IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Administrative Routines and Views
Updated September, 2010

SC27-2436-02

IBM DB2 9.7
for Linux, UNIX, and Windows

Version 9 Release 7

| ® o
TS
(0 ! =: S
\ -] / |
Y Fs 1
{]

Administrative Routines and Views
Updated September, 2010

SC27-2436-02

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|
[page 1233.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

* To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. System-defined routines and

views. 000001
Best practices for calling system-defined routines and

views in applications . . R |
Authorization for admrnrstratrve views2
Administrative views versus table functions. . . .3

Chapter 2. Supported system-defined

SQL routinesandviews.5
Chapter 3. Activity monitor routines . . 21
AM_BASE_RPT_RECOMS - Recommendations for
activity reports . . . A |
AM_BASE_RPTS - Actrvrty monrtor reports L. .22
AM_DROP_TASK - Delete a monitoring task . . . 23
AM_GET_LOCK_CHN_TB — Retrieve application

lock chain data in a tabular format 23
AM_GET_LOCK_CHNS - Retrieve lock cham
information for a specific application. . . .24
AM_GET_LOCK_RPT - Retrieve application lock
details25
AM_GET_RPT - Retrreve actrvrty monrtor data .. 32
AM_SAVE_TASK - Create or modify a monitoring

task33

Chapter 4. ADMIN_CMD procedure and
associated routines 35

ADMIN_CMD - Run admlnlstratrve commands . .35
ADD CONTACT command using the

ADMIN_CMD procedure. . . .37
ADD CONTACTGROUP command usmg the
ADMIN_CMD procedure.38
AUTOCONFIGURE command usmg the
ADMIN_CMD procedure.39
BACKUP DATABASE command usmg the
ADMIN_CMD procedure. . . . 43
DESCRIBE command using the ADMIN CMD
procedure5l
DROP CONTACT Command usmg the
ADMIN_CMD procedure. . . . 64
DROP CONTACTGROUP command usmg the
ADMIN_CMD procedure.65
EXPORT command using the ADMIN CMD
procedure66
FORCE APPLICATION command usmg the
ADMIN_CMD procedure.76

GET STMM TUNING DBPARTITIONNUM
command using the ADMIN_CMD procedure. . 78
IMPORT command using the ADMIN_CMD

procedure . . . NS
INITIALIZE TAPE command usmg the
ADMIN_CMD procedure 104
LOAD command using the ADMIN CMD

procedure105

© Copyright IBM Corp. 2006, 2010

PRUNE HISTORY /LOGFILE command using
the ADMIN_CMD procedure . . .
QUIESCE DATABASE command using the
ADMIN_CMD procedure . .
QUIESCE TABLESPACES FOR TABLE
command using the ADMIN_CMD procedure
REDISTRIBUTE DATABASE PARTITION
GROUP command using the ADMIN_CMD
procedure
REORG INDEXES / TABLE command usmg the
ADMIN_CMD procedure .

RESET ALERT CONFIGURATION command
using the ADMIN_CMD procedure .

RESET DATABASE CONFIGURATION
command using the ADMIN_CMD procedure
RESET DATABASE MANAGER
CONFIGURATION command using the
ADMIN_CMD procedure . .
REWIND TAPE command using the
ADMIN_CMD procedure .

RUNSTATS command using the ADMIN CMD
procedure .
SET TAPE POSITION command usmg the
ADMIN_CMD procedure .
UNQUIESCE DATABASE command usmg the
ADMIN_CMD procedure

UPDATE ALERT CONFIGURATION command
using the ADMIN_CMD procedure .

UPDATE CONTACT command using the
ADMIN_CMD procedure .

UPDATE CONTACTGROUP command usmg
the ADMIN_CMD procedure . .

UPDATE DATABASE CONFIGURATION
command using the ADMIN_CMD procedure
UPDATE DATABASE MANAGER
CONFIGURATION command using the
ADMIN_CMD procedure .

UPDATE HEALTH NOTIFICATION CONTACT
LIST command using the ADMIN_CMD
procedure

UPDATE HISTORY command usmg the
ADMIN_CMD procedure

UPDATE STMM TUNING DBPARTITIONNUM
command using the ADMIN_CMD procedure

ADMIN_EST_INLINE_LENGTH function -

Estimate length required to inline data .

ADMIN_GET_DBP_MEM_USAGE table functlon -

Get total memory consumption for instance .

ADMIN_GET_INDEX_COMPRESS_INFO table

function - returns compressed index information

ADMIN_GET_INDEX_INFO table function -

returns index information . .

ADMIN_GET_MSGS table function - Retrreve

messages generated by a data movement utility

that is executed through the ADMIN_CMD

procedure . e

. 143

. 145

. 146

. 149

. 159

. 175

. 177

. 179

. 180

. 181

. 193

. 194

. 195

. 200

. 201

. 202

. 205

. 207

. 208

. 210

. 211

. 213

. 215

. 218

. 222

iii

ADMIN_IS_INLINED function - Determine if data

is inlined 223
ADMIN REMOVE MSGS procedure Clean up
messages generated by a data movement utility

that is executed through the ADMIN_CMD

procedure 225
ADMIN_ REVALIDATE DB OB]ECTS procedure -
Revalidate invalid database objects 225

ADMINTABCOMPRESSINFO admlmstratlve view

and ADMIN_GET_TAB_COMPRESS_INFO_V97

table function - returns compressed information. . 228
ADMINTABINFO administrative view and
ADMIN_GET_TAB_INFO_V97 table function -

retrieve table size and state information . . . 236
ADMINTEMPCOLUMNS administrative view and
ADMIN_GET_TEMP_COLUMNS table function -
Retrieve column information for temporary tables . 243
ADMINTEMPTABLES administrative view and
ADMIN_GET_TEMP_TABLES table function -

Retrieve information for temporary tables. . . . 247

Chapter 5. Administrative Task
Scheduler routines and views 251
ADMIN_TASK_ADD procedure - Schedule a new

task . . 2o) |
UNIX cron format - . 254
ADMIN_TASK_LIST admlmstratlve view - Retrleve
information about tasks in the scheduler 256
ADMIN_TASK_REMOVE procedure - Remove
scheduled tasks or task status records 257
ADMIN_TASK_STATUS administrative view -
Retrieve task status information 259
ADMIN_TASK_UPDATE procedure - Update an
existing task.260

Chapter 6. Audit routines and

procedures 263
AUDIT_ARCHIVE procedure and table functlon -
Archive audit log file. 263
AUDIT_DELIM_EXTRACT - performs extract to
delimited file 264
AUDIT_LIST_LOGS table functlon Lrsts archlved
audit log files265

Chapter 7. Automatic maintenance

routines. 267
AUTOMAINT_GET_ POLICY procedure - retrieve
automatic maintenance policy 267
AUTOMAINT_GET_POLICYFILE procedure -

retrieve automatic maintenance policy 268
AUTOMAINT_SET_POLICY procedure - confrgure
automatic maintenance policy 269
AUTOMAINT_SET_POLICYFILE procedure -

configure automatic maintenance policy 270

Chapter 8. Common SQL API
procedures 273

Common input and output parameters. 273
Versioning of XML documents.274

iV Administrative Routines and Views

XML input documents 275
Complete mode for returmng vahd XML mput
documents27

XML output documents Lo ... 276
XPath expressions for filtering output L. 277

XML message documents 278

CANCEL_WORK procedure - Cancel work .. 0279

GET_CONFIG procedure - Get configuration data 285

GET_MESSAGE procedure - Get message text . . 292

GET_SYSTEM_INFO procedure - Get system

information . . . S 0299

SET_CONFIG procedure Set conflguratlon

parameterso 306

Chapter 9. Configuration routines and
views. L 317

DB_PARTITIONS 317
DBCFG administrative view - Retrreve database
configuration parameter information . . . 318
DBMCEFG administrative view - Retrieve database
manager configuration parameter information . . 320
REG_VARIABLES administrative view - Retrieve

DB2 registry settings inuse.322

Chapter 10. Environment views. . . . 325
ENV_FEATURE_INFO administrative view -

Return license information for DB2 features . . . 325
ENV_INST_INFO administrative view - Retrieve
information about the current instance 326
ENV_PROD_INFO administrative view - Retrleve
information about installed DB2 products 327
ENV_SYS_INFO administrative view - Retrieve
information about the system 329
ENV_SYS_RESOURCES admmlstratrve view -

Return system information.330

Chapter 11. Explain routines. 335
EXPLAIN_GET_MSGS33
EXPLAIN_FORMAT_STATS . . . N £
EXPLAIN_FROM_ACTIVITY procedure Explam
statement using activity event monitor information. 342
EXPLAIN_FROM_CATALOG procedure - Explain

a statement using section information from

catalogs 345
EXPLAIN_FROM_ DATA procedure Explam a
statement using the input section. . . . 347

EXPLAIN_FROM_SECTION procedure - Explam a
statement using package cache or package cache
event monitor information349

Chapter 12. Monitor routines and

views. 353
EVMON_FORMAT_ UE TO TABLES procedure -

move an XML document to relational tables . . . 355
EVMON_FORMAT_UE_TO_XML table function -
convert unformatted events to XML. 363
MON_BP_UTILIZATION - Retrieve metrics for
bufferpools 365
MON_ CONNECTION SUMMARY Retrleve

metrics for all connections372

MON_CURRENT_SQL - Retrieve key metrics for

all activities on all members 375
MON_CURRENT_UOW - Retrieve metrlcs for all

units of work 376
MON_DB SUMMARY Retrleve accumulated

metrics across all members of the database . . . 378
MON_FORMAT_LOCK_NAME - format the

internal lock name and return details 381
MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW
- Get formatted row-based component times . . . 384
MON_FORMAT_XML_METRICS_BY_ROW - Get
formatted row-based output for all metrics . . . 388

MON_FORMAT_XML_TIMES_BY_ROW - Get
formatted row-based combined hierarchy wait and

processing times . . . 396
MON_FORMAT_XML WAIT TIMES BY ROW -

Get formatted row-based output for wait times . . 400
MON_GET_ACTIVITY_DETAILS table function -

Get complete activity details 404
MON_GET_APPL_LOCKWAIT - get 1nformat1on

about locks for which an application is waiting . . 415
MON_GET_BUFFERPOOL table function - Get

buffer pool metrics . . . 418
MON_GET_ CONNECTION table functlon Get
connection metrics. 421
MON_GET_ CONNECTION DETAILS table

function - Get detailed connection metrics. . . . 427
MON_GET_CONTAINER table function - Get table
space container metrics 434
MON_GET_EXTENT_ MOVEMENT STATUS get
extent movement progress 437
MON_GET_FCM - Get FCM metrlcs .o .. 438
MON_GET_FCM_CONNECTION_LIST - Get

details for all FCM connections 439
MON_GET_INDEX table function - get mdex

metrics . . . 440
MON_GET_ LOCKS - 11st all locks in the currently
connected database 442

MON_GET_PKG_CACHE_ STMT table functlon -
Get SQL statement activity metrics in the package

cache 447
MON_GET_ PKG CACHE STMT DETAILS get
detailed metrics for package cache entries. . . . 453
MON_GET_SERVICE_SUBCLASS table function -

Get service subclass metrics . . . 460
MON_GET_SERVICE_SUBCLASS_ DETAILS table
function - Get detailed service subclass metrics . . 466
MON_GET_TABLE table function - get table

metrics 472
MON_GET_ TABLESPACE table functlon Get

table space metrics . . . 475
MON_GET_UNIT_OF_ WORK table functlon Get

unit of work metrics 478
MON_GET_UNIT_OF_ WORK DETAILS table
function - Get detailed unit of work metrics . . . 484
MON_GET_WORKLOAD table function - Get
workload metrics 492
MON_GET_WORKLOAD_ DETAILS table functlon

- Get detailed workload metrics 497

MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain

locks 503
MON_PKG CACHE SUMMARY Retrleve a
high-level summary of the database package cache. 506
MON_SERVICE_SUBCLASS_SUMMARY - Retrieve
metrics for all service subclasses 508
MON_TBSP_UTILIZATION - Retrieve monltorlng
metrics for all table spaces and all database

partitions.51
MON WORKLOAD SUMMARY Retrleves

metrics for all workloads515
Chapter 13. MQSeries routines. . . . 519
MQPUBLISHb519
MQREAD52
MQREADALLb521
MQOQREADALLCLOB.b523
MQREADCLOBb25
MOQRECEIVEb2
MQRECEIVEALL527
MOQRECEIVEALLCLOB.530
MOQRECEIVECLOB532
MQSENDb533
MQSUBSCRIBEb534
MQUNSUBSCRIBEb535

Chapter 14. Security routines and

views. 537
AUTH_GET_ INSTANCE AUTHID Get the

instance owner authorization ID b37
AUTH_LIST_AUTHORITIES_FOR_ AUTHID . . 538

AUTH_LIST_GROUPS_FOR_AUTHID table
function - Retrieve group membership list for a

given authorization ID 542
AUTH_LIST_ROLES_FOR _ AUTHID functlon -

Returns the list of roles543
AUTHORIZATIONIDS adrmmstratlve view -

Retrieve authorization IDs and types . . . 545
OBJECTOWNERS administrative view — Retrleve

object ownership information546
PRIVILEGES administrative view — Retrleve

privilege information.547

Chapter 15. Snapshot routines and

views. 549
APPL_ PERFORMANCE admlmstratlve view -

Retrieve percentage of rows selected for an

application 549
APPLICATIONS admlmstratlve view - Retrleve
connected database application information . . . 550
BP_HITRATIO administrative view - Retrieve
bufferpool hit ratio information 554
BP_READ_IO administrative view - Retrleve
bufferpool read performance information 556
BP_WRITE_IO administrative view - Retrieve
bufferpool write performance information. . . . 558

CONTAINER_UTILIZATION administrative view -
Retrieve table space container and utilization
information55

Contents V

LOCKS_HELD administrative view - Retrieve
information on locks held .
LOCKWAITS administrative view - Retr1eve
current lockwaits information .

LOG_UTILIZATION administrative view - Retrleve
. 567
. 569

log utilization information .
LONG_RUNNING_SQL adrnlnlstratlve view .
QUERY_PREP_COST administrative view -
Retrieve statement prepare time information .
SNAPAGENT administrative view and
SNAP_GET_AGENT table function — Retrieve
agent logical data group application snapshot
information .

SNAPAGENT MEMORY POOL admlnlstratwe
view and SNAP_GET_AGENT_MEMORY_POOL

table function — Retrieve memory_pool logical data

group snapshot information

SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function -
Retrieve appl_info logical data group snapshot
information . . .
SNAPAPPL admlnlstratlve view and
SNAP_GET_APPL_V95 table function - Retrieve
appl logical data group snapshot information
SNAPBP administrative view and
SNAP_GET_BP_V95 table function - Retrieve
bufferpool logical group snapshot information
SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function — Retrieve
bufferpool_nodeinfo logical data group snapshot
information .

SNAPCONTAINER admlnlstratlve view and
SNAP_GET_CONTAINER_V91 table function -
Retrieve tablespace_container logical data group
snapshot information.

SNAPDB administrative view and
SNAP_GET_DB_V97 table function - Retrieve

snapshot information from the dbase logical group.

SNAPDB_MEMORY_POOL administrative view
and SNAP_GET_DB_MEMORY_POOL table
function — Retrieve database level memory usage
information .

SNAPDBM admlmstratlve view and

SNAP_GET_DBM_V095 table function - Retrieve the
. 624

dbm logical grouping snapshot information .
SNAPDBM_MEMORY_POOL administrative view
and SNAP_GET_DBM_MEMORY_POOL table
function — Retrieve database manager level
memory usage information .

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function -
Retrieve snapshot information from the detail_log
logical data group . .

SNAPDYN_SQL admlmstratlve view and
SNAP_GET_DYN_SQL_V95 table function -

Retrieve dynsql logical group snapshot information

SNAPFCM administrative view and

SNAP_GET_FCM table function — Retrieve the fcm

logical data group snapshot information

Vi Administrative Routines and Views

. 561

. 564

. 572

. 573

. 576

. 580

. 588

. 596

. 601

. 605

609

. 621

. 629

. 632

635

. 641

SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function — Retrieve
the fcm_node logical data group snapshot
information . .

SNAPHADR adrnlnlstratlve view and
SNAP_GET_HADR table function — Retrieve hadr
logical data group snapshot information
SNAPLOCK administrative view and
SNAP_GET_LOCK table function — Retrieve lock
logical data group snapshot information
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function — Retrieve
lockwait logical data group snapshot information
SNAPSTMT administrative view and
SNAP_GET_STMT table function — Retrieve
statement snapshot information .
SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS_V97 table function
- Retrieve automatic storage path information
SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function —

Retrieve subsection logical monitor group snapshot
. 670

information . .

SNAPSWITCHES adrnlnlstratlve view and
SNAP_GET_SWITCHES table function — Retrieve
database snapshot switch state information
SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function - Retrieve
table logical data group snapshot information
SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function - Retrieve
table reorganization snapshot information .
SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function - Retrieve
table space logical data group snapshot
information .

SNAPTBSP_PART adrnlnlstratlve view and
SNAP_GET_TBSP_PART_V97 table function -
Retrieve tablespace_nodeinfo logical data group
snapshot information.

SNAPTBSP_QUIESCER admlnlstratlve view and
SNAP_GET_TBSP_QUIESCER table function -

Retrieve quiescer table space snapshot information .

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function -
Retrieve range snapshot information
SNAPUTIL administrative view and
SNAP_GET_UTIL table function - Retrieve
utility_info logical data group snapshot
information . .

SNAPUTIL_ PROGRESS admlnlstratlve view and
SNAP_GET_UTIL_PROGRESS table function -
Retrieve progress logical data group snapshot
information . .

SNAP_WRITE_FILE procedure

SNAPAGENT administrative view and
SNAP_GET_AGENT table function — Retrieve
agent logical data group apphcatlon snapshot
information . .. Lo

. 643

. 646

. 650

. 655

. 661

. 667

. 674

. 677

. 681

. 686

. 692

697

. 701

. 705

. 709
. 712

. 713

SNAPAGENT_MEMORY_POOL administrative
view and SNAP_GET_AGENT_MEMORY_POOL
table function — Retrieve rnemory_pool logical data
group snapshot information

SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function -
Retrieve appl_info logical data group snapshot
information .

SNAPAPPL admrnrstratlve view and
SNAP_GET_APPL_V95 table function - Retrieve
appl logical data group snapshot information
SNAPBP administrative view and
SNAP_GET_BP_V95 table function - Retrieve
bufferpool logical group snapshot information
SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function — Retrieve
bufferpool_nodeinfo logical data group snapshot
information .

SNAPCONTAINER admrnlstratlve view and
SNAP_GET_CONTAINER_VO1 table function -
Retrieve tablespace_container logical data group
snapshot information.

SNAPDB administrative view and
SNAP_GET_DB_V95 table function - Retrieve

snapshot information from the dbase logical group.

SNAPDB_MEMORY_POOL administrative view
and SNAP_GET_DB_MEMORY_POOL table
function — Retrieve database level memory usage
information .

SNAPDBM admlmstratlve view and
SNAP_GET_DBM_V95 table function - Retrieve the
dbm logical grouping snapshot information .
SNAPDBM_MEMORY_POOL administrative view
and SNAP_GET_DBM_MEMORY_POOL table
function — Retrieve database manager level
memory usage information .

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function -
Retrieve snapshot information from the detail_log
logical data group .

SNAPDYN_SQL adrrumstratlve view and
SNAP_GET_DYN_SQL_V95 table function -
Retrieve dynsql logical group snapshot information
SNAPFCM administrative view and
SNAP_GET_FCM table function — Retrieve the fcm
logical data group snapshot information
SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function — Retrieve
the fcm_node logical data group snapshot
information .

SNAPHADR admrnrstratrve view and
SNAP_GET_HADR table function — Retrieve hadr
logical data group snapshot information
SNAPLOCK administrative view and
SNAP_GET_LOCK table function — Retrieve lock
logical data group snapshot information
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function — Retrieve
lockwait logical data group snapshot information

. 716

. 720

. 728

. 736

. 741

. 745

749

. 761

. 765

. 769

. 772

775

. 781

. 783

. 786

. 790

. 795

SNAPSTMT administrative view and
SNAP_GET_STMT table function — Retrieve
statement snapshot information
SNAPSTORAGE_PATHS admlmstratlve view and
SNAP_GET_STORAGE_PATHS table function -
Retrieve automatic storage path information .
SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function —
Retrieve subsection logical monitor group snapshot
information .

SNAPSWITCHES admlmstratlve view and
SNAP_GET_SWITCHES table function — Retrieve
database snapshot switch state information
SNAPTAB administrative view and
SNAP_GET_TAB_VO91 table function - Retrieve
table logical data group snapshot information
SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function - Retrieve
table reorganization snapshot information .
SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function - Retrieve
table space logical data group snapshot
information .

SNAPTBSP_PART admrmstratlve view and
SNAP_GET_TBSP_PART _V91 table function -
Retrieve tablespace_nodeinfo logical data group
snapshot information .

SNAPTBSP_QUIESCER adrmnrstratlve view and
SNAP_GET_TBSP_QUIESCER table function -

Retrieve quiescer table space snapshot information .

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function -
Retrieve range snapshot information

SNAPUTIL administrative view and
SNAP_GET_UTIL table function - Retrieve
utility_info logical data group snapshot
information .

SNAPUTIL_ PROGRESS admlnlstratrve view and
SNAP_GET_UTIL_PROGRESS table function -
Retrieve progress logical data group snapshot
information . .
SNAP_WRITE_FILE procedure .
TBSP_UTILIZATION administrative view -
Retrieve table space configuration and utilization
information . .
TOP_DYNAMIC SQL adrmnlstratlve view -
Retrieve information on the top dynamic SQL
statements

. 801

. 807

. 810

. 814

. 818

. 821

. 826

. 832

837

. 841

. 845

. 849
. 852

. 853

. 856

Chapter 16. SQL procedures routines 859

ALTER_ROUTINE_PACKAGE procedure .
GET_ROUTINE_OPTS .
GET_ROUTINE_SAR.

PUT_ROUTINE_SAR.
REBIND_ROUTINE_PACKAGE procedure - reb1nd
a package .o e
SET_ROUTINE_ OPTS

Chapter 17. Stepwise redistribute
routines.

Contents

. 859
. 860
. 860

. 861

. 862
. 864

. 867

vii

ANALYZE_LOG_SPACE procedure - Retrieve log

space analysis information 867
GENERATE_DISTFILE procedure - Generate a data
distribution file. 869
GET_SWRD_SETTINGS procedure Retrleve
redistribute information 870
SET_SWRD_SETTINGS procedure Create or

change redistribute registry. 872
STEPWISE_REDISTRIBUTE_DBPG procedure -
Redistribute part of database partition group. . . 874

Chapter 18. Storage management tool
routines. 877

CAPTURE STORAGEMGMT INFO procedure -
Retrieve storage-related information for a given

root object . . . 877
CREATE STORAGEMGMT TABLES procedure -
Create storage management tables 879
DROP_STORAGEMGMT_TABLES procedure -

Drop all storage management tables. 880

Chapter 19. Text Search routines . . . 881
SYSTS_ADMIN_CMD stored procedure - Run text

search administration commands. 881
SYSTS_ALTER procedure - Change the update
characteristics of an index 882
SYSTS_CLEAR_COMMANDLOCKS procedure -
Remove command locks for text search indexes . . 887
SYSTS_CLEAR_EVENTS procedure - Delete

indexing events from an index's event table . . . 889
SYSTS_CREATE procedure - Create a text search

index on a column 891
SYSTS_DISABLE procedure Dlsable current

database for text search 898

SYSTS_DROP procedure - Drop a text search 1ndex 900
SYSTS_ENABLE procedure - Enable current

database for text search902
SYSTS_UPDATE procedure Update the text
search index. L. ... 904

Chapter 20. Workload Management
routines. 907
WLM_CANCEL ACTIVITY Cancel an act1V1ty 907
WLM_CAPTURE_ACTIVITY_IN_PROGRESS -

Collect activity information for activities event

monitor908
WLM_COLLECT STATS Collect and reset

workload management statistics 910
WLM_GET_CONN_ENV - get settings for act1v1ty

data collection for a connection . . . 911
WLM_GET_QUEUE_STATS table functlon Return
threshold queue statistics . . . 912
WLM_GET_SERVICE_CLASS AGENTS V97 table
function - List agents running in a service class . . 916

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES_V97 - List workload occurrences 924

WLM_GET_SERVICE_SUBCLASS_STATS_V97

table function - Return statistics of service

subclasses928

viili Administrative Routines and Views

WLM_GET_SERVICE_SUPERCLASS_STATS -

Return statistics of service superclasses. . . . 935
WLM_GET_WORK_ACTION_SET_STATS - Return
work action set statistics.937
WLM_GET_WORKLOAD OCCURRENCE
_ACTIVITIES_V97 - Return a list of activities. . . 939
WLM_GET_WORKLOAD_STATS_V97 table

function - Return workload statistics . . . 944
WLM_SET_CLIENT_INFO procedure - Set chent
information 947

WLM_SET_CONN ENV Enable collectlon of
activity data and measurement of section actuals . 949

Chapter 21. Miscellaneous routines

and views 953
ADMIN_COPY_ SCHEMA procedure Copy a

specific schema and its objects. 953
ADMIN_DROP_SCHEMA procedure - Drop a

specific schema and its objects. 957
ADMIN_MOVE_TABLE procedure - Move an

online table 959
ADMIN_MOVE_TABLE UTIL procedure Modlfy

the online move table procedure 975
ALTOB]978
APPLICATION_ID980
COMPILATION_ENYV table functlon Retrleve
compilation environment elements 981
CONTACTGROUPS administrative view - Retrreve

the list of contact groups 983
CONTACTS administrative view - Retrleve hst of
contacts 9%4
DB_HISTORY adrmnrstratlve view - Retrleve

history file information 985
DBPATHS administrative view - Retrleve database
pathso 99
GET_DBSIZE_ INFO .o ... 9%
NOTIFICATIONLIST admlnlstratlve view -

Retrieve contact list for health notification. . . . 996
PD_GET_DIAG_HIST - Return records from a

given facility 997

PDLOGMSGS LAST24HOURS admlnlstratlve
view and PD_GET_LOG_MSGS table function —

Retrieve problem determination messages . . . 1004
REORGCHK_IX_STATS procedure — Retrieve

index statistics for reorganization evaluation . . 1011
REORGCHK_TB_STATS procedure — Retrieve

table statistics for reorganization evaluation. . . 1013
SQLERRM scalar functions - Retrieves error

message information1015
SYSINSTALLOBJECTS1017

Chapter 22. Deprecated SQL
administrative routines and their
replacement routines or views . . . 1019
ADMIN_GET_TAB_INFO table function - Retrieve

size and state information for tables 1022
ADMINTABCOMPRESSINFO view and

ADMIN_GET_TAB_COMPRESS_INFO 1029
GET_DB_CONFIG1034
GET_DBM_CONFIG103

Health snapshot routines .
HEALTH_CONT_HI

HEALTH_CONT_HI_HIS .

HEALTH_CONT_INFO
HEALTH_DB_HI.
HEALTH_DB_HI_HIS .
HEALTH_DB_HIC .
HEALTH_DB_HIC_HIS
HEALTH_DB_INFO.
HEALTH_DBM_HI .
HEALTH_DBM_HI_HIS
HEALTH_DBM_INFO .

HEALTH_GET_ALERT_ACTION_ CFG
HEALTH_GET_ALERT_CFG .
HEALTH_GET_IND_DEFINITION .

