
DB2 Version 9.5

for Linux, UNIX, and Windows

pureXML Guide

SC23-5871-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

pureXML Guide

SC23-5871-00

���

Note

Before using this information and the product it supports, read the general information under Appendix C, “Notices,” on

page 399.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Chapter 1. Introduction 1

pureXML overview 1

XML data type 3

XML input and output overview 4

Comparison of the XML model and the relational

model 8

XQuery and XPath data model 10

Sequences and items 10

Atomic values 11

Node hierarchies 11

Node properties 12

Node kinds 13

Document order of nodes 15

Node identity 16

Typed values and string values of nodes . . . 16

Tools that support XML 17

Federation support for pureXML 19

Replication and event publishing support for

pureXML 19

Articles on XML support 19

Chapter 2. Tutorial 21

Tutorial for pureXML 21

Exercise 1: Creating a DB2 database and table that

can store XML data 22

Exercise 2: Creating indexes over XML data . . . 22

Exercise 3: Inserting XML documents into XML

typed columns 23

Exercise 4: Updating XML documents stored in an

XML column 24

Exercise 5: Deleting rows based on the content of

XML documents 25

Exercise 6: Querying XML data 27

Exercise 7: Validating XML documents against XML

schemas 30

Exercise 8: Transforming with XSLT stylesheets . . 31

Chapter 3. XML storage 35

XML storage overview 35

XML storage object 35

XML base table row storage 36

Storage requirements for XML documents 37

Chapter 4. Inserting XML data 39

Inserting XML data overview 39

Creation of tables with XML columns 39

Addition of XML columns to existing tables . . . 39

Insertion into XML columns 40

XML parsing 41

XML data integrity 45

XML validation 45

Check constraints on XML columns 48

Trigger processing of XML data 49

Using XML in a non-Unicode database 51

Preference of database managed table spaces for

native XML data store performance 56

Chapter 5. Querying XML data 57

Querying XML data 57

Introduction to XQuery 57

Retrieving DB2 data with XQuery functions . . . 58

Introduction to querying XML data with SQL . . . 59

Comparison of XQuery to SQL 60

Comparison of methods for querying XML data . . 61

Specifying XML namespaces 62

XMLQUERY function overview 64

Non-empty sequences returned by XMLQUERY 64

Empty sequences returned by XMLQUERY . . . 65

Casting of XMLQUERY results to non-XML types 67

Casting between data types 67

XMLQUERY 74

XMLTABLE function overview 77

XMLTABLE example: Inserting values returned

from XMLTABLE 79

XMLTABLE example: Returning one row for each

occurrence of an item 80

XMLTABLE 81

XMLEXISTS predicate when querying XML data . . 86

XMLEXISTS predicate usage 87

XMLEXISTS predicate 88

Passing parameters between SQL statements and

XQuery expressions 90

Constant and parameter marker passing to

XMLEXISTS and XMLQUERY 90

Simple column name passing with XMLEXISTS,

XMLQUERY, or XMLTABLE 91

Passing parameters from XQuery to SQL . . . 93

Data retrieval with XQuery 94

Guidelines for matching indexes with queries

overview 96

Restrictiveness of index definitions 97

Considerations when specifying text() nodes . . 99

Data type of literals 100

Join predicate conversion 101

Indeterminate query evaluation 102

Full-text search in XML documents 103

Retrieval of data in XML columns to earlier DB2

clients 104

SQL/XML publishing functions for constructing

XML values 104

Examples of publishing XML values 106

Transforming with XSLT stylesheets 109

Special character handling in SQL/XML

publishing functions 118

XML serialization 119

Differences in an XML document after storage and

retrieval 121

© Copyright IBM Corp. 2006, 2007 iii

Data types for archiving XML documents 122

Chapter 6. Indexing XML data 123

Indexing XML data overview 123

Index XML pattern expressions 124

XML namespace declarations 125

Data types associated with index XML pattern

expressions 127

Data type conversion for indexes over XML data 128

Invalid XML values 129

Document rejection or CREATE INDEX

statement failure 131

Summary tables for conversion to the index

XML data type 132

XML schemas and index key generation 134

Indexing elements with complex schema types . . 135

UNIQUE keyword semantics 139

Database objects associated with XML data

indexing 140

Logical and physical indexes over XML data 140

Other database objects associated with XML

columns 141

Recreation of indexes over XML data 142

CREATE INDEX 142

Sample queries against indexes over XML data . . 158

Restrictions on indexes over XML data 160

Common XML indexing issues 161

Troubleshooting SQL20305N messages issued by

INSERT or UPDATE statements 162

Troubleshooting SQL20306N messages issued by

CREATE INDEX statements on populated tables 164

Chapter 7. Updating XML data 167

Updating XML data 167

Use of updating expressions in a transform

expression 168

Updating XML documents with information from

other tables 172

Deletion of XML data from tables 172

Chapter 8. XML schema repository 175

Dependency management for XML schemas, DTDs,

and external entities 175

XSR objects 175

XSR object registration 175

Registering XSR objects through stored

procedures 177

Registering XSR objects through the command

line processor 177

Java support for XML schema registration and

removal 178

Altering registered XSR objects 180

Evolving an XML schema 181

Compatibility requirements for evolving an

XML schema 181

Scenario: Evolving an XML schema 188

Examples of extracting XML schema information 190

Listing XML schemas registered with the XSR 190

Retrieving all components of an XML schema

registered with the XSR 190

Retrieving the XML schema of an XML

document 191

Stored procedures 191

XSR_REGISTER procedure 191

XSR_ADDSCHEMADOC procedure 192

XSR_COMPLETE procedure 194

XSR_DTD procedure 195

XSR_EXTENTITY procedure 196

XSR_UPDATE procedure 197

Commands 199

REGISTER XMLSCHEMA 199

ADD XMLSCHEMA DOCUMENT 200

COMPLETE XMLSCHEMA 202

REGISTER XSROBJECT 202

UPDATE XMLSCHEMA 204

Chapter 9. XML data movement . . . 207

XML data movement overview 207

Important considerations for XML data movement 207

Query and XPath Data Model 208

LOB and XML file behavior when importing and

exporting 209

XML data specifier 210

Exporting XML data 211

Importing XML data 214

Loading XML data 214

Resolving indexing errors when loading XML

data 215

Chapter 10. Application programming

and routines support 223

Application programming language support for

XML 223

CLI 224

XML data handling in CLI applications -

Overview 224

XML column inserts and updates in CLI

applications 225

XML data retrieval in CLI applications 226

Changing of default XML type handling in CLI

applications 227

Embedded SQL 227

Declaring XML host variables in embedded SQL

applications 227

Example: Referencing XML host variables in

embedded SQL applications 228

Executing XQuery expressions in embedded

SQL applications 229

Recommendations for developing embedded

SQL applications with XML and XQuery . . . 231

Identifying XML values in an SQLDA 232

Java 232

XML data in JDBC applications 232

XML data in SQLJ applications 239

PHP 244

Introduction to PHP application development

for DB2 244

Executing XQuery expressions in PHP

(ibm_db2) 245

Routines 246

iv pureXML Guide

XML and XQuery support in SQL procedures 246

XML data type support in external routines . . 248

Performance of routines 262

Sample applications 269

pureXML Samples 269

pureXML - Administration samples 270

pureXML - Application Development samples 272

Chapter 11. XML data encoding . . . 277

XML data encoding 277

Background information on XML internal encoding 277

Considerations 278

Encoding considerations for input of XML data

to a database 278

Encoding considerations for retrieval of XML

data from a database 278

Encoding considerations for passing XML data

in routine parameters 279

Encoding considerations for XML data in JDBC,

SQLJ, and .NET applications 279

Scenarios 280

Encoding scenarios for input of internally

encoded XML data to a database 280

Encoding scenarios for input of externally

encoded XML data to a database 282

Encoding scenarios for retrieval of XML data

with implicit serialization 284

Encoding scenarios for retrieval of XML data

with explicit XMLSERIALIZE 286

Chapter 12. Annotated XML schema

decomposition 289

Annotated XML schema decomposition 289

Advantage of annotated XML schema

decomposition 289

Decomposing XML documents with annotated

XML schemas 290

Registering and enabling XML schemas for

decomposition 290

Annotated XML schema decomposition and

recursive XML documents 291

Disabling of annotated XML schema decomposition 296

xdbDecompXML stored procedures for annotated

schema decomposition 297

DECOMPOSE XML DOCUMENT 300

XML decomposition annotations 301

XML decomposition annotations - Specification

and scope 301

XML decomposition annotations - Summary . . 303

db2-xdb:defaultSQLSchema decomposition

annotation 304

db2-xdb:rowSet decomposition annotation . . . 305

db2-xdb:table decomposition annotation . . . 309

db2-xdb:column decomposition annotation . . 312

db2-xdb:locationPath decomposition annotation 314

db2-xdb:expression decomposition annotation 317

db2-xdb:condition decomposition annotation 320

db2-xdb:contentHandling decomposition

annotation 324

db2-xdb:normalization decomposition

annotation 328

db2-xdb:order decomposition annotation . . . 331

db2-xdb:truncate decomposition annotation . . 333

db2-xdb:rowSetMapping decomposition

annotation 335

db2-xdb:rowSetOperationOrder decomposition

annotation 338

Keywords for annotated XML schema

decomposition 339

How decomposition results are formed in

annotated XML schema decomposition 340

Effect of validation on XML decomposition

results 341

Treatment of CDATA sections in annotated XML

schema decomposition 342

NULL values and empty strings in annotated

XML schema decomposition 342

Checklist for annotated XML schema

decomposition 343

Annotations of derived complex types for

annotated XML schema decomposition 344

XML schema structuring recommendations for

decomposition 346

Examples of mappings in annotated XML schema

decomposition 348

rowSets in annotated XML schema

decomposition 348

Decomposition annotation example: Mapping to

an XML column 351

Decomposition annotation example: A value

mapped to a single table that yields a single

row 352

Decomposition annotation example: A value

mapped to a single table that yields multiple

rows 354

Decomposition annotation example: A value

mapped to multiple tables 355

Decomposition annotation example: Grouping

multiple values mapped to a single table . . . 357

Decomposition annotation example: Multiple

values from different contexts mapped to a

single table 358

XML schema to SQL types compatibility for

annotated schema decomposition 360

Limits and restrictions for annotated XML schema

decomposition 365

Troubleshooting considerations for annotated XML

schema decomposition 367

Schema for XML decomposition annotations . . . 368

Chapter 13. Restrictions on pureXML 371

Restrictions on pureXML 371

Appendix A. Encoding mappings . . . 373

Mappings of encoding names to effective CCSIDs

for stored XML data 373

Mappings of CCSIDs to encoding names for

serialized XML output data 384

Contents v

Appendix B. Overview of the DB2

technical information 389

DB2 technical library in hardcopy or PDF format 389

Ordering printed DB2 books 392

Displaying SQL state help from the command line

processor 392

Accessing different versions of the DB2

Information Center 393

Displaying topics in your preferred language in the

DB2 Information Center 393

Updating the DB2 Information Center installed on

your computer or intranet server 394

DB2 tutorials 395

DB2 troubleshooting information 396

Terms and Conditions 396

Appendix C. Notices 399

Index 403

vi pureXML Guide

About this book

The pureXML™ Guide describes how you work with XML data in DB2® databases.

It tells you about the XML data type and XML storage, how you work with XML

data using the SQL and XQuery languages, and how you can index XML data for

performance. Additional topics cover pureXML application development, data

movement, and the decomposition of XML data into relational formats.

© Copyright IBM Corp. 2006, 2007 vii

viii pureXML Guide

Chapter 1. Introduction

pureXML overview

The pureXML feature allows you to store well-formed XML documents in table

columns that have the XML data type. By storing XML data in XML columns, the

data is kept in its native hierarchical form, rather than stored as text or mapped to

a different data model.

Because pureXML data storage is fully integrated, the stored XML data can be

accessed and managed by leveraging existing DB2 data server functionality.

The storage of XML data in its native hierarchical form enables efficient search,

retrieval, and updates of XML. XQuery, SQL, or a combination of both can be used

to query and update XML data. SQL functions that return XML data or take XML

arguments (referred to as SQL/XML functions) also enable XML data to be

constructed or published from values retrieved from the database.

Querying and updating

XML documents stored in XML columns can be queried and updated using the

following methods:

XQuery

XQuery is a generalized language for interpreting, retrieving, and

modifying XML data. The DB2 database server allows XQuery to be

invoked directly or from within SQL. Because the XML data is stored in

DB2 tables and views, functions are provided that extract the XML data

from specified tables and views by naming the table or view directly, or by

specifying an SQL query. XQuery supports various expressions for

processing XML data, for updating existing XML objects such as elements

and attributes, and for constructing new XML objects. The programming

interface to XQuery provides facilities similar to those of SQL to execute

queries and retrieve results.

SQL statements and SQL/XML functions

Many SQL statements support the XML data type. This enables you to

perform many common database operations with XML data, such as

creating tables with XML columns, adding XML columns to existing tables,

creating indexes over XML columns, creating triggers on tables with XML

columns, and inserting, updating, or deleting XML documents. The set of

SQL/XML functions, expressions, and specifications supported by DB2

database server has been enhanced to take full advantage of the XML data

type.

 XQuery can be invoked from within an SQL query. In this case, the SQL

query can pass data to XQuery in the form of bound variables.

Application development

Support for application development is provided by several programming

languages, and through SQL and external procedures:

Programming language support

Application development support of the new pureXML feature enables

© Copyright IBM Corp. 2006, 2007 1

applications to combine XML and relational data access and storage. The

following programming languages support the XML data type:

v C or C++ (embedded SQL or DB2 CLI)

v COBOL

v Java™ (JDBC or SQLJ)

v C# and Visual Basic (IBM® Data Server Provider for .NET)

v PHP

SQL and external procedures

XML data can be passed to SQL procedures and external procedures by

including parameters of data type XML in CREATE PROCEDURE

parameter signatures. Existing procedure features support the

implementation of procedural logic flow around SQL statements that

produce or make use of XML values as well as the temporary storage of

XML data values in variables.

Administration

The pureXML feature provides a repository for managing the URI dependencies of

XML documents and enables XML data movement for database administration:

XML schema repository (XSR)

The XML schema repository (XSR) is a repository for all XML artifacts

required to process XML instance documents stored in XML columns. It

stores XML schemas, DTDs, and external entities referenced in XML

documents.

Import, export and load utilities

The import, export and load utilities have been updated to support the

native XML data type. These utilities treat XML data like LOB data: both

types of data are stored outside the actual table. Application development

support for importing, exporting and loading XML data is also provided

by updated db2Import, db2Export and db2Load APIs. These updated

utilities permit data movement of XML documents stored in XML columns

that is similar to the data movement support for relational data.

Performance

Several performance oriented features are available to you when working with

XML documents stored in XML columns:

Indexes over XML data

Indexing support is available for data stored in XML columns. The use of

indexes over XML data can improve the efficiency of queries issued against

XML documents. Similar to a relational index, an index over XML data

indexes a column. They differ, however, in that a relational index indexes

an entire column, while an index over XML data indexes part of a column.

You indicate which parts of an XML column are indexed by specifying an

XML pattern, which is a limited XPath expression.

Optimizer

The optimizer has been updated to support the evaluation of SQL, XQuery,

and SQL/XML functions that embed XQuery, against XML and relational

data. The optimizer exploits statistics gathered over XML data, as well as

data from indexes over XML data, to produce efficient query execution

plans.

2 pureXML Guide

Explain and Visual Explain

The Explain facility and the Visual Explain GUI tool have been updated to

support SQL enhancements for querying XML data and to support XQuery

expressions. These updates to the Explain facility and to the Visual Explain

GUI tool allow you to see quickly how DB2 database server evaluates

query statements against XML data.

Tooling

Support for the XML data type is available in tools including the Control Center,

command line processor, data server developer tool, and DB2 Development Add-In

for Microsoft® Visual Studio .NET.

Annotated XML schema decomposition

The pureXML feature enables you to store and access XML data as XML, in its

hierarchical form, there can be cases where accessing XML data as relational data is

required. Annotated XML schema decomposition decomposes documents based on

annotations specified in an XML schema.

XML data type

The XML data type is used to define columns of a table that store XML values,

where all stored XML values must be well-formed XML documents. The

introduction of this native XML data type provides the ability to store well-formed

XML documents in their native hierarchical format in the database alongside other

relational data.

XML values are processed in an internal representation that is not a string and not

directly comparable to string values. An XML value can be transformed into a

serialized string value representing the XML document using the XMLSERIALIZE

function or by binding the value to an application variable of an XML, string, or

binary type. Similarly, a string value that represents an XML document can be

transformed to an XML value using the XMLPARSE function or by binding an

application string, binary, or XML application type to an XML value. In SQL data

change statements (such as INSERT) involving XML columns, a string or binary

value that represents an XML document is transformed into an XML value using

an injected XMLPARSE function. An XML value can be implicitly parsed or

serialized when exchanged with application string and binary data types.

There is no architectural limit on the size of an XML value in a database. However,

note that serialized XML data exchanged with DB2 database server is effectively

limited to 2 GB.

XML documents can be inserted, updated and deleted using SQL data

manipulation statements. Validation of an XML document against an XML schema,

typically performed during insert or update, is supported by the XML schema

repository (XSR). The DB2 database system also provides mechanisms for

constructing and querying XML values, as well as exporting and importing XML

data. An index over XML data can be defined on an XML column, providing

improved search performance of XML data. The XML data in table or view

columns can be retrieved as serialized string data through various application

interfaces.

Chapter 1. Introduction 3

XML input and output overview

The DB2 database server, which manages both relational and XML data, offers

various methods for the input and output of XML documents.

XML documents are stored in columns defined with the XML data type. Each row

of an XML column stores a single well-formed XML document. The stored

document is kept in its hierarchical form, preserving the XML data model; the

document is not stored as text or mapped to a different data model.

XML columns can be defined in tables that contain columns of other types, which

hold relational data, and multiple XML columns can be defined for a single table.

Input

Figure 1 on page 5 shows the various ways that XML data can be put into the

database system.

4 pureXML Guide

Which input method you use depends on the task you wish to accomplish:

Insert or update

Well-formed documents are inserted into XML columns using the INSERT

SQL statement. A document is well-formed when it can be parsed

successfully. Validation of the XML documents during an insert or update

operation is optional. If validation is performed, the XML schema must

insert or update
without validation

register and
manage XML
schemas

annotated
XML schema
decomposition

DB2 database system

XML datarelational data

table

insert or update
with validation

import with
validation

import without
validation

load with
validation

load without
validation

XML schema
repository (XSR)

DB2 client or client application

Figure 1. Methods for input of XML data

Chapter 1. Introduction 5

first be registered with the XML schema repository (XSR). Documents are

updated using the UPDATE SQL statement, or using XQuery updating

expressions.

Annotated XML schema decomposition

Data from XML documents can be decomposed or stored into relational

and XML columns using annotated XML schema decomposition.

Decomposition stores data in columns according to annotations that are

added to XML schema documents. These annotations map the data in XML

documents to columns of tables.

 XML schema documents referenced by the decomposition feature are

stored in the XML schema repository (XSR).

Import

XML documents can be imported into XML columns using the import

utility. Validation of the XML documents being imported is optional. If

validation is performed, the XML schema against which the documents are

validated, must first be registered with the XML schema repository (XSR).

XML schema repository (XSR) registration

The XML schema repository (XSR) stores XML schemas that are used for

the validation or decomposition of XML documents. Registration of XML

schemas is usually a prerequisite for other tasks that are performed on

XML documents which have a dependency on these schemas. XML

schemas are registered with the XSR using stored procedures or

commands.

Output

Figure 2 on page 7 shows the various ways that XML data can be retrieved from

the database system.

6 pureXML Guide

Which output method you use depends on the task you wish to accomplish:

XQuery

XQuery is a language that enables you to query within XML documents. It

addresses specific requirements of querying XML data that is highly

variable in structure, unlike queries on relational data that expect a

predictable structure.

 XQuery can be invoked on its own, or it can invoke SQL to query XML

stored in a DB2 database, through the db2-fn:xmlcolumn and

db2-fn:sqlquery XQuery functions. db2-fn:xmlcolumn retrieves an entire

XML column, whereas db2-fn:sqlquery retrieves XML values that are based

on an SQL fullselect.

SQL When querying XML data using an SQL fullselect, the query occurs at the

column level. For this reason, only entire XML documents can be returned

from the query; it is not possible to return fragments of an XML document

using only SQL. To query within XML documents, XQuery must be used.

XQuery can be invoked from SQL using the XMLQUERY or XMLTABLE

DB2 database system

XQuery

SQL that
invokes
XQuery
(SQL/XML)

XQuery that
invokes SQL

SQL

export

XML datarelational data

table

DB2 client or client application

Figure 2. Methods for output of XML data

Chapter 1. Introduction 7

SQL/XML functions, or the XMLEXISTS predicate. The XMLQUERY

function returns the result of an XQuery expression as an XML sequence.

The XMLTABLE function returns the result of an XQuery expression as a

table. The XMLEXISTS SQL predicate determines whether an XQuery

expression returns a non-empty sequence.

 A number of publishing functions are also available to construct XML

values from XML data stored in DB2 database server. XML values

constructed with these publishing functions do not have to be well-formed

XML documents.

Export XML documents can be exported from XML columns using the export

utility. Exported XML data is stored separately from the exported relational

data in the main data file. Details about each exported XML document is

not stored directly in the main exported data file. The details are instead

represented in the main data file by an XML data specifier (XDS).

Comparison of the XML model and the relational model

When you design your databases, you need to decide whether your data is better

suited to the XML model or the relational model. Your design can also take

advantage of the hybrid nature of a DB2 database, that is, the ability to support

both relational and XML data in a single database.

While this discussion explains some of the main differences between the models

and the factors that apply to each, there are numerous factors that can determine

the most suitable choice for your implementation. Use this discussion as a

guideline to assess the factors that can impact your specific implementation.

Major differences between XML data and relational data

XML data is hierarchical; relational data is represented in a model of logical

relationships

An XML document contains information about the relationship of data

items to each other in the form of the hierarchy. With the relational model,

the only types of relationships that can be defined are parent table and

dependent table relationships.

XML data is self-describing; relational data is not

An XML document contains not only the data, but also tagging for the

data that explains what it is. A single document can have different types of

data. With the relational model, the content of the data is defined by its

column definition. All data in a column must have the same type of data.

XML data has inherent ordering; relational data does not

For an XML document, the order in which data items are specified is

assumed to be the order of the data in the document. There is often no

other way to specify order within the document. For relational data, the

order of the rows is not guaranteed unless you specify an ORDER BY

clause on one or more columns.

Factors influencing data model choice

What kind of data you store can help you determine how you store it. For

example, if the data is naturally hierarchical and self-describing, you might store it

as XML data. However, there are other factors that might influence your decision

about which model to use:

8 pureXML Guide

When you need maximum flexibility

Relational tables follow a fairly rigid model. For example, normalizing one

table into many or denormalizing many tables into one can be very

difficult. If the data design changes often, representing it as XML data is a

better choice. XML schemas can be evolved over time, for example.

When you need maximum performance for data retrieval

Some expense is associated with serializing and interpreting XML data. If

performance is more of an issue than flexibility, relational data might be

the better choice.

When data is processed later as relational data

If subsequent processing of the data depends on the data being stored in a

relational database, it might be appropriate to store parts of the data as

relational, using decomposition. An example of this situation is when

online analytical processing (OLAP) is applied to the data in a data

warehouse. Also, if other processing is required on the XML document as a

whole, then storing some of the data as relational as well as storing the

entire XML document might be a suitable approach in this case.

When data components have meaning outside a hierarchy

Data might be inherently hierarchical in nature, but the child components

do not need the parents to provide value. For example, a purchase order

might contain part numbers. The purchase orders with the part numbers

might be best represented as XML documents. However, each part number

has a part description associated with it. It might be better to include the

part descriptions in a relational table, because the relationship between the

part numbers and the part descriptions is logically independent of the

purchase orders in which the part numbers are used.

When data attributes apply to all data, or to only a small subset of the data

Some sets of data have a large number of possible attributes, but only a

small number of those attributes apply to any particular data value. For

example, in a retail catalog, there are many possible data attributes, such as

size, color, weight, material, style, weave, power requirements, or fuel

requirements. For any given item in the catalog, only a subset of those

attributes is relevant: power requirements are meaningful for a table saw,

but not for a coat. This type of data is difficult to represent and search with

a relational model, but relatively easy to represent and search with an XML

model.

When the ratio of data complexity to volume is high

Many situations involve highly structured information in very small

quantities. Representation of that data with a relational model can involve

complex star schemas in which each dimension table is joined to many

more dimension tables, and most of the tables have only a few rows. A

better way to represent this data is to use a single table with an XML

column, and to create views on that table, where each view represents a

dimension.

When referential integrity is required

XML columns cannot be defined as part of referential constraints.

Therefore, if values in XML documents need to participate in referential

constraints, you should store the data as relational data.

When the data needs to be updated often

You update XML data in an XML column only by replacing full

documents. If you need to frequently update small fragments of very large

documents for a large number of rows, it can be more efficient to store the

Chapter 1. Introduction 9

data in non-XML columns. If, however, you are updating small documents

and only a few documents at a time, storing as XML can be efficient as

well.

XQuery and XPath data model

XQuery expressions operate on instances of the XQuery and XPath data model

(XDM) and return instances of the data model. The XDM provides an abstract

representation of one or more XML documents or fragments. The data model

defines all permissible values of expressions in XQuery, including values that are

used during intermediate calculations.

Parsing of XML data into the XDM and validating the data against a schema occur

before data is processed by XQuery. During data model generation, the input XML

document is parsed and converted into an instance of the XDM. The document can

be parsed with or without validation.

The XDM is described in terms of sequences of atomic values and nodes.

Sequences and items

An instance of the XQuery and XPath data model (XDM) is a sequence. A sequence

is an ordered collection of zero or more items. An item is either an atomic value or

a node.

A sequence can contain nodes, atomic values, or any mixture of nodes and atomic

values. For example, each entry in the following list is a sequence:

v 36

v <dog/>

v (2, 3, 4)

v (36, <dog/>, "cat")

v ()

In addition the entries in the list, an XML document stored in an XML column in a

DB2 database is a sequence.

The examples use a notation to represent sequences that is consistent with the

syntax that is used to construct sequences in XQuery:

v Each item in the sequence is separated by a comma.

v An entire sequence is enclosed in parentheses.

v A pair of empty parentheses represents an empty sequence.

v A single item that appears on its own is equivalent to a sequence that contains

one item.

For example, there is no distinction between the sequence (36) and the atomic

value 36.

Sequences cannot be nested. When two sequences are combined, the result is

always a flattened sequence of nodes and atomic values. For example, appending

the sequence (2, 3) to the sequence (3, 5, 6) results in the single sequence (3, 5, 6, 2,

3). Combining these sequences does not produce the sequence (3, 5, 6, (2, 3))

because nested sequences never occur.

A sequence that contains zero items is called an empty sequence. Empty sequences

can be used to represent missing or unknown information.

10 pureXML Guide

Atomic values

An atomic value is an instance of one of the built-in atomic data types that are

defined by XML Schema. These data types include strings, integers, decimals,

dates, and other atomic types. These types are described as atomic because they

cannot be subdivided.

Unlike nodes, atomic values do not have an identity. Every instance of an atomic

value (for example, the integer 7) is identical to every other instance of that value.

The following examples are some of ways that atomic values are made:

v Extracted from nodes through a process called atomization. Atomization is used

by expressions whenever a sequence of atomic values is required.

v Specified as a numeric or string literal. Literals are interpreted by XQuery as

atomic values. For example, the following literals are interpreted as atomic

values:

– ″this is a string″ (type is xs:string)

– 45 (type is xs:integer)

– 1.44 (type is xs:decimal)
v Computed by constructor functions. For example, the following constructor

function builds a value of type xs:date out of the string ″2005-01-01″:

xs:date("2005-01-01")

v Returned by the built-in functions fn:true() and fn:false(). These functions return

the boolean values true and false. These values cannot be expressed as literals.

v Returned by many kinds of expressions, such as arithmetic expressions and

logical expressions.

Node hierarchies

The nodes of a sequence form one or more hierarchies, or trees, that consist of a root

node and all of the nodes that are reachable directly or indirectly from the root

node. Every node belongs to exactly one hierarchy, and every hierarchy has exactly

one root node. DB2 supports six node kinds: document, element, attribute, text,

processing instruction, and comment.

The following XML document, products.xml, includes a root element, named

products, which contains product elements. Each product element has an attribute

named pid (product ID) and a child element named description. The description

element contains child elements named name and price.

<products>

 <product xmlns="http://posample.org" pid="10">

 <description>

 <name>Fleece jacket</name>

 <price>19.99</price>

 </description>

 </product>

 <product xmlns="http://posample.org" pid="11">

 <description>

 <name>Nylon pants</name>

 <price>9.99</price>

 </description>

 </product>

</products>

Figure 3 on page 12 shows a simplified representation of the data model for

products.xml. The figure includes a document node (D), element nodes (E),

Chapter 1. Introduction 11

attribute nodes (A), and text nodes (T).

As the example illustrates, a node can have other nodes as children, thus forming

one or more node hierarchies. In the example, the element product is a child of

products. The element description is a child of product. The elements name and

price are children of the element description. The text node with the value Fleece

Jacket is a child of the element name, and the text node 19.99 is a child of the

element price.

Node properties

Each node has properties that describe characteristics of that node. For example, a

node’s properties might include the name of the node, its children, its parent, its

attributes, and other information that describes the node. The node kind

determines which properties are present for specific nodes.

A node can have one or more of the following properties:

pid

<name>

Fleece jacket Nylon pants19.99 9.99

<name><price> <price>

<product> <product>

products.xml

<description> <description>

pid

<products>

E

E

D

A A

E

E

T T T T

EE E

E

E

Figure 3. Data model diagram for products.xml document

12 pureXML Guide

node-name

The name of the node, expressed as a QName.

parent The node that is the parent of the current node.

type-name

The dynamic (run-time) type of the node (also known as the type

annotation).

children

The sequence of nodes that are children of the current node.

attributes

The set of attribute nodes that belong to the current node.

string-value

A string value that can be extracted from the node.

typed-value

A sequence of zero or more atomic values that can be extracted from the

node.

in-scope namespaces

The in-scope namespaces that are associated with the node.

content

The content of the node.

Node kinds

DB2 supports six node kinds: document, element, attribute, text, processing

instruction, and comment.

Document nodes

A document node encapsulates an XML document.

A document node can have zero or more children. The children can include

element nodes, processing instruction nodes, comment nodes, and text nodes.

The string value of a document node is equal to the concatenated contents of all its

descendant text nodes in document order. The type of the string value is xs:string.

The typed value of a document node is the same as its string value, except that the

type of the typed value is xdt:untypedAtomic.

A document node has the following node properties:

v children, possibly empty

v string-value

v typed-value

Document nodes can be constructed in XQuery expressions by using computed

constructors. A sequence of document nodes can also be returned by the

db2-fn:xmlcolumn function.

Element nodes

An element node encapsulates an XML element.

An element can have zero or one parent and zero or more children. The children

can include element nodes, processing instruction nodes, comment nodes, and text

nodes. Document and attribute nodes are never children of element nodes.

Chapter 1. Introduction 13

However, an element node is considered to be the parent of its attributes. The

attributes of an element node must have unique QNames.

An element node has the following node properties:

v node-name

v parent, possibly empty

v type-name

v children, possibly empty

v attributes, possibly empty

v string-value

v typed-value

v in-scope-namespaces

Element nodes can be constructed in XQuery expressions by using direct or

computed constructors.

The type-name property of an element node indicates the relationship between its

typed value and its string value. For example, if an element node has the

type-name property xs:decimal and the string value ″47.5″, the typed value is the

decimal value 47.5. If the type-name property of an element node is xdt:untyped,

the element’s typed value is equal to its string value and has the type

xdt:untypedAtomic.

Attribute nodes

An attribute node represents an XML attribute.

An attribute node can have zero or one parent. The element node that owns an

attribute is considered to be its parent, even though an attribute node is not a child

of its parent element.

An attribute node has the following node properties:

v node-name

v parent, possibly empty

v type-name

v string-value

v typed-value

Attribute nodes can be constructed in XQuery expressions by using direct or

computed constructors.

The type-name property of an attribute node indicates the relationship between its

typed value and its string value. For example, if an attribute node has the

type-name property xs:decimal and the string value ″47.5″, its typed value is the

decimal value 47.5.

Text nodes

A text node encapsulates XML character content.

A text node can have zero or one parent. Text nodes that are children of a

document or element node never appear as adjacent siblings. When a document or

element node is constructed, any adjacent text node siblings are combined into a

single text node. If the resulting text node is empty, it is discarded.

14 pureXML Guide

Text nodes have the following node properties:

v content, possibly empty

v parent, possibly empty

Text nodes can be constructed in XQuery expressions by computed constructors or

by the action of a direct element constructor.

Processing instruction nodes

A processing instruction node encapsulates an XML processing instruction.

A processing instruction node can have zero or one parent. The content of a

processing instruction cannot include the string ?>. The target of a processing

instruction must be an NCName. The target is used to identify the application to

which the instruction is directed.

A processing instruction node has the following node properties:

v target

v content

v parent, possibly empty

Processing instruction nodes can be constructed in XQuery expressions by using

direct or computed constructors.

Comment nodes

A comment node encapsulates an XML comment.

A comment node can have zero or one parent. The content of a comment node

cannot include the string ″--″ (two hyphens) or contain the hyphen character (-)

as the last character.

A comment node has the following node properties:

v content

v parent, possibly empty

Comment nodes can be constructed in XQuery expressions by using direct or

computed constructors.

Document order of nodes

All of the nodes in a hierarchy conform to an order, called document order, in which

each node appears before its children. Document order corresponds to the order in

which the nodes would appear if the node hierarchy were represented in serialized

XML.

Nodes in a hierarchy appear in the following order:

v The root node is the first node.

v Element nodes occur before their children.

v Attribute nodes immediately follow the element node with which they are

associated. The relative order of attribute nodes is arbitrary, but this order does

not change during the processing of a query.

v The relative order of siblings is determined by their order in the node hierarchy.

v Children and descendants of a node occur before siblings that follow the node.

Chapter 1. Introduction 15

Node identity

Each node has a unique identity. Two nodes are distinguishable even though their

names and values might be the same. In contrast, atomic values do not have an

identity.

Node identity is not the same as an ID-type attribute. An element in an XML

document can be given an ID-type attribute by the document author. A node

identity, however, is automatically assigned to every node by the system but is not

directly visible to users.

Node identity is used to process the following types of expressions:

v Node comparisons. Node identity is used by the is operator to determine if two

nodes have the same identity.

v Path expressions. Node identity is used by path expressions to eliminate

duplicate nodes.

v Sequence expressions. Node identity is used by the union, intersect, or except

operators to eliminate duplicate nodes.

Typed values and string values of nodes

Each node has both a typed value and a string value. These two node properties are

used in the definitions of certain XQuery operations (such as atomization) and

functions (such as fn:data, fn:string, and fn:deep-equal).

 Table 1. String values and typed values of nodes

Node kind String value Typed value

Document An instance of the xs:string data type that is the

concatenated contents of all its descendant text

nodes, in document order.

An instance of the xdt:untypedAtomic data type

that is the concatenated contents of all its

descendant text nodes, in document order.

Element in a

validated

document

v If validation assigns, to the element node, a

simple data type (such as xs:decimal) or a type

that has simple content (such as a

″temperature″ type whose content is

xs:decimal), the string value is the string that

expresses the value of the element in the

original XML document.

v If validation assigns, to the element node, a

type that permits it to have mixed content

(both text and child elements), the string value

is an instance of the xs:string data type that is

the concatenated contents of all its text node

descendants, in document order.

v If validation assigns, to the element node, a

type that permits no content (neither text nor

child elements), the string value of the element

is an empty string.

v If validation assigns, to the element node, a

type that permits it to contain only child

elements (no text), the string value of the

element consists of the concatenated string

values of all its text node descendants, in

document order.

v If validation assigns, to the element node, a

simple data type (such as xs:decimal) or a type

that has simple content (such as a

″temperature″ type whose content is

xs:decimal), the typed value is the result of

casting the string value to the simple type that

is assigned by the validation process (for

example, xs:decimal).

v If validation assigns, to the element node, a

type that permits it to have mixed content

(both text and child elements), the typed value

is an instance of the xdt:untypedAtomic data

type that is the concatenated contents of all its

text node descendants, in document order.

v If validation assigns, to the element node, a

type that permits no content (neither text nor

child elements), the typed value is an empty

sequence.

v If validation assigns, to the element node, a

type that permits it to contain only child

elements (no text), the element has no typed

value, and an attempt to extract its typed

value (for example, by the fn:data function)

results in an error.

16 pureXML Guide

Table 1. String values and typed values of nodes (continued)

Node kind String value Typed value

Element in an

unvalidated

document

An instance of the xs:string data type that is the

concatenated contents of all its text node

descendants in document order.

An instance of the xdt:untypedAtomic data type

that is the concatenated contents of all its text

node descendants in document order.

Attribute in a

validated

document

An instance of the xs:string data type that

represents the attribute value in the original XML

document.

The result of casting the string value into the

type that was assigned to the attribute during

validation. For example, if an attribute is

validated as having the type xs:decimal, its string

value might be the string ″74.8″ and its typed

value might be 74.8 as a decimal number.

Attribute in

an

unvalidated

document

An instance of the xs:string data type that

represents the attribute value in the original XML

document.

An instance of the xdt:untypedAtomic data type

that represents the attribute value in the original

XML document.

Text The content as an instance of the xs:string data

type.

The content as an instance of the

xdt:untypedAtomic data type.

Comment The content as an instance of the xs:string data

type.

The content as an instance of the xs:string data

type.

Processing

instruction

The content as an instance of the xs:string data

type.

The content as an instance of the xs:string data

type.

Tools that support XML

Both IBM and third-party tools provide support for working with the pureXML

feature. Shipped with DB2 database server, or available separately for download,

the following tools are available to you from IBM:

Data server developer tool: Support for XML includes the following:

v Stored procedures: You can create and run stored procedures that contain XML

data types as input or output parameters.

v Data output: You can view documents contained in XML columns as a tree or

text.

v SQL editor: You can create SQL statements and XQuery expressions that work

with both relational and XML data.

v XML schemas: You can manage schema documents in the XML schema

repository (XSR), including registering and dropping schemas, as well as editing

schema documents.

v XML document validation: You can perform validation of XML documents

against schemas registered in the XSR.

DB2 Control Center: The DB2 Control Center supports the native XML data type

for many of its administrative functions. This allows database administrators to

work with XML data alongside relational data from within a single GUI tool.

Examples of supported administrative tasks are:

v Creating tables with XML columns

v Creating indexes over XML columns using the new Create Index wizard

v Viewing the contents of XML documents stored in XML columns

v Working with the XML schemas, DTDs, and external entities required to process

XML documents

Chapter 1. Introduction 17

v Collecting statistics on tables containing XML columns

Command line processor: Several DB2 commands support the native storage of

XML data. You can work with XML data alongside relational data from the DB2

command line processor (CLP). Examples of tasks that you can perform from the

CLP include:

v Issuing XQuery statements by prefixing them with the XQUERY keyword.

v Importing and export XML data.

v Collecting statistics on XML columns.

v Calling stored procedures with IN, OUT, or INOUT parameters of XML data

type.

v Working with the XML schemas, DTDs, and external entities required to process

XML documents.

v Reorganizing indexes over XML data and tables containing XML columns.

v Decomposing XML documents.

DB2 Development Add-In for Microsoft Visual Studio .NET: You can use the

Development Add-In for Microsoft Visual Studio .NET to create tables with XML

columns and indexes over XML data. You create an XML column as you would

any other column in this tool. Simply specify the data type as XML. You can create

an index by using the XML Index Designer in this tool. You do not have to

manually specify the XML pattern expression as required by the CREATE INDEX

syntax for an index over XML data. Instead, you can graphically select the XML

nodes that you want to index from either a tree representation of a registered XML

schema, a document from the XML column, or an XML schema in a local file. The

tool generates the XML pattern expression for you. Alternatively, you can manually

specify the XML pattern expression. After you have specified all of the other index

attributes, the tool generates the index for you.

EXPLAIN: You can issue the EXPLAIN statement on XQuery statements and

SQL/XML statements to quickly see the access plan for these statements, including

whether DB2 database server uses indexes. To issue the EXPLAIN statement for an

XQuery statement, use the XQuery keyword followed by an XQuery statement that

is enclosed in single or double quotation marks, as in the following example:

EXPLAIN PLAN SELECTION FOR XQUERY ’for $c in

db2-fn:xmlcolumn("XISCANTABLE.XMLCOL")/a[@x="1"]/b[@y="2"] return $c’

DB2 captures the access plan information in the EXPLAIN tables. The expected

sequence size for any XML columns are stored in the SEQUENCE_SIZES column

of the EXPLAIN_STREAM table. You might also notice data in the

EXPLAIN_PREDICATE table for several predicates that you do not recognize.

These predicates are generated by the DB2 database server during the EXPLAIN

operation to evaluate XPath expressions that are used in an index scan. You do not

need to evaluate this predicate information. These predicates not part of the

optimizer plan and thus have a value of -1 in the PREDICATE_ID and

FILTER_FACTOR columns.

Alternatively, you can avoid manually interpreting the EXPLAIN tables by using

the Visual Explain tool to view graphical depictions of these access plans. The

following nodes are displayed in the graphs to show XML operations:

XISCAN

Indicates that the DB2 database server used an index over XML data to access

the data.

18 pureXML Guide

XSCAN

Indicates that the DB2 database server scanned XML documents in an XML

column.

XANDOR

Indicates that the DB2 database server applied the AND and OR predicates to

the results of multiple index scans.

Federation support for pureXML

In a federated environment you can work with remote data sources that contain

XML documents stored in XML columns. You can both query and manipulate

remote XML data, including decomposing XML documents into remote tables.

Before you can work with remote XML data, you need to create a nickname for the

remote table that contains the XML column where the documents you want to

work with are stored.

For more information on setting up a federated system that includes XML data

sources, see ″Working with remote XML data″ in the Federation Server

documentation.

Replication and event publishing support for pureXML

WebSphere® Replication Server and WebSphere® Data Event Publisher support for

the XML data type allows you to replicate and publish XML documents that are

stored in XML columns.

You can use Q replication to replicate XML documents between databases, or you

can use event publishing to publish documents to applications.

For more information on setting up Q replication and event publishing for

databases that include XML documents stored in XML columns, see ″XML data

type″ and parent topics in the WebSphere Replication Server and WebSphere Data

Event Publisher documentation.

Articles on XML support

Additional articles on leveraging XML support are available through

developerWorks® Information Management. These articles cover a broad range of

topics, including migration and data movement, general overviews, step-by-step

tutorials, and best practices for working with XML data.

The articles are available at www.ibm.com/developerworks/db2/zones/xml/.

Note: developerWorks is not part of the DB2 Information Center. This link will

open outside of the DB2 Information Center.

Chapter 1. Introduction 19

http://www.ibm.com/developerworks/db2/zones/xml/

20 pureXML Guide

Chapter 2. Tutorial

Tutorial for pureXML

The XML data type introduced with the pureXML feature enables you to define

table columns that store in each row a single well-formed XML document. This

tutorial demonstrates how to set up a DB2 database to store XML data and to

perform basic operations with the pureXML feature.

After completing this tutorial, you will be able to do the following tasks:

v Creating a DB2 database and table that can store XML data

v Creating indexes over XML data

v Inserting XML documents into XML typed columns

v Updating XML documents stored in an XML column

v Deleting rows based on the content of XML documents

v Querying XML data

v Validating XML documents against XML schemas

Several application programming languages support the XML data type.

Important: Do not perform these tasks if you will be using the Database

Partitioning Feature available with DB2 Enterprise Server Edition.

Preparation

Invoke the DB2 Command Line Processor by issuing the db2 -td~ command in a

DB2 command window.1 The -td option specifies the tilde (~) as the statement

termination character. Specifying a termination character other than the default

semicolon (-t option) ensures that statements or queries that use namespace

declarations are not misinterpreted, since namespace declarations are also

terminated by a semicolon. The examples throughout this tutorial use the ~

termination character.

The examples in the exercises can be entered at or copied and pasted into the DB2

Command Line Processor, in interactive mode. You can also use the Command

Editor to issue the commands and statements interactively.

Namespaces: If the XML documents stored in the database contain namespaces,

then all queries and associated operations that specify a namespace (such as

creating an index over XML data with the CREATE INDEX statement) need to

declare the same namespace in order to yield expected results. This requirement is

standard namespace behavior.

1. On Windows® operating systems, the db2cmd command initializes a DB2 command window.

© Copyright IBM Corp. 2006, 2007 21

Exercise 1: Creating a DB2 database and table that can store XML data

This exercise shows how to create a database with a table that contains an XML

column.

Issue the following command to create a database named xmltut:

CREATE DATABASE xmltut~

By default, automatic storage is enabled when you create a database. Automatic

storage can result in improved performance and easier management of XML data,

because it yields a database-managed space (DMS) table space that can be

expanded as needed.

Also, by default databases are created in the UTF-8 (Unicode) code set. If you

choose to store XML data in a database with a code set other than UTF-8, it is best

to insert this data in a way that does not undergo code page conversion, such as

BIT DATA, BLOB or XML. You can set the ENABLE_XMLCHAR configuration

parameter to “NO” to block the usage of character data types during XML parsing,

preventing possible character substitution from occurring.

Connect to the database:

CONNECT TO xmltut~

Now you can create a table named Customer that contains an XML column:

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY, Info XML)~

Note that specifying a primary key is optional and not required in order to store or

index XML.

You can also add one or more XML columns to existing tables with the ALTER

TABLE SQL statement.

Return to the tutorial

Exercise 2: Creating indexes over XML data

Indexes over XML data can improve the performance of queries on XML columns.

This exercise shows you how to create an index over XML data.

Similar to a relational index, an index over XML data indexes a column. They

differ, however, in that a relational index indexes an entire column, while an index

over XML data indexes part of a column. You indicate which parts of an XML

column are indexed by specifying an XML pattern, which is a limited XPath

expression. You also need to specify a data type that the indexed values will be

stored as. Generally, the type you choose should be the same type that is used in

queries. If a node fails to cast to a specified data type, no index entry will be

created, and no error will be returned.

You can index only a single XML column; composite indexes are not supported.

You can have multiple indexes on an XML column however.

Note that not all clauses of the CREATE INDEX statement will apply to indexes

over XML data. Refer to the CREATE INDEX statement for details.

22 pureXML Guide

Like relational indexes, it is recommended that you index XML elements or

attributes that are frequently used in predicates and cross-document joins.

Issue the following statement to create an index over XML data:

CREATE UNIQUE INDEX cust_cid_xmlidx ON Customer(Info)

GENERATE KEY USING XMLPATTERN

 ’declare default element namespace "http://posample.org"; /customerinfo/@Cid’

AS SQL DOUBLE~

This indexes the values of the Cid attribute of <customerinfo> elements from the

Info column of the Customer table.

Note that the XML pattern specified is case-sensitive. If, for example, the XML

documents contained the attribute ″cid″ instead of ″Cid″, then those documents

would not match this index.

Return to the tutorial

Exercise 3: Inserting XML documents into XML typed columns

Well-formed XML documents are inserted into XML typed columns using the

INSERT SQL statement. This exercise shows you how to insert XML documents

into XML columns.

Typically, XML documents are inserted using application programs. While XML

data can be inserted through applications using XML, binary, or character types, it

is recommended that you use XML or binary types to avoid code page conversion

issues.

This exercise shows how to insert XML documents into XML typed columns

manually in the Command Line Processor, where the XML document is always a

character literal. In most cases, string data cannot be directly assigned to a target

with an XML data type; the data must first be parsed explicitly using the

XMLPARSE function. In INSERT, UPDATE, or DELETE operations, however, string

data can be directly assigned to XML columns, without an explicit call to the

XMLPARSE function. In these three cases, the string data is implicitly parsed. Refer

to the XML parsing documentation for more information.

Insert three XML documents into the Customer table that you created in Exercise 1:

INSERT INTO Customer (Cid, Info) VALUES (1000,

’<customerinfo xmlns="http://posample.org" Cid="1000">

 <name>Kathy Smith</name>

 <addr country="Canada">

 <street>5 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type="work">416-555-1358</phone>

</customerinfo>’)~

INSERT INTO Customer (Cid, Info) VALUES (1002,

’<customerinfo xmlns="http://posample.org" Cid="1002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

Chapter 2. Tutorial 23

</addr>

 <phone type="work">905-555-7258</phone>

</customerinfo>’)~

INSERT INTO Customer (Cid, Info) VALUES (1003,

’<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-2937</phone>

</customerinfo>’)~

You can confirm that the records were successfully inserted as follows:

SELECT * from Customer~

Return to the tutorial

Exercise 4: Updating XML documents stored in an XML column

This exercise shows you how to update XML documents with SQL statements and

with SQL statements that contain XQuery updating expressions.

Updating with SQL

To update an XML document stored in an XML column with SQL only, you must

perform a full-document update using the UPDATE SQL statement.

Update one of the documents inserted in Exercise 3 as follows (where the values of

the <street>, <city>, and <pcode-zip> elements have changed):

UPDATE customer SET info =

’<customerinfo xmlns="http://posample.org" Cid="1002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>1150 Maple Drive</street>

 <city>Newtown</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>Z9Z 2P2</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

</customerinfo>’

WHERE XMLEXISTS (

 ’declare default element namespace "http://posample.org";

 $doc/customerinfo[@Cid = 1002]’

 passing INFO as "doc")~

The XMLEXISTS predicate ensures that only the document containing the attribute

Cid=″1002″ is replaced. Notice how the predicate expression in XMLEXISTS, [@Cid

= 1002], is not specified as a string comparison: [@Cid = ″1002″]. This is because

the index, created in Exercise 2, for the Cid attribute was defined with the

DOUBLE data type. In order for the index to match this query, Cid cannot be

specified as a string in the predicate expression.

You can confirm that the XML document was updated as follows:

SELECT * from Customer~

24 pureXML Guide

The record where Cid=″1002″ should contain the changed <street>, <city>, and

<pcode-zip> values.

If XML documents can be identified by values in the non-XML columns of the

same table, then you can also use SQL comparison predicates to identify rows for

update. In this example, where the Cid value from the XML document is also

stored in the CID column of the CUSTOMER table, an SQL comparison predicate

on the CID column could have been used to identify the row. For demonstration

purposes, the XMLEXISTS predicate was used in this example.

Updating with SQL and XQuery

To update an XML document stored in an XML column, you can also use XQuery

updating expressions with the UPDATE SQL statement.

Update the customer address using the following SQL statement. The SQL

statement uses the XMLQUERY function to execute an XQuery expression to

update the address of an existing customer.

UPDATE customer set info =

 XMLQUERY(’declare default element namespace "http://posample.org";

 transform

 copy $mycust := $cust

 modify

 do replace $mycust/customerinfo/addr with

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

 </addr>

 return $mycust’

 passing INFO as "cust")

WHERE CID = 1002~

To update the customer address, the XMLQUERY function executes an XQuery

transform expression that uses a replace expression and then returns the updated

information to the UPDATE statement as follows:

v The XMLQUERY passing clause uses the identifier cust to pass the customer

information to the XQuery expression from the XML column INFO.

v In the copy clause of the transform expression, a logical snapshot of the

customer information is taken and assigned to the $mycust variable.

v In the modify clause of the transform expression, the replace expression replaces

the address information in the copy of the customer information.

v The XMLQUERY returns the updated customer document in the $mycust

variable.

Execute the following SQL statement to confirm that the XML document contains

the updated customer address:

SELECT INFO FROM CUSTOMER WHERE CID = 1002~

Return to the tutorial

Exercise 5: Deleting rows based on the content of XML documents

This exercise shows you how to delete entire XML documents with SQL statements

and how to delete only sections of XML documents with SQL statements that

contain XQuery updating expressions.

Chapter 2. Tutorial 25

Deleting with SQL

XML documents are deleted using the DELETE SQL statement. The XMLEXISTS

predicate can be used to identify particular documents to delete.

The following example deletes only those XML documents from the Info column

that have a <customerinfo> element with an attribute Cid=″1003″:

DELETE FROM Customer

WHERE XMLEXISTS (

 ’declare default element namespace "http://posample.org";

 $doc/customerinfo[@Cid = 1003]’

 passing INFO as "doc")~

If XML documents can be identified by values in the non-XML columns of the

same table, then you can also use SQL comparison predicates to identify rows for

deletion. In this example, where the Cid value from the XML document is also

stored in the CID column of the CUSTOMER table, you could have performed the

same operation with the following DELETE statement that applies an SQL

comparison predicate on the Cid column, to identify the row: DELETE FROM

customer WHERE Cid=1003. For demonstration purposes, the XMLEXISTS predicate

was used in this example.

You can confirm that the XML document was deleted as follows:

SELECT * FROM CUSTOMER~

Two records are returned.

Deleting with SQL and XQuery

When you want to delete only sections of an XML document instead of deleting

the entire document, use the delete XQuery updating expression inside an

UPDATE SQL statement.

Delete all phone information from a customer record using the following SQL

statement. The SQL statement uses the XMLQUERY function to execute an XQuery

expression which deletes the <phone> element for the customer whose Cid is 1003.

UPDATE Customer

SET info = XMLQUERY(

 ’declare default element namespace "http://posample.org";

 transform

 copy $newinfo := $info

 modify do delete ($newinfo/customerinfo/phone)

 return $newinfo’ passing info as "info")

WHERE cid = 1003~

To remove the <phone> element, the XMLQUERY function executes an XQuery

transform expression that uses a delete expression and then returns the updated

information to the UPDATE statement as follows:

v The XMLQUERY passing clause uses the identifier info to pass the customer

information to the XQuery expression from the XML column INFO.

v In the copy clause of the transform expression, a logical snapshot of the

customer information is taken and assigned to the $newinfo variable.

v In the modify clause of the transform expression, the delete expression deletes

the <phone> element in the copy of the customer information.

v The XMLQUERY returns the updated customer document in the $newinfo

variable.

26 pureXML Guide

You can confirm that the customer record no longer shows a <phone> element as

follows:

SELECT * FROM CUSTOMER WHERE Cid=1003~

Return to the tutorial

Exercise 6: Querying XML data

XML data can be queried using SQL (with the SELECT statement), XQuery (with

XQuery expressions), or a combination of both. This exercise shows you how to

query XML documents.

When querying with SQL alone (without the use of any XQuery), you can query

only at the column level. That is, you can return the entire XML document stored

in the column, but you cannot query within the document or return fragments of a

document. To query values within an XML document or return fragments of a

document, you must use XQuery.

From within the contexts of both SQL and XQuery, you can invoke the other. In

SQL, you can invoke XQuery using the XMLQUERY function. In XQuery, you can

issue a fullselect using the db2-fn:sqlquery function.

Important: XQuery is case-sensitive, while SQL is not. Names in XQuery, such as

table and SQL schema names (which are both uppercase by default), must be

carefully specified because of the language’s case-sensitivity. This is particularly

important when using XQuery with SQL. When invoking XQuery within SQL, be

mindful that the XQuery expression remains case-sensitive, even though it is

placed within the SQL context.

Querying with SQL

Retrieving entire XML documents

To retrieve, using only SQL, all of the XML documents stored in the

column named Info and values from the Cid primary key column, issue

the following SELECT statement:

SELECT Cid, Info FROM Customer~

This query returns the two stored XML documents.

Retrieving and filtering XML values

The previous example showed how to query and return entire XML

documents using only SQL. To query the actual values within the XML

documents, you need to use XQuery. The XMLQUERY function enables

you to invoke XQuery from the SQL context. The following example shows

how to query within the XML documents in the Info column:

SELECT XMLQUERY (

 ’declare default element namespace "http://posample.org";

 for $d in $doc/customerinfo

 return <out>{$d/name}</out>’

 passing INFO as "doc")

FROM Customer as c

WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $i/customerinfo/addr[city="Toronto"]’ passing c.INFO as "i")~

 This SELECT statement returns the following constructed element:

<out xmlns="http://posample.org"><name>Kathy Smith</name></out>

Chapter 2. Tutorial 27

In the XMLQUERY function, a default namespace is first specified. This

namespace matches the namespace of the documents previously inserted.

