directly against the system catalog tables; however, the schema of the system

catalog tables might change between versions of DB2, or the schema of the system

catalog tables on DB2 Database for Linux, UNIX, and Windows might differ from

32 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

the schema of the system catalog tables on DB2 for z/OS. Rather than laboriously

maintaining these differences in your application code, you can use PHP functions

available in the ibm_db2 extension to retrieve database metadata.

Before calling these functions, you must set up the PHP environment and have a

connection resource returned by the db2_connect or db2_pconnect function.

Important: Calling metadata functions uses a significant amount of space. If

possible, cache the results of your calls for use in subsequent calls.

 Table 8. ibm_db2 metadata retrieval functions

Function Description

db2_client_info Returns a read-only object with information

about the IBM data server client

db2_column_privileges Returns a result set listing the columns and

associated privileges for a table

db2_columns Returns a result set listing the columns and

associated metadata for a table

db2_foreign_keys Returns a result set listing the foreign keys

for a table

db2_primary_keys Returns a result set listing the primary keys

for a table

db2_procedure_columns Returns a result set listing the parameters

for one or more stored procedures

db2_procedures Returns a result set listing the stored

procedures registered in the database

db2_server_info Returns a read-only object with information

about the database management system

software and configuration

db2_special_columns Returns a result set listing the unique row

identifiers for a table

db2_statistics Returns a result set listing the indexes and

statistics for a table

db2_table_privileges Returns a result set listing tables and their

associated privileges in the database

Most of the ibm_db2 database metadata retrieval functions return result sets with

columns defined for each function. To retrieve rows from the result sets, use the

ibm_db2 functions that are available for this purpose.

The db2_client_info and db2_server_info functions directly return a single object

with read-only properties. You can use the properties of these objects to create an

application that behaves differently depending on the database management

system to which it connects. For example, rather than encoding a limit of the

lowest common denominator for all possible database management systems, a

Web-based database administration application built on the ibm_db2 extension

could use the db2_server_info()->MAX_COL_NAME_LEN property to dynamically

display text fields for naming columns with maximum lengths that correspond to

the maximum length of column names on the database management system to

which it is connected.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Chapter 2. Introduction 33

http://www.php.net/docs.php

Example

Example 1: Display a list of columns and associated privileges for a table

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

if ($conn) {

 $stmt = db2_column_privileges($conn, NULL, NULL, ’DEPARTMENT’);

 $row = db2_fetch_array($stmt);

 print $row[2] . "\n";

 print $row[3] . "\n";

 print $row[7];

 db2_close($conn);

}

else {

 echo db2_conn_errormsg();

 printf("Connection failed\n\n");

}

?>

Example 2: Display a list of primary keys for a table

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

if ($conn) {

 $stmt = db2_primary_keys($conn, NULL, NULL, ’DEPARTMENT’);

 while ($row = db2_fetch_array($stmt)) {

 echo "TABLE_NAME:\t" . $row[2] . "\n";

 echo "COLUMN_NAME:\t" . $row[3] . "\n";

 echo "KEY_SEQ:\t" . $row[4] . "\n";

 }

 db2_close($conn);

}

else {

 echo db2_conn_errormsg();

 printf("Connection failed\n\n");

}

?>

Example 3: Display a list of parameters for one or more stored procedures

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

if ($conn) {

 $stmt = db2_procedures($conn, NULL, ’SYS%’, ’%%’);

 $row = db2_fetch_assoc($stmt);

 var_dump($row);

 db2_close($conn);

}

else {

 echo "Connection failed.\n";

}

?>

Example 4: Display a list of the indexes and statistics for a table

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

if ($conn) {

 echo "Test DEPARTMENT table:\n";

 $result = db2_statistics($conn, NULL, NULL, "EMPLOYEE", 1);

34 Developing Perl, PHP, Python, and Ruby on Rails Applications

while ($row = db2_fetch_assoc($result)) {

 var_dump($row);

 }

 echo "Test non-existent table:\n";

 $result = db2_statistics($conn,NULL,NULL,"NON_EXISTENT_TABLE",1);

 $row = db2_fetch_array($result);

 if ($row) {

 echo "Non-Empty\n";

 } else {

 echo "Empty\n";

 }

 db2_close($conn);

}

else {

 echo ’no connection: ’ . db2_conn_errormsg();

}

?>

Example 5: Display a list of tables and their associated privileges in the database

<?php

$conn = db2_connect(’sample’, ’db2inst1’, ’ibmdb2’);

if ($conn) {

 $stmt = db2_table_privileges($conn, NULL, "%%", "DEPARTMENT");

 while ($row = db2_fetch_assoc($stmt)) {

 var_dump($row);

 }

 db2_close($conn);

}

else {

 echo db2_conn_errormsg();

 printf("Connection failed\n\n");

}

?>

Application development in PHP (PDO)

The PDO_IBM extension provides a variety of useful PHP functions for accessing

and manipulating data through the standard object-oriented database interface

introduced in PHP 5.1. The extension includes functions for connecting to a

database, executing and preparing SQL statements, fetching rows from result sets,

managing transactions, calling stored procedures, handling errors, and retrieving

metadata.

Connecting to an IBM data server database with PHP (PDO)

Before you can issue SQL statements to create, update, delete, or retrieve data, you

must connect to a database. You can use the PHP Data Objects (PDO) interface for

PHP to connect to an IBM data server database through either a cataloged

connection or a direct TCP/IP connection. To improve performance, you can also

create a persistent connection.

Before you begin

You must set up the PHP 5.1 (or later) environment on your system and enable the

PDO and PDO_IBM extensions.

About this task

Chapter 2. Introduction 35

This procedure returns a connection object to an IBM data server database. This

connection stays open until you set the PDO object to NULL, or the PHP script

finishes.

Procedure

To connect to an IBM data server database:

1. Create a connection to the database by calling the PDO constructor within a

try{} block. Pass a DSN value that specifies ibm: for the PDO_IBM extension,

followed by either a cataloged database name or a complete database

connection string for a direct TCP/IP connection.

v (Windows): By default, the PDO_IBM extension uses connection pooling to

minimize connection resources and improve connection performance.

v (Linux and UNIX): To create a persistent connection, pass

array(PDO::ATTR_PERSISTENT => TRUE) as the driver_options (fourth) argument

to the PDO constructor.
2. Optional: Set error handling options for the PDO connection in the fourth

argument to the PDO constructor:

v By default, PDO sets an error message that can be retrieved through

PDO::errorInfo() and an SQLCODE that can be retrieved through

PDO::errorCode() when any error occurs; to request this mode explicitly, set

PDO::ATTR_ERRMODE => PDO::ERRMODE_SILENT

v To issue a PHP E_WARNING when any error occurs, in addition to setting the

error message and SQLCODE, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_WARNING

v To throw a PHP exception when any error occurs, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_EXCEPTION

3. Catch any exception thrown by the try{} block in a corresponding catch {}

block.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

Connect to an IBM data server database over a persistent connection.

try {

 $connection = new PDO("ibm:SAMPLE", "db2inst1", "ibmdb2", array(

 PDO::ATTR_PERSISTENT => TRUE,

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

);

}

catch (Exception $e) {

 echo($e->getMessage());

}

What to do next

Next, you prepare and execute SQL statements.

Executing SQL statements in PHP (PDO)

After connecting to a database, use methods available in the PDO API to prepare

and execute SQL statements. The SQL statements can contain static text or

parameter markers that represent variable input.

36 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

Executing a single SQL statement in PHP (PDO)

To prepare and execute a single SQL statement that accepts no input parameters,

use the PDO::exec or PDO::query method. Use the PDO::exec method to execute a

statement that returns no result set. Use the PDO::query method to execute a

statement that returns one or more result sets.

Important: To avoid the security threat of SQL injection attacks, use the PDO::exec

or PDO::query method only to execute SQL statements composed of static strings.

Interpolation of PHP variables representing user input into the SQL statement can

expose your application to SQL injection attacks.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To prepare and execute a single SQL statement that accepts no input parameters,

call one of the following methods:

v To execute an SQL statement that returns no result set, call the PDO::exec

method on the PDO connection object, passing in a string that contains the SQL

statement. For example, a typical use of PDO::exec is to set the default schema

for your application in a common include file or base class.

If the SQL statement succeeds (successfully inserts, modifies, or deletes rows),

the PDO::exec method returns an integer value representing the number of rows

that were inserted, modified, or deleted.

To determine if the PDO::exec method failed (returned FALSE or 0), use the ===

operator to strictly test the returned value against FALSE.

v To execute an SQL statement that returns one or more result sets, call the

PDO::query method on the PDO connection object, passing in a string that

contains the SQL statement. For example, you might want to call this method to

execute a static SELECT statement.

If the method call succeeds, it returns a PDOStatement resource that you can use

in subsequent method calls.

If the method call fails (returns FALSE), you can use the PDO::errorCode and

PDO::errorInfo method to retrieve diagnostic information about the error.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

Example 1: Call the PDO::exec method to set the default schema for your

application

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->exec(’SET SCHEMA myapp’);

if ($result === FALSE) {

 print "Failed to set schema: " . $conn->errorMsg();

}

Example 2: Call the PDO::query method to issue an SQL SELECT statement

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->query(’SELECT firstnme, lastname FROM employee’);

if (!$result) {

 print "<p>Could not retrieve employee list: " . $conn->errorMsg(). "</p>";

Chapter 2. Introduction 37

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

}

while ($row = $conn->fetch()) {

 print "<p>Name: {$row[0] $row[1]}</p>";

}

If you called the PDO::query method to create a PDOStatement object, you can

begin retrieving rows from the object by calling the PDOStatement::fetch or

PDOStatement::fetchAll method.

Preparing and executing SQL statements in PHP (PDO)

To prepare and execute an SQL statement that includes variable input, use the

PDO::prepare, PDOStatement::bindParam, and PDOStatement::execute methods.

Preparing a statement improves performance because the database server creates

an optimized access plan for data retrieval that it can reuse if the statement is

executed again.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To prepare and execute an SQL statement that includes parameter markers:

1. Call the PDO::prepare method, passing the following arguments:

statement

A string that contains the SQL statement, including question marks (?) or

named variables (:name) as parameter markers for any column or predicate

values that require variable input. You can only use parameter markers as a

place holder for column or predicate values. The SQL compiler is unable to

create an access plan for a statement that uses parameter markers in place

of column names, table names, or other SQL identifiers. You cannot use

both question mark (?) parameter markers and named parameter markers

(:name) in the same SQL statement.

driver_options

Optional: An array that contains statement options:

PDO::ATTR_CURSOR

This option sets the type of cursor that PDO returns for result sets. By

default, PDO returns a forward-only cursor

(PDO::CURSOR_FWDONLY), which returns the next row in a result set

for every call to PDOStatement::fetch(). You can set this parameter to

PDO::CURSOR_SCROLL to request a scrollable cursor.
If the function call succeeds, it returns a PDOStatement object that you can use

in subsequent method calls that are related to this query.

If the function call fails (returns False), you can use the PDO::errorCode or

PDO::errorInfo method to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the

PDOStatement::bindParam method, passing the following arguments. Binding

input values to parameter markers ensures that each input value is treated as a

single parameter, which prevents SQL injection attacks against your application.

parameter

A parameter identifier. For question mark parameter markers (?), this is an

integer that represents the 1-indexed position of the parameter in the SQL

statement. For named parameter markers (:name), this is a string that

represents the parameter name.

38 Developing Perl, PHP, Python, and Ruby on Rails Applications

variable

The value to use in place of the parameter marker
3. Call the PDOStatement::execute method, optionally passing an array that

contains the values to use in place of the parameter markers, either in order for

question mark parameter markers, or as a :name => value associative array for

named parameter markers.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

Prepare and execute a statement that includes variable input.