HEALTH_HI_REC
HEALTH_TBS_HI
HEALTH_TBS_HI_HIS .
HEALTH_TBS_INFO

SNAP_GET_APPL table function — Retrleve appl
logical data group snapshot information .
SNAP_GET_APPL_INFO table function — Retrleve
appl_info logical data group snapshot information
SNAP_GET_BP table function — Retrieve
bufferpool logical group snapshot information .

SNAP_GET_CONTAINER.
SNAP_GET_DB .

SNAP_GET_DBM table functlon Retrleve the
dbm logical grouping snapshot information .
SNAP_GET_DB_V91 table function - Retrieve
snapshot information from the dbase logical

group

SNAPDB admlmstratlve view and
SNAP_GET_DB_V95 table function - Retrieve
snapshot information from the dbase logical

group.

SNAP GET DYN SQL V91 table functlon -
Retrieve dynsql logical group snapshot

information.
SNAP_GET_DYN SQL

SNAPLOCK administrative view and
SNAP_GET_LOCK table function — Retrieve lock
logical data group snapshot information .
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function — Retrieve
lockwait logical data group snapshot information .
. 1144
. 1145
. 1146
. 1149
. 1152
. 1152
. 1157
. 1159
. 1162

SNAP_GET_STO_PATHS .
SNAP_GET_TAB .
SNAP_GET_TBSP
SNAP_GET_TBSP_PART
SNAPSHOT_AGENT
SNAPSHOT_APPL .
SNAPSHOT_APPL_INFO .
SNAPSHOT_BP . .
SNAPSHOT_CONTAINER

. 1036
. 1036
. 1037
. 1039
. 1041
. 1044
. 1048
. 1050
. 1052
. 1054
. 1055
. 1058
. 1059
. 1062
. 1065
. 1067
. 1069
. 1071

. 1075

. 1077

1084

. 1090
. 1093
. 1095
. 1102

. 1105

. 1115

. 1127
. 1130

. 1132

1138

SNAPSHOT_DATABASE . . 1163
SNAPSHOT_DBM . 1168
SNAPSHOT_DYN_SQL . 1170
SNAPSHOT_FCM . . 1172
SNAPSHOT_FCMNODE . . 1173
SNAPSHOT_FILEW . . 1174
SNAPSHOT_LOCK . . 1174
SNAPSHOT_LOCKWAIT . . 1176
SNAPSHOT_QUIESCERS . . 1177
SNAPSHOT_RANGES . . 1178
SNAPSHOT_STATEMENT . 1179
SNAPSHOT_SUBSECT . . 1181
SNAPSHOT_SWITCHES . 1183
SNAPSHOT_TABLE. . 1184
SNAPSHOT_TBREORG . 1185
SNAPSHOT_TBS. . 1187
SNAPSHOT_TBS_CFG . . 1189
SQLCACHE_SNAPSHOT . . 1191
SYSINSTALLROUTINES . 1192
WLM_GET_ACTIVITY_ DETAILS Return

detailed information about a specific activity . . 1192
WLM_GET_SERVICE_CLASS_AGENTS - List

agents running in a service class . 1199

WLM_GET_SERVICE_CLASS WORKLOAD
_OCCURRENCES - List of workload occurrences . 1205
WLM_GET_SERVICE_SUBCLASS_STATS - return

statistics of service subclasses

. 1209

WLM_GET_WORKLOAD OCCURRENCE

_ACTIVITIES - Return a list of activities .
WLM_GET_WORKLOAD_STATS - return

workload statistics

. 1215

. 1220

Appendix A. Overview of the DB2

technical information

. 1223

DB2 technical library in hardcopy or PDF format 1223

Ordering printed DB2 books . . . 1226
Displaying SQL state help from the command hne
processor . . 1227
Accessing different versions of the DBZ

Information Center . . 1227
Displaying topics in your preferred language in

the DB2 Information Center . . 1227
Updating the DB2 Information Center 1nsta11ed on

your computer or intranet server . 1228
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1229
DB2 tutorials . . . 1231
DB2 troubleshooting mformat1on . 1231
Terms and Conditions . . 1232
Appendix B. Notices . . 1233
Index . 1237

Contents 1X

X Administrative Routines and Views

Chapter 1. System-defined routines and views

The system-defined routines and views provide a primary, easy-to-use
programmatic interface to administer and use DB2® through SQL. They encompass
a collection of built-in views, table functions, procedures, and scalar functions for
performing a variety of DB2 tasks. For example, system-defined routines are
available for reorganizing a table, capturing and retrieving monitor data, or
retrieving the application ID of the current connection.

These routines and views can be invoked from an SQL-based application, a DB2
command line, or a command script.

Best practices for calling system-defined routines and views in

applications

To ensure your successful use of the system-defined routines and views, certain
coding practices are recommended. These practices are especially important
because at times the routines might change, as can happen from release to release
as enhancements are made.

When you issue a query to retrieve information using a system-defined routine or
view, do not use a statement of the form SELECT « For example, do not issue
the following query:

SELECT * FROM TABLE(MON_GET_UNIT_OF _WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

Instead, name the result columns in the SELECT statement. This gives the
application control over the number of result columns and the sequence in which
they are returned. For example:
SELECT application_handle,

uow_id,

total_cpu_time,

app_rqsts_completed_total,

rgsts_completed_total
FROM TABLE(MON_GET_UNIT_OF WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

This prevents problems when the sequence and number of columns in the routines
changes. It is possible the number of result columns that a routine returns might
increase, and if, for example, you provide only five host variables when the routine
returns six result columns, your application will break.

In addition, the type and size of output parameters or result columns of routines
might change, for example a column might change from VARCHAR(8) to
VARCHAR(128), or an INTEGER column might become a BIGINT column. If a
variable you use is too small, the data you receive from the routine could be
truncated.

To protect your application from such changes, for C applications, you can describe
a prepared statement in order to determine which result columns are being
returned and what are their types and sizes. For example, the following code
snippet describes the query SELECT application_handle, uow_id,total_cpu_time
FROM TABLE(MON_GET_UNIT_OF WORK(NULL,-1)) AS t ORDER BY total_cpu_time DESC:

© Copyright IBM Corp. 2006, 2010 1

strcpy(strStmt, "SELECT application_handle, uow_id,total_cpu_time
FROM TABLE(MON_GET UNIT_OF WORK(NULL,-1))
AS t ORDER BY total cpu_time DESC");

EXEC SQL PREPARE stmt FROM :strStmt;

EXEC SQL DESCRIBE stmt into :*pSqlda;

See the RowDatamemoryAlloc function in samples/c/tbread.sqc for more details
regarding how to use the information returned in the SQLDA.

For Java" and .Net applications, if data type and size is an issue, you can use
metadata to determine which result columns are being returned and what are their
types and sizes. For example:

ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsms = rs.getMetaData();

See the execPreparedQueryWithUnknownOutputColumn() method in
samples/java/jdbc/TbRead. java for details regarding how to use the metadata of
the result set.

Authorization for administrative views

For all administrative views in the SYSIBMADM schema, you need SELECT
privilege on the view. This can be validated with the following query to check that
your authorization ID, or a group or a role to which you belong, has SELECT
privilege (that is, it meets the search criteria and is listed in the GRANTEE
column):
SELECT GRANTEE, GRANTEETYPE

FROM SYSCAT.TABAUTH

WHERE TABSCHEMA = 'SYSIBMADM' AND TABNAME = '<view_name>' AND
SELECTAUTH <> 'N'

where <view_name> is the name of the administrative view.

With the exception of SYSIBMADM.AUTHORIZATIONIDS,
SYSIBMADM.OBJECTOWNERS, and SYSIBMADM.PRIVILEGES, you also need
EXECUTE privilege on the underlying administrative table function. The
underlying administrative table function is listed in the authorization section of the
administrative view. This can be validated with the following query:
SELECT GRANTEE, GRANTEETYPE

FROM SYSCAT.ROUTINEAUTH

WHERE SCHEMA = 'SYSPROC' AND SPECIFICNAME = '<routine_name>' AND
EXECUTEAUTH <> 'N'

where <routine_name> is the name of the underlying administrative table function
as listed in the documentation.

Some administrative views require additional authorities beyond SELECT on the
view and EXECUTE on the underlying administrative table function. Any
additional authority required is documented in the reference information
describing the view.

2 Administrative Routines and Views

Administrative views versus table functions

DB2 Version 9.5 introduced administrative views that provide an easy-to-use
application programming interface to DB2 administrative functions through SQL.

The administrative views fall into three categories:
* Views based on catalog views.
* Views based on table functions with no input parameters.

* Views based on table functions with one or more input parameters.

The administrative views are the preferred and only documented interfaces for the
views based on catalog views and the views based on table functions with no
input parameters because the table functions do not provide any additional
information or performance benefits.

For administrative views based on table functions with one or more input
parameters, both the administrative view and the table function can be used, each
achieving a different goal:

¢ The ADMINTABINFO administrative view and the
ADMIN_GET_TAB_INFO_V95 table function: The administrative view retrieves
information for all tables in the database. This can have a significant
performance impact for large databases. The performance impact can be reduced
by using the table function and specifying a schema name, table name, or both
as input.

¢ The PDLOGMSGS_LAST24HOURS administrative view and the
PD_GET_LOG_MSGS table function: The administrative view, which retrieves
notification log messages, provides quick access to data from the previous 24
hours, whereas the table function allows you to retrieve data from a specified
period of time.

 All snapshot monitor administrative views and table functions (SNAP*
administrative views, SNAP_GET_* table functions): The snapshot monitor
administrative views provide access to data from each database partition. The
table functions provide the option to choose between data from a single
database partition or data aggregated across all database partitions.

Applications that use the table functions instead of the views might need to be
changed because the table functions might change from release to release to enable
new information to be returned. The new table function will have the same base
name as the original function and will be suffixed with '_Vxx' for the version of
the product in which it is added (for example, _V97). The administrative views
will always be based on the most current version of the table functions, and
therefore allow for more application portability. As the columns may vary from
one release to the next, it is recommended that specific columns be selected from
the administrative views, or that the result set be described if a SELECT *
statement is used by an application.

Chapter 1. System-defined routines and views 3

4 Administrative Routines and Views

Chapter 2. Supported system-defined SQL routines and views

The following tables summarize information about the supported administrative
SQL routines and views.

Activity monitor administrative SQL routines: |Table 1

ADMIN_CMD stored procedure and associated administrative SQL routines:
[Table 2 on page 6|

Administrative task scheduler routines and views: [Table 3 on page 7]

Audit routines and procedureszable 4 on page 7|

Automatic maintenance administrative SQL routines and views{Table 5 on page 7|

Common SQL API stored procedures: [Table 6 on page 7]

Configuration administrative SQL routines and views: [Table 7 on page §|

Environment administrative views: [Table 8 on page §|

Health snapshot administrative SQL routines: [Table 9 on page §|

Monitor administrative SQL routines: [Table 10 on page 10|

MQSeries® administrative SQL routines: [Table 11 on page 11|

Security administrative SQL routines and views: [Table 12 on page 12|

Snapshot administrative SQL routines and views: [Table 13 on page 12|

SQL procedures administrative SQL routines: [Table 14 on page 15|

Stepwise redistribute administrative SQL routines: [Table 15 on page 16|

Storage management tool administrative SQL routines: [Table 16 on page 16|

Text search administrative SQL routines: [Table 17 on page 16|

Workload Management routines: [Table 18 on page 17]

Miscellaneous administrative SQL routines and views: [Table 19 on page 18|

Table 1. Activity monitor administrative SQL routines

Routine name Schema Description
SYSPROC This table function returns recommendations
AM_BASE_RPT_RECOMS table function for activity reports used by the activity
monitor.
SYSPROC This table function returns activity reports

AM_BASE_RPTS table function

used by the activity monitor.

AM_GET_RPT procedure

AM_DROP_TASK procedure SYSPROC This procedure deletes a monitoring task.
AM_GET_LOCK_CHN_TB procedure SYSPROC This Procedure returns application lock chain
data in tabular format.
SYSPROC This procedure displays lock chains for a
AM_GET_LOCK_CHNS procedure specified application using a formatted
string.
AM_GET_LOCK_RPT procedure SYSPROC This .pro.cedure displays lock details for an
application.
SYSPROC This procedure displays activity monitor

data for a report.

AM_SAVE_TASK procedure

SYSPROC This procedure creates or modifies a
monitoring task.

© Copyright IBM Corp. 2006, 2010 5

Table 2. ADMIN_CMD stored procedure and associated administrative SQL routines

Routine name

Schema

Description

ADMIN_CMD procedure

SYSPROC

This procedure allows the administrator to
execute administrative commands
(including DB2 command line processor
(CLP) commands) by running
ADMIN_CMD through a CALL statement.

ADMIN_EST_INLINE_LENGTH function

SYSIBM

This function returns an estimate of the
inline length that is required to inline the
data stored in an XML column, BLOB
column, CLOB column, or DBCLOB
column.

ADMIN_GET_DBP_MEM_USAGE table
function

SYSPROC

This table function gets the total memory
consumption for a given instance.

ADMIN_GET_INDEX_COMPRESS_INFO

SYSPROC

This table function returns the potential
index compression savings for
uncompressed indexes or reports the index
compression statistics from the catalogs.

ADMIN_GET_INDEX_INFO table function

SYSPROC

This table function returns index
information not available in the catalog
views.

ADMIN_GET_MSGS table function

SYSPROC

This table function is used to retrieve
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_IS_INLINED function

SYSIBM

This function retrieves state information
about inline data for an XML column,
BLOB column, CLOB column, or DBCLOB
column.

ADMIN_REMOVE_MSGS procedure

SYSPROC

This procedure is used to clean up
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_REVALIDATE_DB_OBJECTS
procedure

SYSPROC

This procedure revalidates invalid database
objects.

ADMINTABCOMPRESSINFO view and
ADMIN_GET_TAB_COMPRESS_INFO_V97
table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function return
compression information for tables,
materialized query tables (MQT) and
hierarchy tables.

ADMINTABINFO and
ADMIN_GET_TAB_INFO_V97

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function return size
and state information for tables,
materialized query tables (MQT) and
hierarchy tables.

ADMINTEMPCOLUMNS view and
ADMIN_GET_TEMP_COLUMNS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve
column attribute information for created
temporary tables and declared temporary
tables

ADMINTEMPTABLES view and
ADMIN_GET_TEMP_TABLES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve table
attribute and instantiation time information
for instances of created temporary tables
and declared temporary tables.

6 Administrative Routines and Views

Table 3. Administrative task scheduler routines and views

Routine or view name Schema Description
ADMIN_TASK_ADD SYSPROC g:ks procedure schedules an administrative
SYSTOOLS This administrative view retrieves
ADMIN_TASK_LIST information about each task defined in the
scheduler.
ADMIN_TASK_REMOVE SYSPROC This procedure removes scheduled tasks or
task status records.
SYSTOOLS This administrative view retrieves
ADMIN_TASK_STATUS information about the status of each task.
ADMIN_TASK_UPDATE SYSPROC This procedure updates an existing task
Table 4. Audit routines and procedures
Routine or view name Schema Description
AUDIT_ARCHIVE procedure and table SYSPROC This procedure and table function archives
function the current audit log.
AUDIT_DELIM_EXTRACT procedure SYSPROC This procedure extracts data from the
binary archived logs and loads it into
delimited files.
AUDIT_LIST_LOGS table function SYSPROC This table function returns a list of the

archived audit logs at the specified path,
for the current database.

Table 5. Automatic Maintenance administrative SQL routines and views

Routine or view name Schema Description
AUTOMAINT_GET_POLICY procedure SYSPROC This procedure gets the current automatic
maintenance settings for the database.
AUTOMAINT_GET_POLICYFILE procedure SYSPROC This procedure gets the current automatic
maintenance settings for the database.
AUTOMAINT_SET_POLICY procedure SYSPROC This procedure sets the automatic
maintenance policy settings for the
currently connected database.
AUTOMAINT_SET_POLICYFILE procedure SYSPROC This procedure sets the automatic
maintenance settings for the currently
connected database.
Table 6. Common SQL API stored procedures
Routine or view name Schema Description
SYSPROC This procedure cancels a specified activity.
CANCEL_WORK procedure If no unique activity ID is spec1f1ed', cancels
all activity for a connected application, and
forces the application off of the system.
SYSPROC This procedure retrieves data server

GET_CONFIG procedure

configuration data, including nodes.cfg file
data, database manager configuration data,
database configuration data, and registry
settings from all database partitions.

Chapter 2. Supported routines and views

7

Table 6. Common SQL API stored procedures (continued)

Routine or view name

Schema

Description

GET_MESSAGE procedure

SYSPROC

This procedure retrieves the short message
text, long message text, and SQLSTATE for
an SQLCODE.

GET_SYSTEM_INFO procedure

SYSPROC

This procedure retrieves information about
the data server, including information about
the system, the current instance, installed
DB2 database products, environment
variables, available CPUs, and other system
information.

SET_CONFIG procedure

SYSPROC

This procedure updates the configuration
parameters retrieved by the GET_CONFIG
procedure.

Table 7. Configuration administrative SQL routines and views

Routine or view name Schema Description
. SYSPROC This table function returns the contents of
DB_PARTITIONS table function the db2nodes.cfg file in table form.
DBCEG administrative view SYSIBMADM Thls.admu.ustr.atlve V1e.w returns database
configuration information.
DBMCFG administrative view SYSIBMADM This admlmst.ratlve view returng database
manager configuration information.
SYSIBMADM This administrative view returns the DB2
REG_VARIABLES administrative view registry settings from all database
partitions.
Table 8. Environment administrative views
View name Schema Description
SYSPROC This administrative view returns
ENV_FEATURE_INFO administrative view information about all available features for
which a license is required.
ENV_INST_INFO administrative view SYSIBMADM Thls adrr}lnlstratlve view returfls
information about the current instance.
SYSIBMADM This administrative view returns
ENV_PROD_INFO administrative view information about installed DB2 database
products.
ENV_SYS_INFO administrative view SYSIBMADM Thls admlnlstratlve view returns
information about the system.
SYSIBMADM This administrative view returns operating

ENV_SYS_RESOURCES administrative view

system, CPU, memory and other
information related to the system

Table 9. Health snapshot administrative SQL routines

Routine name

Schema

Description

HEALTH_CONT_HI table function

SYSPROC

This table function returns a table with
health indicator information for containers
from a health snapshot of a database.

8 Administrative Routines and Views

Table 9. Health snapshot administrative SQL routines (continued)

Routine name

Schema

Description

HEALTH_CONT_HI_HIS table function

SYSPROC

This table function returns a table with
health indicator history information for
containers from a health snapshot of a
database.

HEALTH_CONT_INFO table function

SYSPROC

This table function returns a table with
rolled-up alert state information for
containers from a health snapshot of a
database.

HEALTH_DB_HI table function

SYSPROC

This table function returns a table with
health indicator information from a health
snapshot of a database.

HEALTH_DB_HI_HIS table function

SYSPROC

This table function returns a table with
health indicator history information from a
health snapshot of a database.

HEALTH_DB_HIC table function

SYSPROC

This table function returns collection health
indicator information from a health
snapshot of a database.

HEALTH_DB_HIC_HIS table function

SYSPROC

This table function returns collection health
indicator history information from a health
snapshot of a database.

HEALTH_DB_INFO table function

SYSPROC

This table function returns a table with
rolled-up alert state information from a
health snapshot of one or all databases.

HEALTH_DBM_HI table function

SYSPROC

This table function returns a table with
health indicator information from a health
snapshot of the DB2 database manager.

HEALTH_DBM_HI_HIS table function

SYSPROC

This table function returns a table with
health indicator history information from a
health snapshot of the DB2 database
manager.

HEALTH_DBM_INFO table function

SYSPROC

This table function returns a table with
rolled-up alert state information from a
health snapshot of the DB2 database
manager.

HEALTH_GET_ALERT_ACTION_CFG table
function

SYSPROC

This table function returns health alert
action configuration settings for objects of
various types (dbm, database, table space,
and table space containers) and for various
configuration levels (install default,
instance, global, and object).

HEALTH_GET_ALERT_CFG table function

SYSPROC

This table function returns health alert
configuration settings for objects of various
types (dbm, database, table space, table
space containers) and for various
configuration levels (install default, global,
and object).

HEALTH_GET_IND_DEFINITION table
function

SYSPROC

This table function returns the health
indicator definition.

HEALTH_HI_REC procedure

SYSPROC

This procedure retrieves a set of
recommendations that address a health
indicator in alert state on a particular DB2
object.

Chapter 2. Supported routines and views

9

Table 9. Health snapshot administrative SQL routines (continued)

Routine name

Schema

Description

HEALTH_TBS_HI table function

SYSPROC

This table function returns a table with
health indicator information for table spaces
from a health snapshot of a database.

HEALTH_TBS_HI_HIS table function

SYSPROC

This table function returns a table with

health indicator history information for

table spaces from a health snapshot of a
database.

HEALTH_TBS_INFO table function

SYSPROC

This table function returns a table with
rolled-up alert state information for table
spaces from a health snapshot of a
database.

Table 10. Monitor SQL routines

Routine name

Schema

Description

EVMON_FORMAT_UE_TO_TABLES procedure

SYSPROC

This procedure retrieves data stored in
an unformatted event table and
moves the XML document into a set
of relational tables.

EVMON_FORMAT_UE_TO_TABLES table function

SYSPROC

This table function extracts binary
events from an unformatted event
table and formats them into an XML
document.

MON_GET_ACTIVITY_DETAILS

SYSPROC

This table function returns details
about an activity, including general
activity information and a set of
metrics for the activity.

MON_GET_BUFFERPOOL table function

SYSPROC

This table function returns monitor
metrics for one or more buffer pools.

MON_GET_CONNECTION table function

SYSPROC

This table function returns metrics for
one or more connections.

MON_GET_CONNECTION_DETAILS table function

SYSPROC

This table function returns detailed
metrics for one or more connections.

MON_GET_CONTAINER table function

SYSPROC

This table function returns monitor
metrics for one or more table space
containers.

MON_GET_EXTENT_MOVEMENT_STATUS table
function

SYSPROC

This table function returns the status
of the extent movement operation.

MON_GET_INDEX table function

SYSPROC

This table function returns metrics for
one or more indexes.

MON_GET_PKG_CACHE_STMT table function

SYSPROC

This table function returns a
point-in-time view of both static and
dynamic SQL statements in the
database package cache.

MON_GET_SERVICE_SUBCLASS table function

SYSPROC

This table function returns metrics for
one or more service subclasses.

MON_GET_SERVICE_SUBCLASS_DETAILS table
function

SYSPROC

This table function returns detailed
metrics for one or more service
subclasses.

MON_GET_TABLE table function

SYSPROC

This table function returns monitor
metrics for one or more tables.

10 Administrative Routines and Views

Table 10. Monitor SQL routines (continued)

Routine name Schema Description

MON_GET TABLESPACE table function SYSPROC This 'table function returns monitor
metrics for one or more table spaces.

MON_GET UNIT_OF WORK table function SYSPROC This table funct%on returns metrics for
one or more units of work.

MON_GET UNIT _OF WORK_DETAILS table function SYSPROC This .table function returns .detaﬂed
metrics for one or more units of work.

MON_GET WORKLOAD table function SYSPROC This table function returns metrics for
one or more workloads.

MON_GET WORKLOAD. DETAILS table function SYSPROC This 'table function returns detailed
metrics for one or more workloads.

Table 11. MQSeries administrative SQL routines

Routine name Schema Description

MQPUBLISH scalar function DB2MQ, DB2MQIC

This scalar function publishes data to an
MQSeries location.

MQREAD scalar function DB2MQ, DB2MQIC

This scalar function returns a message from
an MQSeries location.

DB2MQ, DB2MQ1C
MQREADALL table function

This table function returns a table with
messages and message metadata from an
MQSeries location.

DB2MQ This table function returns a table
MQREADALLCLOB table function containing messages and message metadata
from a specified MQSeries location.
DB2MQ This scalar function returns a message from

MQREADCLOB scalar function

a specified MQSeries location.

DB2MQ, DB2MQ1C
MQRECEIVE scalar function

This scalar function returns a message from
an MQSeries location and removes the
message from the associated queue.

DB2MQ, DB2MQ1C

MQRECEIVEALL table function

This table function returns a table
containing the messages and message
metadata from an MQSeries location and
removes the messages from the associated
queue.

DB2MQ This table function returns a table
MQRECEIVEALLCLOB table function containing messages and message metadata
from a specified MQSeries location.
DB2MQ This scalar function returns a message from

MQRECEIVECLOB scalar function

a specified MQSeries location.

MQSEND scalar function DB2MQ, DB2MQIC

This scalar function sends data to an
MQSeries location.

MQSUBSCRIBE scalar function DB2MQ, DB2ZMQIC

This scalar function subscribes to MQSeries
messages published on a specific topic.

DB2MQ, DB2MQ1C
MQUNSUBSCRIBE scalar function

This scalar function unsubscribes from
MQSeries messages published on a specific
topic.

Chapter 2. Supported routines and views 11

Table 12. Security administrative SQL routines and views:

Routine or view name

Schema

Description

AUTH_LIST_AUTHORITIES_FOR_AUTHID
table function

SYSPROC

This table function returns all authorities
held by the authorization ID, either found
in the database configuration file or granted
to an authorization ID directly or indirectly
through a group or a role.

AUTH_LIST_GROUPS_FOR_AUTHID table
function

SYSPROC

This table function returns the list of groups
of which the given authorization ID is a
member.

AUTH_LIST_ROLES_FOR_AUTHID function

SYSPROC

This function returns the list of roles in
which the given authorization ID is a
member.

AUTHORIZATIONIDS administrative view

SYSIBMADM

This administrative view contains a list of
authorization IDs that have been granted
privileges or authorities, along with their
types, for the currently connected database.

OBJECTOWNERS administrative view

SYSIBMADM

This administrative view contains all object
ownership information for the currently
connected database.

PRIVILEGES administrative view

SYSIBMADM

This administrative view contains all
explicit privileges for the currently
connected database.

Table 13. Snapshot administrative SQL routines and views

Routine or view name

Schema

Description

APPL_PERFORMANCE administrative view

SYSIBMADM

This administrative view displays
information about the rate of rows selected
versus rows read per application.

APPLICATIONS administrative view

SYSIBMADM

This administrative view returns
information on connected database
applications.

BP_HITRATIO administrative view

SYSIBMADM

This administrative view returns bufferpool
hit ratios, including total, data, and index,
in the database.

BP_READ_IO administrative view

SYSIBMADM

This administrative view returns bufferpool
read performance information.

BP_WRITE_IO administrative view

SYSIBMADM

This administrative view returns bufferpool
write performance information per
bufferpool.

CONTAINER_UTILIZATION administrative
view

SYSIBMADM

This administrative view returns
information about table space containers
and utilization rates.

LOCKS_HELD administrative view

SYSIBMADM

This administrative view returns
information on current locks held.

LOCKWAITS administrative view

SYSIBMADM

This administrative view returns
information on locks that are waiting to be
granted.

LOG_UTILIZATION administrative view

SYSIBMADM

This administrative view returns
information about log utilization for the
currently connected database.

12 Administrative Routines and Views

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description
SYSIBMADM This administrative view returns the longest
LONG_RUNNING_SQL administrative view running SQL statements in the currently
connected database.
SYSIBMADM This administrative view returns a list of
QUERY_PREP_COST administrative view statements with information about the time
required to prepare the statement.
SYSPROC This procedure writes system snapshot data
SNAP_WRITE_FILE procedure to a file in the tmp subdirectory of the
instance directory.
SYSIBMADM This administrative view and table function

SNAPAGENT administrative view and
SNAP_GET_AGENT table function

(administrative view),
SYSPROC (table
function)

return information about agents from an
application snapshot, in particular, the
agent logical data group.