The for clause specifies iteration through the <customerinfo> elements in

each document from the Info column. Notice that the Info column is

specified using the passing clause, which binds the Info column to the

variable ″doc″ that is referenced in the for clause. The return clause then

constructs an <out> element, which contains the <name> element from

each iteration of the for clause.

 The WHERE clause uses the XMLEXISTS predicate to consider only a

subset of the documents in the Info column. This filtering yields only those

documents that have a <city> element (along the path specified) with a

value of ″Toronto″.

Querying with XQuery

DB2 XQuery offers two built-in functions specifically for use with DB2 databases:

db2-fn:sqlquery and db2-fn:xmlcolumn. db2-fn:sqlquery retrieves a sequence that is

the result table of an SQL fullselect. db2-fn:xmlcolumn retrieves a sequence from

an XML column.

A query that invokes XQuery directly must be prefixed with the case-insensitive

″XQUERY″ keyword.

The following examples show how to directly execute XQuery expressions that

contain the db2-fn:xmlcolumn and db2-fn:sqlquery built-in functions.

Note: There are several options you can set to customize your Command Line

Processor environment, particularly for the display of XQuery results. The -i option

″pretty-prints″ results from XQuery expressions to make them easier to read. You

can set this option, if not already set, as follows:

UPDATE COMMAND OPTIONS USING i ON~

Retrieving entire XML documents

To retrieve all of the XML documents previously inserted into the Info

column, you can use XQuery alone or issue a fullselect from XQuery.

Using only XQuery

To retrieve all XML documents in the INFO column without the

use of SQL, execute the following query:

XQUERY db2-fn:xmlcolumn (’CUSTOMER.INFO’)~

Names in SQL statements are automatically converted to uppercase

by default. When the Customer table was created using the

CREATE TABLE SQL statement, therefore, the name of the table

and columns were made uppercase. Because XQuery is

case-sensitive, you must be careful to specify the table and column

name in db2-fn:xmlcolumn with the correct case.

 This query retrieves all XML documents stored in the Info column

of the Customer table, and is equivalent to the SQL query SELECT

Info FROM Customer.

Invoking a fullselect from XQuery

To retrieve all XML documents in the INFO column using a

fullselect in XQuery, execute the following query:

XQUERY db2-fn:sqlquery (’SELECT Info FROM Customer’)~

28 pureXML Guide

Notice how the Info and Customer names do not need to be

specified in upper case. This is because the SELECT statement is

processed in an SQL context, and is therefore case-insensitive.

 This query is equivalent to the previous example, which used

db2-fn:xmlcolumn. Both queries return all XML documents stored

in the Info column of the Customer table.

Retrieving partial XML documents

Instead of retrieving entire XML documents, you can retrieve fragments of

the document and filter on values present in the documents. This can be

accomplished using XQuery alone or a fullselect in the XQuery context.

Using only XQuery

The following example shows how to use only XQuery to return

elements containing <name> nodes for all documents in the Info

column that have a <city> element (along the path specified) with

a value of ″Toronto″.

XQUERY declare default element namespace "http://posample.org";

 for $d in db2-fn:xmlcolumn(’CUSTOMER.INFO’)/customerinfo

 where $d/addr/city="Toronto"

 return <out>{$d/name}</out>~

This query returns the following constructed element:

<out xmlns="http://posample.org">

<name>

 Kathy Smith

</name>

</out>

The db2-fn:xmlcolumn function retrieves a sequence from the

INFO column of the CUSTOMER table. The for clause binds the

variable $d to each <customerinfo> element in the

CUSTOMER.INFO column, and the where clause restricts the items

to only those that have a <city> element (along the path specified)

with a value of ″Toronto″. The return clause constructs the

returned XML value, which is an element <out> that contains the

<name> element for all documents that satisfy the condition

specified in the where clause.

Invoking a fullselect from XQuery

The following example shows how to issue a fullselect within

XQuery, using the db2-fn:sqlquery function.

XQUERY declare default element namespace "http://posample.org";

 for $d in db2-fn:sqlquery(

 ’SELECT INFO

 FROM CUSTOMER

 WHERE Cid < 2000’)/customerinfo

 where $d/addr/city="Toronto"

 return <out>{$d/name}</out>~

In this example, the set of XML documents being queried is first

restricted, in the fullselect, by particular values in the non-XML

Cid column. This demonstrates an advantage of db2-fn:sqlquery: it

allows SQL predicates to be applied within XQuery. The

documents that result from the SQL query are then further

restricted in the where clause of the XQuery expression to those

that have a <city> element (along the path specified) with a value

of ″Toronto″.

Chapter 2. Tutorial 29

This query yields the same results as in the previous example,

which used db2-fn:xmlcolumn. Both queries return the constructed

element:

<out xmlns="http://posample.org">

<name>

 Kathy Smith

</name>

</out>

Using parameters with a fullselect in XQuery

 The following example shows how you can pass a value to the

SQL fullselect in the db2-fn:sqlquery function:

VALUES XMLQUERY (

 ’declare default element namespace "http://posample.org";

 for $d in db2-fn:sqlquery(

 ’’SELECT INFO FROM CUSTOMER WHERE Cid = parameter(1)’’,

 $testval)/customerinfo

 return <out>{$d/name}</out>’

 passing 1000 as "testval")~

The XMLQUERY function passes the value ″1000″ to the XQuery

expression using the identifier testval. The XQuery expression

then passes the value to the db2-fn:sqlquery function using the

PARAMETER scalar function.

 The XQuery expression returns the constructed element:

<out xmlns="http://posample.org">

 <name>Kathy Smith</name>

</out>

Return to the tutorial

Exercise 7: Validating XML documents against XML schemas

This exercise shows you how to validate XML documents. You can validate your

XML documents against XML schemas only; DTD validation is not supported.

(Although you cannot validate against DTDs, you can still insert documents that

contain a DOCTYPE or that refer to DTDs.)

There are tools available, such as those in IBM Rational® Application Developer,

that help you generate XML schemas from various sources, including DTDs,

existing tables, or XML documents.

Before you can validate, you must register your XML schema with the built-in

XML schema repository (XSR). This process involves registering each XML schema

document that makes up the XML schema. Once all XML schema documents have

been successfully registered, you must complete the registration. One method of

registering an XML schema is through commands.

Register and complete registration of the posample.customer XML schema as

follows, providing the absolute path to the sqllib/samples/xml directory on your

system (if this path does not begin with c:/sqllib/, modify the file path in the

example below accordingly):

REGISTER XMLSCHEMA ’http://posample.org’

FROM ’file:///c:/sqllib/samples/xml/customer.xsd’ AS posample.customer COMPLETE~

30 pureXML Guide

Because this XML schema consists of only one schema document, the registration

and completion steps can be combined into a single command.

You can verify that the XML schema was successfully registered by querying the

SYSCAT.XSROBJECTS catalog view, which contains information about objects

stored in the XSR. This query and its result (formatted for clarity) are as follows:

SELECT OBJECTSCHEMA, OBJECTNAME FROM SYSCAT.XSROBJECTS~

OBJECTSCHEMA OBJECTNAME

-------------------- --------------------

POSAMPLE CUSTOMER

This XML schema is now available to be used for validation. Validation is typically

performed during an INSERT or UPDATE operation. Perform validation using the

XMLVALIDATE function. The INSERT or UPDATE operation on which

XMLVALIDATE was specified, will occur only if the validation succeeds.

The following INSERT statement inserts a new XML document into the Info

column of the Customer table, only if the document is valid according to the

posample.customer XML schema previously registered.

INSERT INTO Customer(Cid, Info) VALUES (1003, XMLVALIDATE (XMLPARSE (DOCUMENT

’<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

 <phone type="home">416-555-2937</phone>

 <phone type="cell">905-555-8743</phone>

 <phone type="cottage">613-555-3278</phone>

</customerinfo>’ PRESERVE WHITESPACE)

ACCORDING TO XMLSCHEMA ID posample.customer))~

XMLVALIDATE operates on XML data. Because the XML document in this

example is passed as character data, XMLVALIDATE must be used in conjunction

with the XMLPARSE function.2 The XMLPARSE function parses its argument as an

XML document and returns an XML value.

To verify that the validation and insert were successful, query the Info column:

SELECT Info FROM Customer~

This query should return three XML documents, one of which is the document just

inserted.

Return to the tutorial

Exercise 8: Transforming with XSLT stylesheets

You can use the XSLTRANSFORM function to convert XML data within the

database into other formats.

2. Character data can be assigned directly to XML only in INSERT, UPDATE, or DELETE statements. Here, an INSERT INTO

statement is used.

Chapter 2. Tutorial 31

This example illustrates how to use the XSLTRANSFORM built-in function to

transform XML documents that are stored in the database. In this case the XML

document contains an arbitrary number of university student records. Each

student element contains a student’s ID, first name, last name, age, and the

university he is attending, as follows:

<?xml version="1.0"?>

<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <student studentID="1" firstName="Steffen" lastName="Siegmund"

 age="23" university="Rostock"/>

</students>

The intent of the XSLT transformation is to extract the information in the XML

records and create an HTML web page that can be viewed in a browser. For that

purpose we will use the following XSLT stylesheet, which is also stored in the

database.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="headline"/>

<xsl:param name="showUniversity"/>

<xsl:template match="students">

 <html>

 <head/>

 <body>

 <h1><xsl:value-of select="$headline"/></h1>

 <table border="1">

 <th>

 <tr>

 <td width="80">StudentID</td>

 <td width="200">First Name</td>

 <td width="200">Last Name</td>

 <td width="50">Age</td>

 <xsl:choose>

 <xsl:when test="$showUniversity =’’true’’">

 <td width="200">University</td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </th>

 <xsl:apply-templates/>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="student">

 <tr>

 <td><xsl:value-of select="@studentID"/></td>

 <td><xsl:value-of select="@firstName"/></td>

 <td><xsl:value-of select="@lastName"/></td>

 <td><xsl:value-of select="@age"/></td>

 <xsl:choose>

 <xsl:when test="$showUniversity = ’’true’’ ">

 <td><xsl:value-of select="@university"/></td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </xsl:template>

</xsl:stylesheet>

This stylesheet will work both with a standard XSLT transform, and using a

supplied parameter file to control its behavior at runtime.

1. Create the table into which you can store your XML document and stylesheet

document.

32 pureXML Guide

CREATE TABLE XML_TAB (DOCID INTEGER, XML_DOC XML, XSL_DOC CLOB(1M));

2. Insert your documents into the tables. In this example the XML document and

XSLT stylesheet can be loaded into the same table as separate records.

INSERT INTO XML_TAB VALUES

 (1,

 ’<?xml version="1.0"?>

 <students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <student studentID="1" firstName="Steffen" lastName="Siegmund"

 age="23" university="Rostock"/>

 </students>’,

 ’<?xml version="1.0" encoding="UTF-8"?>

 <xsl:stylesheet version="1.0"

 ...

 </xsl:stylesheet>’

);

3. Call the XSLTRANSFORM built-in function to transform the XML document.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The output of this process will be the following HTML file:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

<h1></h1>

<table border="1">

<th>

<tr>

<td width="80">StudentID</td>

<td width="200">First Name</td>

<td width="200">Last Name</td>

<td width="50">Age</td>

</tr>

</th>

<tr>

<td>1</td>

<td>Steffen</td><td>Siegmund</td>

<td>23</td>

</tr>

</table>

</body>

</html>

While this is straightforward, there may be occasions when you want to alter the

behavior of the XSLT stylesheet at runtime, either to add information not contained

in the XML records or to change the nature of the output itself (to XHTML instead

of standard HTML, for instance). You can pass parameters to the XSLT process at

runtime by using a separate parameter file. The parameter file is itself an XML

document and contains param statements that correspond to similar statements in

the XSLT stylesheet file.

For instance, two parameters are defined in the stylesheet above as follows:

<xsl:param name="showUniversity"/>

<xsl:param name="headline"/>

These parameters were not used in the first transform as described above. To see

how parameter-passing works, create a parameter file as follows :

CREATE TABLE PARAM_TAB (DOCID INTEGER, PARAM VARCHAR(1000));

INSERT INTO PARAM_TAB VALUES

 (1,

Chapter 2. Tutorial 33

’<?xml version="1.0"?>

 <params xmlns="http://www.ibm.com/XSLTransformParameters">

 <param name="showUniversity" value="true"/>

 <param name="headline">The student list ...</param>

 </params>’

);

Now the query

SELECT XSLTRANSFORM (

 XML_DOC USING XSL_DOC WITH PARAM AS CLOB(1M)) FROM XML_TAB X, PARAM_TAB P

WHERE X.DOCID=P.DOCID;

will generate the following HTML:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

<h1>The student’s list ...</h1>

<table border="1">

<th>

<tr>

<td width="80">StudentID</td>

<td width="200">First Name</td>

<td width="200">Last Name</td>

<td width="50">Age</td>

<td width="200">University</td>

</tr>

</th>

<tr>

<td>1</td>

<td>Steffen</td>

<td>Siegmund</td><td>23</td><td>Rostock</td>

</tr>

</table>

</body>

</html>

Return to the tutorial

34 pureXML Guide

Chapter 3. XML storage

XML storage overview

XML documents you insert into columns of type XML can reside either in the

default storage object, or directly in the base table row. Base table row storage is

under your control and is available only for small documents; larger documents

are always stored in the default storage object.

The decision to store documents in the base table row depends on your storage

and performance requirements, and on accepted trade-offs.

XML storage object

This is the default method of storing XML documents. Documents larger

than 32 KB in size, or larger than the page size, are always stored in the

default storage object, regardless of your storage choice. Storage in the

default storage object allows you to insert and retrieve XML documents up

to 2 gigabytes in size.

Base table row storage

For XML documents with a size of 32 KB or less, you can chose to store

your XML documents directly in the base table row. This option can

increase performance for any operation that queries, inserts, updates, or

deletes XML documents, because fewer I/O operations are required. If you

also use data row compression, base table row storage can reduce storage

space requirements and improve I/O efficiency for operations on XML

documents.

XML storage object

By default DB2 database server stores XML documents contained in table columns

of type XML in XML storage objects, in much the same way that LONG

VARCHAR and LOB data are stored apart from the other contents of a table.

XML storage objects are separate from, but dependent upon, their parent table

objects. For each XML value stored in a row of an XML table column, DB2

maintains a record called an XML data specifier (XDS), which specifies where to

retrieve the XML data stored on disk from the associated XML storage object.

When stored in system managed space, the files associated with XML storage

objects have the file type extension .xda.

You can store XML documents of up to 2 gigabytes in size in a database. Because

XML data can be quite large, you may want to monitor the buffering activity for

XML data separately from the buffering activity for other data. A number of

monitor elements are available to help you gauge the buffer pool activity for XML

storage objects.

For additional information on space requirements for XML columns that use XML

storage objects, see ″Byte Counts″ for XML columns without the INLINE LENGTH

specified in ″CREATE TABLE statement″.

© Copyright IBM Corp. 2006, 2007 35

XML base table row storage

You can optionally store smaller and medium-size XML documents in the row of

the base table instead of storing them in the default XML storage object. Row

storage of XML documents is similar to how a structured type instance can be

stored inline in the row of a table.

Before you enable base table row storage, you need to decide how much row space

you want to dedicate to row storage for each XML column. How much space you

can dedicate depends on the maximum row size available, which in turn depends

on the page size of the table space in which the table is created, and on the other

columns you specify as part of the table. To calculate the row space available to

you, see ″Row Size″ and ″Byte Counts″ for XML columns with the INLINE

LENGTH specified in ″CREATE TABLE statement″.

Enabling base table row storage

You can specify that XML documents should be stored in base table rows instead

of the default XML storage object when you create a table with an XML column, or

when you alter an existing table with an XML column. To enable base table row

storage, you need to include the INLINE LENGTH keywords with your CREATE

TABLE or ALTER TABLE statement for each XML column that should use row

storage, followed by the maximum size of XML documents in bytes to store in the

base table row.

Note that altering the XML column of an existing table will not move the XML

documents already stored in that column into base table rows automatically. To

move the XML documents, you must update all XML documents with an UPDATE

statement.

Restrictions

Base table row storage is available only for XML documents with an internal

representation of 32 KB or less (smaller, if your row size is less), minus the

required byte count overhead for an XML column with the INLINE LENGTH

option specified. When you store XML documents that exceed the specified inline

length, the oversize documents are stored automatically in the default XML storage

object.

Once you have specified an inline length for an XML column, you can only

increase the inline length size to use for row storage of XML documents, but not

reduce it.

Examples

The following example enables base table row storage of XML documents for the

XML column DESCRIPTION of the PRODUCT table in the SAMPLE database. This

example sets the maximum inline length of XML documents to be stored in the

base table row to 32000 bytes, which leaves room for the additional space required

by overhead. After the XML column has been altered, an UPDATE statement

moves the XML documents into the base table row.

ALTER TABLE PRODUCT

 ALTER COLUMN DESCRIPTION

 SET INLINE LENGTH 32000

UPDATE PRODUCT SET DESCRIPTION = DESCRIPTION

36 pureXML Guide

The following example creates a table MYCUSTOMER similar to the CUSTOMER

table of the SAMPLE database, except that base table row storage is specified for

the XML column Info. Documents that have an internal representation of 2000

bytes or less will be stored in the base table row when inserted into the Info

column.

CREATE TABLE MYCUSTOMER (Cid BIGINT NOT NULL,

 Info XML INLINE LENGTH 2000,

 History XML,

 CONSTRAINT PK_CUSTOMER PRIMARY KEY (Cid)) in IBMDB2SAMPLEXML

Storage requirements for XML documents

The amount of space that an XML document occupies in a DB2 database is

determined by the initial size of the document in raw form and by a number of

other factors.

The following list includes the most important of these factors:

Document structure

XML documents that contain complex markup tagging require a larger

amount of storage space than documents with simple markup. For

example, an XML document that has many nested elements, each

containing a small amount of text or having short attribute values,

occupies more storage space than an XML document composed primarily

of textual content.

Node names

The length of element names, attribute names, namespace prefixes and

similar, non-content data also affect storage size. Any information unit of

this type that exceeds 4 bytes in raw form is compressed for storage,

resulting in comparatively greater storage efficiency for longer node names.

Ratio of attributes to elements

Typically, the more attributes that are used per element, the lower the

amount of storage space that is required for the XML document.

Document codepage

XML documents with encoding that uses more than one byte per character

occupy a larger amount storage space than documents using a single-byte

character set.

Document validation

XML documents are annotated after having been validated against an XML

schema. The addition of type information after validation results in an

increased storage requirement.

Compression

XML documents that are stored in the base table row will require less

storage space, if you also use data row compression.

Chapter 3. XML storage 37

38 pureXML Guide

Chapter 4. Inserting XML data

Inserting XML data overview

Before you can insert XML documents, you must create a table that contains an

XML column, or add an XML column to an existing table.

Creation of tables with XML columns

To create tables with XML columns, you specify columns with the XML data type

in the CREATE TABLE statement. A table can have one or more XML columns.

You do not specify a length when you define an XML column. However, serialized

XML data that is exchanged with a DB2 database is limited to 2 GB per value of

type XML, so the effective limit of an XML document is 2 GB.

Like a LOB column, an XML column holds only a descriptor of the column. The

data is stored separately.

Example: The sample database contains a table for customer data that contains two

XML columns. The definition looks like this:

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

 Info XML,

 History XML)

Example: The VALIDATED predicate checks whether the value in the specified

XML column has been validated. You can define a table check constraint on XML

columns, using the VALIDATED predicate, to ensure that all documents inserted or

updated in a table are valid.

CREATE TABLE TableValid (id BIGINT,

 xmlcol XML,

 CONSTRAINT valid_check CHECK (xmlcol IS VALIDATED))

Addition of XML columns to existing tables

To add XML columns to existing tables, you specify columns with the XML data

type in the ALTER TABLE statement with the ADD clause.

You can add XML columns only to tables that do not have type-1 indexes defined

on them.

3 A table can have one or more XML columns. Tables to which you add

XML columns must be in databases that exist in instances with only a single

database partition defined.

Example The sample database contains a table for customer data that contains two

XML columns. The definition looks like this:

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

 Info XML,

 History XML)

Create a table named MyCustomer that is a copy of Customer, and add an XML

column to describe customer preferences:

3. Note that type-1 indexes are deprecated; new indexes are always created as type-2 indexes.

© Copyright IBM Corp. 2006, 2007 39

CREATE TABLE MyCustomer LIKE Customer;

ALTER TABLE MyCustomer ADD COLUMN Preferences XML;

Insertion into XML columns

To insert data into an XML column, use the SQL INSERT statement. The input to

the XML column must be a well-formed XML document, as defined in the XML 1.0

specification. The application data type can be an XML, character, or binary type.

It is recommended that XML data be inserted from host variables, rather than

literals, so that the DB2 database server can use the host variable data type to

determine some of the encoding information.

XML data in an application is in its serialized string format. When you insert the

data into an XML column, it must be converted to its XML hierarchical format. If

the application data type is an XML data type, the DB2 database server performs

this operation implicitly. If the application data type is not an XML type, you can

invoke the XMLPARSE function explicitly when you perform the insert operation,

to convert the data from its serialized string format to the XML hierarchical format.

During document insertion, you might also want to validate the XML document

against a registered XML schema. You can do that with the XMLVALIDATE

function.

The following examples demonstrate how XML data can be inserted into XML

columns. The examples use table MyCustomer, which is a copy of the sample

Customer table. The XML data that is to be inserted is in file c6.xml, and looks like

this:

<customerinfo xmlns="http://posample.org" Cid="1015">

 <name>Christine Haas</name>

 <addr country="Canada">

 <street>12 Topgrove</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X-7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-5238</phone>

 <phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c6.xml as binary data,

and insert the data into an XML column:

PreparedStatement insertStmt = null;

String sqls = null;

int cid = 1015;

sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";

insertStmt = conn.prepareStatement(sqls);

insertStmt.setInt(1, cid);

File file = new File("c6.xml");

insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());

insertStmt.executeUpdate();

Example: In a static embedded C application, insert data from a binary XML host

variable into an XML column:

EXEC SQL BEGIN DECLARE SECTION;

 sqlint64 cid;

 SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;

...

40 pureXML Guide

cid=1015;

/* Read data from file c6.xml into xml_hostvar */

...

EXEC SQL INSERT INTO MyCustomer (Cid,Info) VALUES (:cid, :xml_hostvar);

XML parsing

XML parsing is the process of converting XML data from its serialized string

format to its hierarchical format.

You can let the DB2 database server perform parsing implicitly, or you can perform

XML parsing explicitly.

Implicit XML parsing occurs in the following cases:

v When you pass data to the database server using a host variable of type XML,

or use a parameter marker of type XML

The database server does the parsing when it binds the value for the host

variable or parameter marker for use in statement processing.

You must use implicit parsing in this case.

v When you assign a host variable, parameter marker, or SQL expression with a

string data type (character, graphic or binary) to an XML column in an INSERT,

UPDATE, DELETE, or MERGE statement. The parsing occurs when the SQL

compiler implicitly adds an XMLPARSE function to the statement.

You perform explicit XML parsing when you invoke the XMLPARSE function on the

input XML data. You can use the result of XMLPARSE in any context that accepts

an XML data type. For example, you can use assign the result to an XML column

or use it as a stored procedure parameter of type XML.

The XMLPARSE function takes a non-XML, character or binary data type as input.

For embedded dynamic SQL applications, you need to cast the parameter marker

that represents the input document for XMLPARSE to the appropriate data type.

For example:

INSERT INTO MyCustomer (Cid, Info)

 VALUES (?, xmlparse(document cast(? as clob(1k)) preserve whitespace))

For static embedded SQL applications, a host variable argument of the XMLPARSE

function cannot be declared as an XML type (XML AS BLOB, XML AS CLOB, or

XML AS DBCLOB type).

XML parsing and whitespace handling

During implicit or explicit XML parsing, you can control the preservation or

stripping of boundary whitespace characters when you store the data in the

database.

According to the XML standard, whitespace is space characters (U+0020), carriage

returns (U+000D), line feeds (U+000A), or tabs (U+0009) that are in the document

to improve readability. When any of these characters appear as part of a text string,

they are not considered to be whitespace.

Boundary whitespace is whitespace characters that appear between elements. For

example, in the following document, the spaces between <a> and and between

 and are boundary whitespace.

<a> and between

Chapter 4. Inserting XML data 41

With explicit invocation of XMLPARSE, you use the STRIP WHITESPACE or

PRESERVE WHITESPACE option to control preservation of boundary whitespace.

The default is stripping of boundary whitespace.

With implicit XML parsing:

v If the input data type is not an XML type or is not cast to an XML data type, the

DB2 database server always strips whitespace.

v If the input data type is an XML data type, you can use the CURRENT

IMPLICIT XMLPARSE OPTION special register to control preservation of

boundary whitespace. You can set this special register to STRIP WHITESPACE

or PRESERVE WHITESPACE. The default is stripping of boundary whitespace.

If you use XML validation, the DB2 database server ignores the CURRENT

IMPLICIT XMLPARSE OPTION special register and uses only the validation rules

to determine stripping or preservation of whitespace in the following cases:

xmlvalidate(? ACCORDING TO XMLSCHEMA ID schemaname)

xmlvalidate(?)

xmlvalidate(:hvxml ACCORDING TO XMLSCHEMA ID schemaname)

xmlvalidate(:hvxml)

xmlvalidate(cast(? as xml) ACCORDING TO XMLSCHEMA ID schemaname)

xmlvalidate(cast(? as xml))

In these cases, ? represents XML data, and :hvxml is an XML host variable.

See XML validation for information on how XML validation influences whitespace

handling.

The XML standard specifies an xml:space attribute that controls the stripping or

preservation of whitespace within XML data. xml:space attributes override any

whitespace settings for implicit or explicit XML parsing.

For example, in the following document, the spaces immediately before and after

 are always preserved, regardless of any XML parsing options, because the

spaces are within a node with the attribute xml:space="preserve":

<a xml:space="preserve"> <c>c</c>b

However, in the following document, the spaces immediately before and after

can be controlled by the XML parsing options, because the spaces are within a

node with the attribute xml:space="default":

<a xml:space="default"> <c>c</c>b

XML parsing in a non-Unicode database

When an XML document is passed into a non-Unicode database, code page

conversion can occur first as the document is passed from the client to the target

database server, and then as the document is passed to the DB2 XML parser.

Passing an XML document using a host variable or parameter marker of type XML

prevents code page conversion from occurring. If an XML document is passed

using a character data type (CHAR, VARCHAR, CLOB, or LONG VARCHAR),

code page conversion can result in the introduction of substitution characters for

any character in the XML data that is not part of the target database code page.

To prevent substitution characters from being introduced, and from potentially

degrading the inserted XML data, ensure that if XML data is parsed using a

character data type, all code points in the source document are a part of the target

database code page. For any character that is not part of this code page you can

42 pureXML Guide

use a decimal or hexadecimal character entity reference specifying the correct

Unicode code point. For example, either > or > can be used to specify

the > (greater-than) sign character.

You can also use the ENABLE_XMLCHAR configuration parameter to control

whether or not XML parsing is enabled for character data types. Setting

ENABLE_XMLCHAR to ″NO″ blocks both explicit and implicit XML parsing when

character data types are used.

XML parsing and DTDs

If the input data contains an internal document type declaration (DTD) or

references an external DTD, the XML parsing process also checks the syntax of

those DTDs. In addition, the parsing process:

v Applies default values that are defined by the internal and external DTDs

v Expands entity references and parameter entities

Example: File c8.xml contains the following document:

<customerinfo xml:space="preserve" xmlns="http://posample.org" Cid=’1008’>

 <name>Kathy Smith</name>

 <addr country=’Canada’>

 <street>14 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type=’work’>416-555-3333</phone>

</customerinfo>

In a JDBC application, read the XML document from the file, and insert the data

into XML column Info of table MyCustomer, which is a copy of the sample

Customer table. Let the DB2 database server perform an implicit XML parse

operation.

PreparedStatement insertStmt = null;

String sqls = null;

int cid = 1008;

sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";

insertStmt = conn.prepareStatement(sqls);

insertStmt.setInt(1, cid);

File file = new File("c8.xml");

insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());

insertStmt.executeUpdate();

No whitespace handling is specified, so the default behavior of stripping

whitespace is assumed. However, the document contains the xml:space="preserve"

attribute, so whitespace is preserved. This means that the carriage returns, line

feeds, and spaces between the elements in the document remain.

If you retrieve the stored data, content looks like this:

<customerinfo xml:space="preserve" xmlns="http://posample.org" Cid=’1008’>

 <name>Kathy Smith</name>

 <addr country=’Canada’>

 <street>14 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type=’work’>416-555-3333</phone>

</customerinfo>

Chapter 4. Inserting XML data 43

Example: Assume that the following document is in BLOB host variable

blob_hostvar.

<customerinfo xml:space="default" xmlns="http://posample.org" Cid=’1009’>

 <name>Kathy Smith</name>

 <addr country=’Canada’>

 <street>15 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type=’work’>416-555-4444</phone>

</customerinfo>

In a static embedded C application, insert the document from the host variable into

XML column Info of table MyCustomer. The host variable is not an XML type, so

you need to execute XMLPARSE explicitly. Specify STRIP WHITESPACE to remove

any boundary whitespace.

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE BLOB (10K) blob_hostvar;

EXEC SQL END DECLARE SECTION;

...

EXEC SQL INSERT INTO MyCustomer (Cid, Info)

 VALUES (1009,

 XMLPARSE(DOCUMENT :blob_hostvar STRIP WHITESPACE));

The document contains the xml:space="default" attribute, so the XMLPARSE

specification of STRIP WHITESPACE controls whitespace handling. This means

that the carriage returns, line feeds, and spaces between the elements in the

document are removed.

If you retrieve the stored data, you see a single line with the following content:

<customerinfo xml:space="default" xmlns="http://posample.org" Cid=’1009’>

<name>Kathy Smith</name><addr country=’Canada’><street>15 Rosewood</street>

<city>Toronto</city><prov-state>Ontario</prov-state><pcode-zip>M6W 1E6</pcode-zip>

</addr><phone type=’work’>416-555-4444</phone></customerinfo>

Example: In a C language application, host variable clob_hostvar contains the

following document, which contains an internal DTD:

<!DOCTYPE prod [<!ELEMENT description (name,details,price,weight)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT details (#PCDATA)>

 <!ELEMENT price (#PCDATA)>

 <!ELEMENT weight (#PCDATA)>

 <!ENTITY desc "Anvil">

]>

<product xmlns="http://posample.org" pid=’’110-100-01’’ >

 <description>

 <name>&desc;</name>

 <details>Very heavy</details>

 <price> 9.99 </price>

 <weight>1 kg</weight>

 </description>

</product>’

Insert the data into table MyProduct, which is a copy of the sample Product table:

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE CLOB (10K) clob_hostvar;

EXEC SQL END DECLARE SECTION;

...

EXEC SQL insert into

44 pureXML Guide

Product (pid, name, Price, PromoPrice, PromoStart, PromoEnd, description)

 values (’110-100-01’,’Anvil’, 9.99, 7.99, ’11-02-2004’,’12-02-2004’,

 XMLPARSE (DOCUMENT :clob_hostvar STRIP WHITESPACE));

XMLPARSE specifies stripping of whitespace, so boundary whitespace within the

document is removed. In addition, when the database server executes XMLPARSE,

it replaces the entity reference &desc; with its value.

If you retrieve the stored data, you see a single line with the following content:

<product xmlns="http://posample.org" pid="110-100-01"><description><name>Anvil

</name><details>Very heavy</details><price> 9.99 </price>

<weight>1 kg</weight></description></product>

XML data integrity

When you need to ensure that your XML documents adhere to certain rules or

fullfil certain processing requirements, you can perform additional XML data

integrity checks or specify additional conditions that must be met before an action

is performed. Several different methods for ensuring XML data integrity are

available; which method you choose depends on your specific data integrity and

processing requirements.

If you are indexing XML documents, you can also enforces uniqueness within the

XML column across all documents whose nodes are qualified by the XML pattern

you are indexing on. See ″UNIQUE keyword semantics″ for more information.

XML validation

XML validation is the process of determining whether the structure, content, and

data types of an XML document are valid. XML validation also adds type

annotations to element nodes, attribute nodes and atomic values, and strips off

ignorable whitespace in the XML document. Validation is optional but highly

recommended when data integrity is in question, since it ensures that XML

documents abide by the rules provided by their XML schemas on top of being

well-formed.

Note that you can validate your XML documents against XML schemas only. You

cannot validate an XML document against a DTD.

To validate an XML document, use the XMLVALIDATE function. You can specify

XMLVALIDATE with an SQL statement that inserts or updates XML documents in

a DB2 database. For automatic validation of XML documents, a BEFORE trigger on

an XML column can also invoke the XMLVALIDATE function. To enforce

validation of XML documents, you create a check constraint.

Before you can invoke the XMLVALIDATE function, all schema documents that

make up an XML schema must be registered in the built-in XML schema

repository. An XML document itself does not need to be in a database in order for

you to be able to validate it with XMLVALIDATE.

XML validation and ignorable whitespace

According to the XML standard, whitespace is space characters (U+0020), carriage

returns (U+000D), line feeds (U+000A), or tabs (U+0009) that are in the document

to improve readability. When any of these characters appear as part of a text string,

they are not considered to be whitespace.

Chapter 4. Inserting XML data 45

Ignorable whitespace is whitespace that can be eliminated from the XML document.

The XML schema document determines which whitespace is ignorable whitespace.

If an XML document defines an element-only complex type (an element that

contains only other elements), the whitespace between the elements is ignorable. If

the XML schema defines a simple element that contains a non-string type, the

whitespace within that element is ignorable.

Example: The description element in the sample product.xsd XML schema

document is defined like this:

<xs:element name="description" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="0" />

 <xs:element name="details" type="xs:string" minOccurs="0" />

 <xs:element name="price" type="xs:decimal" minOccurs="0" />

 <xs:element name="weight" type="xs:string" minOccurs="0" />

 ...

 </xs:complexType>

</xs:element>

The description element has an element-only complex type because it contains

only other elements. Therefore, whitespace between elements in a description

element is ignorable whitespace. The price element can also contain ignorable

whitespace because it is a simple element that contains a non-string type.

In the XMLVALIDATE function, you can explicitly specify the XML schema

document to use for validation. If you do not specify an XML schema document,

the DB2 database server looks in the input document for an xsi:schemaLocation or

xsi:noNamespaceSchemaLocation attribute that identifies the XML schema

document. xsi:schemaLocation or xsi:noNamespaceSchemaLocation attributes are

defined by the XML Schema specification, and are called XML schema hints. An

xsi:schemaLocation attribute contains one or more pairs of values that help to

locate the XML schema document. The first value in each pair is a namespace, and

the second value is a hint that indicates where to find the XML schema for the

namespace. An xsi:noNamespaceSchemaLocation value contains only a hint. If an

XML schema document is specified in the XMLVALIDATE function, it overrides

the xsi:schemaLocation or xsi:noNamespaceSchemaLocation attribute.

The following examples assume that schema product is registered in the XML

schema repository (XSR). You might use CLP statements like this to complete the

registration:

REGISTER XMLSCHEMA http://posample.org/product.xsd FROM product.xsd \

AS myschema.product

COMPLETE XMLSCHEMA myschema.product

Alternatively, because the XML schema consists of a single schema document, you

can use a single statement to register the XML schema and complete registration:

REGISTER XMLSCHEMA http://posample.org/product.xsd FROM product.xsd \

AS myschema.product COMPLETE

Example: Suppose that you create table MyProduct like this:

CREATE TABLE MyProduct LIKE Product

You want to insert the following document into XML column Info in the

MyProduct table using a dynamic SQL application, and you want to validate the

XML data against the XML schema document product.xsd, which is located in the

XML schema repository on the same database server as the MyProduct table.

46 pureXML Guide

<product xmlns="http://posample.org" pid=’’110-100-01’’ >

 <description>

 <name>Anvil</name>

 <details>Very heavy</details>

 <price> 9.99 </price>

 <weight>1 kg</weight>

 </description>

</product>’

In your INSERT statement, the XMLVALIDATE function specifies the XML schema

to use for validation:

Insert into MyProduct

 (pid, name, Price, PromoPrice, PromoStart, PromoEnd, description)

 values (’110-100-01’,’Anvil’, 9.99, 7.99, ’11-02-2004’,’12-02-2004’,

 XMLVALIDATE(? ACCORDING TO XMLSCHEMA ID myschema.product))

When you retrieve the stored data, you can see where XMLVALIDATE removes

ignorable whitespace. The retrieved data is a single line with the following content:

<product xmlns="http://posample.org" pid="110-100-01"><description><name>Anvil

</name><details>Very heavy</details><price>9.99</price><weight>1 kg</weight>

</description></product>

The product schema defines the whitespace around the name, details, price, and

weight elements, and the whitespace within the price element as ignorable

whitespace, so XMLVALIDATE removes it.

If you need to ensure that you insert only documents that are validated into an

XML column or retrieve only documents that are validated from an XML column,

use the VALIDATED predicate.

To test whether or not an XML document has been validated before inserting or

updating the document, create a check constraint that contains the VALIDATED

predicate on the XML column. To retrieve only validated documents from an XML

column, or to retrieve only those documents that have been inserted without

validation, you use the VALIDATED predicate in a WHERE clause. If you need to

check whether or not an XML document has been validated according to certain

XML schemas, include the XML schemas with the VALIDATED predicate in the

ACCORDING TO XMLSCHEMA clause.

The VALIDATED predicate can also be used as part of a trigger. To trigger

validation of XML documents that have not yet been validated before you insert or

update them in an XML column, create a BEFORE trigger that contains the

VALIDATED predicate on the XML column in the WHEN clause to invoke the

XMLVALIDATE function.

Example: Suppose that you want to retrieve only validated XML documents from

the Info column of the MyCustomer table. Execute SELECT statements like this

one:

SELECT Info FROM MyCustomer WHERE Info IS VALIDATED

Example: Suppose that you want to insert only validated XML documents into the

Info column of the MyCustomer table. You can define a check constraint to enforce

this condition. Alter the MyCustomer table in the following way:

ALTER TABLE MyCustomer ADD CONSTRAINT CK_VALIDATED CHECK (Info IS VALIDATED)

Chapter 4. Inserting XML data 47

Issuing this statement, however, makes the use of the VALIDATED predicate in the

previous example unnecessary, as only valid documents would be successfully

inserted or updated in the table.

Example: Suppose that you want to validate the following document with the

customer schema, but you do not want to store it in a database.

<customerinfo xml:space="default"

 xmlns="http://posample.org"

 Cid=’1011’>

 <name>Kathy Smith</name>

 <addr country=’Canada’>

 <street>25 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type=’work’>416-555-6676</phone>

</customerinfo>

Assume that you have assigned the document to an application variable. You can

use a VALUES statement like this to do the validation:

VALUES XMLVALIDATE(? according to xmlschema id myschema.customer)

This document is valid according to the XML schema, so the VALUES statement

returns a result table that contains the document. If the document is not valid,

VALUES returns an SQL error.

Check constraints on XML columns

A check constraint allows you to place certain restrictions on XML columns. The

constraint is enforced whenever an attempt is made to insert or update data in the

XML column; only when the criteria specified by the constraint evaluate as true is

the operation performed.

When working with XML documents, an important consideration is whether or not

these documents have previously been validated against XML schemas. If you

need to ensure that you query, insert, update or delete only those documents that

meet certain validation criteria, use the VALIDATED predicate to provide your

criteria. Note that a check constraint never validates XML documents, it only tests

whether or not XML documents have already been validated.4

The VALIDATED predicate checks the validation state of the value specified by

XML-expression, which must have an XML data type. If the optional

according-to-clause is not specified, then the XML schema used for validation does

not impact the result. Check constraints do not validate the XML documents

themselves; only the current validation state of the document is tested by the

constraint (IS VALIDATED or IS NOT VALIDATED). If the according-to-clause is

specified, then the XML schema used to validate the value specified by

XML-expression must be an XML schema identified by the according-to-clause.

XML schemas need to be registered with the XML schema repository before they

can be referenced in a VALIDATED predicate.

Note: Check constraints have a dependency on the XML schemas they reference. If

the XSR object of an XML schema is dropped, any constraint that references the

schema is also dropped.

4. If you need to automatically validate XML documents before they are stored in an XML column, you can use a BEFORE trigger.

48 pureXML Guide

Evaluation of check constraints

Check constraints test the validation state of documents based on the outcome of

the IS VALIDATED predicate. If the condition you specified is satisfied, the

constraint evaluates as true; if not satisfied, the outcome evaluates as false. If the

value specified by XML-expression is null, the result of the predicate is unknown.

The result of the VALIDATED predicate is true if the value specified by

XML-expression is not null AND:

v an according-to-clause was not specified and the value specified by

XML-expression has been validated OR

v an according-to-clause was specified and the value specified by XML-expression

has been validated using one of the XML schemas identified by the according-to

clause.

The result of the predicate is false if the value specified by XML-expression is not

null AND:

v an according-to-clause was not specified and the value specified by

XML-expression has not been validated OR

v an according-to-clause was specified and the value specified by XML-expression

has not been validated using one of the XML schemas identified by the

according-to clause.

In those cases where the optional according-to-clause is specified, IS NOT

VALIDATED will return true when the value specified by XML-expression has not

been validated or the value specified by XML-expression has been validated but not

according to any of the specified XML schemas.

Equivalence of expressions

The VALIDATED predicate

 value1 IS NOT VALIDATED optional-clause

is equivalent to the search condition

 NOT(value1 IS VALIDATED optional-clause)

Examples

Example: Select only validated XML documents. Assume that column XMLCOL is

defined in table T1. Retrieve only those XML values that have been validated by

any XML schema:

 SELECT XMLCOL FROM T1

 WHERE XMLCOL IS VALIDATED

Example: Enforce the rule that values cannot be inserted or updated unless they

have been validated. Assume that column XMLCOL is defined in table T1 and add

a check constraint to XMLCOL:

 ALTER TABLE T1 ADD CONSTRAINT CK_VALIDATED

 CHECK (XMLCOL IS VALIDATED)

Trigger processing of XML data

Triggers allow you to perform actions in response to insert, update, or delete

operations. When working with XML data, you can use the CREATE TRIGGER

Chapter 4. Inserting XML data 49

statement to create BEFORE UPDATE or AFTER UPDATE triggers on XML

columns, or to create INSERT or DELETE triggers on tables that include XML

columns.

A BEFORE trigger can automatically validate XML documents for you before they

are stored in an XML column. Validation of XML documents against registered

XML schemas is optional, but highly recommended when data integrity is in

question, since it ensures that only valid XML documents are inserted or updated.

To automatically validate XML documents, you create a BEFORE trigger that

invokes the XMLVALIDATE function from a SET statement. The trigger body

cannot reference any other transition variables of type XML and it cannot invoke

any other functions besides XMLVALIDATE, except to SET values to NULL, or to

leave values of type XML unchanged.

The trigger is activated when the condition you set for it is met; if you do not

specify any condition, the trigger always becomes activated. To trigger validation

of XML documents against XML schemas only when it is necessary, you can

specify a condition for the XML column with the WHEN clause of the BEFORE

trigger. In the WHEN clause you include the required validation state for the XML

documents, either that the documents must already be validated or that they must

not be validated in order to activate the trigger (IS VALIDATED or IS NOT

VALIDATED). Optionally, you can include one or several XML schemas by

specifying the ACCORDING TO XMLSCHEMA clause that tells the trigger which

XML schemas it should consider in the evaluation of the constraint.

Note: A trigger that specifies the WHEN clause will incur additional overhead. If

validation before inserting XML documents should always be performed, the

WHEN clause can be omitted.

Any trigger that references an XML schema has a dependency on that schema.

Before you can reference an XML schema, it must be registered in the XML schema

repository. If the XML schema the trigger depends on is later dropped from the

XML schema repository, the trigger is marked inoperative.

Example: Create a BEFORE trigger that automatically validates XML documents

containing new product descriptions before they are inserted into the PRODUCT

table of the SAMPLE database. This trigger is activated any time before XML

documents are updated.

CREATE TRIGGER NEWPROD NO CASCADE BEFORE INSERT ON PRODUCT

 REFERENCING NEW AS N

 FOR EACH ROW MODE DB2SQL

 BEGIN ATOMIC

 SET (N.DESCRIPTION) = XMLVALIDATE(N.DESCRIPTION

 ACCORDING TO XMLSCHEMA URI ’http://posample.org/product.xsd’);

 END

Example: After you evolve an XML schema product2.xsd, already stored XML

documents are guaranteed to be valid under the evolved schema, if they were

valid against the original XML schema product.xsd. However, you might want to

ensure that any updates to these XML documents are in fact also valid under the

evolved schema product2.xsd. After you registered product2.xsd with the XML

schema repository, a BEFORE UPDATE trigger can validate the XML documents

before any updates are made:

CREATE TRIGGER UPDPROD NO CASCADE BEFORE UPDATE ON PRODUCT

 REFERENCING NEW AS N

 FOR EACH ROW MODE DB2SQL

50 pureXML Guide

BEGIN ATOMIC

 SET (N.DESCRIPTION) = XMLVALIDATE(N.DESCRIPTION

 ACCORDING TO XMLSCHEMA ID product2);

 END

Example: You want to log inserted or updated customer records in another table.

This requires you to create two triggers, one AFTER INSERT for newly inserted

records and one AFTER UPDATE for updated records. In the example below, the

triggers are created on the XML column Info of table MyCustomer, which is a copy

of the sample Customer table.

First create the AFTER INSERT trigger on the MyCustomer table:

CREATE TRIGGER INSAFTR

 AFTER INSERT ON MyCustomer

 REFERENCING NEW AS N

 FOR EACH ROW

 BEGIN ATOMIC

 INSERT INTO CustLog VALUES(N.CID, CURRENT TIMESTAMP, ’Insert’);

 END

Then create the AFTER UPDATE trigger on the MyCustomer table:

CREATE TRIGGER UPDAFTR

 AFTER UPDATE OF Info

 ON MyCustomer

 REFERENCING NEW AS N

 FOR EACH ROW

 BEGIN ATOMIC

 INSERT INTO CustLog VALUES(N.CID, CURRENT TIMESTAMP, ’Update’);

 END

Using XML in a non-Unicode database

Beginning with Version 9.5, XML data can be stored and retrieved from a database

that does not use a Unicode code page.

Internally, XML data is always managed by the DB2 database server in a Unicode

format, regardless of the database code page. Non-XML, relational data is managed

in the database code page. In cases where SQL or XQuery statements involve both

XML data and SQL relational data, such as in the casting of one data type to

another, or in comparisons involving both the XML data type and SQL data types,

code page conversion is often required. Comparisons of XML data to XML data do

not require code page conversion because both sets of data are already in UTF-8

format. Similarly, comparisons of SQL data to SQL data do not require code page

conversion because both sets of data are already in the database code page.

For operations involving XML data and SQL data, the need for code page

conversion is eliminated in a Unicode database because the database uses the same

encoding for all data types. In a non-Unicode database, however, operations that

involve code page conversion can potentially result in the corruption or loss of

data. If the XML data undergoing conversion contains characters with code points

that are not part of the database code page, character substitution occurs. As a

result, casting or comparison operations can have an unexpected outcome, and

XML data retrieved from the database may contain incorrect values. Below are

discussed different means of avoiding code page conversion problems so as to

ensure the integrity of stored XML data and the operations that involve it.

Chapter 4. Inserting XML data 51

XML document insertion and code page conversion

Whenever XML data is inserted into a DB2 database server through a host variable

or parameter marker that has a character data type (a data type of CHAR,

VARCHAR or CLOB that is not a FOR BIT DATA type), code page conversion

occurs if the database code page differs from that of the client or application

issuing the request. A second conversion occurs as the inserted character data is

converted from the database code page to Unicode, the format in which XML data

is managed internally.

The following table shows the various possible encoding combinations between a

database and an XML document string inserted from a client or application. The

XML document encoding is the same as the client code page because the client

inserts the XML data via a character data type. For each combination, the

implications for code page conversion and the possibility of resultant character

substitution during XML document insertion are described.

 Table 2. Encoding scenarios between a database and an inserted XML document string

Scenario

XML document

encoding Database encoding Code pages match?

1. Unicode (UTF-8) Unicode (UTF-8) yes

2. Non-Unicode Unicode (UTF-8) no

3. Non-Unicode Non-Unicode yes

4. Unicode (UTF-8) Non-Unicode no

5. Non-Unicode Non-Unicode no

1. In Scenario 1, an XML document and a database share a Unicode encoding. No

character conversion occurs as the XML document is inserted. It is always safe

to insert XML data in this way.

2. In Scenario 2, a non-Unicode XML document is converted to UTF-8 for

insertion into a Unicode database. No character substitution occurs through this

process. It is always safe to insert XML data in this way

3. In Scenario 3, an XML document and a database share the same non-Unicode

encoding. In this case, the XML document can contain only code points that are

part of the database code page, so no character substitution occurs during code

page conversion. It is always safe to insert XML data in this way

4. In Scenario 4, a Unicode XML document is inserted into a non-Unicode

database. Code page conversion occurs if the XML document is inserted from a

UTF-8 client or application through either a host variable or a parameter

marker that has a character data type. Any characters in the XML document

that do not have matching code points in the database code page will be

substituted.

5. In Scenario 5, an XML document is inserted into a database server where the

two have different encodings, neither of which is UTF-8. In this case, like in

Scenario 4, if the XML document is inserted using a character data type,

character substitution occurs in any case where the XML document contains

characters that are not valid in the database code page.

Safely inserting XML data into a non-Unicode database

The safest way to ensure the integrity of XML data is to use a Unicode database.

However, if this is not possible, there are other ways to prevent character

52 pureXML Guide

substitution from occurring. The following list describes various methods of

inserting XML data safely, whether or not a Unicode database is used:

Use a Unicode database, or ensure that the database and client use the same

encoding

As illustrated in Table 2 on page 52, code page conversion issues for XML

data are always avoided when:

v The database is Unicode

v The database and the client share the same encoding, whether or not

this is Unicode

Avoid using a host variable or parameter marker with a character data type

 When a Unicode database cannot be used, code page conversion of XML

data can also be avoided by binding the XML data using a host variable or

parameter marker of type XML or any binary data type. That is, specifying

a data type other than CHAR, VARCHAR, or CLOB for the XML data

allows it to be passed directly from the client or application code page to

Unicode, bypassing conversion to the database code page.

 The ENABLE_XMLCHAR configuration parameter allows you to control

whether or not inserting is allowed via character data types. Setting

ENABLE_XMLCHAR to “NO” will block the usage of character data types

during XML document insertion, preventing possible character substitution

and ensuring the integrity of stored XML data. The BLOB and FOR BIT

DATA types are still allowed, since these data types are safe from code

page conversion. By default, ENABLE_XMLCHAR is set to “YES” so that

insertion of character data types is allowed.

 When a Unicode database is used code page conversion is never a

problem, so in this case the ENABLE_XMLCHAR configuration parameter

has no effect; character data types can be used for XML document insertion

regardless of the setting for ENABLE_XMLCHAR.

Use character entity references for characters that are not in the database code

page In cases where code page conversion cannot be avoided and a character

data type must be used for the XML data stream, it is best to ensure that

all characters in the XML document have matching code points in the

database code page. For any characters in the XML data that do not have

matching code points in the target database you can use a character entity

reference to specify the Unicode code point of the character. Code page

conversion is always bypassed for character entity references, so that the

correct character is preserved in the XML data. For example, the character

entity references > and > are, respectively, the hexadecimal

and decimal equivalents of the greater than sign (″>″).

Querying XML data in a non-Unicode database

As with inserting XML data into a database, the safest way to ensure data integrity

during a query involving XML data is to use a Unicode database. If this is not

possible, character substitution is avoided by making sure that all XML data is

representable in the database code page, or by using character entity references for

characters that are not in the database code page.

In the event that a query contains XML content that includes characters not

representable in the database code page, the following two types of character

substitution may occur, potentially causing unexpected results for the query:

Chapter 4. Inserting XML data 53

Replacement by default substitution character

The default substitution character for the code page is introduced in place

of the unmatchable character in the XML data. For example, if a Chinese

character is passed into an ASCII encoded database (ISO-8859-1), the

original character is substituted with the ASCII code point 0x1A, a control

character which typically displays as a question mark (’?’) when displayed

on a client. When the XML data is converted from the database code page

to Unicode, the substitution character is preserved.

Replacement by nearest character equivalent (″folding″)

The original input character is replaced by a character in the target code

page that is similar, but not necessarily identical, to the original character.

It is sometimes the case that two or more characters with distinct Unicode

code points map onto a single code point in a database code page (the

nearest character equivalent in the target code page), so that after insertion

into a database the distinction between the values is lost. This scenario is

illustrated in Example 2, below.

Examples

The following examples demonstrate the possible effects of code page conversion

when a client or application with a UTF-8 encoding is used to query XML data in

a non-Unicode database. In these examples, assume that the database is created

using code page ISO8859-7 (Greek). XQuery expressions are used to match XML

data stored in table T1, where the stored XML data consists of the Unicode Greek

sigma character (ΣG) and the Unicode mathematical sigma character (ΣM). The code

point 0xD3 identifies the sigma character in the ISO8859-7 database.

The table T1 is created and populated using the following commands:

CREATE TABLE T1 (DOCID BIGINT NOT NULL, XMLCOL XML);

INSERT INTO T1 VALUES (1, XMLPARSE(

 document ’<?xml version="1.0" encoding="utf-8" ?> <Specialchars>

 <sigma>ΣG</sigma>

 <summation>ΣM</summation>

 </Specialchars>’

 preserve whitespace));

Example 1: Successful code page conversion (character is representable in

database code page)

XQUERY for $test in db2-fn:xmlcolumn("T1.XMLCOL")//*[. = "ΣG"] return $test

This expression produces the desired result:

<sigma>ΣG</sigma>

In this case, the expression ΣG

begins at the client as the Unicode code

point for the Greek sigma character (U+03A3), is converted to the sigma

character in the Greek database code page (0xD3), and is then converted

back to the correct Unicode character for XML processing. Because the

Greek sigma character is representable in the database code page, the

expression matches correctly. This character conversion is shown in the

following table:

 Table 3. Character data conversion (Example 1)

Client (UTF-8)

Database

(ISO8859-7)

XML parser

(UTF-8)

Character U+03A3 (Greek

sigma)

→ 0xD3 (Greek

sigma)

→ U+03A3 (Greek

sigma)

54 pureXML Guide

Example 2: Unsuccessful code page conversion (character is not representable in

database code page)

XQUERY for $test in db2-fn:xmlcolumn("T1.XMLCOL")//*[. = "ΣM"] return $test

This expression does not produce the desired result:

<sigma>ΣG</sigma>

In this case, the expression ΣM

begins at the client as the Unicode code

point for the mathematical symbol sigma (U+2211), is converted to the

sigma character in the Greek database code page (0xD3) and then matches

the ΣG

character when the XML comparison occurs. For the return

expression, the process is identical to that in Example 1. The Unicode XML

character ΣG

converts first to the sigma character in the Greek database

code page (ΣA), and then back to the Greek sigma character in the client

UTF-8 code page (ΣG). This character conversion is shown in the following

table:

 Table 4. Character data conversion (Example 2)

Client (UTF-8)

Database

(ISO8859-7)

XML parser

(UTF-8)

Character U+2211

(Mathematical

sigma)

→ 0xD3 (Greek

sigma)

→ U+03A3 (Greek

sigma)

Example 3: Bypassing code page conversion using a character entity reference

XQUERY for $test in db2-fn:xmlcolumn("T1.XMLCOL")//*[. = "ࢣ"]

 return $test

This expression produces the desired result:

<summation>ΣM</summation>

In this case, the expression ΣM

begins at the client as the Unicode code

point for the mathematical symbol sigma (U+2211), and because it is

escaped as character reference ࢣ, the Unicode code point is preserved

when it is passed to the XML parser, allowing for successful comparison

against the stored XML value ΣM. The bypassing of character conversion is

shown in the following table:

 Table 5. Character data conversion (Example 3)

Client (UTF-8)

Database

(ISO8859-7)

XML parser

(UTF-8)

Character U+2211

(character

reference for

mathematical

sigma)

→ ″ࢣ″

(character

reference for

mathematical

sigma)

→ U+2211

(mathematical

sigma)

Example 4: Unsuccessful code page conversion (character is not representable in

database code page)

This example is like Example 1, except that here an ASCII encoded

database is used and the default substitution character for the code page is

introduced into the XML expression.