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = $conn->prepare($sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

$stmt->bindParam(1, $_POST[’lower’]);

$stmt->bindParam(2, $_POST[’upper’]);

$stmt->execute($stmt);

// Invoke statement again using dynamically bound parameters

$stmt->execute($stmt, array($_POST[’lower’], $_POST[’upper’]));

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows

from the statement resource by calling the PDOStatement::fetch or

PDOStatement::fetchAll method.

Inserting large objects in PHP (PDO)

When you insert a large object into the database, rather than loading all of the data

for a large object into a PHP string and passing it to the IBM data server database

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To insert a large object into the database directly from a file:

1. Call the PDO::prepare method to create a PDOStatement object from an

INSERT statement with a parameter marker that represents the large object

column.

2. Create a PHP variable that represents a stream (for example, by assigning the

value returned by the fopen function to variable).

3. Call the PDOStatement::bindParam method, passing the following arguments to

bind the parameter marker to the PHP variable that represents the stream of

data for the large object:

parameter

A parameter identifier. For question mark parameter markers (?), this is an

Chapter 2. Introduction 39

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

integer that represents the 1-indexed position of the parameter in the SQL

statement. For named parameter markers (:name), this is a string that

represents the parameter name.

variable

The value to use in place of the parameter marker

data_type

The PHP constant, PDO::PARAM_LOB, which tells the PDO extension to

retrieve the data from a file.
4. Call the PDOStatement::execute method to issue the INSERT statement.

Example

Insert a large object into the database.

$stmt = $conn->prepare("INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = fopen("/opt/albums/spook/grooming.jpg", "rb");

$stmt->bindParam(1, $picture, PDO::PARAM_LOB);

$stmt->execute();

Reading query result sets

Fetching rows or columns from result sets in PHP (PDO)

After executing a statement that returns one or more result sets, use one of the

methods available in the PDO API to iterate through the returned rows. The PDO

API also provides methods that allow you to fetch a single column from one or

more rows in the result set.

Before you begin

You must have a statement resource returned by either the PDO::query or

PDOStatement::execute method that has one or more associated result sets.

About this task

To fetch data from a result set:

Procedure

1. Fetch data from a result set by calling one of the following fetch methods:

v To return a single row from a result set as an array or object, call the

PDOStatement::fetch method.

v To return all of the rows from the result set as an array of arrays or objects,

call the PDOStatement::fetchAll method.

By default, PDO returns each row as an array indexed by the column name

and 0-indexed column position in the row. To request a different return style,

specify one of the following constants as the first parameter when you call the

PDOStatement::fetch method:

PDO::FETCH_ASSOC

Returns an array indexed by column name as returned in your result

set.

PDO::FETCH_BOTH (default)

Returns an array indexed by both column name and 0-indexed column

number as returned in your result set

40 Developing Perl, PHP, Python, and Ruby on Rails Applications

PDO::FETCH_BOUND

Returns TRUE and assigns the values of the columns in your result set

to the PHP variables to which they were bound with the

PDOStatement::bindParam method.

PDO::FETCH_CLASS

Returns a new instance of the requested class, mapping the columns of

the result set to named properties in the class.

PDO::FETCH_INTO

Updates an existing instance of the requested class, mapping the

columns of the result set to named properties in the class.

PDO::FETCH_LAZY

Combines PDO::FETCH_BOTH and PDO::FETCH_OBJ, creating the object

variable names as they are accessed.

PDO::FETCH_NUM

Returns an array indexed by column number as returned in your result

set, starting at column 0.

PDO::FETCH_OBJ

Returns an anonymous object with property names that correspond to

the column names returned in your result set.
If you requested a scrollable cursor when you called the PDO::query or

PDOStatement::execute method, you can pass the following optional

parameters that control which rows are returned to the caller:

v One of the following constants that represents the fetch orientation of the

fetch request:

PDO::FETCH_ORI_NEXT (default)

Fetches the next row in the result set.

PDO::FETCH_ORI_PRIOR

Fetches the previous row in the result set.

PDO::FETCH_ORI_FIRST

Fetches the first row in the result set.

PDO::FETCH_ORI_LAST

Fetches the last row in the result set.

PDO::FETCH_ORI_ABS

Fetches the absolute row in the result set. Requires a positive integer

as the third argument to the PDOStatement::fetch method.

PDO::FETCH_ORI_REL

Fetches the relative row in the result set. Requires a positive or

negative integer as the third argument to the PDOStatement::fetch

method.
v An integer requesting the absolute or relative row in the result set,

corresponding to the fetch orientation requested in the second argument to

the PDOStatement::fetch method.
2. Optional: Fetch a single column from one or more rows in a result set by

calling one of the following methods:

v To return a single column from a single row in the result set:

Call the PDOStatement::fetchColumn method, specifying the column you

want to retrieve as the first argument of the method. Column numbers start

at 0. If you do not specify a column, the PDOStatement::fetchColumn returns

the first column in the row.

Chapter 2. Introduction 41

v To return an array that contains a single column from all of the remaining

rows in the result set:

Call the PDOStatement::fetchAll method, passing the

PDO::FETCH_COLUMN constant as the first argument, and the column you

want to retrieve as the second argument. Column numbers start at 0. If you

do not specify a column, calling

PDOStatement::fetchAll(PDO::FETCH_COLUMN) returns the first column in the

row.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

Return an array indexed by column number.

$stmt = $conn->query("SELECT firstnme, lastname FROM employee");

while ($row = $stmt->fetch(PDO::FETCH_NUM)) {

 print "Name: <p>{$row[0] $row[1]}</p>";

}

What to do next

When you are ready to close the connection to the database, set the PDO object to

NULL. The connection closes automatically when the PHP script finishes.

Fetching large objects in PHP (PDO)

When you fetch a large object from a result set, rather than treating the large object

as a PHP string, you can save system resources by fetching large objects directly

into a file on your PHP server.

Before you begin

Obtain a connection object by calling the PDO constructor.

Procedure

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, assign the return

value from a call to the fopen function to a variable.

2. Create a PDOStatement object from an SQL statement by calling the

PDO::prepare method.

3. Bind the output column for the large object to the PHP variable representing

the stream by calling the PDOStatement::bindColumn method. The second

argument is a string representing the name of the PHP variable that holds the

path and name of the file. The third argument is a PHP constant,

PDO::PARAM_LOB, which tells the PDO extension to write the data into a file.

You must call the PDOStatement::bindColumn method to assign a different

PHP variable for every column in the result set.

4. Issue the SQL statement by calling the PDOStatement::execute method.

5. Call PDOStatement::fetch(PDO::FETCH_BOUND) to retrieve the next row in the

result set, binding the column output to the PHP variables that you associated

when you called the PDOStatement::bindColumn method.

Example

Fetch a large object from the database directly into a file.

42 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

$stmt = $conn->prepare("SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$stmt->bindColumn(’NAME’, $nickname, PDO::PARAM_STR, 32);

$stmt->bindColumn(’PICTURE’, $picture, PDO::PARAM_LOB);

$stmt->execute();

$stmt->fetch(PDO::FETCH_BOUND);

Calling stored procedures in PHP (PDO)

To call a stored procedure from a PHP application, you execute an SQL CALL

statement. The procedure that you call can include input parameters (IN), output

parameters (OUT), and input and output parameters (INOUT).

Before you begin

Obtain a connection object by calling the PDO constructor.

About this task

This procedure prepares and executes an SQL CALL statement. For more

information, also see the topic about preparing and executing SQL statements.

Procedure

To call a stored procedure:

1. Call the PDO::prepare method to prepare a CALL statement with parameter

markers that represent the OUT and INOUT parameters.

2. For each parameter marker in the CALL statement, call the

PDOStatement::bindParam method to bind each parameter marker to the name

of the PHP variable that will hold the output value of the parameter after the

CALL statement has been issued. For INOUT parameters, the value of the PHP

variable is passed as the input value of the parameter when the CALL

statement is issued.

a. Set the third parameter, data_type, to one of the following PDO::PARAM_*

constants that specifies the type of data being bound:

PDO::PARAM_NULL

Represents the SQL NULL data type.

PDO::PARAM_INT

Represents SQL integer types.

PDO::PARAM_LOB

Represents SQL large object types.

PDO::PARAM_STR

Represents SQL character data types.

For an INOUT parameter, use the bitwise OR operator to append

PDO::PARAM_INPUT_OUTPUT to the type of data being bound.

b. Set the fourth parameter, length, to the maximum expected length of the

output value.
3. Call the PDOStatement::execute method, passing the prepared statement as an

argument.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Chapter 2. Introduction 43

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

Example

Prepare and execute an SQL CALL statement.

$sql = ’CALL match_animal(?, ?)’;

$stmt = $conn->prepare($sql);

$second_name = "Rickety Ride";

$weight = 0;

$stmt->bindParam(1, $second_name, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);

$stmt->bindParam(2, $weight, PDO::PARAM_INT, 10);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

$stmt->execute();

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

Retrieving multiple result sets from a stored procedure in PHP

(PDO)

When a single call to a stored procedure returns more than one result set, you can

use the PDOStatement::nextRow method of the PDO API to retrieve the result sets.

Before you begin

You must have a PDOStatement object returned by calling a stored procedure with

the PDO::query or PDOStatement::execute method.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one

of the following PDO fetch methods. (The first result set that is returned from

the procedure is associated with the PDOStatement object returned by the

CALL statement.)

v To return a single row from a result set as an array or object, call the

PDOStatement::fetch method.

v To return all of the rows from the result set as an array of arrays or objects,

call the PDOStatement::fetchAll method.

Fetch rows from the PDOStatement object until no more rows are available in

the first result set.

2. Retrieve the subsequent result sets by calling the PDOStatement::nextRowset

method to return the next result set. You can fetch rows from the

PDOStatement object until no more rows are available in the result set.

The PDOStatement::nextRowset method returns False when no more result sets

are available or the procedure did not return a result set.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

Retrieve multiple result sets from a stored procedure.

$sql = ’CALL multiple_results()’;

$stmt = $conn->query($sql);

do {

44 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

$rows = $stmt->fetchAll(PDO::FETCH_NUM);

 if ($rows) {

 print_r($rows);

 }

} while ($stmt->nextRowset());

What to do next

When you are ready to close the connection to the database, set the PDO object to

NULL. The connection closes automatically when the PHP script finishes.

Commit modes in PHP (PDO)

You can control how groups of SQL statements are committed by specifying a

commit mode for a connection resource. The PDO extension supports two commit

modes: autocommit and manual commit.

autocommit mode

In autocommit mode, each SQL statement is a complete transaction, which

is automatically committed. Autocommit mode helps prevent locking

escalation issues that can impede the performance of highly scalable Web

applications. By default, the PDO extension opens every connection in

autocommit mode.

manual commit mode

In manual commit mode, the transaction begins when you call the

PDO::beginTransaction method, and it ends when you call either the

PDO::commit or PDO::rollBack method. This means that any statements

executed (on the same connection) between the start of a transaction and

the call to the commit or rollback method are treated as a single

transaction.

 Manual commit mode is useful if you might have to roll back a transaction

that contains one or more SQL statements. If you issue SQL statements in a

transaction and the script ends without explicitly committing or rolling

back the transaction, PDO automatically rolls back any work performed in

the transaction.

After you commit or rollback the transaction, PDO automatically resets the

database connection to autocommit mode.

 For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

End the transaction when PDO::commit or PDO::rollBack is called.

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));

 // PDO::ERRMODE_EXCEPTION means an SQL error throws an exception

try {

 // Issue these SQL statements in a transaction within a try{} block

 $conn->beginTransaction();

 // One or more SQL statements

 $conn->commit();

}

catch (Exception $e) {

 // If something raised an exception in our transaction block of statements,

Chapter 2. Introduction 45

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

// roll back any work performed in the transaction

 print ’<p>Unable to complete transaction!</p>’;

 $conn->rollBack();

}

Handling errors and warnings in PHP (PDO)

Sometimes errors happen when you attempt to connect to a database or issue an

SQL statement. The password for your connection might be incorrect, a table you

referred to in a SELECT statement might not exist, or the SQL statement might be

invalid. PDO provides error-handling methods to help you recover gracefully from

these situations.