SNAPAGENT_MEMORY_POOL administrative

SYSIBMADM

This administrative view and table function

view and (administrative view), | return information about memory usage at
SNAP_GET_AGENT_MEMORY_POOL table |SYSPROC (table the agent level.
function function)

SYSIBMADM This administrative view and table function

SNAPAPPL administrative view and
SNAP_GET_APPL_V95 table function

(administrative view),
SYSPROC (table
function)

return information about applications from
an application snapshot, in particular, the
appl logical data group.

SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about applications from
an application snapshot, in particular, the
appl_info logical data group.

SNAPBP administrative view and
SNAP_GET_BP_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool logical data group.

SNAPBP_PART administrative view and
SNAP_GET _BP_PART table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool_nodeinfo logical data group.

SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table space snapshot information
from the tablespace_container logical data

group.

SNAPDB administrative view and
SNAP_GET_DB_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
database (dbase) and database storage
(db_storage_group) logical groupings.

SNAPDB_MEMORY_POOL administrative
view and SNAP_GET_DB_MEMORY_POOL
table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about memory usage at
the database level for UNIX® operating
systems only.

SNAPDBM administrative view and
SNAP_GET_DBM_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return the snapshot monitor DB2 database
manager (dbm) logical grouping
information.

Chapter 2. Supported routines and views 13

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name

Schema

Description

SNAPDBM_MEMORY_POOL administrative

table function

view and SNAP_GET_DBM_MEMORY_POOL

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about memory usage at
the database manager.

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
detail_log logical data group.

SNAPDYN_SQL administrative view and
SNAP_GET_DYN_SQL_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
dynsql logical data group.

SNAPFCM administrative view and
SNAP_GET_FCM table function

SYSIBMADM
(administrative view),

SYSPROC (table

This administrative view and table function
return information about the fast
communication manager (FCM) from a

SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function

function) database manager snapshot, in particular,
the fem logical data group.
SYSIBMADM This administrative view and table function

(administrative view),
SYSPROC (table

return information about the fast
communication manager (FCM) from a

SNAPHADR administrative view and
SNAP_GET_HADR table function

function) database manager snapshot, in particular,
the fcm_node logical data group.
SYSIBMADM This administrative view and table function

(administrative view),
SYSPROC (table
function)

return information about high availability
disaster recovery from a database snapshot,
in particular, the hadr logical data group.

SNAPLOCK administrative view and
SNAP_GET_LOCK table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about locks, in
particular, the lock logical data group.

SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about lock
waits, in particular, the lockwait logical
data group.

SNAPSTMT administrative view and
SNAP_GET_STMT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about statements from
an application snapshot.

SNAPSTORAGE_PATHS administrative view
and SNAP_GET_STORAGE_PATHS table

SYSIBMADM
(administrative view),
SYSPROC (table

This administrative view and table function
return a list of automatic storage paths for
the database including file system

SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function

(administrative view),
SYSPROC (table
function)

function function) information for each storage path,
specifically, from the db_storage_group
logical data group
SYSIBMADM This administrative view and table function

return information about application
subsections, namely the subsection logical
monitor grouping.

SNAPSWITCHES administrative view and
SNAP_GET_SWITCHES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the database
snapshot switch state.

14 Administrative Routines and Views

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name

Schema

Description

SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
logical data group.

SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table reorganization information.

SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
space logical data group.

SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
tablespace_nodeinfo logical data group.

SNAPTBSP_QUIESCER administrative view
and SNAP_GET_TBSP_QUIESCER table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about quiescers from a
table space snapshot.

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information from a range snapshot.

SNAPUTIL administrative view and
SNAP_GET_UTIL table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information on utilities
from the utility_info logical data group.

SNAPUTIL_PROGRESS administrative view
and SNAP_GET_UTIL_PROGRESS table
function

SYSIBMADM
(administrative view),
SYSPROC (table

This administrative view and table function
return information about utility progress, in
particular, the progress logical data group.

function)
TBSP_UTILIZATION administrative view SYSIBMADM Th1s.admlp1strat1ve \{1.ew .retu.rns table. space
configuration and utilization information.
SYSIBMADM This administrative view returns the top

TOP_DYNAMIC_SQL administrative view

dynamic SQL statements sortable by
number of executions, average execution
time, number of sorts, or sorts per
statement.

Table 14. SQL procedures administrative SQL routines

Routine name Schema Description
SYSPROC This procedure alters values for the package
ALTER_ROUTINE_PACKAGE procedure associated with a compiled SQL routine or
a compiled trigger, without the need for
rebinding.
SYSPROC This scalar function returns a character

GET_ROUTINE_OPTS scalar function

string value of the options that are to be
used for the creation of SQL procedures in
the current session.

Chapter 2. Supported routines and views 15

Table 14. SQL procedures administrative SQL routines (continued)

SET_ROUTINE_OPTS procedure

Routine name Schema Description
SYSFUN This procedure returns the information
GET_ROUTINE_SAR procedure necessary to install an 1dent1c.al routine on
another database server running at least at
the same level and operating system.
SYSFUN This procedure passes the information
PUT_ROUTINE_SAR procedure necessary to create and define an SQL
routine at the database server.
REBIND_ROUTINE_PACKAGE procedure SYSPROC This }.)rocedu.re rebinds the package
associated with an SQL procedure.
SYSPROC This procedure sets the options that are to

be used for the creation of SQL procedures
in the current session.

Table 15. Stepwise redistribute administrative SQL routines

STEPWISE_REDISTRIBUTE_DBPG procedure

Routine name Schema Description

ANALYZE_LOG_SPACE procedure SYSPROC Thls pros:edure returns log space analysis
information.

GENERATE_DISTFILE procedure SYSPROC Th1s 'progedure generates a data
distribution file.

GET_SWRD_SETTINGS procedure SYSPROC :Thls progedure returns redistribute
information.

SET_SWRD_SETTINGS procedure SYSPROC Th1§ pl.’ocedure creates or changes the
redistribute registry.

SYSPROC This procedure redistributes part of

database partition group.

Table 16. Storage management tool administrative SQL routines

DROP_STORAGEMGMT_TABLES procedure

Routine name Schema Description

CAPTURE_STORAGEMGMT _INFO procedure |>1>F ROC s procedure raetg‘iffr; s:gé?%)’;fiﬁted

CREATE_STORAGEMGMT_TABLES procedure SYSPROC ;l;}ll)ilsegrocedure creates storage management
SYSPROC This procedure drops all storage

management tables.

Table 17. Text search administrative SQL routines

SYSTS_CLEAR_COMMANDLOCKS procedure

Routine name Schema Description
SYSPROC This procedure runs text search
SYSTS_ADMIN_CMD stored procedure administrative commands using the SQL
CALL statement.
SYSTS_ALTER procedure SYSPROC This proc'ed'ure changes the update
characteristics of an index.
SYSPROC This procedure removes all command locks

for a specific text search index or for all
text search indexes in the database.

16 Administrative Routines and Views

Table 17. Text search administrative SQL routines (continued)

Routine name

Schema

Description

SYSTS_CLEAR_EVENTS procedure

SYSPROC

This procedure deletes indexing events
from an index's event table used for
administration.

SYSTS_CREATE procedure

SYSPROC

This procedure creates a text search index
for a text column which allows the column
data to be searched using text search
functions.

SYSTS_DISABLE procedure

SYSPROC

This procedure disables DB2 Text Search for
the current database.

SYSTS_DROP procedure

SYSPROC

This procedure drops an existing text
search index associated with any table
column.

SYSTS_ENABLE procedure

SYSPROC

This procedure must be issued successfully
before text search indexes on columns in
tables within the database can be created.

SYSTS_UPDATE procedure

SYSPROC

This procedure updates the text search
index to reflect the current contents of the
text columns with which the index is
associated.

Table 18. Workload management administrative SQL routines

Routine name Schema Description

WLM_CANCEL_ACTIVITY procedure SYSPROC This procedure cancels the given activity.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS SYSPROC This procedure sends information on the

procedure given activity to the activities event
monitor.

WLM_COLLECT_STATS procedure SYSPROC This procedure sends statistics for service
classes, workloads, work classes and
threshold queues to the statistics event
monitor and resets the in-memory copy of
the statistics.

WLM_GET_QUEUE_STATS table function SYSPROC This table function returns basic statistic
information for one or more threshold
queues.

WLM_GET_SERVICE _CLASS_AGENTS_V97 |SYSPROC This table function returns the list of agents

table function on the given partition that are executing in
the service class given by the
SERVICE_SUPERCLASS_NAME and
SERVICE_SUBCLASS_NAME or on behalf
of the application given by the
APPLICATION_HANDLE.

WLM_GET_SERVICE_CLASS_WORKLOAD SYSPROC This table function returns the list of all

_OCCURRENCES_V97 table function workload occurrences executing in a given
service class on a particular partition.

WLM_GET_SERVICE_SUBCLASS_STATS_V97 |SYSPROC This table function returns basic statistics of

table function one or more service subclasses.

WLM_GET_SERVICE_SUPERCLASS_STATS SYSPROC This table function returns basic statistics of

table function one or more service superclasses.

WLM_GET_WORK_ACTION_SET_STATS table |SYSPROC This table function returns basic statistics

function

for work classes in a work action set.

Chapter 2. Supported routines and views 17

Table 18. Workload management administrative SQL routines (continued)

Routine name Schema Description
WLM_GET_WORKLOAD_OCCURRENCE SYSPROC This table function returns the list of all
_ACTIVITIES_V97 table function activities that were submitted through the
given application on the specified partition
and have not yet completed.
WLM_GET_WORKLOAD_STATS_V97 table SYSPROC This table function returns basic statistics
function for one or more workloads.
WLM_SET_CLIENT_INFO procedure SYSPROC This procedure sets client information

associated with the current connection at
the DB2 database server.

Table 19. Miscellaneous administrative SQL routines and views

Routine or view name

Schema

Description

ADMIN_COPY_SCHEMA procedure

SYSPROC

This procedure is used to copy a specific
schema and all objects contained in it.

ADMIN_DROP_SCHEMA procedure

SYSPROC

This procedure is used to drop a specific
schema and all objects contained in it.

ADMIN_MOVE_TABLE procedure

SYSPROC

This procedure moves data in an active
table into a new table object with the same
name, while the data remains online and
available for access.

ADMIN_MOVE_TABLE_UTIL procedure

SYSPROC

This procedure alters the user definable
values used by the ADMIN_MOVE_TABLE
procedure.

ALTOB] procedure

SYSPROC

This procedure alters an existing table
using the input CREATE TABLE statement
as the target table definition.

APPLICATION_ID scalar function

SYSFUN

This scalar function returns the application
ID of the current connection.

COMPILATION_ENV table function

SYSPROC

This table function returns the elements of
a compilation environment.

CONTACTGROUPS administrative view

SYSIBMADM

This administrative view returns the list of
contact groups.

CONTACTS administrative view

SYSIBMADM

This administrative view returns the list of
contacts defined on the database server.

DB_HISTORY administrative view

SYSIBMADM

This administrative view returns
information from the history file that is
associated with the currently connected
database partition.

DBPATHS administrative view

SYSIBMADM

This administrative view returns the values
for database paths required for tasks such
as split mirror backups.

EXPLAIN_FORMAT_STATS scalar function

SYSPROC

This new scalar function is used to display
formatted statistics information which is
parsed and extracted from explain snapshot
captured for a given query.

EXPLAIN_GET_MSGS table function

The schema is the
same as the Explain
table schema.

This table function queries the
EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA Explain
tables, and returns formatted messages.

18 Administrative Routines and Views

Table 19. Miscellaneous administrative SQL routines and views (continued)

Routine or view name Schema Description
GET_DBSIZE_INFO procedure SYSPROC This proc'edure calcu@ates the database size
and maximum capacity.
SYSIBMADM This administrative view returns the list of
NOTIFICATIONLIST administrative view contacts and contact groups that are
notified about the health of an instance.
SYSPROC The table function returns log records,
PD_GET_DIAG_HIST table function event records and notification records from
a given facility.
SYSIBMADM This administrative view and table function

PDLOGMSGS_LAST24HOURS administrative
view and PD_GET_LOG_MSGS table function

(administrative view),
SYSPROC (table
function)

return problem determination log messages
that were logged in the DB2 notification
log. The information is intended for use by
database and system administrators.

REORGCHK_IX_STATS procedure

SYSPROC

This procedure checks index statistics to
determine whether or not there is a need
for reorganization.

REORGCHK_TB_STATS procedure

SYSPROC

This procedure checks table statistics to
determine whether or not there is a need
for reorganization.

SQLERRM scalar function

SYSPROC

This scalar function has two versions. The
first allows for full flexibility of message
retrieval including using message tokens
and language selection. The second is a
simple interface which takes only an
SQLCODE as an input parameter and
returns the short message in English.

SYSINSTALLOBJECTS procedure

SYSPROC

This procedure creates or drops the
database objects that are required for a
specific tool.

MON_GET_FCM

SYSPROC

This table function returns metrics for the
fast communication manager (FCM).

MON_GET_FCM_CONNECTION_LIST

SYSPROC

This table function returns monitor metrics
for all the fast communication manager
(FCM) connections on the specified
member or members.

19

Chapter 2. Supported routines and views

20 Administrative Routines and Views

Chapter 3. Activity monitor routines

AM_BASE_RPT_RECOMS - Recommendations for activity reports

The AM_BASE_RPT_RECOMS table function returns recommendations for activity
reports used by the activity monitor.

Syntax

»>—AM_BASE_RPT_RECOMS—(—report-id—,—client-locale—) ><

The schema is SYSPROC.

Table function parameters

report-id
An input argument of type INTEGER that specifies a report ID. If the
argument is null, recommendations for all available reports are returned.

client-locale
An input argument of type VARCHAR(33) that specifies a client language
identifier. If the argument is null or an empty string, the default value is
‘En_US' (English). If the message files for the specified locale are not available
on the server, 'En_US' is used.

Authorization
EXECUTE privilege on the AM_BASE_RPT_RECOMS table function.
Examples

Example 1: Request recommendations (in English) for the activity monitor report
with an ID of 1. Assume the default client language identifier 'En_US'".
SELECT =

FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(1, CAST(NULL AS VARCHAR(33))))
AS RECOMS

Example 2: Request recommendations (in French) for the activity monitor report
with an ID of 12.

SELECT =
FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(12, CAST('Fr_FR' AS VARCHAR(33))))
AS RECOMS

Information returned
Table 20. Information returned by the AM_BASE_RPT_RECOMS table function

Column name Data type Description

REPORT_ID INTEGER The report ID.

RECOM_NAME VARCHAR(256) The name or short
description of the
recommendation.

© Copyright IBM Corp. 2006, 2010 21

Table 20. Information returned by the AM_BASE_RPT_RECOMS table function (continued)

Column name Data type Description
RECOM_DESCRIPTION CLOB(32K) The detailed description of
the recommendation.

AM_BASE_RPTS - Activity monitor reports

The AM_BASE_RPTS table function returns activity reports used by the activity
monitor.

Syntax

»>—AM _BASE_RPTS—(—report-id—,—type—,—client-locale—)

v
A

The schema is SYSPROC.

Table function parameters

report-id
An input argument of type INTEGER that specifies a unique report ID. If the
argument is null, reports with any report ID are returned.

type
An input argument of type CHAR(4) that specifies the report type. Valid
values are:

APPL Application

STMT SQL statement

TRAN Transaction

CACH Dynamic SQL statement cache

Values can be specified in uppercase or lowercase characters. If the argument is
null or an empty string, reports of any type are returned.

client-locale
An input argument of type VARCHAR(33) that specifies a client language
identifier. If the argument is null or an empty string, or the message files for
the specified locale are not available on the server, 'En_US' is used.

Authorization

EXECUTE privilege on the AM_BASE_RPTS table function.

Examples

Example 1:

SELECT * FROM TABLE(SYSPROC.AM_BASE_RPTS(CAST(NULL AS INTEGER),
CAST(NULL AS CHAR(4)), CAST(NULL AS VARCHAR(33)))) AS REPORTS

Example 2:

SELECT ID, NAME FROM TABLE(SYSPROC.AM BASE RPTS(

CAST(NULL AS INTEGER), CAST('STMT' AS CHAR(4)), 'En_US'))
AS REPORTS WHERE TYPE = 'STMT'

22 Administrative Routines and Views

Information returned
Table 21. Information returned by the AM_BASE_RPTS table function

Column name Data type Description

ID INTEGER The unique report ID.

TYPE CHAR(4) The report type. Valid values
are: APPL, STMT, TRAN,
CACH.

NAME VARCHAR(256) The name or short
description of the report.

DESCRIPTION VARCHAR(16384) The detailed description of
the report.

SWITCHES VARCHAR(100) The monitor switches
required for this report.

AM_DROP_TASK - Delete a monitoring task

The AM_DROP_TASK procedure deletes a monitoring task. It does not return any
data.

Syntax

v
A

»»—AM_DROP_TASK—(—task-id—)

The schema is SYSPROC.

Procedure parameter

task-id
An input argument of type INTEGER that specifies a unique monitoring task
ID.

Authorization

EXECUTE privilege on the AM_DROP_TASK procedure.

Example

Drop the monitoring task with ID 5.
CALL SYSPROC.AM_DROP_TASK(5)

AM_GET_LOCK_CHN_TB - Retrieve application lock chain data in a
tabular format

The AM_GET_LOCK_CHN_TB procedure returns application lock chain data in
tabular format. A lock chain consists of all the applications that the current
application is holding up or waiting for, either directly or indirectly.

Syntax

Chapter 3. Activity monitor routines 23

v
A

»»—AM_GET_LOCK_CHN_TB— (—agent-id—)

The schema is SYSPROC.

Procedure parameters

agent-id
An input argument of type BIGINT that specifies the agent ID of the
application for which lock chain data is to be retrieved.

Authorization
* SYSMON authority
* EXECUTE privilege on the AM_GET_LOCK_CHN_TB procedure.

Example

Retrieve lock chain information for agent ID 68.
CALL SYSPROC.AM_GET_LOCK CHN_TB(68)

Information returned

The procedure returns a table as shown below. Each row of the table represents a
lock-wait relationship. The result set also contains a row for each holding-only
application; in this case, the HOLDING_AGENT_ID column is null, and the other
four columns are for the holding-only application.

Table 22. Information returned by the AM_GET_LOCK_CHN_TB procedure

Column name Data Type Description

HOLDING_AGENT_ID BIGINT The agent ID of the application
holding the lock.

AGENT_ID BIGINT The agent ID of the application
waiting for the lock.

APPL_NAME VARCHAR(255) | The name of the application
waiting for the lock.

AUTH_ID VARCHAR(128) | The authorization ID of the
application waiting for the lock.

APPL_ID VARCHAR(64) The application ID of the
application waiting for the lock.

AM_GET_LOCK_CHNS - Retrieve lock chain information for a specific

application

The AM_GET_LOCK_CHNS procedure returns lock chains for the specified
application as a formatted string. A lock chain consists of all the applications that
the current application is holding up or waiting for, either directly or indirectly.

Syntax

»>—AM_GET_LOCK_CHNS—(—agent-id—,—lock-chains—)

v
A

The schema is SYSPROC.

24 Administrative Routines and Views

Procedure parameters

agent-id
An input argument of type BIGINT that specifies the agent ID of the
application whose lock chains are to be displayed.

lock-chains
An output argument of type CLOB(2M) that shows all the lock chains for the
specified application.

Authorization
* SYSMON authority
* EXECUTE privilege on the AM_GET_LOCK_CHNS procedure.

Example
CALL SYSPROC.AM_GET_LOCK_CHNS(17,?)
Value of output parameters

Parameter Name : LOCK CHAINS
Parameter Value : >db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)

<db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)
<db2bp.exe (Agent ID: 18) (Auth ID: AMUSERB)
<db2bp.exe (Agent ID: 16) (Auth ID: AMUSERA)

Return Status = 0

AM_GET_LOCK_RPT — Retrieve application lock details

The AM_GET_LOCK_RPT procedure returns lock details for an application in three
output result sets.

Syntax

»»>—AM_GET_LOCK_RPT—(—agent-id—) ><

The schema is SYSPROC.

Procedure parameter

agent-id
An input argument of type BIGINT that specifies the agent ID of the
application whose lock details are to be returned.

Authorization
* SYSMON authority
* EXECUTE privilege on the AM_GET_LOCK_RPT procedure.

Example
CALL SYSPROC.AM_GET_LOCK_RPT(68)

Usage note

The DFT_MON_LOCK monitor switch must be turned on for this procedure to
return any information.

Chapter 3. Activity monitor routines 25

Information returned

The procedure returns three result sets: one for application general information;
one for locks that the application holds; and one for locks that the application is

waiting for.

Table 23. General application information returned by the AM_GET_LOCK_RPT procedure

Column name

Data Type

Description

AGENT_ID

BIGINT

agent_id - Application handle
(agent ID)

APPL_NAME

VARCHAR(256)

appl_name - Application name

AUTH_ID

VARCHAR(128)

auth_id - Authorization ID

APPL_ID

VARCHAR(128)

appl_id - Application ID

APPL_STATUS

VARCHAR(22)

appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

* BACKUP

e COMMIT_ACT

« COMP

* CONNECTED

* CONNECTPEND

* CREATE_DB

* DECOUPLED

* DISCONNECTPEND
¢ INTR

e IOERROR_WAIT

* LOAD

* LOCKWAIT

* QUIESCE_TABLESPACE
* RECOMP

¢ REMOTE_RQST

* RESTART

e RESTORE

* ROLLBACK_ACT

* ROLLBACK_TO_SAVEPOINT
 TEND

* THABRT

e THCOMT

e TPREP

 UNLOAD
 UOWEXEC

« UOWWAIT

* WAITFOR_REMOTE

COORD_PARTITION_NUM

SMALLINT

coord_node - Coordinating node

SEQUENCE_NO

VARCHAR(4)

sequence_no - Sequence number

CLIENT_PRDID

VARCHAR(128)

client_prdid - Client
product/version ID

CLIENT_PID

BIGINT

client_pid - Client process ID

26 Administrative Routines and Views

Table 23. General application information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name

Data Type

Description

CLIENT_PLATFORM

VARCHAR(12)

client_platform - Client operating
platform. This interface returns a
text identifier based on the defines
in sqlmon.h,

AIX®

AIX64
AS400_DRDA
DOS

DYNIX

HP

HP64

HPIA
HPIA64
LINUX
LINUX390
LINUXIA64
LINUXPPC
LINUXPPC64
LINUXX8664
LINUXZ64
MAC
MVS_DRDA
NT

NTe4

OS2

0OS390

SCO

SGI

SNI

SUN

SUN64
UNKNOWN
UNKNOWN_DRDA
VM_DRDA
VSE_DRDA
WINDOWS
WINDOWS95

Chapter 3. Activity monitor routines

27

Table 23. General application information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name

Data Type

Description

CLIENT_PROTOCOL

VARCHAR(10)

client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

* CPIC
 LOCAL
* NETBIOS
* NPIPE

* TCPIP (for DB2 Universal
Database™, or DB2 UDB)

» TCPIP4
* TCPIP6

CLIENT_NNAME

VARCHAR(128)

The client_nname monitor element
is deprecated. The value returned
is not a valid value.

LOCKS_HELD

BIGINT

locks_held - Locks held

LOCK_WAIT_START_TIME

TIMESTAMP

lock_wait_start_time - Lock wait
start timestamp

LOCK_WAIT_TIME

BIGINT

lock_wait_time - Time waited on
locks

LOCK_WAITS

BIGINT

lock_waits - Lock waits

LOCK_TIMEOUTS

BIGINT

lock_timeouts - Number of lock
timeouts

LOCK_ESCALS

BIGINT

lock_escals - Number of lock
escalations

X_LOCK_ESCALS

BIGINT

x_lock_escals - Exclusive lock
escalations

DEADLOCKS

BIGINT

deadlocks - Deadlocks detected

Table 24. Locks held information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

TBSP_NAME VARCHAR(128) |tablespace_name - Table space
name

TABSCHEMA VARCHAR(128) |table_schema - Table schema name

TABNAME VARCHAR(128) |table_name - Table name

28 Administrative Routines and Views

Table 24. Locks held information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name

Data Type

Description

LOCK_OBJECT_TYPE

VARCHAR(18)

lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

* AUTORESIZE_LOCK
* AUTOSTORAGE_LOCK
* BLOCK_LOCK

* EOT_LOCK

* INPLACE_REORG_LOCK
¢ INTERNAL_LOCK

¢ INTERNALB_LOCK
* INTERNALC_LOCK
e INTERNALJ_LOCK
* INTERNALL_LOCK
¢ INTERNALO_LOCK
e INTERNALQ_LOCK
e INTERNALP_LOCK
e INTERNALS_LOCK
* INTERNALT_LOCK
e INTERNALV_LOCK
* KEYVALUE_LOCK
* ROW_LOCK

* SYSBOOT_LOCK

* TABLE_LOCK

* TABLE_PART_LOCK
* TABLESPACE_LOCK
 XML_PATH_LOCK

LOCK_MODE

VARCHAR(10)

lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

« IN
« IS
« IX
* NON (if no lock)
* NS
* NW
S

+ SIX
- U
« X

e Z

Chapter 3. Activity monitor routines 29

Table 24. Locks held information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name Data Type Description
LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:
+ CONV
* GRNT
LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation
LOCK_NAME VARCHAR(32) lock_name - Lock name
DBPARTITIONNUM SMALLINT The database partition from which

the data was retrieved for this row.

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description
AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock
APPL_ID_HOLDING_LK VARCHAR(128) |appl_id_holding lk - Application
ID holding lock
LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp
DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.
TBSP_NAME VARCHAR(128) |tablespace_name - Table space
name
TABSCHEMA VARCHAR(128) |table_schema - Table schema name
TABNAME VARCHAR(128) |table_name - Table name

30 Administrative Routines and Views

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT

procedure (continued)

Column name

Data Type

Description

LOCK_OBJECT_TYPE

VARCHAR(18)

lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

* AUTORESIZE_LOCK
* AUTOSTORAGE_LOCK
* BLOCK_LOCK

* EOT_LOCK

* INPLACE_REORG_LOCK
¢ INTERNAL_LOCK

¢ INTERNALB_LOCK
* INTERNALC_LOCK
e INTERNALJ_LOCK
* INTERNALL_LOCK
¢ INTERNALO_LOCK
e INTERNALQ_LOCK
e INTERNALP_LOCK
e INTERNALS_LOCK
* INTERNALT_LOCK
e INTERNALV_LOCK
* KEYVALUE_LOCK
* ROW_LOCK

* SYSBOOT_LOCK

* TABLE_LOCK

* TABLE_PART_LOCK
* TABLESPACE_LOCK
 XML_PATH_LOCK

LOCK_MODE

VARCHAR(10)

lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

« IN
« IS
« IX
* NON (if no lock)
* NS
* NW
S

+ SIX
- U
« X

e Z

Chapter 3. Activity monitor routines 31

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

« IN

« IS

« IX

* NON (if no lock)
* NS

* NW

S

» SIX

- U

« X

e Z
LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

AM_GET_RPT - Retrieve activity monitor data

The AM_GET_RPT procedure returns activity monitor data for a report.

Syntax
»»—AM _GET_RPT—(—database partition—,—report-id—,—appl-filter—,——»
»—max-number—) >

The schema is SYSPROC.