XQUERY for $test in db2-fn:xmlcolumn("T1.XMLCOL")//*[. = "ΣG"] return $test

This query fails to match the correct value in table T1. In this case, the

Unicode character U+2211 (Greek sigma) does not have a matching code

point in the ASCII code page so a default substitution character is

Chapter 4. Inserting XML data 55

introduced, in this case the question mark character (’?’). This character

conversion is shown in the following table:

 Table 6. Character data conversion (Example 4)

Client (UTF-8)

Database

(ISO8859-1)

XML parser

(UTF-8)

Character U+2211

(mathematical

sigma)

→ 0x003F (’?’) → 0x003F (’?’)

Preference of database managed table spaces for native XML data

store performance

For performance-sensitive applications, particularly those involving extensive

INSERT activity, it is strongly recommended that you use database managed space

(DMS).

If you encounter query performance degradation with native XML data store and

are using system managed space (SMS), you should consider switching to DMS.

The use of DMS functionality also allows you to take advantage of autonomic

capabilities in DB2.

56 pureXML Guide

Chapter 5. Querying XML data

Querying XML data

You can query or retrieve XML data stored in the database through two main

query languages, either by using each language on its own or by using a

combination of the two.

The following options are available to you:

v XQuery expressions only

v XQuery expressions that invoke SQL statements

v SQL statements only

v SQL statements that executes XQuery expressions

These various methods allow you to query or retrieve XML and other relational

data from either an SQL or XQuery context.

Pieces of or entire XML documents can be queried and retrieved using these

methods. Queries can return fragments or entire XML documents, and results

returned from queries can be limited by using predicates. Because queries on XML

data return XML sequences, a query’s result can be used in the construction of

XML data as well.

Introduction to XQuery

XQuery is a functional programming language that was designed by the World

Wide Web Consortium (W3C) to meet specific requirements for querying and

modifying XML data.

Unlike relational data, which is predictable and has a regular structure, XML data

is highly variable. XML data is often unpredictable, sparse, and self-describing.

Because the structure of XML data is unpredictable, the queries that you need to

perform on XML data often differ from typical relational queries. The XQuery

language provides the flexibility required to perform these kinds of operations. For

example, you might need to use the XQuery language to perform the following

operations:

v Search XML data for objects that are at unknown levels of the hierarchy.

v Perform structural transformations on the data (for example, you might want to

invert a hierarchy).

v Return results that have mixed types.

v Update existing XML data.

Components of an XQuery query

In XQuery, expressions are the main building blocks of a query. Expressions can be

nested and form the body of a query. A query can also have a prolog before this

body. The prolog contains a series of declarations that define the processing

environment for the query. The query body consists of an expression that defines the

result of the query. This expression can be composed of multiple XQuery

expressions that are combined using operators or keywords.

© Copyright IBM Corp. 2006, 2007 57

Figure 4 illustrates the structure of a typical query. In this example, the prolog

contains two declarations: a version declaration, which specifies the version of the

XQuery syntax to use to process the query, and a default namespace declaration

that specifies the namespace URI to use for unprefixed element and type names.

The query body contains an expression that constructs a price_list element. The

content of the price_list element is a list of product elements that are sorted in

descending order by price.

Retrieving DB2 data with XQuery functions

In XQuery, a query can call one of the following functions to obtain input XML

data from a DB2 database: db2-fn:sqlquery and db2-fn:xmlcolumn.

The function db2-fn:xmlcolumn retrieves an entire XML column, whereas

db2-fn:sqlquery retrieves XML values that are based on an SQL fullselect.

db2-fn:xmlcolumn

The db2-fn:xmlcolumn function takes a string literal argument that

identifies an XML column in a table or a view and returns a sequence of

XML values that are in that column. The argument of this function is case

sensitive. The string literal argument must be a qualified column name of

type XML. This function allows you to extract a whole column of XML

data without applying a search condition.

 In the following example, the query uses the db2-fn:xmlcolumn function to

get all of the purchase orders in the PURCHASE_ORDER column of the

BUSINESS.ORDERS table. The query then operates on this input data to

extract the cities from the shipping address in these purchase orders. The

result of the query is a list of all cities to which orders are shipped:

db2-fn:xmlcolumn(’BUSINESS.ORDERS.PURCHASE_ORDER’)/shipping_address/city

db2-fn:sqlquery

The db2-fn:sqlquery function takes a string argument that represents a

fullselect and returns an XML sequence that is a concatenation of the XML

values that are returned by the fullselect. The fullselect must specify a

single-column result set, and the column must have a data type of XML.

xquery version "1.0";
declare default element namespace "http://posample.org";

<price_list>{for $prod in db2-fn:xmlcolumn("PRODUCT.DESCRIPTION")/product/description
order by xs:decimal($prod/price) descending
return <product>{$prod/name, $prod/price}</product>}

</price_list>

Prolog

Query body

Figure 4. Structure of a typical query in XQuery

58 pureXML Guide

Specifying a fullselect allows you to use the power of SQL to present XML

data to XQuery. The function supports using parameters to pass values to

the SQL statement.

 In the following example, a table called BUSINESS.ORDERS contains an

XML column called PURCHASE_ORDER. The query in the example uses

the db2-fn:sqlquery function to call SQL to get all of the purchase orders

where the ship date is June 15, 2005. The query then operates on this input

data to extract the cities from the shipping addresses in these purchase

orders. The result of the query is a list of all of the cities to which orders

are shipped on June 15:

db2-fn:sqlquery("

SELECT purchase_order FROM business.orders

WHERE ship_date = ’2005-06-15’ ")/shipping_address/city

Important: An XML sequence that is returned by the db2-fn:sqlquery or

db2-fn:xmlcolumn function can contain any XML values, including atomic values

and nodes. These functions do not always return a sequence of well-formed

documents. For example, the function might return a single atomic value, like 36,

as an instance of the XML data type.

SQL and XQuery have different conventions for case-sensitivity of names. You

should be aware of these differences when using the db2-fn:sqlquery and

db2-fn:xmlcolumn functions.

SQL is not a case-sensitive language

By default, all ordinary identifiers, which are used in SQL statements, are

automatically converted to uppercase. Therefore, the names of SQL tables

and columns are customarily uppercase names, such as

BUSINESS.ORDERS and PURCHASE_ORDER in the previous examples. In

an SQL statement, these columns can be referenced by using lowercase

names, such as business.orders and purchase_order, which are

automatically converted to uppercase during processing of the SQL

statement. (You can also create a case-sensitive name that is called a

delimited identifier in SQL by enclosing the name in double quotation

marks.)

XQuery is a case-sensitive language

XQuery does not convert lowercase names to uppercase. This difference

can lead to some confusion when XQuery and SQL are used together. The

string that is passed to db2-fn:sqlquery is interpreted as an SQL query and

is parsed by the SQL parser, which converts all names to uppercase. Thus,

in the db2-fn:sqlquery example, the table name business.orders and the

column names purchase_order and ship_date can appear in either

uppercase or lowercase. The operand of db2-fn:xmlcolumn, however, is not

an SQL query. The operand is a case-sensitive XQuery string literal that

represents the name of a column. Because the actual name of the column is

BUSINESS.ORDERS.PURCHASE_ORDER, this name must be specified in

uppercase in the operand of db2-fn:xmlcolumn.

Introduction to querying XML data with SQL

XML data can be queried using an SQL fullselect or with the SQL/XML query

functions of XMLQUERY and XMLTABLE. The XMLEXISTS predicate can also be

used in SQL queries on XML data.

Chapter 5. Querying XML data 59

When querying XML data using only SQL, without any XQuery, you can query

only at the column level by issuing a fullselect. For this reason, only entire XML

documents can be returned from the query; it is not possible to return fragments of

a document using only SQL.

To query within XML documents, you need to use XQuery. XQuery can be invoked

from SQL using any of the following SQL/XML functions or predicate:

XMLQUERY

An SQL scalar function that returns the result of an XQuery expression as

an XML sequence.

XMLTABLE

An SQL table function that returns the result of an XQuery expression as a

table.

XMLEXISTS

An SQL predicate that determines whether an XQuery expression returns a

non-empty sequence.

Comparison of XQuery to SQL

DB2 databases support storing well-formed XML data in a column of a table and

retrieving the XML data from the database by using SQL, XQuery, or a

combination of SQL and XQuery. Both languages are supported as primary query

languages, and both languages provide functions for invoking the other language.

XQuery

A query that invokes XQuery directly begins with the keyword XQUERY.

This keyword indicates that XQuery is being used and that the DB2 server

must therefore use case sensitivity rules that apply to the XQuery

language. Error handling is based on the interfaces that are used to process

XQuery expressions. XQuery errors are reported with an SQLCODE and

SQLSTATE in the same way that SQL error errors are reported. No

warnings are returned from processing XQuery expressions. XQuery

obtains data by calling functions that extract XML data from DB2 tables

and views. XQuery can also be invoked from an SQL query. In this case,

the SQL query can pass XML data to XQuery in the form of bound

variables. XQuery supports various expressions for processing XML data

and for constructing new XML objects such as elements and attributes. The

programming interface to XQuery provides facilities similar to those of

SQL to prepare queries and retrieve query results.

SQL SQL provides capabilities to define and instantiate values of the XML data

type. Strings that contain well-formed XML documents can be parsed into

XML values, optionally validated against an XML schema, and inserted or

updated in tables. Alternatively, XML values can be constructed by using

SQL constructor functions, which convert other relational data into XML

values. Functions are also provided to query XML data by using XQuery

and to convert XML data into a relational table for use within an SQL

query. Data can be cast between SQL and XML data types in addition to

serializing XML values into string data.

 SQL/XML provides the following functions and predicates for calling

XQuery from SQL:

XMLQUERY

XMLQUERY is a scalar function that takes an XQuery expression

as an argument and returns an XML sequence. The function

60 pureXML Guide

includes optional parameters that can be used to pass SQL values

to the XQuery expression as XQuery variables. The XML values

that are returned by XMLQUERY can be further processed within

the context of the SQL query.

XMLTABLE

XMLTABLE is a table function that uses XQuery expressions to

generate an SQL table from XML data, which can be further

processed by SQL.

XMLEXISTS

XMLEXISTS is an SQL predicate that determines if an XQuery

expression returns a sequence of one or more items (and not an

empty sequence).

Comparison of methods for querying XML data

Because XML data can be queried in a number of ways, using XQuery, SQL, or a

combination of these, the method to choose can differ depending on your situation.

The following sections describe conditions that are advantageous for a particular

query method.

XQuery only

Querying with XQuery alone can be a suitable choice when:

v applications access only XML data, without the need to query non-XML

relational data

v migrating queries previously written in XQuery to DB2 Database for Linux®,

UNIX®, and Windows

v returning query results to be used as values for constructing XML documents

v the query author is more familiar with XQuery than SQL

XQuery that invokes SQL

Querying with XQuery that invokes SQL can be a suitable choice when (in

addition to the scenarios identified in the previous section on using XQuery only):

v queries involve XML data and relational data; SQL predicates and indexes

defined on the relational columns can be leveraged in the query

v you want to apply XQuery expressions to the results of:

– UDF calls, as these cannot be invoked directly from XQuery

– XML values constructed from relational data using SQL/XML publishing

functions

– queries that use DB2 Net Search Extender which offers full text search of

XML documents but which must be used with SQL

SQL only

When retrieving XML data using only SQL, without any XQuery, you can query

only at the XML column level. For this reason, only entire XML documents can be

returned from the query. This usage is suitable when:

v you want to retrieve entire XML documents

v you do not need to query based on values within the stored documents, or

where the predicates of your query are on other non-XML columns of the table

Chapter 5. Querying XML data 61

SQL/XML functions that execute XQuery expressions

The SQL/XML functions XMLQUERY and XMLTABLE, as well as the XMLEXISTS

predicate, enable XQuery expressions to be executed from within the SQL context.

Executing XQuery within SQL can be a suitable choice when:

v existing SQL applications need to be enabled for querying within XML

documents. To query within XML documents, XQuery expressions need to be

executed, which can be done using SQL/XML

v applications querying XML data need to pass parameter markers to the XQuery

expression. (The parameter markers are first bound to XQuery variables in

XMLQUERY or XMLTABLE.)

v the query author is more familiar with SQL than XQuery

v both relational and XML data needs to be returned in a single query

v you need to join XML and relational data

v you want to group or aggregate XML data. You can apply the GROUP BY or

ORDER BY clauses of a subselect to the XML data (for example, after the XML

data has been retrieved and collected in table format by using the XMLTABLE

function)

Specifying XML namespaces

In an XML document, an XML namespace is optional and is used as a prefix for

node names in the XML document. To access the nodes in an XML document that

uses a namespace, your XQuery expressions must also specify the same namespace

as part of the node name. A default XML namespace can be specified for an

document, and XML namespaces can be specified for specific elements in a

document.

Note that namespace declarations are terminated by a semicolon (;). This means

that you cannot use the semicolon as a statement termination character if you also

want to work with SQL statements and XQuery expressions that contain the

semicolon, for example, by invoking the command line processor with db2 -t. You

can specify a termination character other than the semicolon with the -td option,

which ensures that statements containing namespace declarations are not

misinterpreted. The examples in the tutorial use the tilde (~) as the termination

character (-td~), but % is also commonly used (-td%).

For example, the tutorial for pureXML uses XML documents that specify a default

element namespace for an XML document. The following XML is one of the XML

documents used in the tutorial:

<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-2937</phone>

</customerinfo>

The root node of the XML document binds the default element namespace for the

document to the Universal Resource Identifier (URI) http://posample.org.

<customerinfo xmlns="http://posample.org" Cid="1003">

62 pureXML Guide

The XQuery expressions you run in the tutorial also bind a URI as the default

element namespace by including a declare default element namespace prolog. For

example, the XQuery expression in the following SELECT statement declares a

default element namespace; if you run the SELECT statement against the

CUSTOMER table created in the tutorial, one Customer ID is returned:

SELECT cid FROM customer

 WHERE XMLEXISTS(’declare default element namespace "http://posample.org";

 $i/customerinfo/addr/city[. = "Aurora"]’ passing INFO as "i")

By using the same URI as the default element namespace in the XML document,

the expression qualifies the node names in the expression with the correct

namespace prefix. Without a default element namespace declaration, or with a

different URI bound as the default element namespace, the expression does not

qualify the node names with the correct namespace and no data is returned. For

example, the following SELECT statement is similar to the previous statement but

does not have a default namespace declaration. If you run this statement against

the CUSTOMER table created in the tutorial, no data is returned.

SELECT cid FROM customer

WHERE XMLEXISTS(’$i/customerinfo/addr/city[. = "Aurora"]’

 passing INFO as "i")

Using a namespace prefix with a node name

To qualify a node name with a namespace, you can add the namespace prefix for

each node name. You separate the prefix and the node name with a colon. For the

node po:addr, the namespace prefix po is separated from the local node name addr.

If you qualify a namespace prefix with a node name, you must ensure that the

prefix is bound to a URI. For example, the XQuery expression in the following

SELECT statement binds the namespace prefix po to the URI http://posample.org

by declaring the namespace po. When you run the following statement against the

SAMPLE database, one result is returned.

SELECT cid FROM customer

WHERE XMLEXISTS(’

 declare namespace po = "http://posample.org";

 $i/po:customerinfo/po:addr/po:city[. = "Aurora"]’ passing INFO as "i")

The namespace prefix po could be any prefix; what matters is the URI that is

bound to the prefix. For example, the XQuery expression in the following SELECT

statement uses the namespace prefix mytest but is equivalent to the expression in

the previous statement:

SELECT cid FROM customer

WHERE XMLEXISTS(’declare namespace mytest = "http://mytest.org";

 $i/mytest:customerinfo/mytest:addr/mytest:city[. = "Aurora"]’

 passing INFO as "i")

Using a wildcard as a namespace prefix

You can use a wildcard character in an XQuery expression to match any

namespace used in the XML data. The XQuery expression in the following SELECT

statement uses a wildcard character to match all namespace prefixes.

SELECT cid FROM customer

WHERE XMLEXISTS(’$i/*:customerinfo/*:addr/*:city[. = "Aurora"]’

 passing INFO as "i")

When you run the SELECT statement against the SAMPLE database, one Customer

ID is returned.

Chapter 5. Querying XML data 63

XMLQUERY function overview

XMLQUERY is an SQL scalar function that enables you to execute an XQuery

expression from within an SQL context. You can pass variables to the XQuery

expression specified in XMLQUERY. XMLQUERY returns an XML value, which is

an XML sequence. This sequence can be empty or contain one or more items.

By executing XQuery expressions from within the SQL context, you can:

v operate on parts of stored XML documents, instead of entire XML documents

(only XQuery can query within an XML document; SQL alone queries at the

whole document level)

v enable XML data to participate in SQL queries

v operate on both relational and XML data

v apply further SQL processing to the returned XML values (for example, ordering

results with the ORDER BY clause of a subselect)

Refer to the documentation on the comparison of querying methods for more

details.

Note that XQuery is case-sensitive, so the XQuery expressions and variables

specified in XMLQUERY must be carefully specified.

For cases where the full functionality for passing SQL expressions is not needed, a

simpler syntax for passing column names without having to specify the names in

the passing clause explicitly is aso available. See Simple column name passing

with XMLEXISTS, XMLQUERY, and XMLTABLE.

Non-empty sequences returned by XMLQUERY

The XMLQUERY function returns a non-empty sequence, if the XQuery expression

specified within it results in a non-empty sequence.

For example, consider the following two XML documents that are stored in the

XML column INFO of the CUSTOMER table:

<customerinfo xmlns="http://posample.org" Cid="1002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

</customerinfo>

<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

 <phone type="home">416-555-2937</phone>

 <phone type="cell">905-555-8743</phone>

 <phone type="cottage">613-555-3278</phone>

</customerinfo>

64 pureXML Guide

If you issue the following query

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $d/customerinfo/phone’ passing INFO as "d")

FROM CUSTOMER

the table that results contains two rows as follows (the table has been formatted for

clarity):

 Table 7. Result table

<phone xmlns=″http://posample.org″ type=″work″>905-555-7258</phone>

<phone xmlns=″http://posample.org″ type=″work″>905-555-7258</phone><phone

xmlns=″http://posample.org″ type=″home″>416-555-2937</phone><phone

xmlns=″http://posample.org″ type=″cell″>905-555-8743</phone><phone

xmlns=″http://posample.org″ type=″cottage″>613-555-3278</phone>

Notice that the first row contains a sequence of one <phone> element, while the

second row has a sequence of four <phone> elements. This result occurs because

the second XML document contains four <phone> elements, and XMLQUERY

returns a sequence of all elements that satisfy the XQuery expression. (Note that

the result in the second row is not a well-formed document. Ensure that any

application receiving this result can properly handle this behavior.)

The previous example shows how XMLQUERY is commonly used: applied to one

XML document at a time, where each row in the resulting table represents the

result from one document. XMLQUERY, however, can also be applied to multiple

documents at once, as is the case when multiple documents are contained in a

single sequence. In this case, the results from applying XMLQUERY to all

documents in the sequence are returned in a single row.

For example, assume that the same documents presented above are stored in the

INFO column of the CUSTOMER table. The db2-fn:xmlcolumn function in the

following query returns one sequence that contains the two XML documents in the

INFO column.

VALUES (XMLQUERY (’declare default element namespace "http://posample.org";

 db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo/phone’))

XMLQUERY is then applied to this single sequence of XML documents, and the

resulting table contains only one row, as follows:

 Table 8. Result table

<phone xmlns=″http://posample.org″ type=″work″>905-555-7258</phone><phone

xmlns=″http://posample.org″ type=″work″>905-555-7258</phone><phone

xmlns=″http://posample.org″ type=″home″>416-555-2937</phone><phone

xmlns=″http://posample.org″ type=″cell″>905-555-8743</phone><phone

xmlns=″http://posample.org″ type=″cottage″>613-555-3278</phone>

All <phone> elements from the XML documents in the INFO column are returned

in a single row, because XMLQUERY operates on a single value: the sequence of

XML documents returned from db2-fn:xmlcolumn.

Empty sequences returned by XMLQUERY

The XMLQUERY functions returns an empty sequence, if the XQuery expression

specified within it returns an empty sequence.

Chapter 5. Querying XML data 65

For example, in the following query, XMLQUERY will return an empty sequence

for each row of the CUSTOMER table that does not have a <city> element with a

value of ″Aurora″, in the INFO column.

SELECT Cid, XMLQUERY (’declare default element namespace "http://posample.org";

 $d//addr[city="Aurora"]’ passing INFO as "d") AS ADDRESS

FROM CUSTOMER

Assume that there are three rows of the CUSTOMER table, but only one XML

document that contains a <city> element with the value of ″Aurora″. The following

table would result from the previous SELECT statement (the output has been

formatted for clarity).

 Table 9. Result table

CID ADDRESS

1001

1002

1003 <addr xmlns=″http://posample.org″

country=″Canada″><street>1596 Baseline</street><city>Aurora</
city><prov-state>Ontario</prov-state><pcode-zip>N8X-7F8</
pcode-zip></addr>

Notice how empty sequences of zero-length serialized XML, rather than NULL

values, are returned for rows that do not have a <city> element with the value of

″Aurora″. The <addr> element is returned in the third row, however, because it

satisfies the XQuery expression. In the third row, a non-empty sequence is

returned.

You can avoid returning rows that contain empty sequences by applying a

predicate, such as XMLEXISTS, in the WHERE clause of your statement, rather

than in the SELECT clause. For example, the previous query can be rewritten as

follows, moving the filtering predicate from the XMLQUERY function, to the

WHERE clause:

SELECT Cid, XMLQUERY (’declare default element namespace "http://posample.org";

 $d/customerinfo/addr’ passing c.INFO as "d")

FROM Customer as c

WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $d//addr[city="Aurora"]’ passing c.INFO as "d")

The table that results from this query is as follows:

 Table 10. Result table

CID ADDRESS

1003 <addr xmlns=″http://posample.org″

country=″Canada″><street>1596 Baseline</street><city>Aurora</
city><prov-state>Ontario</prov-state><pcode-zip>N8X-7F8</
pcode-zip></addr>

XMLQUERY is commonly used in a SELECT clause to return fragments of selected

documents. Predicates specified in the XQuery expression of XMLQUERY do not

filter rows from the result set, they are used only to determine what fragments are

returned. To actually eliminate rows from your result set, you need to apply a

predicate in the WHERE clause. The XMLEXISTS predicate can be used to apply

predicates that depend on values within stored XML documents.

66 pureXML Guide

Casting of XMLQUERY results to non-XML types

If you want to return the results of the XMLQUERY function to the SQL context

for further processing, such as for comparison or ordering operations, you need to

cast the XML value that is returned to a compatible SQL type. The XMLCAST

specification enables you to cast between XML and non-XML values.

Note:

1. You can cast the result of XMLQUERY to an SQL data type only when the

XQuery expression specified in XMLQUERY returns a sequence that contains

one item that has been atomized.

2. In a non-UTF-8 database, casting the result of XMLQUERY to an SQL data type

causes code page conversion to occur as the returned value is converted from

an internal UTF-8 encoding to the database code page. Any code points in the

returned value that are not part of the database code page will be replaced by

substitution characters. The introduction of substitution characters might cause

unexpected behavior for comparisons between XML and non-XML values, so

care should be taken to ensure that the stored XML data contains only code

points that are included in the database code page.

Example: Comparing XML values to non-XML values in a query

In the following query, the sequence returned by XMLQUERY is cast from its XML

type to a character type, so that it can be compared with the NAME column of the

PRODUCT table. (If the XML value that results from XMLQUERY is not a

serialized string, then the XMLCAST operation could fail.)

SELECT R.Pid

FROM PURCHASEORDER P, PRODUCT R

WHERE R.NAME =

 XMLCAST(XMLQUERY (’declare default element namespace "http://posample.org";

 $d/PurchaseOrder/itemlist/item/product/name’

 PASSING P.PORDER AS "d") AS VARCHAR(128))

Example: Ordering by XMLQUERY results

In the following query, product IDs are returned in an order sorted by the value of

the <name> element of the product’s description, which is stored as an XML

document. Because SQL cannot sort on XML values, the sequence must be cast to a

value that SQL can order on, in this case, character.

SELECT Pid

FROM PRODUCT

ORDER BY XMLCAST(XMLQUERY (’declare default element namespace "http://posample.org";

 $d/product/description/name’

 PASSING DESCRIPTION AS "d") AS VARCHAR(128))

Casting between data types

There are many occasions where a value with a given data type needs to be cast to

a different data type or to the same data type with a different length, precision, or

scale. Data type promotion is one example where the promotion of one data type

to another data type requires that the value be cast to the new data type. A data

type that can be cast to another data type is castable from the source data type to

the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast

functions, CAST specification, or XMLCAST specification can be used to explicitly

change a data type, depending on the data types involved. The database manager

Chapter 5. Querying XML data 67

might implicitly cast data types during assignments that involve a distinct type. In

addition, when a sourced user-defined function is created, the data types of the

parameters of the source function must be castable to the data types of the

function that is being created.

The supported casts between built-in data types are shown in Table 11 on page 69.

The first column represents the data type of the cast operand (source data type),

and the data types across the top represent the target data type of the cast

operation. A ’Y’ indicates that the CAST specification can be used for the

combination of source and target data types. Cases in which only the XMLCAST

specification can be used are noted.

In a Unicode database, if a truncation occurs when a character or graphic string is

cast to another data type, a warning returns if any nonblank characters are

truncated. This truncation behavior is unlike the assignment of character or graphic

strings to a target when an error occurs if any nonblank characters are truncated.

The following casts involving distinct types are supported (using the CAST

specification unless noted otherwise):

v Cast from distinct type DT to its source data type S

v Cast from the source data type S of distinct type DT to distinct type DT

v Cast from distinct type DT to the same distinct type DT

v Cast from a data type A to distinct type DT where A is promotable to the source

data type S of distinct type DT

v Cast from an INTEGER to distinct type DT with a source data type SMALLINT

v Cast from a DOUBLE to distinct type DT with a source data type REAL

v Cast from a decimal floating-point to distinct type DT with a source data type of

decimal floating-point

v Cast from a VARCHAR to distinct type DT with a source data type CHAR

v Cast from a VARGRAPHIC to distinct type DT with a source data type

GRAPHIC

v For a Unicode database, cast from a VARCHAR or a VARGRAPHIC to distinct

type DT with a source data type CHAR or GRAPHIC

v Cast from a distinct type DT with a source data type S to XML using the

XMLCAST specification

v Cast from an XML to a distinct type DT with a source data type of any built-in

data type, using the XMLCAST specification depending on the XML schema

data type of the XML value

FOR BIT DATA character types cannot be cast to CLOB.

It is not possible to cast a structured type value to something else. A structured

type ST should not need to be cast to one of its supertypes, because all methods on

the supertypes of ST are applicable to ST. If the desired operation is only

applicable to a subtype of ST, use the subtype-treatment expression to treat ST as

one of its subtypes.

When a user-defined data type involved in a cast is not qualified by a schema

name, the SQL path is used to find the first schema that includes the user-defined

data type by that name.

The following casts involving reference types are supported:

v cast from reference type RT to its representation data type S

68 pureXML Guide

v cast from the representation data type S of reference type RT to reference type

RT

v cast from reference type RT with target type T to a reference type RS with target

type S where S is a supertype of T.

v cast from a data type A to reference type RT, where A is promotable to the

representation data type S of reference type RT.

When the target type of a reference data type involved in a cast is not qualified by

a schema name, the SQL path is used to find the first schema that includes the

user-defined data type by that name.

 Table 11. Supported Casts between Built-in Data Types

Source Data Type

Target Data Type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 D

E

C

I

M

A

L

 R

E

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

 C

H

A

R

 C

H

A

R

F

B

D2

 V

A

R

C

H

A

R

V

A

R

C

H

A

R

F

B

D2

 L

O

N

G

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

F

B

D2

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 B

L

O

B

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 X

M

L

SMALLINT Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

INTEGER Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

BIGINT Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

DECIMAL Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

REAL Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

DOUBLE Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - Y3

DECFLOAT Y Y Y Y Y Y Y Y Y - - - - - - - - - - - - - -

CHAR Y Y Y Y - - Y Y Y Y Y Y Y Y Y1 Y1 Y1 Y1 Y Y Y Y Y4

CHAR FOR BIT

DATA

Y Y Y Y - - Y Y Y Y Y Y Y - - - - - Y Y Y Y Y3

VARCHAR Y Y Y Y - - Y Y Y Y Y Y Y Y Y1 Y1 Y1 Y1 Y Y Y Y Y4

VARCHAR FOR

BIT DATA

Y Y Y Y - - Y Y Y Y Y Y Y - - - - - Y Y Y Y Y3

LONG VARCHAR - - - - - - - Y - Y - Y - Y Y1 Y1 Y1 Y1 Y - - - Y3

LONG VARCHAR

FOR BIT DATA

- - - - - - - - Y - Y - Y - - - - - Y - - - Y3

CLOB - - - - - - - Y - Y - Y - Y Y1 Y1 Y1 Y1 Y - - - Y4

GRAPHIC Y1 Y1 Y1 Y1 - - Y1 Y1 - Y1 - Y1 - Y1 Y Y Y Y Y Y1 Y1 Y1 Y3

VARGRAPHIC Y1 Y1 Y1 Y1 - - Y1 Y1 - Y1 - Y1 - Y1 Y Y Y Y Y Y1 Y1 Y1 Y3

LONG

VARGRAPHIC

- - - - - - - Y1 - Y1 - Y1 - Y1 Y Y Y Y Y - - - Y3

Chapter 5. Querying XML data 69

Table 11. Supported Casts between Built-in Data Types (continued)

Source Data Type

Target Data Type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 D

E

C

I

M

A

L

 R

E

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

 C

H

A

R

 C

H

A

R

F

B

D2

 V

A

R

C

H

A

R

V

A

R

C

H

A

R

F

B

D2

 L

O

N

G

V

A

R

C

H

A

R

L

O

N

G

V

A

R

C

H

A

R

F

B

D2

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 B

L

O

B

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 X

M

L

DBCLOB - - - - - - - Y1 - Y1 - Y1 - Y1 Y Y Y Y Y - - - Y3

BLOB - - - - - - - - - Y Y - - - - - - - Y - - - Y4

DATE - Y Y Y - - - Y Y Y Y - - - Y1 Y1 - - - Y - - Y3

TIME - Y Y Y - - - Y Y Y Y - - - Y1 Y1 - - - - Y - Y3

TIMESTAMP - - Y Y - - - Y Y Y Y - - - Y1 Y1 - - - Y Y Y Y3

XML Y5 Y

Notes

v See the description preceding the table for information on supported casts involving user-defined types and

reference types.

v It is not possible to cast a structured type value to anything else.

1 Cast is only supported for Unicode databases.

2 FOR BIT DATA

3 Cast can only be performed using XMLCAST.

4 An XMLPARSE function is implicitly processed to convert a string to XML on assignment (INSERT or UPDATE) of

a string to an XML column. The string must be a well-formed XML document for the assignment to succeed.

5 Cast can only be performed using XMLCAST and depends on the underlying XML schema data type of the XML

value. For details, see “XMLCAST”.

Table Table 12 shows where to find information about the rules that apply when

casting to the identified target data types.

 Table 12. Rules for Casting to a Data Type

Target Data Type Rules

SMALLINT “SMALLINT scalar function” in SQL

Reference, Volume 1

INTEGER “INTEGER scalar function” in SQL Reference,

Volume 1

BIGINT “BIGINT scalar function” in SQL Reference,

Volume 1

70 pureXML Guide

Table 12. Rules for Casting to a Data Type (continued)

Target Data Type Rules

DECIMAL “DECIMAL scalar function” in SQL

Reference, Volume 1

NUMERIC “NUMERIC scalar function” in SQL

Reference, Volume 1

REAL “REAL scalar function” in SQL Reference,

Volume 1

DOUBLE “DOUBLE scalar function” in SQL Reference,

Volume 1

DECFLOAT “DECFLOAT scalar function” in SQL

Reference, Volume 1

CHAR “CHAR scalar function” in SQL Reference,

Volume 1

VARCHAR “VARCHAR scalar function” in SQL

Reference, Volume 1

CLOB “CLOB scalar function” in SQL Reference,

Volume 1

GRAPHIC “GRAPHIC scalar function” in SQL

Reference, Volume 1

VARGRAPHIC “VARGRAPHIC scalar function” in SQL

Reference, Volume 1

DBCLOB “DBCLOB scalar function” in SQL Reference,

Volume 1

BLOB “BLOB scalar function” in SQL Reference,

Volume 1

DATE “DATE scalar function” in SQL Reference,

Volume 1

TIME “TIME scalar function” in SQL Reference,

Volume 1

TIMESTAMP If the source type is a character string, see

“TIMESTAMP scalar function” in SQL

Reference, Volume 1 , where one operand is

specified. If the source data type is a DATE,

the timestamp is composed of the specified

date and a time of 00:00:00. If the source

data type is a TIME, the timestamp is

composed of the CURRENT DATE and the

specified time.

Casting non-XML values to XML values

 Table 13. Supported Casts from Non-XML Values to XML Values

Source Data Type

Target Data Type

XML Resulting XML Schema Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

Chapter 5. Querying XML data 71

Table 13. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type

Target Data Type

XML Resulting XML Schema Type

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT N -

CHAR Y xs:string

VARCHAR Y xs:string

LONG VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

LONG VARGRAPHIC Y xs:string

DBCLOB Y xs:string

DATE Y xs:date

TIME Y xs:time

TIMESTAMP Y xs:dateTime

BLOB Y xs:base64Binary

character type FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of

the distinct type

When character string values are cast to XML values, the resulting xs:string atomic

value cannot contain illegal XML characters (SQLSTATE 0N002). If the input

character string is not in Unicode, the input characters are converted to Unicode.

Casting to SQL binary types results in XQuery atomic values with the type

xs:base64Binary.

Casting XML values to non-XML values

An XMLCAST from an XML value to a non-XML value can be described as two

casts: an XQuery cast that converts the source XML value to an XQuery type

corresponding to the SQL target type, followed by a cast from the corresponding

XQuery type to the actual SQL type.

An XMLCAST is supported if the target type has a corresponding XQuery target

type that is supported, and if there is a supported XQuery cast from the source

value’s type to the corresponding XQuery target type. The target type that is used

in the XQuery cast is based on the corresponding XQuery target type and might

contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

 Table 14. Supported Casts from XML Values to Non-XML Values

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

SMALLINT Y xs:short

72 pureXML Guide

Table 14. Supported Casts from XML Values to Non-XML Values (continued)

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT Y no matching type1

CHAR Y xs:string

VARCHAR Y xs:string

LONG VARCHAR N not castable

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

LONG VARGRAPHIC N not castable

DBCLOB Y xs:string

DATE Y xs:date

TIME (without time zone) Y xs:time

TIMESTAMP (without time zone) Y xs:dateTime

BLOB Y xs:base64Binary

CHAR FOR BIT DATA N not castable

VARCHAR FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of

the distinct type

row, reference, structured or abstract

data type (ADT), other

N not castable

Notes

1 DB2 supports XML Schema 1.0, which does not provide a matching XML schema type for

a DECFLOAT. Processing of the XQuery cast step of XMLCAST is handled as follows:

v If the source value is typed with an XML schema numeric type, use that numeric type.

v If the source value is typed with the XML schema type xs:boolean, use xs:double.

v Otherwise, use xs:string with additional checking for a valid numeric format.

2 FLOAT can be used but, depending on the precision, is actually processed as REAL or

DOUBLE.

In the following restriction cases, a derived by restriction XML schema data type is

effectively used as the target data type for the XQuery cast.

v XML values that are to be converted to string types must fit within the length

limits of those DB2 types without truncation of any characters or bytes. The

name used for the derived XML schema type is the uppercase SQL type name

followed by an underscore character and the maximum length of the string; for

example, VARCHAR_20 if the XMLCAST target data type is VARCHAR(20).

v XML values that are to be converted to DECIMAL values must fit within the

precision of the specified DECIMAL values, and must not contain more non-zero

Chapter 5. Querying XML data 73

digits after the decimal point than the scale. The name used for the derived

XML schema type is DECIMAL_precision_scale, where precision is the precision of

the target SQL data type, and scale is the scale of the target SQL data type; for

example, DECIMAL_9_2 if the XMLCAST target data type is DECIMAL(9,2).

v XML values that are to be converted to TIME values cannot contain a seconds

component with non-zero digits after the decimal point. The name used for the

derived XML schema type is TIME.

The derived XML schema type name only appears in a message if an XML value

does not conform to one of these restrictions. This type name helps one to

understand the error message, and does not correspond to any defined XQuery

type. If the input value does not conform to the base type of the derived XML

schema type (the corresponding XQuery target type), the error message might

indicate that type instead. Because this derived XML schema type name format

might change in the future, it should not be used as a programming interface.

Before an XML value is processed by the XQuery cast, any document node in the

sequence is removed and each direct child of the removed document node

becomes an item in the sequence. If the document node has multiple direct

children nodes, the revised sequence will have more items than the original

sequence. The XML value without any document nodes is then atomized using the

XQuery fn:data function, with the resulting atomized sequence value used in the

XQuery cast. If the atomized sequence value is an empty sequence, a null value is

returned from the cast without any further processing. If there are multiple items

in the atomized sequence value, an error is returned (SQLSTATE 10507).

If the target type of XMLCAST is the SQL data type DATE, TIME, or TIMESTAMP,

the resulting XML value from the XQuery cast is also adjusted to UTC, and the

time zone component of the value is removed.

When the corresponding XQuery target type value is converted to the SQL target

type, binary XML data types, such as xs:base64Binary or xs:hexBinary, are

converted from character form to actual binary data.

If an xs:double or xs:float value of INF, -INF, or NaN is cast (using XMLCAST) to

an SQL data type DOUBLE or REAL value, an error is returned (SQLSTATE 22003).

An xs:double or xs:float value of -0 is converted to +0.

The target type can be a user-defined distinct type if the source operand is not a

user-defined distinct type. In this case, the source value is cast to the source type

of the user-defined distinct type (that is, the target type) using the XMLCAST

specification, and then this value is cast to the user-defined distinct type using the

CAST specification.

In a non-Unicode database, casting from an XML value to a non-XML target type

involves code page conversion from an internal UTF-8 format to the database code

page. This conversion will result in the introduction of substitution characters if

any code point in the XML value is not present in the database code page.

XMLQUERY

�� XMLQUERY (xquery-expression-constant �

74 pureXML Guide

�

�

,

BY REF

PASSING

xquery-argument

 �

�

 BY REF

RETURNING

SEQUENCE

EMPTY ON EMPTY

)

��

xquery-argument:

 (1)

xquery-variable-expression

AS

identifier

BY REF

Notes:

1 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLQUERY function returns an XML value from the evaluation of an XQuery

expression possibly using specified input arguments as XQuery variables.

xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression using supported XQuery language syntax. The constant string is

converted to UTF-8 before being parsed as an XQuery statement. The XQuery

expression executes using an optional set of input XML values, and returns an

output sequence that is also returned as the value of the XMLQUERY

expression. The value for xquery-expression-constant must not be an empty

string or a string of blank characters (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified xquery-argument matches an

in-scope column name, then the explicit xquery-argument is passed to the

XQuery expression overriding that implicit column.

BY REF

Specifies that the default passing mechanism is by reference for any

xquery-variable-expression of data type XML and for the returned value.

When XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node identity

comparisons and document ordering comparisons involving some nodes

contained between the two input arguments might refer to nodes within

the same XML node tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

Chapter 5. Querying XML data 75

xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by xquery-expression-constant. An argument specifies a value and

the manner in which that value is to be passed. The argument includes an

SQL expression that is evaluated.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by xquery-expression-constant during execution. The

expression cannot contain a sequence reference (SQLSTATE 428F9) or

an OLAP function (SQLSTATE 42903). The data type of the expression

cannot be DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to xquery-expression-constant as an XQuery variable. The variable

name will be identifier. The leading dollar sign ($) that precedes

variable names in the XQuery language is not included in identifier.

The identifier must be a valid XQuery variable name and is restricted

to an XML NCName (SQLSTATE 42634). The identifier must not be

greater than 128 bytes in length. Two arguments within the same

PASSING clause cannot use the same identifier (SQLSTATE 42711).

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-variable-expression, XML arguments are passed by

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values. When a non-XML value is passed, the

value is converted to XML; this process creates a copy.

RETURNING SEQUENCE

Indicates that the XMLQUERY expression returns a sequence.

BY REF

Indicates that the result of the XQuery expression is returned by reference. If

this value contains nodes, any expression using the return value of the XQuery

expression will receive node references directly, preserving all node properties,

including the original node identities and document order. Referenced nodes

will remain connected within their node trees. If the BY REF clause is not

76 pureXML Guide

specified and the PASSING is specified, the default passing mechanism is used.

If BY REF is not specified and PASSING is not specified, the default returning

mechanism is BY REF.

EMPTY ON EMPTY

Specifies that an empty sequence result from processing the XQuery expression

is returned as an empty sequence.

The data type of the result is XML; it cannot be null.

If the evaluation of the XQuery expression results in an error, then the

XMLQUERY function returns the XQuery error (SQLSTATE class ’10’).

Note:

1. XMLQUERY usage restrictions: The XMLQUERY function cannot be:

v Part of the ON clause that is associated with a JOIN operator or a MERGE

statement (SQLSTATE 42972)

v Part of the GENERATE KEY USING or RANGE THROUGH clause in the

CREATE INDEX EXTENSION statement (SQLSTATE 428E3)

v Part of the FILTER USING clause in the CREATE FUNCTION (External

Scalar) statement, or the FILTER USING clause in the CREATE INDEX

EXTENSION statement (SQLSTATE 428E4)

v Part of a check constraint or a column generation expression (SQLSTATE

42621)

v Part of a group-by-clause (SQLSTATE 42822)

v Part of an argument for a column-function (SQLSTATE 42607)
2. XMLQUERY as a subquery: An XMLQUERY expression that acts as a

subquery can be restricted by statements that restrict subqueries.

3. Support in multiple database partition databases: XMLQUERY is not

supported (SQLSTATE 42997).

XMLTABLE function overview

XMLTABLE is an SQL table function that returns a table from the evaluation of

XQuery expressions. XQuery expressions normally return values as a sequence,

however, XMLTABLE allows you to execute an XQuery expression and return

values as a table instead. The table that is returned can contain columns of any

SQL data type, including XML.

Like the XMLQUERY function, you can pass variables to the XQuery expression

specified in XMLTABLE. The result of the XQuery expression is used to generate

the column values of the resulting table. The structure of the resulting table is

defined by the COLUMNS clause of XMLTABLE. In this clause, you define

characteristics of the column by specifying the column name, data type, and how

the column value is generated. A simpler syntax for passing the column name

without having to specify the name explicitly is aso available. See “Simple column

name passing with XMLEXISTS, XMLQUERY, or XMLTABLE” on page 91.

The column value of the resulting table can be generated by specifying an XQuery

expression in the PATH clause of XMLTABLE. If an XQuery expression is not

specified for the PATH clause, the column name is used as the XQuery expression

to generate the column value, and the result of the XQuery expression specified

earlier in XMLTABLE becomes the external context item when generating the

column value. An optional default clause can also be specified to provide a default

Chapter 5. Querying XML data 77

value for the column, for the case when the XQuery expression of the PATH clause

that generates the column value returns an empty sequence.

If the column type in the resulting table is not XML, and the result of the XQuery

expression that defines the value of the column is not an empty sequence,

XMLCAST is implicitly used to convert the XML value to a value of the target data

type.

The XMLTABLE function allows you to optionally declare namespaces. If you

specify namespaces with the XMLNAMESPACES declaration, then these

namespace bindings apply to all XQuery expressions in the XMLTABLE function

call. If you declare namespace bindings without using the XMLNAMESPACES

declaration, then the bindings apply only to the row XQuery expression, which

follows the namespace declaration.

XMLTABLE advantages

Returning a table instead of a sequence enables the following operations to be

performed from within an SQL query context:

v iterate over results of an XQuery expression from within an SQL fullselect

For example, in the following query, the SQL fullselect iterates over the table

that results from executing the XQuery expression ″db2-
fn:xmlcolumn(″CUSTOMER.INFO″)/customerinfo″ in XMLTABLE.

SELECT X.*

FROM XMLTABLE (xmlnamespaces (DEFAULT "http://posample.org"),

 ’db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo’

 COLUMNS "CUSTNAME" CHAR(30) PATH ’name’,

 "PHONENUM" XML PATH ’phone’)

 as X

v insert values from stored XML documents into tables (refer to the XMLTABLE

example on inserting values)

v sort on values from an XML doc

For example, in the following query, results are sorted by the customer names

that are stored in XML documents in the INFO column of the CUSTOMER table.

SELECT X.*

FROM XMLTABLE (xmlnamespaces (DEFAULT "http://posample.org"),

 ’db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo’

 COLUMNS "CUSTNAME" CHAR(30) PATH ’name’,

 "PHONENUM" XML PATH ’phone’)

 as X

ORDER BY X.CUSTNAME

v store some XML values as relational and some as XML (refer to the XMLTABLE

example on inserting values)

Important: If the XQuery expression specified in the PATH option of XMLTABLE

returns:

v a sequence of more than one item, then the data type of the column must be

XML. If you are inserting values returned from XMLTABLE into XML columns,

ensure that the values inserted are well-formed XML documents. Refer to the

XMLTABLE example on inserting values for an example of handling sequences

that return more than one item.

v an empty sequence, then a NULL value is returned for that column value.

78 pureXML Guide

XMLTABLE example: Inserting values returned from

XMLTABLE

The XMLTABLE SQL table function can be used to retrieve values from within

stored XML documents, which can then be inserted into a table.

This technique is a simple form of decomposition, where decomposition is the

process of storing fragments of an XML document in columns of relational tables.

(A more general type of decomposition is available with the annotated XML

schema decomposition functionality. With annotated XML schema decomposition,

you can decompose multiple XML documents at once into multiple tables.)

For example, if the following two XML documents were stored in a table named

CUSTOMER:

<customerinfo xmlns="http://posample.org" Cid="1001">

 <name>Kathy Smith</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

</customerinfo>

<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

 <phone type="home">416-555-2937</phone>

 <phone type="cell">905-555-8743</phone>

 <phone type="cottage">613-555-3278</phone>

</customerinfo>

and you wanted to insert values from these documents into a table defined as:

CREATE TABLE CUSTPHONE (custname char(30), type char(30), numbers XML)

then the following INSERT statement using XMLTABLE populates CUSTPHONE

with values from the XML documents:

INSERT INTO CUSTPHONE

 SELECT X.*

 FROM XMLTABLE (XMLNAMESPACES (DEFAULT ’http://posample.org’),

 ’db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo’

 COLUMNS

 "CUSTNAME" CHAR(30) PATH ’name’,

 "PHONENUM" XML PATH ’document{<allphones>{phone}</allphones>}’

) as X

Notice that the XQuery node constructor function

″document{<allphones>{phone}</allphones>}″ is specified in the path expression

for the PHONENUM column in XMLTABLE. The document constructor is needed

because values inserted into XML columns (the NUMBERS column, in this case),

must be well-formed XML documents. In this example, all <phone> elements for

the <customerinfo> document with Cid=″1003″ are returned in a single sequence

that contains four items:

Chapter 5. Querying XML data 79

{<phone type="work">905-555-7258</phone>,<phone type="home">416-555-2937</phone>,

<phone type="cell">905-555-8743</phone>, <phone type="cottage">613-555-3278</phone>}

This sequence on its own is not a well-formed XML document, and so cannot be

inserted into the NUMBERS XML column. To ensure that the phone values are

successfully inserted, all items of the sequence are constructed into a single

well-formed document.

The resulting table is as follows (the output has been formatted for clarity):

 Table 15. Result table

CUSTNAME NUMBER

Kathy Smith <allphones xmlns=″http://posample.org″><phone

type=″work″>905-555-7258</phone></allphones>

Robert Shoemaker <allphones xmlns=″http://posample.org″><phone

type=″work″>905-555-7258</phone><phone type=″home″>416-555-
2937</phone><phone type=″cell″>905-555-8743</phone><phone

type=″cottage″>613-555-3278</phone></allphones>

XMLTABLE example: Returning one row for each occurrence

of an item

If your XML documents contain multiple occurrences of an element and you want

to generate a row for each occurrence of this element, you can use XMLTABLE to

achieve this effect.

For example, if the following two XML documents were stored in a table named

CUSTOMER:

<customerinfo xmlns="http://posample.org" Cid="1001">

 <name>Kathy Smith</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

</customerinfo>

<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

 <phone type="home">416-555-2937</phone>

 <phone type="cell">905-555-8743</phone>

 <phone type="cottage">613-555-3278</phone>

</customerinfo>

to create a table where every <phone> value is stored in a separate row, use

XMLTABLE as follows:

SELECT X.*

FROM CUSTOMER C, XMLTABLE (xmlnamespaces (DEFAULT ’http://posample.org’),

 ’$cust/customerinfo/phone’ PASSING C.INFO as "cust"

80 pureXML Guide

COLUMNS "CUSTNAME" CHAR(30) PATH ’../name’,

 "PHONETYPE" CHAR(30) PATH ’@type’,

 "PHONENUM" CHAR(15) PATH ’.’

) as X

This query yields the following result for the two XML documents:

 Table 16. Result table

CUSTNAME PHONETYPE PHONENUM

Kathy Smith work 905-555-7258

Robert Shoemaker work 905-555-7258

Robert Shoemaker home 416-555-2937

Robert Shoemaker cell 905-555-8743

Robert Shoemaker cottage 613-555-3278

Notice how each <phone> element for the XML document with the name ″Robert

Shoemaker″ are returned in a separate row.

For the same documents, you can also extract the <phone> elements as XML, as

follows:

SELECT X.*

FROM CUSTOMER C, XMLTABLE (xmlnamespaces (DEFAULT ’http://posample.org’),

 ’$cust/customerinfo/phone’ PASSING C.INFO as "cust"

 COLUMNS "CUSTNAME" CHAR(30) PATH ’../name’,

 "PHONETYPE" CHAR(30) PATH ’@type’,

 "PHONENUM" XML PATH ’.’

) as X

This query yields the following result for the two XML documents (the output has

been formatted for clarity):

 Table 17. Result table

CUSTNAME PHONETYPE PHONENUM

Kathy Smith work <phone xmlns=″http://posample.org″

type=″work″>416-555-1358</phone>

Robert Shoemaker work <phone xmlns=″http://posample.org″

type=″work″>905-555-7258</phone>

Robert Shoemaker home <phone xmlns=″http://posample.org″

type=″work″>416-555-2937</phone>

Robert Shoemaker cell <phone xmlns=″http://posample.org″

type=″work″>905-555-8743</phone>

Robert Shoemaker cottage <phone xmlns=″http://posample.org″

type=″work″>613-555-3278</phone>

XMLTABLE

�� XMLTABLE (

xmlnamespaces-declaration

,
 �

� row-xquery-expression-constant �

Chapter 5. Querying XML data 81

�

�

,

BY REF

PASSING

row-xquery-argument

 �

�

�

,

(1)

COLUMNS

xml-table-regular-column-definition

)

xml-table-ordinality-column-definition

 ��

row-xquery-argument:

 (2)

xquery-variable-expression

AS

identifier

BY REF

xml-table-regular-column-definition:

 column-name data-type

BY REF

default-clause
 �

�
PATH

column-xquery-expression-constant

xml-table-ordinality-column-definition:

 column-name FOR ORDINALITY

Notes:

1 The xml-table-ordinality-column-definition clause must not be specified more

than once (SQLSTATE 42614, SQLCODE -637).

2 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLTABLE function returns a result table from the evaluation of XQuery

expressions, possibly using specified input arguments as XQuery variables. Each

sequence item in the result sequence of the row XQuery expression represents a

row of the result table.

xmlnamespaces-declaration

Specifies one or more XML namespace declarations that become part of the

static context of the row-xquery-expression-constant and the column-xquery-
expression-constant. The set of statically known namespaces for XQuery

expressions which are arguments of XMLTABLE is the combination of the

pre-established set of statically known namespaces and the namespace

declarations specified in this clause. The XQuery prolog within an XQuery

expression may override these namespaces.

 If xmlnamespaces-declaration is not specified, only the pre-established set of

statically known namespaces apply to the the XQuery expressions.

row-xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression using supported XQuery language syntax. The constant string is

82 pureXML Guide

converted directly to UTF-8 without conversion to the database or section code

page. The XQuery expression executes using an optional set of input XML

values, and returns an output XQuery sequence where a row is generated for

each item in the sequence. The value for row-xquery-expression-constant must not

be an empty string or a string of all blanks (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by row-xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified row-xquery-argument matches

an in-scope column name, then the explicit row-xquery-argument is passed to

the XQuery expression overriding that implicit column.

BY REF

Specifies that any XML input arguments are, by default, passed by

reference. When XML values are passed by reference, the XQuery

evaluation uses the input node trees, if any, directly from the specified

input expressions, preserving all properties, including the original node

identities and document order. If two arguments pass the same XML value,

node identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

row-xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by row-xquery-expression-constant. An argument specifies a value

and the manner in which that value is to be passed. The argument

includes an SQL expression that is evaluated before passing the result to

the XQuery expression.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the row-xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by row-xquery-expression-constant during execution.

The expression cannot contain a NEXT VALUE expression, PREVIOUS

VALUE expression (SQLSTATE 428F9), or an OLAP function

(SQLSTATE 42903). The data type of the expression cannot be

DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to row-xquery-expression-constant as an XQuery variable. The

variable name will be identifier. The leading dollar sign ($) that

precedes variable names in the XQuery language is not included in

identifier. The identifier must be a valid XQuery variable name and is

restricted to an XML NCName. The identifier must not be greater than

Chapter 5. Querying XML data 83

128 bytes in length. Two arguments within the same PASSING clause

cannot use the same identifier (SQLSTATE 42711).

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-expression-variable, XML arguments are passed by

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values (SQLSTATE 42636). When a non-XML

value is passed, the value is converted to XML; this process creates a

copy.

COLUMNS

Specifies the output columns of the result table. If this clause is not specified, a

single unnamed column of data type XML is returned by reference, with the

value based on the sequence item from evaluating the XQuery expression in

the row-xquery-expression-constant (equivalent to specifying PATH ’.’). To

reference the result column, a column-name must be specified in the

correlation-clause following the function.

xml-table-regular-column-definition

Specifies the output columns of the result table including the column

name, data type, XML passing mechanism and an XQuery expression to

extract the value from the sequence item for the row

column-name

Specifies the name of the column in the result table. The name cannot

be qualified and the same name cannot be used for more than one

column of the table (SQLSTATE 42711).

data-type

Specifies the data type of the column. See CREATE TABLE for the

syntax and a description of types available. A data-type may be used in

XMLTable if there is a supported XMLCAST from the XML data type

to the specified data-type.

BY REF

Specifies that XML values are returned by reference for columns of

data type XML. By default, XML values are returned BY REF. When

XML values are returned by reference, the XML value includes the

input node trees, if any, directly from the result values, and preserves

all properties, including the original node identities and document

order. This option cannot be specified for non-XML columns

(SQLSTATE 42636). When a non-XML column is processed, the value is

converted from XML; this process creates a copy.

default-clause

Specifies a default value for the column. See CREATE TABLE for the

syntax and a description of the default-clause. For XMLTABLE result

columns, the default is applied when the processing the XQuery

expression contained in column-xquery-expression-constant returns an

empty sequence.

84 pureXML Guide

PATH column-xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an

XQuery expression using supported XQuery language syntax. The

constant string is converted directly to UTF-8 without conversion to

the database or section code page. The column-xquery-expression-constant

specifies an XQuery expression that determines the column value with

respect to an item that is the result of evaluating the XQuery

expression in row-xquery-expression-constant. Given an item from the

result of processing the row-xquery-expression-constant as the externally

provided context item, the column-xquery-expression-constant is

evaluated, returning an output sequence. The column value is

determined based on this output sequence as follows.

v If the output sequence contains zero items, the default-clause provides

the value of the column.

v If an empty sequence is returned and no default-clause was specified,

a null value is assigned to the column.

v If a non-empty sequence is returned, the value is XMLCAST to the

data-type specified for the column. An error could be returned from

processing this XMLCAST.