Before you begin

You must set up the PHP environment on your system and enable the PDO and

PDO_IBM extensions.

About this task

PDO gives you the option of handling errors as warnings, errors, or exceptions.

However, when you create a new PDO connection object, PDO always throws a

PDOException object if an error occurs. If you do not catch the exception, PHP

prints a backtrace of the error information that might expose your database

connection credentials, including your user name and password.

This procedure catches a PDOException object and handles the associated error.

Procedure

1. To catch a PDOException object and handle the associated error:

a. Wrap the call to the PDO constructor in a try block.

b. Following the try block, include a catch block that catches the

PDOException object.

c. Retrieve the error message associated with the error by invoking the

Exception::getMessage method on the PDOException object.
2. To retrieve the SQLSTATE associated with a PDO or PDOStatement object,

invoke the errorCode method on the object.

3. To retrieve an array of error information associated with a PDO or

PDOStatement object, invoke the errorInfo method on the object. The array

contains a string representing the SQLSTATE as the first element, an integer

representing the SQL or CLI error code as the second element, and a string

containing the full text error message as the third element.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

46 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

Part 3. Developing Python applications

© Copyright IBM Corp. 2006, 2009 47

48 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 3. Python and SQLAlchemy application development

for IBM data servers

Python is a general purpose, high level scripting language that is well suited for

rapid application development. Python emphasizes code readability and supports a

variety of programming paradigms, including procedural, object-oriented,

aspect-oriented, meta, and functional programming. The Python language is

managed by the Python Software Foundation.

The following extensions are available for accessing IBM data server databases

from a Python application:

ibm_db

This API is defined by IBM and provides the best support for advanced

features. In addition to issuing SQL queries, calling stored procedures, and

using pureXML, you can access metadata information.

ibm_db_dbi

This API implements Python Database API Specification v2.0. Because the

ibm_db_dbi API conforms to the specification, it does not offer some of the

advanced features that the ibm_db API supports. If you have an

application with a driver that supports Python Database API Specification

v2.0, you can easily switch to ibm_db. The ibm_db and ibm_db_dbi APIs

are packaged together.

ibm_db_sa

This adaptor supports SQLAlchemy, which offers a flexible way to access

IBM data servers. SQLAlchemy is a popular open source Python SQL

toolkit and object-to-relational mapper (ORM).

 Python applications can access the following IBM data server databases:

v IBM DB2 Version 9.1 for Linux, UNIX, and Windows, Fix Pack 2 and later

v IBM DB2 Universal Database (DB2 UDB) Version 8 for Linux, UNIX, and

Windows, Fixpak 15 and later

v Remote connections to IBM DB2 Universal Database on i5/OS V5R3, with PTF

SI27358 (includes SI27250)

v Remote connections to IBM DB2 for IBM i 5.4 and later, with PTF SI27256

v Remote connections to IBM DB2 for z/OS, Version 8 and Version 9

v IBM Informix® Dynamic Server v11.10 and later

Python downloads and related resources

Many resources are available to help you develop Python applications for IBM

data servers.

 Table 9. Python downloads and related resources

Downloads

Python (Includes Windows binaries. Most

Linux distributions come with Python

already precompiled.)

http://www.python.org/download/

SQLAlchemy http://www.sqlalchemy.org/download.html

© Copyright IBM Corp. 2006, 2009 49

http://www.python.org/download/
http://www.sqlalchemy.org/download.html

Table 9. Python downloads and related resources (continued)

Downloads

ibm_db and ibm_db_dbi extensions

(including source code)

http://pypi.python.org/pypi/ibm_db/

http://code.google.com/p/ibm-db/
downloads/list

ibm_db_sa adapter for SQLAlchemy 0.4 http://code.google.com/p/ibm-db/
downloads/list

setuptools program http://pypi.python.org/pypi/setuptools

IBM data server clients http://www-01.ibm.com/software/data/
db2/ad/deploy.html

Fix Packs and client downloads http://www-01.ibm.com/support/
docview.wss?rs=71&uid=swg27007053

API documentation

ibm_db API documentation http://code.google.com/p/ibm-db/wiki/
APIs

Python Database API Specification v2.0 http://www.python.org/dev/peps/pep-
0249/

SQLAlchemy documentation

Quick Getting Started Steps for ibm_db_sa http://code.google.com/p/ibm-db/wiki/
README

SQLAlchemy 0.4 Documentation http://www.sqlalchemy.org/docs/04/
index.html

Additional resources

Python Programming Language Web site http://www.python.org/

The Python SQL Toolkit and Object

Relational Mapper Web site

http://www.sqlalchemy.org/

Setting up the Python environment for IBM data servers

Before you can connect to an IBM data server and execute SQL statements, you

must set up the Python environment by installing the ibm_db (Python) and,

optionally, the ibm_db_sa (SQLAlchemy) packages on your system.

Before you begin

You must have the following software installed on your system:

v Python 2.5, or later. For Linux operating systems, you also require the

python2.5-dev package.

v setuptools, a program available at http://pypi.python.org/pypi/setuptools. You

can use this program to download, build, install, upgrade, and uninstall Python

packages.

v One of the following client types (Version 8 Fix Pack 14 or Version 9 Fix Pack 2

or later): IBM Data Server Driver Package, IBM Data Server Client, or IBM Data

Server Runtime Client.

IBM Informix Dynamic Server requires a Version 9.5 or later client.

Procedure

To set up the Python environment:

50 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://pypi.python.org/pypi/ibm_db/
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://pypi.python.org/pypi/setuptools
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053
http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/
http://code.google.com/p/ibm-db/wiki/README
http://code.google.com/p/ibm-db/wiki/README
http://www.sqlalchemy.org/docs/04/index.html
http://www.sqlalchemy.org/docs/04/index.html
http://www.python.org/
http://www.sqlalchemy.org/
http://pypi.python.org/pypi/setuptools

1. Set up your Linux or Windows environment by using one of the following

approaches:

v If you have Internet access, issue one of the following commands:

– To install ibm_db: easy_install ibm_db

– To install both ibm_db_sa and ibm_db: easy_install ibm_db_sa

This step installs the eggs under the site-packages directory where setuptools

is installed.

v If you do not have Internet access, copy the appropriate egg file for your

system from http://code.google.com/p/ibm-db/downloads/list, and issue

the following command:

easy_install egg_file_name

where egg_file_name is the path to the egg file. For example, issue the

following command:

easy_install /home/user/ibm_db-xx-py2.5-linux-i386.egg

v Download the source code from http://pypi.python.org/pypi/ibm_db/,

build the driver, and install it. The instructions for building and installing the

driver are in the README file that is included with the driver source code.
2. Create an environment variable named PYTHONPATH, and set it to the path

where you installed the ibm_db egg, as shown in the following examples:

v On Windows operating systems: PYTHONPATH=setuptools_install_path\site-
packages\ibm_db-xx.egg

v On Linux (BASH shell): export PYTHONPATH=setuptools_install_path/site-
packages/ibm_db-xx.egg

3. From the command prompt, test your setup by typing python to launch the

Python interpreter and entering code similar to that shown in the following

examples:

v To test ibm_db:

import ibm_db

ibm_db_conn = ibm_db.connect(’dsn=database’, ’user’, ’password’)

import ibm_db_dbi

conn = ibm_db_dbi.Connection(ibm_db_conn)

conn.tables(’SYSCAT’, ’%’)

v To test ibm_db_sa:

import sqlalchemy

from sqlalchemy import *

import ibm_db_sa.ibm_db_sa

db2 = sqlalchemy.create_engine(’ibm_db_sa://user:password@host.name.com:50000/database’)

metadata = MetaData()

users = Table(’users’, metadata,

Column(’user_id’, Integer, primary_key = True),

Column(’user_name’, String(16), nullable = False),

Column(’email_address’, String(60), key=’email’),

Column(’password’, String(20), nullable = False)

)

metadata.bind = db2

metadata.create_all()

users_table = Table(’users’, metadata, autoload=True, autoload_with=db2)

users_table

Results

The Python packages are now installed on your system and ready to use.

What to do next

Chapter 3. Python and SQLAlchemy 51

http://code.google.com/p/ibm-db/downloads/list
http://pypi.python.org/pypi/ibm_db/

Connect to the data server, and begin issuing SQL statements.

Application development in Python with ibm_db

The ibm_db API provides a variety of useful Python functions for accessing and

manipulating data in an IBM data server database, including functions for

connecting to a database, preparing and issuing SQL statements, fetching rows

from result sets, calling stored procedures, committing and rolling back

transactions, handling errors, and retrieving metadata.

Connecting to an IBM data server database in Python

Before you can execute SQL statements to create, update, delete, or retrieve data,

you must connect to a database. You can use the ibm_db API to connect to a

database through either a cataloged or uncataloged connection. To improve

performance, you can also create a persistent connection.

Before you begin

v Set up the Python environment.

v Issue the following from your Python script: import ibm_db.

Procedure

To return a connection resource that you can use to call SQL statements, call one of

the following functions:

 Table 10. ibm_db connection functions

Function Description

ibm_db.connect Creates a nonpersistent connection.

ibm_db.pconnect Creates a persistent connection. A persistent

connection remains open after the initial

Python script request, which allows

subsequent Python requests to reuse the

connection if they have an identical set of

credentials.

The database value that you pass as an argument to these functions can be either a

cataloged database name or a complete database connection string for a direct

TCP/IP connection. You can specify optional arguments that control the timing of

committing transactions, the case of the column names that are returned, and the

cursor type.

If the connection attempt fails, you can retrieve diagnostic information by calling

the ibm_db.conn_error or ibm_db.conn_errormsg function.

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Example 1: Connect to a local or cataloged database

Approach 1:

import ibm_db

conn = ibm_db.connect("dsn=name","username","password")

Approach 2:

import ibm_db

conn = ibm_db.connect("name","username","password")

52 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

Example 2: Connect to a cataloged or uncataloged database

import ibm_db

ibm_db.connect("DATABASE=name;HOSTNAME=host;PORT=60000;PROTOCOL=TCPIP;UID=username;

 PWD=password;", "", "")

What to do next

If the connection attempt is successful, you can use the connection resource when

you call ibm_db functions that execute SQL statements. Next, you prepare and

execute SQL statements.

Executing SQL statements in Python

After connecting to a database, use functions available in the ibm_db API to

prepare and execute SQL statements. The SQL statements can contain static text,

XQuery expressions, or parameter markers that represent variable input.

Preparing and executing a single SQL statement in Python

To prepare and execute a single SQL statement, use the ibm_db.exec_immediate

function. To avoid the security threat of SQL injection attacks, use the

ibm_db.exec_immediate function only to execute SQL statements composed of

static strings. Interpolation of Python variables representing user input into the

SQL statement can expose your application to SQL injection attacks.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db API.

Procedure

To prepare and execute a single SQL statement, call the ibm_db.exec_immediate

function, passing the following arguments:

connection

A valid database connection resource returned from the ibm_db.connect or

ibm_db.pconnect function.

statement

A string that contains the SQL statement. This string can include an XQuery

expression that is called by the XMLQUERY function.

options

Optional: A dictionary that specifies the type of cursor to return for result sets.

You can use this parameter to request a scrollable cursor for database servers

that support this type of cursor. By default, a forward-only cursor is returned.

If the function call fails (returns False), you can use the ibm_db.stmt_error or

ibm_db.stmt_errormsg function to retrieve diagnostic information about the error.