Procedure parameters

database partition
An input argument of type INTEGER that specifies a database partition
number. Valid values are -2 (denoting all database partitions) and the database
partition number of any existing database partition.

report-id
An input argument of type INTEGER that specifies a unique report ID.

appl-filter
An input argument of type CLOB(32K) that specifies an application filter. An
application filter is a search condition involving any or all of the three columns
AGENT_ID, APPL_NAME, and AUTH_ID, where AGENT_ID and AUTH_ID
are integers, and APPL_NAME is a character string. If the argument is null or
an empty string, no filtering is performed.

max-number
An input argument of type INTEGER that specifies the maximum number of

32 Administrative Routines and Views

applications, statements, or transactions that are to be displayed. If the
argument is null, all applications, statements, and transactions will be
displayed.

Authorization
¢ SYSMON authority
* EXECUTE privilege on the AM_GET_RPT procedure.

Example

CALL SYSPROC.AM_GET RPT(-2, 18,
CAST('AGENT ID=29 AND AUTH_ID <> ''dbuser'' AND APPL_NAME LIKE ''db2%'''
AS CLOB(32K)), 100)

Usage note
The result set returned is different for each report id. This procedure is intended to

support the Activity Monitor graphical tool. To build reports that can be parsed,
snapshot administrative SQL routines and views should be used instead.

AM_SAVE_TASK - Create or modify a monitoring task
The AM_SAVE_TASK procedure creates or modifies a monitoring task.
Syntax
»»—AM_SAVE_TASK— (—mode—,—task-id—,—task-name—,—appl-filter—,——————»

»—show-lock-chains—,—report-ids—) »><

The schema is SYSPROC.

Procedure parameters

mode
An input argument of type CHAR(1) that specifies whether to create a new
monitoring task ('C') or to modify an existing monitoring task ('M").

task-id
An input argument of type INTEGER that specifies a unique monitoring task
ID. When mode is 'C', any specified input for task-id is ignored. An ID for the
new monitoring task will be generated by the procedure and returned in the
output. When mode is 'M', specifies the ID of the monitoring task that is being
modified.

task-name
An input argument of type VARCHAR(128) that specifies a name or short
description for a monitoring task.

appl-filter
An input argument of type CLOB(32K) that specifies an application filter. An
application filter is a search condition involving any or all of the three columns
AGENT_ID, APPL_NAME, and AUTH_ID, where AGENT_ID and AUTH_ID
are integers, and APPL_NAME is a character string. If the argument is null or
an empty string, no filtering is performed.

Chapter 3. Activity monitor routines 33

show-lock-chains
An input argument of type CHAR(1) that specifies whether lock chains are to
be shown. Valid values are 'Y' and 'N'. If the argument is null, lock chains are
not to be shown.

repoiidisnput argument of type VARCHAR(3893) that specifies one or more report
IDs separated by commas.

Authorization

EXECUTE privilege on the AM_SAVE_TASK procedure.

Example

Example:

CALL SYSPROC.AM SAVE_TASK('M',11,'Task ABC',CAST (NULL AS CLOB(32K)),
'N','1,2,4,8,9,127)

34 Administrative Routines and Views

Chapter 4. ADMIN_CMD procedure and associated routines

ADMIN_CMD - Run administrative commands

The ADMIN_CMD procedure is used by applications to run administrative
commands using the SQL CALL statement.

Syntax

»»—ADMIN_CMD— (—command-string—) >

The schema is SYSPROC.

Procedure parameter

command-string
An input argument of type CLOB (2M) that specifies a single command that is
to be executed.

Authorization
EXECUTE privilege on the ADMIN_CMD procedure.

The procedure currently supports the following DB2 command line processor
(CLP) commands:

+ |ADD CONTACT]

+ |ADD CONTACTGROUP]

+ JAUTOCONFIGURE]

* [BACKUP - online only|

+ [DESCRIBE

+ IDROP CONTACT]

+ IDROP CONTACTGROUP|

+ [EXPOR

+ [FORCE APPLICATION|

+ [IMPORT]

+ [INITIALIZE TAPE]

:

+ [PRUNE HISTORY /LOGFILE]|

* |QUIESCE DATABASE|

* |QUIESCE TABLESPACES FOR TABLE|
+ [REDISTRIBUTE|

+ [REORG INDEXES/TABLE|

* [RESET ALERT CONFIGURATION|

+ [RESET DATABASE CONFIGURATION|
+ [RESET DATABASE MANAGER CONFIGURATION|
+ [REWIND TAPE|

!

© Copyright IBM Corp. 2006, 2010 35

* [SET TAPE POSITION|

[UNQUIESCE DATABASE]

+ [UPDATE ALERT CONFIGURATION|

+ [UPDATE CONTACT]

+ [UPDATE CONTACTGROUP|

+ [UPDATE DATABASE CONFIGURATION|

[UPDATE DATABASE MANAGER CONFIGURATION|
[UPDATE HEALTH NOTIFICATION CONTACT LIST|
[UPDATE HISTORY|

Note: Some commands might have slightly different supported syntax when
executed through the ADMIN_CMD procedure.

The procedure also supports the following commands which are not supported by
the CLP:

+ |GET STMM TUNING DBPARTITIONNUM|
+ [UPDATE STMM TUNING DBPARTITIONNUM|

Usage notes

Retrieving command execution information:

* As the ADMIN_CMD procedure runs on the server, the utility messages are also
created on the server. The MESSAGES ON SERVER option (refer to the specific
command for further details) indicates that the message file is to be created on
the server.

¢ Command execution status is returned in the SQLCA resulting from the CALL
statement.

e If the execution of the administrative command is successful, and the command
returns more than the execution status, the additional information is returned in
the form of a result set (up to two result sets). For example, if the EXPORT
command executes successfully, the returned result set contains information
about the number of exported rows; however, if the RUNSTATS command
executes successfully, no result set is returned. The result set information is
documented with the corresponding command.

e If the execution of the administrative command is not successful, an SQL20397W
warning message is returned by the ADMIN_CMD procedure along with a
result set containing more details about the reason for the failure of the
administrative command. Any application that uses the ADMIN_CMD
procedure should check the SQLCODE returned by the procedure. If the
SQLCODE is >= 0, the result set for the administrative command should be
retrieved. The following table indicates what information might be returned
depending on whether the MESSAGES ON SERVER option is used or not.

36 Administrative Routines and Views

Table 26. SQLCODE and information returned by the ADMIN_CMD procedure

Administrative command
execution status

MESSAGES ON SERVER
option specified

MESSAGES ON SERVER
option not specified

Successful The SQLCODE returned is The SQLCODE returned is
>= (0: Additional information |>= 0: Additional information
(result sets) returned, if any. | (result sets) returned, if any,
but the MSG_RETRIEVAL
and MSG_REMOVAL
columns are NULL.
Failed The SQLCODE returned The SQLCODE returned is <

20397: Additional
information (result sets)
returned, but only the
MSG_RETRIEVAL and
MSG_REMOVAL columns
are populated.

0: No additional information
(result sets) is returned.

* The result sets can be retrieved from the CLP or from applications such as JDBC
and DB2 CLI applications, but not from embedded C applications.

* Case-sensitive names and double-byte character set (DBCS) names must be
enclosed inside a backward slash and double quotation delimiter, for example,

\" MyTabLe \".

For all commands executed through the ADMIN_CMD, the user ID that
established the connection to the database is used for authentication.

Any additional authority required, for example, for commands that need file
system access on the database server, is documented in the reference information

describing the command.

This procedure cannot be called from a user-defined function (SQLSTATE 38001) or

a trigger.

ADD CONTACT command using the ADMIN_CMD procedure

Adds a contact to the contact list which can be either defined locally on the system
or in a global list. Contacts are users to whom processes such as the Scheduler and
Health Monitor send messages.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

»>—ADD CONTACT—name—TYPE

EMAIL

|—PAGE
I-I:MAXIMUM PAGE LENGTH

:I—pg- length—|
MAX LEN

Chapter 4. ADMIN_CMD procedure and associated routines 37

»—ADDRESS—recipients address

|—DESCRIPTION—contact descr‘iption—|

Command parameters

ADD CONTACT name
The name of the contact that will be added. By default the contact will be
added in the local system, unless the DB2 administration server
configuration parameter contact_host points to another system.

TYPE Method of contact, which must be one of the following two:

EMAIL
This contact wishes to be notified by e-mail at (ADDRESS).

PAGE This contact wishes to be notified by a page sent to ADDRESS.

MAXIMUM PAGE LENGTH pg-length
If the paging service has a message-length restriction, it is
specified here in characters.

The notification system uses the SMTP protocol to send the
notification to the mail server specified by the DB2 Administration
Server configuration parameter smtp_server. It is the responsibility
of the SMTP server to send the e-mail or call the pager.

ADDRESS recipients-address
The SMTP mailbox address of the recipient. For example,
joe@somewhere.org. The smtp_server DAS configuration parameter must
be set to the name of the SMTP server.

DESCRIPTION contact description
A textual description of the contact. This has a maximum length of 128
characters.

Example

Add a contact for user 'testuser' with e-mail address 'testuser@test.com'.

CALL SYSPROC.ADMIN_CMD
("ADD CONTACT testuser TYPE EMAIL ADDRESS testuser@test.com')

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

ADD CONTACTGROUP command using the ADMIN_CMD
procedure

Adds a new contact group to the list of groups defined on the local system. A
contact group is a list of users and groups to whom monitoring processes such as
the Scheduler and Health Monitor can send messages.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

38 Administrative Routines and Views

Authorization

None

Required connection

Database. The DAS must be running.

Command Syntax

»»>—ADD CONTACTGROUP—name—Y LCONTACT name >
GROUP

|—DESCRIPTION—group descr'iption—|

Command Parameters

ADD CONTACTGROUP name
Name of the new contact group, which must be unique among the set of
groups on the system.

CONTACT name
Name of the contact which is a member of the group. A contact can be
defined with the ADD CONTACT command after it has been added to a

group.
GROUP name
Name of the contact group of which this group is a member.

DESCRIPTION group description
Optional. A textual description of the contact group.

Example

Create a contact group named 'gnamel’ that contains two contacts: 'cnamel’ and
‘cname?2’.

CALL SYSPROC.ADMIN_CMD('add contactgroup gnamel contact cnamel, contact cname2')
Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

AUTOCONFIGURE command using the ADMIN_CMD
procedure

Calculates and displays initial values for the buffer pool size, database
configuration and database manager configuration parameters, with the option of
applying these recommended values.

Chapter 4. ADMIN_CMD procedure and associated routines 39

Authorization

SYSADM

Required connection

Database

Command syntax

»>—AUTOCONFIGURE

»—APPLY DB ONLY
EDB AND
NONE——+-

USING—

input-keyword—param-value

DBM—

Command parameters

|—ON CURRENT NODE—|

USING input-keyword param-value

A\
A

Table 27. Valid input keywords and parameter values

apps

Default
Keyword Valid values | value Explanation
mem_percent 1-100 25 Percentage of instance memory that is
assigned to the database. However, if the
CREATE DATABASE command invokes
the configuration advisor and you do not
specify a value for mem_percent, the
percentage is calculated based on memory
usage in the instance and the system up to
a maximum of 25% of the instance
memory.
workload_type |simple, mixed Simple workloads tend to be I/O intensive
mixed, and mostly transactions, whereas complex
complex workloads tend to be CPU intensive and
mostly queries.
num_stmts 1-1 000 000 |10 Number of statements per unit of work
tpm 1-200 000 60 Transactions per minute
admin_priority | performance, | both Optimize for better performance (more
recovery, transactions per minute) or better recovery
both time
is_populated yes, no yes Is the database populated with data?
num_local_apps |0-5 000 0 Number of connected local applications
num_remote_ 0-5 000 10 Number of connected remote applications

40 Administrative Routines and Views

Table 27. Valid input keywords and parameter values (continued)

Default
Keyword Valid values | value Explanation

isolation RR, RS, CS, |RR Maximum isolation level of applications
UR connecting to this database (Repeatable
Read, Read Stability, Cursor Stability,
Uncommitted Read). It is only used to
determine values of other configuration
parameters. Nothing is set to restrict the
applications to a particular isolation level
and it is safe to use the default value.

bp_resizeable yes, no yes Are buffer pools resizeable?

APPLY

DB ONLY
Displays the recommended values for the database configuration
and the buffer pool settings based on the current database manager
configuration. Applies the recommended changes to the database
configuration and the buffer pool settings.

DB AND DBM
Displays and applies the recommended changes to the database
manager configuration, the database configuration, and the buffer
pool settings.

NONE
Displays the recommended changes, but does not apply them.

ON CURRENT NODE
In a partitioned database environment, the Configuration Advisor updates
the database configuration on all nodes by default. Running with the ON
CURRENT NODE option makes the advisor apply the recommended
database configuration to the coordinator (connection) node only.

The buffer pool changes are always applied to the system catalogs. Thus,
all nodes are affected. The ON CURRENT NODE option does not matter
for buffer pool recommendations.

Example

Invoke autoconfigure on a database through the ADMIN_CMD stored procedure.
CALL SYSPROC.ADMIN_CMD('AUTOCONFIGURE APPLY NONE')

The following is an example of the result set returned by the command.

LEVEL NAME VALUE RECOMMENDED _VALUE ~DATATYPE
DBM ASLHEAPSZ 15 15 BIGINT
DBM FCM_NUM_BUFFERS 512 512 BIGINT
DB APP_CTL_HEAP_SZ 128 144 INTEGER
DB APPGROUP_MEM_SZ 20000 14559 BIGINT
BP IBMDEFAULTBP 1000 164182 BIGINT

Usage notes

* This command makes configuration recommendations for the currently
connected database and assumes that the database is the only active database on

Chapter 4. ADMIN_CMD procedure and associated routines 41

the instance. If you have not enabled the self tuning memory manager and you
have more than one active database on the instance, specify a mem_percent
value that reflects the database memory distribution. For example, if you have
two active databases on the instance that should use 80% of the instance
memory and should share the resources equally, specify 40% (80% divided by 2
databases) as the mem_percent value.

* If you have multiple instances on the same computer and the self tuning
memory manager is not enabled, you should set a fixed value for
instance_memory on each instance or specify a mem_percent value that reflects
the database memory distribution. For example, if all active databases should
use 80% of the computer memory and there are 4 instances each with one
database, specify 20% (80% divided by 4 databases) as the mem_percent value.

* When explicitly invoking the Configuration Advisor with the
AUTOCONFIGURE command, the setting of the
DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable will be ignored.

* Running the AUTOCONFIGURE command on a database will recommend
enablement of the Self Tuning Memory Manager. However, if you run the
AUTOCONFIGURE command on a database in an instance where sheapthres is
not zero, sort memory tuning (sortheap) will not be enabled automatically. To
enable sort memory tuning (sortheap), you must set sheapthres equal to zero
using the UPDATE DATABASE MANAGER CONFIGURATION command. Note
that changing the value of sheapthres may affect the sort memory usage in your
previously existing databases.

* Command execution status is returned in the SQLCA resulting from the CALL
statement.

* SQL executed in the ADMIN_CMD procedure on behalf of AUTOCONFIGURE
is monitored by Query Patroller.

¢ The AUTOCONFIGURE command issues a COMMIT statement at the end if its
execution. In the case of Type-2 connections this will cause the ADMIN_CMD
procedure to return SQL30090N with reason code 2.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
the following result set:

Table 28. Result set returned by the AUTOCONFIGURE command

Column name Data type Description

LEVEL VARCHAR(3) Level of parameter and is one of:
* BP for buffer pool level

* DBM for database manager level
* DB for database level

NAME VARCHAR(128) |+ 1f LEVEL is DB or DBM, this

contains the configuration
parameter keyword.

e If LEVEL is BP, this value
contains the buffer pool name.

42 Administrative Routines and Views

Table 28. Result set returned by the AUTOCONFIGURE command (continued)

Column name Data type

Description

VALUE VARCHAR(256)

If LEVEL is DB or DBM, and the
recommended values were
applied, this column contains
the value of the configuration
parameter identified in the
NAME column prior to applying
the recommended value (that is,
it contains the old value). If the
change was not applied, this
column contains the current
on-disk (deferred value) of the
identified configuration
parameter.

If LEVEL is BP, and the
recommended values were
applied, this column contains
the size (in pages) of the buffer
pool identified in the NAME
column prior to applying the
recommended value (that is, it
contains the old size). If the
change was not applied, this
column contains the current size
(in pages) of the identified
buffer pool.

RECOMMENDED_VALUE VARCHAR(256)

If LEVEL is DB or DBM, this
column contains the
recommended (or applied) value
of the configuration parameter
identified in the parameter
column.

If type is BP, this column
contains the recommended (or
applied) size (in pages) of the
buffer pool identified in the
parameter column.

DATATYPE VARCHAR(128)

Parameter data type.

BACKUP DATABASE command using the ADMIN_CMD

procedure

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms”.

Scope

In a partitioned database environment, if no database partitions are specified, this
command affects only the database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition

Chapter 4. ADMIN_CMD procedure and associated routines 43

servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the command.

Authorization

One of the following:
* SYSADM

* SYSCTRL

* SYSMAINT

Required connection

Database. The existing database connection remains after the completion of the
backup operation.

Command syntax

»»—BACKUP DATABASE. atabase-alias >
s

I—ON DBPARTITIONNUM—_|—| Partition number(s) i
|:DBPARTITIONNUMS |
AL

L DBPARTITIONNUMS
|—EXCEPT—[DBPARTITIONNUM—_|—| Partition number(s) |J
DBPARTITIONNUMS

ONLINE
.] I ,

. I—INCREMENTAL
|_ CoeLtad
L_TABLESPACE—(—Y—tablespace-name)
—USE. TSM—_|—| Open sessions Options |— |—wITH—num-buffers—BUFFERSJ
|:XBSA
SNAPSHOT:

I—LIBRARY—Z ibrar‘y-name—l

—LOAD—library-name—| Open sessions |—| Options '7

o
TO dir

Lev-]

I—BUFFER—buffer-sizeJ |—PARALLELISM—nJ |—DEDUP_DEVICEJ

L compress J

I—COMPRLIB—nameﬁL—'—I I—COMPROPTS—Str“ingJ
EXCLUDE-

EXCLUDE LOGS—l |—WITHOUT PROMPTING—l

N [
I—UTIL_IMPACT_PRIORITY~L—4|—I |—INCLUDE LOGSJ
priority

>«

44 Administrative Routines and Views

Partition number(s):

—(—"—db-partition-numberl

|—T0—db-parti t ion-numberZJ

Open sessions:

|—OPEN—num-sess ions—S ESSIONS—|

Options:

|
|—OPTIONS ”optt’ons-str%J
@—file-name

Command parameters
DATABASE | DB database-alias

ON

Specifies the alias of the database to back up. The alias must be a local
database defined on the server and must be the database name that the
user is currently connected to. If the database-alias is not the one the user
is connected to, an SQL20322N error is returned.

Backup the database on a set of database partitions. This clause shall be
specified only on the catalog partition.

DBPARTITIONNUM db-partition-numberl
Specifies a database partition number in the database partition list.

DBPARTITIONNUMS db-partition-numberl TO db-partition-number2
Specifies a range of database partition numbers, so that all
partitions from db-partition-numberl up to and including
db-partition-number2 are included in the database partition list.

ALL DBPARTITIONNUMS
Specifies that the database is to be backed up on all partitions
specified in the db2nodes.cfg file.

EXCEPT
Specifies that the database is to be backed up on all
partitions specified in the db2nodes.cfg file, except those
specified in the database partition list.

DBPARTITIONNUM db-partition-numberl
Specifies a database partition number in the
database partition list.

DBPARTITIONNUMS db-partition-numberl TO
db-partition-number2
Specifies a range of database partition numbers, so
that all partitions from db-partition-numberl up to
and including db-partition-number2 are included in
the database partition list.

Chapter 4. ADMIN_CMD procedure and associated routines 45

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

ONLINE

Specifies online backup. This is the only supported mode and is the
default. The ONLINE clause does not need to be specified.

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental backup
image is a copy of all database data that has changed since the most recent
successful, full backup operation.

DELTA
Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

USE

TSM Specifies that the backup is to use Tivoli® Storage Manager (TSM)
output.

XBSA Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT
Specifies that a snapshot backup is to be taken.

You cannot use the SNAPSHOT parameter with any of the
following parameters:

* TABLESPACE

« INCREMENTAL

* WITH num-buffers BUFFERS

* BUFFER

* PARALLELISM

* COMPRESS

e UTIL_IMPACT_PRIORITY

* SESSIONS

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH),
and primary log and mirror log paths INCLUDE LOGS is the

default for all snapshot backups unless EXCLUDE LOGS is
explicitly stated).

LIBRARY library-name
Integrated into IBM® Data Server is a DB2 ACS API driver
for the following storage hardware:

+ IBM TotalStorage® SAN Volume Controller
+ IBM Enterprise Storage Server® Model 800
+ IBM System Storage® DS6000"

+ IBM System Storage DS8000°

* IBM System Storage N Series

* NetApp V-series

46 Administrative Routines and Views

* NetApp FAS

If you have other storage hardware, and a DB2 ACS API
driver for that storage hardware, you can use the
LIBRARY parameter to specify the DB2 ACS API driver.

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS

"options-string"
Specifies options to be used for the backup operation. The string
will be passed exactly as it was entered, without the double
quotation marks.

@ file-name
Specifies that the options to be used for the backup operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

You cannot use the vendoropt database configuration parameter to specify
vendor-specific options for snapshot backup operations. You must use the
OPTIONS parameter of the backup utilities instead.

OPEN num-sessions SESSIONS

TO dir

The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product. This parameter has no effect when
backing up to tape, disk, or other local device.

| dev

A list of directory or tape device names. The full path on which the
directory resides must be specified. This target directory or device must
exist on the database server.

In a partitioned database, the target directory or device must exist on all
database partitions, and can optionally be a shared path. The directory or
device name may be specified using a database partition expression. For
more information about database partition expressions, see “Automatic
storage databases”.

This parameter can be repeated to specify the target directories and devices
that the backup image will span. If more than one target is specified
(targetl, target2, and target3, for example), targetl will be opened first. The
media header and special files (including the configuration file, table space
table, and history file) are placed in targetl. All remaining targets are
opened, and are then used in parallel during the backup operation.
Because there is no general tape support on Windows® operating systems,
each type of tape device requires a unique device driver.

Use of tape devices or floppy disks might require prompts and user
interaction, which will result in an error being returned.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the same
database not be kept on the same tape.

LOAD library-name

The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It can

Chapter 4. ADMIN_CMD procedure and associated routines 47

contain the full path. If the full path is not given, it will default to the path
on which the user exit program resides.

WITH num-buffers BUFFERS
The number of buffers to be used. DB2 will automatically choose an
optimal value for this parameter unless you explicitly enter a value.
However, when creating a backup to multiple locations, a larger number of
buffers can be used to improve performance.

BUFFER buffer-size
The size, in 4 KB pages, of the buffer used when building the backup
image. DB2 will automatically choose an optimal value for this parameter
unless you explicitly enter a value. The minimum value for this parameter
is 8 pages.

If using tape with variable block size, reduce the buffer size to within the
range that the tape device supports. Otherwise, the backup operation
might succeed, but the resulting image might not be recoverable.

With most versions of Linux®, using DB2's default buffer size for backup
operations to a SCSI tape device results in error SQL2025N, reason code 75.
To prevent the overflow of Linux internal SCSI buffers, use this formula:

bufferpages <= ST_MAX BUFFERS * ST BUFFER BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER
parameter, and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the
Linux kernel under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel by the
backup utility. DB2 will automatically choose an optimal value for this
parameter unless you explicitly enter a value.

DEDUP_DEVICE
Optimizes the format of the backup images for target storage devices that
support data deduplication. Available in Version 9.7 Fix Pack 3 and later
fix packs.

UTIL_IMPACT_PRIORITY priority
Specifies that the backup will run in throttled mode, with the priority
specified. Throttling allows you to regulate the performance impact of the
backup operation. Priority can be any number between 1 and 100, with 1
representing the lowest priority, and 100 representing the highest priority.
If the UTIL_IMPACT_PRIORITY keyword is specified with no priority,
the backup will run with the default priority of 50. If
UTIL_IMPACT_PRIORITY is not specified, the backup will run in
unthrottled mode. An impact policy must be defined by setting the
util_impact_lim configuration parameter for a backup to run in throttled
mode.

COMPRESS
Indicates that the backup is to be compressed.

COMPRLIB name
Indicates the name of the library to be used to perform the
compression (for example, db2compr.d11 for Windows;
Tibdb2compr.so for Linux or UNIX systems). The name must be a
fully qualified path referring to a file on the server. If this

48 Administrative Routines and Views

parameter is not specified, the default DB2 compression library
will be used. If the specified library cannot be loaded, the backup
will fail.

EXCLUDE
Indicates that the compression library will not be stored in the
backup image.

COMPROPTS string
Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this
string directly from the client to the server, so any issues of byte
reversal or code page conversion will have to be handled by the
compression library. If the first character of the data block is '@,
the remainder of the data will be interpreted by DB2 as the name
of a file residing on the server. DB2 will then replace the contents
of string with the contents of this file and will pass this new value
to the initialization routine instead. The maximum length for string
is 1024 bytes.

EXCLUDE LOGS
Specifies that the backup image should not include any log files. When
performing an offline backup operation, logs are excluded whether or not
this option is specified, with the exception of snapshot backups.

INCLUDE LOGS
Specifies that the backup image should include the range of log files
required to restore and roll forward this image to some consistent point in
time. This option is not valid for an offline backup, with the exception of
snapshot backups where this option is the default unless explicitly told to
exclude.

WITHOUT PROMPTING

Specifies that the backup will run unattended, and that any actions which
normally require user intervention will return an error message. This is the
default.

Examples

The following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:

(Sun) CALL SYSPROC.ADMIN_CMD('backup db sample online use tsm')
(Mon) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')
(Tue) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')
(Wed) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental use tsm')
(Thu) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental delta use tsm')
(Fri) CALL SYSPROC.ADMIN CMD

('backup db sample online incremental delta use tsm')
(Sat) CALL SYSPROC.ADMIN_CMD

('backup db sample online incremental use tsm')

Chapter 4. ADMIN_CMD procedure and associated routines 49

Usage notes

The data in a backup cannot be protected by the database server. Make sure that
backups are properly safeguarded, particularly if the backup contains
LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If
you must use this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were created with a
variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Snapshot backups should be complemented with regular disk backups in case of
failure in the filer/storage system.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

You can use the OPTIONS parameter to enable backup operations in TSM
environments supporting proxy nodes. For more information, see the “Configuring
a Tivoli Storage Manager client” topic.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information.
The backup operation will return one result set, comprising one row per database
partition that participated in the backup.

Table 29. Result set for a backup operation

Column name Data type Description

BACKUP_TIME VARCHAR(14) Corresponds to the
timestamp string used to
name the backup image.

DBPARTITIONNUM SMALLINT The database partition
number on which the agent
executed the backup
operation.

SQLCODE INTEGER Final SQLCODE resulting
from the backup processing
on the specified database
partition.

SQLERRMC VARCHAR(70) Final SQLERRMC resulting
from the backup processing
on the specified database
partition.

50 Administrative Routines and Views

Table 29. Result set for a backup operation (continued)

Column name Data type Description

SQLERRML SMALLINT Final SQLERRML resulting
from the backup processing
on the specified database
partition.

If a non-partitioned database is backed up, or if a partitioned database is backed
up using the traditional single-partition syntax, the result set will comprise a single
row. DBPARTITIONNUM will contain the identifier number of the database
partition being backed up.