The value for column-xquery-expression-constant must not be an empty

string or a string of all blanks (SQLSTATE 10505). If this clause is not

specified, the default XQuery expression is simply the column-name.

xml-table-ordinality-column-definition

Specifies the ordinality column of the result table.

column-name

Specifies the name of the column in the result table. The name cannot

be qualified and the same name cannot be used for more than one

column of the table (SQLSTATE 42711).

FOR ORDINALITY

Specifies that column-name is the ordinality column of the result table.

The data type of this column is BIGINT. The value of this column in

the result table is the sequential number of the item for the row in the

resulting sequence from evaluating the XQuery expression in

row-xquery-expression-constant.

If the evaluation of any of the XQuery expressions results in an error, then the

XMLTABLE function returns the XQuery error (SQLSTATE class ’10’).

Note:

1. Support in multiple database partition databases: XMLTABLE is not

supported (SQLSTATE 42997).

Examples:

v List as a table result the purchase order items for orders with a status of ’NEW’.

 SELECT U."PO ID", U."Part #", U."Product Name",

 U."Quantity", U."Price", U."Order Date"

 FROM PURCHASEORDER P,

 XMLTABLE(XMLNAMESPACES(’http://podemo.org’ AS "pod"),

 ’$po/PurchaseOrder/itemlist/item’ PASSING P.PORDER AS "po"

 COLUMNS "PO ID" INTEGER PATH ’../../@POid’,

 "Part #" CHAR(6) PATH ’product/@pid’,

 "Product Name" CHAR(50) PATH ’product/pod:name’,

 "Quantity" INTEGER PATH ’quantity’,

Chapter 5. Querying XML data 85

"Price" DECIMAL(9,2) PATH ’product/pod:price’,

 "Order Date" TIMESTAMP PATH ’../../dateTime’

) AS U

 WHERE P.STATUS = ’NEW’

XMLEXISTS predicate when querying XML data

The XMLEXISTS predicate determines whether an XQuery expression returns a

sequence of one or more items. If the XQuery expression specified in this predicate

returns an empty sequence, XMLEXISTS returns false; otherwise, true is returned.

The XMLEXISTS predicate can be used in the WHERE clauses of SELECT

statements. This usage means that values from stored XML documents can be used

to restrict the set of rows that the SELECT query operates on.

For example, the following SQL query shows how the XMLEXISTS predicate can

be used to restrict the rows returned, to only those that contain an XML document

with a <city> element that has the value ″Toronto″. (Note that XQuery expressions

are case-sensitive, while SQL is case-insensitive.)

SELECT Cid

FROM CUSTOMER

WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $d//addr[city="Toronto"]’ passing INFO as "d")

Note how you can pass values to XQuery variables in the XQuery expression of

XMLEXISTS. In this case, the XQuery variable $d is bound to the documents of the

INFO column of the CUSTOMER table. A simpler syntax for passing column

names without having to specify the names in the passing clause explicitly is also

available. See “Simple column name passing with XMLEXISTS, XMLQUERY, or

XMLTABLE” on page 91.

Ensure that the XQuery expression in XMLEXISTS is correctly specified in order to

return expected results. For example, assume that there are multiple documents

stored in the XML INFO column of the CUSTOMER table, but only one document

contains a Cid attribute (along the path specified) with a value of 1000:

<customerinfo xmlns="http://posample.org" Cid="1000">

 <name>Kathy Smith</name>

 <addr country="Canada">

 <street>5 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type="work">416-555-1358</phone>

</customerinfo>

The following two queries return different results, because of the slight difference

in the XQuery expressions:

SELECT *

FROM CUSTOMER

WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $d/customerinfo[@Cid=1000]’ passing INFO as "d")

SELECT *

FROM CUSTOMER

WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $d/customerinfo/@Cid=1000’ passing INFO as "d")

86 pureXML Guide

The first query returns the row containing the XML document presented above, as

expected. The second query, however, returns all rows of the CUSTOMER table

because the XMLEXISTS predicate always returns true for the XQuery expression

specified. The XQuery expression in the second query returns a sequence of

boolean items, which is a non-empty sequence, causing XMLEXISTS to always

return true. This then causes every row in the CUSTOMER table to be selected,

which is not the intended result.

XMLEXISTS predicate usage

If XMLEXISTS includes an XPath expression with a value predicate (expression),

enclose the predicate in square brackets, such that [expression] is the result.

Enclosing the value predicate in square brackets ensures evaluation of expression in

accordance with what may be semantically expected.

XMLEXISTS predicate behavior

The following scenario demonstrates how a non-empty sequence causes

XMLEXISTS to evaluate true, even though the non-empty sequence itself

consists of the single value false. No index matching takes place and the

query returns a much greater set of results than expected. The issue is

avoided by bracketing value predicates appropriately with square brackets

([]).

 Consider a table, an index and two queries:

 CREATE TABLE mytable (id BIGINT, xmlcol XML);

 CREATE INDEX myidx ON mytable(xmlcol)

 GENERATE KEY USING XMLPATTERN ’//text()’ AS SQL VARCHAR(255);

 SELECT xmlcol FROM mytable

 WHERE XMLEXISTS(’$doc/CUSTOMER/ORDERS/ORDERKEY/text()="A512" ’

 PASSING xmlcol AS "doc")

 SELECT xmlcol FROM mytable

 WHERE XMLEXISTS(’$doc/CUSTOMER[ORDERS/ORDERKEY/text()="A512"] ’

 PASSING xmlcol AS "doc") ;

The cause for this behavior is as follows: XMLEXISTS evaluates the

XQuery expression and returns false (for XMLEXISTS) if the result is the

empty sequence, and true (for XMLEXISTS) if the result is a non-empty

sequence. This is followed by a possibly non-intuitive next step in the

query evaluation: In the first query the expression instructs to ’compare the

order key to A512’. The result of that expression is either the value false or

true depending on the actual value of the order key. Therefore, the

XMLEXISTS function always sees a return sequence with a single item in

it, that is, an item that is false or an item that is true. Since a sequence with

one item is a non-empty sequence, XMLEXISTS always returns true (for

XMLEXISTS) overall and therefore the query returns all rows. Indexes

cannot be leveraged if XMLEXISTS is used such that all rows are qualified.

 Below are 5 examples of non-empty sequences, where 3 are sequences

which contain just 1 item:

 (42, 3,4,78, 1966)

 (true)

 (abd, def)

 (false)

 (5)

Any such non-empty sequence will cause XMLEXISTS to return the value

true (for XMLEXISTS), even if the non-empty sequence it encounters itself

returns (false).

Chapter 5. Querying XML data 87

In the second query, the expression inside XMLEXISTS instructs to ’return

the customers which contain an order with an orderkey equal to A512’. If

no such customer exists in a document, then the result is indeed an empty

sequence. This query will use an index and it will return the expected

results.

XMLEXISTS predicate usage

When the entire expression is placed in square brackets, the meaning is

fixed to be ’return XML data if [expression]’, and you should always be

returned an empty sequence if the XML data does not satisfy expression.

 Since the value comparison is always within square brackets, each of the

following sample fragments for XMLEXISTS predicate usage works as

expected:

... WHERE XMLEXISTS(’$doc[CUSTOMER/ORDERS/ORDERKEY/text()="A512"] ’

 PASSING xmlcol as "doc") ;

 ... WHERE XMLEXISTS(’$doc/CUSTOMER[ORDERS/ORDERKEY/text()="A512"] ’

 PASSING xmlcol AS "doc") ;

 ... WHERE XMLEXISTS(’$doc/CUSTOMER/ORDERS[ORDERKEY/text()="A512"] ’

 PASSING xmlcol AS "doc") ;

The guideline also works for queries where there is no value comparison,

for example, when you want to return the documents for all customers

which happen to have a COMMENT child element:

... WHERE XMLEXISTS(’$doc[CUSTOMER/COMMENT] ’

 PASSING xmlcol AS "doc") ;

XMLEXISTS predicate

�� XMLEXISTS (xquery-expression-constant �

�

�

,

(1)

BY REF

PASSING

xquery-argument

) ��

xquery-argument:

 (2)

xquery-variable-expression

AS

identifier

BY REF

Notes:

1 The data type cannot be DECFLOAT.

2 The data type of the expression cannot be DECFLOAT.

The XMLEXISTS predicate tests whether an XQuery expression returns a sequence

of one or more items.

xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression. The constant string is converted directly to UTF-8 without

conversion to the database or section code page. The XQuery expression

executes using an optional set of input XML values, and returns an output

88 pureXML Guide

sequence that is tested to determine the result of the XMLEXISTS predicate.

The value for xquery-expression-constant must not be an empty string or a string

of blank characters (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified xquery-argument matches an

in-scope column name, then the explicit xquery-argument is passed to the

XQuery expression overriding that implicit column.

BY REF

Specifies that the default passing mechanism is by reference for any

xquery-variable-expression of data type XML. When XML values are passed

by reference, the XQuery evaluation uses the input node trees, if any,

directly from the specified input expressions, preserving all properties,

including the original node identities and document order. If two

arguments pass the same XML value, node identity comparisons and

document ordering comparisons involving some nodes contained between

the two input arguments might refer to nodes within the same XML node

tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by xquery-expression-constant. An argument specifies a value and

the manner in which that value is to be passed. The argument includes an

SQL expression that is evaluated.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by xquery-expression-constant during execution. The

expression cannot contain a sequence reference (SQLSTATE 428F9) or

an OLAP function (SQLSTATE 42903). The data type of the expression

cannot be DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to xquery-expression-constant as an XQuery variable. The variable

name will be identifier. The leading dollar sign ($) that precedes

variable names in the XQuery language is not included in identifier.

The identifier must be a valid XQuery variable name and is restricted

to an XML NCName. The identifier must not be greater than 128 bytes

in length. Two arguments within the same PASSING clause cannot use

the same identifier (SQLSTATE 42711).

Chapter 5. Querying XML data 89

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-variable-expression, XML arguments are passed by

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values. When a non-XML value is passed, the

value is converted to XML; this process creates a copy.

Notes

The XMLEXISTS predicate cannot be:

v Part of the ON clause that is associated with a JOIN operator or a MERGE

statement (SQLSTATE 42972)

v Part of the GENERATE KEY USING or RANGE THROUGH clause in the

CREATE INDEX EXTENSION statement (SQLSTATE 428E3)

v Part of the FILTER USING clause in the CREATE FUNCTION (External Scalar)

statement, or the FILTER USING clause in the CREATE INDEX EXTENSION

statement (SQLSTATE 428E4)

v Part of a check constraint or a column generation expression (SQLSTATE 42621)

v Part of a group-by-clause (SQLSTATE 42822)

v Part of an argument for a column-function (SQLSTATE 42607)

An XMLEXISTS predicate that involves a subquery might be restricted by

statements that restrict subqueries.

The XMLEXISTS predicate can be used only in a database with a single database

partition (SQLSTATE 42997).

Example

 SELECT c.cid FROM customer c

 WHERE XMLEXISTS(’$d/*:customerinfo/*:addr[*:city = "Aurora"]’

 PASSING info AS "d")

Passing parameters between SQL statements and XQuery expressions

When issuing combined SQL statements and XQuery expressions, you can pass

data between the statements and expressions to modify the execution of the

statements and expressions.

Constant and parameter marker passing to XMLEXISTS and

XMLQUERY

The XMLEXISTS predicate and the XMLQUERY scalar function execute XQuery

expressions from within an SQL statement. Use constants and parameter markers

to pass data from the SQL statement to variables in an XQuery expression executed

within the SQL statement.

90 pureXML Guide

XQuery variables can be specified as part of the XQuery expression in XMLEXISTS

and XMLQUERY. Values are passed into these variables through the passing

clause. These values are SQL expressions. Because the values passed to the XQuery

expression are non-XML values, they must be cast, either implicitly or explicitly, to

types supported by DB2 XQuery. Refer to the documentation on casting between

data types for more information on supported casts.

The method of passing constants and parameter markers to XMLQUERY is the

same as that of XMLEXISTS, however, the XMLEXISTS usage is more common.

This is because parameterized predicates in XMLQUERY, when used in SELECT

clauses, do not eliminate any rows from the result set. Instead, the predicates are

used to determine which fragments of a document are returned. To actually

eliminate rows from a result set, the XMLEXISTS predicate should be used in the

WHERE clause. Rows that contain empty sequences are therefore not returned as

part of the result set. The examples discussed here show this more common usage

with XMLEXISTS.

Example: Implicit casting

In the following query, the SQL character string constant ’Aurora’, which is not an

XML type, is implicitly cast to an XML type in the XMLEXISTS predicate.

Following the implicit cast, the constant has the XML schema subtype of xs:string,

and is bound to the variable $cityName. This constant can then be used in the

predicate of the XQuery expression.

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $d/customerinfo/addr’ passing c.INFO as "d")

FROM Customer as c

WHERE XMLEXISTS(’declare default element namespace "http://posample.org";

 $d//addr[city=$cityName]’

 passing c.INFO as "d",

 ’Aurora’ AS "cityName")

Example: Explicit casting

In the following query, the parameter marker must be explicitly cast to a data type

because the type of the parameter marker cannot be determined. The parameter

marker that is explicitly cast to an SQL VARCHAR type is then implicitly cast to

the xs:string XML schema type.

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $d/customerinfo/addr’ passing c.INFO as "d")

FROM Customer as c

WHERE XMLEXISTS(’declare default element namespace "http://posample.org";

 $d//addr[city=$cityName]’

 passing c.INFO as "d",

 CAST (? AS VARCHAR(128)) AS "cityName")

Simple column name passing with XMLEXISTS, XMLQUERY,

or XMLTABLE

To simplify using the XMLEXISTS predicate, the XMLQUERY scalar function, or

the XMLTABLE table function, you can use a column name as a parameter in the

XQuery expression specified by XMLEXISTS, XMLQUERY, or XMLTABLE without

specifying the name in the passing clause.

You must use the passing clause that passes the column name as a parameter, if

the parameter name being used is different from the column name being passed.

Chapter 5. Querying XML data 91

If a variable is specified explicitly in the passing clause and if the name conflicts

with any variable referenced by the XQuery expression, precedence will be given

to the variable in the passing clause. Assuming in the CUSTOMER table contains

two XML columns named INFO and CUST, the following example retrieves XML

data from INFO column:

SELECT XMLQuery(’$CUST/customerinfo/name’ PASSING INFO as "CUST") FROM customer

The variable CUST specified in the passing clause will be used to substitute the

column INFO in the XQuery expression. The column CUST from the CUSTOMER

table will not be used.

Examples: XMLQUERY and XMLEXISTS

Note that column names are case-sensitive in these examples, since they are

enclosed by double quotes. When not surrounded by double quotes, regular

column name rules apply: the name of the column is case-insensitive and stored in

upper case.

The following example shows several SELECT statements that return the same

sequence of documents from the PURCHASEORDER table. The XML documents

are in column PORDER. The first two SELECT statements use the passing clause

to pass the column name PORDER to the XQuery expression within the

XMLQUERY scalar function. The third SELECT uses the PORDER column name as

an implicitly passed parameter:

SELECT XMLQuery(’$PORDER/PurchaseOrder/item/name’ PASSING porder AS "PORDER")

 FROM purchaseorder

SELECT XMLQuery(’$PORDER/PurchaseOrder/item/name’ PASSING porder AS "porder")

 FROM purchaseorder

SELECT XMLQuery(’$PORDER/PurchaseOrder/item/name’) FROM purchaseorder

The following two examples shows several function calls that use both

XMLQUERY and XMLEXISTS. Both examples return the same sequence of

documents from the CUSTOMER table.

The following example uses the passing clause to explicitly specify the INFO

column name as a parameter in the XMLQUERY scalar function and the

XMLEXISTS predicate:

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $INFO/customerinfo/addr’ passing Customer.INFO as "INFO")

FROM Customer

WHERE XMLEXISTS(’declare default element namespace "http://posample.org";

 $INFO//addr[city=$cityName]’

 passing Customer.INFO as "INFO",

 ’Aurora’ AS "cityName")

In the following example, the XMLQUERY function does not use a passing clause

and XMLEXISTS passing clause does not specify the INFO column. The column

name INFO is passed implicitly to XQuery expression in both the XMLQUERY

scalar function and the XMLEXISTS predicate:

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $INFO/customerinfo/addr’)

FROM Customer

WHERE XMLEXISTS(’declare default element namespace "http://posample.org";

 $INFO//addr[city=$cityName]’

 passing ’Aurora’ AS "cityName")

92 pureXML Guide

Examples: XMLTABLE

The following two examples show two INSERT statements that use the XMLTABLE

table function. Both examples insert the same data into the table CUSTOMER from

the table T1. The table T1 contains an XML column named CUSTLIST. The

XMLTABLE function retrieves the data from the column T1.CUSTLIST and returns

a table with three columns, Cid, Info, and History. The INSERT statement inserts

data from the XMLTABLE function into three columns of the table CUSTOMER.

The following example uses the passing clause to explicitly specify the CUSTLIST

column name as a parameter in the XMLTABLE table function:

INSERT INTO customer SELECT X.* FROM T1,

 XMLTABLE (xmlnamespaces (DEFAULT ’http://posample.org’),

 ’$custlist/customers/customerinfo’ passing T1.custlist as "custlist"

 COLUMNS

 "Cid" BIGINT PATH ’@Cid’,

 "Info" XML PATH ’document{.}’,

 "History" XML PATH ’NULL’) as X

In the following example, the XMLTABLE table function does not use a passing

clause. XMLTABLE uses the column name CUSTLIST from the table T1 as an

implicitly passed parameter:

INSERT INTO customer SELECT X.* FROM T1,

 XMLTABLE (xmlnamespaces (DEFAULT ’http://posample.org’),

 ’$custlist/customers/customerinfo’

 COLUMNS

 "Cid" BIGINT PATH ’@Cid’,

 "Info" XML PATH ’document{.}’,

 "History" XML PATH ’NULL’) as X

Passing parameters from XQuery to SQL

From within an XQuery expression, the db2-fn:sqlquery function executes an SQL

fullselect that retrieves an XML node sequence. When using db2-fn:sqlquery, use

the PARAMETER function to reference the passed data from the XQuery

expression to the SQL fullselect statement specified by db2-fn:sqlquery.

Using the PARAMETER function, parameters can be specified as part of an SQL

fullselect expression in db2-fn:sqlquery. If you use PARAMETER functions in the

db2-fn:sqlquery invocation, you must also specify XQuery expressions that will be

used by the PARAMETER functions. During the processing of the SQL fullselect,

each PARAMETER function call is replaced with the result value of the

corresponding XQuery expression in the db2-fn:sqlquery function invocation. The

value supplied by the PARAMETER function can be referenced multiple times

within the same SQL statement.

The XQuery expressions that are part of the db2-fn:sqlquery function invocation

return a value. Because the values passed to the fullselect are XML values, they

must be cast, either implicitly or explicitly, to types supported by DB2 SQL. Refer

to the db2-fn:sqlquery documentation and the documentation on casting between

data types for more information on supported casts.

Example: Passing a parameter to db2-fn:sqlquery

The following example is an XQuery expression that uses db2-fn:sqlquery. During

processing of the db2-fn:sqlquery function, both references to parameter(1) return

the value of the order date attribute $po/@OrderDate.

Chapter 5. Querying XML data 93

When run against the DB2 SAMPLE database the XQuery expression returns the

purchase ID, part ID, and the purchase date for all the parts sold within the

promotion dates.

xquery

declare default element namespace "http://posample.org";

for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)/PurchaseOrder,

 $item in $po/item/partid

for $p in db2-fn:sqlquery(

 "select description

 from product

 where promostart < parameter(1)

 and

 promoend > parameter(1)",

 $po/@OrderDate)

where $p//@pid = $item

return

<RESULT>

 <PoNum>{data($po/@PoNum)}</PoNum>

 <PartID>{data($item)} </PartID>

 <PoDate>{data($po/@OrderDate)}</PoDate>

</RESULT>

Data retrieval with XQuery

The XQuery specification defines the result of an XQuery expression as a sequence

that contains 0, 1, or more items. XQuery expressions can be executed either using

XQuery as the primary language or using SQL with the XMLQUERY SQL function

as the primary language. When an XQuery expression is executed using either

method, an XML sequence is returned.

How the resulting sequence appears in a result set differs depending on whether

SQL or XQuery is used as the primary language:

XQuery as the primary language

When an XQuery expression is executed using XQuery as the primary

language, the result is returned to a client application as a result table with

one column, which is of type XML. Each row in this result table is an item

of the sequence that resulted from the evaluation of the XQuery

expression. When an application fetches from this result table using a

cursor, each fetch retrieves a serialized item of the resulting sequence.

SQL as the primary language, using XMLQUERY

XMLQUERY is a scalar function that returns an XML value. The value that

is returned is a sequence of 0, 1, or more items. All items of the resulting

sequence are returned to an application as a single serialized value.

To fetch results from queries that use XQuery or XMLQUERY, fetch results from

within your application, as you normally would any other result set. Bind your

application variable to the result set and fetch until the end of the result set. If the

XQuery expression (issued directly or through XMLQUERY) returned an empty

sequence, then the row in the result set is also empty.

Managing query result sets

If your application requires that the XML values returned when querying with

XQuery are well-formed XML documents (for example, if you plan to insert these

values into a column of type XML), then you can ensure that the values are

well-formed XML documents by including an element or document constructor in

your XQuery expression.

94 pureXML Guide

Example: Difference in result sets from XQuery and XMLQUERY

This example illustrates the difference between the result sets from the two

querying methods.

If the following two XML documents are stored in an XML column, to retrieve all

<phone> elements, you can use either XQuery or XMLQUERY. The result sets that

are returned by these two methods differ, however, and should be handled

accordingly by the application when fetching from the result set.

<customerinfo xmlns="http://posample.org" Cid="1000">

 <name>Kathy Smith</name>

 <addr country="Canada">

 <street>5 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type="work">416-555-1358</phone>

</customerinfo>

<customerinfo xmlns="http://posample.org" Cid="1003">

 <name>Robert Shoemaker</name>

 <addr country="Canada">

 <street>1596 Baseline</street>

 <city>Aurora</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N8X 7F8</pcode-zip>

 </addr>

 <phone type="work">905-555-7258</phone>

 <phone type="home">416-555-2937</phone>

 <phone type="cell">905-555-8743</phone>

 <phone type="cottage">613-555-3278</phone>

</customerinfo>

Executing an XQuery expression using XQuery as the primary language yields 5

rows in the result set, as follows:

XQUERY declare default element namespace "http://posample.org";

 db2-fn:xmlcolumn (’CUSTOMER.INFO’)/customerinfo/phone

 Table 18. Result set using XQuery as the primary language

<phone xmlns=″http://posample.org″ type=″work″>416-555-1358</phone>

<phone xmlns=″http://posample.org″ type=″work″>905-555-2937</phone>

<phone xmlns=″http://posample.org″ type=″home″>416-555-2937</phone>

<phone xmlns=″http://posample.org″ type=″cell″>905-555-8743</phone>

<phone xmlns=″http://posample.org″ type=″cottage″>613-555-3278</phone>

Executing an XQuery expression through XMLQUERY yields 2 rows in the result

set, as follows, where all <phone> elements of the second row in the table are

concatenated in a single scalar value (an XML sequence):

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 $doc/customerinfo/phone’ PASSING INFO AS "doc")

FROM CUSTOMER

 Table 19. Result set using SQL as the primary language

<phone xmlns=″http://posample.org″ type=″work″>416-555-1358</phone>

Chapter 5. Querying XML data 95

Table 19. Result set using SQL as the primary language (continued)

<phone xmlns=″http://posample.org″ type=″work″>905-555-2937</phone><phone

xmlns=″http://posample.org″ type=″home″>416-555-2937</phone><phone

xmlns=″http://posample.org″ type=″cell″>905-555-8743</phone><phone

xmlns=″http://posample.org″ type=″cottage″>613-555-3278</phone>

Notice that the second row of this result set contains a value that is not a

well-formed XML document.

These differences in the result sets exist because XMLQUERY is a scalar function. It

executes on each row of the table and the resulting sequence from a row of the

table, forms a row of the result set. XQuery, however, returns each item of a

sequence as a separate row of the result set.

Example: Managing query result sets

In this example, the previous SQL query can be modified to include an XQuery

document node constructor that ensures the resulting rows all contain well-formed

documents:

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

 document{<phonelist>{$doc/customerinfo/phone}</phonelist>}’

 PASSING INFO AS "doc")

FROM CUSTOMER

The table that results from this query, assuming the same documents presented

previously exist in database, is as follows.

 Table 20. Using element constructors to yield well-formed documents

<phonelist xmlns=″http://posample.org″><phone type=″work″>416-555-1358</phone></
phonelist>

<phonelist xmlns=″http://posample.org″><phone type=″work″>905-555-7258</
phone><phone type=″home″>416-555-2937</phone><phone type=″cell″>905-555-8743</
phone><phone type=″cottage″>613-555-3278</phone></phone></phonelist>

Guidelines for matching indexes with queries overview

This section provides you with some guidelines and examples for matching queries

with indexes over XML data.

Whether a query can make use of an index depends on whether the index or

indexes you created are compatible with your query (also known as index

matching), and whether the optimizer chooses to perform an index scan during

query evaluation. The access plan of the Explain facility will tell you if query

evaluation involved an index scan.

A query must meet at least the following conditions before it can use an index

over XML data:

v The data types in the query search condition match the indexed data types.

v The query search condition includes a subset of the nodes that are indexed.

SQL and XQuery optimizer

The optimizer plans the evaluation of queries and chooses which indexes to use

during evaluation. During query compilation, a query is matched with all the

96 pureXML Guide

patterns in the XML index definitions to find candidate indexes that contain

sufficient information to answer some part of the query.

The optimizer may take one of the following steps during query evaluation:

v Scan the table containing the XML documents, without using an index

v Use a relational index

v Use relational index ANDing or index ORing

v Use a new XML index operator

v Use an index over XML data for the evaluation of a single XML pattern

v Use index over XML data ANDing and ORing for the evaluation of complex

XML patterns from a single query

Explain facility

The Explain facility and the Visual Explain tool can provide you with the access

plan that is chosen to evaluate your query. When you look at an access plan, the

following operators will tell you whether one or several indexes were using during

query evaluation:

IXAND

ANDs the row IDs from two or more index scans.

XISCAN

Scans an index over XML data.

XANDOR

Allows ANDed predicates to be applied to multiple XML indexes.

Restrictiveness of index definitions

Whether or not the evaluation of a query can make use of an index often depends

on how restrictive the index definition is compared to your query. The following

examples show a number of queries and indexes that can be used together.

Indexes for queries with a range predicate

The following query retrieves company information for employees with a

salary greater than 35000from the table companyinfo with the XML column

companydocs:

SELECT companydocs FROM companyinfo

 WHERE XMLEXISTS(’$x/company/emp[@salary > 35000]’

 PASSING companydocs AS "x")

To be compatible, an index over XML data needs to include employee

salary attribute nodes among the indexed nodes, and to store values as

DOUBLE type.

 The query could use either one of the following indexes over XML data,

for example:

CREATE INDEX empindex on companyinfo(companydocs)

 GENERATE KEY USING XMLPATTERN ’//@salary’ AS SQL DOUBLE

CREATE INDEX empindex on companyinfo(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@salary’

 AS SQL DOUBLE

Indexes that can be used by multiple queries

The following query retrieves company information for employees with the

employee ID 31664.

Chapter 5. Querying XML data 97

SELECT companydocs FROM companyinfo

 WHERE XMLEXISTS(’$x/company/emp[@id="31664"]’

 PASSING companydocs AS "x")

A second query retrieves company information for departments with the

ID K55.

SELECT companydocs FROM companyinfo

 WHERE XMLEXISTS(’$x/company/emp/dept[@id="K55"]

 PASSING companydocs AS "x")

To be compatible with both queries, the index over XML data needs to

include employee ID attribute nodes and department ID attribute nodes

among the indexed nodes, and to store values in the index as a VARCHAR

type.

 The queries can use this index over XML data:

CREATE INDEX empdeptindex on companyinfo(companydocs)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL VARCHAR(25)

Inclusion of namespaces when restricting XQuery predicates

Consider the following table with an XML column that contains customer

information, and an index that is created on the XML column:

CREATE TABLE customer(xmlcol XML) %

CREATE UNIQUE INDEX customer_id_index ON customer(xmlcol)

 GENERATE KEY USING XMLPATTERN

 ’DECLARE DEFAULT ELEMENT NAMESPACE

 "http://mynamespace.org/cust";/Customer/@id’

 AS SQL DOUBLE %

Note: The statement terminator used in this section is the percentage sign

(%), since the semicolon (;) already serves as the namespace delimiter.

The following query fails to match the index:

SELECT xmlcol FROM customer

 WHERE XMLEXISTS(’$xmlcol/*:Customer[@id=1042]’

 PASSING xmlcol AS "xmlcol") %

In order for the query to be able to use the index, the query must be as

restrictive as or more restrictive than the index. The index

customer_id_index covers only customer elements in one particular

namespace (http://mynamespace.org/cust). Since *: is used in the query to

denote any namespace, the index is not used. This can be counter-intuitive

if one expects *: to match the namespace in the index definition.

 For the query to make use of the index, either the index needs to become

less restrictive, or the query needs to become more restrictive.

 The following less restrictive index customer_id_index2 could be used

successfully with the same query:

CREATE UNIQUE INDEX customer_id_index2 ON customer(xmlcol)

 GENERATE KEY USING XMLPATTERN ’/*:Customer/@id’ AS SQL DOUBLE %

The following more restrictive query can make use of the initial index

customer_id_index:

98 pureXML Guide

SELECT xmlcol FROM customer

 WHERE XMLEXISTS(’

 DECLARE NAMESPACE ns = "http://mynamespace.org/cust";

 $xmlcol/ns:Customer[@id=1042]’

 PASSING xmlcol AS "xmlcol") %

When the appropriate namespace is specified explicitly in the query, the

index customer_id_index can be used, since the query is now just as

restrictive as the index. The index customer_id_index2 could also be used,

since it is less restrictive than the query in this example.

Considerations when specifying text() nodes

The inclusion of text() nodes with XML pattern expressions may affect the

generation of index entries. Use /text() consistently in index definitions and

predicates.

How specification of the text() node affects index keys

Consider the following sample XML document fragment:

 <company name="Company1">

 <emp id="31201" salary="60000" gender="Female">

 <name><first>Laura</first><last>Brown</last></name>

 <dept id="M25">

 Finance

 </dept>

 </emp>

</company>

If the following index is created with text() specified at the end of the

pattern, no index entries will be inserted because the name elements in the

sample XML document fragments do not contain text themselves. Text is

found only in the child elements, first and last.

CREATE INDEX nameindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name/text()’ AS SQL

 VARCHAR(30)

However, if the next index is created with the element name specified at

the end of the pattern, the text from the first and last child elements will be

concatenated in the inserted index entries.

CREATE INDEX nameindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name’

 AS SQL VARCHAR(30)

The presence or absence of the text() node will affect index entry

generation for non leaf elements, but not for leaf elements. If you are

indexing leaf elements, specifying text() is not recommended. If you do

specify text(), queries must also use text() for successful index matching. In

addition, schema validation applies only to elements and not to text nodes.

 Caution must be used when specifying XML patterns that can match

elements which are non leaf nodes without text(). The concatenation of

descendant element text nodes can cause unexpected results. Especially

specifying //* with an XML pattern will most likely index a non leaf

element.

 In some cases, concatenation can be useful for indexes using VARCHAR.

For example, an index on /title in the document fragment below may be

useful for ignoring the bold formatting within the title:

<title>This is a <bold>great</bold> book about XML</title>

Chapter 5. Querying XML data 99

A query predicate to look for a specific employee name could be written as

follows:

db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[name=’LauraBrown’]

Whitespace is significant in the predicate and the document. If a space is

inserted between ’Laura’ and Brown’ in the predicate, nothing will be

returned for the following query, since the sample XML document

fragment itself does not contain a space between the first and last names:

db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[name=’Laura Brown’]

Indexes for queries with a compound equal predicate

The following query retrieves company information for employees who are

in the Finance or Marketing departments.

SELECT companydocs FROM companyinfo WHERE

 XMLExists(’$x/company/emp[dept/text()=’Finance’

 or dept/text()=’Marketing’]’

 PASSING companydocs AS "x")

To be compatible, the index over XML data needs to index the text node

for the department of each employee among the indexed nodes and to

store values as a VARCHAR type.

 The query can use this index over XML data:

CREATE INDEX empindex on companyinfo(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/dept/text()’

 AS SQL VARCHAR(30)

Data type of literals

The data types of literals need to match the data type of the index in order for the

query to be able to make use of the index.

Matching data types of literals

The following query retrieves company information for employees with the

ID 31201.

SELECT companydocs FROM companyinfo

 WHERE XMLEXISTS(’$x/company/emp[@id="31201"]’

 PASSING companydocs AS "x")

To be compatible, the index over XML data needs to include the employee

ID attribute nodes among the indexed nodes, and to store values in the

index as a VARCHAR type.

CREATE INDEX empindex on companyinfo(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’

 AS SQL VARCHAR(5)

If a similar index were defined AS SQL DOUBLE it could not be used by

the query, since the query predicate includes a string comparison. The

double quotation marks used in the predicate @id=″31201″ make it a string

comparison, which can be evaluated only with a string index (VARCHAR),

not with a numeric index (DOUBLE).

 To highlight the difference between numeric predicates and string

predicates, consider the following inequality predicates:

@id > 3

@id > "3"

100 pureXML Guide

The numeric predicate @id > 3 is different from the string predicate @id >

″3″. The numeric predicate @id > 3 would be fulfilled by an @id value of

10, but the string predicate @id > ″3″ would not be, because in a string

comparison ″3″ is greater than ″10″.

Join predicate conversion

Join predicates should be converted to the appropriate data type on both sides.

What join predicates can preclude index usage?

 Consider two tables with XML columns for customer information and

purchase orders, respectively:

CREATE TABLE customer(info XML);

CREATE TABLE PurchaseOrder(POrder XML);

The XML documents that contain customer information include an

attribute @cid, the numeric customer ID (cid). The XML documents that

contain purchase order information also include @cid attributes, so that

each order is uniquely associated with a particular customer. Since we

expect customers and orders to be frequently searched by cid, it makes

sense to define indexes:

CREATE UNIQUE INDEX idx1 ON customer(info)

 GENERATE KEY USING XMLPATTERN ’/customerinfo/@cid’ AS SQL DOUBLE;

CREATE INDEX idx2 ON PurchaseOrder(POrder)

 GENERATE KEY USING XMLPATTERN ’/porder/@cid’ AS SQL DOUBLE;

We wish to find the purchase orders for all customers in a specific ZIP

code. Intuitively, we can write the query like this:

XQUERY

 for $i in db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo

 for $j in db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/porder[@cid = $i/@cid]

 where $i/zipcode = "95141"

 return $j;

Note that the join predicate @cid = $i/@cid requires the purchase order’s

cid to be equal to the customer cid.

 This query returns the correct result, but neither of the two indexes can be

used. The query is executed as a nested loop join with table scans for both

tables. To avoid repeated table scans, a single table scan on customer to find

all customers within ZIP code 95141 is preferable, followed by index

lookups into the purchase order table using @cid. Note that it is necessary

to scan the customer table since we have no index on zipcode.

 The index is not used, because it would be incorrect to do so. If the index

were used, DB2 may miss some matching purchase orders and return an

incomplete result. This is because some values in the @cid attribute could

potentially be non numeric. For example, @cid could equal YPS and thus

not be included in the numeric index which is defined AS SQL DOUBLE.

Note: If a value of an indexed node cannot be converted to the specified

index data type, the index entry for that value is not inserted and no error

or warning is raised.

Enabling index usage with join predicates

It is possible to enable the index, which is desirable if we are certain that

Chapter 5. Querying XML data 101

all our @cid values are numeric. The index will be used if we convert the

join predicate explicitly to match the type of the index:

XQUERY

 for $i in db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo

 for $j in db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/porder

 where $i/@cid/xs:double(.) = $j/@cid/xs:double(.)

 and $i/zipcode = "95141"

 return $j;

Intuitively, the conversion advises DB2 that it should consider matching

only @cid attributes which are convertible to DOUBLE. With this directive,

we can be sure that all required matches are represented in the index

defined AS SQL DOUBLE, and thus that it is safe to use that index. If there

does exist a non numeric @cid value in one of the documents, then the

conversion will fail with a run-time error.

 Note that within XQuery, casting works only for singletons. Especially for

elements (a,b, and c in the example below), it is recommended that you

convert them like this:

/a/b/c/xs:double(.)

If you were to convert the elements as follows, a run-time error would

result if multiple elements c exist under any given element b:

/a/b/xs:double(c)

For indexes that are defined AS SQL VARCHAR, the corresponding join

predicates need to convert the compared values to the xs:string data type

using the fn:string() function. The same applies to DATE and TIMESTAMP

indexes. The following example shows how the fn:string() function is used

in a string join:

XQUERY

 for $i in db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo

 for $j in db2-fn:xmlcolumn("PURCHASEORDER.PORDER")/porder

 where $i/zipcode/fn:string(.) = $j/supplier/zip/fn:string(.)

 return <pair>{$i}{$j}</pair>

Summary of conversion rules for join predicates

The following table shows a summary of how join predicates should be

converted to the appropriate data type on both sides in order to enable

index usage.

 Table 21. Conversion rules for join predicates

Index SQL type Convert join predicate to XML type

DOUBLE xs:double

VARCHAR integer, VARCHAR HASHED xs:string

DATE xs:date

TIMESTAMP xs:dateTime

Indeterminate query evaluation

A query may evaluate indeterminately and return an error when no index scan is

involved. The same query may return matching XML data without error when

query evaluation involves an index scan, because non-castable XML fragments that

cause the error are left out of the index.

102 pureXML Guide

Example: Consider the following query that attempts to fetch the employee whose

ID is 17:

for $i in db2-fn:xmlcolumn("T.DOC")

 where $i/emp/id = 17

 return $i

The table T.DOC contains the following two XML fragments:

<emp><id>ABC</id></emp>

<emp><id>17</id></emp>

This query will return an error, unless an index over XML data is used to find the

matching documents in the table. If a table scan is used, the predicate is also

applied to the non-matching document in the table and a run-time error will result,

because the value ABC cannot be converted to a number. If an index over XML

data that indexes employee IDs exists on the same table, the same query will

return the second XML fragment without error whilst the non-castable XML

fragment was left out of the index.

The access plan provided by the Explain facility will show whether the evaluation

of a query involved an index scan.

Full-text search in XML documents

Full-text search of natively stored XML data is available through DB2 Net Search

Extender.

DB2 Net Search Extender

DB2 Net Search Extender fully supports the XML data type. It provides full-text

indexing of documents stored in XML columns. By creating a text index on an

XML column, you can query all text within an XML document and perform

searches such as proximity or wildcard searches. DB2 Net Search Extender is part

of all DB2 data server products for Linux, UNIX, and Windows, but must be

installed separately.

The following example shows a simple full-text search that finds the word

″marketing″ anywhere within the path /dept/description of XML documents

stored in the DEPTDOC column:

SELECT DEPTDOC

FROM DEPT

WHERE contains (DEPTDOC, SECTIONS("/dept/description") "marketing") = 1

The contains function, provided by DB2 Net Search Extender, searches for the

string ″marketing″ in any text under the path /dept/description, including element

or attribute names, and element or attribute values.

To use full-text search, SQL must be used. The results from the SQL query,

however, can still be returned to an XQuery context for further processing. The

following example shows how the results from an SQL query that used full-text

search can participate in an XQuery expression:

XQUERY for $i in db2-fn:sqlquery (’SELECT DEPTDOC FROM DEPT

 WHERE contains

 (DEPTDOC, SECTIONS("/dept/description") "marketing") = 1’)//employee

 return $i/name

Chapter 5. Querying XML data 103

In this example, the results of the SQL query, which exploited full-text search, are

returned to the for clause of the XQuery FLWOR expression. The for clause then

returns all <employee> elements, and the return clause returns the <name>

elements within the retrieved <employee> elements.

For more information on DB2 Net Search Extender, refer to the DB2 Net Search

Extender documentation or see the Web at www.ibm.com/software/data/db2/
extenders/netsearch.

Retrieval of data in XML columns to earlier DB2 clients

If you retrieve data from an XML column to a client that is at an earlier release

than DB2 Version 9.1, your database client cannot handle XML data. During

DRDA® processing, when the database server recognizes a client that cannot

support XML data, by default, the DB2 database server describes XML data values

as BLOB values and sends the data to the client as BLOB data. The BLOB data is

the serialized string representation of the XML data, with a complete XML

declaration.

If you want to receive the data as a data type other than a BLOB data type, use

one of the following methods:

v To retrieve the data as CLOB data, ask the administrator of the database server

to use the db2set command to set the DB2_MAP_XML_AS_CLOB_FOR_DLC

registry variable to YES on the server.

Important: When you set the DB2_MAP_XML_AS_CLOB_FOR_DLC registry

variable to YES on the database server, all DB2 clients at earlier release levels

that connect to any database within the instance receive XML data as CLOB

data.

Important: When DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable to YES

on the database server, clients receive CLOB data that is the serialized string

representation of the XML data, without an XML declaration.

v To retrieve the data as CLOB, CHAR, or VARCHAR data, invoke the

XMLSERIALIZE function on the column data to instruct the DB2 database server

to convert the data to the specified data type before it sends the data to the

client.

When you do not invoke XMLSERIALIZE to retrieve data from a database server

to a client at an earlier release level, the column from which you retrieve the data

does not behave exactly like a BLOB or CLOB column. For example, although you

can use the LIKE predicate on a BLOB column, you cannot use the LIKE predicate

on an XML column that returns BLOB or CLOB data.

SQL/XML publishing functions for constructing XML values

You can construct XML values, which do not necessarily have to be well-formed

XML documents, by combining those publishing functions that correspond to the

components you want in the resulting the XML value. The functions must be

specified in the order that you want the results to appear.

Values constructed using the SQL/XML publishing functions are returned as XML.

Depending on what you want to do with the XML value, you might need to

explicitly serialize the value to convert it to another SQL data type. Refer to the

documentation on XML serialization for details.

104 pureXML Guide

http://www.ibm.com/software/data/db2/extenders/netsearch
http://www.ibm.com/software/data/db2/extenders/netsearch

The following SQL/XML publishing functions can be used to construct XML

values:

XMLAGG aggregate function

Returns an XML sequence containing an item for each non-null value in a

set of XML values.

XMLATTRIBUTES scalar function

Constructs XML attributes from the arguments. This function can be used

only as an argument of the XMLELEMENT function.

XMLCOMMENT scalar function

Returns an XML value with a single XQuery comment node with the input

argument as the content.

XMLCONCAT scalar function

Returns a sequence containing the concatenation of a variable number of

XML input arguments.

XMLDOCUMENT scalar function

Returns an XML value with a single XQuery document node with zero or

more child nodes. This function creates a document node, which by

definition, every XML document must have. A document node is not

visible in the serialized representation of XML, however, every document

that is to be stored in a DB2 table must contain a document node.

XMLELEMENT scalar function

Returns an XML value that is an XML element node. Note that the

XMLELEMENT function does not create a document node, only an

element node. When constructing XML documents that are to be inserted,

it is not sufficient to create only an element node. The document must

contain a document node, created with the XMLDOCUMENT function.

XMLFOREST scalar function

Returns an XML value that is a sequence of XML element nodes.

XMLGROUP aggregate function

Returns a single top-level element to represent a table or the result of a

query. By default each row in the result set is mapped to a row subelement

and each input expression is mapped to a subelement of the row

subelement. Optionally, each row in the result can be mapped to a row

subelement and each input expression to be mapped to an attribute of the

row subelement.

XMLNAMESPACES declaration

Constructs namespace declarations from the arguments. This declaration

can be used only as an argument of the XMLELEMENT, XMLFOREST, and

XMLTABLE functions.

XMLPI scalar function

Returns an XML value with a single XQuery processing instruction node.

XMLROW scalar function

Returns a sequence of row elements to represent a table or the result of a

query. By default each input expression is transformed into a subelement

of a row element. Optionally, each input expression can be transformed

into an attribute of a row element.

XMLTEXT scalar function

Returns an XML value with a single XQuery text node having the input

argument as the content.

Chapter 5. Querying XML data 105

XSLTRANSFORM scalar function

Converts XML data into other formats, including other XML schemas.

 Null element values

When an XML value is constructed using XMLELEMENT or XMLFOREST, it is

possible that a null value is encountered when determining the element’s content.

The EMPTY ON NULL and NULL ON NULL options of XMLELEMENT and

XMLFOREST allow you to specify whether an empty element or no element is

generated when an element’s content is null. The default null handling for

XMLEXISTS is EMPTY ON NULL. The default null handling for XMLFOREST is

NULL ON NULL.

Examples of publishing XML values

The following examples show how you can construct XML values with SQL/XML

publishing functions and with XQuery expressions.

Example: Construct an XML document with constant values

This simple example shows how you can construct constant XML values suitable

for publishing with SQL/XML publishing functions.

As a simple example, consider the following XML element:

<elem1 xmlns="http://posample.org" id="111">

 <!-- example document -->

 <child1>abc</child1>

 <child2>def</child2>

</elem1>

The document consists of:

v three element nodes (elem1, child1, and child2)

v a namespace declaration

v an ″id″ attribute on <elem1>

v a comment node

To construct this document, perform the following steps:

1. Create an element node named ″elem1″, using XMLELEMENT.

2. Add a default namespace declaration to the XMLELEMENT function call for

<elem1>, using XMLNAMESPACES.

3. Create an attribute named ″id″ using XMLATTRIBUTES, placing it after the

XMLNAMESPACES declaration.

4. Create a comment node using XMLCOMMENT, within the XMLELEMENT

function call for <elem1>.

5. Create a forest of elements that are named ″child1″ and ″child2″ using the

XMLFOREST function, within the XMLELEMENT function call for <elem1>.

These steps are combined into the following query:

VALUES XMLELEMENT (NAME "elem1",

 XMLNAMESPACES (DEFAULT ’http://posample.org’),

 XMLATTRIBUTES (’111’ AS "id"),

 XMLCOMMENT (’example document’),

 XMLFOREST(’abc’ as "child1",

 ’def’ as "child2"))

106 pureXML Guide

Example: Construct an XML document with values from a single

table

This example shows how you can construct XML values suitable for publishing

from a single table with SQL/XML publishing functions.

This example shows how an XML document can be constructed from values stored

in a single table. In the following query, each <item> element is constructed with

values from the name column of the PRODUCT table, using the XMLELEMENT

function. All <item> elements are then aggregated, using XMLAGG, within the

constructed <allProducts> element. A namespace is also added to the

<allProducts> element, with the XMLNAMESPACES function.

SELECT XMLELEMENT (NAME "allProducts",

 XMLNAMESPACES (DEFAULT ’http://posample.org’),

 XMLAGG(XMLELEMENT (NAME "item", p.name)))

FROM Product p

<allProducts xmlns="http://posample.org">

 <item>Snow Shovel, Basic 22 inch</item>

 <item>Snow Shovel, Deluxe 24 inch</item>

 <item>Snow Shovel, Super Deluxe 26 inch</item>

 <item>Ice Scraper, Windshield 4 inch</item>

</allProducts>

You can construct a similar XML document that contains a sequence of row

elements by using the XMLROW function instead of aggregating the elements with

XMLAGG. Item elements are also given a namespace prefix:

SELECT XMLELEMENT (NAME "products",

 XMLNAMESPACES (’http://posample.org’ as "po"),

 XMLROW(NAME as "po:item"))

FROM Product

The resulting output is as follows:

<products xmlns:po="http://posample.org">

 <row>

 <po:item>Snow Shovel, Basic 22 inch</po:item>

 </row>

</products>

<products xmlns:po="http://posample.org">

 <row>

 <po:item>Snow Shovel, Deluxe 24 inch</po:item>

 </row>

</products>

<products xmlns:po="http://posample.org">

 <row><po:item>Snow Shovel, Super Deluxe 26 inch</po:item>

 </row>

</products>

<products xmlns:po="http://posample.org">

 <row><po:item>Ice Scraper, Windshield 4 inch</po:item>

 </row>

</products>

 4 record(s) selected.

Example: Construct an XML document with values from multiple

tables

This example shows how you can construct XML values suitable for publishing

from multiple tables with SQL/XML publishing functions.

This example shows how an XML document can be constructed from values stored

in multiple tables. In the following query, <prod> elements are constructed from a

forest of elements, which are called name and numInStock, using the XMLFOREST

Chapter 5. Querying XML data 107

function. This forest is built with values from the PRODUCT and INVENTORY

tables. All <prod> elements are then aggregated within the constructed

<saleProducts> element.

SELECT XMLELEMENT (NAME "saleProducts",

 XMLNAMESPACES (DEFAULT ’http://posample.org’),

 XMLAGG (XMLELEMENT (NAME "prod",

 XMLATTRIBUTES (p.Pid AS "id"),

 XMLFOREST (p.name as "name",

 i.quantity as "numInStock"))))

FROM PRODUCT p, INVENTORY i

WHERE p.Pid = i.Pid

The previous query yields the following XML document:

<saleProducts xmlns="http://posample.org">

 <prod id="100-100-01">

 <name>Snow Shovel, Basic 22 inch</name>

 <numInStock>5</numInStock>

 </prod>

 <prod id="100-101-01">

 <name>Snow Shovel, Deluxe 24 inch</name>

 <numInStock>25</numInStock>

 </prod>

 <prod id="100-103-01">

 <name>Snow Shovel, Super Deluxe 26 inch</name>

 <numInStock>55</numInStock>

 </prod>

 <prod id="100-201-01">

 <name>Ice Scraper, Windshield 4 inch</name>

 <numInStock>99</numInStock>

 </prod>

</saleProducts>

Example: Construct an XML document with values from table

rows that contain null elements

This example shows how you can construct XML values suitable for publishing

from table rows that contain null elements with SQL/XML publishing functions.

This example assumes that the LOCATION column of the INVENTORY table

contains a null value in one row. The following query therefore does not return the

<loc> element, because XMLFOREST treats nulls as null by default:

SELECT XMLELEMENT (NAME "newElem",

 XMLATTRIBUTES (PID AS "prodID"),

 XMLFOREST (QUANTITY as "quantity",

 LOCATION as "loc"))

FROM INVENTORY

<newElem prodID="100-100-01"><quantity>5</quantity></newElem>

The same query, with the EMPTY ON NULL option specified, returns an empty

<loc> element:

SELECT XMLELEMENT (NAME "newElem",

 XMLATTRIBUTES (PID AS "prodID"),

 XMLFOREST (QUANTITY as "quantity",

 LOCATION as "loc" OPTION EMPTY ON NULL))

FROM INVENTORY

<newElem prodID="100-100-01"><quantity>5</quantity><loc /></newElem>

Example: Publishing data with XQuery

This example shows how you can construct XML values suitable for publishing not

only with SQL/XML publishing functions but also with XQuery expressions.

108 pureXML Guide

The following XQuery expression uses the delete updating expression to create a

simple customer list. The expression removes the customer ID, address and

non-work phone numbers from the customer information and moves the country

attribute from the address node element to the customerinfo node element.

xquery

declare default element namespace "http://posample.org";

<phonelist>

 {for $d in db2-fn:xmlcolumn("CUSTOMER.INFO")/customerinfo

 return

 transform

 copy $mycust := $d

 modify (

 do delete ($mycust/@Cid ,

 $mycust/addr ,

 $mycust/phone[@type!="work"]),

 do insert attribute country { $mycust/addr/@country } into $mycust)

 return $mycust }

</phonelist>

Note that although address element is deleted, the address information is

accessible within the modify clause and the country attribute from the address

element is used by the insert expression.

The query returns the following results:

<phonelist xmlns="http://posample.org">

 <customerinfo country ="Canada">

 <name>Kathy Smith</name>

 <phone type="work">416-555-1358</phone>

 </customerinfo>

 <customerinfo country ="Canada">

 <name>Jim Noodle</name>

 <phone type="work">905-555-7258</phone>

 </customerinfo country ="Canada">

 <customerinfo><name>Robert Shoemaker</name>

 <phone type="work">905-555-2937</phone>

 </customerinfo>

</phonelist>

Transforming with XSLT stylesheets

The standard way to transform XML data into other formats is by Extensible

Stylesheet Language Transformations (XSLT). You can use the built-in

XSLTRANSFORM function to convert XML documents into HTML, plain text, or

different XML schemas.

XSLT uses stylesheets to convert XML into other data formats. You can convert

part or all of an XML document and select or rearrange the data using the XPath

query language and the built-in functions of XSLT. XSLT is commonly used to

convert XML to HTML, but can also be used to transform XML documents that

comply with one XML schema into documents that comply with another schema.

XSLT can also be used to convert XML data into unrelated formats, like

comma-delimited text or formatting languages such as troff. XSLT has two main

areas of applicability:

v Formatting (conversion of XML into HTML or formatting languages such as

FOP);

v Data exchange (querying, reorganizing and converting data from one XML

schema to another, or into a data exchange format such as SOAP).

Both cases may require that an entire XML document or only selected parts of it be

transformed. XSLT incorporates the XPath specification, permitting query and

Chapter 5. Querying XML data 109

retrieval of arbitrary data from the source XML document. An XSLT template may

also contain or create additional information such as file headers and instruction

blocks that will be added to the output file.

How XSLT Works

XSLT stylesheets are written in Extensible Stylesheet Language (XSL), an XML

schema. XSL is a template language rather than an algorithmic language such as C

or Perl, a feature that limits XSL’s power but makes it uniquely suited to its

purpose. XSL stylesheets contain one or more template elements, which describe

what action to take when a given XML element or query is encountered in the

target file. A typical XSLT template element will start by specifying which element

it applies to. For instance,

<xsl:template match="product">

declares that the contents of this template will be used to replace the content of

any <product> tag encountered in the target XML file. An XSLT file consists of a

list of such templates, in no necessary order.

The following example shows typical elements of an XSLT template. In this case

the target will be XML documents containing inventory information, such as this

record describing an ice scraper:

<?xml version="1.0"?>

<product pid="100-201-01">

 <description>

 <name>Ice Scraper, Windshield 4 inch</name>

 <details>Basic Ice Scraper 4 inches wide, foam handle</details>

 <price>3.99</price>

 </description>

</product>

This record includes such information as the part number, description and price of

a windshield ice scraper. Some of this information is contained within elements,

such as <name>. Some, like the part number, are contained in attributes (in this case

the pid attribute of the <product> element). To display this information as a web

page, you could apply the following XSLT template:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

 <xsl:template match="/">

 <html>

 <body>

 <h1><xsl:value-of select="/product/description/name"/></h1>

 <table border="1">

 <th>

 <xsl:apply-templates select="product"/>

 </th>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="product">

 <tr>

 <td width="80">product ID</td>

 <td><xsl:value-of select="@pid"/></td>

 </tr>

 <tr>

 <td width="200">product name</td>

 <td><xsl:value-of select="/product/description/name"/></td>

 </tr>

110 pureXML Guide

<tr>

 <td width="200">price</td>

 <td>$<xsl:value-of select="/product/description/price"/></td>

 </tr>

 <tr>

 <td width="50">details</td>

 <td><xsl:value-of select="/product/description/details"/></td>

 </tr>

 </xsl:template>

</xsl:stylesheet>

When an XSLT processor receives as input both the template and target documents

above, it will output the following HTML document:

<html>

<body>

<h1>Ice Scraper, Windshield 4 inch</h1>

<table border="1">

<th>

<tr>

<td width="80">product ID</td><td>100-201-01</td>

</tr>

<tr>

<td width="200">product name</td><td>Ice Scraper, Windshield 4 inch</td>

</tr>

<tr>

<td width="200">price</td><td>$3.99</td>

</tr>

<tr>

<td width="50">details</td><td>Basic Ice Scraper 4 inches wide, foam handle</td>

</tr>

</th>

</table>

</body>

</html>

The XSLT processor tests the incoming XML document for given conditions

(typically one condition per template). If a condition is true the template contents

are inserted into the output, and if they are false the template is passed over by

the processor. The stylesheet may add its own data to the output, for example in

the HTML table tagging and strings such as ″product ID.″

XPath can be used both to define template conditions, as in <xsl:template

match="product"> and to select and insert data from anywhere in the XML stream,

as in <h1><xsl:value-of select="/product/description/name"/></h1>.