If the function call succeeds, you can use the ibm_db.num_rows function to return

the number of rows that the SQL statement returned or affected. If the SQL

statement returns a result set, you can begin fetching the rows.
For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Example 1: Execute a single SQL statement

Chapter 3. Python and SQLAlchemy 53

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

import ibm_db

conn = ibm_db.connect("dsn=name","username","password")

stmt = ibm_db.exec_immediate(conn, "UPDATE employee SET bonus = ’1000’ WHERE job = ’MANAGER’")

print "Number of affected rows: ", ibm_db.num_rows(stmt)

Example 2: Execute an XQuery expression

import ibm_db

conn = ibm_db.connect("dsn=name","username","password")

if conn:

 sql = "SELECT XMLSERIALIZE(XMLQUERY(’for $i in $t/address where $i/city = \"Olathe\" return <zip>

 {$i/zip/text()}</zip>’ passing c.xmlcol as \"t\") AS CLOB(32k)) FROM xml_test c WHERE id = 1"

 stmt = ibm_db.exec_immediate(conn, sql)

 result = ibm_db.fetch_both(stmt)

 while(result):

 print "Result from XMLSerialize and XMLQuery:", result[0]

 result = ibm_db.fetch_both(stmt)

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows

from the statement resource.

Preparing and executing SQL statements with variable input in

Python

To prepare and execute an SQL statement that includes variable input, use the

ibm_db.prepare, ibm_db.bind_param, and ibm_db.execute functions. Preparing a

statement improves performance because the database server creates an optimized

access plan for data retrieval that it can reuse if the statement is executed again.

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db API.

Procedure

To prepare and execute an SQL statement that includes parameter markers:

1. Call the ibm_db.prepare function, passing the following arguments:

connection

A valid database connection resource returned from the ibm_db.connect or

ibm_db.pconnect function.

statement

A string that contains the SQL statement, including question marks (?) as

parameter markers for column or predicate values that require variable

input. This string can include an XQuery expression that is called by the

XMLQUERY function.

options

Optional: A dictionary that specifies the type of cursor to return for result

sets. You can use this parameter to request a scrollable cursor for database

servers that support this type of cursor. By default, a forward-only cursor is

returned.
If the function call succeeds, it returns a statement handle resource that you can

use in subsequent function calls that are related to the query.

If the function call fails (returns False), you can use the ibm_db.stmt_error or

ibm_db.stmt_errormsg function to retrieve diagnostic information about the

error.

54 Developing Perl, PHP, Python, and Ruby on Rails Applications

2. Optional: For each parameter marker in the SQL string, call the

ibm_db.bind_param function, passing the following arguments. Binding input

values to parameter markers ensures that each input value is treated as a single

parameter, which prevents SQL injection attacks.

stmt

The prepared statement returned by the call to the ibm_db.prepare

function.

parameter-number

An integer that represents the position of the parameter marker in the SQL

statement.

variable

The value to use in place of the parameter marker.
3. Call the ibm_db.execute function, passing the following arguments:

stmt

A prepared statement returned from ibm_db.prepare.

parameters

A tuple of input parameters that match parameter markers contained in the

prepared statement.
For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Example

Prepare and execute a statement that includes variable input.

import ibm_db

conn = ibm_db.connect("dsn=name","username","password")

sql = "SELECT EMPNO, LASTNAME FROM EMPLOYEE WHERE EMPNO > ? AND EMPNO < ?"

stmt = ibm_db.prepare(conn, sql)

max = 50

min = 0

Explicitly bind parameters

ibm_db.bind_param(stmt, 1, min)

ibm_db.bind_param(stmt, 2, max)

ibm_db.execute(stmt)

Process results

Invoke prepared statement again using dynamically bound parameters

param = max, min,

ibm_db.execute(stmt, param)

What to do next

If the SQL statement returns one or more result sets, you can begin fetching rows

from the statement resource.

Fetching rows or columns from result sets in Python

After executing a statement that returns one or more result sets, use one of the

functions available in the ibm_db API to iterate through the returned rows. If your

result set includes columns that contain extremely large data (such as BLOB or

CLOB data), you can retrieve the data on a column-by-column basis to avoid using

too much memory.

Before you begin

Chapter 3. Python and SQLAlchemy 55

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

You must have a statement resource returned by either the ibm_db.exec_immediate

or ibm_db.execute function that has one or more associated result sets.

Procedure

To fetch data from a result set:

1. Fetch data from a result set by calling one of the fetch functions.

 Table 11. ibm_db fetch functions

Function Description

ibm_db.fetch_tuple Returns a tuple, indexed by column

position, representing a row in a result set.

The columns are 0-indexed.

ibm_db.fetch_assoc Returns a dictionary, indexed by column

name, representing a row in a result set.

ibm_db.fetch_both Returns a dictionary, indexed by both

column name and position, representing a

row in a result set.

ibm_db.fetch_row Sets the result set pointer to the next row or

requested row. Use this function to iterate

through a result set.

These functions accept the following arguments:

stmt

A valid statement resource.

row_number

The number of the row that you want to retrieve from the result set.

Specify a value for this parameter if you requested a scrollable cursor when

you called the ibm_db.exec_immediate or ibm_db.prepare function. With

the default forward-only cursor, each call to a fetch method returns the next

row in the result set.
2. Optional: If you called the ibm_db.fetch_row function, for each iteration

through the result set, retrieve a value from a specified column by calling the

ibm_db.result function. You can specify the column by passing either an integer

that represents the position of the column in the row (starting with 0) or a

string that represents the name of the column.

3. Continue fetching rows until the fetch method returns False, which indicates

that you have reached the end of the result set.

For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Example

Example 1: Fetch rows from a result set by calling the ibm_db.fetch_both function

import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")

sql = "SELECT * FROM EMPLOYEE"

stmt = ibm_db.exec_immediate(conn, sql)

dictionary = ibm_db.fetch_both(stmt)

while dictionary != False:

 print "The ID is : ", dictionary["EMPNO"]

 print "The Name is : ", dictionary[1]

 dictionary = ibm_db.fetch_both(stmt)

56 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

Example 2: Fetch rows from a result set by calling the ibm_db.fetch_tuple function

import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")

sql = "SELECT * FROM EMPLOYEE"

stmt = ibm_db.exec_immediate(conn, sql)

tuple = ibm_db.fetch_tuple(stmt)

while tuple != False:

 print "The ID is : ", tuple[0]

 print "The name is : ", tuple[1]

 tuple = ibm_db.fetch_tuple(stmt)

Example 3: Fetch rows from a result set by calling the ibm_db.fetch_assoc function

import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")

sql = "SELECT * FROM EMPLOYEE"

stmt = ibm_db.exec_immediate(conn, sql)

dictionary = ibm_db.fetch_assoc(stmt)

while dictionary != False:

 print "The ID is : ", dictionary["EMPNO"]

 print "The name is : ", dictionary["FIRSTNME"]

 dictionary = ibm_db.fetch_assoc(stmt)

Example 4: Fetch columns from a result set

import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")

sql = "SELECT * FROM EMPLOYEE

stmt = ibm_db.exec_immediate(conn, sql)

while ibm_db.fetch_row(stmt) != False:

 print "The Employee number is : ", ibm_db.result(stmt, 0)

 print "The Name is : ", ibm_db.result(stmt, "NAME")

What to do next

When you are ready to close the connection to the database, call the ibm_db.close

function. If you attempt to close a persistent connection that you created with

ibm_db.pconnect, the close request returns True, and the connection remains

available for the next caller.

Calling stored procedures in Python

To call a stored procedure from a Python application, you prepare and execute an

SQL CALL statement. The procedure that you call can include input parameters

(IN), output parameters (OUT), and input and output parameters (INOUT).

Before you begin

Obtain a connection resource by calling one of the connection functions in the

ibm_db API.

Procedure

To call a stored procedure:

1. Call the ibm_db.prepare function, passing the following arguments:

connection

A valid database connection resource returned from ibm_db.connect or

ibm_db.pconnect.

Chapter 3. Python and SQLAlchemy 57

statement

A string that contains the SQL CALL statement, including parameter

markers (?) for any input or output parameters.

options

Optional: A dictionary that specifies the type of cursor to return for result

sets. You can use this parameter to request a scrollable cursor for database

servers that support this type of cursor. By default, a forward-only cursor is

returned.
2. For each parameter marker in the CALL statement, call the ibm_db.bind_param

function, passing the following arguments:

stmt

The prepared statement returned by the call to the ibm_db.prepare

function.

parameter-number

An integer that represents the position of the parameter marker in the SQL

statement.

variable

The name of the Python variable that will hold the output.

parameter-type

A constant that specifies whether to bind the Python variable to the SQL

parameter as an input parameter (SQL_PARAM_INPUT), an output

parameter (SQL_PARAM_OUTPUT), or a parameter that accepts input and

returns output (SQL_PARAM_INPUT_OUTPUT).
This step binds each parameter marker to the name of a Python variable that

will hold the output.

3. Call the ibm_db.execute function, passing the prepared statement as an

argument.

For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Example

Prepare and execute an SQL CALL statement.

import ibm_db

conn = ibm_db.connect("dsn=sample","username","password")

if conn:

 sql = ’CALL match_animal(?, ?, ?)’

 stmt = ibm_db.prepare(conn, sql)

 name = "Peaches"

 second_name = "Rickety Ride"

 weight = 0

 ibm_db.bind_param(stmt, 1, name, ibm_db.SQL_PARAM_INPUT)

 ibm_db.bind_param(stmt, 2, second_name, ibm_db.SQL_PARAM_INPUT_OUTPUT)

 ibm_db.bind_param(stmt, 3, weight, ibm_db.SQL_PARAM_OUTPUT)

 print "Values of bound parameters _before_ CALL:"

 print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

 if ibm_db.execute(stmt):

 print "Values of bound parameters _after_ CALL:"

 print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

What to do next

58 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

If the procedure call returns one or more result sets, you can begin fetching rows

from the statement resource.

Retrieving multiple result sets from a stored procedure in

Python

When a single call to a stored procedure returns more than one result set, you can

use the ibm_db.next_result function of the ibm_db API to retrieve the result sets.

Before you begin

You must have a statement resource returned by the ibm_db.exec_immediate or

ibm_db.execute function that has multiple result sets.

Procedure

To retrieve multiple result sets:

1. Fetch rows from the first result set returned from the procedure by calling one

of the following ibm_db fetch functions, passing the statement resource as an

argument. (The first result set that is returned from the procedure is associated

with the statement resource.)

 Table 12. ibm_db fetch functions

Function Description

ibm_db.fetch_tuple Returns a tuple, indexed by column

position, representing a row in a result set.

The columns are 0-indexed.

ibm_db.fetch_assoc Returns a dictionary, indexed by column

name, representing a row in a result set.

ibm_db.fetch_both Returns a dictionary, indexed by both

column name and position, representing a

row in a result set.

ibm_db.fetch_row Sets the result set pointer to the next row or

requested row. Use this function to iterate

through a result set.

2. Retrieve the subsequent result sets by passing the original statement resource as

the first argument to the ibm_db.next_result function. You can fetch rows from

the statement resource until no more rows are available in the result set.

The ibm_db.next_result function returns False when no more result sets are

available or if the procedure did not return a result set.

For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Example

Retrieve multiple result sets from a stored procedure.

import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")

if conn:

 sql = ’CALL sp_multi()’

 stmt = ibm_db.exec_immediate(conn, sql)

 row = ibm_db.fetch_assoc(stmt)

 while row != False :

 print "The value returned : ", row

 row = ibm_db.fetch_assoc(stmt)

Chapter 3. Python and SQLAlchemy 59

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

stmt1 = ibm_db.next_result(stmt)

 while stmt1 != False:

 row = ibm_db.fetch_assoc(stmt1)

 while row != False :

 print "The value returned : ", row

 row = ibm_db.fetch_assoc(stmt1)

 stmt1 = ibm_db.next_result(stmt)

What to do next

When you are ready to close the connection to the database, call the ibm_db.close

function. If you attempt to close a persistent connection that you created by using

ibm_db.pconnect, the close request returns True, and the IBM data server client

connection remains available for the next caller.