SQLCODE, SQLERRMC, and SQLERRML refer to the equivalently-named
members of the SQLCA that is returned by the backup on the specified database
partition.

DESCRIBE command using the ADMIN_CMD procedure

The DESCRIBE command displays metadata about the columns, indexes, and data
partitions of tables or views. This command can also display metadata about the
output of SELECT, CALL, or XQuery statements.

Use the DESCRIBE command to display information about any of the following
items:

¢ Output of a SELECT, CALL, or XQuery statement
e Columns of a table or a view
e Indexes of a table or a view

¢ Data partitions of a table or view
Authorization

The authorization required depends on the type of information you want to
display using the DESCRIBE command.

* If the SYSTOOLSTMPSPACE table space exists, one of the authorities shown in
the following table is required.

Object to display information about Privileges or authorities required

Output of a SELECT statement or XQuery Any of the following privileges or
statement authorities for each table or view referenced
in the SELECT statement:

e SELECT privilege

* DATAACCESS authority
* DBADM authority

* SQLADM authority

* EXPLAIN authority

Output of a CALL statement Any of the following privileges or
authorities:
* DATAACCESS authority

* EXECUTE privilege on the stored
procedure

Chapter 4. ADMIN_CMD procedure and associated routines 51

Object to display information about

Privileges or authorities required

Columns of a table or a view

Any of the following privileges or
authorities for the SYSCAT.COLUMNS
system catalog table:

* SELECT privilege

* ACCESSCTRL authority

* DATAACCESS authority

* DBADM authority

* SECADM authority

* SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require any of these
privileges or authorities on the
SYSCAT.DATAPARTITIONEXPRESSION
system catalog table.

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

Indexes of a table or a view

Any of the following privileges or
authorities on the SYSCAT.INDEXES system
catalog table:

* SELECT privilege

* ACCESSCTRL authority

* DATAACCESS authority

* DBADM authority

* SECADM authority

* SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require EXECUTE
privilege on the GET_INDEX_COLNAMES()
UDE

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

52 Administrative Routines and Views

Object to display information about

Privileges or authorities required

Data partitions of a table or view

Any of the following privileges or
authorities on the
SYSCAT.DATAPARTITIONS system catalog
table:

* SELECT privilege

* ACCESSCTRL authority
* DATAACCESS authority
* DBADM authority

* SECADM authority

* SQLADM authority

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

¢ If the SYSTOOLSTMPSPACE table space does not exist, SYSADM or SYSCTRL
authority is also required in addition to the one of the above authorities.

Required connection
Database
Command syntax

»»—DESCRIBE

>«

OUTPUT
> l_ —l select-statement
|:cal l-statement
XQUERY—XQuery-statement—
TABLE

table-name

XML DATA——
TEXT SEARCH——
DATA PARTITIONS FOR TABLE

FRE LATIONAL DATA—

Command parameters
OUTPUT

INDEXES FOR TABLE—

|—SHOW DETAI LJ

Indicates that the output of the statement should be described. This

keyword is optional.

select-statement | call-statement | XQUERY XQuery-statement
Identifies the statement about which information is wanted. The
statement is automatically prepared by CLP. To identify an XQuery
statement, precede the statement with the keyword XQUERY. A
DESCRIBE OUTPUT statement only returns information about an
implicitly hidden column if the column is explicitly specified as
part of the SELECT list of the final result table of the query

described.
TABLE table-name

Specifies the table or view to be described. The fully qualified name in the

Chapter 4. ADMIN_CMD procedure and associated routines

53

form schema.table-name must be used. An alias for the table cannot be used
in place of the actual table. Information about implicitly hidden columns is
returned.

The DESCRIBE TABLE command lists the following information about
each column:
* Column name
* Type schema
¢ Type name
¢ Length
* Scale
* Nulls (yes/no)
INDEXES FOR TABLE table-name
Specifies the table or view for which indexes need to be described. You can
use the fully qualified name in the form schema.table-name or you can just

specify the fable-name and default schema will be used automatically. An
alias for the table cannot be used in place of the actual table.

The DESCRIBE INDEXES FOR TABLE command lists the following
information about each index of the table or view:

* Index schema

* Index name

¢ Unique rule

¢ Number of columns

* Index type

If the DESCRIBE INDEXES FOR TABLE command is specified with the
SHOW DETAIL option, the index name is truncated when the index name
is greater than 18 bytes. If no index type option is specified, information
for all index types is listed: relational data index, index over XML data,

and Text Search index. The output includes the following additional
information:

* Index ID for a relational data index, an XML path index, an XML regions
index, or an index over XML data

* Data Type for an index over XML data

¢ Hashed for an index over XML data

¢ Max VARCHAR Length for an index over XML data
* XML Pattern specified for an index over XML data
¢ Codepage for a text search index

* Language for a text search index

* Format specified for a text search index

¢ Update minimum for a text search index

* Update frequency for a text search index

* Collection directory for a text search index

* Column names

Specify an index type to list information for only a specific index type.
Specifying multiple index types is not supported.

54 Administrative Routines and Views

RELATIONAL DATA
If the RELATIONAL DATA index type option is specified without
the SHOW DETAIL option, only the following information is
listed:

¢ Index schema

* Index name

* Unique rule

e Number of columns

If SHOW DETALIL is specified, the column names information is
also listed.

XML DATA
If the XML DATA index type option is specified without the
SHOW DETAIL option, only the following information is listed:

e Index schema
¢ Index name
* Unique rule
e Number of columns
* Index type
If SHOW DETALIL is specified, the following information for an
index over XML data is also listed:
e Index ID
* Data type
e Hashed
* Max Varchar length
* XML Pattern
¢ Column names
TEXT SEARCH

If the TEXT SEARCH index type option is specified without the
SHOW DETAIL option, only the following information is listed:

* Index schema

* Index name

If SHOW DETAIL is specified, the following text search index
information is also listed:

* Column name

* Codepage

* Language

* Format

* Update minimum

* Update frequency

* Collection directory

If the TEXT SEARCH option is specified and a text search option

is not installed or not properly configured, an error (SQLSTATE
42724) is returned.

See DB2 Text Search for information listed in the columns.

DATA PARTITIONS FOR TABLE table-name
Specifies the table or view for which data partitions need to be described.

Chapter 4. ADMIN_CMD procedure and associated routines 55

The information displayed for each data partition in the table includes; the
partition identifier and the partitioning intervals. Results are ordered
according to the partition identifier sequence. The fully qualified name in
the form schema.table-name must be used. An alias for the table cannot be
used in place of the actual table. The schema is the user name under which
the table or view was created.

For the DESCRIBE DATA PARTITIONS FOR TABLE command, specifies
that output include a second table with the following additional
information:

* Data partition sequence identifier

¢ Data partition expression in SQL
SHOW DETAIL

For the DESCRIBE TABLE command, specifies that output include the
following additional information as well as a second result set which
contains the table data partition expressions (which might return 0 rows if
the table is not data partitioned):

* Whether a CHARACTER, VARCHAR or LONG VARCHAR column was
defined as FOR BIT DATA

¢ Column number

* Distribution key sequence
* Code page

* Default

¢ Table partitioning type (for tables partitioned by range this output
appears below the original output)

¢ DPartitioning key columns (for tables partitioned by range this output
appears below the original output)

* Identifier of table space used for the index
Examples
Describing the output of a SELECT statement

The following example shows how to describe a SELECT statement:
CALL SYSPROC.ADMIN_CMD('describe select * from emp_photo')

The following is an example of output for this SELECT statement.
Result set 1

SQLTYPE_ID SQLTYPE SQLLENGTH SQLSCALE SQLNAME_DATA
452 CHARACTER 6 0 EMPNO
448 VARCHAR 10 0 PHOTO_FORMAT
405 BLOB 102400 0 PICTURE

3 record(s) selected.

Return Status = 0

Output for this SELECT statement (continued).

56 Administrative Routines and Views

. SQLNAME_LENGTH SQLDATATYPENAME_DATA SQLDATATYPENAME_LENGTH

5 SYSIBM .CHARACTER 18

12 SYSIBM .VARCHAR 16
7 SYSIBM .BLOB 13

Describing a table

Describing a non-partitioned table.
CALL SYSPROC.ADMIN _CMD('describe table org show detail')

The following is an example of output for this CALL statement.
Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA

DEPTNUMB SYSIBM SMALLINT

N
DEPTNAME SYSIBM VARCHAR N
MANAGER SYSIBM SMALLINT N
DIVISION SYSIBM VARCHAR N
LOCATION SYSIBM VARCHAR N

5 record(s) selected.

Output for this CALL statement (continued).
. LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

2 0N 0 1 0 -
14 0y 1 0 1208 -
2 0y 2 0 0 -
10 0y 3 0 1208 -
13 0y 4 0 1208 -

Output for this CALL statement (continued).
Result set 2

0 record(s) selected.

Return Status = 0

Describing a partitioned table.
CALL SYSPROC.ADMIN CMD('describe table part_tablel show detail')

The following is an example of output for this CALL statement.
Result set 1

coL1 o SYSIBM o INTEGER N

1 record(s) selected.

Output for this CALL statement (continued).
. LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT

Output for this CALL statement (continued).

Chapter 4. ADMIN_CMD procedure and associated routines

57

Result set 2

1 record(s) selected
Describing a table index
The following example shows how to describe a table index. This call describes

table USER1.DEPARTMENT and lists two relational data indexes, six xml data
indexes, two text search indexes, and the system indexes:

CALL SYSPROC.ADMIN CMD('describe indexes for table userl.department')

The following is an example of output for this CALL statement.

Result set 1

INDSCHEMA INDNAME UNIQUE_RULE

SYSIBM SQLO70531145253450 DUPLICATES_ALLOWED
SYSIBM SQLO70531145253620 UNIQUE_ENTRIES_ONLY
USER1 RELIDX1 DUPLICATES_ALLOWED
USER1 RELIDX2 DUPLICATES_ALLOWED
SYSIBM SQLO70531145253650 PRIMARY_INDEX
USER1 XMLIDX1 DUPLICATES_ALLOWED
SYSIBM SQLO70531154625650 DUPLICATES_ALLOWED
USER1 XMLIDX2 DUPLICATES_ALLOWED
SYSIBM SQLO70531154626000 DUPLICATES_ALLOWED
USER1 XMLIDX3 DUPLICATES_ALLOWED
SYSIBM SQLO70531154626090 DUPLICATES_ALLOWED
USER1 XMLIDX4 DUPLICATES_ALLOWED
SYSIBM SQLO70531154626190 DUPLICATES_ALLOWED
USER1 XMLIDX5 DUPLICATES_ALLOWED
SYSIBM SQLO70531154626290 DUPLICATES_ALLOWED
USER1 XMLIDX6 DUPLICATES_ALLOWED
SYSIBM SQLO70531154626400 DUPLICATES_ALLOWED
USER1 TXTIDX1 -

USER1 TXTIDX2 -

19 record(s) selected.

Return Statu

S

=0

Output for this CALL statement (continued).

COLCOUNT

58 Administrative Routines and Views

e e e S el i

INDEXTYPE

XML_DATA_REGIONS

XML_DATA_PATH
RELATIONAL_DATA
RELATIONAL_DATA
RELATIONAL_DATA

XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL

XML_DATA_VALUES_LOGICAL
XML_DATA_VALUES_PHYSICAL
TEXT_SEARCH

TEXT_SEARCH

[N

Describing a data partition

The following example shows how to describe data partitions.
CALL SYSPROC.ADMIN_CMD('describe data partitions for table part_table2')

The following is an example of output for this CALL statement.
Result set 1

3 record(s) selected.

Output for this CALL statement (continued).
. HIGH_KEY_INCLUSIVE HIGH_KEY_ VALUE

N 10
N 20
N 40

The following example shows how to describe data partitions with 'SHOW
DETAIL' clause.

CALL SYSPROC.ADMIN _CMD('describe data partitions
for table part_table2 show detail')

The following is an example of output for this CALL statement.
Result set 1

3 record(s) selected.
Return Status = 0

Output for this CALL statement (continued).
. HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE

N 10
N 20
N 40

Output for this CALL statement (continued).
Result set 2

Chapter 4. ADMIN_CMD procedure and associated routines

59

0 PARTO
1 PART1 .
2 PART2 3 ...

w w

3 record(s) selected.
Return Status = 0

Output for this CALL statement (continued).
. PARTITION_OBJECT_ID LONG_TBSPID ACCESSMODE STATUS

15 3 FULL_ACCESS
16 3 FULL_ACCESS
17 3 FULL_ACCESS

Usage note

If the DESCRIBE command tries to create a temporary table and fails, creation of
SYSTOOLSTMPSPACE is attempted, and then creation of the temporary table is
attempted again, this time in SYSTOOLSTMPSPACE. SYSCTRL or SYSADM
authority is required to create the SYSTOOLSTMPSPACE table space.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the commands return additional information
in result sets as follows:

. DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE
XQUERY XQuery-statement commands

* [Table 31 on page 61} Result set 1 for the DESCRIBE TABLE command
* [Table 32 on page 62} Result set 2 for the DESCRIBE TABLE command
* [Table 33 on page 62} DESCRIBE INDEXES FOR TABLE command

+ [Table 34 on page 63} Result set 1 for the DESCRIBE DATA PARTITIONS FOR
TABLE command

+ [Table 35 on page 64} Result set 2 for the DESCRIBE DATA PARTITIONS FOR
TABLE command

Table 30. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE
XQUERY XQuery-statement commands

Column name Data type LOB only" Description

SQLTYPE_ID SMALLINT No Data type of the column, as it
appears in the SQLTYPE field of the
SQL descriptor area (SQLDA).

SQLTYPE VARCHAR (257) |No Data type corresponding to the
SQLTYPE_ID value.

SQLLEN INTEGER No Length attribute of the column, as it
appears in the SQLLEN field of the
SQLDA.

SQLSCALE SMALLINT No Number of digits in the fractional

part of a decimal value; 0 in the case
of other data types.

SQLNAME_DATA VARCHAR (128) |No Name of the column.
SQLNAME_LENGTH SMALLINT No Length of the column name.
SQLDATA_TYPESCHEMA VARCHAR (128) | Yes Data type schema name.

60 Administrative Routines and Views

Table 30. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE
XQUERY XQuery-statement commands (continued)

Column name

Data type

LOB only"

Description

SQLDATA_TYPENAME

VARCHAR (128)

Yes

Data type name.

Note: ": Yes indicates that non-null values are returned only when there is LOB

data being described.

Table 31. Result set 1 returned by the DESCRIBE TABLE command

Column name

Data type

Detail®

Description

COLNAME

VARCHAR (128)

No

Column name.

TYPESCHEMA

VARCHAR (128)

No

If the column name is distinct, the
schema name is returned, otherwise,
'SYSIBM' is returned.

TYPENAME

VARCHAR (128)

No

Name of the column type.

FOR_BINARY_DATA

CHAR (1)

Yes

Returns 'Y' if the column is of type
CHAR, VARCHAR or LONG
VARCHAR, and is defined as FOR
BIT DATA, 'N' otherwise.

LENGTH

INTEGER

No

Maximum length of the data. For
DECIMAL data, this indicates the
precision. For discinct types, 0 is
returned.

SCALE

SMALLINT

For DECIMAL data, this indicates
the scale. For all other types, 0 is
returned.

NULLABLE

CHAR (1)

One of:
e 'Y'if column is nullable

* 'N'if column is not nullable

COLNO

SMALLINT

Yes

Ordinal of the column.

PARTKEYSEQ

SMALLINT

Yes

Ordinal of the column within the
table's partitioning key. NULL or 0 is
returned if the column is not part of
the partitioning key, and is NULL for
subtables and hierarchy tables.

CODEPAGE

SMALLINT

Yes

Code page of the column and is one
of:

* Value of the database code page
for columns that are not defined
with FOR BIT DATA.

* Value of the DBCS code page for
graphic columns.

* 0 otherwise.

DEFAULT

VARCHAR (254)

Yes

Default value for the column of a
table expressed as a constant, special
register, or cast-function appropriate
for the data type of the column.
Might also be NULL.

Note: Yes indicates that non-null values are returned only when the SHOW

DETAIL clause is used.

Chapter 4. ADMIN_CMD procedure and associated routines 61

Table 32. Result set 2 returned by the DESCRIBE TABLE command when the SHOW DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_KEY_SEQ INTEGER Data partition key number, for example, 1
for the first data partition expression and 2
for the second data partition expression.

DATA_PARTITION_EXPRESSION CLOB (32K) Expression for this data partition key in SQL
syntax

Table 33. Result set returned by the DESCRIBE INDEXES FOR TABLE command

Column name Data type Detail®> |Index type option* ® Description
INDSCHEMA VARCHAR No RELATIONAL DATA |Index schema name.
(128) XML DATA
TEXT SEARCH
INDNAME VARCHAR No RELATIONAL DATA Index name.
(128) XML DATA

TEXT SEARCH

UNIQUE_RULE

VARCHAR (30)

No

RELATIONAL DATA
XML DATA

One of following values:

* DUPLICATES_ALLOWED
* PRIMARY_INDEX

* UNIQUE_ENTRIES_ONLY

INDEX
_PARTITIONING

CHAR(1)

No

N/A

Identifies the partitioning
characteristic of the index. Possible
values are:

* N= Nonpartitioned index
* P= Partitioned index

e Blank = Index is not on a
partitioned table

COLCOUNT

SMALLINT

No

RELATIONAL DATA
XML DATA

Number of columns in the key, plus
the number of include columns, if
any.

INDEX_TYPE

VARCHAR (30)

No

RELATIONAL DATA
XML DATA
TEXT SEARCH

Type of index:

* RELATIONAL_DATA

* TEXT_SEARCH

* XML_DATA_REGIONS

* XML_DATA_PATH

* XML_DATA_VALUES_LOGICAL
* XML_DATA_VALUES_PHYSICAL

INDEX_ID

SMALLINT

Yes

RELATIONAL DATA
XML DATA

Index ID for a relational data index,
an XML path index, an XML regions
index, or an index over XML data

DATA_TYPE

VARCHAR
(128)

Yes

XML DATA

SQL data type specified for an index
over XML data. One of the following
values:

* VARCHAR
* DOUBLE
 DATE

* TIMESTAMP

62 Administrative Routines and Views

Table 33. Result set returned by the DESCRIBE INDEXES FOR TABLE command (continued)

Column name Data type Detail* |Index type option* ® Description

HASHED CHAR (1) Yes XML DATA Indicates whether or not the value for
an index over XML data is hashed.
* 'Y' if the value is hashed.
* 'N'"if the value is not hashed.

LENGTH SMALLINT Yes XML DATA For an index over XML data, the
VARCHAR (integer) length; 0
otherwise.

PATTERN CLOB (2M) Yes XML DATA XML pattern expression specified for
an index over XML data

CODEPAGE INTEGER Yes TEXT SEARCH Document code page specified for the
text search index

LANGUAGE VARCHAR (5) |Yes TEXT SEARCH Document language specified for the
text search index

FORMAT VARCHAR (30) | Yes TEXT SEARCH Document format specified for a text
search index

UPDATEMINIMUM INTEGER Yes TEXT SEARCH Minimum number of entries in the
text search log table before an
incremental update is performed

UPDATEFREQUENCY | VARCHAR Yes TEXT SEARCH Trigger criterion specified for

(300) applying updates to the text index

COLLECTION VARCHAR Yes TEXT SEARCH Directory specified for the text search

DIRECTORY (512) index files

COLNAMES VARCHAR Yes RELATIONAL DATA List of the column names, each

(2048) XML DATA preceded with a + to indicate

TEXT SEARCH

ascending order or a - to indicate
descending order.

Note: > Yes indicates that values are returned only when the SHOW DETAIL
clause is used without specifying an index type option. Values might be NULL.

Note: * Indicates the values returned when using DESCRIBE index-type INDEXES
FOR TABLE. For example, INDEX_ID values are not returned if TEXT SEARCH is
specified as index-type. INDEX_ID values are returned if either RELATIONAL

DATA or XML DATA are specified.

Note: °: When using DESCRIBE index-type INDEXES FOR TABLE SHOW DETAIL,
the values are returned only when the index type is listed. For example,
DATA_TYPE values are returned if XML DATA is specified as index-type.
DATA_TYPE values are not returned if either TEXT SEARCH or RELATIONAL
DATA is specified as index-type.

Table 34. Result set 1 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command

Column name Data type Detail® Description

DATA_PARTITION_ID INTEGER No Data partition identifier.

LOW_KEY_INCLUSIVE CHAR (1) No "Y' if the low key value is inclusive,
otherwise, 'N'.

LOW_KEY_VALUE VARCHAR (512) |No Low key value for this data
partition.

Chapter 4. ADMIN_CMD procedure and associated routines

63

Table 34. Result set 1 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command (continued)

Column name Data type Detail® Description

HIGH_KEY_INCLUSIVE CHAR (1) No Y' if the high key value is inclusive,
otherwise, 'N'.

HIGH_KEY_VALUE VARCHAR (512) |No High key value for this data

partition.

Note: % Yes indicates that non-null values are returned only when the SHOW

DETAIL clause is used.

Table 35. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command when the SHOW

DETAIL clause is used.

Column name

Data type

Description

DATA_PARTITION_ID

INTEGER

Data partition identifier.

DATA_PARTITION_NAME

VARCHAR (128)

Data partition name.

TBSPID INTEGER Identifier of the table space where this data
partition is stored.

PARTITION_OBJECT_ID INTEGER Identifier of the DMS object where this data
partition is stored.

LONG_TBSPID INTEGER Identifier of the table space where long data
is stored.

INDEX_TBSPID INTEGER Identifier of the table space where index data

is stored.

ACCESSMODE

VARCHAR (20)

Defines accessibility of the data partition and
is one of:

* FULL_ACCESS

* NO_ACCESS

* NO_DATA_MOVEMENT
* READ_ONLY

STATUS

VARCHAR(64)

Data partition status and can be one of:

* NEWLY_ATTACHED

* NEWLY_DETACHED: MQT maintenance
is required.

» INDEX_CLEANUP_PENDING: detached
data partition whose tuple in
SYSDATAPARTITIONS is maintained only
for index cleanup. This tuple is removed
when all index records referring to the
detached data partition have been deleted.

The column is blank otherwise.

DROP CONTACT command using the ADMIN_CMD procedure

Removes a contact from the list of contacts defined on the local system. A contact
is a user to whom the Scheduler and Health Monitor send messages. The setting of
the Database Administration Server (DAS) contact_host configuration parameter
determines whether the list is local or global.

Authorization

None

64 Administrative Routines and Views

Required connection
Database. The DAS must be running.

Command syntax

»»>—DROP CONTACT—name »><

Command parameters

CONTACT name
The name of the contact that will be dropped from the local system.

Example

Drop the contact named 'testuser’ from the list of contacts on the server system.
CALL SYSPROC.ADMIN_CMD('drop contact testuser')

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

DROP CONTACTGROUP command using the ADMIN_CMD
procedure

Removes a contact group from the list of contacts defined on the local system. A
contact group contains a list of users to whom the Scheduler and Health Monitor
send messages. The setting of the Database Administration Server (DAS)
contact_host configuration parameter determines whether the list is local or global.
Authorization

None

Required Connection

Database. The DAS must be running.

Command Syntax

»»>—DROP CONTACTGROUP—name »><

Command Parameters

CONTACTGROUP name
The name of the contact group that will be dropped from the local system.

Example

Drop the contact group named 'gnamel'.
CALL SYSPROC.ADMIN_CMD('drop contactgroup gnamel')

Chapter 4. ADMIN_CMD procedure and associated routines 65

Usage notes
The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

EXPORT command using the ADMIN_CMD procedure

Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables. The data is exported to the
server only.

Quick link to [“File type modifiers for the export utility” on page 72|

Authorization

One of the following:
* DATAACCESS authority
e CONTROL or SELECT privilege on each participating table or view

Required connection
Database. Utility access to Linux, UNIX, or Windows database servers from Linux,
UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect " gateway or loop back environment.

Command syntax

v

»»>—EXPORT TO—filename—OF—filetype \\
LOBS TO

Y _lob-path

L OBFILE—Y—fi lename LXML TO—Y xmz-path]—|

Y
v

L XMLFILE—Y—filename L_MODIFIED BY 'filetype-mod]—|

\

|—XMLSAVESCHEMA—' \\ ’7,— J
METHOD N— (—Ycolumn-name——)

Yy
v

|—MESSAG ES ON SERV ER—|

66 Administrative Routines and Views

A\
A

select-statement
EXQUERY—xquery-statement
HIERARCHY STARTING—sub-table-name
_E‘ traversal-order-list ’J ’—JJ
LY _WHERE

traversal-order-list:

—(—"—sub-table-name) |

Command parameters

HIERARCHY traversal-order-list
Export a sub-hierarchy using the specified traverse order. All sub-tables
must be listed in PRE-ORDER fashion. The first sub-table name is used as
the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name
Using the default traverse order (OUTER order for ASC, DEL, or WSF files,
or the order stored in PC/IXF data files), export a sub-hierarchy starting
from sub-table-name.

LOBFILE filename
Specifies one or more base file names for the LOB files. When name space
is exhausted for the first name, the second name is used, and so on. This
will implicitly activate the LOBSINFILE behavior.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from lob-path), and then appending a 3-digit sequence
number to start and the three character identifier Tob. For example, if the
current LOB path is the directory /u/foo/1ob/path/, and the current LOB
file name is bar, the LOB files created will be /u/foo/Tob/path/
bar.001.1ob, /u/foo/Tob/path/bar.002.10b, and so on. The 3-digit
sequence number in the LOB file name will grow to 4-digits once 999 is
used, 4-digits will grow to 5-digits once 9999 is used, and so on.

LOBS TO lob-path
Specifies one or more paths to directories in which the LOB files are to be
stored. The path(s) must exist on the coordinator partition of the server
and must be fully qualified. There will be at least one file per LOB path,
and each file will contain at least one LOB. The maximum number of paths
that can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

MESSAGES ON SERVER
Specifies that the message file created on the server by the EXPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

Chapter 4. ADMIN_CMD procedure and associated routines 67

68

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the
data is to be exported to.

METHOD N column-name
Specifies one or more column names to be used in the output file. If this
parameter is not specified, the column names in the table are used. This
parameter is valid only for WSF and IXF files, but is not valid when
exporting hierarchical data.

MODIFIED BY filetype-mod
Specifies file type modifier options. See [‘File type modifiers for the export]
[utility” on page 72)

OF filetype
Specifies the format of the data in the output file:

* DEL (delimited ASCII format), which is used by a variety of database
manager and file manager programs.

* WSF (work sheet format), which is used by programs such as:
- Lotus® 1-2-3"
- Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within
the range of type DOUBLE can be exported accurately. Although values
that do not fall within this range are also exported, importing or loading
these values back might result in incorrect data, depending on the
operating system.

Note: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

* IXF (Integration Exchange Format, PC version) is a proprietary binary
format.

select-statement
Specifies the SELECT or XQUERY statement that will return the data to be
exported. If the statement causes an error, a message is written to the
message file (or to standard output). If the error code is one of SQL0012W,
SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation
continues; otherwise, it stops.

TO filename
Specifies the name of the file to which data is to be exported to on the
server. This must be a fully qualified path and must exist on the server
coordinator partition.

If the name of a file that already exists is specified, the export utility
overwrites the contents of the file; it does not append the information.

XMLFILE filename
Specifies one or more base file names for the XML files. When name space
is exhausted for the first name, the second name is used, and so on.