Using XSLTRANSFORM

You can use the XSLTRANSFORM function to apply XSLT stylesheets to XML data.

If you supply the function with the name of an XML document and an XSLT

stylesheet, the function will apply the stylesheet to the document and return the

result.

Passing parameters to XSLT stylesheets at runtime

Parameter can be passed at runtime when using the built-in XSLTRANSFORM

function to convert XML documents.

An important feature of the XSLTRANSFORM function is its ability to accept XSLT

parameters at runtime. In the absence of this ability you would need to maintain a

large library of XSLT stylesheets, one for each variant of a query against the XML

data; or, you would need to manually edit your stylesheets for each new kind of

Chapter 5. Querying XML data 111

query. Parameter passing allows you to design generic stylesheets that can be left

alone, while you accumulate a library of parameter files or potentially build them

on the fly.

The XSLT parameters are contained in a separate XML document, for instance:

<?xml version="1.0"?>

<params xmlns="http://www.ibm.com/XSLTransformParameters">

 <param name="headline">BIG BAZAAR super market</param>

 <param name="supermarketname" value="true"/>

</params>

Each <param> element names a parameter and contains its values, either within the

value attribute or for longer values, within the element itself. The example above

shows both variations.

The parameters allowed by the XSLT template file are defined as variables using

the <xsl:param> element, as follows:

<xsl:param name="headline"/>

<xsl:param name="supermarketname"/>

In this example you can call the $headline or $supermarketname variables

anywhere inside the stylesheet and they will contain the data defined in the

parameter file (in this case the string ″BIG BAZAAR super market″ and the value

″true″, respectively.

XSLT example: Using XSLT as a formatting engine

An example that illustrates how to use the built-in XSLTRANSFORM function as a

formatting engine.

This example illustrates how to use XSLT as a formatting engine. To get set up,

first insert the two example documents below into the database.

INSERT INTO XML_TAB VALUES

(1,

 ’<?xml version="1.0"?>

<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">

<student studentID="1" firstName="Steffen" lastName="Siegmund"

 age=”23” university=”Rostock”/>

</students>’,

 ’<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="headline"/>

<xsl:param name="showUniversity"/>

<xsl:template match="students">

 <html>

 <head/>

 <body>

 <h1><xsl:value-of select="$headline"/></h1>

 <table border="1">

 <th>

 <tr>

 <td width="80">StudentID</td>

 <td width="200">First Name</td>

 <td width="200">Last Name</td>

 <td width="50">Age</td>

 <xsl:choose>

 <xsl:when test="$showUniversity =’true’">

 <td width="200">University</td>

 </xsl:when>

 </xsl:choose>

112 pureXML Guide

</tr>

 </th>

 <xsl:apply-templates/>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="student">

 <tr>

 <td><xsl:value-of select="@studentID"/></td>

 <td><xsl:value-of select="@firstName"/></td>

 <td><xsl:value-of select="@lastName"/></td>

 <td><xsl:value-of select="@age"/></td>

 <xsl:choose>

 <xsl:when test="$showUniversity = ’true’ ">

 <td><xsl:value-of select="@university"/></td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </xsl:template>

</xsl:stylesheet>’

);

Next, call the XSLTRANSFORM function to convert the XML data into HTML and

display it.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The result is this document:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

<h1></h1>

<table border="1">

<th>

<tr>

<td width="80">StudentID</td>

<td width="200">First Name</td>

<td width="200">Last Name</td>

<td width="50">Age</td>

</tr>

</th>

 <tr>

<td>1</td>

<td>Steffen</td><td>Siegmund</td>

<td>23</td>

</tr>

 </table>

</body>

</html>

In this example, the output is HTML and the parameters influence only what

HTML is produced and what data is brought over to it. As such it illustrates the

use of XSLT as a formatting engine for end-user output.

XSLT example: Using XSLT for data exchange

An example that illustrates how to use the built-in XSLTRANSFORM function to

convert XML documents for data exchange.

This example illustrates how to use XSLT for data exchange by using parameters

with the stylesheet to produce different data exchange formats at runtime.

Chapter 5. Querying XML data 113

We use a stylesheet that incorporates xsl:param elements to capture data from a

parameter file.

INSERT INTO Display_productdetails values(1, ’<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="headline"/>

<xsl:param name="supermarketname"/>

<xsl:template match="product">

 <html>

 <head/>

 <body>

 <h1><xsl:value-of select="$headline"/></h1>

 <table border="1">

 <th>

 <tr>

 <td width="80">product ID</td>

 <td width="200">product name</td>

 <td width="200">price</td>

 <td width="50">details</td>

 <xsl:choose>

 <xsl:when test="$supermarket =’’true’’ ">

 <td width="200">BIG BAZAAR super market</td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </th>

 <xsl:apply-templates/>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="product">

 <tr>

 <td><xsl:value-of select="@pid"/></td>

 <td><xsl:value-of select="/product/description/name"/></td>

 <td><xsl:value-of select="/product/description/price"/></td>

 <td><xsl:value-of select="/product/description/details"/></td>

 </tr>

 </xsl:template>

 </xsl:stylesheet>’

);

The parameter file contains parameters corresponding to the ones in the XSLT

template, with content:

CREATE TABLE PARAM_TAB (DOCID INTEGER, PARAM VARCHAR (10K));

INSERT INTO PARAM_TAB VALUES

(1,

’<?xml version="1.0"?>

<params xmlns="http://www.ibm.com/XSLTransformParameters">

 <param name="supermarketname" value="true"/>

 <param name="headline">BIG BAZAAR super market</param>

</params>’

);

You can then apply the parameter file at runtime using the following command:

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC WITH PARAM AS CLOB (1M))

 FROM product_details X, PARM_TAB P WHERE X.DOCID=P.DOCID;

The result is HTML, but with content determined by the parameter file and tests

done against the content of the XML document:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

114 pureXML Guide

</head>

<body>

<h1></h1>

<table border="1">

<th>

<tr>

<td width="80">product ID</td>

<td width="200">product Name</td>

<td width="200">price</td>

<td width="50">Details</td>

</tr>

</th>

</table>

</body>

</html>

In other applications, the output of XSLTRANSFORM might not be HTML but

rather another XML document or a file using a different data format, such as an

EDI file.

For data exchange applications, the parameter file could contain EDI or SOAP file

header information such as e-mail or port addresses, or other critical data unique

to a particular transaction. Since the XML used in the above examples is an

inventory record, it is easy to imagine using XSLT to repackage this record for

exchange with a client’s purchasing system.

Important considerations for transforming XML documents

When using the built-in XSLTRANSFORM function to convert XML documents

some important considerations and restrictions apply.

Note the following when transforming XML documents:

v Source XML documents must be single-rooted and well-formed.

v Because XSLT transformation by default produces UTF-8 characters, the output

stream might lose characters if inserted into columns defined with a character

data type.

Restrictions

v Only the W3C XSLT Version 1.0 Recommendation is supported.

v All parameters and the result type must be SQL types; they cannot be file

names.

v Transformation with more than one stylesheet document (using an xsl:include

declaration) is not supported.

XSLTRANSFORM scalar function

Use XSLTRANSFORM to convert XML data into other formats, including the

conversion of XML documents that conform to one XML schema into documents

that conform to another schema.

�� XSLTRANSFORM �

�
 AS CLOB(2G)

(

xml-document

USING

xsl-stylesheet

)

WITH

xsl-parameters

AS

data-type

��

Chapter 5. Querying XML data 115

data-type:

 (-1)

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

CHARACTER

VARYING

CHAR

(

1M

)

CLOB

CHARACTER

LARGE OBJECT

(

integer

)

CHAR

K

M

G

(

1M

)

BLOB

BINARY LARGE OBJECT

(

integer

)

K

M

G

The schema is SYSIBM. This function cannot be specified as a qualified name.

The XSLTRANSFORM function transforms an XML document into a different data

format. The data can be transformed into any form possible for the XSLT processor,

including but not limited to XML, HTML, or plain text.

All paths used by XSLTRANSFORM are internal to the database system. This

command cannot currently be used directly with files or stylesheets residing in an

external file system.

xml-document

An expression that returns a well-formed XML document with a data type of

XML, CHAR, VARCHAR, CLOB, or BLOB. This is the document that is

transformed using the XSL style sheet specified in xsl-stylesheet.

Note:

The XML document must at minimum be single-rooted and well-formed.

xsl-stylesheet

An expression that returns a well-formed XML document with a data type of

XML, CHAR, VARCHAR, CLOB, or BLOB. The document is an XSL style sheet

that conforms to the W3C XSLT Version 1.0 Recommendation. Style sheets

incorporating XQUERY statements or the xsl:include declaration are not

supported. This stylesheet is applied to transform the value specified in

xml-document.

xsl-parameters

An expression that returns a well-formed XML document or null with a data

type of XML, CHAR, VARCHAR, CLOB, or BLOB. This is a document that

provides parameter values to the XSL stylesheet specified in xsl-stylesheet. The

value of the parameter can be specified as an attribute, or as a text node.

 The syntax of the parameter document is as follows:

116 pureXML Guide

<params xmlns="http://www.ibm.com/XSLTransformParameters">

<param name="..." value="..."/>

<param name="...">enter value here</param>

 ...

</params>

Note:

The stylesheet document must have xsl:param element(s) in it with name

attribute values that match the ones specified in the parameter document.

AS data-type

Specifies the result data type. The implicit or explicit length attribute of the

specified result data type must be sufficient to contain the transformed output

(SQLSTATE 22001). The default result data type is CLOB(2G).

Note:

If either the xml-document argument or the xsl-stylesheet argument is null, the

result will be null.

Code page conversion might occur when storing any of the above documents

in a CHAR, VARCHAR, or CLOB column, which might result in a character

loss.

Example

This example illustrates how to use XSLT as a formatting engine. To get set up,

first insert the two example documents below into the database.

INSERT INTO XML_TAB VALUES

(1,

 ’<?xml version="1.0"?>

<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">

<student studentID="1" firstName="Steffen" lastName="Siegmund"

 age=â€23â€ university=â€Rostockâ€/>

</students>’,

 ’<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="headline"/>

<xsl:param name="showUniversity"/>

<xsl:template match="students">

 <html>

 <head/>

 <body>

 <h1><xsl:value-of select="$headline"/></h1>

 <table border="1">

 <th>

 <tr>

 <td width="80">StudentID</td>

 <td width="200">First Name</td>

 <td width="200">Last Name</td>

 <td width="50">Age</td>

 <xsl:choose>

 <xsl:when test="$showUniversity =’true’">

 <td width="200">University</td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </th>

 <xsl:apply-templates/>

 </table>

Chapter 5. Querying XML data 117

</body>

 </html>

 </xsl:template>

 <xsl:template match="student">

 <tr>

 <td><xsl:value-of select="@studentID"/></td>

 <td><xsl:value-of select="@firstName"/></td>

 <td><xsl:value-of select="@lastName"/></td>

 <td><xsl:value-of select="@age"/></td>

 <xsl:choose>

 <xsl:when test="$showUniversity = ’true’ ">

 <td><xsl:value-of select="@university"/></td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </xsl:template>

</xsl:stylesheet>’

);

Next, call the XSLTRANSFORM function to convert the XML data into HTML and

display it.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The result is this document:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

<h1></h1>

<table border="1">

<th>

<tr>

<td width="80">StudentID</td>

<td width="200">First Name</td>

<td width="200">Last Name</td>

<td width="50">Age</td>

</tr>

</th>

 <tr>

<td>1</td>

<td>Steffen</td><td>Siegmund</td>

<td>23</td>

</tr>

 </table>

</body>

</html>

In this example, the output is HTML and the parameters influence only what

HTML is produced and what data is brought over to it. As such it illustrates the

use of XSLT as a formatting engine for end-user output.

Special character handling in SQL/XML publishing functions

SQL/XML publishing functions have a default behavior for handling special

characters.

SQL values to XML values

Certain characters are considered special characters within XML documents, and

must appear in their escaped format, using their entity representation. These

special characters are as follows:

118 pureXML Guide

Table 22. Special characters and their entity representations

Special character Entity representation

< <

> >

& &

″ "

When publishing SQL values as XML values using the SQL/XML publishing

functions, these special characters are escaped and replaced with their predefined

entities.

SQL identifiers and QNames

When publishing or constructing XML values from SQL values, it can be necessary

to map an SQL identifier to an XML qualified name, or QName. The set of

characters that are allowed in delimited SQL identifiers differs, however, from

those permitted in a QName. This difference means that some characters used in

SQL identifiers will not be valid in QNames. These characters are therefore

substituted with their entity representation in the QName.

For example, consider the delimited SQL identifier ″phone@work″. Because the @

character is not a valid character in a QName, the character is escaped, and the

QName becomes: phone@work.

Note that this default escape behavior applies only to column names. For SQL

identifiers that are provided as the element name in XMLELEMENT, or as alias

names in the AS clause of XMLFOREST and XMLATTRIBUTES, there are no

escape defaults. You must provide valid QNames in these cases. Refer to the W3C

XML namespace specifications for more details on valid names.

XML serialization

XML serialization is the process of converting XML data from its representation in

the XQuery and XPath data model, which is the hierarchical format it has in a DB2

database, to the serialized string format that it has in an application.

You can let the DB2 database manager perform serialization implicitly, or you can

invoke the XMLSERIALIZE function to explicitly request XML serialization. The

most common usage of XML serialization is when XML data is sent from the

database server to the client.

Implicit serialization is the preferred method in most cases because it is simpler to

code, and sending XML data to the client allows the DB2 client to handle the XML

data properly. Explicit serialization requires additional handling, as described

below, which is automatically handled by the client during implicit serialization.

In general, implicit serialization is preferable because it is more efficient to send

data to the client as XML data. However, under certain circumstances (described

later), it is better to do an explicit XMLSERIALIZE.

The best data type to which to convert XML data is the BLOB data type, because

retrieval of binary data results in fewer encoding issues.

Chapter 5. Querying XML data 119

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

Implicit XML serialization

With implicit serialization, the data has the XML type when it is sent to the client,

if the client supports the XML data type. For DB2 CLI and embedded SQL

applications, the DB2 database server adds an XML declaration, with the

appropriate encoding specification, to the data. For Java and .NET applications, the

DB2 database server does not add an XML declaration, but if you retrieve the data

into a DB2Xml object and use certain methods to retrieve the data from that object,

the IBM Data Server Driver for JDBC and SQLJ adds an XML declaration.

Example: In a C program, implicitly serialize the customerinfo document for

customer ID ’1000’ and retrieve the serialized document into a binary XML host

variable. The retrieved data is in the UTF-8 encoding scheme, and it contains an

XML declaration.

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS XML AS BLOB (1M) xmlCustInfo;

EXEC SQL END DECLARE SECTION;

...

EXEC SQL SELECT INFO INTO :xmlCustInfo

 FROM Customer

 WHERE Cid=1000;

Explicit XML serialization

After an explicit XMLSERIALIZE invocation, the data has a non-XML data type in

the database server, and is sent to the client as that data type.

XMLSERIALIZE lets you specify:

v The SQL data type to which the data is converted when it is serialized

The data type is a character or binary data type.

v Whether the output data should include the following explicit encoding

specification (EXCLUDING XMLDECLARATION or INCLUDING

XMLDECLARATION):

<?xml version="1.0" encoding="UTF-8"?>

The output from XMLSERIALIZE is Unicode UTF-8-encoded data.

If you retrieve the serialized data into an non-binary data type, the data is

converted to the application encoding, but the encoding specification is not

modified. Therefore, the encoding of the data most likely will not agree with the

encoding specification. This situation results in XML data that cannot be parsed by

application processes that rely on the encoding name.

In general, implicit serialization is preferable because it is more efficient to send

data to the client as XML data. However, under the following circumstances it is

better to do an explicit XMLSERIALIZE:

v When XML documents are very large

Because there are no XML locators, if the XML documents are very large, you

should use XMLSERIALIZE to convert the data to a LOB type so that you can

use LOB locators.

v When the client does not support XML data

If the client is an earlier version that does not support the XML data type, and

you use implicit XML serialization, the DB2 database server converts the data to

one of the following data types before sending the data to the client:

– The BLOB data type, by default

120 pureXML Guide

– The CLOB data type, if you use the db2set command to set the

DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable to YES on the server

If you want the retrieved data to be some other data type, you can execute

XMLSERIALIZE.

Example: XML column Info in sample table Customer contains a document that

contains the hierarchical equivalent of the following data:

<customerinfo xml:space="default" xmlns="http://posample.org" Cid=’1000’>

 <name>Kathy Smith</name>

 <addr country=’Canada’>

 <street>5 Rosewood</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>M6W 1E6</pcode-zip>

 </addr>

 <phone type=’work’>416-555-1358</phone>

</customerinfo>

Invoke XMLSERIALIZE to serialize the data and convert it to a BLOB type before

retrieving it into a host variable.

SELECT XMLSERIALIZE(Info as BLOB(1M)) from Customer

 WHERE CID=1000

Differences in an XML document after storage and retrieval

When you store an XML document in a DB2 database and then retrieve that copy

from the database, the retrieved document might not be exactly the same as the

original document. This behavior is defined by the XML and SQL/XML standard

and matches that of the Xerces open source XML parser.

Some of the changes to the document occur when the document is stored. Those

changes are:

v If you execute XMLVALIDATE, the database server:

– Adds default values and type annotations from the XML schema that is

specified in the XMLVALIDATE invocation to the input document

– Strips ignorable whitespace from the input document
v If you do not request XML validation, the database server:

– Strips boundary whitespace, if you do not request preservation

– Replaces all carriage return and line feed pairs (U+000D and U+000A), or

carriage returns (U+000D), within the document with line feeds (U+000A)

– Performs attribute-value normalization, as specified in the XML 1.0

specification

This process causes line feed (U+000A) characters in attributes to be replaced

with space characters (U+0020).

Additional changes occur when you retrieve the data from an XML column. Those

changes are:

v If the data has an XML declaration before it is sent to the database server, the

XML declaration is not preserved.

With implicit serialization, for DB2 CLI and embedded SQL applications, the

DB2 database server adds an XML declaration, with the appropriate encoding

specification, to the data. For Java and .NET applications, the DB2 database

server does not add an XML declaration, but if you retrieve the data into a

Chapter 5. Querying XML data 121

DB2Xml object and use certain methods to retrieve the data from that object, the

IBM Data Server Driver for JDBC and SQLJ adds an XML declaration.

If you execute the XMLSERIALIZE function, the DB2 database server adds an

XML declaration with an encoding specification for UTF-8 encoding, if you

specify the INCLUDING XMLDECLARATION option.

v Within the content of a document or in attribute values, certain characters are

replaced with their predefined XML entities. Those characters and their

predefined entities are:

 Character Unicode value Entity representation

AMPERSAND U+0026 &

LESS-THAN SIGN U+003C <

GREATER-THAN SIGN U+003E >

v Within attribute values or text values, certain characters are replaced with their

numeric representations. Those characters and their numeric representations are:

 Character Unicode value Entity representation

CHARACTER TABULATION U+0009 	

LINE FEED U+000A

CARRIAGE RETURN U+000D 

NEXT LINE U+0085 …

LINE SEPARATOR U+2028  

v Within attribute values, the QUOTATION MARK (U+0022) character is replaced

with its predefined XML entity ".

v If the input document has a DTD declaration, the declaration is not preserved,

and no markup based on the DTD is generated.

v If the input document contains CDATA sections, those sections are not preserved

in the output.

Data types for archiving XML documents

Although you can store XML serialized string data in a column of any binary or

character type, non-XML columns should be used only for archiving XML data.

The best column data type for archiving XML data is a binary data type, such as

BLOB. Use of a character column for archiving introduces code page conversion,

which can make a document inconsistent with its original form.

122 pureXML Guide

Chapter 6. Indexing XML data

Indexing XML data overview

An index over XML data can be used to improve the efficiency of queries on XML

documents that are stored in an XML column.

In contrast to traditional relational indexes, where index keys are composed of one

or more table columns you specify, an index over XML data uses a particular XML

pattern expression to index paths and values in XML documents stored within a

single column. The data type of that column must be XML.

Instead of providing access to the beginning of a document, index entries in an

index over XML data provide access to nodes within the document by creating

index keys based on XML pattern expressions. Because multiple parts of a XML

document can satisfy an XML pattern, multiple index keys may be inserted into

the index for a single document.

You create an index over XML data using the CREATE INDEX statement, and drop

an index over XML data using the DROP INDEX statement. The GENERATE KEY

USING XMLPATTERN clause you include with the CREATE INDEX statement

specifies what you want to index.

Some of the keywords used with the CREATE INDEX statement for indexes on

non-XML columns do not apply to indexes over XML data. The UNIQUE keyword

also has a different meaning for indexes over XML data.

Example: Creating an index over XML data: Suppose that table companyinfo has an

XML column named companydocs, which contains XML document fragments like

these:

Document for Company1:

<company name="Company1">

 <emp id="31201" salary="60000" gender="Female">

 <name>

 <first>Laura</first>

 <last>Brown</last>

 </name>

 <dept id="M25">

 Finance

 </dept>

 </emp>

</company>

Document for Company2:

<company name="Company2">

 <emp id="31664" salary="60000" gender="Male">

 <name>

 <first>Chris</first>

 <last>Murphy</last>

 </name>

 <dept id="M55">

 Marketing

 </dept>

 </emp>

 <emp id="42366" salary="50000" gender="Female">

© Copyright IBM Corp. 2006, 2007 123

<name>

 <first>Nicole</first>

 <last>Murphy</last>

 </name>

 <dept id="K55">

 Sales

 </dept>

 </emp>

</company>

Users of the companyinfo table often retrieve employee information using the

employee ID. You might use an index like this one to make that retrieval more

efficient:

 Notes to Figure 5:

�1� The index over XML data is defined on the companydocs column of the

companyinfo table. companydocs must be of the XML data type.

�2� The GENERATE KEY USING XMLPATTERN clause provides information

about what you want to index. This clause is called an XML index

specification. The XML index specification contains an XML pattern clause.

The XML pattern clause in this example indicates that you want to index

the values of the id attribute of each employee element.

�3� AS SQL DOUBLE indicates that indexed values are stored as DOUBLE

values.

Index XML pattern expressions

Only those parts of an XML document stored in an XML column that satisfy an

XML pattern expression are indexed. To index on an XML pattern, you provide an

index specification clause together with the CREATE INDEX statement. The index

specification clause begins with GENERATE KEY USING XMLPATTERN, followed

by an XML pattern and a data type for the index over XML data. Alternatively,

you can specify the clause GENERATE KEYS USING XMLPATTERN.

Only one index specification clause is allowed per CREATE INDEX statement.

Multiple XML indexes may be created on an XML column.

XML pattern expressions

To identify those parts of the document that will be indexed, an XML pattern is

used to specify a set of nodes within the XML document. This pattern expression is

similar to the path expression defined in the XQuery language, but it differs in that

only a subset of the XQuery language is supported.

Path expression steps are separated by the forward slash (/). The double forward

slash (//) which is the abbreviated syntax for /descendant-or-self::node()/ may

also be specified. In each step, a forward axis (child::, @, attribute::, descendant::,

self::, and descendant-or-self::) is chosen, followed by an XML name test or XML

kind test. If no forward axis is specified, the child axis is used as the default.

CREATE INDEX empindex on companyinfo(companydocs) �1�

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ �2�

 AS SQL DOUBLE �3�

Figure 5. Example of an index over XML data

124 pureXML Guide

If the XML name test is used, a qualified XML name or a wildcard is used to

specify the node name to match for the step in the path. Instead of matching node

names, the XML kind test can also be used to specify what kind of nodes to match

in the pattern: text nodes, comment nodes, processing instruction nodes, or any

other type of node.

Below are some examples of different pattern expressions.

1. CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL DOUBLE

2. CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/child::company/child::emp/attribute::id’

 AS SQL DOUBLE

3. CREATE INDEX idindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL DOUBLE

4. CREATE INDEX idindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/descendant-or-self::node()/attribute::id’

 AS SQL DOUBLE

5. CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name/last/text()’ AS SQL

 VARCHAR(25)

Note: Statement 1 and statement 2 are logically equivalent. Statement 2 uses the

unabbreviated syntax. Statement 3 and statement 4 are logically equivalent.

Statement 4 uses the unabbreviated syntax.

Qualifying Paths and Nodes

Consider a table named ″company″ with XML documents stored in an XML

column (companydocs). The XML documents have a hierarchy with the two paths:

’/company/emp/dept/@id’ and ’/company/emp/@id’. If the XML pattern

specifies a single path, then a set of nodes in the document may qualify.

For example, if users wished to search for a specific employee id attribute (@id) on

the employee elements, they could create an index on the XML pattern

’/company/emp/@id’. Then queries with predicates of the form

’/company/emp[@id=42366]’ could utilize the index on an XML column. In this

case, the XMLPATTERN ’/company/emp/@id’ in the CREATE INDEX statement

specifies a single path that refers to many different nodes in the document, since

every employee element in the document may have an employee id attribute.

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL DOUBLE

If the XML pattern uses wildcard expressions, the descendant axis, or the

descendant-or-self axis, then a set of paths and nodes may qualify. In the following

example, the descendant-or-self axis is specified, so that the XML pattern ’//@id’

references paths for both department id attributes and employee id attributes since

they both contain @id.

CREATE INDEX idindex on company(companydocs)

 GENERATE KEYS USING XMLPATTERN ’//@id’ AS SQL DOUBLE

XML namespace declarations

Qualified XML names (QNames) are used to define the element and attribute tags

in XML pattern expressions. The qualifier for a QName is a namespace prefix

which has been associated with a namespace URI.

Chapter 6. Indexing XML data 125

The XML pattern can be specified using an optional namespace declaration to map

a namespace prefix to a namespace URI string literal or to define a default

namespace URI for the XML pattern. The namespace prefix is then used to qualify

names of elements and attributes in the XML pattern to match them with the

namespace used in the document.

In the example below, the shorthand namespace prefix m is mapped to

http://www.mycompanyname.com/

CREATE INDEX empindex on department(deptdocs)

 GENERATE KEYS USING XMLPATTERN

 ’declare namespace m="http://www.mycompanyname.com/";

 /m:company/m:emp/m:name/m:last’ AS SQL VARCHAR(30)

Note that if this CREATE INDEX statement is issued from the command line

processor (CLP), the embedded semicolon becomes problematic, because the

semicolon is the default statement terminator. To avoid this issue, use one of the

following workarounds:

v Ensure the semicolon is not the last non whitespace character on the line (by

adding an empty XQuery comment after the semicolon, for example).

v Change the default statement terminator in the CLP from the command line.

Multiple namespace declarations can also be specified in the same XMLPATTERN

expression, but the namespace prefix must be unique within the list of namespace

declarations. In addition, the user has the option to declare a default namespace

for elements that do not have a prefix. If a namespace or namespace prefix is not

explicitly specified for an element, then the default namespace will be used.

Default namespace declarations do not apply to attributes. If the user does not

specify a default namespace, then the namespace will be no namespace. Only one

default namespace can be declared. This namespace declaration behavior follows

XQuery rules.

The previous example can also be written using a default namespace:

CREATE INDEX empindex on department(deptdocs)

 GENERATE KEY USING XMLPATTERN

 ’declare default element namespace "http://www.mycompany.com/";

 /company/emp/name/last’) AS SQL VARCHAR(30)

In the next example, the @id attribute has the no namespace namespace, since the

default namespace http://www.mycompany.com/ applies only to the company and emp

elements, but not the @id attribute. This follows basic XQuery rules, since in an

XML document default namespace declarations do not apply to attributes.

CREATE INDEX empindex on department(deptdocs)

 GENERATE KEY USING XMLPATTERN

 ’declare default element namespace "http://www.mycompany.com/";

 /company/emp/@id’ AS SQL VARCHAR(30)

Since the @id attribute should have the same namespace as the company and emp

elements, the statement could be rewritten as:

CREATE INDEX empindex on department(deptdocs)

 GENERATE KEY USING XMLPATTERN

 ’declare default element namespace "http://www.mycompany.com/";

 declare namespace m="http://www.mycompanyname.com/";

 /company/emp/@m:id’ AS SQL VARCHAR(30)

The namespace prefix used to create the index and the namespace prefix used in

the instance documents do not need to match to be indexed, but the fully

expanded QName does need to match. The value of the namespace to which the

126 pureXML Guide

prefix expands is important, not the prefix name itself. For example, if the

namespace prefix for the index is defined as m=″http//www.mycompany.com/″ and

the namespace prefix used in the instance document is c=″http//
www.mycompany.com/″, then c:company/c:emp/@id in the instance documents would

be indexed, since both shorthand namespace prefixes m and c expand to the same

namespace.

Data types associated with index XML pattern expressions

Every XML pattern expression specified in the CREATE INDEX statement must be

associated with a data type. Four SQL data types are supported: VARCHAR,

DATE, TIMESTAMP, and DOUBLE.

You can choose to interpret the result of the expression as multiple data types. For

example, the value 123 has a character representation but it can also be interpreted

as the number 123. If you would like to index the path /company/emp/@id as both a

character string and as a numeric value, then two indexes must be created, one for

the VARCHAR data type and one for the DOUBLE data type. The values in the

document are converted to the specified data type for each index.

The following example shows how to create two indexes with different data types

on the same XML column deptdocs:

CREATE INDEX empindex1 on department(deptdocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL VARCHAR(10)

CREATE INDEX empindex2 on department(deptdocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL DOUBLE

Description of supported SQL data types:

VARCHAR(integer)

VARCHAR data will be stored in the index on an XML column in the UTF-8

code page. If the data type VARCHAR is used with the specified length integer

(in bytes), the specified length is treated as a constraint. If documents are

inserted into the table or exist in the table at the same time the index is

created, then the document insertion or index creation will fail if there are

nodes to be indexed with values longer than the specified length. If the

insertion or creation succeeds, the index is guaranteed to store all character

string values in their entirety and it can support both range scans and equality

lookups. The length integer is a value in the range from 1 to the page size

dependent maximum. See the CREATE INDEX statement for the list of

maximum allowed lengths. XQuery semantics are used for string comparisons,

where trailing blanks are significant. This differs from SQL semantics, where

trailing blanks are insignificant during comparisons.

 CREATE INDEX empindex1 on department(deptdocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL VARCHAR(50)

VARCHAR HASHED

VARCHAR HASHED may be specified to handle indexing of character strings

with arbitrary lengths. If documents contain character strings to be indexed

that exceed the maximum length integer allowed for the index based on the

page size-dependent maximum, then you can specify VARCHAR HASHED

instead. In this case, the system generates an 8 byte hash code over the entire

string and there is no limit on the length of the indexed string. Range scans

cannot be performed if you specify VARCHAR HASHED, since the index

contains hash codes instead of the actual character data. Indexes using these

hashed character strings may be used only for equality lookups. XQuery

semantics are used for string equality comparisons, where trailing blanks are

Chapter 6. Indexing XML data 127

significant. This differs from SQL semantics, where trailing blanks are

insignificant during comparisons. The hash on the string preserves XQuery

semantics for equality, and not SQL semantics for equality.

 CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name/last’ AS SQL

 VARCHAR HASHED

DOUBLE

All numeric values will be converted and stored in the index as the DOUBLE

data type. Unbounded decimal types and 64 bit integers may lose precision

when they are stored as a DOUBLE. The values for the index SQL data type

DOUBLE may include the special numeric values NaN, INF, -INF, +0, and -0,

even though the SQL data type DOUBLE itself does not support these values.

DATE

DATE data type values will be normalized to UTC (Coordinated Universal

Time) or Zulu time before being stored in the index. Note that the XML

schema data type for DATE allows greater precision than the SQL data type. If

an out-of-range value is encountered, an error is returned.

TIMESTAMP

TIMESTAMP data type values will be normalized to UTC (Coordinated

Universal Time) or Zulu time before being stored in the index. Note that the

XML schema data type for timestamps allows greater precision than the SQL

data type. If an out-of range value is encountered, an error is returned.

Data type conversion for indexes over XML data

Before values can be inserted into the index over XML data, they are first

converted to the index XML type corresponding to the index SQL data type.

For VARCHAR(integer) and VARCHAR HASHED, the value is converted to an

xs:string value using the XQuery function fn:string. The length attribute of

VARCHAR(integer) is applied as a constraint to the resulting xs:string value. An

index SQL data type of VARCHAR HASHED applies a hash algorithm to the

resulting xs:string value to generate a hash code that is inserted into the index.

Data for VARCHAR types is stored directly in the index without first being

normalized to the schema data type.

For DOUBLE, DATE, and TIMESTAMP indexes, the value is converted to the index

XML type using the XQuery cast expression. DATE and TIMESTAMP data type

values will be normalized to UTC (Coordinated Universal Time) or Zulu time

before being stored in the index. XML data that is valid according to XQuery rules

that cannot be converted to the index data type due to system limitations will

result in an indexing error. The values for the index SQL data type DOUBLE may

include the special numeric values NaN, INF, -INF, +0, and -0, even though the

SQL data type DOUBLE itself does not support these values.

Corresponding index data types

 Table 23. Corresponding index data types

XML data type SQL data type

xs:string VARCHAR(integer) and VARCHAR

HASHED

xs:double DOUBLE

xs:date DATE

128 pureXML Guide

Table 23. Corresponding index data types (continued)

XML data type SQL data type

xs:dateTime TIMESTAMP

Conversion to non VARCHAR XML index data types without XML

schema

If no XML schema is present, then the document data is untyped and values are

not validated by the parser. The source value is converted to the target index XML

type with special numeric values handled for the target index SQL type if

necessary.

Conversion to the non VARCHAR XML index data types with an

XML schema

If an XML schema is present, the structure of the input documents is first validated

by the parser. Data types of the elements and attributes are constrained to the

schema’s specification. If the document contains values that don’t match the

schema’s specification, the parser will reject the document. For example, if the

schema specifies xs:float and the value is Laura, then the document will be rejected.

If the parser validates a document source value against the schema successfully,

then the following steps occur:

1. The value is converted to the DB2 binary representation for the schema data

type.

2. The value is converted to the DB2 binary representation for the index XML

data type.

3. Special numeric values are handled for the target index SQL data type, if

necessary.

Index entries are always inserted after schema validation has completed and the

value has been converted to the index data type. For example, if the schema

validates an input value 12 to have the type annotation of xs:string and the index

was created with a DOUBLE data type, then the conversion will succeed and the

value 12 will be inserted into the index. The insertion succeeds even though the

value’s xs:string data type does not match the index’s DOUBLE data type, because

the value converts successfully to the index’s DOUBLE data type. However, if the

schema validates an input value ABC to have the type annotation of xs:string and

the index was created with a DOUBLE data type, then the conversion will fail and

the value of ABC will not be inserted into the index.

Invalid XML values

XML pattern values are the indexed values generated by the xmlpattern-clause of

the CREATE INDEX statement. For indexes using the data types DOUBLE, DATE,

and TIMESTAMP, an XML pattern value is converted to the index XML data type

using the XQuery cast expression. XML values that do not have a valid lexical

form for the target index XML data type are considered to be invalid XML values.

For example, ABC is an invalid XML value for the xs:double data type. How the

index handles the invalid XML values depends on the option specified in the

xmltype-clause of the CREATE INDEX statement.

REJECT INVALID VALUES

If the REJECT INVALID VALUES option is specified, all XML pattern

Chapter 6. Indexing XML data 129

values must be valid for the index XML data type. If any XML pattern

value cannot be cast to the index XML data type, an error is returned. XML

data is not inserted or updated in the table if the index already exists. If

the index does not exist, the index is not created.

 For example, suppose the user creates the index EMPID, which indexes the

numeric employee IDs as a DOUBLE data type. Numeric values like 31201

are indexed. However, if one of the documents uses the department ID

value M55 as one of the employee ID attribute values by mistake, then the

insert of the document fails with an error message because M55 is an

invalid DOUBLE value.

CREATE INDEX EMPID ON DEPARTMENT(DEPTDOCS)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL DOUBLE

 REJECT INVALID VALUES

IGNORE INVALID VALUES

If the IGNORE INVALID VALUES option is specified, invalid XML pattern

values for the target index XML data type are ignored. The corresponding

values in the stored XML documents are not indexed by the CREATE

INDEX statement. This is the default. During insert and update operations,

the invalid XML pattern values are not indexed, but the XML documents

will still be inserted into the table. No error or warning is returned because

specifying these data types is not considered a constraint on the XML

pattern values, primarily because XQuery expressions that are searching

for the specific XML index data type will never consider these values.

 Note that the index can ignore only invalid XML values for the data type.

Valid values must conform to the DB2 database server representation of

the value for the index XML data type, or an error is issued. An XML

value associated with index XML data type xs:string is always valid.

However, the additional length constraint of the associated index SQL data

type VARCHAR(integer) data type can still cause an error if the maximum

length is exceeded. If an error is returned, XML data is not inserted or

updated in the table if the index already exists. If the index does not exist,

the index is not created.

 When invalid XML pattern values for the data type are ignored, the target

index XML data type acts like a filter and is not a constraint since the user

may have multiple indexes with different data types on the same XML

column. For example, suppose the user creates two indexes on the same

pattern but with different data types. The index ALLID uses the

VARCHAR data type and indexes on all the IDs in the document (both

department IDs and employee IDs). The index EMPID indexes only on the

numeric employee IDs and uses the DOUBLE data type as a filter:

Using the explicit IGNORE INVALID VALUES option

CREATE INDEX ALLID ON DEPARTMENT(DEPTDOCS)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL VARCHAR(10)

 IGNORE INVALID VALUES

CREATE INDEX EMPID ON DEPARTMENT(DEPTDOCS)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL DOUBLE

 IGNORE INVALID VALUES

Logically equivalent statements using the default

CREATE INDEX ALLID ON DEPARTMENT(DEPTDOCS)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL VARCHAR(10)

CREATE INDEX EMPID ON DEPARTMENT(DEPTDOCS)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL DOUBLE

130 pureXML Guide

The department ID value M25 is a valid VARCHAR data type value and

will be inserted into the index ALLID. However, M25 cannot be converted

to the DOUBLE data type so that the value will not be inserted into

EMPID and no error or warning is raised. The value is inserted for the

document stored in the table.

 Although the value M25 does not exist in the DOUBLE index EMPID,

queries may still use the DOUBLE index to retrieve all the matching

numeric values and no conversion errors will occur, because the document

that contains M25 will not be accessed.

 However, if the query does not use the DOUBLE index EMPID and scans

the document using the //@id=25 predicate, then a conversion error will

occur because the value M25 matches the pattern and still exists in the

document but is not a numeric value.

 Note that all values in the document are valid for the xs:string (SQL

VARCHAR) data type. The case where values are not inserted into the

index occurs only for the data types xs:double (SQL DOUBLE), xs:date

(SQL DATE), and xs:dateTime (SQL TIMESTAMP).

Cases where a value is not indexed, without a specified XML schema

If there is no specified XML schema, then an attempt is made to

convert the value to the target index XML type.

 If the value would be invalid XML data for the target index XML

data type (for xs:double, xs:date, or xs:dateTime), then the value is

not indexed, and no error or warning is issued.

 All values represent valid XML data for indexes using the

VARCHAR data type, since fn:string is used.

Cases where a value is not indexed when an XML schema is specified

If an XML schema is specified, then the parser will validate the

source value and the value will be converted to the schema data

type. However, if the conversion from the schema data type to the

index XML data type fails (for xs:double, xs:date, xs:dateTime),

then the value is not indexed and no error or warning is issued.

 Conversion rules follow the allowed type casting function table of

XQuery, as supported by DB2 database server.

Document rejection or CREATE INDEX statement failure

For the following types of indexing errors, the XML document will be rejected for

INSERT or UPDATE statements (SQLSTATE 23525, sqlcode -20305). In the case of a

CREATE INDEX statement on a populated table where the XML document already

exists in the table, the CREATE INDEX statement will fail (SQLSTATE 23526,

sqlcode -20306) and the document remains stored in the table.

VARCHAR(integer) length constraint errors

The length of a resulting index value from one or more XML pattern

expressions exceeds the user-specified length constraint for the VARCHAR

data type.

Unsupported list data type node error

One or more XML node values in an XML value is a list data type node

that cannot be indexed by the specified index. List data type nodes are not

supported by indexes over XML data.

Chapter 6. Indexing XML data 131

Conversion errors

An error is returned if the source value is invalid for the index XML data

type and the REJECT INVALID VALUES option was specified with the

CREATE INDEX statement. An error is also issued if the source value is a

valid XML value which cannot be converted to the DB2 database server

representation for either the schema data type or for the index XML data

type because of internal DB2 limitations. The error must be issued to

maintain consistent results: If a query were to be executed that used the

index, the correct result of the query could include a value that exceeds the

supported limit since the value would be a valid XML value. To prevent

the query from returning an incomplete result, an error is issued to

maintain consistent results.

 Table 24. Some examples of internal DB2 limitations

XML data type XML schema DB2 range (min : max)

xs:date

No maximum limit for years

Negative dates are supported

0001-01-01:

9999-12-31

xs:dateTime

No maximum limit for years

Negative dates are supported

Arbitrary precision is

supported for fractional

seconds

0001-01-01T00:00:00.000000Z:

9999-12-31T23:59:59.999999Z

xs:integer No limit on minimum or

maximum range

-9223372036854775808:

9223372036854775807

DB2 database server does not support the entire range of XML values. Value

ranges that are unsupported include:

v Date or dateTime values with year > 9999 or < 0

v Date or dateTime values with fractional second precision > 6 digits

v Out-of-range numeric values

Summary tables for conversion to the index XML data type

For data to convert successfully to the target index XML data type, the source

value must be lexically valid according to the schema data type and index XML

data type and the value must be within DB2 limits for the schema data type and

index XML data type.

132 pureXML Guide

When no XML schema is present

 Table 25. Summary table for conversion to the index XML data type when no XML schema

is present

The value is valid according

to the index XML data type

(all values are valid for the

xs:string data type)

The value is within DB2

limits for the index XML

data type Indexing result

No not applicable REJECT INVALID VALUES:

Error

IGNORE INVALID VALUES

(default): The value is

ignored and not indexed.

Yes Yes The value is indexed.

Yes No Error: the value is outside of

DB2 limits.

When an XML schema is present

 Table 26. Summary table for conversion to the index XML data type when an xml schema is

present

The value is

valid according

to the schema

data type

The value is

within DB2

limits for the

schema data

type

The value is

valid according

to the index

XML data type

The value is

within DB2

limits for the

index XML data

type Indexing result

No not applicable not applicable not applicable Error: The

document is

rejected during

schema

validation,

whether an

index exists or

not

Yes No not applicable not applicable Error: the value

is outside of DB2

limits.

Yes Yes No not applicable REJECT

INVALID

VALUES: Error

IGNORE

INVALID

VALUES

(default): The

value is ignored

and not indexed.

Yes Yes Yes No Error: the value

is outside of DB2

limits.

Yes Yes Yes Yes The value is

indexed.

Chapter 6. Indexing XML data 133

XML schemas and index key generation

You should examine your XML schemas so that you can create indexes on XML

columns with data types that match your XML schemas data type specifications.

The queries that you want to run should also be taken into account when deciding

which XML patterns to choose for your indexes.

If an XML schema is used, then the structure of XML documents to be stored in an

XML column will be validated so that the data types of the elements and attributes

in the XML documents are constrained against the XML schema. If a document

does not match the schema’s specifications, then the document is rejected by the

parser. For example, if the schema specifies that an attribute is constrained to the

DOUBLE data type and the value of the document’s attribute is ABC, then the

document is rejected. If an XML schema is not used, then document data is not

validated by the parser and is considered to be untyped data.

For example, suppose the following XML schema is used:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="product" type="ProdType"/>

<xsd:simpleType name="ColorType">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value=’20’/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ProdType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="SKU" type="xsd:string" />

 <xsd:element name="price" type="xsd:integer" />

 <xsd:element name="comment" type="xsd:string" />

 </xsd:sequence>

 <xsd:attribute name="color" type="ColorType" />

 <xsd:attribute name="weight" type="xsd:integer" />

</xsd:complexType>

</xsd:schema>

After looking at the queries you need to issue, you may decide they need indexes

on price and color. Analyzing the queries will help you decide what XML pattern

expression to include in your CREATE INDEX statement. The XML schema

provides guidance on what data type to pick for the index: you can tell that the

price element is an integer so the numeric data type of DOUBLE can be chosen for

the index priceindex and the color attribute is a string so the data type of

VARCHAR can be chosen for the index colorindex.

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.PRODUCTDOCS’)/product[price > 5.00]

 return $i/name

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.PRODUCTDOCS’)/product[@color = ’pink’]

 return $i/name

CREATE INDEX priceindex on company(productdocs)

 GENERATE KEY USING XMLPATTERN ’/product/price’ AS DOUBLE

CREATE INDEX colorindex on company(productdocs)

 GENERATE KEY USING XMLPATTERN ’//@color’ AS SQL VARCHAR(80)

The schema may also specify other constraints for the string data type, such as

maxLength which is shown in the example under ColorType where the string is

restricted to 20 unicode characters. Since the CREATE INDEX statement specifies

the VARCHAR length in bytes and not in characters, the schema length may be

multiplied by a factor of 4 to calculate the maximum number of bytes that will be

134 pureXML Guide

required to store the longest string allowed by the schema in the index. In this

case, 4*20 = 80 so VARCHAR(80) is chosen for colorindex.

If the schema does not specify a length restriction for a string data type and the

maximum string lengths for the values in the documents are not known, then you

can use the maximum length allowed by the page size used by the index. An

index stores strings of varying lengths, but since only the actual number of bytes

required for each string is stored there is no storage penalty for specifying a longer

maximum length than is needed. However, larger key buffers in memory do need

to be allocated to handle the maximum key size during index scans. See the

CREATE INDEX statement for the list of maximum allowed lengths for an index

on an XML column specifying the VARCHAR data type.

If the maximum length for the VARCHAR data type is not sufficiently long to

index the document values, then the VARCHAR HASHED data type may be used,

which does not have a length limit. However, indexes using VARCHAR HASHED

can be used only for equality look-ups and not for range scans. Note that

documents which contain strings longer than the length specified for

VARCHAR(integer) will be rejected.

The XML schema may also specify default attribute and element values. If there

are no corresponding values specified in the XML document and the document is

validated, then the default values from the schema are used when the document is

stored. These default values will be indexed, along with the other values that were

in the original input document. If the document is not validated, then the default

values are not added to document and they are not indexed.

Indexing elements with complex schema types

This topic is applicable only for documents that have been validated against a

schema and describes the semantics of how values are indexed when complex

schema types are involved.

Information described in this topic also requires an understanding of some XQuery

and XML schema concepts; please refer to the related links for additional

background information.

Complex types

An element with a simple schema type may have text, but no attributes or element

children are allowed. In contrast, complex types in schemas may have attributes

and can have 4 different content values based on the presence or absence of child

elements and text:

 Table 27. Content values for complex types in XML schemas

Child element (yes) Child element (no)

Text (yes) Mixed content Simple content

Text (no) Complex (element-only)

content

Empty content

The semantics for obtaining the value to index varies, depending on the data type

used. Indexes using the VARCHAR data type are defined by the XQuery fn:string

function and not xs:string. Because fn:string will always return a result, a

zero-length string value is indexed for empty content. For simple content, complex

Chapter 6. Indexing XML data 135

(element-only) content, and mixed content, the index value is the concatenation of

the string values of all the descendant text nodes.

In contrast, indexes using the data types DOUBLE, DATE, and TIMESTAMP follow

the semantics for XQuery xs:double, xs:date, and xs:dateTime respectively. These

data types must atomize the value, but values with complex content cannot be

atomized. As a result, complex content cases do not have a valid value to index.

Values with empty content also do not have a valid value to index. Consequently,

if an element matches the index pattern but it is a complex type with empty

content or a complex type with complex content, then the element will not be

indexed. If REJECT INVALID VALUES was specified with the CREATE INDEX

statement, then an error is issued. If the default was used or IGNORE INVALID

VALUES was specified, then no error or warning is issued.

The semantics for the simple and mixed content cases are similar for all the data

types, except that the resulting value must be converted to the correct data type for

indexes using DOUBLE, DATE, or TIMESTAMP in order for the value to be

indexed. For simple content, the element’s text node is indexed if the node’s typed

value can be converted correctly to the index data type. For mixed content, the

typed value of the element node is an untypedAtomic string that is the

concatenation of the child text nodes with the text nodes of any descendant

elements. However, the resulting untypedAtomic string can be indexed only if it

can be converted to the index data type.

Nil Element Content

A nillable element is valid with no content. Both ’nil’ and ’nillable’ are concepts

defined by the W3 XML Schema specification. For an element to have nil content,

its XML schema declaration must have the attribute xsd:nillable with a value of

true and the element in the document itself must be validated against the schema

and have the attribute xsi:nil with a value of true. An element with xsi:nil=″true″

may not have any element content but may still contain attributes.

Indexes using the VARCHAR data type will index elements with nil element

content as zero-length string values. Indexes using the DOUBLE, DATE, or

TIMESTAMP data types will ignore elements with nil content and will not index

them for both the REJECT INVALID VALUES and IGNORE INVALID VALUES

options since nillable elements are valid with no content. If an instance element has

no content and an attribute xsi:nil with a value of true but it is not validated

against the schema, the xsi:nil attribute does not have any special semantics. In this

case, the empty element value will be rejected for the numeric indexes if the

REJECT INVALID VALUES option was specified since the element value is not nil.

Content for indexes using the VARCHAR data type

 Table 28. Content for indexes using the VARCHAR data type

Content value Indexing result

Empty The node is indexed with a zero-length

string value.

Simple The node is indexed with a string value that

is the concatenation of all descendant text

nodes.

Complex (element-only) The node is indexed with a string value that

is the concatenation of all descendant text

nodes.

136 pureXML Guide

Table 28. Content for indexes using the VARCHAR data type (continued)

Content value Indexing result

Mixed The node is indexed with a string value that

is the concatenation of all descendant text

nodes.

Nil The node is indexed with a zero-length

string value.

Content for indexes using the data types DOUBLE, DATE, and

TIMESTAMP with default behavior or with IGNORE INVALID

VALUES specified

 Table 29. Content for indexes using the data types DOUBLE, DATE, and TIMESTAMP with

default behavior or with IGNORE INVALID VALUES specified

Content value Indexing result

Empty The node is ignored and not indexed.

Simple The node is indexed, if the node’s typed

value can be converted correctly to the index

data type.

Complex (element-only) The node is ignored and not indexed.

Mixed The node is indexed if the node’s typed

value (the concatenation of all descendant

text nodes) can be converted correctly to the

index data type.

Nil The node is ignored and not indexed.

Content for indexes using the data types DOUBLE, DATE, and

TIMESTAMP with REJECT INVALID VALUES specified

 Table 30. Content for indexes using the data types DOUBLE, DATE, and TIMESTAMP with

REJECT INVALID VALUES specified

Content value Indexing result

Empty The node is rejected and an error is

returned.

Simple The node is indexed, if the node’s typed

value can be converted correctly to the index

data type.

Complex (element-only) The node is rejected and an error is

returned.

Mixed The node is indexed if the node’s typed

value (the concatenation of all descendant

text nodes) can be converted correctly to the

index data type.

Nil The node is ignored and not indexed.

In the following example, the XML schema defines the element <top> as the

complex type n1:topType. This schema defines a simple type and complex types

for each of the 4 different content types. The element names have been chosen to

reflect the type and content they represent. The document conforms to the schema

definition. An index using the VARCHAR data type and an index using the

Chapter 6. Indexing XML data 137

DOUBLE data type are both created on the XML pattern //* in order to match all

elements in the document. The default behavior for IGNORE INVALID VALUES is

shown. The tables below show how the index entries may differ between the two

indexes.

Sample XML schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://foo.com" xmlns:n1="http://foo.com">

 <xsd:element name="top" type="n1:topType"/>

 <xsd:complexType name="complexEmptyType">

 </xsd:complexType>

 <xsd:complexType name="complexSimpleType">

 <xsd:simpleContent>

 <xsd:extension base="xsd:integer">

 <xsd:attribute name="attr" type="xsd:integer"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="complexComplexType">

 <xsd:sequence>

 <xsd:element name="complexchild" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="complexMixedType1" mixed="true">

 <xsd:sequence>

 <xsd:element name="mixedchild1" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="complexMixedType2" mixed="true">

 <xsd:sequence>

 <xsd:element name="mixedchild2" type="xsd:integer"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="topType">

 <xsd:sequence>

 <xsd:element name="simple" type="xsd:integer"/>

 <xsd:element name="complexempty" type="n1:complexEmptyType"/>

 <xsd:element name="complexsimple" type="n1:complexSimpleType"/>

 <xsd:element name="complexcomplex" type="n1:complexComplexType"/>

 <xsd:element name="complexmixed1" type="n1:complexMixedType1"/>

 <xsd:element name="complexmixed2" type="n1:complexMixedType2"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Sample XML document:

<?xml version="1.0"?>

<x:top xmlns:x="http://foo.com">

 <simple>1</simple>

 <complexempty/>

 <complexsimple attr="5">2</complexsimple>

 <complexcomplex><complexchild>3</complexchild></complexcomplex>

 <complexmixed1>hello<mixedchild1>4</mixedchild1></complexmixed1>

 <complexmixed2>5<mixedchild2>6</mixedchild2></complexmixed2>

</x:top>

Sample indexes:

CREATE INDEX IXVARCHAR ON T1(XMLDOC)

 GENERATE KEY USING XMLPATTERN ’//*’ AS SQL VARCHAR(20);

CREATE INDEX IXDOUBLE ON T1(XMLDOC)

 GENERATE KEY USING XMLPATTERN ’//*’ AS SQL DOUBLE;

138 pureXML Guide

Index IXVARCHAR (VARCHAR)

 Table 31.

Indexed Element Indexed value

<top> 123hello456 (concatenated text)

<simple> 1

<complexempty> zero length string

<complexsimple> 2

<complexchild> 3

<complexcomplex> 3 (concatenated with text from

<complexchild>)

<complexmixed1> hello4 (hello from <complexmixed1>

concatenated with 4 from <mixedchild1>)

<mixedchild1> 4

<complexmixed2> 56 (5 from <complexmixed2> concatenated

with 6 from <mixedchild2>)

<mixedchild2> 6

Index IXDOUBLE (DOUBLE)

 Table 32.

Indexed Element Indexed value

<top> Ignored (complex type with complex

content)

<simple> 1.000000e+00

<complexempty> Ignored (complex type with empty content)

<complexsimple> 2.000000e+00

<complexchild> 3.000000e+00

<complexcomplex> Ignored (complex type with complex

content)

<complexmixed1> Ignored (hello from <complexmixed1>

concatenated with 4 from <mixedchild1> :

hello4 is an invalid DOUBLE value)

<mixedchild1> 4.000000e+00

<complexmixed2> 5.600000e+01 (5 from <complexmixed2>

concatenated with 6 from <mixedchild2> :

56 converts successfully to DOUBLE)

<mixedchild2> 6.000000e+00

UNIQUE keyword semantics

The same UNIQUE keyword that is used for indexes on non-XML columns is also

used for indexes on XML columns, but it has a different meaning.

For relational indexes, the UNIQUE keyword in the CREATE INDEX statement

enforces uniqueness across all rows in a table. For indexes over XML data, the

UNIQUE keyword enforces uniqueness within a single XML column across all

documents whose nodes are qualified by the XML pattern. The insertion of a single

Chapter 6. Indexing XML data 139

document may cause multiple values to be inserted into a unique index; these

values must be unique in that document and in all other documents in the same

XML column. Note also that the insertion of some documents may not result in

any values being inserted into an index; uniqueness is not enforced for these

documents.

Uniqueness is enforced for the data type of the index, the XML path to the node,

and the value of the node after the XML value has been converted to the SQL data

type that is specified for the index.

Caution should be used when specifying the UNIQUE keyword. Because

converting to the specified data type for the index might result in a loss of

precision or range, or different values might be hashed to the same key value,

multiple values that appear to be unique in the XML document might result in

duplicate key errors. Situations under which duplicate key errors can occur are:

v When VARCHAR HASHED is specified, unique character strings may hash to

the same hash code and result in a duplicate key error.

v For numerical values, a loss of precision or values that are beyond the range of

the DOUBLE data type can cause duplicate key errors during insertion. For

example, big integer and unbounded decimal values may lose precision when

they are stored as the DOUBLE data type in the index.