Commit modes in Python applications

You can control how groups of SQL statements are committed by specifying a

commit mode for a connection resource. The ibm_db API supports the following

two commit modes: autocommit and manual commit.

autocommit mode

In autocommit mode, each SQL statement is a complete transaction, which

is automatically committed. Autocommit mode helps prevent locking

escalation issues that can impede the performance of highly scalable Web

applications. By default, the ibm_db API opens every connection in

autocommit mode.

 You can turn on autocommit mode after disabling it by calling

ibm_db.autocommit(conn, ibm_db.SQL_AUTOCOMMIT_ON), where conn is a

valid connection resource.

Calling the ibm_db.autocommit function might affect the performance of

your Python scripts because it requires additional communication between

Python and the database management system.

manual commit mode

In manual commit mode, the transaction ends when you call the

ibm_db.commit or ibm_db.rollback function. This means that all statements

executed on the same connection between the start of a transaction and the

call to the commit or rollback function are treated as a single transaction.

 Manual commit mode is useful if you might have to roll back a transaction

that contains one or more SQL statements. If you exectue SQL statements

in a transaction and the script ends without explicitly committing or rolling

back the transaction, the ibm_db extension automatically rolls back any

work performed in the transaction.

You can turn off autocommit mode when you create a database connection

by using the { ibm_db.SQL_ATTR_AUTOCOMMIT: ibm_db.SQL_AUTOCOMMIT_OFF

} setting in the ibm_db.connect or ibm_db.pconnect options array. You can

also turn off autocommit mode for a connection resource by calling

ibm_db.autocommit(conn, ibm_db.SQL_AUTOCOMMIT_OFF), where conn is a

valid connection resource.

 For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

60 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

Example

Turn off autocomit mode and end the transaction when ibm_db.commit or

ibm_db.rollback is called.

import ibm_db

array = { ibm_db.SQL_ATTR_AUTOCOMMIT : ibm_db.SQL_AUTOCOMMIT_OFF }

conn = ibm_db.pconnect("dsn=SAMPLE", "user", "password", array)

sql = "DELETE FROM EMPLOYEE"

try:

 stmt = ibm_db.exec_immediate(conn, sql)

except:

 print "Transaction couldn’t be completed."

 ibm_db.rollback(conn)

else:

 ibm_db.commit(conn)

 print "Transaction complete."

Error-handling functions in Python

Sometimes errors happen when you attempt to connect to a database or issue an

SQL statement. The username or password might be incorrect, a table or column

name might be misspelled, or the SQL statement might be invalid. The ibm_db API

provides error-handling functions to help you recover gracefully from these

situations.

Connection errors

Use one of the following functions to retrieve diagnostic information if a

connection attempt fails.

 Table 13. ibm_db functions for handling connection errors

Function Description

ibm_db.conn_error Retrieves the SQLSTATE returned by the last

connection attempt

ibm_db. conn_errormsg Retrieves a descriptive error message

appropriate for an application error log

SQL errors

Use one of the following functions to retrieve diagnostic information if an attempt

to prepare or execute an SQL statement or to fetch a result from a result set fails.

 Table 14. ibm_db functions for handling SQL errors

Function Description

ibm_db.stmt_error Retrieves the SQLSTATE returned by the last

attempt to prepare or execute an SQL

statement or to fetch a result from a result

set

ibm_db.stmt_errormsg Retrieves a descriptive error message

appropriate for an application error log

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Chapter 3. Python and SQLAlchemy 61

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

Example

Example 1: Handle connection errors

import ibm_db

try:

 conn = ibm_db.connect("dsn=sample","user","password")

except:

 print "no connection:", ibm_db.conn_errormsg()

else:

 print "The connection was successful"

Example 2: Handle SQL errors

import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")

sql = "DELETE FROM EMPLOYEE"

try:

 stmt = ibm_db.exec_immediate(conn, sql)

except:

 print "Transaction couldn’t be completed:" , ibm_db.stmt_errormsg()

else:

 print "Transaction complete."

Database metadata retrieval functions in Python

You can use functions in the ibm_db API to retrieve metadata for IBM databases.

Before calling these functions, you must set up the Python environment, issue

import_db in your Python script, and obtain a connection resource by calling the

ibm_db.connect or ibm_db.pconnect function.

Important: Calling metadata functions uses a significant amount of space. If

possible, cache the results of your calls for use in subsequent calls.

 Table 15. ibm_db metadata retrieval functions

Function Description

ibm_db.client_info Returns a read-only object with information

about the IBM data server client

ibm_db.column_privileges Returns a result set listing the columns and

associated privileges for a table

ibm_db.columns Returns a result set listing the columns and

associated metadata for a table

ibm_db.foreign_keys Returns a result set listing the foreign keys

for a table

ibm_db.primary_keys Returns a result set listing the primary keys

for a table

ibm_db.procedure_columns Returns a result set listing the parameters

for one or more stored procedures

ibm_db.procedures Returns a result set listing the stored

procedures registered in a database

ibm_db.server_info Returns a read-only object with information

about the IBM data server

ibm_db.special_columns Returns a result set listing the unique row

identifier columns for a table

ibm_db.statistics Returns a result set listing the index and

statistics for a table

62 Developing Perl, PHP, Python, and Ruby on Rails Applications

Table 15. ibm_db metadata retrieval functions (continued)

Function Description

ibm_db.table_privileges Returns a result set listing the tables in a

database and the associated privileges

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Example 1: Display information about the IBM data server client

import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")

client = ibm_db.client_info(conn)

if client:

 print "DRIVER_NAME: string(%d) \"%s\"" % (len(client.DRIVER_NAME), client.DRIVER_NAME)

 print "DRIVER_VER: string(%d) \"%s\"" % (len(client.DRIVER_VER), client.DRIVER_VER)

 print "DATA_SOURCE_NAME: string(%d) \"%s\"" % (len(client.DATA_SOURCE_NAME), client.DATA_SOURCE_NAME)

 print "DRIVER_ODBC_VER: string(%d) \"%s\"" % (len(client.DRIVER_ODBC_VER), client.DRIVER_ODBC_VER)

 print "ODBC_VER: string(%d) \"%s\"" % (len(client.ODBC_VER), client.ODBC_VER)

 print "ODBC_SQL_CONFORMANCE: string(%d) \"%s\"" % (len(client.ODBC_SQL_CONFORMANCE), client.ODBC_SQL_CONFORMANCE)

 print "APPL_CODEPAGE: int(%s)" % client.APPL_CODEPAGE

 print "CONN_CODEPAGE: int(%s)" % client.CONN_CODEPAGE

 ibm_db.close(conn)

else:

 print "Error."

Example 2: Display information about the IBM data server

import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")

server = ibm_db.server_info(conn)

if server:

 print "DBMS_NAME: string(%d) \"%s\"" % (len(server.DBMS_NAME), server.DBMS_NAME)

 print "DBMS_VER: string(%d) \"%s\"" % (len(server.DBMS_VER), server.DBMS_VER)

 print "DB_NAME: string(%d) \"%s\"" % (len(server.DB_NAME), server.DB_NAME)

 ibm_db.close(conn)

else:

 print "Error."

Chapter 3. Python and SQLAlchemy 63

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

64 Developing Perl, PHP, Python, and Ruby on Rails Applications

Part 4. Developing Ruby on Rails applications

© Copyright IBM Corp. 2006, 2009 65

66 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 4. The IBM_DB Ruby driver and Rails adapter

With the introduction of support for the Ruby on Rails framework, Rails

applications can now access data on IBM data servers.

Collectively known as the IBM_DB gem, the IBM_DB Ruby driver and Rails

adapter allows Ruby applications to access the following database management

systems:

v DB2 Version 9 for Linux, UNIX, and Windows

v DB2 Universal Database (DB2 UDB) Version 8 for Linux, UNIX, and Windows

v DB2 UDB Version 5, Release 1 (and later) for AS/400® and iSeries®, through

DB2 Connect

v DB2 for z/OS, Version 8 and Version 9, through DB2 Connect

v Informix Dynamic Server, Version 11.10 and later

Note: Client applications should use IBM Data Server Client Version 9.5 or later

when accessing Informix Dynamic Server Version 11.10. Previous versions are

not supported. Client applications can also use IBM Data Server Runtime Client

or IBM Data Server Driver.

The IBM_DB Ruby driver can be used to connect to and access data from the IBM

data servers mentioned above. The IBM_DB Ruby adapter allows any

database-backed Rails application to interface with IBM data servers.

For more information about IBM Ruby projects and the RubyForge open source

community, refer to the following web site: http://rubyforge.org/projects/
rubyibm/

For a list of installation requirements for DB2 database products, see

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.qb.server.doc/doc/r0025127.html

For a list of installation requirements for IBM Informix Dynamic Server, see

http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/
ids_in_004x.html

For information about downloading an IBM data server client, refer to the

following web sites: http://www-01.ibm.com/software/data/db2/ad/deploy.html

and http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053.

Getting started with IBM data servers on Rails

To start developing Ruby on Rails applications with IBM data servers, you must

set up the Rails environment with IBM data servers. To get started, you can

download the free version of DB2 and start developing Rails applications using

DB2.

Before you begin

© Copyright IBM Corp. 2006, 2009 67

http://rubyforge.org/projects/rubyibm/
http://rubyforge.org/projects/rubyibm/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/ids_in_004x.html
http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/ids_in_004x.html
http://www-01.ibm.com/software/data/db2/ad/deploy.html
http://www-01.ibm.com/support/docview.wss?rs=71&uid=swg27007053

To ensure that numeric values in quotations are handled correctly, you must use

Version 9.1 Fix Pack 2 (or later) of one of the following client types: IBM Data

Server Driver Package, IBM Data Server Client, or IBM Data Server Driver for

ODBC and CLI.

Procedure

To set up your environment and get started with IBM_DB:

1. Download and install DB2 or IBM Informix Dynamic Server from

http://www-306.ibm.com/software/data/servers/.

2. Download and install the latest version of Ruby from http://www.ruby-
lang.org/en/downloads/.

3. Install the Rails gem and its dependencies by issuing the following gem install

command:

gem install rails –-include-dependencies

What to do next

You are now ready to install the IBM_DB Ruby driver and Rails adapter as a gem.

If you want, you can also set up an integrated development environment (IDE) for

Rails.

Setting up an integrated development environment for Rails

Rails requires no special file formats or integrated development environments

(IDEs); you can get started with a command line prompt and a text editor.

However, various IDEs are now available with Rails support, such as RadRails,

which is a Rails environment for Eclipse.

For more information about RadRails, see http://www.radrails.org/.

Procedure

To set up an Eclipse based IDE for Ruby on Rails (RoR) development:

1. Install Eclipse from http://www.eclipse.org/downloads/.

2. Install the following Eclipse plug-ins from the following Eclipse remote update

sites:

a. Ruby Development Tools from http://rubyeclipse.sourceforge.net/
download.rdt.html

b. RubyRails IDE feature from http://radrails.sourceforge.net/update

c. Subclipse plug-in from http://subclipse.tigris.org/update

Installing the IBM_DB adapter and driver as a Ruby gem

Ruby Gems is the standard packaging and installation framework for libraries and

applications in the Ruby runtime environment. A single file for each bundle is

called a gem, which complies to the package format. This package is then

distributed and stored in a central repository, allowing simultaneous deployment

of multiple versions of the same library or application.