When creating XML files during an export operation, file names are
constructed by appending the current base name from this list to the

Administrative Routines and Views

current path (from xml-path), appending a 3-digit sequence number, and
appending the three character identifier xml. For example, if the current
XML path is the directory /u/foo/xml/path/, and the current XML file
name is bar, the XML files created will be /u/foo/xm1/path/bar.001.xm1,
/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path
Specifies one or more paths to directories in which the XML files are to be
stored. There will be at least one file per XML path, and each file will
contain at least one XQuery Data Model (XDM) instance. If more than one
path is specified, then XDM instances are distributed evenly among the
paths.

XMLSAVESCHEMA
Specifies that XML schema information should be saved for all XML
columns. For each exported XML document that was validated against an
XML schema when it was inserted, the fully qualified SQL identifier of that
schema will be stored as an (SCH) attribute inside the corresponding XML
Data Specifier (XDS). If the exported document was not validated against
an XML schema or the schema object no longer exists in the database, an
SCH attribute will not be included in the corresponding XDS.

The schema and name portions of the SQL identifier are stored as the
"OBJECTSCHEMA" and "OBJECTNAME" values in the row of the
SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences
that do not produce well-formed XML documents.

Example

The following example shows how to export information from the STAFF table in
the SAMPLE database to the file myfile.ixf. The output will be in IXF format. You
must be connected to the SAMPLE database before issuing the command.

CALL SYSPROC.ADMIN_CMD ('EXPORT to /home/userl/data/myfile.ixf
OF ixf MESSAGES ON SERVER select * from staff')

Usage notes

* Any path used in the EXPORT command must be a valid fully-qualified path on
the server.

* If a table contains LOB columns, at least one fully-qualified LOB path and LOB
name must be specified, using the LOBS TO and LOBFILE clauses.

* The export utility issues a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 2.

* When exporting from a UCS-2 database to a delimited ASCII (DEL) file, all
character data is converted to the code page that is in effect where the procedure
is executing. Both character string and graphic string data are converted to the
same SBCS or MBCS code page of the server.

* Be sure to complete all table operations and release all locks before starting an
export operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

* Table aliases can be used in the SELECT statement.

* The messages placed in the message file include the information returned from
the message retrieval service. Each message begins on a new line.

Chapter 4. ADMIN_CMD procedure and associated routines 69

* The export utility produces a warning message whenever a character column
with a length greater than 254 is selected for export to DEL format files.

» PC/IXF import should be used to move data between databases. If character
data containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

¢ The file copying step is not necessary if the source and the target databases are
both accessible from the same client.

+ DB2 Connect can be used to export tables from DRDA® servers such as DB2 for
0S/390°, DB2 for VM and VSE, and DB2 for OS/400°. Only PC/IXF export is
supported.

* When exporting to the IXF format, if identifiers exceed the maximum size
supported by the IXF format, the export will succeed but the resulting datafile
cannot be used by a subsequent import operation using the CREATE mode.
SQL27984W will be returned.

* When exporting to a diskette on Windows, and the table that has more data
than the capacity of a single diskette, the system will prompt for another
diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF
files, or logically split PC/IXF files), are generated and stored in separate
diskettes. In each file, with the exception of the last, there is a DB2
CONTINUATION RECORD (or "AC" Record in short) written to indicate the
files are logically split and where to look for the next file. The files can then be
transferred to an AIX system, to be read by the import and load utilities. The
export utility will not create multiple-part PC/IXF files when invoked from an
AIX system. For detailed usage, see the IMPORT command or LOAD command.

* The export utility will store the NOT NULL WITH DEFAULT attribute of the
table in an IXF file if the SELECT statement provided is in the form SELECT *
FROM tablename.

* When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

e For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables
to export. If this list is not specified, all tables in the hierarchy are exported, and
the default order is the OUTER order. The alternative is to use the default order,
which is the order given by the OUTER function.

* Use the same traverse order during an import operation. The load utility does
not support loading hierarchies or sub-hierarchies.

* When exporting data from a table that has protected rows, the LBAC credentials
held by the session authorization id might limit the rows that are exported.
Rows that the session authorization ID does not have read access to will not be
exported. No error or warning is given.

* If the LBAC credentials held by the session authorization id do not allow
reading from one or more protected columns included in the export then the
export fails and an error (SQLSTATE 42512) is returned.

* When running Data Movement utilities such as export and db2move, the query
compiler might determine that the underlying query will run more efficiently
against an MQT than the base table or tables. In this case, the query will execute
against a refresh deferred MQT, and the result of the utilities might not
accurately represent the data in the underlying table.

* Export packages are bound using DATETIME ISO format, thus, all
date/time/timestamp values are converted into ISO format when cast to a string
representation. Since the CLP packages are bound using DATETIME LOC format

70 Administrative Routines and Views

(locale specific format), you may see inconsistent behavior between CLP and
export if the CLP DATETIME format is different from ISO. For instance, the
following SELECT statement may return expected results:

db2 select col2 from tabl where char(co12)='05/10/2005";

coLz

05/10/2005
05/10/2005
05/10/2005

3 record(s) selected.

But an export command using the same select clause will not:

db2 export to test.del of del select col2 from test
where char(col12)='05/10/2005";
Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

db2 export to test.del of del select col2 from test
where char(col12)='2005-05-10";
Number of rows exported: 3

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information

in result sets as follows:

Table 36. Result set returned by the EXPORT command

Column name Data type

Description

ROWS_EXPORTED BIGINT

Total number of exported rows.

MSG_RETRIEVAL VARCHAR(512)

SQL statement that is used to retrieve messages created
by this utility. For example:
SELECT SQLCODE, MSG

FROM TABLE (SYSPROC.ADMIN_GET_MSGS
('3203498_txu')) AS MSG

MSG_REMOVAL VARCHAR(512)

SQL statement that is used to clean up messages created
by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
('3203498_txu')

Chapter 4. ADMIN_CMD procedure and associated routines 71

File type modifiers for the export utility

Table 37. Valid file type modifiers

for the export utility: All file formats

Modifier

Description

lobsinfile

lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmmy/, where filename.ext is the name of the file that contains the
LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length
of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in
the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456
bytes long.

If you specify the lobsinfile modifier when using EXPORT, the LOB data is
placed in the locations specified by the LOBS TO clause. Otherwise the LOB data
is sent to the data file directory. The LOBS TO clause specifies one or more paths
to directories in which the LOB files are to be stored. There will be at least one
file per LOB path, and each file will contain at least one LOB. The LOBS TO or
LOBFILE options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles

Each XQuery Data Model (XDM) instance is written to a separate file. By default,
multiple values are concatenated together in the same file.

lobsinsepfiles

Each LOB value is written to a separate file. By default, multiple values are
concatenated together in the same file.

xmlnodeclaration

XDM instances are written without an XML declaration tag. By default, XDM
instances are exported with an XML declaration tag at the beginning that includes
an encoding attribute.

xmlchar

XDM instances are written in the character codepage. Note that the character
codepage is the value specified by the codepage file type modifier, or the
application codepage if it is not specified. By default, XDM instances are written
out in Unicode.

xmlgraphic

If the xmlgraphic modifier is specified with the EXPORT command, the exported
XML document will be encoded in the UTF-16 code page regardless of the
application code page or the codepage file type modifier.

Table 38. Valid file type modifiers

for the export utility: DEL (delimited ASCII) file format

Modifier

Description

chardelx

x is a single character string delimiter. The default value is a double quotation
mark (). The specified character is used in place of double quotation marks to
enclose a character string.” If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter
as follows:

modified by chardel''

72 Administrative Routines and Views

Table 38. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data to this code page from the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive. The codepage modifier cannot be used with the
Tobsinfile modifier.

coldelx

x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.’

In the following example, coldel; causes the export utility to use the semicolon
character (;) as a column delimiter for the exported data:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

decplusblank

Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx

x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.”

nochardel

Column data will not be surrounded by character delimiters. This option should
not be specified if the data is intended to be imported or loaded using DB2. It is
provided to support vendor data files that do not have character delimiters.
Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually
exclusive options.

nodoubledel

Suppresses recognition of double character delimiters.?

striplzeros

Removes the leading zeros from all exported decimal columns.

Consider the following example:

db2 create table decimalTable (cl decimal(31, 2))
db2 insert into decimalTable values (1.1)

db2 export to data of del select * from decimalTable

db2 export to data of del modified by STRIPLZEROS
select * from decimalTable

In the first export operation, the content of the exported file data will be
+00000000000000000000000000001.10. In the second operation, which is identical
to the first except for the striplzeros modifier, the content of the exported file
data will be +1.10.

Chapter 4. ADMIN_CMD procedure and associated routines 73

Table 38. Valid file type modifiers

for the export utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

timestampformat="x"

x is the format of the time stamp in the source file.* Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)

M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;
mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for
the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;
mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M, minute)

S - Second (one or two digits ranging from 0 - 59)

SS - Second (two digits ranging from 0@ - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)
U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the
number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:
"YYYY/MM/DD HH:MM:SS.uUuuuuU"

The MMM element will produce the following values: 'Jan', 'Feb', 'Mar', 'Apr’,
‘May', 'Jun’, Tul', 'Aug’, 'Sep', 'Oct’, 'Nov', and 'Dec'. 'Jan' is equal to month 1, and
'Dec' is equal to month 12.

The following example illustrates how to export data containing user-defined
time stamp formats from a table called 'schedule":
db2 export to delfile2 of del

modified by timestampformat="yyyy.mm.dd hh:mm tt"
select * from schedule

Table 39. Valid file type modifiers

for the export utility: IXF file format

Modifier

Description

codepage=x

x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data from this code page to the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

Table 40. Valid file type modifiers

for the export utility: WSF file format®

Modifier

Description

1

Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3
Release 1a.” This is the default.

74 Administrative Routines and Views

Table 40. Valid file type modifiers for the export utility: WSF file format® (continued)

Modifier Description

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.°

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus
Symphony Release 1.1.°

4 Creates a WSF file containing DBCS characters.

Note:

1.

The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted,
the export operation fails, and an error code is returned.

Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

The export utility normally writes

* date data in YYYYMMDD format

* char(date) data in "YYYY-MM-DD" format

* time data in "HH.MM.SS" format

e time stamp data in "YYYY-MM-DD-HH.MM.SS.uuuuuu" format

Data contained in any datetime columns specified in the SELECT statement
for the export operation will also be in these formats.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)

"M:M" (Which is which?)

"M:YYYY:M" (Both are interpreted as month.)

"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)

"S:M" (Minute)

"M:YYYY:S:M" (Month....Minute)

"M:H:YYYY:M:D" (Minute....Month)
These files can also be directed to a specific product by specifying an L for
Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only
one value or product designator can be specified. Support for the WSF file
format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

The WSF file format is not supported for XML columns. Support for this file
format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

All XDM instances are written to XML files that are separate from the main
data file, even if neither the XMLFILE nor the XML TO clause is specified. By
default, XML files are written to the path of the exported data file. The default
base name for XML files is the name of the exported data file with the
extension ".xml" appended to it.

Chapter 4. ADMIN_CMD procedure and associated routines 75

8. All XDM instances are written with an XML declaration at the beginning that
includes an encoding attribute, unless the XMLNODECLARATION file type
modifier is specified.

9. By default, all XDM instances are written in Unicode unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.
The default XML file base name is the main data file. The default LOB file
base name is the main data file. For example, if the main data file is:

/mypath/myfile.del

the default path for XML data and LOB data is:
/mypath"

the default XML file base name is:
myfile.del

and the default LOB file base name is:
myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB
files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.
The identifier starts as a 3 digit, 0 padded sequence value, starting at:

.001

After the 999th LOB file or XML file, the identifier will no longer be padded
with zeroes (for example, the 1000th LOG file or XML file will have an
extension of:

.1000

Following the numeric identifier is a three character type identifier
representing the data type, either:

.Tob

or

.xml

For example, a generated LOB file would have a name in the format:
myfile.del.001.1ob

and a generated XML file would be have a name in the format:
myfile.del.001.xml

12. It is possible to have the export utility export XDM instances that are not
well-formed documents by specifying an XQuery. However, you will not be
able to import or load these exported documents directly into an XML
column, since XML columns can only contain complete documents.

FORCE APPLICATION command using the ADMIN_CMD
procedure

Forces local or remote users or applications off the system to allow for
maintenance on a server.

76 Administrative Routines and Views

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for
example) is forced, the operation must be successfully re-executed before the
database becomes available.

Scope

This command affects all database partitions that are listed in the
$HOME/sq11ib/db2nodes.cfg file.

In a partitioned database environment, this command does not have to be issued
from the coordinator database partition of the application being forced. It can be
issued from any node (database partition server) in the partitioned database
environment.

Authorization

One of the following:
* SYSADM

* SYSCTRL

* SYSMAINT

Required connection
Database

Command syntax

»»—FORCE APPLICATION ALL |_ _| »><
”, J MODE ASYNC
(—Z-application-handle——)

Command parameters
FORCE APPLICATION

ALL All applications will be disconnected from the database. This might
close the connection the ADMIN_CMD procedure is running on,
which causes an SQL1224N error to be returned for the
ADMIN_CMD procedure once the force operation is completed
successfully.

application-handle
Specifies the agent to be terminated. List the values using the LIST
APPLICATIONS command.

MODE ASYNC
The command does not wait for all specified users to be terminated before
returning; it returns as soon as the function has been successfully issued or
an error (such as invalid syntax) is discovered.

This is the only mode that is currently supported.
Examples

The following example forces two users, with application-handle values of 41408 and
55458, to disconnect from the database:

Chapter 4. ADMIN_CMD procedure and associated routines 77

CALL SYSPROC.ADMIN CMD('force application (41408, 55458)')
Usage notes

The database manager remains active so that subsequent database manager
operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible
database operations can be terminated.

The following types of users and applications cannot be forced:
* users creating a database
* system applications

In order to successfully force these types of users and applications, the database
must be deactivated and/or the instance restarted.

After a FORCE APPLICATION has been issued, the database will still accept
requests to connect. Additional forces might be required to completely force all
users off.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

GET STMM TUNING DBPARTITIONNUM command using the
ADMIN_CMD procedure

Used to read the catalog tables to report the user preferred self tuning memory
manager (STMM) tuning database partition number and current STMM tuning
database partition number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities or privilege:

- DBADM

« SECADM

« SQLADM

« ACCESSCTRL

« DATAACCESS

« SELECT on SYSIBM.SYSTUNINGINFO

Required connection
Database
Command syntax

»>»—GET—STMM—TUNING—DBPARTITIONNUM

Y
A

78 Administrative Routines and Views

Example
CALL SYSPROC.ADMIN_CMD('get stmm tuning dbpartitionnum')

The following is an example of output from this query.
Result set 1

1 record(s) selected.

Return Status = 0
Usage notes

The user preferred self tuning memory manager (STMM) tuning database partition
number (USER_PREFERRED_NUMBER) is set by the user and specifies the
database partition on which the user wishes to run the memory tuner. While the
database is running, the tuning partition is updated asynchronously a few times an
hour. As a result, it is possible that the CURRENT_NUMBER and
USER_PREFERRED_NUMBER returned are not in sync after an update of the user
preferred STMM partition number. To resolve this, either wait for the
CURRENT_NUMBER to be updated asynchronously, or stop and start the database
to force the update of CURRENT_NUMBER.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in the following result set:

Table 41. Result set returned by the GET STMM TUNING DBPARTITIONNUM command

Column name Data type Description

USER_PREFERRED_NUMBER INTEGER User preferred self tuning memory
manager (STMM) tuning database
partition number. A value of -1
indicates that the default database
partition is used.

CURRENT_NUMBER INTEGER Current STMM tuning database
partition number. A value of -1
indicates that the default database
partition is used.

IMPORT command using the ADMIN_CMD procedure

Inserts data from an external file with a supported file format into a table,
hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does
not support loading data at the hierarchy level.

Quick link to |“File type modifiers for the import utility” on page 94|

Authorization
¢ IMPORT using the INSERT option requires one of the following:
- DATAACCESS authority

Chapter 4. ADMIN_CMD procedure and associated routines 79

— CONTROL privilege on each participating table, view, or nickname
— INSERT and SELECT privilege on each participating table or view

* IMPORT to an existing table using the INSERT_UPDATE option, requires one of
the following:

— DATAACCESS authority
— CONTROL privilege on each participating table, view, or nickname

— INSERT, SELECT, UPDATE and DELETE privilege on each participating table
or view

* IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,
requires one of the following:

- DATAACCESS authority
— CONTROL privilege on the table or view
— INSERT, SELECT, and DELETE privilege on the table or view

* IMPORT to a new table using the CREATE or REPLACE_CREATE option,
requires one of the following:

— DBADM authority

— CREATETAB authority on the database and USE privilege on the table space,
as well as one of:

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers
to an existing schema

* IMPORT to a hierarchy that does not exist using the CREATE, or the
REPLACE_CREATE option, requires one of the following:

— DBADM authority

— CREATETAB authority on the database and USE privilege on the table space
and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the
table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the
REPLACE_CREATE option on the entire hierarchy is used

* IMPORT to an existing hierarchy using the REPLACE option requires one of the
following;:

— DATAACCESS authority
— CONTROL privilege on every sub-table in the hierarchy

* To import data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table. Otherwise the import fails and an error (SQLSTATE 42512) is
returned.

* To import data into a table that has protected rows, the session authorization ID
must hold LBAC credentials that meet these criteria:

— It is part of the security policy protecting the table

— It was granted to the session authorization ID for write access

The label on the row to insert, the user's LBAC credentials, the security policy
definition, and the LBAC rules determine the label on the row.

* If the REPLACE or REPLACE_CREATE option is specified, the session
authorization ID must have the authority to drop the table.

80 Administrative Routines and Views

* To import data into a nickname, the session authorization ID must have the
privilege to access and use a specified data source in pass-through mode.

Required connection
Database. Utility access to Linux, UNIX, or Windows database servers from Linux,
UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect gateway or loop back environment.

Command syntax

»»—IMPORT FROM—fil OF—filetyp
\\LOBS FROM—'lob-path]—‘ \\XML FROM—'me-path]—‘
Y filetype—mod]—|

“-MODIFIED BY

L-METHO! L—('column—start—column—endJ—) L

NULL INDICATORS—(—'.null-indicator-list']—)J
Y—column |)

N—()

P—(—Y column-pasition]—)

|—XMLPARSE—l:STRIP WHITESPACE—l
PRESERVE:

ALLOW NO ACCESS
[—] .

i Ignore and Map parameters '——l |—ALLOW WRITE ACCESS—I

|—XMLVALIDATE USING XDS
|—DEFAU LT—schema-sql id—l

SCHEMA—schema-sqlid-
SCHEMALOCATION HINTS

l—COMMITCOUNT—l:n—J—I LERESTARTCO%—n—l |—ROWCOUNT—n—I I—!rlARNINGCOUNT—n—I |—NOTIMEOUT—I
AUTOMATIC. SKIPCOUNT.

|—MESSAGES ON SERVER—I

> INSERT. INT table ><

INSERT_UPDATE— s
REPLACE |—
REPLACE_CREATE- (—insert-column)

hierarchy description |—

\\(v insert-column]—)J

hierarchy description AS ROOT TABLE—_l—
UNDER—sub-table-name

CREATE—INT! table | tblspace-specs

Ignore and Map parameters:

IGNORE— (——schema-sqlid——)

Chapter 4. ADMIN_CMD procedure and associated routines 81

> |
>

|
LMAP—(v (—schema-sqlid—,—schema-sqlid—)——)J

hierarchy description:
ALL TABLES
}—E‘ sub-tab]W—m—HIERARCHY STARTING—sub-table-name
IN _E‘ traversal-order-list

sub-table-list:

—(—"—sub-table-name L J) |
(—Y-insert-column——)

traversal-order-list:

B

—(—"—sub-table-name——) |

tbispace-specs:

| |
I—IN—L‘abZespace-name |
I—I NDEX IN—tabl espace-name—I I—LONG IN—tab Zespace-name—l

Command parameters

ALL TABLES
An implicit keyword for hierarchy only. When importing a hierarchy, the
default is to import all tables specified in the traversal order.

ALLOW NO ACCESS
Runs import in the offline mode. An exclusive (X) lock on the target table
is acquired before any rows are inserted. This prevents concurrent
applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS
Runs import in the online mode. An intent exclusive (IX) lock on the target
table is acquired when the first row is inserted. This allows concurrent
readers and writers to access table data. Online mode is not compatible
with the REPLACE, CREATE, or REPLACE_CREATE import options.
Online mode is not supported in conjunction with buffered inserts. The
import operation will periodically commit inserted data to prevent lock
escalation to a table lock and to avoid running out of active log space.
These commits will be performed even if the COMMITCOUNT option
was not used. During each commit, import will lose its IX table lock, and
will attempt to reacquire it after the commit. This parameter is required

82 Administrative Routines and Views

when you import to a nickname and COMMITCOUNT must be specified
with a valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE
Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n | AUTOMATIC
Performs a COMMIT after every n records are imported. When a number n
is specified, import performs a COMMIT after every n records are
imported. When compound inserts are used, a user-specified commit
frequency of n is rounded up to the first integer multiple of the compound
count value. When AUTOMATIC is specified, import internally determines
when a commit needs to be performed. The utility will commit for either
one of two reasons:

* to avoid running out of active log space
* to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the
COMMITCOUNT option is not specified, the import utility will perform
commits as if COMMITCOUNT AUTOMATIC had been specified.

The ability of the import operation to avoid running out of active log space
is affected by the DB2 registry variable
DB2_FORCE_APP_ON_MAX_LOG:

+ If DB2_ FORCE_APP_ON_MAX_LOG is set to FALSE and the
COMMITCOUNT AUTOMATIC command option is specified, the
import utility will be able to automatically avoid running out of active
log space.

* If DB2_ FORCE_APP_ON_MAX_LOG is set to FALSE and the
COMMITCOUNT #n command option is specified, the import utility will
attempt to resolve the log full condition if it encounters an SQL0964C
(Transaction Log Full) while inserting or updating a record. It will
perform an unconditional commit and then will reattempt to insert or
update the record. If this does not help resolve the issue (which would
be the case when the log full is attributed to other activity on the
database), then the IMPORT command will fail as expected, however the
number of rows committed may not be a multiple of the
COMMITCOUNT # value. To avoid processing the rows that were
already committed when you retry the import operation, use the
RESTARTCOUNT or SKIPCOUNT command parameters.

+ If DB2_ FORCE_APP_ON_MAX_LOG is set to TRUE (which is the
default), the import operation will fail if it encounters an SQL0964C
while inserting or updating a record. This can occur irrespective of
whether you specify COMMITCOUNT AUTOMATIC or
COMMITCOUNT .

The application is forced off the database and the current unit of work is
rolled back. To avoid processing the rows that were already committed
when you retry the import operation, use the RESTARTCOUNT or
SKIPCOUNT command parameters.

CREATE
Note: The CREATE parameter is deprecated and may be removed in a

future release. For additional details, see “IMPORT command options
CREATE and REPLACE_CREATE are deprecated”.

Chapter 4. ADMIN_CMD procedure and associated routines 83

Creates the table definition and row contents in the code page of the
database. If the data was exported from a DB2 table, sub-table, or
hierarchy, indexes are created. If this option operates on a hierarchy, and
data was exported from DB2, a type hierarchy will also be created. This
option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS™ host database, and it
contains LONGVAR fields whose lengths, calculated on the page size, are
more than 254, CREATE might fail because the rows are too long. See
“Imported table re-creation” for a list of restrictions. In this case, the table
should be created manually, and IMPORT with INSERT should be
invoked, or, alternatively, the LOAD command should be used.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The schema specified through the DEFAULT clause identifies a
schema to use for validation when the XML Data Specifier (XDS) of an
imported XML document does not contain an SCH attribute identifying an
XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP
clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP
specifications will be ignored.

FROM filename
Specifies the name of the file that contains the data to be imported. This
must be a fully qualified path and the file must exist on the database
server.

HIERARCHY
Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The IGNORE clause specifies a list of one or more schemas to
ignore if they are identified by an SCH attribute. If an SCH attribute exists
in the XML Data Specifier for an imported XML document, and the schema
identified by the SCH attribute is included in the list of schemas to ignore,
then no schema validation will occur for the imported XML document.

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the
IGNORE clause.

IN tablespace-name
Identifies the table space in which the table will be created. The table space
must exist, and must be a REGULAR table space. If no other table space is
specified, all table parts are stored in this table space. If this clause is not
specified, the table is created in a table space created by the authorization
ID. If none is found, the table is placed into the default table space
USERSPACEL. If USERSPACET has been dropped, table creation fails.

INDEX IN tablespace-name
Identifies the table space in which any indexes on the table will be created.
This option is allowed only when the primary table space specified in the

84 Administrative Routines and Views

IN clause is a DMS table space. The specified table space must exist, and
must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done
when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is
to be inserted.

INSERT

Adds the imported data to the table without changing the existing table
data.

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows
(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This
table cannot be a system table, a created temporary table, a declared
temporary table, or a summary table.

One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except
in the case of an earlier server, when the fully qualified or the unqualified
table name should be used. A qualified table name is in the form:
schema.tablename. The schema is the user name under which the table was
created.

LOBS FROM lob-path

Specifies one or more fully qualified paths that store LOB files. The paths
must exist on the database server coordinator partition. The names of the
LOB data files are stored in the main data file (ASC, DEL, or IXF), in the
column that will be loaded into the LOB column. The maximum number of
paths that can be specified is 999. This will implicitly activate the
LOBSINFILE behavior.

This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG
VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with
any of these as source types) will be stored. This option is allowed only if
the primary table space specified in the IN clause is a DMS table space.
The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is
specified. Use the MAP clause to specify alternate schemas to use in place
of those specified by the SCH attribute of an XML Data Specifier (XDS) for
each imported XML document. The MAP clause specifies a list of one or
more schema pairs, where each pair represents a mapping of one schema
to another. The first schema in the pair represents a schema that is referred
to by an SCH attribute in an XDS. The second schema in the pair
represents the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause,
it cannot also be specified in the IGNORE clause.

Chapter 4. ADMIN_CMD procedure and associated routines 85

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

MESSAGES ON SERVER
Specifies that the message file created on the server by the IMPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the
data is to be exported to.

METHOD

L Specifies the start and end column numbers from which to import
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the
only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5,
and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT
NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid
request, while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.
P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is
the only valid option for the DEL file type.

MODIFIED BY filetype-mod
Specifies file type modifier options. See [“File type modifiers for the import|
[utility” on page 94

NOTIMEOUT
Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.
Other applications are not affected.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L parameter is specified.
That is, the input file is an ASC file. The null indicator list is a

86 Administrative Routines and Views

comma-separated list of positive integers specifying the column number of
each null indicator field. The column number is the byte offset of the null
indicator field from the beginning of a row of data. There must be one
entry in the null indicator list for each data field defined in the METHOD
L parameter. A column number of zero indicates that the corresponding
data field always contains data.

A value of Y in the NULL indicator column specifies that the column data
is NULL. Any character other than Y in the NULL indicator column
specifies that the column data is not NULL, and that column data specified
by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY
option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

* ASC (non-delimited ASCII format)

* DEL (delimited ASCII format), which is used by a variety of database
manager and file manager programs

¢ WSF (work sheet format), which is used by programs such as:
— Lotus 1-2-3
- Lotus Symphony

* IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2.

Important: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

The WSF file type is not supported when you import to a nickname.

REPLACE
Deletes all existing data from the table by truncating the data object, and
inserts the imported data. The table definition and the index definitions are
not changed. This option can only be used if the table exists. If this option
is used when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement's NOT
LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement's
ACTIVE NOT LOGGED INITIALLY clause.