If VARCHAR(integer) is specified, then the entire character string from the XML

document is stored in the index so that incorrect duplicate key errors cannot occur.

In addition, uniqueness of character strings follows XQuery semantics, where

trailing blanks are significant. Therefore, values that would be duplicates in SQL

but differ in trailing blanks are considered unique values in an index over XML

data.

CREATE UNIQUE INDEX EMPINDEX ON company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name/last’ AS SQL

 VARCHAR(100)

For UNIQUE indexes, the XML pattern must specify a single complete path and

may not contain any of the following:

v a descendant axis

v a descendant-or-self axis

v a /descendant-or-self::node()/ (//)

v any wildcards for the XML name test

v a node() or processing instruction() for the XML kind test

Database objects associated with XML data indexing

Logical and physical indexes over XML data

When you create an index over XML data, two B-tree indexes are created, a logical

index and a physical index.

The logical index contains the XML pattern information specified by the CREATE

INDEX statement. The physical index has DB2 generated key columns to support

the logical index and contains the indexed document values, converted to the data

type specified in the xmltype-clause of the CREATE INDEX statement.

You work with an index over XML data at the logical level (with the CREATE

INDEX and DROP INDEX statements, for example). Processing of the underlying

140 pureXML Guide

physical index by DB2 is transparent to you. Note that the physical index is not

recognized by any application programming interface that returns index metadata.

In the SYSCAT.INDEXES catalog view, the logical index has the index name you

specified in the CREATE INDEX statement and the index type XVIL. The physical

index has a system generated name and the index type XVIP. The logical index is

always created and assigned an index ID (IID) first. The physical index is created

immediately afterwards and is assigned the next consecutive index ID.

The relationship between logical and physical indexes is demonstrated in the

following example: Consider two indexes over XML data, EMPINDEX and

IDINDEX. For EMPINDEX, the logical index has the name EMPINDEX, the index

ID 3, and the index type XVIL. The corresponding physical index has the system

generated name SQL060414134408390, the index ID 4, and the index type XVIP.

 Table 33. The relationship between logical and physical indexes

Index name

(INDNAME) Index ID (IID)

Table name

(TABNAME)

Index type

(INDEXTYPE)

SQL060414133259940 1 COMPANY XRGN

SQL060414133300150 2 COMPANY XPTH

EMPINDEX 3 COMPANY XVIL

SQL060414134408390 4 COMPANY XVIP

IDINDEX 5 COMPANY XVIL

SQL060414134408620 6 COMPANY XVIP

Catalog views

Please refer to the Related reference section for more information on each of these

catalog views.

SYSCAT.INDEXES

Each row represents an index, including logical and physical indexes over

XML data.

SYSCAT.INDEXXMLPATTERNS

Each row represents a pattern clause in an index over XML data.

Auditing

Indexes on XML columns use the existing index object type for audits. Only the

logical index is audited, and not the physical index.

Other database objects associated with XML columns

There are two internal and system generated indexes associated with XML

columns, which are represented in SYSCAT.INDEXES.

XML path index and XML regions index

Whenever you create an XML column, an XML path index is automatically created

by DB2 on the XML column. DB2 also creates a single XML regions index for all

XML columns within a table.

The XML path index records all unique paths which exist within XML documents

stored within an XML column.

Chapter 6. Indexing XML data 141

The XML regions index captures how an XML document is divided up internally

into regions, which are sets of nodes within a page. When an XML document is

represented as nodes, each node is a record in a page. Since regions are sets of

nodes within a page, the number of regions index entries can be reduced, and

performance may be improved, if a larger page size that can store more nodes

within a page is used.

Both the XML path and the XML regions indexes are recorded in

SYSCAT.INDEXES. Note that these indexes are not recognized by any application

programming interface that returns index metadata.

These internal indexes associated with XML columns are distinct from indexes you

create over XML columns (also known as indexes over XML data). For indexing

XML data as stored in XML columns, you work only with the logical indexes on

XML columns, using the CREATE INDEX and DROP INDEX statements, for

example.

Catalog view

SYSCAT.INDEXES

Each row represents an index, including XML path and XML regions indexes.

The XML path index is shown as XPTH in SYSCAT.INDEXES.INDEXTYPE,

and the XML regions index is shown as XRGN in

SYSCAT.INDEXES.INDEXTYPE. Please refer to the Related reference section for

more information on this catalog view.

Recreation of indexes over XML data

An index over XML data is recreated under the following circumstances:

v During a REORG INDEX or REORG INDEXES command with the option

ALLOW READ ACCESS or the option ALLOW NO ACCESS specified.

v During a REORG TABLE command.

v When you issue an IMPORT command with the REPLACE option specified.

v When a query, insert, delete, or update operation attempts to access a table or an

index and detects that the index object is marked invalid.

Note that all indexes associated with native XML data store functionality are

contained in the same index object for a table as relational indexes. This includes

any XML path indexes, XML regions indexes, and indexes over XML data that may

exist. Single indexes are not recreated alone. If index recreation becomes necessary,

all indexes in the index object are recreated together.

CREATE INDEX

The CREATE INDEX statement is used to:

v Define an index on a DB2 table. An index can be defined on XML data, or on

relational data.

v Create an index specification (metadata that indicates to the optimizer that a

data source table has an index)

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

142 pureXML Guide

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v One of:

– CONTROL privilege on the table or nickname on which the index is defined

– INDEX privilege on the table or nickname on which the index is defined

and one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist

– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v SYSADM or DBADM authority

No explicit privilege is required to create an index on a declared temporary table.

Syntax

�� CREATE INDEX index-name

UNIQUE
 �

�

�

 ,

(1)

ASC

ON

table-name

(

column-name

)

(2)

DESC

nickname

NOT PARTITIONED

�

�
IN

tablespace-name
 *

SPECIFICATION ONLY
 �

�

�

 *

,

(3)

INCLUDE

(

column-name

)

 �

�

�

 *

(4)

xml-index-specification

CLUSTER

EXTEND USING

index-extension-name

,

(

constant-expression

)

 �

�
 PCTFREE 10

*

*

PCTFREE

integer

LEVEL2 PCTFREE

integer

�

Chapter 6. Indexing XML data 143

�
 ALLOW REVERSE SCANS

*

*

MINPCTUSED

integer

DISALLOW REVERSE SCANS

�

�
 PAGE SPLIT SYMMETRIC

*

PAGE SPLIT

HIGH

LOW

COLLECT

STATISTICS

DETAILED

SAMPLED

��

Notes:

1 In a federated system, table-name must identify a table in the federated

database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement creates an index

specification. In this case, INCLUDE, xml-index-specification, CLUSTER,

EXTEND USING, PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS,

ALLOW REVERSE SCANS, PAGE SPLIT, or COLLECT STATISTICS cannot be

specified.

3 The INCLUDE clause can only be specified if UNIQUE is specified.

4 If xml-index-specification is specified, column-name DESC, INCLUDE, or

CLUSTER cannot be specified.

xml-index-specification:

 (1)

GENERATE KEY USING XMLPATTERN

xmlpattern-clause

�

� xmltype-clause

Notes:

1 The alternative syntax GENERATE KEYS USING XMLPATTERN can be used.

xmlpattern-clause:

 ’ pattern-expression ’

namespace-declaration

namespace-declaration:

�

DECLARE NAMESPACE

namespace-prefix=namespace-uri

;

DECLARE DEFAULT ELEMENT NAMESPACE

namespace-uri

pattern-expression:

�

/

forward-axis

xmlname-test

//

xmlkind-test

144 pureXML Guide

forward-axis:

 child::

@

attribute::

descendant::

self::

descendant-or-self::

xmlname-test:

 xml-qname

xml-wildcard

xml-wildcard:

 *

xml-nsprefix:*

*:xml-ncname

xmlkind-test:

 node()

text()

comment()

processing instruction()

xmltype-clause:

AS

data-type
 IGNORE INVALID VALUES

REJECT INVALID VALUES

data-type:

 sql-data-type

sql-data-type:

 SQL VARCHAR (integer)

HASHED

DOUBLE

DATE

TIMESTAMP

Description

UNIQUE

If ON table-name is specified, UNIQUE prevents the table from containing two

or more rows with the same value of the index key. The uniqueness is enforced

at the end of the SQL statement that updates rows or inserts new rows.

Chapter 6. Indexing XML data 145

The uniqueness is also checked during the execution of the CREATE INDEX

statement. If the table already contains rows with duplicate key values, the

index is not created.

 If the index is on an XML column (the index is an index over XML data), the

uniqueness applies to values with the specified pattern-expression for all rows of

the table. Uniqueness is enforced on each value after the value has been

converted to the specified sql-data-type. Because converting to the specified

sql-data-type might result in a loss of precision or range, or different values

might be hashed to the same key value, multiple values that appear to be

unique in the XML document might result in duplicate key errors. The

uniqueness of character strings depends on XQuery semantics where trailing

blanks are significant. Therefore, values that would be duplicates in SQL but

differ in trailing blanks are considered unique values in an index over XML

data.

 When UNIQUE is used, null values are treated as any other values. For

example, if the key is a single column that may contain null values, that

column may contain no more than one null value.

 If the UNIQUE option is specified, and the table has a distribution key, the

columns in the index key must be a superset of the distribution key. That is,

the columns specified for a unique index key must include all the columns of

the distribution key (SQLSTATE 42997).

 Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

 If ON nickname is specified, UNIQUE should be specified only if the data for

the index key contains unique values for every row of the data source table.

The uniqueness will not be checked.

 For an index over XML data, UNIQUE can be specified only if the specified

pattern-expression specifies a single complete path and does not contain a

descendant or descendant-or-self axis, ″//″, an xml-wildcard, node(), or

processing-instruction() (SQLSTATE 429BS).

INDEX index-name

Names the index or index specification. The name, including the implicit or

explicit qualifier, must not identify an index or index specification that is

described in the catalog, or an existing index on a declared temporary table

(SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or

SYSSTAT (SQLSTATE 42939).

 The implicit or explicit qualifier for indexes on declared global temporary

tables must be SESSION (SQLSTATE 428EK).

ON table-name or nickname

The table-name identifies a table on which an index is to be created. The table

must be a base table (not a view), a materialized query table described in the

catalog, or a declared temporary table. The name of a declared temporary table

must be qualified with SESSION. The table-name must not identify a catalog

table (SQLSTATE 42832). If UNIQUE is specified and table-name is a typed

table, it must not be a subtable (SQLSTATE 429B3).

 nickname is the nickname on which an index specification is to be created. The

nickname references either a data source table whose index is described by the

index specification, or a data source view that is based on such a table. The

nickname must be listed in the catalog.

column-name

For an index, column-name identifies a column that is to be part of the index

146 pureXML Guide

key. For an index specification, column-name is the name by which the

federated server references a column of a data source table.

 Each column-name must be an unqualified name that identifies a column of the

table. Up to 64 columns can be specified. If table-name is a typed table, up to 63

columns can be specified. If table-name is a subtable, at least one column-name

must be introduced in the subtable; that is, not inherited from a supertable

(SQLSTATE 428DS). No column-name can be repeated (SQLSTATE 42711).

 The sum of the stored lengths of the specified columns must not be greater

than the index key length limit for the page size. For key length limits, see

“SQL limits”. If table-name is a typed table, the index key length limit is further

reduced by 4 bytes. Note that this length limit can be reduced even more by

system overhead, which varies according to the data type of the column and

whether or not the column is nullable. For more information on overhead

affecting this limit, see “Byte Counts” in “CREATE TABLE”.

 Note that this length can be reduced by system overhead, which varies

according to the data type of the column and whether it is nullable. For more

information on overhead affecting this limit, see “Byte Counts” in “CREATE

TABLE”.

 No LOB column, LONG VARCHAR column, LONG VARGRAPHIC column, or

distinct type column based on a LOB, LONG VARCHAR, or LONG

VARGRAPHIC can be used as part of an index, even if the length attribute of

the column is small enough to fit within the index key length limit for the

page size (SQLSTATE 54008). A structured type column can only be specified if

the EXTEND USING clause is also specified (SQLSTATE 42962). If the

EXTEND USING clause is specified, only one column can be specified, and the

type of the column must be a structured type or a distinct type that is not

based on a LOB, LONG VARCHAR, or LONG VARGRAPHIC (SQLSTATE

42997).

 If an index has only one column, and that column has the XML data type, and

the GENERATE KEY USING XMLPATTERN clause is also specified, the index

is an index over XML data. A column with the XML data type can be specified

only if the GENERATE KEY USING XMLPATTERN clause is also specified

(SQLSTATE 42962). If the GENERATE KEY USING XMLPATTERN clause is

specified, only one column can be specified, and the type of the column must

be XML.

ASC

Specifies that index entries are to be kept in ascending order of the column

values; this is the default setting. ASC cannot be specified for indexes that

are defined with EXTEND USING (SQLSTATE 42601).

DESC

Specifies that index entries are to be kept in descending order of the

column values. DESC cannot be specified for indexes that are defined with

EXTEND USING, or if the index is an index over XML data (SQLSTATE

42601).

NOT PARTITIONED

Indicates that a single index should be created that spans all of the data

partitions defined for the table. The table-name must identify a table defined

with data partitions (SQLSTATE 53036).

IN tablespace-name

Specifies the table space in which the index is to be created. This clause is only

Chapter 6. Indexing XML data 147

supported for indexes on partitioned tables. You can specify this clause even if

the INDEX IN clause was specified when the table was created. This will

override that clause.

 The table space specified by tablespace-name must be in the same database

partition group as the data table spaces for the table and manage space in the

same way as the other table spaces of the partitioned table (SQLSTATE 42838);

it must be a table space on which the authorization ID of the statement holds

the USE privilege.

 If the IN clause is not specified, the index is created in the table space that was

specified by the INDEX IN clause on the CREATE TABLE statement. If no

INDEX IN clause was specified, the table space of the first visible or attached

data partition of the table is used. This is the first partition in the list of data

partitions that are sorted on the basis of range specifications. If the IN clause is

not specified, the authorization ID of the statement is not required to have the

USE privilege on the default table space.

SPECIFICATION ONLY

Indicates that this statement will be used to create an index specification that

applies to the data source table referenced by nickname. SPECIFICATION

ONLY must be specified if nickname is specified (SQLSTATE 42601). It cannot

be specified if table-name is specified (SQLSTATE 42601).

 If the index specification applies to an index that is unique, DB2 does not

verify that the column values in the remote table are unique. If the remote

column values are not unique, queries against the nickname that include the

index column might return incorrect data or errors.

 This clause cannot be used when creating an index on a declared temporary

table (SQLSTATE 42995).

INCLUDE

This keyword introduces a clause that specifies additional columns to be

appended to the set of index key columns. Any columns included with this

clause are not used to enforce uniqueness. These included columns might

improve the performance of some queries through index only access. The

columns must be distinct from the columns used to enforce uniqueness

(SQLSTATE 42711). UNIQUE must be specified when INCLUDE is specified

(SQLSTATE 42613). The limits for the number of columns and sum of the

length attributes apply to all of the columns in the unique key and in the

index.

 This clause cannot be used with declared temporary tables (SQLSTATE 42995).

column-name

Identifies a column that is included in the index but not part of the unique

index key. The same rules apply as defined for columns of the unique

index key. The keywords ASC or DESC may be specified following the

column-name but have no effect on the order.

 INCLUDE cannot be specified for indexes that are defined with EXTEND

USING, if nickname is specified, or if the index is an XML values index

(SQLSTATE 42601).

xml-index-specification

Specifies how index keys are generated from XML documents that are stored

in an XML column. xml-index-specification cannot be specified if there is more

than one index column, or if the column does not have the XML data type.

 This clause only applies to XML columns (SQLSTATE 429BS).

148 pureXML Guide

GENERATE KEY USING XMLPATTERN xmlpattern-clause

Specifies the parts of an XML document that are to be indexed. XML

pattern values are the indexed values generated by the xmlpattern-clause.

List data type nodes are not supported in the index. If a node is qualified

by the xmlpattern-clause and an XML schema exists that specifies that the

node is a list data type, then the list data type node cannot be indexed

(SQLSTATE 23526 for CREATE INDEX statements, or SQLSTATE 23525 for

INSERT and UPDATE statements).

xmlpattern-clause

Contains a pattern expression that identifies the nodes that are to be

indexed. It consists of an optional namespace-declaration and a required

pattern-expression.

namespace-declaration

If the pattern expression contains qualified names, a

namespace-declaration must be specified to define namespace

prefixes. A default namespace can be defined for unqualified

names.

DECLARE NAMESPACE namespace-prefix=namespace-uri

Maps namespace-prefix, which is an NCName, to namespace-uri,

which is a string literal. The namespace-declaration can contain

multiple namespace-prefix-to-namespace-uri mappings. The

namespace-prefix must be unique within the list of

namespace-declaration (SQLSTATE 10503).

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri

Declares the default namespace URI for unqualified element

names or types. If no default namespace is declared,

unqualified names of elements and types are in no namespace.

Only one default namespace can be declared (SQLSTATE

10502).

pattern-expression

Specifies the nodes in an XML document that are indexed. The

pattern-expression can contain pattern-matching characters (*). It is

similar to a path expression in XQuery, but supports a subset of

the XQuery language that is supported by DB2.

/ (forward slash)

Separates path expression steps.

// (double forward slash)

This is the abbreviated syntax for /descendant-or-self::node()/.

You cannot use // (double forward slash) if you also specify

UNIQUE.

forward-axis

child::

Specifies children of the context node. This is the default, if

no other forward axis is specified.

@ Specifies attributes of the context node. This is the

abbreviated syntax for attribute::.

attribute::

Specifies attributes of the context node.

Chapter 6. Indexing XML data 149

descendant::

Specifies the descendants of the context node. You cannot

use descendant:: if you also specify UNIQUE.

self::

Specifies just the context node itself.

descendant-or-self::

Specifies the context node and the descendants of the

context node. You cannot use descendant-or-self:: if you

also specify UNIQUE.

xmlname-test

Specifies the node name for the step in the path using a

qualified XML name (xml-qname) or a wildcard

(xml-wildcard).

xml-ncname

An XML name as defined by XML 1.0. It cannot include a

colon character.

xml-qname

Specifies a qualified XML name (also known as a QName)

that can have two possible forms:

v xml-nsprefix:xml-ncname, where the xml-nsprefix is an

xml-ncname that identifies an in-scope namespace

v xml-ncname, which indicates that the default namespace

should be applied as the implicit xml-nsprefix

xml-wildcard

Specifies an xml-qname as a wildcard that can have three

possible forms:

v * (a single asterisk character) indicates any xml-qname

v xml-nsprefix:* indicates any xml-ncname within the

specified namespace

v *:xml-ncname indicates a specific XML name in any

in-scope namespace

You cannot use xml-wildcard if you also specify UNIQUE.

xmlkind-test

Use these options to specify what types of nodes you pattern

match. The following options are available to you:

node()

Matches any node. You cannot use node() if you also

specify UNIQUE.

text()

Matches any text node.

comment()

Matches any comment node.

processing-instruction()

Matches any processing instruction node. You cannot use

processing-instruction() if you also specify UNIQUE.

xmltype-clause

AS data-type

Specifies the data type to which indexed values are converted

150 pureXML Guide

before they are stored. Values are converted to the index XML data

type that corresponds to the specified index SQL data type.

 Table 34. Corresponding index data types

Index XML data type Index SQL data type

xs:string VARCHAR(integer), VARCHAR HASHED

xs:double DOUBLE

xs:date DATE

xs:dateTime TIMESTAMP

For VARCHAR(integer) and VARCHAR HASHED, the value is

converted to an xs:string value using the XQuery function fn:string.

The length attribute of VARCHAR(integer) is applied as a

constraint to the resulting xs:string value. An index SQL data type

of VARCHAR HASHED applies a hash algorithm to the resulting

xs:string value to generate a hash code that is inserted into the

index.

 For indexes using the data types DOUBLE, DATE, and

TIMESTAMP, the value is converted to the index XML data type

using the XQuery cast expression.

 If the index is unique, the uniqueness of the value is enforced after

the value is converted to the indexed type.

data-type

The following data type is supported:

sql-data-type

Supported SQL data types are:

VARCHAR(integer)

If this form of VARCHAR is specified, DB2 uses integer

as a constraint. If document nodes that are to be

indexed have values that are longer than integer, the

documents are not inserted into the table if the index

already exists. If the index does not exist, the index is

not created. integer is a value between 1 and a page

size-dependent maximum. Table 35 shows the

maximum value for each page size.

 Table 35. Maximum length of document nodes by page size

Page size Maximum length of document node (bytes)

4KB 817

8KB 1841

16KB 3889

32KB 7985

XQuery semantics are used for string comparisons,

where trailing blanks are significant. This differs from

SQL semantics, where trailing blanks are insignificant

during comparisons.

VARCHAR HASHED

Specify VARCHAR HASHED to handle indexing of

arbitrary length character strings. The length of an

Chapter 6. Indexing XML data 151

indexed string has no limit. DB2 generates an

eight-byte hash code over the entire string. Indexes that

use these hashed character strings can be used only for

equality lookups. XQuery semantics are used for string

equality comparisons, where trailing blanks are

significant. This differs from SQL semantics, where

trailing blanks are insignificant during comparisons.

The hash on the string preserves XQuery semantics for

equality and not SQL semantics.

DOUBLE

Specifies that the data type DOUBLE is used for

indexing numeric values. Unbounded decimal types

and 64 bit integers may lose precision when they are

stored as a DOUBLE value. The values for DOUBLE

may include the special numeric values NaN, INF,

-INF, +0, and -0, even though the SQL data type

DOUBLE itself does not support these values.

DATE

Specifies that the data type DATE is used for indexing

XML values. Note that the XML schema data type for

xs:date allows greater precision than the SQL data

type. If an out-of-range value is encountered, an error

is returned.

TIMESTAMP

Specifies that the data type TIMESTAMP is used for

indexing XML values. Note that the XML schema data

type for xs:dateTime allows greater precision than the

SQL data type. If an out-of range value is encountered,

an error is returned.

IGNORE INVALID VALUES

Specifies that XML pattern values that are invalid for the target

index XML data type are ignored and that the corresponding

values in the stored XML documents are not indexed by the

CREATE INDEX statement. By default, invalid values are ignored.

During insert and update operations, the invalid XML pattern

values are not indexed, but XML documents are still inserted into

the table. No error or warning is raised, because specifying these

data types is not a constraint on the XML pattern values (XQuery

expressions that search for the specific XML index data type will

not consider these values).

 The index can ignore only invalid XML pattern values for the

index XML data type. Valid values must conform to the DB2

representation of the value for the index XML data type, or an

error is returned. An XML pattern value associated with the index

XML data type xs:string is always valid. However, the additional

length constraint of the associated index SQL data type

VARCHAR(integer) data type can still raise an error, if the

maximum length is exceeded. If an error is returned, XML data is

not inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

REJECT INVALID VALUES

Specifies that all XML pattern values must be valid for the index

152 pureXML Guide

XML data type. If any XML pattern value cannot be cast to the

index XML data type, an error is returned. XML data is not

inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

CLUSTER

Specifies that the index is the clustering index of the table. The cluster factor of

a clustering index is maintained or improved dynamically as data is inserted

into the associated table, by attempting to insert new rows physically close to

the rows for which the key values of this index are in the same range. Only

one clustering index may exist for a table so CLUSTER may not be specified if

it was used in the definition of any existing index on the table (SQLSTATE

55012). A clustering index may not be created on a table that is defined to use

append mode (SQLSTATE 428D8).

 CLUSTER is disallowed if nickname is specified, or if the index is an index over

XML data (SQLSTATE 42601). This clause cannot be used with declared

temporary tables (SQLSTATE 42995) or range-clustered tables (SQLSTATE

429BG).

EXTEND USING index-extension-name

Names the index-extension used to manage this index. If this clause is specified,

then there must be only one column-name specified and that column must be a

structured type or a distinct type (SQLSTATE 42997). The index-extension-name

must name an index extension described in the catalog (SQLSTATE 42704). For

a distinct type, the column must exactly match the type of the corresponding

source key parameter in the index extension. For a structured type column, the

type of the corresponding source key parameter must be the same type or a

supertype of the column type (SQLSTATE 428E0).

 This clause cannot be used with declared temporary tables (SQLSTATE 42995).

constant-expression

Identifies values for any required arguments for the index extension. Each

expression must be a constant value with a data type that exactly matches

the defined data type of the corresponding index extension parameters,

including length or precision, and scale (SQLSTATE 428E0). This clause

must not exceed 32 768 bytes in length in the database code page

(SQLSTATE 22001).

PCTFREE integer

Specifies what percentage of each index page to leave as free space when

building the index. The first entry in a page is added without restriction. When

additional entries are placed in an index page at least integer percent of free

space is left on each page. The value of integer can range from 0 to 99. If a

value greater than 10 is specified, only 10 percent free space will be left in

non-leaf pages. The default is 10.

 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause

cannot be used with declared temporary tables (SQLSTATE 42995).

LEVEL2 PCTFREE integer

Specifies what percentage of each index level 2 page to leave as free space

when building the index. The value of integer can range from 0 to 99. If

LEVEL2 PCTFREE is not set, a minimum of 10 or PCTFREE percent of free

space is left on all non-leaf pages. If LEVEL2 PCTFREE is set, integer percent of

free space is left on level 2 intermediate pages, and a minimum of 10 or integer

percent of free space is left on level 3 and higher intermediate pages.

Chapter 6. Indexing XML data 153

LEVEL2 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601).

This clause cannot be used with declared temporary tables (SQLSTATE 42995).

MINPCTUSED integer

Indicates whether index leaf pages are merged online, and the threshold for

the minimum percentage of space used on an index leaf page. If, after a key is

removed from an index leaf page, the percentage of space used on the page is

at or below integer percent, an attempt is made to merge the remaining keys on

this page with those of a neighboring page. If there is sufficient space on one

of these pages, the merge is performed and one of the pages is deleted. The

value of integer can be from 0 to 99. A value of 50 or below is recommended

for performance reasons. Specifying this option will have an impact on update

and delete performance. For type 2 indexes, merging is only done during

update and delete operations when there is an exclusive table lock. If an

exclusive table lock does not exist, keys are marked as pseudo deleted during

update and delete operations, and no merging is done. Consider using the

CLEANUP ONLY ALL option of REORG INDEXES to merge leaf pages instead

of using the MINPCTUSED option of CREATE INDEX.

 MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601). This

clause cannot be used with declared temporary tables (SQLSTATE 42995).

DISALLOW REVERSE SCANS

Specifies that an index only supports forward scans or scanning of the index in

the order that was defined at index creation time.

 DISALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

ALLOW REVERSE SCANS

Specifies that an index can support both forward and reverse scans; that is,

scanning of the index in the order that was defined at index creation time, and

scanning in the opposite order.

 ALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

PAGE SPLIT

Specifies an index split behavior. The default is SYMMETRIC.

SYMMETRIC

Specifies that pages are to be split roughly in the middle.

HIGH

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that increase with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

LOW

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that decrease with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

154 pureXML Guide

COLLECT STATISTICS

Specifies that basic index statistics are to be collected during index creation.

DETAILED

Specifies that extended index statistics (CLUSTERFACTOR and

PAGE_FETCH_PAIRS) are also to be collected during index creation.

SAMPLED

Specifies that sampling can be used when compiling extended index

statistics.

Rules

v The CREATE INDEX statement will fail (SQLSTATE 01550) if attempting to

create an index that matches an existing index.

Two index descriptions are considered duplicates if:

– the set of columns (both key and include columns) and their order in the

index is the same as that of an existing index AND

– the ordering attributes are the same AND

– both the previously existing index and the one being created are non-unique

OR the previously existing index is unique AND

– if both the previously existing index and the one being created are unique,

the key columns of the index being created are the same or a superset of key

columns of the previously existing index.
For indexes over XML data, the index descriptions are not considered duplicates

if the index names are different, even if the indexed XML column, the XML

patterns, and the data type, including its options, are identical.

v Unique indexes on system-maintained MQTs are not supported (SQLSTATE

42809).

v The COLLECT STATISTICS options are not supported if a nickname is specified

(SQLSTATE 42601).

Notes

v Indexes over XML data do not support concurrent write access while CREATE

INDEX is executing.

v For relational indexes only: Concurrent read/write access to the table is

permitted while an index is being created. Once the index has been built,

changes that were made to the table during index creation time are

forward-fitted to the new index. Write access to the table is then briefly blocked

while index creation completes, after which the new index becomes available.

To circumvent this default behavior, use the LOCK TABLE statement to

explicitly lock the table before issuing a CREATE INDEX statement. (The table

can be locked in either SHARE or EXCLUSIVE mode, depending on whether

read access is to be allowed.)

v If the named table already contains data, CREATE INDEX creates the index

entries for it. If the table does not yet contain data, CREATE INDEX creates a

description of the index; the index entries are created when data is inserted into

the table.

v Once the index is created and data is loaded into the table, it is advisable to

issue the RUNSTATS command. The RUNSTATS command updates statistics

collected on the database tables, columns, and indexes. These statistics are used

to determine the optimal access path to the tables. By issuing the RUNSTATS

command, the database manager can determine the characteristics of the new

index. If data has been loaded before the CREATE INDEX statement is issued, it

Chapter 6. Indexing XML data 155

is recommended that the COLLECT STATISTICS option on the CREATE INDEX

statement be used as an alternative to the RUNSTATS command.

v Creating an index with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v The optimizer can recommend indexes prior to creating the actual index.

v If an index specification is being defined for a data source table that has an

index, the name of the index specification does not have to match the name of

the index.

v The optimizer uses index specifications to improve access to the data source

tables that the specifications apply to.

v Compatibilities

– For compatibility with DB2 for OS/390®:

- The following syntax is tolerated and ignored:

v CLOSE

v DEFINE

v FREEPAGE

v GBPCACHE

v PIECESIZE

v TYPE 2

v using-block
- The following syntax is accepted as the default behavior:

v COPY NO

v DEFER NO

Examples

Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The

purpose of the index is to ensure that there are not two entries in the table with

the same value for project name (PROJNAME). The index entries are to be in

ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM

 ON PROJECT(PROJNAME)

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.

Arrange the index entries in ascending order by job title (JOB) within each

department (WORKDEPT).

 CREATE INDEX JOB_BY_DPT

 ON EMPLOYEE (WORKDEPT, JOB)

Example 3: The nickname EMPLOYEE references a data source table called

CURRENT_EMP. After this nickname was created, an index was defined on

CURRENT_EMP. The columns chosen for the index key were WORKDEBT and

JOB. Create an index specification that describes this index. Through this

specification, the optimizer will know that the index exists and what its key is.

With this information, the optimizer can improve its strategy to access the table.

 CREATE UNIQUE INDEX JOB_BY_DEPT

 ON EMPLOYEE (WORKDEPT, JOB)

 SPECIFICATION ONLY

156 pureXML Guide

Example 4: Create an extended index type named SPATIAL_INDEX on a

structured type column location. The description in index extension

GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given to

GRID_EXTENSION to create the index grid size.

 CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)

 EXTEND USING (GRID_EXTENSION (x’000100100010001000400010’))

Example 5: Create an index named IDX1 on a table named TAB1, and collect basic

index statistics on index IDX1.

 CREATE INDEX IDX1 ON TAB1 (col1) COLLECT STATISTICS

Example 6: Create an index named IDX2 on a table named TAB1, and collect

detailed index statistics on index IDX2.

 CREATE INDEX IDX2 ON TAB1 (col2) COLLECT DETAILED STATISTICS

Example 7: Create an index named IDX3 on a table named TAB1, and collect

detailed index statistics on index IDX3 using sampling.

 CREATE INDEX IDX3 ON TAB1 (col3) COLLECT SAMPLED DETAILED STATISTICS

Example 8: Create a unique index named A_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE UNIQUE INDEX A_IDX ON MYNUMBERDATA (A) IN IDX_TBSP

Example 9: Create a non-unique index named B_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE INDEX B_IDX ON MYNUMBERDATA (B)

 NOT PARTITIONED IN IDX_TBSP

Example 10: Create an index over XML data on a table named COMPANYINFO,

which contains an XML column named COMPANYDOCS. The XML column

COMPANYDOCS contains a large number of XML documents similar to the one

below:

<company name="Company1">

 <emp id="31201" salary="60000" gender="Female">

 <name>

 <first>Laura</first>

 <last>Brown</last>

 </name>

 <dept id="M25">

 Finance

 </dept>

 </emp>

</company>

Users of the COMPANYINFO table often need to retrieve employee information

using the employee ID. An index like the following one can make that retrieval

more efficient.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’

 AS SQL DOUBLE

Example 11: The following index is logically equivalent to the index created in the

previous example, except that it uses unabbreviated syntax.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/child::company/child::emp/attribute::id’

 AS SQL DOUBLE

Chapter 6. Indexing XML data 157

Example 12: Create an index on a column named DOC, indexing only the book title

as a VARCHAR(100). Because the book title should be unique across all books, the

index must be unique.

 CREATE UNIQUE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN ’/book/title’

 AS SQL VARCHAR(100)

Example 13: Create an index on a column named DOC, indexing the chapter

number as a DOUBLE. This example includes namespace declarations.

 CREATE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN

 ’declare namespace b="http://www.foobar.com/book/";

 declare namespace c="http://acme.org/chapters";

 /b:book/c:chapter/@number’

 AS SQL DOUBLE

Sample queries against indexes over XML data

Indexes over XML data need to be matched with the queries that aim to make use

of them. The following examples show queries that can, or cannot, make use of

indexes over XML data.

Sample queries that can use an index over XML data

Queries with a wide variety of different predicates can exploit an index over XML

data. Some examples of XQuery predicates matched with indexes they can use are

shown below. Queries are followed by matching indexes.

Example 1. Issue a query for equality: Find the employee with ID 42366:

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[@id=’42366’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL VARCHAR(5)

Example 2. Query for a range: Find employees with a salary greater than 35000:

XQUERY

 for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[@salary > 35000]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’//@salary’ AS SQL DOUBLE

Example 3. Issue a query which includes a disjunction (OR): Find employees that

are in the Finance department or in the Marketing department:

XQUERY

 for $i in

 db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[dept/text()=’Finance’

 or dept/text()=’Marketing’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/dept/text()’ AS SQL

 VARCHAR(30)

Example 4. Different queries can be satisfied by the same index:

Find the employee with the ID 31201:

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[@id=’31201’]

 return $i

158 pureXML Guide

Find departments with the ID K55

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp/dept[@id=’K55’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’//@id’ AS SQL VARCHAR(25)

Example 5. Query predicates can contain paths: Find employees with last name

Murphy who are in the Sales department:

XQUERY

 for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[name/last=’Murphy’

 and dept/text()=’Sales’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/name/last’ AS SQL

 VARCHAR(100)

CREATE INDEX deptindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/dept/text()’ AS SQL

 VARCHAR(30)

Example 6. Exercise hierarchical containment during queries: A query can use

indexes to perform ANDing at different levels in the document hierarchy. A query

can also use the indexes to determine what children nodes belong to the same

ancestor to do appropriate filtering.

Find companies with employees that have a salary equal to 60000 and find

companies with female employees. In the sample XML fragments of the XML data

indexing overview topic (see the Related concepts section), both Company1 and

Company2 would qualify.

XQUERY for $i in

 db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company[emp/@salary=60000 and

 emp/@gender=’Female’]

 return $i

Find employees who have a salary equal to 60000 and who are female. Only Laura

Brown from Company1 would qualify.

XQUERY for $i in

 db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[@salary=60000

 and @gender=’Female’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@salary’ AS DOUBLE

CREATE INDEX genderindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@gender’ AS SQL

 VARCHAR(10)

Example 7. A query can use the descendant-or-self axis (//) and make use of

indexes, provided that the query predicate is at least as restrictive as, or more

restrictive than, the index pattern.

Find employees with department ID K55:

XQUERY

 for $i in

 db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company//emp[.//dept//@id=’K55’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’//emp//@id’ AS SQL VARCHAR(25)

Chapter 6. Indexing XML data 159

Sample queries that cannot use an index over XML data

There are some conditions when a query cannot use an index over XML data.

Some examples of XQuery predicates that cannot make use of their intended

indexes as shown are listed below.

Example 1. The data type requested by the query must match the indexed data

type, before the query can use the index. In this example, the query requests the

employee ID as a string, but the ID is indexed as a number:

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)/company/emp[@id=’31664’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL DOUBLE

Example 2. The XML pattern expression used to create the index may be more

restrictive than the query predicate. In this example, the query cannot use the

index, because the query retrieves both department ID and employee IDs but the

index contains only employee IDs:

XQUERY for $i in db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)//@id

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’ AS SQL VARCHAR(5)

The following query retrieves the employees who have the employee ID 31201 or

the department ID K55. Since the ID may either be an employee ID or a

department ID, but the index contains only department IDs, the index cannot be

used as created.

XQUERY

 for $i in

 db2-fn:xmlcolumn(’COMPANY.COMPANYDOCS’)//emp[.//@id=’31201’ or .//@id=’K55’]

 return $i

CREATE INDEX empindex on company(companydocs)

 GENERATE KEY USING XMLPATTERN ’//dept//@id’ AS SQL VARCHAR(5)

Restrictions on indexes over XML data

The following restrictions apply to indexes over XML data:

Data type support

Every XML pattern expression specified in the CREATE INDEX statement must

be associated with a data type. Only four SQL-based data types are supported:

DATE, TIMESTAMP, VARCHAR, and DOUBLE.

Concurrency levels

Support for some concurrency levels is restricted when processing XML

columns and associated indexes. The following table describes what

concurrency levels are or are not supported:

 Table 36. Supported concurrency levels for indexes over XML data

Function Concurrency Level Supported

CREATE INDEX on an XML

column

Concurrent read access to the

table

Yes

CREATE INDEX on an XML

column

Concurrent write access to

the table

No

CREATE INDEX on a

non-XML column

Concurrent read and write

access to the table

Yes

160 pureXML Guide

Table 36. Supported concurrency levels for indexes over XML data (continued)

Function Concurrency Level Supported

REORG INDEXES ALL FOR

TABLE (with at least one

XML column in the table)

Index clause: ALLOW

[READ |NO ACCESS]

Yes. An index on the XML

column may or may not exist

REORG INDEXES ALL FOR

TABLE (with at least one

XML column in the table)

Index clause: ALLOW

WRITE ACCESS

No. Not supported for all

indexes, even if no index on

an XML column exists

REORG INDEXES ALL FOR

TABLE (with at least one

XML column in the table and

clean up only of pseudo

deletes)

Index clause: ALLOW

[READ | WRITE] ACCESS

CLEANUP ONLY

Yes

REORG TABLE (with at least

one XML column in the

table)

Table clause: ALLOW [READ

| NO] ACCESS

Yes. An index on the XML

column may or may not exist

REORG TABLE INPLACE

(no index over an XML

column exists on the table)

Table clause: ALLOW [READ

| WRITE] ACCESS

Yes

REORG TABLE INPLACE (at

least one index over an XML

column exists on the table)

Table Clause: ALLOW

[READ | WRITE] ACCESS

No

XML list elements

List data type nodes cannot be indexed. If a node is qualified by the

xmlpattern-clause and an XML schema exists that specifies that the node is a list

data type, the list data type node cannot be indexed. Issuing a CREATE INDEX

statement on a list data type node will return an error (SQLSTATE 23526,

sqlcode -20306). Issuing INSERT and UPDATE statements will also return an

error (SQLSTATE 23525, sqlcode -20305). .

 Creating indexes on XML columns is also subject to restrictions placed on native

XML data store overall. Please refer to the Related reference section below.

Common XML indexing issues

If you encounter issues when indexing XML data, one of the following problem

scenarios may apply.

Problem determination for SQL20305N and SQL20306N error

messages

These error messages are issued when XML node values cannot be indexed. The

SQL20305N message is issued by INSERT and UPDATE statements and by the

import and load utilities. The SQL20306N message is issued by CREATE INDEX

statements issued against populated base tables.

The messages will output a reason code for the error. Issue ? SQL20305 or ?

SQL20306 from the Command Line Processor to look up the explanation and user

response for the corresponding reason code. A generated XQuery statement is

output to the db2diag.log logfile to help you locate the failing XML node values.

If SQL20305N is issued by the load utility, the generated XQuery statements to

locate the failing node values are not written to the db2diag.log logfile. To generate

Chapter 6. Indexing XML data 161

these XQuery statements, the import utility must be run on the failing rows that

were not loaded. See ″Loading XML data″ and ″Resolving indexing errors when

loading XML data″ in the DB2 Information Center for additional information.

If SQL20305N is issued by an INSERT or UPDATE statement, see ″Troubleshooting

SQL20305N messages issued by INSERT or UPDATE statements.″ If SQL20306N is

issued by a CREATE INDEX statement, then see ″Troubleshooting SQL20306N

message issued by CREATE INDEX statements on populated tables.″

Troubleshooting SQL20305N messages issued by INSERT or

UPDATE statements

To determine the cause of SQL20305N error messages, refer to ″Problem

determination for SQL20305N and SQL20306N error messages″ , then follow these

steps:

1. Determine the index name and the index XML pattern clause

a. Obtain the index name (index-name,index-schema) from SYSCAT.INDEXES by

issuing the following query using the index-id from the error message:

SELECT INDNAME,INDSCHEMA

 FROM SYSCAT.INDEXES

 WHERE IID = index-id AND

 TABSCHEMA =’schema’ AND TABNAME =’table-name’

b. Use index-name and index-schema to obtain the index data type and XML

pattern from SYSCAT.INDEXES by issuing the following query:

SELECT DATATYPE, PATTERN

 FROM SYSCAT.INDEXXMLPATTERNS

 WHERE INDSCHEMA = ’index-schema’ AND

 INDNAME = ’index-name’

2. To find the failing node values in the input document, search for the string

SQL20305N in the db2diag.log logfile and match the reason code number.

Following the reason code, you can find a set of instructions and then a

generated XQuery statement that you can use to locate the value in the

document that is causing the error. For small node values the full value is used

in the XQuery predicate. For node values that are too long to be output to the

db2diag.log logfile, the starting bytes of the value are used with the

fn:starts-with function and the ending bytes of the value are used with the

fn:ends-with function in the XQuery predicate.

3. Because the document was rejected and does not exist in the table, the XQuery

statement cannot be run on it. To solve this problem, create a new table with

the same columns as the original table and insert the failing document in the

new table. Do not create any indexes on the new table.

4. Copy the generated XQuery statement from the db2diag.log logfile and replace

the table name in the XQuery with the newly created table name.

5. Execute the XQuery statement to retrieve the entire document and the fragment

of the document containing the value that caused the failure. To provide

context information of where the error occurred in the document, the XQuery

statement will output the document fragment starting with the parent of the

node value causing the failure.

6. Use the index XML pattern to identify the set of matching XML nodes to

inspect. Because the generated XQuery statement uses wildcards for

namespaces, it is possible (but not common) for multiple problem values to

qualify that have different namespaces. If this occurs, you must use the

namespace declaration in the index XML pattern to determine the correct set of

matching XML nodes. If the complete value is not used in the predicate to filter

162 pureXML Guide

the results, the index XML pattern must be used to verify the qualifying

problem values returned by the XQuery statement.

7. Once you locate the failing value in the document, modify the input document

to correct the problem and resubmit the INSERT or UPDATE statement.

Example: INSERT statement error

In the following example, hello world is an invalid DOUBLE value, and the entire

value is used in the generated XQuery predicate. Note that *N is used as a

placeholder in the error message where schema information is not applicable.

CREATE TABLE t1 (x XML);

CREATE INDEX ix1 ON t1(x)

 GENERATE KEY USING XMLPATTERN ’/root/x/text()’

 AS SQL DOUBLE REJECT INVALID VALUES;

DB20000I The SQL command completed successfully.

INSERT INTO t1 VALUES (XMLPARSE (DOCUMENT

 ’The beginning of the documenthello world’

 STRIP WHITESPACE));

DB21034E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 23" on

table "ADUA.T". Reason code = "5". For reason codes related to an XML schema

the XML schema identifier = "*N" and XML schema data type = "*N".

SQLSTATE=23525

The output in the db2diag.log logfile is as follows (with minor formatting

changes):

2007-03-06-12.02.08.116046-480 I4436A1141 LEVEL: Warning

PID : 1544348 TID : 1801 PROC : db2sysc

INSTANCE: adua NODE : 000 DB : ADTEST

APPHDL : 0-18 APPID: *LOCAL.adua.070306200203

AUTHID : ADUA

EDUID : 1801 EDUNAME: db2agent (ADTEST)

FUNCTION: DB2 UDB, Xml Storage and Index Manager,

 xmlsIkaProcessErrorMsg, probe:651

MESSAGE : ZRC=0x80A50411=-2136669167=XMS_XML_IX_INSERT_UPDATE_ERROR

 "XML node value error during insert or update XML index"

DATA #1 : String, 36 bytes

SQL Code: SQL20305N ; Reason Code: 5

DATA #2 : String, 321 bytes

To locate the value in the document that caused the error, create

a new table with the same columns as the original table and insert

the failing document in the table. Do not create any indexes on

the new table. Replace the table name in the query below with the

newly created table name and execute the following XQuery.

DATA #3 : String, 187 bytes

xquery for $i in db2-fn:xmlcolumn("ADUA.T.X")[/*:root/*:x/text()="hello world"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:root/*:x/text()/..} </ProblemValue>

</Result>;

To find the failing node value:

1. Create a new table with the same columns as the original table:

CREATE TABLE t2 LIKE t1;

Chapter 6. Indexing XML data 163

2. Insert the failing document into the new table:

INSERT INTO t2 VALUES (XMLPARSE (DOCUMENT

’The beginning of the documenthello world’

STRIP WHITESPACE));

3. Copy the generated XQuery statement from the db2diag.log logfile and replace

the table name in the XQuery with the new table name:

xquery for $i in db2-fn:xmlcolumn("ADUA.T2.X")[/*:root/*:x/text()="hello world"]

return

{$i}

{$i/*:root/*:x/text()/..}

;

4. Execute the XQuery statement against the new table. The result of the query

statement is as follows (with minor formatting changes):

<Result>

 <ProblemDocument>

 <root>The beginning of the document<x>hello world</x></root>

 </ProblemDocument>

 <ProblemValue><x>hello world</x></ProblemValue>

</Result>

Correct the error:

The document can be changed so that the <x> element has a numeric value that

will cast successfully to the DOUBLE data type:

INSERT INTO t1 VALUES (

 XMLPARSE (DOCUMENT

 ’<root>The beginning of the document<x>123</x></root>’

 STRIP WHITESPACE))

Troubleshooting SQL20306N messages issued by CREATE

INDEX statements on populated tables

To determine the cause of SQL20306N error messages, refer to ″Problem

determination for SQL20305N and SQL20306N error messages″ , then follow these

steps:

1. To find the failing node values in the stored document, search for the string

SQL20306N in the db2diag.log logfile and match the reason code number.

Following the reason code, you can find a set of instructions and then a

generated XQuery statement that you can use to locate the value in the

document that caused the error. For small node values, the full value is used in

the XQuery predicate. For node values too long to be output to the db2diag.log

logfile, the starting bytes of the value are used with the fn:starts-with function

and the ending bytes of the value are used with the fn:ends-with function in

the XQuery predicate.

2. Execute the XQuery statement to retrieve the entire document and the fragment

of the document containing the value that caused the failure. To provide

context information of where the error occurred in the document, the XQuery

statement will output the document fragment starting with the parent of the

node value causing the failure.

3. Use the index XML pattern to identify the set of matching XML nodes to

inspect. Because the generated XQuery statement uses wildcards for

namespaces, it is possible (but not common) for multiple problem values to

qualify that have different namespaces. If this occurs, you must use the

namespace declaration in the index XML pattern to determine the correct set of

matching XML nodes. If the complete value is not used in the predicate to filter

the results, the index XML pattern must be used to verify the qualifying

problem values returned by the XQuery statement.

164 pureXML Guide

4. Once you have located the failing value in the document, modify the CREATE

INDEX XML pattern to correct the problem, or use the XQuery predicate to

update or delete the document containing the failing value.

Example: CREATE INDEX failure

In this example, the qualified text value in the stored document exceeds the

VARCHAR(4) length constraint in the index XML pattern, so that the CREATE

INDEX statement fails. For large values, the generated XQuery uses the

fn:starts-with and fn:ends-with functions in the predicate. Note that *N is used as a

placeholder in the error message where schema information is not applicable.

INSERT INTO t VALUES (XMLPARSE (DOCUMENT ’

 <x>This is the beginning of the document

 <y>test

 <z>rld12345678901234567890123412345678901234567890123

 45678901234567890123456789009876543211234567890098765

 43211234456778809876543211234567890455</z>

 </y>

 </x>’ strip whitespace))

DB20000I The SQL command completed successfully.

CREATE INDEX i1 ON t(x)

 GENERATE KEY USING XMLPATTERN ’/x/y//text()’

 AS SQL VARCHAR(4)

DB21034E The command was processed as an SQL statement because it was not a

valid Command Line Processor command. During SQL processing it returned:

SQL20306N An index on an XML column cannot be created because of an error

detected when inserting the XML values into the index. Reason code = "1". For

reason codes related to an XML schema the XML schema identifier = "*N" and XML

schema data type = "*N". SQLSTATE=23526

The output in the db2diag.log logfile is as follows (with minor formatting

changes):

2007-03-06-12.08.48.437571-480 I10148A1082 LEVEL: Warning

PID : 1544348 TID : 1801 PROC : db2sysc

INSTANCE: adua NODE : 000 DB : ADTEST

APPHDL : 0-30 APPID: *LOCAL.adua.070306200844

AUTHID : ADUA

EDUID : 1801 EDUNAME: db2agent (ADTEST)

FUNCTION: DB2 UDB, Xml Storage and Index Manager,

 xmlsIkaProcessErrorMsg, probe:361

MESSAGE : ZRC=0x80A50412=-2136669166=XMS_XML_CRIX_ERROR

 "XML node value error during create XML Index"

DATA #1 : String, 36 bytes

SQL Code: SQL20306N ; Reason Code: 1

DATA #2 : String, 72 bytes

To locate the value in the document that caused the error, execute

the following XQuery.

DATA #3 : String, 435 bytes

xquery for $doc in db2-fn:xmlcolumn("ADUA.T.X")[/*:x/*:y/*:z/text()

[fn:starts-with(., "rld12345678901234567890123412345678901234567890123")

and fn:ends-with(., "56789009876543211234456778809876543211234567890455")]]

return

<Result>

 <ProblemDocument> {$doc} </ProblemDocument>

 <ProblemValue> {$doc/*:x/*:y/*:z/text()/..} </ProblemValue>

</Result>;

The result of the query statement is as follows (with minor formatting changes):

Chapter 6. Indexing XML data 165

<Result>

 <ProblemDocument>

 <x>This is the beginning of the document

 <y>test

 <z>rld12345678901234567890123412345678901234567890123

 45678901234567890123456789009876543211234567890098765

 43211234456778809876543211234567890455</z>

 </y>

 </x>

</ProblemDocument>

 <ProblemValue>

 <z>rld12345678901234567890123412345678901234567890123

 45678901234567890123456789009876543211234567890098765

 43211234456778809876543211234567890455</z>

 </ProblemValue>

</Result>

Correcting the error:

You can change the CREATE INDEX XML pattern to increase the maximum

VARCHAR length:

CREATE INDEX i1 ON t(x)

 GENERATE KEY USING XMLPATTERN ’/x/y//text()’

 AS SQL VARCHAR(200)

166 pureXML Guide

Chapter 7. Updating XML data

Updating XML data

To update data in an XML column, use the SQL UPDATE statement. Include a

WHERE clause when you want to update specific rows. The entire column value

will be replaced. The input to the XML column must be a well-formed XML

document. The application data type can be an XML, character, or binary type.

When you update an XML column, you might also want to validate the input XML

document against a registered XML schema. You can do that with the

XMLVALIDATE function.

You can use XML column values to specify which rows are to be updated. To find

values within XML documents, you need to use XQuery expressions. One way of

specifying XQuery expressions is the XMLEXISTS predicate, which allows you to

specify an XQuery expression and determine if the expression results in an empty

sequence. When XMLEXISTS is specified in the WHERE clause, rows will be

updated if the XQuery expression returns a non-empty sequence.

The following examples demonstrate how XML data can be updated in XML

columns. The examples use table MyCustomer, which is a copy of the sample

Customer table. The examples assume that MyCustomer already contains a row

with a customer ID value of 1004. The XML data that updates existing column data

is assumed to be stored in a file c7.xml, whose contents look like this:

<customerinfo xmlns="http://posample.org" Cid="1004">

 <name>Christine Haas</name>

 <addr country="Canada">

 <street>12 Topgrove</street>

 <city>Toronto</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9Y-8G9</pcode-zip>

 </addr>

 <phone type="work">905-555-5238</phone>

 <phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c7.xml as binary data,

and use it to update the data in an XML column:

PreparedStatement updateStmt = null;

String sqls = null;

int cid = 1004;

sqls = "UPDATE MyCustomer SET Info=? WHERE Cid=?";

updateStmt = conn.prepareStatement(sqls);

updateStmt.setInt(1, cid);

File file = new File("c7.xml");

updateStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());

updateStmt.executeUpdate();

Example: In an embedded C application, update data in an XML column from a

binary XML host variable:

EXEC SQL BEGIN DECLARE SECTION;

 sqlint64 cid;

 SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;

...

© Copyright IBM Corp. 2006, 2007 167

cid=1004;

/* Read data from file c7.xml into xml_hostvar */

...

EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar WHERE Cid=:cid;

In these examples, the value of the Cid attribute within the <customerinfo>

element happens to be stored in the Cid relational column as well. Because of this,

the WHERE clause in the UPDATE statements used the relational column Cid to

specify the rows to update. In the case where the values that determine which

rows are chosen for update are found only within the XML documents themselves,

the XMLEXISTS predicate can be used. For example, the UPDATE statement in the

previous embedded C application example can be changed to use XMLEXISTS as

follows:

EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar

 WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $doc/customerinfo[@Cid = $c]’

 passing INFO as "doc", cast(:cid as integer) as "c");

Example: The following example updates existing XML data from the MyCustomer

table. The SQL UPDATE statement operates on a row of the MyCustomer table and

replaces the document in the INFO column of the row with the logical snapshot of

the document modified by the transform expression:

UPDATE MyCustomer

SET info = XMLQUERY(

 ’transform

 copy $newinfo := $info

 modify do insert <status>Current</status> as last into $newinfo

 return $newinfo’ passing info as "info")

WHERE cid = 1004

Use of updating expressions in a transform expression

DB2 XQuery updating expressions must be used in the modify clause of a

transform expression. The updating expressions operate on the copied nodes

created by the copy clause of the transform expression.

The following expressions are updating expressions:

v A delete expression

v An insert expression

v A rename expression

v A replace expression

v A FLWOR expression that contains an updating expression in its return clause

v A conditional expression that contains an updating expression in its then or else

clause

v Two or more updating expressions, separated by commas where all operands are

either updating expressions or an empty sequence

DB2 XQuery returns an error for updating expressions that are not valid. For

example, DB2 XQuery returns an error if one branch of a conditional expression

contains an updating expression and the other branch contains a non-updating

expression that is not the empty sequence.

A transform expression is not an updating expression, because it does not modify

any existing nodes. A transform expression creates modified copies of existing

168 pureXML Guide

nodes. The result of a transform expression can include nodes created by updating

expressions in the modify clause of the transform expression and copies of

previously existing nodes.

Processing XQuery updating operations

In a transform expression, the modify clause can specify multiple updates. For

example, the modify clause can contain two updating expressions, one expression

that replaces an existing value, and the other expression that inserts a new

element. When the modify clause contains multiple updating expressions, each

updating expression is evaluated independently and results in a list of change

operations associated with specific nodes that were created by the copy clause of

the transform expression.

Within a modify clause, updating expressions cannot modify new nodes that are

added by other updating expressions. For example, if an updating expression adds

a new element node, another updating expression cannot change the node name of

the newly created node.