Similar to package management and bundles (.rpm, .deb) used in Linux

distributions, these gems can also be queried, installed, uninstalled, and

manipulated through the gem end-user utility.

68 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www-306.ibm.com/software/data/servers/
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://www.radrails.org/
http://www.eclipse.org/downloads/
http://rubyeclipse.sourceforge.net/download.rdt.html
http://rubyeclipse.sourceforge.net/download.rdt.html
http://radrails.sourceforge.net/update
http://subclipse.tigris.org/update

The gem utility can seamlessly query the remote RubyForge central repository and

look up and install any of the many readily available utilities. When the IBM_DB

gem is installed, this functionality is immediately accessible from any script (or

application) in the Ruby runtime environment, through:

require ’ibm_db’

or on Windows:

require ’mswin32/ibm_db’

Procedure

To install the IBM_DB adapter and driver as a Ruby gem:

1. On Linux, UNIX, and Mac OS X platforms, set environment variables and

optionally source the DB2 profile:

a. Issue the following commands to set the environment variables

IBM_DB_INCLUDE and IBM_DB_LIB:

$ export IBM_DB_INCLUDE=DB2HOME/include

$ export IBM_DB_LIB=DB2HOME/lib

where DB2HOME is the directory where the IBM data server is installed.

For example:

$ export IBM_DB_INCLUDE=/home/db2inst1/sqllib/include

$ export IBM_DB_LIB=/home/db2inst1/sqllib/lib

If you are using ibm_db 1.0.0 or earlier, instead of setting

IBM_DB_INCLUDE, you must set the environment variable IBM_DB_DIR to

DB2HOME.

More about setting environment variables:

Depending on the architecture for which the IBM data server is installed,

the lib directory under DB2HOME is a link to either lib32 or lib64. You can

set IBM_DB_LIB according to the architecture for which Ruby is compiled.

For a 32-bit architecture, set IBM_DB_LIB to the lib32 directory under

DB2HOME. For a 64-bit architecture set IBM_DB_LIB to the lib64 directory

under DB2HOME.

b. Source the DB2 profile, as shown in the following example:

$. /home/db2inst1/sqllib/db2profile

2. On all supported platforms, issue the following gem command to install the

IBM_DB adapter and driver:

$ gem install ibm_db

You are presented with a list of gems from which to select. For example:

1. ibm_db 1.0.1 (mswin32)

2. ibm_db 1.0.1 (ruby)

3. ibm_db 1.0.0 (ruby)

4. ibm_db 1.0.0 (mswin32)

3. Select one of the Ruby gems to build the native extension (IBM_DB driver) and

install the IBM_DB gem.

Results

The IBM_DB gem is now installed on your workstation.

Chapter 4. Ruby on Rails 69

Example

The following example shows the options that are available when you install the

IBM_DB adapter and driver as a Ruby gem:

$ gem install ibm_db

Select which gem to install for your platform (i686-linux)

1. ibm_db 1.0.1 (mswin32)

2. ibm_db 1.0.1 (ruby)

3. ibm_db 1.0.0 (ruby)

4. ibm_db 1.0.0 (mswin32)

...

> 2

Building native extensions. This could take a while...

Successfully installed ibm_db-1.0.1

Installing ri documentation for ibm_db-1.0..1...

Installing RDoc documentation for ibm_db-1.0.1...

The examples in this topic include version information to demonstrate the

installation. However, when you run the installation, you can choose from the two

latest versions of the gem that are available.

Verifying installation with DB2 Express-C

To verify installation of the IBM_DB gem with DB2 Express-C, you connect to the

database, issue a SELECT statement, and then fetch the first row of the result set.

Procedure

Use the following commands to install and verify the installation of the IBM_DB

gem with Ruby-1.8.6 patch level 111 on a Windows or Linux platform. The output

of the commands is also shown.

D:\>gem install ibm_db

Select which gem to install for your platform (i386-mswin32)

1. ibm_db 1.0.1 (ruby)

2. ibm_db 1.0.1 (mswin32)

2. ibm_db 1.0.0 (ruby)

3. ibm_db 1.0.0 (mswin32)

4. Skip this gem

5. Cancel installation

> 2

Successfully installed ibm_db-1.0.0-mswin32

Installing ri documentation for ibm_db-1.0.0-mswin32...

Installing RDoc documentation for ibm_db-1.0.0-mswin32...

Note: The examples in this topic include version information to demonstrate the

installation. However, when you run the installation, you can choose from the two

latest versions of the gem that are available.

The IBM_DB gem is now installed on your workstation. To verify the installation,

run the following commands. You can follow this process to verify installation

against IBM Informix Dynamic Server, DB2 Database for Linux, UNIX, and

Windows, DB2 for IBM i, and DB2 for z/OS. You can use DB2 Connect to access

DB2 for IBM i and DB2 for z/OS data servers.

C:\>irb

irb(main):001:0> require ’mswin32/ibm_db’ (if using Linux based

platform then issue require ‘ibm_db’)

=>true

irb(main):002:0> conn = IBM_DB::connect

’devdb’,’username’,’password’ (Here ‘devdb’ is the database cataloged in

client’s database directory)

70 Developing Perl, PHP, Python, and Ruby on Rails Applications

=> #<IBM_DB::Connection:0x2dddf40>

irb(main):003:0> stmt = IBM_DB::exec conn,’select * from cars’

=> #<IBM_DB::Statement:0x2beaabc>

irb(main):004:0> IBM_DB::fetch_assoc stmt (will fetch the first row of

the result set)

What to do next

If these commands run successfully, the gem is installed correctly, and you can

begin building Rails applications.

Verifying installation with IBM data servers on Rails

applications

To verify that the IBM_DB driver and adapter are installed correctly, you test

IBM_DB driver access by connecting to an IBM data server and issuing a SELECT

statement, and then you test IBM_DB adapter access by building and running a

sample Rails application.

Procedure

To verify installation:

1. Install the latest version of the IBM_DB gem.

2. Test IBM_DB driver access.

For example, to test the access to an i5 data server through the IBM_DB driver

(and underlying DB2 Connect and IBM Data Server Driver for ODBC and CLI):

D:\ws\RoR\TeamRoom>irb

irb(main):001:0> require ’mswin32/ibm_db’

=> true

irb(main):002:0> conn = IBM_DB::connect ’testdb’, ’user’, ’pass’

=> #<IBM_DB::Connection:0x2f79d40>

irb(main):003:0> stmt = IBM_DB::exec conn, ’select * from qsys2.qsqptabl’

=> #<IBM_DB::Statement:0x2f762f8>

irb(main):004:0> IBM_DB::fetch_assoc stmt

3. Test IBM_DB adapter access.

To test access to an IBM data server through the IBM_DB adapter, follow the

steps below to build a sample Rails application.

a. Create a new Rails application by issuing the following command:

C:\>rails newapp --database=ibm_db

create

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create config/initializers

create db

[......]

create log/server.log

create log/production.log

create log/development.log

create log/test.log

b. Change to the newly created directory, newapp:

C:\>cd newapp

c. Configure connections for the Rails application by editing the database.yml

file. For more information, see “Configuring Rails application connections to

IBM data servers” on page 72.

Chapter 4. Ruby on Rails 71

If you are using a version prior to Rails 2.0, you need to register the

IBM_DB adapter to the list of connection adapters in the Rails framework

by manually adding ibm_db to the list of connection adapters in

<RubyHome>\gems\1.8\gems\activerecord-1.15.6\lib\active_record.rb at

approximately line 77:

RAILS_CONNECTION_ADAPTERS = %w(mysql postgresql sqlite firebird

sqlserver db2 oracle sybase openbase frontbase ibm_db)

d. Create a model and scaffold by issuing the following command:

C:\>ruby script/generate scaffold Tool name:string model_num:integer

exists app/models/

exists app/controllers/

[....]

create db/migrate

create db/migrate/20080716103959_create_tools.rb

e. Issue the Rails migrate command to create the table (tools) in the database

(devdb):

C:\ >rake db:migrate

(in C:/ruby trials/newapp)

== 20080716111617 CreateTools: migrating

======================================

-- create_table(:tools)

-> 0.5320s

== 20080716111617 CreateTools: migrated (0.5320s)

The Rails application can now access the Tools table and perform operations

on it.

f. Issue the following command to test the application:

C:\ruby trials\newapp>ruby script/console

Loading development environment (Rails 2.1.0)

>> tool = Tool.new

=> #<Tool id: nil, name: nil, model_num: nil, created_at: nil,

updated_at: nil>

>> tool.name = ’chistel’

=> "chistel"

>> tool.model_num = ’007’

=> "007"

>> tool.save

=> true

>> Tool.find :all

=> [#<Tool id: 100, name: "chistel", model_num: 7, created_at:

"2008-07-16 11:29:35", updated_at: "2008-07-16 11:29:35">]

>>

Configuring Rails application connections to IBM data servers

You configure database connections for a Rails application by specifying

connection details in the database.yml file.

Procedure

To configure host data server connections for a Rails application, edit the database

configuration details in <rails_application_path>\config\database.yml and specify

the following connection attributes:

The IBM_DB Adapter requires the native Ruby driver (ibm_db)

 # for IBM data servers (ibm_db.so).

 # +config+ the hash passed as an initializer argument content:

 # == mandatory parameters

 # adapter: ’ibm_db’ // IBM_DB Adapter name

 # username: ’db2user’ // data server (database) user

 # password: ’secret’ // data server (database) password

 # database: ’DEVDB’ // remote database name (or catalog entry alias)

72 Developing Perl, PHP, Python, and Ruby on Rails Applications

== optional (highly recommended for data server auditing and monitoring purposes)

 # schema: ’rails123’ // name space qualifier

 # account: ’tester’ // OS account (client workstation)

 # app_user: ’test11’ // authenticated application user

 # application: ’rtests’ // application name

 # workstation: ’plato’ // client workstation name

 # == remote TCP/IP connection (required when no local database catalog entry available)

 # host: ’Socrates’ // fully qualified hostname or IP address

 # port: ’50000’ // data server TCP/IP port number

 #

 # When schema is not specified, the username value is used instead.

Note: Changes to connection information in this file are applied when the Rails

environment is initialized during server startup. Any changes that you make after

initialization do not affect the connections that are created.

Schema, account, app_user, application and workstation are not supported for IBM

Informix Dynamic Server.

IBM Ruby driver and trusted contexts

The IBM_DB Ruby driver supports trusted contexts by using connection string

keywords.

Trusted contexts provide a way of building much faster and more secure three-tier

applications. The user’s identity is always preserved for auditing and security

purposes. When you require secure connections, trusted contexts improve

performance because you do not have to get new connections.

Example

The following example establishes a trusted connection and switches the user on

the same connection.

def trusted_connection(database,hostname,port,auth_user,auth_pass,tc_user,tc_pass)

 dsn = "DATABASE=#{database};HOSTNAME=#{hostname};PORT=#{port};PROTOCOL=TCPIP;UID=#{auth_user};PWD=#{auth_pass};"

 conn_options = {IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT => IBM_DB::SQL_TRUE}

 tc_options = {IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID => tc_user, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_PASSWORD => tc_pass}

 tc_conn = IBM_DB.connect dsn, ’’, ’’, conn_options

 if tc_conn

 puts "Trusted connection established successfully."

 val = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT, 1

 if val

 userBefore = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1

 #do some work as user 1

 #....

 #....

 #switch the user

 result = IBM_DB.set_option tc_conn, tc_options, 1

 userAfter = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1

 if userBefore != userAfter

 puts "User has been switched."

 #do some work as user 2

 #....

 #....

 end

 end

 IBM_DB.close tc_conn

 else

 puts "Attempt to connect failed due to: #{IBM_DB.conn_errormsg}"

 end

end

IBM_DB Rails adapter dependencies and consequences

The IBM_DB adapter (ibm_db_adapter.rb) has a direct dependency on the IBM_DB

driver, which uses IBM Data Server Driver for ODBC and CLI to connect to IBM

data servers. The IBM Call Level Interface (CLI) is a callable SQL interface to IBM

data servers, which is Open Database Connectivity (ODBC) compliant.