If an import with the REPLACE option is performed within the same
transaction as a CREATE TABLE or ALTER TABLE statement where the
NLI clause is invoked, the import will not honor the NLI clause. All inserts
will be logged.

Workaround 1
Delete the contents of the table using the DELETE statement, then
invoke the import with INSERT statement

Workaround 2
Drop the table and recreate it, then invoke the import with INSERT
statement.

This limitation applies to DB2 Universal Database Version 7 and DB2 UDB
Version 8

Chapter 4. ADMIN_CMD procedure and associated routines 87

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be
removed in a future release. For additional details, see “IMPORT command
options CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the
data object, and inserts the imported data without changing the table
definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as
the row contents, in the code page of the database. See Imported table
re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when
moving data between hierarchies, only the data for an entire hierarchy, not
individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

RESTARTCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to
SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually
exclusive.

ROWCOUNT n
Specifies the number 1 of physical records in the file to be imported
(inserted or updated). Allows a user to import only n rows from a file,
starting from the record determined by the SKIPCOUNT or
RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT
options are not specified, the first n rows are imported. If SKIPCOUNT m
or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When
compound inserts are used, user specified ROWCOUNT # is rounded up
to the first integer multiple of the compound count value.

SKIPCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to
RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually
exclusive.

STARTING sub-table-name
A keyword for hierarchy only, requesting the default order, starting from
sub-table-name. For PC/IXF files, the default order is the order stored in the
input file. The default order is the only valid order for the PC/IXF file
format.

sub-table-list
For typed tables with the INSERT or the INSERT_UPDATE option, a list
of sub-table names is used to indicate the sub-tables into which data is to
be imported.

traversal-order-list
For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE
option, a list of sub-table names is used to indicate the traversal order of
the importing sub-tables in the hierarchy.

UNDER sub-table-name
Specifies a parent table for creating one or more sub-tables.

88 Administrative Routines and Views

WARNINGCOUNT #n
Stops the import operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the import file or the target table is specified
incorrectly, the import utility will generate a warning for each row that it
attempts to import, which will cause the import to fail. If n is zero, or this
option is not specified, the import operation will continue regardless of the
number of warnings issued.

XML FROM xml-path
Specifies one or more paths that contain the XML files.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS
clause, the schema used to perform validation will be determined
by the SCH attribute of the XDS. If an SCH attribute is not present
in the XDS, no schema validation will occur unless a default
schema is specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify
the schema determination behavior. These three optional clauses
apply directly to the specifications of the XDS, and not to each
other. For example, if a schema is selected because it is specified by
the DEFAULT clause, it will not be ignored if also specified by the
IGNORE clause. Similarly, if a schema is selected because it is
specified as the first part of a pair in the MAP clause, it will not be
re-mapped if also specified in the second part of another MAP
clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemalocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION
HINTS clause is specified, the SCH attribute of the XML Data
Specifier (XDS) will be ignored for all XML columns.

Chapter 4. ADMIN_CMD procedure and associated routines 89

See examples of the XMLVALIDATE option below.
Example

The following example shows how to import information from the file myfile.ixf
to the STAFF table in the SAMPLE database.
CALL SYSPROC.ADMIN_CMD

("IMPORT FROM /home/userid/data/myfile.ixf
OF IXF MESSAGES ON SERVER INSERT INTO STAFF')

Usage notes

Any path used in the IMPORT command must be a valid fully-qualified path on
the coordinator node for the server.

If the ALLOW WRITE ACCESS or COMMITCOUNT options are specified, a
commit will be performed by the import utility. This causes the ADMIN_CMD
procedure to return an SQL30090N error with reason code 1 in the case of Type 2
connections.

If the value to be assigned for a column of a result set from the ADMIN_CMD
procedure is greater than the maximum value for the data type of the column, then

the maximum value for the data type is assigned and a warning message,
SQL1155W, is returned.

Be sure to complete all table operations and release all locks before starting an
import operation. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.
The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:

* If it is likely that subsequent INSERT statements can be successful, a warning
message is written to the message file, and processing continues.

 If it is likely that subsequent INSERT statements will fail, and there is potential
for database damage, an error message is written to the message file, and
processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the
application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE
operation, the utility performs an automatic COMMIT on inserted records. If the
system fails, or the application interrupts the database manager after an automatic
COMMLIT, a table with partial data remains in the database. Use the REPLACE or
the REPLACE_CREATE option to rerun the whole import operation, or use
INSERT with the RESTARTCOUNT parameter set to the number of rows
successfully imported.

Updates from the IMPORT command will always be committed at the end of an
IMPORT task. The IMPORT command can also perform automatic commits during

90 Administrative Routines and Views

its execution to reduce the size of the lock list and the active log space. The
IMPORT command will rollback if the active log becomes full during IMPORT
processing.

* By default, automatic commits are not performed for the INSERT or the
INSERT_UPDATE option. They are, however, performed if the
COMMITCOUNT parameter is not zero.

* Offline import does not perform automatic COMMITs if any of the following
conditions are true:

— The target is a view, not a table
— Compound inserts are used
— Buffered inserts are used

* By default, online import performs automatic commit to free both the active log
space and the lock list. Automatic commits are not performed only if a
COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is
written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any
dependents other than itself, or an object view if its base table has any dependents
(including itself). To replace such a table or a view, do the following;:

1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when
recreating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported using SELECT =*.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the
size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the
client might be missing messages from the middle of the import operation. The
first 30 KB of message information and the last 30 KB of message information are
always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on
a hard drive rather than on diskettes.

Chapter 4. ADMIN_CMD procedure and associated routines 91

The database table or hierarchy must exist before data in the ASC, DEL, or WSF
file formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data
from a PC/IXF file. For typed tables, IMPORT CREATE can create the type
hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand. The file copying step is not necessary if the
source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified,
the import utility assumes that data in the PC/IXF file has the same code page as
the application performing the import. This occurs even if there is a conversion
table for the two code pages. If the two differ, the FORCEIN option is not
specified, and there is a conversion table, all data in the PC/IXF file will be
converted from the file code page to the application code page. If the two differ,
the FORCEIN option is not specified, and there is no conversion table, the import
operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX
operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,
import of PC/IXF data files might cause DB2 to return an error, because the
maximum size of an SQL statement was exceeded. This situation can occur only if
the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not
apply to import of DEL or ASC files. If PC/IXF files are being used to create a
new table, an alternative is use db2look to dump the DDL statement that created
the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
0S/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import
(INSERT option) is supported. The RESTARTCOUNT parameter, but not the
COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined
in the PC/IXEF file; sub-table definitions cannot be altered. When using options
other than CREATE with typed tables, the traversal order list enables one to
specify the traverse order; therefore, the traversal order list must match the one
used during the export operation. For the PC/IXF file format, one need only
specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF
file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a created temporary table, a declared
temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. Only the name of the first file

92 Administrative Routines and Views

must be specified in the IMPORT command. For example, IMPORT FROM data.ixf
OF IXF INSERT INTO TABLEL. The file data.002, etc should be available in the same
directory as data.ixf.

On the Windows operating system:
* Importing logically split PC/IXF files is not supported.
¢ Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you
import the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for delimiters
by specifying the delprioritychar file type modifier in the IMPORT command.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or
INSERT_UPDATE command parameters, you must ensure that you have
CONTROL privilege on the participating nickname. You must ensure that the
nickname you want to use when doing an import operation already exists. There
are also several restrictions you should be aware of as shown in the IMPORT
command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.
Result set information
Command execution status is returned in the SQLCA resulting from the CALL

statement. If execution is successful, the command returns additional information
in result sets as follows:

Table 42. Result set returned by the IMPORT command

Column name Data type Description

ROWS_READ BIGINT Number of records read from the file during import.

ROWS_SKIPPED BIGINT Number of records skipped before inserting or updating
begins.

ROWS_INSERTED BIGINT Number of rows inserted into the target table.

ROWS_UPDATED BIGINT Number of rows in the target table updated with

information from the imported records (records whose
primary key value already exists in the table).

ROWS_REJECTED BIGINT Number of records that could not be imported.

ROWS_COMMITTED BIGINT Number of records imported successfully and
committed to the database.

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve messages created

by this utility. For example:

SELECT SQLCODE, MSG
FROM TABLE (SYSPROC.ADMIN_GET_MSGS
('1203498_txu')) AS MSG

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up messages created
by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
('1203498 txu')

Chapter 4. ADMIN_CMD procedure and associated routines 93

File type modifiers for the import utility
Table 43. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to
insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the
import operation will fail. The transaction log must be large enough to
accommodate either the number of rows specified by COMMITCOUNT, or the
number of rows in the data file if COMMITCOUNT is not specified. It is
therefore recommended that the COMMITCOUNT option be specified to avoid
transaction log overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables,
and the following modifiers: usedefaults, identitymissing, identityignore,
generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all generated columns is
present in the data file but should be ignored. This results in all values for the
generated columns being generated by the utility. This modifier cannot be used
with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the generated columns (not even NULLs), and will therefore generate a
value for each row. This modifier cannot be used with the generatedignore
modifier.

identityignore This modifier informs the import utility that data for the identity column is
present in the data file but should be ignored. This results in all identity values
being generated by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This
means that for GENERATED ALWAYS columns, no rows will be rejected. This
modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with the identityignore modifier.

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmmy/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

The LOBS FROM clause specifies where the LOB files are located when the
“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the
LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility
the list of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data
from a regular table, and then to invoke an import operation (using this modifier)
to convert the data into a single sub-table.

94 Administrative Routines and Views

Table 43. Valid file type modifiers for the import utility: All file formats (continued)

Modifier

Description

nodefaults

If a source column for a target table column is not explicitly specified, and the
table column is not nullable, default values are not loaded. Without this option, if
a source column for one of the target table columns is not explicitly specified, one
of the following occurs:

* If a default value can be specified for a column, the default value is loaded

* If the column is nullable, and a default value cannot be specified for that
column, a NULL is loaded

e If the column is not nullable, and a default value cannot be specified, an error
is returned, and the utility stops processing.

norowwarnings

Suppresses all warnings about rejected rows.

rowchangetimestampignore

This modifier informs the import utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMP being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing

If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with the rowchangetimestampignore modifier.

seclabelchar

Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. IMPORT
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)
is returned. If the string does not represent a valid security label that is part of
the security policy protecting the table then the row is not loaded and a warning
(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

seclabelname

Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. IMPORT will convert the name
to the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.
Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

Chapter 4. ADMIN_CMD procedure and associated routines 95

Table 43. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

usedefaults If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

non

» For DEL files: two adjacent column delimiters (",,") or two adjacent column
delimiters separated by an arbitrary number of spaces (", ,") are specified for a
column value.

* For DEL/ASC/WSF files: A row that does not have enough columns, or is not
long enough for the original specification.
Note: For ASC files, NULL column values are not considered explicitly
missing, and a default will not be substituted for NULL column values. NULL
column values are represented by all space characters for numeric, date, time,
and /timestamp columns, or by using the NULL INDICATOR for a column of
any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

e For DEL/ASC/WSEF files: If the column is nullable, a NULL is loaded. If the
column is not nullable, the utility rejects the row.

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data from this code page to the
application code page during the import operation.

The following rules apply:

* For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

* nulTindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points.

Note:

1. The codepage modifier cannot be used with the Tobsinfile modifier.

2. If data expansion occurs when the code page is converted from the
application code page to the database code page, the data might be truncated
and loss of data can occur.

dateformat="x" x is the format of the date in the source file.? Valid date elements are:
YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)

MM - Month (two digits ranging from 1 - 12;
mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31;
mutually exclusive with D)
DDD - Day of the year (three digits ranging
from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"

“MM.DD.YYYY"

"YYYYDDD"

96 Administrative Routines and Views

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

implieddecimal

The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(S8,2) column as 123.45, not 12345.00.

timeformat="x"

x is the format of the time in the source file.? Valid time elements are:

H -

HH -

MM -

SSSSS -

T -

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:

"HH:MM:

"HH .MM

*SSSSS”

Hour (one or two
for a 12 hour
for a 24 hour

Hour (two digits
for a 12 hour
for a 24 hour
with H)

Minute (one or two digits ranging

from 0 - 59)

Minute (two digits ranging from 0 - 59;
mutually exclusive with M)
Second (one or two digits ranging

from 0 - 59)

Second (two digits ranging from 0 - 59;
mutually exclusive with S)

Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)

Meridian indicator (AM or PM)

SSII
"

digits ranging from 0 - 12
system, and 0 - 24

system)

ranging from 0 - 12
system, and 0 - 24

system; mutually exclusive

Chapter 4. ADMIN_CMD procedure and associated routines 97

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

timestampformat="x"

x is the format of the time stamp in the source file.? Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)

M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;
mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for
the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;
mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)

MM - Minute (two digits ranging from 0 - 59;
mutually exclusive with M, minute)

S - Second (one or two digits ranging from 0 - 59)

SS - Second (two digits ranging from 0@ - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86399; mutually
exclusive with other time elements)
U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the
number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of Jan' is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.uUuuuuu"

The valid values for the MMM element include: jan', 'feb', 'mar’, 'apr’, 'may’, jun’,
jul', 'aug’, 'sep’, 'oct’, nov' and 'dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined
date and time formats into a table called schedule:
db2 import from delfile2 of del

modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

98 Administrative Routines and Views

Table 44. Valid file type modifiers

for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier

Description

usegraphiccodepage

If usegraphiccodepage is given, the assumption is made that data being imported
into graphic or double-byte character large object (DBCLOB) data fields is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic code page is associated with the character code page. IMPORT
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the application if the codepage modifier is
not specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar

Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character codepage is the value
specified by the codepage file type modifier, or the application codepage if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic

Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.

Note: If the xmIgraphic modifier is specified with the IMPORT command, the
XML document to be imported must be encoded in the UTF-16 code page.
Otherwise, the XML document may be rejected with a parsing error, or it may be
imported into the table with data corruption.

Table 45. Valid file type modifiers

for the import utility: ASC (non-delimited ASCII) file format

Modifier

Description

nochecklengths

If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

Chapter 4. ADMIN_CMD procedure and associated routines 99

Table 45. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier

Description

nullindchar=x

x is a single character. Changes the character denoting a null value to x. The
default value of x is Y.?

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the null indicator character is specified to be the
letter N, then n is also recognized as a null indicator.

reclen=x

x is an integer with a maximum value of 32 767. x characters are read for each
row, and a new-line character is not used to indicate the end of the row.

striptblanks

Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate
trailing blank spaces:
db2 import from myfile.asc of asc
modified by striptblanks

method 1 (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls

Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

Table 46. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier

Description

chardelx

x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.* If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter.
In the following example, chardel'' causes the import utility to interpret any
single quotation mark (') it encounters as a character string delimiter:

db2 "import from myfile.del of del

modified by chardel''
method p (1, 4) insert into staff (id, years)"

coldelx

x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.*

In the following example, coldel; causes the import utility to interpret any
semicolon (;) it encounters as a column delimiter:
db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

decplusblank

Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

100 Administrative Routines and Views

Table 46. Valid file type modifiers

for the import utility: DEL (delimited ASCII) file format (continued)

Modifier

Description

decptx

x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.*

In the following example, decpt; causes the import utility to interpret any
semicolon (;) it encounters as a decimal point:
db2 "import from myfile.del of del

modified by chardel''
decpt; messages msgs.txt insert into staff"

delprioritychar

The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:
"Smith, Joshua",4000,34.98<row delimiter>

"Vincent,<row delimiter>, is a manager", ...
. 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks

Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

nochardel

The import utility will assume all bytes found between the column delimiters to
be part of the column's data. Character delimiters will be parsed as part of
column data. This option should not be specified if the data was exported using
DB2 (unless nochardel was specified at export time). It is provided to support
vendor data files that do not have character delimiters. Improper usage might
result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel

Suppresses recognition of double character delimiters.

Table 47. Valid file type modifiers

for the import utility: IXF file format

Modifier

Description

forcein

Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to import each row.

indexixf

Directs the utility to drop all indexes currently defined on the existing table, and
to create new ones from the index definitions in the PC/IXF file. This option can
only be used when the contents of a table are being replaced. It cannot be used
with a view, or when a insert-column is specified.

Chapter 4. ADMIN_CMD procedure and associated routines 101

Table 47. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

indexschema=schema Uses the specified schema for the index name during index creation. If schema is
not specified (but the keyword indexschema is specified), uses the connection user
ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

forcecreate Specifies that the table should be created with possible missing or limited
information after returning SQL3311N during an import operation.

Table 48. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application
code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code

page.

Absent Present Character data in the file is assumed to be in the
application code page. Graphic data is assumed to be in
the code page of the application graphic data.

If the application code page is single-byte, then all data
is assumed to be in the application code page.

Warning: If the application code page is single-byte,
graphic data will be corrupted when imported into the
database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code

page.

Note:

1. The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted,
the import operation fails, and an error code is returned.

2. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter
in the DEL file format. A field separator is optional if the start and end

102 Administrative Routines and Views

positions of an element are unambiguous. Ambiguity can exist if (depending
on the modifier) elements such as D, H, M, or S are used, because of the
variable length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)

"M:M" (Which is which?)

"M:YYYY:M" (Both are interpreted as month.)

"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.

Following are some unambiguous time stamp formats:

"M:YYYY" (Month)

"S:M" (Minute)

"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following;:

. modified by coldel# ...
. modified by coldel0x23 ...
. modified by coldelX23 ...

Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

The following file type modifiers are not allowed when importing into a
nickname:

* indexixf

* indexschema

* dlidelfiletype

* nodefaults

* usedefaults

* no_type_idfiletype
* generatedignore
e generatedmissing
* identityignore

* identitymissing
* lobsinfile

The WSF file format is not supported for XML columns. Support for this file
format is also deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed

The CREATE mode is not supported for XML columns.

Chapter 4. ADMIN_CMD procedure and associated routines 103

8. All XML data must reside in XML files that are separate from the main data
file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML
column in the main data file.

9. XML documents are assumed to be in Unicode format or to contain a
declaration tag that includes an encoding attribute, unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.

11. If the XMLVALIDATE option is specified, documents that successfully
validate against their matching schema will be annotated with the schema
information as they are inserted. Rows containing documents that fail to
validate against their matching schema will be rejected. To successfully
perform the validation, the privileges held by the user invoking the import
must include at least one of the following;:

* DBADM authority
* USAGE privilege on the XML schema to be used in the validation

12. When importing into a table containing an implicitly hidden row change
timestamp column, the implicitly hidden property of the column is not
honoured. Therefore, the rowchangetimestampmissing file type modifier must
be specified in the import command if data for the column is not present in
the data to be imported and there is no explicit column list present.

INITIALIZE TAPE command using the ADMIN_CMD procedure

Initializes tapes for backup and restore operations to streaming tape devices. This
command is only supported on Windows operating systems.

Authorization

One of the following:
* SYSADM

* SYSCTRL

* SYSMAINT

Required connection
Database
Command syntax

»»—INITIALIZE TAPE >«
|—ON—device—I |—USING—blksize—|

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPEO. The
device specified must be relative to the server.

USING blksize
Specifies the block size for the device, in bytes. The device is initialized to
use the block size specified, if the value is within the supported range of
block sizes for the device.

The buffer size specified for the BACKUP DATABASE command and for
RESTORE DATABASE must be divisible by the block size specified here.

104 Administrative Routines and Views

If a value for this parameter is not specified, the device is initialized to use
its default block size. If a value of zero is specified, the device is initialized
to use a variable length block size; if the device does not support variable
length block mode, an error is returned.

When backing up to tape, use of a variable block size is currently not
supported. If you must use this option, ensure that you have well tested
procedures in place that enable you to recover successfully, using backup
images that were created with a variable block size.

When using a variable block size, you must specify a backup buffer size
that is less than or equal to the maximum limit for the tape devices that
you are using. For optimal performance, the buffer size must be equal to
the maximum block size limit of the device being used.

Example

Initialize the tape device to use a block size of 2048 bytes, if the value is within the
supported range of block sizes for the device.

CALL SYSPROC.ADMIN _CMD('initialize tape using 2048')
Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

LOAD command using the ADMIN_CMD procedure
Loads data into a DB2 table.

Data residing on the server can be in the form of a file, tape, or named pipe. Data
can also be loaded from a cursor defined from a query running against the
currently connected database or a different database under the same instance, or
by using a user-written script or application. If the COMPRESS attribute for the table
is set to YES, the data loaded will be subject to compression on every data and
database partition for which a dictionary already exists in the table, including data
in the XML storage object of the table.

Quick link to [“File type modifiers for the load utility” on page 130

Restrictions

The load utility does not support loading data at the hierarchy level. The load
utility is not compatible with range-clustered tables. The load utility does not
support the NOT LOGGED INITIALLY parameter for the CREATE TABLE or
ALTER TABLE statements.

Scope

This command can be issued against multiple database partitions in a single
request.

Authorization

One of the following:
* DATAACCESS
* LOAD authority on the database and

Chapter 4. ADMIN_CMD procedure and associated routines 105

— INSERT privilege on the table when the load utility is invoked in INSERT
mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

— INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

— INSERT privilege on the exception table, if such a table is used as part of the
load operation.

* To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is
returned.

* To load data into a table that has protected rows, the session authorization id
must hold a security label that meets these criteria:

— It is part of the security policy protecting the table

— It was granted to the session authorization ID for write access or for all access

If the session authorization id does not hold such a security label then the load
fails and an error (SQLSTATE 5U014) is returned. This security label is used to
protect a loaded row if the session authorization ID's LBAC credentials do not
allow it to write to the security label that protects that row in the data. This does
not happen, however, when the security policy protecting the table was created
with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of
the CREATE SECURITY POLICY statement. In this case the load fails and an
error (SQLSTATE 42519) is returned.

* If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

* If the LOCK WITH FORCE option is specified, SYSADM authority is required.

Since all load processes (and all DB2 server processes, in general) are owned by the
instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input
data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

Required connection
Database.

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

Command syntax

»»—L 0AD—FROM—Y.

-filena OF—filetyp

ipenai R

evic \\ |_
(—query-statement—) LOBS FROM—Y—lob-path.
(

—DATABASE—database-alias—query-statement—)—

L(ML FROM—'xml—path]—‘ \»MODIFIED BY—Y file—type—mod]—‘

106 Administrative Routines and Views

\\METHO L—(—column-start—column-endJ—)

B

B

.
olumn-nai)

N—(— .

—(—

olumn-posit z‘on]—)

Cl

\\NULL INDICATORS— (—X—null-indicator-1 ist]—)J

)

I—XMLPARSE—[STRIP—_l—WHITESPACF_J
RVE

PRESE!

|—XMLVALIDATE USING

XDS

|—DEFAU LT—schema-sql idJ
SCHEMA—schema-sqlid-
SCHEMALOCATION HINTS

i Ignore and Map parameters '—J |—SAVECOUNT—nJ

|—ROWCOUNT—nJ I—Irll\RNINGCOUNT—nJ I—MESSAGES ON SERVERJ |—TEMPFILES PATH—temp-pathnameJ

»——INSERT- INTO—table >
KEEPDICTIONARY- R
—REPLACE—H— |—
RESETDICTIONARY: (—Z—insert-column)
FRESTART——48 —M———
L-TERMINATE
R I—STATISTICS USE PROFILE
"o @ | o
L_FOR EXCEPTION—table Y

|:NORANGEEXC—’|
NOUNIQUEEXC:

WITHOUT PROMPTING
C 1

NO-

COPY. YES USE TSM

T0——device/directory

LOAD—Lib-nai

NONRECOVERABLE:

I—OPEN—num-SESS—SESSIDNSJ

|—OPEN—num-sess—SESSIONSJ

|—DATA BUFFER—bu_f_fer‘-SizeJ |—SORT BUFFER—bLI_ffer-sizeJ |—CPU_PARALLELISM—nJ |—DISK_PARALLELISM—nJ

|_ YES I—INDEXING MODE: AUTOSELECT
FETCH_PARALLELIS] N

REBUILD
INCREMENTAL:
DEFERRE

ALLOW NO ACCESS
r

|—ALLOM READ ACCESS

| LSET INTEGRITY PENDING CASCADE IMMF_DIATE_—I—I

I—USE—tabZespace-numeJ DEFERRED

|—LOCK WITH FORCEJ I—SOURCEUSEREXIT—executable—| Redirect Input/Qutput parameters '—L—J—I
PARALLELIZE:

Chapter 4. ADMIN_CMD procedure and associated routines

107

rPARTITIONED DB CONFIG—l |
Y partitioned-db-option

Ignore and Map parameters:

| >

| L J
IGNORE— (—Y—schema-sqlid——)

> |
>

|
\\MAP—(y (—schema-sqlz'd—,—schema-sqlid—)——)J

Redirect Input/Output parameters:

| |
1
I—REDIRECT—|:INPUT FROI BUFFER—input-bu |

ffer
FILE—input—file4 |—OUTPUT T0 FILE—ouzfpuzf-fiZeJ
OQUTPUT TO FILE—output-file

Notes:
1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Command parameters

FROM filename | pipename | device(query-statement) | (DATABASE database-alias
query-statement)
Specifies the file, pipe or device referring to an SQL statement that contains
the data being loaded, or the SQL statement itself and the optional source
database to load from cursor.

The query-statement option is used to LOAD from a cursor. It contains only
one query statement, which is enclosed in parentheses, and can start with
VALUES, SELECT or WITH. For example,

LOAD FROM (SELECT * FROM T1) OF CURSOR INSERT INTO T2

When the DATABASE database-alias clause is included prior to the query
statement in the parentheses, the LOAD command will attempt to load the
data using the query-statement from the given database as indicated by the
database-alias name, which is defined on the server. It must point to a
database exist on the server, and is a different database that the application
is currently connected to. Note that the LOAD will be executed using the
user ID and password explicitly provided for the currently connected
database (an implicit connection will cause the LOAD to fail).

If the input source is a file, pipe, or device, it must be accessible from the
coordinator partition on the server.

If several names are specified, they will be processed in sequence. If the
last item specified is a tape device and the user is prompted for a tape, the
LOAD will fail and the ADMIN_CMD procedure will return an error.

Note:

108 Administrative Routines and Views

1. A fully qualified path file name must be used and must exist on the
server.

2. If data is exported into a file using the EXPORT command using the
ADMIN_CMD procedure, the data file is owned by the fenced user ID.
This file is not usually accessible by the instance owner. To run the
LOAD from CLP or the ADMIN_CMD procedure, the data file must be
accessible by the instance owner ID, so read access to the data file must
be granted to the instance owner.

3. Loading data from multiple IXF files is supported if the files are
physically separate, but logically one file. It is not supported if the files
are both logically and physically separate. (Multiple physical files
would be considered logically one if they were all created with one
invocation of the EXPORT command.)

4. When loading XML data from files into tables in a partitioned database
environment, the XML data files must be read-accessible to all the
database partitions where loading is taking place.

OF filetype

Specifies the format of the data:

* ASC (non-delimited ASCII format)

* DEL (delimited ASCII format)

* IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2 databases.

¢ CURSOR (a cursor declared against a SELECT or VALUES statement).

Note: When using a CURSOR file type to load XML data into a table in a
distributed database environment, the PARTITION_ONLY and
LOAD_ONLY modes are not supported.

LOBS FROM lob-path
The path to the data files containing LOB values to be loaded. The path
must end with a slash. The path must be fully qualified and accessible
from the coordinator partition on the server . The names of the LOB data
files are stored in the main data file (ASC, DEL, or IXF), in the column that
will be loaded into the LOB column. The maximum number of paths that
can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

This option is ignored when specified in conjunction with the CURSOR file
type.