All the change operations specified in the modify clause of the transform

expression are collected and effectively applied in the following order:

1. The following updating operations are performed in a nondeterministic order:

v Insert operations that do not use ordering keywords such as before, after, as

first, or as last.

v All rename operations.

v Replace operations where the keywords value of are specified and the target

node is an attribute, text, comment, or processing instruction node.
2. Insert operations that use ordering keywords such as before, after, as first, or

as last.

3. Replace operations where the keywords value of are not specified.

4. Replace operations where the keywords value of are specified and the target

node is an element node.

5. All delete operations.

The order in which change operations are applied ensures that a series of multiple

changes will have a deterministic result. For an example of how the order of

update operations guarantees that a series of multiple changes will have a

deterministic result, see the last XQuery expression in “Examples” on page 170.

Invalid XQuery updating operations

During processing of a transform expression, DB2 XQuery returns an error if any

of the following conditions occur:

v Two or more rename operations are applied to the same node.

v Two or more replace operations that use the value of keywords are applied to

the same node.

v Two or more replace operations that don’t use the value of keywords are

applied to the same node.

v The result of the transform expression is not a valid XDM instance.

An example of an invalid XDM instance is one that contains an element with

two attributes where both attributes have the same name.

v The XDM instance contains inconsistent namespace bindings.

Chapter 7. Updating XML data 169

The following are examples of inconsistent namespace bindings:

– A namespace binding in the QName of an attribute node does not agree with

the namespace bindings in its parent element node.

– The namespace bindings in two attribute nodes with the same parent do not

agree with each other.

Examples

In the following example, the copy clause of a transform expression binds the

variable $product to a copy of an element node, and the modify clause of the

transform expression uses two updating expressions to change the copied node:

xquery

declare default element namespace "http://posample.org";

transform

copy $product := db2-fn:sqlquery(

 "select description from product where pid=’100-100-01’")/product

modify(

 do replace value of $product/description/price with 349.95,

 do insert <status>Available</status> as last into $product)

return $product

The following example uses an XQuery transform expression within an SQL

UPDATE statement to modify XML data in the CUSTOMER table. The SQL

UPDATE statement operates on a row of the CUSTOMER table. The transform

expression creates a copy of the XML document from the INFO column of the row,

and adds a status element to the copy of the document. The UPDATE statement

replaces the document in the INFO column of the row with the copy of the

document modified by the transform expression:

UPDATE customer

SET info = xmlquery(’declare default element namespace "http://posample.org";

 transform

 copy $newinfo := $info

 modify do insert <status>Current</status> as last into $newinfo/customerinfo

 return $newinfo’ passing info as "info")

WHERE cid = 1003

The following examples use the CUSTOMER table from the DB2 SAMPLE

database. In the CUSTOMER table, the XML column INFO contains customer

address and phone information.

In the following example, the SQL SELECT statement operates on a row of the

CUSTOMER table. The copy clause of the transform expression creates a copy of

the XML document from the column INFO. The delete expression deletes address

information, and non-work phone numbers, from the copy of the document. The

return uses the customer ID attribute and country attribute from the original

document from the CUSTOMER table:

SELECT XMLQUERY(’declare default element namespace "http://posample.org";

 transform

 copy $mycust := $d

 modify

 do delete ($mycust/customerinfo/addr,

 $mycust/customerinfo/phone[@type != "work"])

 return

 <custinfo>

 <Cid>{data($d/customerinfo/@Cid)}</Cid>

 {$mycust/customerinfo/*}

 <country>{data($d/customerinfo/addr/@country)}</country>

170 pureXML Guide

</custinfo>’

 passing INFO as "d")

FROM CUSTOMER

WHERE CID = 1003

When run against the SAMPLE database, the statement returns the following

result:

<custinfo xmlns="http://posample.org">

 <Cid>1003</Cid>

 <name>Robert Shoemaker</name>

 <phone type="work">905-555-7258</phone>

 <country>Canada</country>

</custinfo>

In the following example, the XQuery expression demonstrates how the order of

update operations guarantees that a series of multiple changes will have a

deterministic result. The insert expression adds a status element after a phone

element, and the replace expression replaces the phone element with an email

element:

xquery

declare default element namespace "http://posample.org";

let $email := <email>jnoodle@my-email.com</email>

let $status := <status>current</status>

return

 transform

 copy $mycust := db2-fn:sqlquery(’select info from customer where cid = 1002’)

 modify (

 do replace $mycust/customerinfo/phone with $email,

 do insert $status after $mycust/customerinfo/phone[@type = "work"])

 return $mycust

In the modify clause, the replace expression is before the insert expression.

However, when updating the copied node sequence $mycust, the insert update

operation is performed before the replace update operation to ensure a

deterministic result. When run against the SAMPLE database, the expression

returns the following result:

<customerinfo xmlns="http://posample.org" Cid="1002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C 3T6</pcode-zip>

 </addr>

 <email>jnoodle@my-email.com</email>

 <status>current</status>

</customerinfo>

If the replace operation were performed first, the phone element would not be in

the node sequence, and the operation to insert the status element after the phone

element would have no meaning.

For information about the order of update operations, see “Processing XQuery

updating operations” on page 169.

Chapter 7. Updating XML data 171

Updating XML documents with information from other tables

You can use data from other database columns to update XML documents. If you

have a table that contains updated customer information, for example, you can use

SQL/XML statements and XQuery expressions to update the customer information

in XML documents.

Use the following SQL statements to create a sample table that contains new

customer phone numbers.

CREATE TABLE NewPhones (

 CID BIGINT NOT NULL PRIMARY KEY, PhoneNo VARCHAR(20), Type VARCHAR(10))~

INSERT INTO NewPhones (CID, PhoneNo, Type) VALUES (1001, ’111-222-3333’, ’cell’)~

INSERT INTO NewPhones (CID, PhoneNo, Type) VALUES (1002, ’222-555-1111’, ’home’)~

INSERT INTO NewPhones (CID, PhoneNo, Type) VALUES (1003, ’333-444-2222’, ’home’)~

Use the following SQL statement to update a customer phone number in the

CUSTOMER table. The statement uses the XMLQUERY function and an XQuery

expression consisting of a FLWOR expression and a transform expression that

contains an insert expression.

UPDATE CUSTOMER SET INFO = XMLQUERY(

 ’declare default element namespace "http://posample.org";

 let $myphone := db2-fn:sqlquery(’’SELECT XMLELEMENT(Name "phone",

 XMLATTRIBUTES(NewPhones.Type as "type"), NewPhones.PhoneNo)

 FROM NewPhones WHERE CID = parameter(1)’’, $mycid)

 return

 transform

 copy $mycust := $d

 modify

 do insert $myphone after $mycust/customerinfo/phone[last()]

 return

 $mycust’

 passing INFO as "d", 1002 as "mycid")

WHERE CID = 1002~

The XMLQUERY function executes an XQuery expression that adds a phone

element node to the customer information and returns the modified information to

the UPDATE statement. In the let clause of the XQuery FLWOR expression, the

db2-fn:sqlquery function executes an SQL fullselect statement. The fullselect uses

the customer ID passed to the XQuery expression from XMLQUERY.

The fullselect statement must return an XML data type. To create an XML data

type from the PHONENO and TYPE data returned from the SELECT statement,

the XMLELEMENT and XMLATTRIBUTES functions create a phone element node

based on the data supplied.

In the example, the fullselect executed by db2-fn:sqlquery in the let clause creates

the following phone element node.

<phone type="home">222-555-1111<phone>

Run the following SQL select to see the customer information, now with both a

work and a home phone number.

SELECT INFO FROM CUSTOMER WHERE CID = 1002~

Deletion of XML data from tables

To delete rows that contain XML documents, use the DELETE SQL statement.

Include a WHERE clause when you want to delete specific rows.

172 pureXML Guide

You can specify which rows are to be deleted based on values within XML

columns. To find values within XML documents, you need to use XQuery

expressions. One way of specifying XQuery expressions is the XMLEXISTS

predicate, which allows you to specify an XQuery expression and determine if the

expression results in an empty sequence. When XMLEXISTS is specified in the

WHERE clause, rows will be deleted if the XQuery expression returns a non-empty

sequence.

An XML column must either be NULL or contain a well-formed XML document.

To delete an XML document from an XML column without deleting the row, use

the UPDATE SQL statement with SET NULL, to set the column to NULL, if the

column is defined as nullable. To delete objects such as attributes or elements from

an existing XML document, use the UPDATE SQL statement with XQuery

updating expressions. XQuery updating expressions can to make changes to a copy

of the existing XML document. The UPDATE statement then applies the changed

copy returned by the XQuery updating expression to the XML column for the

specified row.

The following examples demonstrate how XML data can be deleted from XML

columns. The examples use table MyCustomer, which is a copy of the sample

Customer table, and assume that MyCustomer has been populated with all of the

Customer data.

Example: Delete the rows from table MyCustomer for which the Cid column value

is 1002.

DELETE FROM MyCustomer WHERE Cid=1002

Example: Delete the rows from table MyCustomer for which the value of the city

element is Markham. This statement deletes the row that has a customer ID of 1002.

DELETE FROM MyCustomer

 WHERE XMLEXISTS (’declare default element namespace "http://posample.org";

 $d//addr[city="Markham"]’ passing INFO as "d")

Example: Delete the XML document in the row of MyCustomer for which the

value of the city element is Markham, but leave the row. This statement should

delete the XML data from the Info column for the row that has a customer ID of

1002.

UPDATE MyCustomer SET Info = NULL

 WHERE XMLEXISTS (’$declare default element namespace "http://posample.org";

 $d//addr[city="Markham"]’ passing INFO as "d")

Example: The following example deletes phone information from existing XML

data from the from the MyCustomer table. The SQL UPDATE statement operates

on a row of the MyCustomer table. The XQuery transform expression creates a

copy of the XML document from the INFO column of the row, and uses the

XQuery delete expression to remove the work phone number from the copy of the

document. The UPDATE statement replaces the document in the INFO column of

the row with the copy of the document modified by the transform expression:

UPDATE MyCustomer

SET info = XMLQUERY(

 ’transform

 copy $newinfo := $info

 modify do delete ($newinfo/customerinfo/phone[@type="work"])

 return $newinfo’ passing info as "info")

WHERE cid = 1004

Chapter 7. Updating XML data 173

174 pureXML Guide

Chapter 8. XML schema repository

Dependency management for XML schemas, DTDs, and external

entities

The XML schema repository (XSR) is a repository for all XML artifacts used to

process XML instance documents stored in XML columns. The purpose of the XSR

is to support tasks you perform that have a dependency on these XML artifacts.

XML instance documents normally contain a reference to a Uniform Resource

Identifier (URI) that points to an associated XML schema, DTD or other external

entity. This URI is required to process the instance documents. The DB2 database

system manages dependencies on such externally referenced XML artifacts with the

XSR without requiring changes to the URI location reference.

Without this mechanism to store associated XML schemas, DTDs or other external

entities, an external resource may not be accessible when needed by the database,

or may be subject to change without also triggering the necessary changes to an

already validated and annotated XML document stored within the database. The

XSR also removes the additional overhead required to locate external documents,

along with the possible performance impact.

Each database contains an XML schema repository that resides in the database

catalog and comprises catalog tables, catalog views and some system defined

stored procedures to enter data into these catalog tables.

XSR objects

The XML schema repository (XSR) supports the creation of a copy of the

information contained in an XML schema, DTD or external entity as an XSR object.

This information is used to validate and process XML instance documents stored in

XML columns.

New XSR objects must be explicitly added to the XSR before use through the

registration process, which identifies the XML schema, DTD or external entity. XSR

objects can be registered from Java(TM) applications, stored procedures, or the

command line processor.

The most widely used XSR object is the XML schema. Each XML schema in the

XSR can consist of one or more XML schema documents. Where an XML schema

consists of multiple documents, the document used to begin the registration

process is the primary XML schema document. Where an XML schema consists of

only one document, that document is the primary XML schema document.

XSR object registration

Before an XML schema, DTD, or external entity can be used to process XML

documents, it must be registered with the XML schema repository (XSR).

Registration with the XSR creates an XSR object.

In order to register most XML schemas, the application heap size configuration

parameter (applheapsz) needs to be increased. To register very complex XML

© Copyright IBM Corp. 2006, 2007 175

schemas on a Windows 32-bit operating system, the agent stack size configuration

parameter (agent_stack_sz) may also need to be increased. Please refer to the

related links below on how to change either of these configuration parameters.

For XML schemas, XSR object registration involves the following steps:

1. Register the XML schema document in the XML schema repository.

2. Specify additional XML schema documents to be included with the XSR object.

This step is required only if your XML schema consists of more than one

schema document.

3. Complete the registration process with the XML schema repository.

For DTDs and external entities, XSR object registration with the XML schema

repository is a single step process.

The XSR object registration steps can be performed from either of the following:

v Java(TM) applications

v Stored procedures

v Command line processor

Note that you cannot use CLP commands to register XML schemas from host

applications, because the required file information cannot be passed through these

commands. In order to register XML schemas from applications connecting to a

DB2 database through a CLI/ODBC or JDBC driver, use the stored procedure

method.

In the description of these methods below, the following example of an XML

schema made up of two XML schema documents is used: ″PO.xsd″ and

″address.xsd″, both stored locally in C:\TEMP. The user wants to register this

schema under the SQL two-part name of ″user1.POschema″. The XML Schema has

a properties file associated with it called schemaProp.xml. This properties file is

also stored locally, in the same C:\TEMP directory. The two XML schema

documents do not have properties associated with them. The user defines the URI

by which this schema is externally known as ″http://myPOschema/PO″.

Privileges

Any user with SYSADM or DBADM authority can register an XSR object. For all

other users, the privileges are based on the SQL schema that is supplied during the

registration process. If the SQL schema does not exist, then IMPLICIT_SCHEMA

authority on the database is required to register the schema. If the SQL schema

exists, then the user registering the schema needs CREATEIN privilege on the SQL

schema.

For XML schemas, the user to initiate the XSR object registration process (through

the XSR_REGISTER stored procedure, for example) must also be the user to specify

additional XML schema documents (if applicable) and to complete the registration

process.

The USAGE privilege for an XSR object is automatically granted to the creator of

the XSR object.

176 pureXML Guide

Registering XSR objects through stored procedures

When a database is created, the stored procedures used to register XML schemas

are also created. To register XML schemas through the stored procedure method,

invoke the XSR_REGISTER, XSR_ADDSCHEMADOC and XSR_COMPLETE stored

procedures with the CALL statement.

An XML schema document is not checked for correctness when registering or

adding documents. Document checks are performed only when you complete the

XML schema registration.

Registering XML schemas:

1. Register the primary XML schema document by calling the

SYSPROC.XSR_REGISTER stored procedure:

CALL SYSPROC.XSR_REGISTER (’user1’, ’POschema’, ’http://myPOschema/PO’,

 :content_host_var, NULL)

2. Before completing the registration, add any additional XML schema documents

to be included with the primary XML schema. Note that each additional

schema document can be included only once. For our example, this step is not

optional, since the XML schema consists of two XML schema documents, both

of which must be registered. Use the XSR_ADDSCHEMADOC stored

procedure to add additional XML schema documents. In the example below, we

add the schema constructs for addresses to the XSR object:

CALL SYSPROC.XSR_ADDSCHEMADOC (’user1’, ’POschema’, ’http://myPOschema/address’,

 :content_host_var, NULL)

3. Complete registration by calling the SYSPROC.XSR_COMPLETE stored

procedure. In the example below, the last parameter indicates that the XML

schema will not be used for decomposition (a value of 1 would indicate that it

will be used for decomposition):

CALL SYSPROC.XSR_COMPLETE (’user1’, ’POschema’, :schemaproperty_host_var, 0)

Privileges

Any user with SYSADM or DBADM authority can register an XML schema. For all

other users, the privileges are based on the SQL schema that is supplied during the

registration process. If the SQL schema does not exist, then IMPLICIT_SCHEMA

authority on the database is required to register the schema. If the SQL schema

exists, then the user registering the schema needs CREATEIN privilege on the SQL

schema.

The USAGE privilege for an XSR object is automatically granted to the creator of

the XSR object.

Registering XSR objects through the command line processor

To register XML schemas through the command line processor, use the REGISTER

XMLSCHEMA, ADD XMLSCHEMA DOCUMENT and COMPLETE XMLSCHEMA

commands.

An XML schema document is not checked for correctness when registering or

adding documents. Document checks are performed only when you complete

schema registration.

Note that you cannot use CLP commands to register XML schemas from host

applications, because the required file information cannot be passed through these

Chapter 8. XML schema repository 177

commands. In order to register XML schemas from applications connecting to a

DB2 database through a CLI/ODBC or JDBC driver, use the stored procedure

method.

Registering XML schemas:

1. Register the primary XML schema document by issuing the REGISTER

XMLSCHEMA command:

REGISTER XMLSCHEMA ’http://myPOschema/PO’

FROM ’file://c:/TEMP/PO.xsd’

AS user1.POschema

2. Before completing the registration, you may optionally add additional XML

schema documents to be included with the primary XML schema. Use the ADD

XMLSCHEMA DOCUMENT command to add additional XML schema

documents. Note that each additional schema document can be included only

once. In the example below, we add the schema constructs for addresses to

storage:

ADD XMLSCHEMA DOCUMENT TO user1.POschema

 ADD ’http://myPOschema/address’

 FROM ’file://c:/TEMP/address.xsd’

3. Complete registration by issuing the COMPLETE XMLSCHEMA command:

COMPLETE XMLSCHEMA user1.POschema

WITH ’file://c:TEMP/schemaProp.xml’

Privileges

Any user with SYSADM or DBADM authority can register an XML schema. For all

other users, the privileges are based on the SQL schema that is supplied during the

registration process. If the SQL schema does not exist, then IMPLICIT_SCHEMA

authority on the database is required to register the schema. If the SQL schema

exists, then the user registering the schema needs CREATEIN privilege on the SQL

schema.

The USE privilege for XSR objects is automatically granted to the creator of the

XSR object.

Java support for XML schema registration and removal

The IBM Data Server Driver for JDBC and SQLJ provides methods that let you

write Java application programs to register and remove XML schemas and their

components.

Those methods are equivalent to the SYSPROC.XSR_REGISTER,

SYSPROC.XSR_ADDSCHEMADOC, SYSPROC.XSR_COMPLETE,

SYSPROC.XSR_REMOVE, and SYSPROC.XSR_UPDATE stored procedures that

DB2 provides. The JDBC methods are:

DB2Connection.registerDB2XMLSchema

Registers an XML schema in DB2, using one or more XML schema documents.

There are two forms of this method: one form for XML schema documents that

are input from an InputStream objects, and one form for XML schema

documents that are in a String.

DB2Connection.deregisterDB2XMLObject

Removes an XML schema definition from DB2.

DB2Connection.updateDB2XmlSchema

Replaces the XML schema documents in a registered XML schema with the

178 pureXML Guide

XML schema documents from another registered XML schema. Optionally

drops the XML schema whose contents are copied.

Before you can invoke these methods, the underlying stored procedures must be

installed on the DB2 database server.

Example: Registration of an XML schema: The following example demonstrates the

use of registerDB2XmlSchema to register an XML schema in DB2 using a single

XML schema document (customer.xsd) that is read from an input stream. The SQL

schema name for the registered schema is SYSXSR. The xmlSchemaLocations value is

null, so DB2 will not find this XML schema on an invocation of

DSN_XMLVALIDATE that supplies a non-null XML schema location value. No

additional properties are registered.

public static void registerSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define the registerDB2XmlSchema parameters

 String[] xmlSchemaNameQualifiers = new String[1];

 String[] xmlSchemaNames = new String[1];

 String[] xmlSchemaLocations = new String[1];

 InputStream[] xmlSchemaDocuments = new InputStream[1];

 int[] xmlSchemaDocumentsLengths = new int[1];

 java.io.InputStream[] xmlSchemaDocumentsProperties = new InputStream[1];

 int[] xmlSchemaDocumentsPropertiesLengths = new int[1];

 InputStream xmlSchemaProperties;

 int xmlSchemaPropertiesLength;

 //Set the parameter values

 xmlSchemaLocations[0] = "";

 FileInputStream fi = null;

 xmlSchemaNameQualifiers[0] = "SYSXSR";

 xmlSchemaNames[0] = schemaName;

 try {

 fi = new FileInputStream("customer.xsd");

 xmlSchemaDocuments[0] = new BufferedInputStream(fi);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 try {

 xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();

 System.out.println(xmlSchemaDocumentsLengths[0]);

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 xmlSchemaDocumentsProperties[0] = null;

 xmlSchemaDocumentsPropertiesLengths[0] = 0;

 xmlSchemaProperties = null;

 xmlSchemaPropertiesLength = 0;

 DB2Connection ds = (DB2Connection) con;

 // Invoke registerDB2XmlSchema

 ds.registerDB2XmlSchema(

 xmlSchemaNameQualifiers,

 xmlSchemaNames,

 xmlSchemaLocations,

 xmlSchemaDocuments,

 xmlSchemaDocumentsLengths,

 xmlSchemaDocumentsProperties,

 xmlSchemaDocumentsPropertiesLengths,

Figure 6. Example of registration of an XML schema with DB2 using an XML document from an input stream

Chapter 8. XML schema repository 179

xmlSchemaProperties,

 xmlSchemaPropertiesLength,

 false);

}

Example: Removal of an XML schema: The following example demonstrates the use of

deregisterDB2XmlObject to remove an XML schema from DB2. The SQL schema

name for the registered schema is SYSXSR.

public static void deregisterSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define and assign values to the deregisterDB2XmlObject parameters

 String xmlSchemaNameQualifier = "SYSXSR";

 String xmlSchemaName = schemaName;

 DB2Connection ds = (DB2Connection) con;

 // Invoke deregisterDB2XmlObject

 ds.deregisterDB2XmlObject(

 xmlSchemaNameQualifier,

 xmlSchemaName);

}

Example: Update of an XML schema: The following example demonstrates the use of

updateDB2XmlSchema to update the contents of an XML schema with the contents

of another XML schema. The schema that is copied is kept in the repository. The

SQL schema name for both registered schemas is SYSXSR.

public static void updateSchema(

 Connection con,

 String schemaNameTarget,

 String schemaNameSource)

 throws SQLException {

 // Define and assign values to the updateDB2XmlSchema parameters

 String xmlSchemaNameQualifierTarget = "SYSXSR";

 String xmlSchemaNameQualifierSource = "SYSXSR";

 String xmlSchemaNameTarget = schemaNameTarget;

 String xmlSchemaNameSource = schemaNameSource;

 boolean dropSourceSchema = false;

 DB2Connection ds = (DB2Connection) con;

 // Invoke updateDB2XmlSchema

 ds.updateDB2XmlSchema(

 xmlSchemaNameQualifierTarget,

 xmlSchemaNameTarget,

 xmlSchemaNameQualifierSource,

 xmlSchemaNameSource,

 dropSourceSchema);

}

Altering registered XSR objects

Once registered in the XML schema repository, XSR objects can be altered to enable

or disable decomposition, dropped, or associated with a comment. Additionally,

usage privileges can be granted or revoked for registered XSR objects.

Figure 7. Example of removal of an XML schema from DB2

Figure 8. Example of updating an XML schema

180 pureXML Guide

The XML schema repository is used to manage dependencies of XML documents

on XML schemas, DTDs or other external entities. Each of these XML schemas,

DTDs or external entities first must be registered as a new XSR object in the XML

schema repository.

Evolving an XML schema

An XML schema that is registered in the XML schema repository (XSR) can be

evolved into a new, compatible XML schema without the need for already stored

XML instance documents to be validated again. Only the XML schema as

registered in the XSR is updated; the stored XML instance documents, including

their URI identifiers, remain unchanged.

Before a schema can be evolved, the new XML schema must be compatible with

the original one. If the two schemas are not compatible, the XSR_UPDATE stored

procedure or the UPDATE XMLSCHEMA command will return an error and no

schema evolution takes place. See Compatibility requirements for evolving an XML

schema.

To evolve an XML schema in the XSR:

1. Call the XSR_REGISTER stored procedure or run the REGISTER XMLSCHEMA

command to register the new XML schema in the XSR.

2. Finally, call the XSR_UPDATE stored procedure or run the UPDATE

XMLSCHEMA command to update the new XML schema in the XSR.

Successful schema evolution replaces the original XML schema. Once evolved, only

the updated XML schema is available.

Compatibility requirements for evolving an XML schema

The process of evolving an XML schema in the XML schema repository (XSR)

requires that both the original XML schema and the new one used to update it are

sufficiently alike. In cases where the two XML schemas are not compatible, the

update will fail and an error message is generated. Following are ten compatibility

criteria that must be met for the update process to proceed, including examples of

schemas that would not meet the described requirement.

Attribute content

Attributes declared or referenced inside of a complex type in the original

XML schema must also be present in the new XML schema. Also, required

attributes cannot be present in the new XML schema if they are not

included in the original XML schema.

 Example 1

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:attribute name="a" type="xs:string"/>

 <xs:attribute name="b" use="optional" type="xs:string"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

Chapter 8. XML schema repository 181

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:attribute name="a" type="xs:string"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Example 2

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:attribute name="a" type="xs:string"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:attribute name="a" type="xs:string"/>

 <xs:attribute name=”b” type=”xs:string” use=”required” />

 </xs:complexType>

 </xs:element>

</xs:schema>

Element content

Elements declared or referenced inside of a complex type in the original

XML schema must be present in the new XML schema. Required elements

cannot be present in the new XML schema if they are not included in the

original XML schema; only optional elements may be added.

 Example 1

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" minOccurs="0" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

182 pureXML Guide

</xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Example 2

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Example 3

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" substitutionGroup="a"/>

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="a"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" type="xs:string"/>

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="a"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Chapter 8. XML schema repository 183

Facet conflict

The facet value for a simple type in the new XML schema must be

compatible with the range of values for the simple type defined in the

original XML schema.

 Example 1

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo" >

 <xs:simpleType>

 <xs:restriction base=”xs:decimal” />

 </xs:simpleType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo">

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:totalDigits value="7"/>

 </xs:restriction> </xs:simpleType>

 </xs:element>

</xs:schema>

Example 2

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo">

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:totalDigits value="7"/>

 <xs:fractionDigits value="3"/>

 <xs:maxInclusive value="300.00"/>

 <xs:minInclusive value="1.0"/> </xs:restriction>

 </xs:simpleType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo">

 <xs:simpleType>

 <xs:restriction base="xs:decimal">

 <xs:totalDigits value="5"/>

 <xs:fractionDigits value="2"/>

 <xs:pattern value="(0|1|2|3|4|5|6|7|8|9|\.)*"/>

 <xs:maxInclusive value="100.00"/>

 <xs:minInclusive value="10.00"/> </xs:restriction>

 </xs:simpleType>

 </xs:element>

</xs:schema>

Incompatible type

The type of an element or attribute in the new XML schema is not

184 pureXML Guide

compatible if already inserted XML documents would fail validation

against the new schema, or if the schema includes a simple type

annotation that differs from that in the original XML schema.

 Example

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:integer"/>

</xs:schema>

Mixed into not mixed content

If the content model of a complex type is declared as mixed in the original

XML schema, it must not be declared as not mixed in the new XML

schema.

 Example

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:complexContent mixed="true">

 <xs:restriction base="xs:anyType">

 <xs:attribute name="a" type="xs:string"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:complexContent mixed="false">

 <xs:restriction base="xs:anyType">

 <xs:attribute name="a" type="xs:string"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

 </xs:element>

</xs:schema>

Nillable into not nillable

If the nillable attribute in an element declaration of the original XML

schema is turned on, it must also be turned on in the new XML schema.

 Example

 Original XML schema:

Chapter 8. XML schema repository 185

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" nillable="true" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" nillable="false" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Removed element

Global elements declared in the original XML schema must also be present

in the new XML schema, and must not be made abstract.

 Example 1

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" type="xs:string"/>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type=”xs:string”/>

</xs:schema>

Example 2

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" type="xs:string"/>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b" abstract="true" type="xs:string"/>

</xs:schema>

186 pureXML Guide

Removed type

If the original XML schema contains a global type that is derived from

another type, the global type must also be present in the new XML

schema.

 Example

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root" type="t1"/>

 <xs:complexType name="t1">

 <xs:complexContent>

 <xs:extension base="xs:anyType">

 <xs:attribute name="a" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="t2">

 <xs:complexContent>

 <xs:extension base="t1">

 <xs:attribute name="b" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType></xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root" type="t1"/>

 <xs:complexType name="t1">

 <xs:complexContent>

 <xs:extension base="xs:anyType">

 <xs:attribute name="a" use="required"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

Simple to complex

A complex type that contains simple content in the original XML schema

cannot be redefined to contain complex content in the updated XML

schema.

 Example

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="a" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent> </xs:complexType>

 </xs:element>

</xs:schema>

New XML schema:

Chapter 8. XML schema repository 187

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="root">

 <xs:complexType>

 <xs:complexContent base="xs:anyType">

 <xs:extension base="xs:anyType">

 <xs:attribute name="a" type="xs:string"/>

 </xs:extension>

 </xs:complexContent> </xs:complexType>

 </xs:element>

</xs:schema>

Simple content

Simple types defined in the original XML schema and in the new XML

schema must share the same base types.

 Example

 Original XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo" >

 <xs:simpleType>

 <xs:restriction base=”xs:decimal” />

 </xs:simpleType>

 </xs:element>

</xs:schema>

New XML schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element name="foo" >

 <xs:simpleType>

 <xs:restriction base=”xs:string” />

 </xs:simpleType>

 </xs:element>

</xs:schema>

Scenario: Evolving an XML schema

The following scenario demonstrates the process of evolving an XML schema

registered in the XML schema repository (XSR).

Jane, the manager of a small store, maintains a database in which all of the store

products are listed in a number of XML documents. These XML product lists

conform to the following schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="prodType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="sku" type="xsd:string" />

 <xsd:element name="price" type="xsd:integer" />

 </xsd:sequence>

 <xsd:attribute name="color" type="xsd:string" />

 <xsd:attribute name="weight" type="xsd:integer" />

</xsd:complexType>

<xsd:element name="products">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="product" type="prodType" maxOccurs="unbounded" />

188 pureXML Guide

</xsd:sequence>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

The XML schema was initially registered in the XSR using the commands:

REGISTER XMLSCHEMA ’http://product’

FROM ’file://c:/schemas/prod.xsd’

AS STORE.PROD

COMPLETE XMLSCHEMA STORE.PROD

After the XML schema was registered, the XML-formatted product lists were

validated against it and inserted into the store database.

Jane decides that it would be better if the lists contained a description along with

the name, stock keeping unit (SKU) and price of each product. Rather than create a

new XML schema and have to re-validate all of the existing XML documents

against it, Jane would prefer to update the original XML schema to accommodate

the added product descriptions. A new ″description″ element needs to be added

into the original XML schema:

<xsd:complexType name="prodType">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string" />

 <xsd:element name="sku" type="xsd:string" />

 <xsd:element name="price" type="xsd:integer" />

 <xsd:element name="description" type="xsd:string" minOccurs="0" />

 </xsd:sequence>

 <xsd:attribute name="color" type="xsd:string" />

 <xsd:attribute name="weight" type="xsd:integer" />

</xsd:complexType>

In the XML schema segment to insert, the ″minOccurs″ attribute is set to ″0″. This

is important, for otherwise ″description″ would become a mandatory element as

part of the content model, and all of the existing XML documents that were

validated against the original schema and inserted into the database tables would

no longer be in a valid state. To evolve an XML schema, the original and the new

version of that schema must be compatible. For details, see Compatibility

requirements for evolving an XML schema.

Before the update can proceed, the new XML schema needs to be registered in the

XSR:

REGISTER XMLSCHEMA ’http://newproduct’

FROM ’file://c:/schemas/newprod.xsd’

AS STORE.NEWPROD

COMPLETE XMLSCHEMA STORE.NEWPROD

Jane now performs the update using the XSR_UPDATE stored procedure:

 CALL SYSPROC.XSR_UPDATE(

 ’STORE’,

 ’PROD’,

 ’STORE’,

 ’NEWPROD’,

 1)

The original XML schema is evolved. All of the external dependencies managed in

the XSR for XML instance documents that were previously validated against the

XML schema STORE.PROD are updated based on the contents of the XML schema

Chapter 8. XML schema repository 189

STORE.NEWPROD. Because the dropnewschema parameter is set by passing a

non-zero value, the new schema STORE.NEWPROD is dropped after the original

schema is updated.

Any existing XML documents that have already been validated against the original

XML schema are not validated again as a result of the update procedure. Instead, a

check is performed during the update to confirm that the original and new XML

schemas are compatible, thereby ensuring that any documents previously validated

against the original XML schema will also be valid against the new one. In the

above example, setting the ″minOccurs″ attribute to ″0″ in the new ″description″

element is required for the two XML schemas to be compatible. Any XML

documents that are inserted after the schema evolution will be validated against

the newly updated version of STORE.PROD, and these documents can now

contain ″description″ elements for each store product.

Examples of extracting XML schema information

Listing XML schemas registered with the XSR

The following examples show how XML schemas that have been fully registered

with the XML schema repository can be queried for through SQL statements.

Registration must have been completed before an XML schema is fully registered.

Example 1: List all registered XML schemas

This example returns the SQL schema and the SQL identifier of all XML schemas

registered with the XSR.

SELECT OBJECTNAME, OBJECTSCHEMA

 FROM SYSCAT.XSROBJECTS

 WHERE OBJECTTYPE=’S’ AND STATUS=’C’

Example 2: Return the target namespace and the schema location

This example returns the uniform resource identifiers (URIs) of the target

namespaces and schema locations for all registered XML schemas (targetNamespace

and schemaLocation).

SELECT TARGETNAMESPACE, SCHEMALOCATION

 FROM SYSCAT.XSROBJECTS

 WHERE OBJECTTYPE=’S’ AND STATUS=’C’

Example 3: Return the object information document

This example returns the object information document for all registered schemas

(schemaInfo). This XML document is generated during schema registration and

describes each XML schema document that is part of an XML schema registered

with the XSR.

SELECT OBJECTINFO

 FROM SYSCAT.XSROBJECTS

 WHERE OBJECTTYPE=’S’ AND STATUS=’C’

Retrieving all components of an XML schema registered with

the XSR

The following example shows how all the component XML schema documents that

make up a registered XML schema can be retrieved from the XML schema

repository.

190 pureXML Guide

Example 1: Return the component XML schema documents of a registered XML

schema, along with the target namespace and schema location (targetNamespace and

schemaLocation):

SELECT COMPONENT, TARGETNAMESPACE, SCHEMALOCATION

 FROM SYSCAT.XSROBJECTCOMPONENTS

 WHERE OBJECTSCHEMA = ? AND OBJECTNAME = ?

Retrieving the XML schema of an XML document

The following example shows how the XML schema associated with an XML

document can be retrieved from the XML schema repository.

Example 1: Retrieve the object ID of the XML schema of an XML document:

SELECT DOC, XMLXSROBJECTID(DOC)

 FROM T

Example 2: Retrieve the object ID and the two-part SQL identifier of the XML

schema of an XML document:

SELECT XMLXSROBJECTID(DOC),

 CAT.OBJECTSCHEMA, CAT.OBJECTNAME

 FROM T, SYSCAT.XSROBJECTS AS CAT

 WHERE XMLXSROBJECTID(DOC) = CAT.OBJECTID

Stored procedures

XSR_REGISTER procedure

�� XSR_REGISTER (rschema , name , schemalocation , content , �

� docproperty) ��

The schema is SYSPROC.

The XSR_REGISTER procedure is the first stored procedure to be called as part of

the XML schema registration process, which registers XML schemas with the XML

schema repository (XSR).

Authorization

The user ID of the caller of the procedure must have at least one of the following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the XML schema. The SQL schema is one part of the SQL identifier

used to identify this XML schema in the XSR. (The other part of the SQL

identifier is supplied by the name argument.) This argument can have a NULL

value, which indicates that the default SQL schema, as defined in the

CURRENT SCHEMA special register, is used. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

Relational schemas that begin with the string ’SYS’ must not be used for this

value. XSR objects will not experience name collisions with database objects

Chapter 8. XML schema repository 191

that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the XML schema. The complete SQL identifier for the XML schema is

rschema.name and should be unique among all objects in the XSR. This

argument accepts a NULL value. When a NULL value is provided for this

argument, a unique value is generated and stored within the XSR. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

schemalocation

An input argument of type VARCHAR (1000), which can have a NULL value,

that indicates the schema location of the primary XML schema document. This

argument is the external name of the XML schema, that is, the primary

document can be identified in the XML instance documents with the

xsi:schemaLocation attribute.

content

An input parameter of type BLOB (30M) that contains the content of the

primary XML schema document. This argument cannot have a NULL value; an

XML schema document must be supplied.

docproperty

An input parameter of type BLOB (5M) that indicates the properties for the

primary XML schema document. This parameter can have a NULL value;

otherwise, the value is an XML document.

Example: The following example shows how to call the XSR_REGISTER procedure

from the command line:

 CALL SYSPROC.XSR_REGISTER(

 ’user1’,

 ’POschema’,

 ’http://myPOschema/PO.xsd’,

 :content_host_var,

 :docproperty_host_var)

Example: The following example shows how to call the XSR_REGISTER procedure

from a Java application program:

 stmt = con.prepareCall("CALL SYSPROC.XSR_REGISTER (?, ?, ?, ?, ?)");

 String xsrObjectName = "myschema1";

 String xmlSchemaLocation = "po.xsd";

 stmt.setNull(1, java.sql.Types.VARCHAR);

 stmt.setString(2, xsrObjectName);

 stmt.setString(3, xmlSchemaLocation);

 stmt.setBinaryStream(4, buffer, (int)length);

 stmt.setNull(5, java.sql.Types.BLOB);

 stmt.registerOutParameter(1, java.sql.Types.VARCHAR);

 stmt.registerOutParameter(2, java.sql.Types.VARCHAR);

 stmt.execute();

XSR_ADDSCHEMADOC procedure

�� XSR_ADDSCHEMADOC (rschema , name , schemalocation , content , �

� docproperty) ��

The schema is SYSPROC.

192 pureXML Guide

Each XML schema in the XML schema repository (XSR) can consist of one or more

XML schema documents. Where an XML schema consists of multiple documents,

the XSR_ADDSCHEMADOC stored procedure is used to add every XML schema

other than the primary XML schema document.

Authorization

The user ID of the caller of the procedure must be the owner of the XSR object as

recorded in the catalog view SYSCAT.XSROBJECTS.

rschema

An input argument of type VARCHAR (128) that specifies the SQL schema for

the XML schema. The SQL schema is one part of the SQL identifier used to

identify this XML schema in the XSR, which is to be moved to the complete

state. (The other part of the SQL identifier is supplied by the name argument.)

This argument can have a NULL value, which indicates that the default SQL

schema, as defined in the CURRENT SCHEMA special register, is used. Rules

for valid characters and delimiters that apply to any SQL identifier also apply

to this argument. XSR objects will not experience name collisions with database

objects that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input argument of type VARCHAR (128) that specifies the name of the

XML schema. The complete SQL identifier for the XML schema is rschema.name.

The XML schema name must already exist as a result of calling the

XSR_REGISTER stored procedure, and XML schema registration cannot yet be

completed. This argument cannot have a NULL value. Rules for valid

characters and delimiters that apply to any SQL identifier also apply to this

argument.

schemalocation

An input argument of type VARCHAR (1000), which can have a NULL value,

that indicates the schema location of the primary XML schema document to

which the XML schema document is being added. This argument is the

external name of the XML schema, that is, the primary document can be

identified in the XML instance documents with the xsi:schemaLocation

attribute.

content

An input parameter of type BLOB (30M) that contains the content of the XML

schema document being added. This argument cannot have a NULL value; an

XML schema document must be supplied.

docproperty

An input parameter of type BLOB (5M) that indicates the properties for the

XML schema document being added. This parameter can have a NULL value;

otherwise, the value is an XML document.

Example:

 CALL SYSPROC.XSR_ADDSCHEMADOC(

 ’user1’,

 ’POschema’,

 ’http://myPOschema/address.xsd’,

 :content_host_var,

 0)

Chapter 8. XML schema repository 193

XSR_COMPLETE procedure

�� XSR_COMPLETE (rschema , name , schemaproperties , �

� isusedfordecomposition) ��

The schema is SYSPROC.

The XSR_COMPLETE procedure is the final stored procedure to be called as part

of the XML schema registration process, which registers XML schemas with the

XML schema repository (XSR). An XML schema is not available for validation until

the schema registration completes through a call to this stored procedure.

Authorization:

The user ID of the caller of the procedure must be the owner of the XSR object as

recorded in the catalog view SYSCAT.XSROBJECTS.

rschema

An input argument of type VARCHAR (128) that specifies the SQL schema for

the XML schema. The SQL schema is one part of the SQL identifier used to

identify this XML schema in the XSR, which is to be moved to the complete

state. (The other part of the SQL identifier is supplied by the name argument.)

This argument can have a NULL value, which indicates that the default SQL

schema, as defined in the CURRENT SCHEMA special register, is used. Rules

for valid characters and delimiters that apply to any SQL identifier also apply

to this argument. XSR objects will not experience name collisions with database

objects that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input argument of type VARCHAR (128) that specifies the name of the

XML schema. The complete SQL identifier for the XML schema, for which a

completion check is to be performed, is rschema.name. The XML schema name

must already exist as a result of calling the XSR_REGISTER stored procedure,

and XML schema registration cannot yet be completed. This argument cannot

have a NULL value. Rules for valid characters and delimiters that apply to any

SQL identifier also apply to this argument.

schemaproperties

An input argument of type BLOB (5M) that specifies properties, if any,

associated with the XML schema. The value for this argument is either NULL,

if there are no associated properties, or an XML document representing the

properties for the XML schema.

isusedfordecomposition

An input parameter of type integer that indicates if an XML schema is to be

used for decomposition. If an XML schema is to be used for decomposition,

this value should be set to 1; otherwise, it should be set to zero.

Example:

 CALL SYSPROC.XSR_COMPLETE(

 ’user1’,

 ’POschema’,

 :schemaproperty_host_var,

 0)

194 pureXML Guide

XSR_DTD procedure

�� XSR_DTD (rschema , name , systemid , publicid , content) ��

The schema is SYSPROC.

The XSR_DTD procedure registers a document type declaration (DTD) with the

XML schema repository (XSR).

Authorization

The user ID of the caller of the procedure must have at least one of the following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the DTD. The SQL schema is one part of the SQL identifier used to

identify this DTD in the XSR. (The other part of the SQL identifier is supplied

by the name argument.) This argument can have a NULL value, which

indicates that the default SQL schema, as defined in the CURRENT SCHEMA

special register, is used. Rules for valid characters and delimiters that apply to

any SQL identifier also apply to this argument. Relational schemas that begin

with the string ’SYS’ must not be used for this value. XSR objects will not

experience name collisions with database objects that exist outside of the XSR,

because XSR objects occur in a different namespace than objects outside of the

XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the DTD. The complete SQL identifier for the DTD is rschema.name

and should be unique among all objects in the XSR. This argument accepts a

NULL value. When a NULL value is provided for this argument, a unique

value is generated and stored within the XSR. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

systemid

An input parameter of type VARCHAR (1000) that specifies the system

identifier of the DTD. The system ID of the DTD should match the uniform

resource identifier of the DTD in the DOCTYPE declaration of the XML

instance document or in an ENTITY declaration (as prefixed by the SYSTEM

keyword, if used). This argument cannot have a NULL value. The system ID

can be specified together with a public ID.

publicid

An input parameter of type VARCHAR (1000) that specifies the public

identifier of the DTD. The public ID of a DTD should match the uniform

resource identifier of the DTD in the DOCTYPE declaration of the XML

instance document or in an ENTITY declaration (as prefixed by the PUBLIC

keyword, if used). This argument accepts a NULL value and should be used

only if also specified in the DOCTYPE declaration of the XML instance

document or in an ENTITY declaration.

Chapter 8. XML schema repository 195

content

An input parameter of type BLOB (30M) that contains the content of the DTD

document. This argument cannot have a NULL value.

Example: Register the DTD identified by the system ID http://www.test.com/
person.dtd and public ID http://www.test.com/person:

CALL SYSPROC.XSR_DTD (’MYDEPT’ ,

 ’PERSONDTD’ ,

 ’http://www.test.com/person.dtd’ ,

 ’http://www.test.com/person’,

 :content_host_variable

)

XSR_EXTENTITY procedure

�� XSR_EXTENTITY (rschema , name , systemid , publicid , �

� content) ��

The schema is SYSPROC.

The XSR_EXTENTITY procedure registers an external entity with the XML schema

repository (XSR).

Authorization

The user ID of the caller of the procedure must have at least one of the following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the external entity. The SQL schema is one part of the SQL

identifier used to identify this external entity in the XSR. (The other part of the

SQL identifier is supplied by the name argument.) This argument can have a

NULL value, which indicates that the default SQL schema, as defined in the

CURRENT SCHEMA special register, is used. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

Relational schemas that begin with the string ’SYS’ must not be used for this

value. XSR objects will not experience name collisions with database objects

that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the external entity. The complete SQL identifier for the external entity

is rschema.name and should be unique among all objects in the XSR. This

argument accepts a NULL value. When a NULL value is provided for this

argument, a unique value is generated and stored within the XSR. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

systemid

An input parameter of type VARCHAR (1000) that specifies the system

196 pureXML Guide

identifier of the external entity. The system ID of the external entity should

match the uniform resource identifier of the external entity in the ENTITY

declaration (as prefixed by the SYSTEM keyword, if used). This argument

cannot have a NULL value. The system ID can be specified together with a

public ID.

publicid

An input parameter of type VARCHAR (1000) that specifies the public

identifier of the external entity. The public ID of a external entity should match

the uniform resource identifier of the external entity in the ENTITY declaration

(as prefixed by the PUBLIC keyword, if used). This argument accepts a NULL

value and should be used only if also specified in the DOCTYPE declaration of

the XML instance document or in an ENTITY declaration.

content

An input parameter of type BLOB (30M) that contains the content of the

external entity document. This argument cannot have a NULL value.

Example: Register the external entities identified by the system identifiers

http://www.test.com/food/chocolate.txt and http://www.test.com/food/cookie.txt:

CALL SYSPROC.XSR_EXTENTITY (’FOOD’ ,

 ’CHOCLATE’ ,

 ’http://www.test.com/food/chocolate.txt’ ,

 NULL ,

 :content_of_chocolate.txt_as_a_host_variable

)

CALL SYSPROC.XSR_EXTENTITY (’FOOD’ ,

 ’COOKIE’ ,

 ’http://www.test.com/food/cookie.txt’ ,

 NULL ,

 :content_of_cookie.txt_as_a_host_variable

)

XSR_UPDATE procedure

�� XSR_UPDATE (rschema1 , name1 , rschema2 , name2 , �

� dropnewschema) ��

The schema is SYSPROC.

The XSR_UPDATE stored procedure is used to evolve an existing XML schema in

the XML schema repository (XSR). This enables you to modify or extend an

existing XML schema so that it can be used to validate both already existing and

newly inserted XML documents.

The original XML schema and the new XML schema specified as arguments to

XSR_UPDATE must both be registered and completed in the XSR before the

procedure is called. These XML schemas must also be compatible. For details about

the compatibility requirements see Compatibility requirements for evolving an XML

schema.

Authorization

The privileges held by the authorization ID of the caller of the procedure must

include at least one of the following:

Chapter 8. XML schema repository 197

v SYSADM or DBADM authority.

v ALTERIN privilege on the SQL schema specified by the rschema1 argument and,

if the dropnewschema argument is not equal to zero, DROPIN privilege on the

SQL schema specified by the rschema2 argument.

rschema1

An input argument of type VARCHAR (128) that specifies the SQL schema for

the original XML schema to be updated. The SQL schema is one part of the

SQL identifier used to identify this XML schema in the XSR. (The other part of

the SQL identifier is supplied by the name1 argument.) This argument cannot

have a NULL value. Rules for valid characters and delimiters that apply to any

SQL identifier also apply to this argument.

name1

An input argument of type VARCHAR (128) that specifies the name of the

original XML schema to be updated. The complete SQL identifier for the XML

schema is rschema1.name1 . This XML schema must already be registered and

completed in the XSR. This argument cannot have a NULL value. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

rschema2

An input argument of type VARCHAR (128) that specifies the SQL schema for

the new XML schema that will be used to update the original XML schema.

The SQL schema is one part of the SQL identifier used to identify this XML

schema in the XSR. (The other part of the SQL identifier is supplied by the

name2 argument.) This argument cannot have a NULL value. Rules for valid

characters and delimiters that apply to any SQL identifier also apply to this

argument.

name2

An input argument of type VARCHAR (128) that specifies the name of the new

XML schema that will be used to update the original XML schema. The

complete SQL identifier for the XML schema is rschema2.name2. This XML

schema must already be registered and completed in the XSR. This argument

cannot have a NULL value. Rules for valid characters and delimiters that

apply to any SQL identifier also apply to this argument.

dropnewschema

An input parameter of type integer that indicates whether the new XML

schema should be dropped after it is used to update the original XML schema.

Setting this parameter to any non-zero value will cause the new XML schema

to be dropped. This argument cannot have a null value.

Example:

 CALL SYSPROC.XSR_UPDATE(

 ’STORE’,

 ’PROD’,

 ’STORE’,

 ’NEWPROD’,

 1)

The contents of the XML schema STORE.PROD is updated with the contents of

STORE.NEWPROD, and the XML schema STORE.NEWPROD is dropped.

198 pureXML Guide

Commands

REGISTER XMLSCHEMA

Registers an XML schema with the XML schema repository (XSR).

Authorization

One of the following:

v SYSADM or DBADM

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist

v CREATEIN privilege if the SQL schema exists

Required connection

Database

Command syntax

�� REGISTER XMLSCHEMA schema-URI FROM content-URI �

�
WITH

properties-URI

AS

relational-identifier
 �

�
xml-document-subclause

 �

�
COMPLETE

WITH schema-properties-URI

ENABLE DECOMPOSITION

 ��

xml-document-subclause:

��

�

ADD

document-URI

FROM

content-URI

WITH

properties-URI

��

Description

schema-URI

Specifies the URI, as referenced by XML instance documents, of the XML

schema being registered.

FROM content-URI

Specifies the URI where the XML schema document is located. Only a local

file specified by a file scheme URI is supported.

WITH properties-URI

Specifies the URI of a properties document for the XML schema. Only a

local file specified by a file scheme URI is supported.

AS relational-identifier

Specifies a name that can be used to refer to the XML schema being

registered. The relational name can be specified as a two-part SQL

Chapter 8. XML schema repository 199

identifier, consisting of the SQL schema and the XML schema name, having

the following format: SQLschema.name. The default relational schema, as

defined in the CURRENT SCHEMA special register, is used if no schema is

specified. If no name is provided, a unique value is generated.

COMPLETE

Indicates that there are no more XML schema documents to be added. If

specified, the schema is validated and marked as usable if no errors are

found.

WITH schema-properties-URI

Specifies the URI of a properties document for the XML schema. Only a

local file specified by a file scheme URI is supported.

ENABLE DECOMPOSITION

Specifies that this schema is to be used for decomposing XML documents.

ADD document-URI

Specifies the URI of an XML schema document to be added to this schema,

as the document would be referenced from another XML document.

FROM content-URI

Specifies the URI where the XML schema document is located. Only a local

file specified by a file scheme URI is supported.

WITH properties-URI

Specifies the URI of a properties document for the XML schema. Only a

local file specified by a file scheme URI is supported.

Example

REGISTER XMLSCHEMA ’http://myPOschema/PO.xsd’

FROM ’file:///c:/TEMP/PO.xsd’

WITH ’file:///c:/TEMP/schemaProp.xml’

AS user1.POschema

Usage notes

v Before an XML schema document can be referenced and be available for

validation and annotation, it must first be registered with the XSR. This

command performs the first step of the XML schema registration process, by

registering the primary XML schema document. The final step of the XML

schema registration process requires that the COMPLETE XMLSCHEMA

command run successfully for the XML schema. Alternatively, if there are no

other XML schema documents to be included, issue the REGISTER

XMLSCHEMA command with the COMPLETE keyword to complete registration

in one step.

v When registering an XML schema in the database, a larger application heap

(APPLHEAPSZ) may be required depending on the size of the XML schema. The

recommended size is 1024 but larger schemas will require additional memory.

ADD XMLSCHEMA DOCUMENT

Adds one or more XML schema documents to an existing but incomplete XML

schema before completing registration.

Authorization

The following authority is required:

200 pureXML Guide

v The user ID must be the owner of the XSR object as recorded in the catalog view

SYSCAT.XSROBJECTS.

Required connection

Database

Command syntax

�� ADD XMLSCHEMA DOCUMENT TO relational-identifier �

�

�

ADD

document-URI

FROM

content-URI

WITH

properties-URI

�

�
COMPLETE

WITH schema-properties-URI

ENABLE DECOMPOSITION

 ��

Description

TO relational-identifier

Specifies the relational name of a registered but incomplete XML schema to

which additional schema documents are added.

ADD document-URI

Specifies the uniform resource identifier (URI) of an XML schema

document to be added to this schema, as the document would be

referenced from another XML document.

FROM content-URI

Specifies the URI where the XML schema document is located. Only a file

scheme URI is supported.

WITH properties-URI

Specifies the URI of a properties document for the XML schema. Only a

file scheme URI is supported.

COMPLETE

Indicates that there are no more XML schema documents to be added. If

specified, the schema is validated and marked as usable if no errors are

found.

WITH schema-properties-URI

Specifies the URI of a properties document for the XML schema. Only a

file scheme URI is supported.

ENABLE DECOMPOSITION

Specifies that this schema is to be used for decomposing XML documents.

Example

ADD XMLSCHEMA DOCUMENT TO JOHNDOE.PRODSCHEMA

 ADD ’http://myPOschema/address.xsd’

 FROM ’file:///c:/TEMP/address.xsd’

Chapter 8. XML schema repository 201

COMPLETE XMLSCHEMA

This command completes the process of registering an XML schema in the XML

schema repository (XSR).

Authorization

v The user ID must be the owner of the XSR object as recorded in the catalog view

SYSCAT.XSROBJECTS.

Required connection

Database

Command syntax

�� COMPLETE XMLSCHEMA relational-identifier

WITH

schema-properties-URI
 �

�
ENABLE DECOMPOSITION

 ��

Description

relational-identifier

Specifies the relational name of an XML schema previously registered with

the REGISTER XMLSCHEMA command. The relational name can be

specified as a two-part SQL identifier, consisting of the SQL schema and

the XML schema name, having the following format: SQLschema.name. The

default SQL schema, as defined in the CURRENT SCHEMA special

register, is used if no schema is specified.

WITH schema-properties-URI

Specifies the uniform resource identifier (URI) of a properties document for

the XML schema. Only a local file, specified by a file scheme URI, is

supported. A schema property document can only be specified during the

completion stage of XML schema registration.

ENABLE DECOMPOSITION

Indicates that the schema can be used for decomposing XML instance

documents.

Example

COMPLETE XMLSCHEMA user1.POschema WITH ’file:///c:/TEMP/schemaProp.xml’

Usage notes

An XML schema cannot be referenced or used for validation or annotation until

the XML schema registration process has been completed. This command

completes the XML schema registration process for an XML schema that was

begun with the REGISTER XMLSCHEMA command.

REGISTER XSROBJECT

Registers an XML object in the database catalogs. Supported objects are DTDs and

external entities.

202 pureXML Guide

Authorization

One of the following:

v SYSADM or DBADM

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist

v CREATEIN privilege if the SQL schema exists

Required connection

Database

Command syntax

�� REGISTER XSROBJECT system-ID

PUBLIC

public-id
 FROM content-URI �

�
AS

relational-identifier
 DTD

EXTERNAL ENTITY
 ��

Command parameters

system-id

Specifies the system ID that is specified in the XML object declaration.

PUBLIC public-id

Specifies an optional PUBLIC ID in the XML object declaration.

FROM content-URI

Specifies the URI where the content of an XML schema document is

located. Only a local file specified by a file scheme URI is supported.

AS relational-identifier

Specifies a name that can be used to refer to the XML object being

registered. The relational name can be specified as a two-part SQL

identifier consisting of the relational schema and name separated by a

period, for example ″JOHNDOE.EMPLOYEEDTD″. If no relational schema

is specified, the default relational schema defined in the special register

CURRENT SCHEMA is used. If no name is specified, one is generated

automatically.