Chapter 4. Ruby on Rails 73

This dependency has several ramifications for the IBM_DB adapter and driver.

v Installation of IBM Data Server Driver for ODBC and CLI, which meets the

IBM_DB requirement, is required.

IBM Data Server Driver for ODBC and CLI is included with a full DB2 database

install, or you can obtain it separately

Note: The IBM Data Server Driver for ODBC and CLI is included in the

following client packages:

– IBM Data Server Client

– IBM Data Server Runtime Client

– IBM Data Server Driver Package
v Driver behavior can be modified outside of a Rails application by using CLI

keywords.

Certain transactional behavior can be altered outside the Rails application by

using these CLI keywords. For example, CLI keywords can be used to set the

current schema or alter transactional elements such as turning off autocommit

behavior. For more information about CLI keywords, see the following links:

For Version 9: http://publib.boulder.ibm.com/infocenter/db2luw/v9/
index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm

For Version 9.5: http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/
com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html

For Version 9.7: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html

v Any diagnostic gathering requires CLI driver tracing.

Because all requests through the IBM_DB driver are implemented through IBM

Data Server Driver for ODBC and CLI, the CLI trace facility can identify

problems for applications that use the IBM_DB adapter and driver.

A CLI trace captures all of the API calls made by an application to the IBM Data

Server Driver for ODBC and CLI (including all input parameters), and it

captures all of the values returned from the driver to the application. It is an

interface trace that captures how an application interacts with the IBM Data

Server Driver for ODBC and CLI and offers information about the inner

workings of the driver.

The IBM_DB Ruby driver and Rails adapter are not supported on

JRuby

The IBM_DB adapter is not supported on JRuby.

The IBM_DB adapter is not supported on JRuby because (as stated in the JRuby

Wiki, ″Getting Started″): ″Many Gems will work fine in JRuby, however some

Gems build native C libraries as part of their install process. These Gems will not

work in JRuby unless the Gem has also provided a Java™ equivalent to the native

library.″ For more information, see http://www.headius.com/jrubywiki/
index.php/Getting_Started

The IBM_DB adapter relies on the IBM_DB Ruby driver (C extension) and the IBM

Data Server Driver for ODBC and CLI to access databases on IBM data servers.

Alternatively, you can either use the regular C implementation of Ruby, or use

JDBC_adapter to access databases.

74 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://www.headius.com/jrubywiki/index.php/Getting_Started
http://www.headius.com/jrubywiki/index.php/Getting_Started

ActiveRecord-JDBC versus IBM_DB adapter

Update 0.6.0 and later of the IBM_DB gem provides a slightly different handling of

the required numeric values quoting.

While the previous version of the adapter was attempting to screen out such usage

of quotation marks on numeric values to conform to DB2 data server expectations

on different platforms, the new implementation replaces the workaround with a

permanent fix in the IBM data server client. This not only enables IBM data servers

across platforms but provides a more reliable handling of all Rails APIs that could

escape previous screening. The workaround provided by the previous version of

the adapter is by its nature quite brittle, due to fluid developments in the Rails

framework components (ActiveRecord). It is also known that certain Rails APIs

managed to escape the screening of those overridden methods, so the workaround

used in the ActiveRecord-JDBC adapter might require handling of some additional

cases.

The JRuby runtime does not benefit from the same fix due to its inner specific

interaction with the data servers. DB2 for IBM i does not exhibit this issue (fixed in

V5R3 and V5R4) and the same is true regarding IBM Informix Dynamic Server. For

the time being, until JRuby and ActiveRecord-JDBC adapter matures, the best

alternative is to use the ″classic Ruby″ (C implementation) and the IBM_DB

adapter/driver. A fix in the ActiveRecord-JDBC adapter could also be considered,

which could emulate the previous handling that the IBM_DB adapter was

providing.

Heap size considerations with DB2 on Rails

Rails applications on DB2 require the APPLHEAPSZ database configuration

parameter to be set to values above 1024.

You must set this parameter for each database for which you will be running DB2

on Rails applications. Use the following command to update the applheapsz

parameter:

db2 update db cfg for <database_name> using APPLHEAPSZ 1024

To enable this parameter, you must restart your DB2 instance.

Chapter 4. Ruby on Rails 75

76 Developing Perl, PHP, Python, and Ruby on Rails Applications

Part 5. Appendixes

© Copyright IBM Corp. 2006, 2009 77

78 Developing Perl, PHP, Python, and Ruby on Rails Applications

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 2006, 2009 79

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 16. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes August, 2009

Administrative Routines

and Views

SC27-2436-00 No August, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes August, 2009

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring

Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes August, 2009

Developing Embedded

SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java

Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes August, 2009

Getting Started with

Database Application

Development

GI11-9410-00 Yes August, 2009

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes August, 2009

80 Developing Perl, PHP, Python, and Ruby on Rails Applications

Table 16. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data

Server Clients

GC27-2454-00 No August, 2009

Message Reference

Volume 1

SC27-2450-00 No August, 2009

Message Reference

Volume 2

SC27-2451-00 No August, 2009

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No August, 2009

Partitioning and

Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No August, 2009

SQL Procedural

Languages: Application

Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2

Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager

Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

 Table 17. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes August, 2009

Appendix A. Overview of the DB2 technical information 81

Table 17. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s

Guide

SC27-2434-00 Yes August, 2009

 Table 18. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes August, 2009

Information Integration:

Introduction to

Replication and Event

Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

82 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 79.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Appendix A. Overview of the DB2 technical information 83

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

84 Developing Perl, PHP, Python, and Ruby on Rails Applications

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

Appendix A. Overview of the DB2 technical information 85

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript™ must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

86 Developing Perl, PHP, Python, and Ruby on Rails Applications

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

Appendix A. Overview of the DB2 technical information 87

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

88 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2009 89

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

90 Developing Perl, PHP, Python, and Ruby on Rails Applications

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. The sample

programs are provided ″AS IS″, without warranty of any kind. IBM shall not be

liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in

the United States and other countries.

v Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 91

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

92 Developing Perl, PHP, Python, and Ruby on Rails Applications

Index

A
ActiveRecord-JDBC adapter

compared to IBM_DB adapter 75

application design
prototyping in Perl 3

autocommit function (ibm_db) 60

B
bind_param function (ibm_db) 54, 57

books
printed

ordering 82

C
CALL statement

PHP 27, 43

Python 57

client_info function (ibm_db) 62

close function (ibm_db) 55, 59

column_privileges function (ibm_db) 62

columns function (ibm_db) 62

commit function (ibm_db) 60

commit modes
PHP applications 30, 45

Python applications 60

conn_error function (ibm_db) 61

conn_errormsg function (ibm_db) 61

connect function (ibm_db) 52

connect method (Perl DBI) 4

D
database connections

Rails configuration 72

DB2 Information Center
languages 83

updating 84, 85

versions 83

viewing in different languages 83

db2_autocommit function (ibm_db2) 30

db2_bind_param function (ibm_db2) 22, 24, 27

db2_client_info function (ibm_db2) 32

db2_close function (ibm_db2) 25, 29

db2_column_privileges function (ibm_db2) 32

db2_columns function (ibm_db2) 32

db2_commit function (ibm_db2) 30

db2_conn_error function (ibm_db2) 31

db2_conn_errormsg function (ibm_db2) 31

db2_connect function (ibm_db2) 19

db2_exec function (ibm_db2) 21

db2_execute function (ibm_db2) 22, 24, 27

db2_fetch_array function (ibm_db2) 25, 29

db2_fetch_assoc function (ibm_db2) 25, 29

db2_fetch_both function (ibm_db2) 25, 29

db2_fetch_object function (ibm_db2) 25, 27

db2_fetch_row function (ibm_db2) 25, 29

db2_foreign_keys function (ibm_db2) 32

db2_next_result function (ibm_db2) 29

db2_pconnect function (ibm_db2) 19

db2_prepare function (ibm_db2) 22, 24, 27

db2_primary_keys function (ibm_db2) 32

db2_procedure_columns function (ibm_db2) 32

db2_procedures function (ibm_db2) 32

db2_result function (ibm_db2) 25

db2_rollback function (ibm_db2) 30

db2_server_info function (ibm_db2) 32

db2_special_columns function (ibm_db2) 32

db2_statistics function (ibm_db2) 32

db2_stmt_error function (ibm_d2b) 31

db2_stmt_errormsg function (ibm_db2) 31

db2_table_privileges function (ibm_db2) 32

DB2::DB2 driver
downloads and resources 3

pureXML support 7

disconnect method (Perl DBI) 4

documentation
overview 79

PDF 79

printed 79

terms and conditions of use 88

dynamic SQL
Perl support 3

E
err method (Perl DBI) 6

errors
Perl 6

PHP 31, 46

Python 61

errstr method (Perl DBI) 6

exec_immediate function (ibm_db) 53

execute function (ibm_db) 54, 57

execute method (Perl DBI) 5

F
fetch_assoc function (ibm_db) 55, 59

fetch_both function (ibm_db) 55, 59

fetch_row function (ibm_db) 55, 59

fetch_tuple function (ibm_db) 55, 59

fetchrow method (Perl DBI) 5

foreign_keys function (ibm_db) 62

functions
PHP

db2_autocommit 30

db2_bind_param 22, 24, 27

db2_client_info 32

db2_close 25, 29

db2_column_privileges 32

db2_columns 32

db2_commit 30

db2_conn_error 31

db2_conn_errormsg 31

db2_connect 19

db2_exec 21

db2_execute 22, 24, 27

© Copyright IBM Corp. 2006, 2009 93

functions (continued)
PHP (continued)

db2_fetch_array 25, 29

db2_fetch_assoc 25, 29

db2_fetch_both 25, 29

db2_fetch_object 25, 27

db2_fetch_row 25, 29

db2_foreign_keys 32

db2_next_result 29

db2_pconnect 19

db2_prepare 22, 24, 27

db2_primary_keys 32

db2_procedure_columns 32

db2_procedures 32

db2_result 25

db2_rollback 30

db2_server_info 32

db2_special_columns 32

db2_statistics 32

db2_stmt_error 31

db2_stmt_errormsg 31

db2_table_privileges 32

Python
ibm_db.autocommit 60

ibm_db.bind_param 54, 57

ibm_db.client_info 62

ibm_db.close 55, 59

ibm_db.column_privileges 62

ibm_db.columns 62

ibm_db.commit 60

ibm_db.conn_error 61

ibm_db.conn_errormsg 61

ibm_db.connect 52

ibm_db.exec_immediate 53

ibm_db.execute 54, 57

ibm_db.fetch_assoc 55, 59

ibm_db.fetch_both 55, 59

ibm_db.fetch_row 55, 59

ibm_db.fetch_tuple 55, 59

ibm_db.foreign_keys 62

ibm_db.next_result 59

ibm_db.pconnect 52

ibm_db.prepare 54, 57

ibm_db.primary_keys 62

ibm_db.procedure_columns 62

ibm_db.procedures 62

ibm_db.result 55

ibm_db.rollback 60

ibm_db.server_info 62

ibm_db.special_columns 62

ibm_db.statistics 62

ibm_db.stmt_error 61

ibm_db.stmt_errormsg 61

ibm_db.table_privileges 62

H
help

configuring language 83

SQL statements 83

host variables
Perl 5

I
ibm_db

Python application development 52

IBM_DB adapter
compared to ActiveRecord-JDBC adapter 75

ibm_db API
description 49

IBM_DB Rails adapter
dependencies 74

IBM_DB Ruby driver
trusted contexts 73

IBM_DB Ruby driver and Rails adapter
description 67

getting started 67

installation verification
DB2 Express-C 70

IBM data servers 71

integrated development environment setup 68

JRuby support 74

Ruby gem installation 68

ibm_db_dbi API
description 49

ibm_db_sa adaptor
description 49

ibm_db2 API
description 15

PHP application development 19

trusted contexts 20

J
JRuby

support for IBM_DB Ruby driver and Rails adapter 74

L
large objects

fetching
PHP 27, 42

inserting
PHP 24, 39

M
metadata

retrieval
PHP 32

Python 62

methods
Perl

connect 4

disconnect 4

err 6

errstr 6

execute 5

fetchrow 5

prepare 5

state 6

PHP
PDO::beginTransaction 45

PDO::commit 45

PDO::exec 37

PDO::prepare 38, 39, 43

PDO::query 37

PDO::rollBack 45

94 Developing Perl, PHP, Python, and Ruby on Rails Applications

methods (continued)
PHP (continued)