MODIFIED BY file-type-mod
Specifies file type modifier options. See [“File type modifiers for the load|
utility” on page 130

METHOD

L Specifies the start and end column numbers from which to load
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1. This method can only
be used with ASC files, and is the only valid method for that file
type.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L
parameter is specified; that is, the input file is an ASC file).
The null indicator list is a comma-separated list of positive
integers specifying the column number of each null

Chapter 4. ADMIN_CMD procedure and associated routines 109

indicator field. The column number is the byte offset of the
null indicator field from the beginning of a row of data.
There must be one entry in the null indicator list for each
data field defined in the METHOD L parameter. A column
number of zero indicates that the corresponding data field
always contains data.

A value of Y in the NULL indicator column specifies that
the column data is NULL. Any character other than Y in
the NULL indicator column specifies that the column data
is not NULL, and that column data specified by the
METHOD L option will be loaded.

The NULL indicator character can be changed using the
MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5,
and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT
NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid
request, while method N (F2, F1) is not valid. This method can
only be used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data
fields to be loaded. Each table column that is not nullable should
have a corresponding entry in the METHOD P list. For example,
given data fields F1, F2, F3, F4, F5, and F6, and table columns C1
INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method
P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not
valid. This method can only be used with file types IXF, DEL, or
CURSOR, and is the only valid method for the DEL file type.

XML FROM xml-path
Specifies one or more paths that contain the XML files. XDSs are contained
in the main data file (ASC, DEL, or IXF), in the column that will be loaded
into the XML column.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS
clause, the schema used to perform validation will be determined

110 Administrative Routines and Views

by the SCH attribute of the XDS. If an SCH attribute is not present
in the XDS, no schema validation will occur unless a default
schema is specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify
the schema determination behavior. These three optional clauses
apply directly to the specifications of the XDS, and not to each
other. For example, if a schema is selected because it is specified by
the DEFAULT clause, it will not be ignored if also specified by the
IGNORE clause. Similarly, if a schema is selected because it is
specified as the first part of a pair in the MAP clause, it will not be
re-mapped if also specified in the second part of another MAP
clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemalLocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION
HINTS clause is specified, the SCH attribute of the XML Data
Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The IGNORE clause specifies a list of one or more schemas to
ignore if they are identified by an SCH attribute. If an SCH attribute exists
in the XML Data Specifier for a loaded XML document, and the schema
identified by the SCH attribute is included in the list of schemas to ignore,
then no schema validation will occur for the loaded XML document.

Note:

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the
IGNORE clause.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is
specified. The schema specified through the DEFAULT clause identifies a
schema to use for validation when the XML Data Specifier (XDS) of a

loaded XML document does not contain an SCH attribute identifying an
XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP
clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP
specifications will be ignored.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is

Chapter 4. ADMIN_CMD procedure and associated routines 111

specified. Use the MAP clause to specify alternate schemas to use in place
of those specified by the SCH attribute of an XML Data Specifier (XDS) for
each loaded XML document. The MAP clause specifies a list of one or
more schema pairs, where each pair represents a mapping of one schema
to another. The first schema in the pair represents a schema that is referred
to by an SCH attribute in an XDS. The second schema in the pair
represents the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause,
it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

SAVECOUNT n
Specifies that the load utility is to establish consistency points after every n
rows. This value is converted to a page count, and rounded up to intervals
of the extent size. Since a message is issued at each consistency point, this
option should be selected if the load operation will be monitored using
LOAD QUERY. If the value of # is not sufficiently high, the
synchronization of activities performed at each consistency point will
impact performance.

The default value is zero, meaning that no consistency points will be
established, unless necessary.

This option is ignored when specified in conjunction with the CURSOR file
type or when loading a table containing an XML column.

ROWCOUNT n
Specifies the number of n physical records in the file to be loaded. Allows
a user to load only the first n rows in a file.

WARNINGCOUNT #n
Stops the load operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the load file or the target table is specified
incorrectly, the load utility will generate a warning for each row that it
attempts to load, which will cause the load to fail. If # is zero, or this
option is not specified, the load operation will continue regardless of the
number of warnings issued. If the load operation is stopped because the
threshold of warnings was encountered, another load operation can be
started in RESTART mode. The load operation will automatically continue
from the last consistency point. Alternatively, another load operation can
be initiated in REPLACE mode, starting at the beginning of the input file.

MESSAGES ON SERVER
Specifies that the message file created on the server by the LOAD
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

112 Administrative Routines and Views

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files
during a load operation, and should be fully qualified according to the
server database partition.

Temporary files take up file system space. Sometimes, this space
requirement is quite substantial. Following is an estimate of how much file
system space should be allocated for all temporary files:

* 136 bytes for each message that the load utility generates

* 15 KB overhead if the data file contains long field data or LOBs. This
quantity can grow significantly if the INSERT option is specified, and
there is a large amount of long field or LOB data already in the table.

INSERT

One of four modes under which the load utility can execute. Adds the
loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all
existing data from the table, and inserts the loaded data. The table
definition and index definitions are not changed. If this option is used
when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

KEEPDICTIONARY
An existing compression dictionary is preserved across the LOAD
REPLACE operation. Provided the table COMPRESS attribute is
YES, the newly replaced data is subject to being compressed using
the dictionary that existed prior to the invocation of the load. If no
dictionary previously existed in the table, a new dictionary is built
using the data that is being replaced into the table as long as the
table COMPRESS attribute is YES. The amount of data that is
required to build the compression dictionary in this case is subject
to the policies of ADC. This data is populated into the table as
uncompressed. Once the dictionary is inserted into the table, the
remaining data to be loaded is subject to being compressed with
this dictionary. This is the default parameter. For summary, see
Table 1 below.

The following example keeps the old dictionary if it is currently in
the table:
CALL SYSPROC.ADMIN_CMD('load from staff.del of del replace

keepdictionary into SAMPLE.STAFF statistics use profile
data buffer 8')

Table 49. LOAD REPLACE KEEPDICTIONARY

Table row data

XML storage
object dictionary

Compress dictionary exists | exists Compression dictionary |Data compression
YES YES Preserve table row data |Data to be loaded is subject to
and XML dictionaries. compression.

Chapter 4. ADMIN_CMD procedure and associated routines 113

Table 49. LOAD REPLACE KEEPDICTIONARY (continued)

Table row data

XML storage
object dictionary

Compress dictionary exists exists’ Compression dictionary |Data compression
YES YES NO Preserve table row data | Table row data to be loaded is
dictionary and build a subject to compression. After
new XML dictionary. XML dictionary is built,
remaining XML data to be
loaded is subject to
compression.
YES NO YES Build table row data After table row data
dictionary and preserve |dictionary is built, remaining
XML dictionary. table row data to be loaded is
subject to compression. XML
data to be loaded is subject to
compression.
YES NO NO Build new table row data | After dictionaries are built,
and XML dictionaries. remaining data to be loaded
is subject to compression.
NO YES YES Preserve table row data |Data to be loaded is not
and XML dictionaries. compressed.
NO YES NO Preserve table row data |Data to be loaded is not
dictionary. compressed.
NO NO YES No effect on table row Data to be loaded is not
dictionary. Preserve XML | compressed.
dictionary.
NO NO NO No effect. Data to be loaded is not
compressed.
Note:

114 Administrative Routines and Views

RESETDICTIONARY

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

This directive instructs LOAD REPLACE processing to build a new
dictionary for the table data object provided that the table
COMPRESS attribute is YES. If the COMPRESS attribute is NO and
a dictionary was already present in the table it will be removed
and no new dictionary will be inserted into the table. A
compression dictionary can be built with just one user record. If
the loaded data set size is zero and if there is a preexisting
dictionary, the dictionary will not be preserved. The amount of
data required to build a dictionary with this directive is not subject
to the policies of ADC. For summary, see Table 2 below.

The following example will reset the current dictionary and make a

new one:

CALL SYSPROC.ADMIN_CMD('load from staff.del of del replace
resetdictionary into SAMPLE.STAFF statistics use profile
data buffer 8')

Table 50. LOAD REPLACE RESETDICTIONARY

Table row data XML storage object
Compress dictionary exists |dictionary exists’ Compression dictionary |Data compression

YES YES YES Build new dictionaries®. | After dictionaries are built,

If the DATA CAPTURE | remaining data to be loaded is
CHANGES option is subject to compression.
enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

YES YES NO Build new dictionaries®. | After dictionaries are built,

If the DATA CAPTURE | remaining data to be loaded is
CHANGES option is subject to compression.
enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

YES NO YES Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not
compressed.

NO YES NO Remove table row data Data to be loaded is not

dictionary. compressed.

NO NO YES Remove XML storage Data to be loaded is not

object dictionary:. compressed.

NO NO NO No effect. All table data is not
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If a dictionary exists and the compression attribute is enabled,
but there are no records to load into the table partition, a new
dictionary cannot be built and the RESETDICTIONARY
operation will not keep the existing dictionary.

TERMINATE

One of four modes under which the load utility can execute. Terminates a
previously interrupted load operation, and rolls back the operation to the
point in time at which it started, even if consistency points were passed.
The states of any table spaces involved in the operation return to normal,
and all table objects are made consistent (index objects might be marked as

Chapter 4. ADMIN_CMD procedure and associated routines

115

invalid, in which case index rebuild will automatically take place at next
access). If the load operation being terminated is a LOAD REPLACE, the
table will be truncated to an empty table after the LOAD TERMINATE
operation. If the load operation being terminated is a LOAD INSERT, the
table will retain all of its original records after the LOAD TERMINATE
operation. For summary of dictionary management, see Table 3 below.

The LOAD TERMINATE option will not remove a backup pending state
from table spaces.

RESTART
One of four modes under which the load utility can execute. Restarts a
previously interrupted load operation. The load operation will
automatically continue from the last consistency point in the load, build, or
delete phase. For summary of dictionary management, see Table 4 below.

INTO table-name
Specifies the database table into which the data is to be loaded. This table
cannot be a system table, a declared temporary table, or a created
temporary table. An alias, or the fully qualified or unqualified table name
can be specified. A qualified table name is in the form schema.tablename. If

an unqualified table name is specified, the table will be qualified with the
CURRENT SCHEMA.

insert-column
Specifies the table column into which the data is to be inserted.

The load utility cannot parse columns whose names contain one or more
spaces. For example,
CALL SYSPROC.ADMIN_CMD('load from delfilel of del noheader

method P (1, 2, 3, 4, 5, 6, 7, 8, 9)

insert into tablel (BLOB1, S2, I3, Int 4, I5, 16, DT7, 18, TM9)')

will fail because of the Int 4 column. The solution is to enclose such
column names with double quotation marks:
CALL SYSPROC.ADMIN_CMD('load from delfilel of del noheader

method P (1, 2, 3, 4, 5, 6, 7, 8, 9)

insert into tablel (BLOBl, S2, I3, "Int 4", I5, I6, DT7, I8, TM9)')

FOR EXCEPTION fable-name
Specifies the exception table into which rows in error will be copied. Any
row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with
the CURRENT SCHEMA.

Information that is written to the exception table is not written to the
dump file. In a partitioned database environment, an exception table must
be defined for those database partitions on which the loading table is
defined. The dump file, otherwise, contains rows that cannot be loaded
because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify a
load exception table is not supported in the following cases:
* When using label-based access control (LBAC).
* When loading data into a partitioned table.
NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be
inserted into the exception table.

116 Administrative Routines and Views

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique constraint it
will not be inserted into the exception table.

STATISTICS USE PROFILE
Instructs load to collect statistics during the load according to the profile
defined for this table. This profile must be created before load is executed.
The profile is created by the RUNSTATS command. If the profile does not
exist and load is instructed to collect statistics according to the profile, a
warning is returned and no statistics are collected.

During load, distribution statistics are not collected for columns of type
XML.

STATISTICS NO
Specifies that no statistics are to be collected, and that the statistics in the
catalogs are not to be altered. This is the default.

COPY NO
Specifies that the table space in which the table resides will be placed in
backup pending state if forward recovery is enabled (that is, logretain or
userexit is on). The COPY NO option will also put the table space state
into the Load in Progress table space state. This is a transient state that will
disappear when the load completes or aborts. The data in any table in the
table space cannot be updated or deleted until a table space backup or a
full database backup is made. However, it is possible to access the data in
any table by using the SELECT statement.

LOAD with COPY NO on a recoverable database leaves the table spaces in
a backup pending state. For example, performing a LOAD with COPY NO
and INDEXING MODE DEFERRED will leave indexes needing a refresh.
Certain queries on the table might require an index scan and will not
succeed until the indexes are refreshed. The index cannot be refreshed if it
resides in a table space which is in the backup pending state. In that case,
access to the table will not be allowed until a backup is taken. Index
refresh is done automatically by the database when the index is accessed
by a query. If one of COPY NO, COPY YES, or NONRECOVERABLE is
not specified, and the database is recoverable (logretain or logarchmeth1 is
enabled), then COPY NO is the default.

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled.

USE TSM
Specifies that the copy will be stored using Tivoli Storage Manager
(TSM).

OPEN num-sess SESSIONS
The number of I/0 sessions to be used with TSM or the vendor
product. The default value is 1.

TO device/directory
Specifies the device or directory on which the copy image will be
created.

LOAD Ilib-name
The name of the shared library (DLL on Windows operating
systems) containing the vendor backup and restore I/O functions
to be used. It can contain the full path. If the full path is not given,
it will default to the path where the user exit programs reside.

Chapter 4. ADMIN_CMD procedure and associated routines 117

NONRECOVERABLE
Specifies that the load transaction is to be marked as nonrecoverable and
that it will not be possible to recover it by a subsequent roll forward
action. The roll forward utility will skip the transaction and will mark the
table into which data was being loaded as "invalid". The utility will also
ignore any subsequent transactions against that table. After the roll
forward operation is completed, such a table can only be dropped or
restored from a backup (full or table space) taken after a commit point
following the completion of the non-recoverable load operation.

With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not have
to be made during the load operation. If one of COPY NO, COPY YES, or
NONRECOVERABLE is not specified, and the database is not recoverable
(logretain or logarchmeth1 is not enabled), then NONRECOVERABLE is
the default.

WITHOUT PROMPTING
Specifies that the list of data files contains all the files that are to be
loaded, and that the devices or directories listed are sufficient for the entire
load operation. If a continuation input file is not found, or the copy targets
are filled before the load operation finishes, the load operation will fail,
and the table will remain in load pending state.

This is the default. Any actions which normally require user intervention
will return an error message.

DATA BUFFER buffer-size
Specifies the number of 4 KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data within the utility.
If the value specified is less than the algorithmic minimum, the minimum
required resource is used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. In this situation, the utility heap is dynamically
increased as needed until the database_memory limit is reached. This
memory will be released once the load operation completes.

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

SORT BUFFER buffer-size
This option specifies a value that overrides the sortheap database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the INDEXING MODE
parameter is not specified as DEFERRED. The value that is specified
cannot exceed the value of sortheap. This parameter is useful for throttling
the sort memory that is used when loading tables with many indexes
without changing the value of sortheap, which would also affect general
query processing.

CPU_PARALLELISM #n
Specifies the number of processes or threads that the load utility will create
for parsing, converting, and formatting records when building table
objects. This parameter is designed to exploit the number of processes

118 Administrative Routines and Views

running per database partition. It is particularly useful when loading
presorted data, because record order in the source data is preserved. If the
value of this parameter is zero, or has not been specified, the load utility
uses an intelligent default value (usually based on the number of CPUs
available) at run time.

Note:

1. If this parameter is used with tables containing either LOB or LONG
VARCHAR fields, its value becomes one, regardless of the number of
system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the
loader to perform many more I/O operations to flush both data and
table metadata. When CPU_PARALLELISM is greater than one, the
flushing operations are asynchronous, permitting the loader to exploit
the CPU. When CPU_PARALLELISM is set to one, the loader waits on
I/0 during consistency points. A load operation with
CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,
completes faster than the same operation with CPU_PARALLELISM
set to one, even though there is only one CPU.

DISK_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

FETCH_PARALLELISM YES | NO
When performing a load from a cursor where the cursor is declared using
the DATABASE keyword, or when using the API sqlu_remotefetch_entry
media entry, and this option is set to YES, the load utility attempts to
parallelize fetching from the remote data source if possible. If set to NO,
no parallel fetching is performed. The default value is YES. For more
information, see “Moving data using the CURSOR file type”.

INDEXING MODE
Specifies whether the load utility is to rebuild indexes or to extend them
incrementally. Valid values are:

AUTOSELECT
The load utility will automatically decide between REBUILD or
INCREMENTAL mode. The decision is based on the amount of
data being loaded and the depth of the index tree. Information
relating to the depth of the index tree is stored in the index object.
RUNSTATS is not required to populate this information.
AUTOSELECT is the default indexing mode.

REBUILD
All indexes will be rebuilt. The utility must have sufficient
resources to sort all index key parts for both old and appended
table data.

INCREMENTAL
Indexes will be extended with new data. This approach consumes
index free space. It only requires enough sort space to append
index keys for the inserted records. This method is only supported
in cases where the index object is valid and accessible at the start
of a load operation (it is, for example, not valid immediately
following a load operation in which the DEFERRED mode was

Chapter 4. ADMIN_CMD procedure and associated routines 119

specified). If this mode is specified, but not supported due to the
state of the index, a warning is returned, and the load operation
continues in REBUILD mode. Similarly, if a load restart operation
is begun in the load build phase, INCREMENTAL mode is not
supported.

DEFERRED
The load utility will not attempt index creation if this mode is
specified. Indexes will be marked as needing a refresh. The first
access to such indexes that is unrelated to a load operation might
force a rebuild, or indexes might be rebuilt when the database is
restarted. This approach requires enough sort space for all key
parts for the largest index. The total time subsequently taken for
index construction is longer than that required in REBUILD mode.
Therefore, when performing multiple load operations with deferred
indexing, it is advisable (from a performance viewpoint) to let the
last load operation in the sequence perform an index rebuild,
rather than allow indexes to be rebuilt at first non-load access.

Deferred indexing is only supported for tables with non-unique
indexes, so that duplicate keys inserted during the load phase are
not persistent after the load operation.

ALLOW NO ACCESS
Load will lock the target table for exclusive access during the load. The
table state will be set to Load In Progress during the load. ALLOW NO
ACCESS is the default behavior. It is the only valid option for LOAD
REPLACE.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress. The SET INTEGRITY
statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS
Load will lock the target table in a share mode. The table state will be set
to both Load In Progress and Read Access. Readers can access the
non-delta portion of the data while the table is being load. In other words,
data that existed before the start of the load will be accessible by readers to
the table, data that is being loaded is not available until the load is
complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ
ACCESS load can use this option; LOAD TERMINATE or LOAD
RESTART of an ALLOW NO ACCESS load cannot use this option.
Furthermore, this option is not valid if the indexes on the target table are
marked as requiring a rebuild.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress, and Read Access. At the end
of the load, the table state Load In Progress will be removed but the table
states Set Integrity Pending and Read Access will remain. The SET
INTEGRITY statement must be used to take the table out of Set Integrity
Pending. While the table is in Set Integrity Pending and Read Access
states, the non-delta portion of the data is still accessible to readers, the
new (delta) portion of the data will remain inaccessible until the SET
INTEGRITY statement has completed. A user can perform multiple loads
on the same table without issuing a SET INTEGRITY statement. Only the
original (checked) data will remain visible, however, until the SET
INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

120 Administrative Routines and Views

USE tablespace-name
If the indexes are being rebuilt, a shadow copy of the index is built
in table space tablespace-name and copied over to the original table
space at the end of the load during an INDEX COPY PHASE. Only
system temporary table spaces can be used with this option. If not
specified then the shadow index will be created in the same table
space as the index object. If the shadow copy is created in the same
table space as the index object, the copy of the shadow index object
over the old index object is instantaneous. If the shadow copy is in
a different table space from the index object a physical copy is
performed. This could involve considerable I/O and time. The
copy happens while the table is offline at the end of a load during
the INDEX COPY PHASE.

Without this option the shadow index is built in the same table
space as the original. Since both the original index and shadow
index by default reside in the same table space simultaneously,
there might be insufficient space to hold both indexes within one
table space. Using this option ensures that you retain enough table
space for the indexes.

This option is ignored if the user does not specify INDEXING
MODE REBUILD or INDEXING MODE AUTOSELECT. This
option will also be ignored if INDEXING MODE AUTOSELECT
is chosen and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE
If LOAD puts the table into Set Integrity Pending state, the SET
INTEGRITY PENDING CASCADE option allows the user to specify
whether or not Set Integrity Pending state of the loaded table is
immediately cascaded to all descendents (including descendent foreign key
tables, descendent immediate materialized query tables and descendent
immediate staging tables).

IMMEDIATE
Indicates that Set Integrity Pending state is immediately extended
to all descendent foreign key tables, descendent immediate
materialized query tables and descendent staging tables. For a
LOAD INSERT operation, Set Integrity Pending state is not
extended to descendent foreign key tables even if the IMMEDIATE
option is specified.

When the loaded table is later checked for constraint violations
(using the IMMEDIATE CHECKED option of the SET INTEGRITY
statement), descendent foreign key tables that were placed in Set
Integrity Pending Read Access state will be put into Set Integrity
Pending No Access state.

DEFERRED
Indicates that only the loaded table will be placed in the Set
Integrity Pending state. The states of the descendent foreign key
tables, descendent immediate materialized query tables and
descendent immediate staging tables will remain unchanged.

Descendent foreign key tables might later be implicitly placed in
Set Integrity Pending state when their parent tables are checked for
constraint violations (using the IMMEDIATE CHECKED option of
the SET INTEGRITY statement). Descendent immediate
materialized query tables and descendent immediate staging tables

Chapter 4. ADMIN_CMD procedure and associated routines 121

will be implicitly placed in Set Integrity Pending state when one of
its underlying tables is checked for integrity violations. A query of
a table that is in the Set Integrity Pending state might succeed if an
eligible materialized query table that is not in the Set Integrity
Pending state is accessed by the query instead of the specified
table. A warning (SQLSTATE 01586) will be issued to indicate that
descendent tables have been placed in Set Integrity Pending state.
See the Notes® section of the SET INTEGRITY statement in the
SQL Reference for when these descendent tables will be put into
Set Integrity Pending state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

* Only the loaded table will be placed in Set Integrity Pending state. The
state of descendent foreign key tables, descendent immediate
materialized query tables and descendent immediate staging tables will
remain unchanged, and can later be implicitly put into Set Integrity
Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the
SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE
The utility acquires various locks including table locks in the process of
loading. Rather than wait, and possibly timeout, when acquiring a lock,
this option allows load to force off other applications that hold conflicting
locks on the target table. Applications holding conflicting locks on the
system catalog tables will not be forced off by the load utility. Forced
applications will roll back and release the locks the load utility needs. The
load utility can then proceed. This option requires the same authority as
the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

ALLOW NO ACCESS loads might force applications holding conflicting
locks at the start of the load operation. At the start of the load the utility
can force applications that are attempting to either query or modify the
table.

ALLOW READ ACCESS loads can force applications holding conflicting
locks at the start or end of the load operation. At the start of the load the
load utility can force applications that are attempting to modify the table.
At the end of the load operation, the load utility can force applications that
are attempting to either query or modify the table.

SOURCEUSEREXIT executable
Specifies an executable filename which will be called to feed data into the
utility.

REDIRECT
INPUT FROM

BUFFER input-buffer
The stream of bytes specified in input-buffer is
passed into the STDIN file descriptor of the process
executing the given executable.

FILE input-file
The contents of this client-side file are passed into
the STDIN file descriptor of the process executing
the given executable.

OUTPUT TO

122 Administrative Routines and Views

FILE output-file
The STDOUT and STDERR file descriptors are
captured to the fully qualified server-side file
specified.

PARALLELIZE
Increases the throughput of data coming into the load utility by
invoking multiple user exit processes simultaneously. This option is
only applicable in multi-partition database environments and is
ignored in single-partition database environments.

For more information, see “Moving data using a customized application
(user exit)”.

PARTITIONED DB CONFIG partitioned-db-option
Allows you to execute a load into a table distributed across multiple
database partitions. The PARTITIONED DB CONFIG parameter allows
you to specify partitioned database-specific configuration options. The
partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x
OUTPUT_DBPARTNUMS X
PARTITIONING_DBPARTNUMS X
MODE x

MAX_NUM_PART AGENTS x
ISOLATE_PART_ERRS X
STATUS_INTERVAL x
PORT_RANGE x
CHECK_TRUNCATION
MAP_FILE_INPUT x
MAP_FILE_OUTPUT x
TRACE x

NEWLINE

DISTFILE x
OMIT_HEADER
RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in “Load configuration
options for partitioned database environments”.

RESTARTCOUNT
Reserved.

USING directory
Reserved.

Example

Issue a load with replace option for the employee table data from a file.
CALL SYSPROC.ADMIN_CMD('LOAD FROM /home/theresax/tmp/emp_exp.dat
OF DEL METHOD P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
MESSAGES /home/theresax/tmp/emp_load.msg
REPLACE INTO THERESAX.EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, SALARY,
BONUS, COMM) COPY NO INDEXING MODE AUTOSELECT ISOLATE_PART_ERRS
LOAD_ERRS_ONLY MODE PARTITION_AND LOAD')

The following is an example of output from a single-partition database.
Result set 1

ROWS_READ ROWS_SKIPPED ROWS_LOADED ROWS_REJECTED

Chapter 4. ADMIN_CMD procedure and associated routines 123

32 0 32 0 ...
1 record(s) selected.

Return Status = 0

Output from a single-partition database (continued).
. ROWS_DELETED ROWS_COMMITTED MSG_RETRIEVAL

TABLE(SYSPROC.ADMIN_GET_MSGS(
'2203498_thx')) AS MSG

Output from a single-partition database (continued).
. MSG_REMOVAL

::: CALL SYSPROC.ADMIN_REMOVE_MSGS('2203498_thx'5..

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a multi-partition
database: ROWS_PARTITIONED and NUM_AGENTINFO_ENTRIES.

The following is an example of output from a multi-partition database.
Result set 1

ROWS_READ ROWS_REJECTED ROWS_PARTITIONED NUM_AGENTINFO_ENTRIES ...

1 record(s) selected.

Output from a multi-partition database (continued).
. MSG_RETRIEVAL MSG_REMOVAL

. SELECT DBPARTITIONNUM, AGENT TYPE, CALL SYSPROC.ADMIN_REMOVE_MSGS
SQLCODE, MSG_TEXT FROM TABLE (12203498 _thx")
(SYSPROC.ADMIN_GET_MSGS
(12203498 _thx')) AS MSG

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a single-partition
database: ROWS_SKIPPED, ROWS_LOADED, ROWS_DELETED and
ROWS_COMMITTED.

Output from a multi-partition database (continued).
Result set 2

DBPARTITIONNUM SQLCODE TABSTATE AGENTTYPE

20 0 NORMAL LOAD

30 0 NORMAL LOAD

20 0 NORMAL PARTITION

10 0 NORMAL PRE_PARTITION

124 Administrative Routines and Views

1 record(s) selected.

Return Status = 0

Examples of loading data from XML documents
Loading XML data

Example 1

The user has constructed a data file with XDS fields to describe the documents that
are to be inserted into the table. It might appear like this :

1, "<XDS FIL=""filel.xml"" />"
2, "<XDS FIL='file2.xml' OFF='23' LEN='45' />"

For the first row, the XML document is identified by the file named filel.xml.
Note that since the character delimiter is the double quote character, and double
q