PDOStatement::bindColumn 42

PDOStatement::bindParam 38, 39, 43

PDOStatement::execute 38, 39, 43

PDOStatement::fetch 40, 42, 44

PDOStatement::fetchAll 40, 44

PDOStatement::fetchColumn 40

PDOStatement::nextRowset 44

N
next_result function (ibm_db) 59

notices 89

O
ordering DB2 books 82

P
parameter markers

Perl 6

pconnect function (ibm_db) 52

pdo_ibm
description 15

developing PHP applications 35

PDO::beginTransaction method (PDO) 45

PDO::commit method (PDO) 45

PDO::exec method (PDO) 37

PDO::prepare method (PDO) 38, 39, 43

PDO::query method (PDO) 37

PDO::rollBack method (PDO) 45

PDOStatement::bindColumn method (PDO) 42

PDOStatement::bindParam method (PDO) 38, 39, 43

PDOStatement::execute method (PDO) 38, 39, 43

PDOStatement::fetch method (PDO) 40, 42, 44

PDOStatement::fetchAll method (PDO) 40, 44

PDOStatement::fetchColumn method (PDO) 40

PDOStatement::nextRowset method (PDO) 44

Perl
connecting to a database 4

downloads and resources 3

drivers 3

errors 6

fetching rows 5

methods
connect 4

disconnect 4

err 6

errstr 6

execute 5

fetchrow 5

prepare 5

state 6

overview 3

parameter markers 6

pureXML support 7

restrictions 7

running sample programs 9

SQLCODEs 6

SQLSTATEs 6

PHP
application development 15, 19

connecting to a database 19, 35

database metadata retrieval 32

PHP (continued)
developing applications with PDO 35

downloads and related resources 16

error handling 31, 46

extensions for IBM data servers 15

fetching large objects 27, 42

fetching rows 25, 40

functions
db2_autocommit 30

db2_bind_param 27

db2_client_info 32

db2_close 25, 29

db2_column_privileges 32

db2_columns 32

db2_commit 30

db2_conn_error 31

db2_conn_errormsg 31

db2_connect 19

db2_exec 21

db2_execute 27

db2_fetch_array 25, 29

db2_fetch_assoc 25, 29

db2_fetch_both 25, 29

db2_fetch_object 25, 27

db2_fetch_row 25, 29

db2_foreign_keys 32

db2_next_result 29

db2_pconnect 19

db2_prepare 27

db2_primary_keys 32

db2_procedure_columns 32

db2_procedures 32

db2_result 25

db2_rollback 30

db2_server_info 32

db2_special_columns 32

db2_statistics 32

db2_stmt_error 31

db2_stmt_errormsg 31

db2_table_privileges 32

IBM data server environment setup (Windows) 16

ibm_db2 API 19

connecting to a database 19

large objects 24, 39

methods
PDO::beginTransaction 45

PDO::commit 45

PDO::exec 37

PDO::prepare 38, 39, 43

PDO::query 37

PDO::rollBack 45

PDOStatement::bindColumn 42

PDOStatement::bindParam 38, 39, 43

PDOStatement::execute 38, 39, 43

PDOStatement::fetch 40, 42, 44

PDOStatement::fetchAll 40, 44

PDOStatement::fetchColumn 40

PDOStatement::nextRowset 44

PDO_IBM extension
connecting to a database 35

issuing SQL statements (procedure) 37

procedures 27, 43

setup
Linux 17

setup overview 16

SQL statements 21, 22, 24, 25, 37, 38, 39, 40, 42

Index 95

PHP (continued)
stored procedures

calling 27, 43

retrieving results 29, 44

support for trusted contexts 20

transactions 30, 45

prepare function (ibm_db) 54, 57

prepare method (Perl DBI) 5

primary_keys function (ibm_db) 62

problem determination
information available 87

tutorials 87

procedure_columns function (ibm_db) 62

procedures
PHP 27, 43

Python 57

procedures function (ibm_db) 62

pureXML
DB2::DB2 driver 7

Python
API documentation 49

application development 49, 52

connecting to a database 52

database metadata retrieval 62

downloading extensions 49

error handling 61

extensions for IBM data servers 49

fetching rows 55

functions
ibm_db.autocommit 60

ibm_db.bind_param 54, 57

ibm_db.client_info 62

ibm_db.close 55, 59

ibm_db.column_privileges 62

ibm_db.columns 62

ibm_db.commit 60

ibm_db.conn_error 61

ibm_db.conn_errormsg 61

ibm_db.connect 52

ibm_db.exec_immediate 53

ibm_db.execute 54, 57

ibm_db.fetch_assoc 55, 59

ibm_db.fetch_both 55, 59

ibm_db.fetch_row 55, 59

ibm_db.fetch_tuple 55, 59

ibm_db.foreign_keys 62

ibm_db.next_result 59

ibm_db.pconnect 52

ibm_db.prepare 54, 57

ibm_db.primary_keys 62

ibm_db.procedure_columns 62

ibm_db.procedures 62

ibm_db.result 55

ibm_db.rollback 60

ibm_db.server_info 62

ibm_db.special_columns 62

ibm_db.statistics 62

ibm_db.stmt_error 61

ibm_db.stmt_errormsg 61

ibm_db.table_privileges 62

IBM data server environment setup 50

ibm_db 52

procedures 57

SQL statements 53, 54

stored procedures
calling 57

retrieving results 59

Python (continued)
transactions 60

R
RadRails

IBM data server on Rails setup 68

Rails adapter
dependencies 74

description 67

getting started 67

IBM_DB adapter and driver installation 68

installation verification
DB2 Express-C 70

IBM data servers 71

integrated development environment setup 68

JRuby support 74

Rails applications
connection configuration 72

result function (ibm_db) 55

rollback function (ibm_db) 60

rows
fetching

Perl 5

PHP 25, 40

Python 55

Ruby driver
description 67

getting started 67

IBM_DB adapter and driver installation 68

installation verification
DB2 Express-C 70

IBM data servers 71

integrated development environment setup 68

JRuby support 74

trusted contexts 73

Ruby on Rails
heap size issues 75

S
sample programs

running in Perl 9

server_info function (ibm_db) 62

special_columns function (ibm_db) 62

SQL statements
displaying help 83

PHP 21, 22, 24, 25, 37, 38, 39, 40, 42

Python 53, 54

SQLAlchemy
adapter for IBM data servers 49

downloading extension 49

IBM data server environment setup 50

state method (Perl DBI) 6

static SQL
unsupported in Perl 7

statistics function (ibm_db) 62

stmt_error function (ibm_db) 61

stmt_errormsg function (ibm_db) 61

stored procedures
PHP

calling 27, 43

retrieving results 29, 44

Python
calling 57

retrieving results 59

96 Developing Perl, PHP, Python, and Ruby on Rails Applications

T
table_privileges function (ibm_db) 62

terms and conditions
use of publications 88

transactions
PHP 30, 45

Python 60

troubleshooting
online information 87

tutorials 87

trusted contexts
support in IBM_DB Ruby driver 73

support in PHP applications 20

tutorials
problem determination 87

troubleshooting 87

Visual Explain 87

U
updates

DB2 Information Center 84, 85

V
Visual Explain

tutorial 87

Index 97

98 Developing Perl, PHP, Python, and Ruby on Rails Applications

����

Printed in USA

SC27-2447-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

De
ve

lo
pi

ng

Pe

rl,

PH

P,

Py

th
on

, a
nd

Ru

by

on

Ra

ils

Ap

pl
ic

at
io

ns

�
�

�

	Contents
	Part 1. Developing Perl Applications
	Chapter 1. Programming considerations for Perl
	Perl downloads and related resources
	Database connections in Perl
	Fetching results in Perl
	Parameter markers in Perl
	SQLSTATE and SQLCODE variables in Perl
	Perl Restrictions
	pureXML and Perl
	Running Perl sample programs
	Executing routines from Perl applications

	Part 2. Developing PHP applications
	Chapter 2. PHP application development for IBM data servers
	PHP downloads and related resources
	Setting up the PHP environment
	Setting up the PHP environment on Windows
	Setting up the PHP environment on Linux or UNIX

	Application development in PHP (ibm_db2)
	Connecting to an IBM data server database in PHP (ibm_db2)
	Trusted contexts in PHP applications (ibm_db2)

	Executing SQL statements in PHP (ibm_db2)
	Executing a single SQL statement in PHP (ibm_db2)
	Preparing and executing SQL statements with variable input in PHP (ibm_db2)
	Inserting large objects in PHP (ibm_db2)

	Reading query result sets
	Fetching rows or columns from result sets in PHP (ibm_db2)
	Fetching large objects in PHP (ibm_db2)

	Calling stored procedures in PHP (ibm_db2)
	Retrieving multiple result sets from a stored procedure in PHP (ibm_db2)

	Commit modes in PHP applications (ibm_db2)
	Error-handling functions in PHP applications (ibm_db2)
	Database metadata retrieval functions in PHP (ibm_db2)

	Application development in PHP (PDO)
	Connecting to an IBM data server database with PHP (PDO)
	Executing SQL statements in PHP (PDO)
	Executing a single SQL statement in PHP (PDO)
	Preparing and executing SQL statements in PHP (PDO)
	Inserting large objects in PHP (PDO)

	Reading query result sets
	Fetching rows or columns from result sets in PHP (PDO)
	Fetching large objects in PHP (PDO)

	Calling stored procedures in PHP (PDO)
	Retrieving multiple result sets from a stored procedure in PHP (PDO)

	Commit modes in PHP (PDO)
	Handling errors and warnings in PHP (PDO)

	Part 3. Developing Python applications
	Chapter 3. Python and SQLAlchemy application development for IBM data servers
	Python downloads and related resources
	Setting up the Python environment for IBM data servers
	Application development in Python with ibm_db
	Connecting to an IBM data server database in Python
	Executing SQL statements in Python
	Preparing and executing a single SQL statement in Python
	Preparing and executing SQL statements with variable input in Python

	Fetching rows or columns from result sets in Python
	Calling stored procedures in Python
	Retrieving multiple result sets from a stored procedure in Python
	Commit modes in Python applications
	Error-handling functions in Python
	Database metadata retrieval functions in Python

	Part 4. Developing Ruby on Rails applications
	Chapter 4. The IBM_DB Ruby driver and Rails adapter
	Getting started with IBM data servers on Rails
	Setting up an integrated development environment for Rails

	Installing the IBM_DB adapter and driver as a Ruby gem
	Verifying installation with DB2 Express-C
	Verifying installation with IBM data servers on Rails applications

	Configuring Rails application connections to IBM data servers
	IBM Ruby driver and trusted contexts
	IBM_DB Rails adapter dependencies and consequences
	The IBM_DB Ruby driver and Rails adapter are not supported on JRuby
	ActiveRecord-JDBC versus IBM_DB adapter
	Heap size considerations with DB2 on Rails

	Part 5. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