DTD Specifies that the object being registered is a Data Type Definition

document (DTD).

EXTERNAL ENTITY

Specifies that the object being registered is an external entity.

Examples

1. Given this sample XML document which references an external entity:

<?xml version="1.0" standalone="no" ?>

<!DOCTYPE copyright [

 <!ELEMENT copyright (#PCDATA)>

]>

<copyright>c</copyright>

Before this document can be successfully inserted into an XML column, the

external entity needs to be registered. The following command registers an

entity where the entity content is stored locally in C:\TEMP:

Chapter 8. XML schema repository 203

REGISTER XSROBJECT ’http://www.xmlwriter.net/copyright.xml’

 FROM ’c:\temp\copyright.xml’ EXTERNAL ENTITY

2. Given this XML document fragment which references a DTD:

<!--inform the XML processor

 that an external DTD is referenced-->

<?xml version="1.0" standalone="no" ?>

<!--define the location of the

 external DTD using a relative URL address-->

<!DOCTYPE document SYSTEM "http://www.xmlwriter.net/subjects.dtd">

<document>

 <title>Subjects available in Mechanical Engineering.</title>

 <subjectID>2.303</subjectID>

 <subjectname>Fluid Mechanics</subjectname>

 ...

Before this document can be successfully inserted into an XML column, the

DTD needs to be registered. The following command registers a DTD where

the DTD definition is stored locally in C:\TEMP and the relational identifier to

be associated with the DTD is ″TEST.SUBJECTS″:

REGISTER XSROBJECT ’http://www.xmlwriter.net/subjects.dtd’

 FROM ’file:///c:/temp/subjects.dtd’ AS TEST.SUBJECTS DTD

3. Given this sample XML document which references a public external entity:

<?xml version="1.0" standalone="no" ?>

<!DOCTYPE copyright [

 <!ELEMENT copyright (#PCDATA)>

]>

<copyright>c</copyright>

Before this document can be successfully inserted into an XML column, the

public external entity needs to be registered. The following command registers

an entity where the entity content is stored locally in C:\TEMP:

REGISTER XSROBJECT ’http://www.w3.org/xmlspec/copyright.xml’

 PUBLIC ’-//W3C//TEXT copyright//EN’ FROM ’file:///c:/temp/copyright.xml’

 EXTERNAL ENTITY

UPDATE XMLSCHEMA

Updates one XML schema with another in the XML schema repository (XSR).

Authorization

One of the following:

v sysadm or dbadm

v ALTERIN privilege on the XML schema to be updated.

v DROPIN privilege on the new XML schema, if the DROP NEW SCHEMA option

is specified.

Required connection

Database.

204 pureXML Guide

Command syntax

�� UPDATE XMLSCHEMA xmlschema1 WITH xmlschema2

DROP NEW SCHEMA
 ��

Command parameters

UPDATE XMLSCHEMA xmlschema1

Specifies the SQL identifier for the original XML schema to be updated.

WITH xmlschema2

Specifies the SQL identifier for the new XML schema that will be used to

update the original XML schema.

DROP NEW SCHEMA

Indicates that the new XML schema should be dropped after it is used to

update the original XML schema.

Example

UPDATE XMLSCHEMA JOHNDOE.OLDPROD

WITH JOHNDOE.NEWPROD

DROP NEW SCHEMA

The contents of the XML schema JOHNDOE.OLDPROD is updated with the

contents of JOHNDOE.NEWPROD, and the XML schema JOHNDOE.NEWPROD is

dropped.

Usage notes

v The original and new XML schema must be compatible. For details about the

compatibility requirements, see Compatibility requirements for evolving an XML

schema.

v Before an XML schema can be updated, both the original an the new schema

must be registered in the XML schema repository (XSR).

Chapter 8. XML schema repository 205

206 pureXML Guide

Chapter 9. XML data movement

XML data movement overview

Support for XML data movement is provided by the load, import and export

utilities.

Importing XML data

The import utility can be used to insert XML documents into a regular relational

table. Only well-formed XML documents can be imported.

Use the XML FROM option of the IMPORT command to specify the location of the

XML documents to import. The XMLVALIDATE option specifies how imported

documents should be validated. You can select to have the imported XML data

validated against a schema specified with the IMPORT command, against a

schema identified by a schema location hint inside of the source XML document,

or by the schema identified by the XML Data Specifier in the main data file. You

can also use the XMLPARSE option to specify how whitespace is handled when

the XML document is imported. The xmlchar and xmlgraphic file type modifiers

allow you to specify the encoding characteristics for the imported XML data.

Loading XML data

The load utility offers an efficient way to insert large volumes of XML data into a

table. This utility also allows certain options unavailable with the import utility,

such as the ability to load from a user-defined cursor.

Like the IMPORT command, with the LOAD command you can specify the

location of the XML data to load, validation options for the XML data, and how

whitespace is handled. As with IMPORT, you can use the xmlchar and xmlgraphic

file type modifiers to specify the encoding characteristics for the loaded XML data.

Exporting XML data

Data may be exported from tables that include one or more columns with an XML

data type. Exported XML data is stored in files separate from the main data file

containing the exported relational data. Information about each exported XML

document is represented in the main exported data file by an XML data specifier

(XDS). The XDS is a string that specifies the name of the system file in which the

XML document is stored, the exact location and length of the XML document

inside of this file, and the XML schema used to validate the XML document.

You can use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters of the

EXPORT command to specify details about how exported XML documents are

stored. The xmlinsepfiles, xmlnodeclaration, xmlchar, and xmlgraphic file type

modifiers allow you to specify further details about the storage location and the

encoding of the exported XML data.

Important considerations for XML data movement

There are a number of considerations to keep in mind when importing or

exporting XML data:

© Copyright IBM Corp. 2006, 2007 207

v Exported XML data is always stored separately from the main data file

containing exported relational data.

v By default, the export utility writes XML data in Unicode. You can use the

xmlchar file type modifier to have XML data written in the character code page.

The xmlgraphic file type modifier specifies that XML data is written in the

graphic code page, which is UTF-16 regardless of the application code page.

v Beginning with version 9.5, XML data can be stored in non-Unicode databases,

as the data will be converted from the database codepage to UTF-8 before

insertion. In order to avoid the possible introduction of substitution characters

during XML parsing, character data to be inserted should consist only of

codepoints that are part of the database codepage. Setting the enable_xmlchar

configuration parameter to no will block the insertion of character data types

during XML parsing, restricting insertion to data types that do not undergo

codepage conversion, such as BIT DATA, BLOB, or pureXML.

v For the import and load utilities, unless the XML document to import contains a

declaration tag that includes an encoding attribute, this document is assumed to

be in Unicode. You can use the xmlchar file type modifier to indicate that XML

documents to import are encoded in the character code page, while the

xmlgraphic file type modifier indicates that XML documents to import are

encoded in UTF-16.

v For the import and load utilities, rows which contain documents that are not

well-formed will be rejected.

v If the XMLVALIDATE option is specified for the import utility or the load utility,

documents which successfully validate against their matching schema will be

annotated with the schema information as they are inserted into a table. Rows

containing documents that fail to validate against their matching schema will be

rejected.

v You can use the export utility with an XQuery specification to export Query and

XPath Data Model (XDM) instances that are not well-formed XML documents.

However, exported XML documents that are not well-formed cannot be

imported directly into an XML column, since columns defined with the XML

data type can contain only complete XML documents.

v CPU_PARALLELISM during a load is reduced to 1 if statistics are being

collected.

v An XML load operation requires the use of shared sort memory to proceed.

Thus, you need to enable SHEAPTHRES_SHR or INTRA_PARALLEL, or turn

on the connection concentrator. Note that by default, SHEAPTHRES_SHR is set

to a value, so shared sort memory is available on the default configuration.

v Load operations into a table containing an XML column cannot have the

SOURCEUSEREXIT option, the SAVECOUNT parameter, or the anyorder file

type modifier specified.

v As with LOB files, XML files have to reside on the server side.

Query and XPath Data Model

XML data can be accessed in a database table either by use of the XQuery

functions available in SQL, or by invoking XQuery directly. An instance of the

Query and XPath Data Model (XDM) can be a well-formed XML document, a

sequence of nodes, a sequence of atomic values, or any combination of nodes and

atomic values.

Individual XDM instances can be written to one or more XML files by means of

the EXPORT command.

208 pureXML Guide

LOB and XML file behavior when importing and exporting

LOB and XML files share certain behaviors and compatibilities that can be used

when importing and exporting data.

Export When exporting data, if one or more LOB paths are specified with the

LOBS TO option, the export utility will cycle between the paths to write

each successful LOB value to the appropriate LOB file. Similarly, if one or

more XML paths are specified with the XML TO option, the export utility

will cycle between the paths to write each successive Query and XPath

Data Model (XDM) instance to the appropriate XML file. By default, LOB

values and XDM instances are written to the same path to which the

exported relational data is written. Unless the LOBSINSEPFILES or

XMLINSEPFILES file type modifier is set, both LOB files and XML files can

have multiple values concatenated to the same file.

 The LOBFILE option provides a means to specify the base name of the

LOB files generated by the export utility. Similarly, the XMLFILE option

provides a means to specify the base name of the XML files generated by

the export utility. The default LOB file base name is the name of the

exported data file, with the extension .lob. The default XML file base

name is the name of the exported data file, with the extension .xml. The

full name of the exported LOB file or XML file therefore consists of the

base name, followed by a number extension that is padded to three digits,

and the extension .lob or .xml.

Import

When importing data, a LOB Location Specifier (LLS) is compatible with

an XML target column, and an XML Data Specifier (XDS) is compatible

with a LOB target column. If the LOBS FROM option is not specified, the

LOB files to import are assumed to reside in the same path as the input

relational data file. Similarly, if the XML FROM option is not specified, the

XML files to import are assumed to reside in the same path as the input

relational data file.

Export examples

In the following example, all LOB values are written to the file

/mypath/t1export.del.001.lob, and all XDM instances are written to the file

/mypath/t1export.del.001.xml:

 EXPORT TO /mypath/t1export.del OF DEL MODIFIED BY LOBSINFILE

 SELECT * FROM USER.T1

In the following example, the first LOB value is written to the file

/lob1/t1export.del.001.lob, the second is written to the file /lob2/
t1export.del.002.lob, the third is appended to /lob1/t1export.del.001.lob, the

fourth is appended to /lob2/t1export.del.002.lob, and so on:

 EXPORT TO /mypath/t1export.del OF DEL LOBS TO /lob1,/lob2

 MODIFIED BY LOBSINFILE SELECT * FROM USER.T1

In the following example, the first XDM instance is written to the file

/xml1/xmlbase.001.xml, the second is written to the file /xml2/xmlbase.002.xml,

the third is written to /xml1/xmlbase.003.xml, the fourth is written to

/xml2/xmlbase.004.xml, and so on:

 EXPORT TO /mypath/t1export.del OF DEL XML TO /xml1,/xml2 XMLFILE xmlbase

 MODIFIED BY XMLINSEPFILES SELECT * FROM USER.T1

Chapter 9. XML data movement 209

Import examples

For a table ″mytable″ that contains a single XML column, and the following

IMPORT command:

 IMPORT FROM myfile.del of del LOBS FROM /lobpath XML FROM /xmlpath

 MODIFIED BY LOBSINFILE XMLCHAR replace into mytable

If ″myfile.del″ contains the following data:

 mylobfile.001.lob.123.456/

The import utility will try to import an XML document from the file

/lobpath/mylobfile.001.lob, starting at file offset 123, with its length being 456

bytes.

The file ″mylobfile.001.lob″ is assumed to be in the LOB path, as opposed to the

XML path, since the value is referred to by a LOB Location Specifier (LLS) instead

of an XML Data Specifier (XDS).

The document is assumed to be encoded in the character codepage, since the

XMLCHAR file type modifier is specified.

XML data specifier

XML data moved with the export, import and load utilities must be stored in files

separate from the main data file. The XML data is represented in the main data file

with an XML data specifier (XDS).

The XDS is a string represented as an XML tag named ″XDS″, which has attributes

that describe information about the actual XML data in the column; such

information includes the name of the file that contains the actual XML data, and

the offset and length of the XML data within that file. The attributes of the XDS are

described below.

FIL The name of the file that contains the XML data.

OFF The byte offset of the XML data in the file named by the FIL attribute,

where the offset begins from 0.

LEN The length in bytes of the XML data in the file named by the FIL attribute.

SCH The fully qualified SQL identifier of the XML schema that is used to

validate this XML document. The schema and name components of the

SQL identifier are stored as the ″OBJECTSCHEMA″ and ″OBJECTNAME″

values, respectively, of the row in the SYSCAT.XSROBJECTS catalog table

that corresponds to this XML schema.

 The XDS is interpreted as a character field in the data file and is subject to the

parsing behavior for character columns of the file format. For the delimited ASCII

file format (DEL), for example, if the character delimiter is present in the XDS, it

must be doubled. The special characters <, >, &, ’, ″ within the attribute values

must always be escaped. Case-sensitive object names must be placed between

" character entities.

Examples

Consider a FIL attribute with the value abc&"def".del. To include this XDS in a

delimited ASCII file, where the character delimiter is the ″ character, the ″

characters are doubled and special characters are escaped.

210 pureXML Guide

<XDS FIL=""abc&"def".del"" />

The following example shows an XDS as it would appear in a delimited ASCII

data file. XML data is stored in the file xmldocs.xml.001 beginning at byte offset

100 with a length of 300 bytes. Because this XDS is within an ASCII file delimited

with double quotation marks, the double quotation marks within the XDS tag itself

must be doubled.

"<XDS FIL = ""xmldocs.xml.001"" OFF=""100"" LEN=""300"" />"

The following example shows the fully qualified SQL identifier

ANTHONY.purchaseOrderTest. The case-sensitive portion of the identifier must be

placed between " character entities in the XDS:

"<XDS FIL=’/home/db2inst1/xmlload/a.xml’ OFF=’0’ LEN=’6758’

 SCH=’ANTHONY."purchaseOrderTest"’ />"

Exporting XML data

When exporting XML data, the resulting QDM (XQuery Data Model) instances are

written to a file or files separate from the main data file containing exported

relational data. This is true even if neither the XMLFILE nor the XML TO option is

specified. By default, exported QDM instances are all concatenated to the same

XML file. You can use the XMLINSEPFILES file type modifier to specify that each

QDM instance be written to a separate file.

The XML data, however, is represented in the main data file with an XML data

specifier (XDS). The XDS is a string represented as an XML tag named ″XDS″,

which has attributes that describe information about the actual XML data in the

column; such information includes the name of the file that contains the actual

XML data, and the offset and length of the XML data within that file.

The destination paths and base names of the exported XML files can be specified

with the XML TO and XMLFILE options. If the XML TO or XMLFILE option is

specified, the format of the exported XML file names, stored in the FIL attribute of

the XDS, is xmlfilespec.xxx.xml, where xmlfilespec is the value specified for the

XMLFILE option, and xxx is a sequence number for xml files produced by the

export utility. Otherwise, the format of the exported XML file names is:

exportfilename.xxx.xml, where exportfilename is the name of the exported output

file specified for the EXPORT command, and xxx is a sequence number for xml

files produced by the export utility.

By default, exported XML files are written to the path of the exported data file.

The default base name for exported XML files is the name of the exported data file,

with an appending 3-digit sequence number, and the .xml extension.

Examples

For the following examples, imagine a table USER.T1 containing four columns and

two rows:

 C1 INTEGER

 C2 XML

 C3 VARCHAR(10)

 C4 XML

Chapter 9. XML data movement 211

Table 37. USER.T1

C1 C2 C3 C4

2 <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″12:00:00″><to>You</
to><from> Me</
from><heading>note1</heading>

<body>Hello World!</body></
note>

’char1’ <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″13:00:00″><to>Him</
to><from> Her</
from><heading>note2</heading><

body>Hello World!</body></note>

4 NULL ’char2’ ?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″14:00:00″>to>Us</to><from>

Them</from><heading>note3</
heading> <body>Hello

World!</body></note>

Example 1

The following command exports the contents of USER.T1 in Delimited ASCII

(DEL) format to the file ″/mypath/t1export.del″. Because the XML TO and

XMLFILE options are not specified, the XML documents contained in columns C2

and C4 are written to the same path as the main exported file ″/mypath″. The base

name for these files is ″t1export.del.xml″. The XMLSAVESCHEMA option indicates

that XML schema information is saved during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XMLSAVESCHEMA SELECT * FROM USER.T1

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’t1export.del.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’t1export.del.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’t1export.del.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/mypath/t1export.del.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00"><to>Him

 </to><from>Her</from><heading>note2</heading><body>Hello World!

 </body></note><?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00">

 <to>Us</to><from>Them</from>heading>note3</heading><body>

 Hello World!</body></note>

Example 2

The following command exports the contents of USER.T1 in DEL format to the file

″t1export.del″. XML documents contained in columns C2 and C4 are written to the

path ″/home/user/xmlpath″. The XML files are named with the base name

″xmldocs″, with multiple exported XML documents written to the same XML file.

The XMLSAVESCHEMA option indicates that XML schema information is saved

during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs XMLSAVESCHEMA SELECT * FROM USER.T1

The exported DEL file ″/home/user/t1export.del″ contains:

212 pureXML Guide

2,"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’xmldocs.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’xmldocs.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00">

 <to>Him</to><from>Her</from><heading>note2</heading><body>

 Hello World!</body></note><?xml version="1.0" encoding="UTF-8" ?>

 <note time="14:00:00"><to>Us</to><from>Them</from><heading>

 note3</heading><body>Hello World!</body></note>

Example 3

The following command is similar to Example 2, except that each exported XML

document is written to a separate XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

 SELECT * FROM USER.T1

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’xmldocs.001.xml’ />","char1","XDS FIL=’xmldocs.002.xml’ />"

 4,,"char2","<XDS FIL=’xmldocs.004.xml’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note>

The exported XML file ″/home/user/xmlpath/xmldocs.002.xml″ contains:

 ?xml version="1.0" encoding="UTF-8" ?>note time="13:00:00">to>Him/to>

 from>Her/from>heading>note2/heading>body>Hello World!/body>

 /note>

The exported XML file ″/home/user/xmlpath/xmldocs.004.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00"><to>Us</to>

 <from>Them</from><heading>note3</heading><body>Hello World!</body>

 </note>

Example 4

The following command writes the result of an XQuery to an XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLNODECLARATION select

 xmlquery(’$m/note/from/text()’ passing by ref c4 as "m" returning sequence)

 from USER.T1

The exported DEL file ″/mypath/t1export.del″ contains:

 "<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’3’ />"

 "<XDS FIL=’xmldocs.001.xml’ OFF=’3’ LEN=’4’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 HerThem

Chapter 9. XML data movement 213

Note: The result of this particular XQuery does not produce well-formed XML

documents. Therefore, the file exported above could not be directly imported into

an XML column.

Importing XML data

The import utility can be used to import XML data into an XML table column

using either the table name or a nickname for a DB2 Database for Linux, UNIX,

and Windows source data object.

When importing data into an XML table column, you can use the XML FROM

option to specify the paths of the input XML data file or files. For example, for an

XML file ″/home/user/xmlpath/xmldocs.001.xml″ that had previously been

exported, the following command could be used to import the data back into the

table.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML

schemas as they are imported. In the following example, incoming XML

documents are validated against schema information that was saved when the

XML documents were exported:

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE

 USING XDS INSERT INTO USER.T1

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the imported

XML documents is preserved or stripped. In the following example, all imported

XML documents are validated against XML schema information that was saved

when the XML documents were exported, and these documents are parsed with

whitespace preserved.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE

 WHITESPACE XMLVALIDATE USING XDS INSERT INTO USER.T1

Loading XML data

The load utility can be used for the efficient movement of large volumes of XML

data into tables.

When loading data into an XML table column, you can use the XML FROM option

to specify the paths of the input XML data file or files. For example, to load data

from an XML file ″/home/user/xmlpath/xmlfile1.xml″ you could use the

following command:

 LOAD FROM data1.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

The delimited ASCII input file ″data1.del″ contains an XML data specifier (XDS)

that describes the location of the XML data to load. For example, the following

XDS describes an XML document at offset 123 bytes in file ″xmldata.ext″ that is 456

bytes in length:

<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ />

214 pureXML Guide

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML

schemas as they are loaded. In the following example, incoming XML documents

are validated against the schema identified by the XDS in the delimited ASCII

input file ″data2.del″:

 LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE

 USING XDS INSERT INTO USER.T2

In this case, the XDS contains an SCH attribute with the fully qualified SQL

identifier of the XML schema to use for validation, ″S1.SCHEMA_A″:

<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ SCH=’S1.SCHEMA_A’ />

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the loaded

XML documents is preserved or stripped. In the following example, all loaded

XML documents are validated against the schema with SQL identifier

″S2.SCHEMA_A″ and these documents are parsed with whitespace preserved:

 LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE

 WHITESPACE XMLVALIDATE USING SCHEMA S2.SCHEMA_A INSERT INTO USER.T1

Resolving indexing errors when loading XML data

Load operations that fail due to indexing errors can be resolved using the

db2diag.log logfile and the import utility together to identify and correct problem

values in the XML data.

If a load operation returns the error message SQL20305N (sqlcode -20305), this

indicates that one or more XML node values could not be indexed. The error

message will output the reason code for the error. Enter ? SQL20305N in the

command line processor to look up the explanation and user response for the

corresponding reason code.

For indexing problems during insert operations, a generated XQuery statement is

output to the db2diag.log logfile to help locate the failing XML node values within

the document. See ″Common XML indexing issues″ for details about how to use

the XQuery statement to locate the failing XML node values.

For indexing problems during load operations, however, the generated XQuery

statements are not output to the db2diag.log logfile. To generate these XQuery

statements the import utility must be run on the failing rows that were not loaded.

Because the rejected rows do not exist in the table, the XQuery statements cannot

be run on the failing documents. To solve this problem, a new table with the same

definition must be created without any indexes. The failing rows can then be

loaded into the new table, and the XQuery statements can then be run on the new

table to locate the failing XML node values within the documents.

Perform the following steps to resolve the indexing errors:

1. Determine which rows were rejected during the load operation using the record

numbers in the output information.

2. Create a .del file containing only the rejected rows.

3. Create a new table (for example, T2) with the same columns as the original

table (T1). Do not create any indexes on the new table.

4. Load the rejected rows into the new table T2.

Chapter 9. XML data movement 215

5. For each rejected row in the original table T1:

a. Import the rejected rows to T1 to get the SQL20305N message. The import

will stop on the first error that it encounters.

b. Look in the db2diag.log logfile and get the generated XQuery statement. To

find the failing node values in the input document, search for the string

’SQL20305N’ in the db2diag.log logfile and match the reason code number.

Following the reason code, you will find a set of instructions and then a

generated XQuery statement that you can use to locate the problem value in

the document that caused the error.

c. Modify the XQuery statement to use the new table T2.

d. Run the XQuery statement on T2 to locate the problem value in the

document.

e. Fix the problem value in the .xml file containing the document.

f. Return to Step a and import the rejected rows to T1 again. The row that

caused the import to stop should now be inserted successfully. If there is

another rejected row in the .del file, the import utility will stop on the next

error and output another SQL20305N message. Continue these steps until

the import runs successfully.

Example

In the following example, the index BirthdateIndex has been created on the date

data type. The REJECT INVALID VALUES option is specified, so the XML pattern

values for /Person/Confidential/Birthdate must all be valid for the date data type. If

any XML pattern value cannot be cast to this data type, an error is returned.

Using the XML documents below, five rows are supposed to be loaded but the first

and the fourth rows will be rejected because the Birthdate values cannot be

indexed. In the file person1.xml, the value March 16, 2002 is not in the correct date

format. In the file person4.xml, the value 20000-12-09 has an extra zero for the

year, so it is a valid XML date value but it is outside of the range that DB2 allows

for a year (0001 to 9999). Some of the sample output has been edited to make the

example more concise.

The five XML files to load are as follows:

person1.xml (Birthdate value is not valid)

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

person2.xml (Birthdate value is valid)

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

216 pureXML Guide

</Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>2002-03-16</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

person3.xml (Birthdate value is valid)

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>McCarthy</Last>

 <First>Laura</First>

 </Name>

 <Confidential>

 <Age unit="years">6</Age>

 <Birthdate>2001-03-12</Birthdate>

 <SS>444-55-6666</SS>

 </Confidential>

 <Address>5960 Daffodil Lane, San Jose, CA 95120</Address>

</Person>

person4.xml (Birthdate value is not valid)

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

 <Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person>

person5.xml (Birthdate value is valid)

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Smith</Last>

 <First>Chris</First>

 </Name>

 <Confidential>

 <Age unit="years">10</Age>

 <Birthdate>1997-04-23</Birthdate>

 <SS>666-77-8888</SS>

 </Confidential>

 <Address>5960 Dahlia Street, San Jose, CA 95120</Address>

</Person>

The input file person.del contains:

1, <XDS FIL=’person1.xml’/>

2, <XDS FIL=’person2.xml’/>

3, <XDS FIL=’person3.xml’/>

4, <XDS FIL=’person4.xml’/>

5, <XDS FIL=’person5.xml’/>

The DDL and LOAD statements are as follows:

Chapter 9. XML data movement 217

CREATE TABLE T1 (docID INT, XMLDoc XML);

CREATE INDEX BirthdateIndex ON T1(xmlDoc)

 GENERATE KEY USING XMLPATTERN ’/Person/Confidential/Birthdate’ AS SQL DATE

 REJECT INVALID VALUES;

LOAD FROM person.del OF DEL INSERT INTO T1

To resolve the indexing errors that would occur when you attempt to load the set

of XML files above, you would perform the following steps:

1. Determine which rows were rejected during the load operation using the record

numbers in the output information. In the following output, record number 1

and record number 4 were rejected.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on table

"LEECM.T1". Reason code = "5". For reason codes related to an XML schema the

XML schema identifier = "*N" and XML schema data type = "*N". SQLSTATE=23525

SQL3185W The previous error occurred while processing data from row "F0-1" of

the input file.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on table

"LEECM.T1". Reason code = "4". For reason codes related to an XML schema the

XML schema identifier = "*N" and XML schema data type = "*N". SQLSTATE=23525

SQL3185W The previous error occurred while processing data from row "F0-4" of

the input file.

SQL3227W Record token "F0-1" refers to user record number "1".

SQL3227W Record token "F0-4" refers to user record number "4".

SQL3107W There is at least one warning message in the message file.

Number of rows read = 5

Number of rows skipped = 0

Number of rows loaded = 3

Number of rows rejected = 2

Number of rows deleted = 0

Number of rows committed = 5

2. Create a new file reject.del with the rejected rows.

1, <XDS FIL=’person1.xml’/>

4, <XDS FIL=’person4.xml’/>

3. Create a new table T2 with the same columns as the original table T1. Do not

create any indexes on the new table.

CREATE TABLE T2 LIKE T1

4. Load the rejected rows into the new table T2.

LOAD FROM reject.del OF DEL INSERT INTO T2;

5. For rejected row 1 in the original table T1:

a. Import the rejected rows to T1 to get the -20305 message

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3306N An SQL error "-20305" occurred while inserting a row into the

 table.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on

table "LEECM.T1". Reason code = "5". For reason codes related to an XML

schema the XML schema identifier = "*N" and XML schema data type = "*N".

218 pureXML Guide

SQLSTATE=23525

SQL3110N The utility has completed processing. "1" rows were read from

the input file.

b. Look in the db2diag.log logfile and get the generated XQuery statement.

FUNCTION: DB2 UDB, Xml Storage and Index Manager, xmlsDumpXQuery, probe:608

DATA #1 : String, 36 bytes

SQL Code: SQL20305N ; Reason Code: 5

DATA #2 : String, 265 bytes

To locate the value in the document that caused the error, create a

table with one XML column and insert the failing document in the table.

Replace the table and column name in the query below with the created

table and column name and execute the following XQuery.

DATA #3 : String, 247 bytes

xquery for $i in db2-fn:xmlcolumn(

 "LEECM.T1.XMLDOC")[/*:Person/*:Confidential/*:Birthdate="March 16, 2002"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

c. Modify the XQuery statement to use the new table T2.

xquery for $i in db2-fn:xmlcolumn(

 "LEECM.T2.XMLDOC")[/*:Person/*:Confidential/*:Birthdate="March 16, 2002"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

d. Run the XQuery statement on table T2 to locate the problem value in the

document.

<Result><ProblemDocument><Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person></ProblemDocument><ProblemValue><Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential></ProblemValue></Result>

e. Fix the problem value in the file person1.xml containing the document.

March 16, 2002 is not in the correct date format so it is changed to

2002-03-12.

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>2002-03-12</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

Chapter 9. XML data movement 219

f. Go back to step a. to import the rejected rows to table T1 again.
6. (First repetition of Step 5)

a. Import the rejected rows to table T1. The first row is now imported

successfully because two rows were read from the import file. A new error

occurs on the second row.

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3306N An SQL error "-20305" occurred while inserting a row into the

 table.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on

table "LEECM.T1". Reason code = "4". For reason codes related to an XML

schema the XML schema identifier = "*N" and XML schema data type = "*N".

SQLSTATE=23525

SQL3110N The utility has completed processing. "2" rows were read from

the input file.

b. Look in the db2diag.log logfile and get the generated XQuery statement.

FUNCTION: DB2 UDB, Xml Storage and Index Manager, xmlsDumpXQuery, probe:608

DATA #1 : String, 36 bytes

SQL Code: SQL20305N ; Reason Code: 4

DATA #2 : String, 265 bytes

To locate the value in the document that caused the error, create a

table with one XML column and insert the failing document in the table.

Replace the table and column name in the query below with the created

table and column name and execute the following XQuery.

DATA #3 : String, 244 bytes

xquery for $i in db2-fn:xmlcolumn("LEECM.T1.XMLDOC")

 [/*:Person/*:Confidential/*:Birthdate="20000-12-09"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

c. Modify the XQuery statement to use table T2.

xquery for $i in db2-fn:xmlcolumn("LEECM.T2.XMLDOC")

 [/*:Person/*:Confidential/*:Birthdate="20000-12-09"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

d. Run the XQuery statement to locate the problem value in the document.

<Result><ProblemDocument><Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

 <Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person></ProblemDocument><ProblemValue><Confidential>

 <Age unit="years">7</Age>

 <Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential></ProblemValue></Result>

220 pureXML Guide

e. Fix the problem value in the file person4.xml containing the document. The

value 20000-12-09 has an extra zero for the year so it is outside of the range

that DB2 allows for a year (0001 to 9999).. The value is changed to

2000-12-09.

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

 <Birthdate>2000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person>

f. Go back to step a to import the rejected rows to T1 again.
7. (Second repetition of Step 5)

a. Import the rejected rows to T1.

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3110N The utility has completed processing. "2" rows were read from

the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "2".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "2" rows were processed from the input file. "2" rows were

successfully inserted into the table. "0" rows were rejected.

Number of rows read = 2

Number of rows skipped = 0

Number of rows inserted = 2

Number of rows updated = 0

Number of rows rejected = 0

Number of rows committed = 2

The problem is now resolved. All of the rows of person.del are successfully

inserted into table T1.

Chapter 9. XML data movement 221

222 pureXML Guide

Chapter 10. Application programming and routines support

Application programming language support for XML

You can write applications to store XML data in DB2 databases tables, retrieve data

from tables, or call stored procedures or user-defined functions with XML

parameters.

You can use any of the following languages to write your applications:

v C or C++ (embedded SQL or DB2 CLI)

v COBOL

v Java (JDBC or SQLJ)

v C# and Visual Basic (IBM Data Server Provider for .NET)

v PHP

An application program can retrieve an entire document or a fragment of a

document from an XML column. However, you can store only an entire document

in an XML column.

Stored procedures and user-defined functions can pass XML values in input or

output parameters. XML data is materialized when passed to stored procedures as

IN, OUT, or INOUT parameters. If you are using Java stored procedures, the heap

size (JAVA_HEAP_SZ configuration parameter) might need to be increased based

on the quantity and size of XML arguments, and the number of external stored

procedures that are being executed concurrently. To call a stored procedure or

user-defined function that has XML or XML AS CLOB parameters, execute a CALL

statement with compatible data types.

When an application provides an XML value to a DB2 database server, the

database server converts the data from the XML serialized string format to the

XML hierarchical format, in Unicode UTF-8 encoding.

When an application retrieves data from XML columns, the DB2 database server

converts the data from the XML hierarchical format to the XML serialized string

format. In addition, the database server might need to convert the output data

from UTF-8 to the application encoding.

When you retrieve XML data, you need to be aware of the effect of code page

conversion on data loss. Data loss can occur when characters in the source code

page cannot be represented in the target code page.

An application can retrieve an entire XML document or a sequence from an XML

column.

When you fetch an entire XML document, you retrieve the document into an

application variable.

When you retrieve an XML sequence, you have several choices:

v Execute an XQuery expression directly.

To execute an XQuery expression in an application, you prepend the string

’XQUERY’ to the XQuery expression, and dynamically execute the resulting

string.

© Copyright IBM Corp. 2006, 2007 223

When you execute an XQuery expression directly, the DB2 database server

returns the sequence that is the result of the XQuery statement as a result table.

Each row in the result table is an item in the sequence.

v Within an SQL SELECT or single-row SELECT INTO operation, call the

XMLQUERY or XMLTABLE built-in functions, passing an XQuery expression as

an argument.

This technique can be used with static or dynamic SQL and any application

programming language. XMLQUERY is a scalar function that returns the entire

sequence in an application variable. XMLTABLE is a table function that returns

each item in the sequence as a row of the result table. The columns in the result

table are values from the retrieved sequence item.

Parameter markers and host variables

Parameter markers or host variables cannot be specified anywhere in an XQuery

expression, including within the SQL specified in an XQuery expression. For

example, the XQuery function db2-fn:sqlquery allows you to specify an SQL

fullselect with an XQuery expression to extract the detailed description for a

product:

xquery declare default element namespace "http://posample.org";

db2-fn:sqlquery("select description from product where pid=’100-103-01’")

 /product/description/details/text()

You cannot specify a parameter marker or host variable in the XQuery expression,

even within the fullselect. The following expression is incorrect and unsupported

(it returns SQLSTATE 42610, sqlcode -418):

xquery declare default element namespace "http://posample.org";

db2-fn:sqlquery("select description from product where pid=?")

 /product/description/details/text()

In order to pass application values to XQuery expressions, use the SQL/XML

functions XMLQUERY and XMLTABLE. The PASSING clause of these functions

allows you to use application values during the evaluation of the XQuery

expression.

The following query shows how the previous incorrect query can be rewritten

using SQL/XML to achieve an equivalent result:

SELECT XMLQUERY (’declare default element namespace "http://posample.org";

$descdoc/product/description/details/text()’ passing description as "descdoc")

FROM product

WHERE pid=?

CLI

XML data handling in CLI applications - Overview

DB2 CLI applications can retrieve and store XML data using the SQL_XML data

type. This data type corresponds to the native XML data type of the DB2 database,

which is used to define columns that store well-formed XML documents. The

SQL_XML type can be bound to the following C types: SQL_C_BINARY,

SQL_C_CHAR, SQL_C_WCHAR, and SQL_C_DBCHAR. Using the default

SQL_C_BINARY type, however, instead of character types, is recommended to

avoid possible data loss or corruption resulting from code page conversion when

character types are used.

224 pureXML Guide

To store XML data in an XML column, bind a binary (SQL_C_BINARY) or

character (SQL_C_CHAR, SQL_C_WCHAR, or SQL_C_DBCHAR) buffer that

contains the XML value to the SQL_XML SQL type and execute the INSERT or

UPDATE SQL statements. To retrieve XML data from the database, bind the result

set to a binary (SQL_C_BINARY) or character (SQL_C_CHAR, SQL_C_WCHAR, or

SQL_C_DBCHAR) type. Character types should be used with caution because of

encoding issues.

When an XML value is retrieved into an application data buffer, the DB2 server

performs an implicit serialization on the XML value to convert it from its stored

hierarchical form to the serialized string form. For character typed buffers, the

XML value is implicitly serialized to the application character code page associated

with the character type.

By default, an XML declaration is included in the output serialized string. This

default behavior can be changed by setting the SQL_ATTR_XML_DECLARATION

statement or connection attribute, or by setting the XMLDeclaration CLI/ODBC

configuration keyword in the db2cli.ini file.

XQuery expressions and SQL/XML functions can be issued and executed in DB2

CLI applications. SQL/XML functions are issued and executed like any other SQL

statements. XQuery expressions must either be prepended with the case-insensitive

keyword ″XQUERY″, or the SQL_ATTR_XQUERY_STATEMENT statement attribute

must be set for the statement handle associated with the XQuery expression.

XML column inserts and updates in CLI applications

When you update or insert data into XML columns of a table, the input data must

be in the serialized string format.

For XML data, when you use SQLBindParameter() to bind parameter markers to

input data buffers, you can specify the data type of the input data buffer as

SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR.

When you bind a data buffer that contains XML data as SQL_C_BINARY, DB2 CLI

processes the XML data as internally encoded data. This is the preferred method

because it avoids the overhead and potential data loss of character conversion

when character types are used.

Important: If the XML data is encoded in an encoding scheme and CCSID other

than the application code page encoding scheme, you need to include internal

encoding in the data and bind the data as SQL_C_BINARY to avoid character

conversion.

When you bind a data buffer that contains XML data as SQL_C_CHAR,

SQL_C_DBCHAR or SQL_C_WCHAR, DB2 CLI processes the XML data as

externally encoded data. DB2 CLI determines the encoding of the data as follows:

v If the C type is SQL_C_WCHAR, DB2 CLI assumes that the data is encoded as

UCS-2.

v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, DB2 CLI assumes that the

data is encoded in the application code page encoding scheme.

If you want the database server to implicitly parse the data before storing it in an

XML column, the parameter marker data type in SQLBindParameter() should be

specified as SQL_XML.

Chapter 10. Application programming and routines support 225

Implicit parsing is recommended, because explicit parsing of a character type with

XMLPARSE can introduce encoding issues.

The following example shows how to update XML data in an XML column using

the recommended SQL_C_BINARY type.

char xmlBuffer[10240];

integer length;

// Assume a table named dept has been created with the following statement:

// CREATE TABLE dept (id CHAR(8), deptdoc XML)

// xmlBuffer contains an internally encoded XML document that is to replace

// the existing XML document

length = strlen (xmlBuffer);

SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = ’001’", SQL_NTS);

SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,

 xmlBuffer, 10240, &length);

SQLExecute (hStmt);

XML data retrieval in CLI applications

When you select data from XML columns in a table, the output data is in the

serialized string format.

For XML data, when you use SQLBindCol() to bind columns in a query result set to

application variables, you can specify the data type of the application variables as

SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR. When

retrieving a result set from an XML column, it is recommended that you bind your

application variable to the SQL_C_BINARY type. Binding to character types can

result in possible data loss resulting from code page conversion. Data loss can

occur when characters in the source code page cannot be represented in the target

code page. Binding your variable to the SQL_C_BINARY C type avoids these

issues.

XML data is returned to the application as internally encoded data. DB2 CLI

determines the encoding of the data as follows:

v If the C type is SQL_C_BINARY, DB2 CLI returns the data in the UTF-8

encoding scheme.

v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, DB2 CLI returns the data in

the application code page encoding scheme.

v If the C type is SQL_C_WCHAR, DB2 CLI returns the data in the UCS-2

encoding scheme.

The database server performs an implicit serialization of the data before returning

it to the application. You can explicitly serialize the XML data to a specific data

type by calling the XMLSERIALIZE function. Implicit serialization is

recommended, however, because explicitly serializing to character types with

XMLSERIALIZE can introduce encoding issues.

The following example shows how to retrieve XML data from an XML column into

a binary application variable.

char xmlBuffer[10240];

// xmlBuffer is used to hold the retrieved XML document

integer length;

// Assume a table named dept has been created with the following statement:

// CREATE TABLE dept (id CHAR(8), deptdoc XML)

length = sizeof (xmlBuffer);

226 pureXML Guide

SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id=’001’", SQL_NTS);

SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);

SQLFetch (hStmt);

SQLCloseCursor (hStmt);

// xmlBuffer now contains a valid XML document encoded in UTF-8

Changing of default XML type handling in CLI applications

DB2 CLI supports CLI/ODBC configuration keywords that provide compatibility

for applications that do not expect the default types returned when describing or

specifying SQL_C_DEFAULT for XML columns and parameter markers. Older CLI

and ODBC applications might not recognize or expect the default SQL_XML type

when describing XML columns or parameters. Some CLI or ODBC applications

might also expect a default type other than SQL_C_BINARY for XML columns and

parameter markers. To provide compatibility for these types of applications, DB2

CLI supports the MapXMLDescribe and MapXMLCDefault keywords.

MapXMLDescribe specifies which SQL data type is returned when XML columns

or parameter markers are described.

MapXMLCDefault specifies the C type that is used when SQL_C_DEFAULT is

specified for XML columns and parameter markers in DB2 CLI functions.

Embedded SQL

Declaring XML host variables in embedded SQL applications

To exchange XML data between the database server and an embedded SQL

application, you need to declare host variables in your application source code.

DB2 V9.1 introduces an XML data type that stores XML data in a structured set of

nodes in a tree format. Columns with this XML data type are described as an

SQL_TYP_XML column SQLTYPE, and applications can bind various

language-specific data types for input to and output from these columns or

parameters. XML columns can be accessed directly using SQL, the SQL/XML

extensions, or XQuery. The XML data type applies to more than just columns.

Functions can have XML value arguments and produce XML values as well.

Similarly, stored procedures can take XML values as both input and output

parameters. Finally, XQuery expressions produce XML values regardless of

whether or not they access XML columns.

XML data is character in nature and has an encoding that specifies the character

set used. The encoding of XML data can be determined externally, derived from

the base application type containing the serialized string representation of the XML

document. It can also be determined internally, which requires interpretation of the

data. For Unicode encoded documents, a byte order mark (BOM), consisting of a

Unicode character code at the beginning of a data stream is recommended. The

BOM is used as a signature that defines the byte order and Unicode encoding

form.

Existing character and binary types, which include CHAR, VARCHAR, CLOB, and

BLOB may be used in addition to XML host variables for fetching and inserting

data. However, they will not be subject to implicit XML parsing, as XML host

variables would. Instead, an explicit XMLPARSE function with default whitespace

stripping is injected and applied.

XML and XQuery restrictions on developing embedded SQL applications

Chapter 10. Application programming and routines support 227

To declare XML host variables in embedded SQL applications:

In the declaration section of the application, declare the XML host variables as LOB

data types:

v

SQL TYPE IS XML AS CLOB(n) <hostvar_name>

where <hostvar_name> is a CLOB host variable that contains XML data encoded

in the mixed codepage of the application.

v

SQL TYPE IS XML AS DBCLOB(n) <hostvar_name>

where <hostvar_name> is a DBCLOB host variable that contains XML data

encoded in the application graphic codepage.

v

SQL TYPE IS XML AS BLOB(n) <hostvar_name>

where <hostvar_name> is a BLOB host variable that contains XML data

internally encoded1.

v

SQL TYPE IS XML AS CLOB_FILE <hostvar_name>

where <hostvar_name> is a CLOB file that contains XML data encoded in the

application mixed codepage.

v

SQL TYPE IS XML AS DBCLOB_FILE <hostvar_name>

where <hostvar_name> is a DBCLOB file that contains XML data encoded in the

application graphic codepage.

v

SQL TYPE IS XML AS BLOB_FILE <hostvar_name>

where <hostvar_name> is a BLOB file that contains XML data internally

encoded1.

Note:

1. Refer to the algorithm for determining encoding with XML 1.0 specifications

(http://www.w3.org/TR/REC-xml/#sec-guessing-no-ext-info).

Example: Referencing XML host variables in embedded SQL

applications

The following sample applications demostrate how to reference XML host variables

in C and COBOL.

Example: Embedded SQL C application:

The following code example has been formatted for clarity:

EXEC SQL BEGIN DECLARE;

 SQL TYPE IS XML AS CLOB(10K) xmlBuf;

 SQL TYPE IS XML AS BLOB(10K) xmlblob;

 SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;

// as XML AS CLOB

// The XML value written to xmlBuf will be prefixed by an XML declaration

228 pureXML Guide

// similar to: <?xml version = "1.0" encoding = "ISO-8859-1" ?>

// Note: The encoding name will depend upon the application codepage

EXEC SQL SELECT xmlCol INTO :xmlBuf

 FROM myTable

 WHERE id = ’001’;

EXEC SQL UPDATE myTable

 SET xmlCol = :xmlBuf

 WHERE id = ’001’;

// as XML AS BLOB

// The XML value written to xmlblob will be prefixed by an XML declaration

// similar to: <?xml version = "1.0" encoding = "UTF-8"?>

EXEC SQL SELECT xmlCol INTO :xmlblob

 FROM myTable

 WHERE id = ’001’;

EXEC SQL UPDATE myTable

 SET xmlCol = :xmlblob

 WHERE id = ’001’;

// as CLOB

// The output will be encoded in the application character codepage,

// but will not contain an XML declaration

EXEC SQL SELECT XMLSERIALIZE (xmlCol AS CLOB(10K)) INTO :clobBuf

 FROM myTable

 WHERE id = ’001’;

EXEC SQL UPDATE myTable

 SET xmlCol = XMLPARSE (:clobBuf PRESERVE WHITESPACE)

 WHERE id = ’001’;

Example: Embedded SQL COBOL application:

The following code example has been formatted for clarity:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 xmlBuf USAGE IS SQL TYPE IS XML as CLOB(5K).

 01 clobBuf USAGE IS SQL TYPE IS CLOB(5K).

 01 xmlblob USAGE IS SQL TYPE IS BLOB(5K).

EXEC SQL END DECLARE SECTION END-EXEC.

* as XML

EXEC SQL SELECT xmlCol INTO :xmlBuf

 FROM myTable

 WHERE id = ’001’.

EXEC SQL UPDATE myTable

 SET xmlCol = :xmlBuf

 WHERE id = ’001’.

* as BLOB

EXEC SQL SELECT xmlCol INTO :xmlblob

 FROM myTable

 WHERE id = ’001’.

EXEC SQL UPDATE myTable

 SET xmlCol = :xmlblob

 WHERE id = ’001’.

* as CLOB

EXEC SQL SELECT XMLSERIALIZE(xmlCol AS CLOB(10K)) INTO :clobBuf

 FROM myTable

 WHERE id= ’001’.

EXEC SQL UPDATE myTable

 SET xmlCol = XMLPARSE(:clobBuf) PRESERVE WHITESPACE

 WHERE id = ’001’.

Executing XQuery expressions in embedded SQL applications

You can store XML data in your tables and use embedded SQL applications to

access the XML columns using XQuery expressions. To access XML data, use XML

Chapter 10. Application programming and routines support 229

host variables instead of casting the data to character or binary data types. If you

do not make use of XML host variables, the best alternative for accessing XML

data is with FOR BIT DATA or BLOB data types to avoid codepage conversion.

v Declare XML host variables within your embedded SQL applications.
v An XML type must be used to retrieve XML values in a static SQL SELECT INTO

statement.

v If a CHAR, VARCHAR, CLOB, or BLOB host variable is used for input where an

XML value is expected, the value will be subject to an XMLPARSE function

operation with default whitespace (STRIP) handling. Otherwise, an XML host

variable is required.

To execute XQuery expressions in embedded SQL application directly, prepend the

expression with the ″XQUERY″ keyword. For static SQL use the XMLQUERY

function. When the XMLQUERY function is called, the XQuery expression is not

prefixed by ″XQUERY″.

Example 1: Executing XQuery expressions directly in C and C++ dynamic SQL

by prepending the ″XQUERY″ keyword

In C and C++ applications, XQuery expressions can be executed in the following

way:

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 char stmt[16384];

 SQL TYPE IS XML AS BLOB(10K) xmlblob;

 EXEC SQL END DECLARE SECTION;

 sprintf(stmt, "XQUERY (10, xs:integer(1) to xs:integer(4))");

 EXEC SQL PREPARE s1 FROM :stmt;

 EXEC SQL DECLARE c1 CURSOR FOR s1;

 EXEC SQL OPEN c1;

 while(sqlca.sqlcode == SQL_RC_OK)

 {

 EXEC SQL FETCH c1 INTO :xmlblob;

 /* Display results */

 }

 EXEC SQL CLOSE c1;

 EXEC SQL COMMIT;

Example 2: Executing XQuery expressions in static SQL using the XMLQUERY

function

SQL statements containing the XMLQUERY function can be prepared statically, as

follows:

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS XML AS BLOB(10K) xmlblob;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL DECLARE C1 CURSOR FOR SELECT XMLQUERY(’(10, xs:integer(1) to

 xs:integer(4))’ RETURNING SEQUENCE BY REF) from SYSIBM.SYSDUMMY1;

 EXEC SQL OPEN c1;

 while(sqlca.sqlcode == SQL_RC_OK)

 {

 EXEC SQL FETCH c1 INTO :xmlblob;

230 pureXML Guide

/* Display results */

 }

 EXEC SQL CLOSE c1;

 EXEC SQL COMMIT;

Example 3: Executing XQuery expressions in COBOL embedded SQL

applications

In COBOL applications, XQuery expressions can be executed in the following way:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 stmt pic x(80).

 01 xmlBuff USAGE IS SQL TYPE IS XML AS BLOB (10K).

 EXEC SQL END DECLARE SECTION END-EXEC.

 MOVE "XQUERY (10, xs:integer(1) to xs:integer(4))" TO stmt.

 EXEC SQL PREPARE s1 FROM :stmt END-EXEC.

 EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC.

 EXEC SQL OPEN c1 USING :host-var END-EXEC.

 *Call the FETCH and UPDATE loop.

 Perform Fetch-Loop through End-Fetch-Loop

 until SQLCODE does not equal 0.

 EXEC SQL CLOSE c1 END-EXEC.

 EXEC SQL COMMIT END-EXEC.

 Fetch-Loop Section.

 EXEC SQL FETCH c1 INTO :xmlBuff END-EXEC.

 if SQLCODE not equal 0

 go to End-Fetch-Loop.

 * Display results

 End-Fetch-Loop. exit.

Recommendations for developing embedded SQL applications

with XML and XQuery

The following recommendations and restrictions apply to using XML and XQuery

within embedded SQL applications.

v Applications must access all XML data in the serialized string format.

– You must represent all data, including numeric and date time data, in its

serialized string format.
v Externalized XML data is limited to 2 GB.

v All cursors containing XML data are non-blocking (each fetch operation

produces a database server request).

v Whenever character host variables contain serialized XML data, the application

code page is assumed to be used as the encoding of the data and must match

any internal encoding that exists in the data.

v You must specify a LOB data type as the base type for an XML host variable.

v The following apply to static SQL:

– Character and binary host variables cannot be used to retrieve XML values

from a SELECT INTO operation.

– Where an XML data type is expected for input, the use of CHAR, VARCHAR,

CLOB, and BLOB host variables will be subject to an XMLPARSE operation with

default whitespace handling characteristics (’STRIP WHITESPACE’). Any other

non-XML host variable type will be rejected.

Chapter 10. Application programming and routines support 231

– There is no support for static XQuery expressions; attempts to precompile an

XQuery expression will fail with an error. You can only execute XQuery

expressions through the XMLQUERY function.
v An XQuery expression can be dynamically executed by pre-pending the

expression with the string ″XQUERY″.

Identifying XML values in an SQLDA

To indicate that a base type holds XML data, the sqlname field of the SQLVAR

must be updated as follows:

v sqlname.length must be 8

v The first two bytes of sqlname.data must be X’0000’

v The third and fourth bytes of sqlname.data should be X’0000’

v The fifth byte of sqlname.data must be X’01’ (referred to as the XML subtype

indicator only when the first two conditions are met)

v The remaining bytes should be X’000000’

If the XML subtype indicator is set in an SQLVAR whose SQLTYPE is non-LOB, an

SQL0804 error (rc=115) will be returned at runtime.

Note: SQL_TYP_XML can only be returned from the DESCRIBE statement. This

type cannot be used for any other requests. The application must modify the

SQLDA to contain a valid character or binary type, and set the sqlname field

appropriately to indicate that the data is XML.

Java

XML data in JDBC applications

In JDBC applications, you can store data in XML columns and retrieve data from

XML columns.

In database tables, the XML built-in data type is used to store XML data in a

column as a structured set of nodes in a tree format.

In applications, XML data is in the serialized string format.

In JDBC applications, you can:

v Store an entire XML document in an XML column using setXXX methods.

v Retrieve an entire XML document from an XML column using getXXX methods.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence into a serialized sequence in the

database, and then using getXXX methods to retrieve the data into an

application variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string ’XQUERY’, to retrieve the elements of the

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use getXXX methods to retrieve the

data into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use getXXX methods to retrieve the data from the result table into

application variables.

232 pureXML Guide

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML

columns. Invocations of metadata methods, such as

ResultSetMetaData.getColumnTypeName return the integer value

java.sql.Types.SQLXML for an XML column type.

XML column updates in JDBC applications

When you update or insert data into XML columns of a database table, the input

data in your JDBC applications must be in the serialized string format.

The following table lists the methods and corresponding input data types that you

can use to put data in XML columns.

 Table 38. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

PreparedStatement.setBlob Blob

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

PreparedStatement.setObject byte[], Blob, Clob, SQLXML, DB2Xml (deprecated), InputStream,

Reader, String

PreparedStatement.setString String

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

as internally encoded data. XML data that is sent to the data source as character

data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the data source as character data, but the data contains encoding information.

The data source handles incompatibilities between internal and external encoding

as follows:

v If the data source is DB2 Database for Linux, UNIX, and Windows, the database

source generates an error if the external and internal encoding are incompatible,

unless the external and internal encoding are Unicode. If the external and

internal encoding are Unicode, the database source ignores the internal

encoding.

v If the database source is DB2 for z/OS®, the database source ignores the internal

encoding.

Data in XML columns is stored in UTF-8 encoding. The database source handles

conversion of the data from its internal or external encoding to UTF-8.

Example: The following example demonstrates inserting data from an SQLXML

object into an XML column. The data is String data, so the database source treats

the data as externally encoded.

Chapter 10. Application programming and routines support 233

public void insertSQLXML()

 {

 Connection con = DriverManager.getConnection(url);

 SQLXML info = con.createSQLXML;

 // Create an SQLXML object

 PreparedStatement insertStmt = null;

 String infoData =

 "<customerinfo xmlns=""http://posample.org"" " +

 "Cid=""1000"" xmlns=""http://posample.org"">...</customerinfo>";

 cid.setString(cidData);

 // Populate the SQLXML object

 int cid = 1000;

 try {

 sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";

 insertStmt = con.prepareStatement(sqls);

 insertStmt.setInt(1, cid);

 insertStmt.setSQLXML(2, info);

 // Assign the SQLXML object value

 // to an input parameter

 if (insertStmt.executeUpdate() != 1) {

 System.out.println("insertSQLXML: No record inserted.");

 }

 }

 catch (IOException ioe) {

 ioe.printStackTrace();

 }

 catch (SQLException sqle) {

 System.out.println("insertSQLXML: SQL Exception: " +

 sqle.getMessage());

 System.out.println("insertSQLXML: SQL State: " +

 sqle.getSQLState());

 System.out.println("insertSQLXML: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates inserting data from a file into an

XML column. The data is inserted as binary data, so the database server honors the

internal encoding.

 public void insertBinStream()

 {

 PreparedStatement insertStmt = null;

 String sqls = null;

 int cid = 0;

 ResultSet rs=null;

 Statement stmt=null;

 try {

 sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";

 insertStmt = conn.prepareStatement(sqls);

 insertStmt.setInt(1, cid);

 File file = new File(fn);

 insertStmt.setBinaryStream(2,

 new FileInputStream(file), (int)file.length());

 if (insertStmt.executeUpdate() != 1) {

 System.out.println("insertBinStream: No record inserted.");

 }

 }

 catch (IOException ioe) {

 ioe.printStackTrace();

 }

 catch (SQLException sqle) {

 System.out.println("insertBinStream: SQL Exception: " +

 sqle.getMessage());

 System.out.println("insertBinStream: SQL State: " +

 sqle.getSQLState());

234 pureXML Guide

System.out.println("insertBinStream: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

XML data retrieval in JDBC applications

The In JDBC applications, you use ResultSet.getXXX or ResultSet.getObject

methods to retrieve data from XML columns.

When you retrieve data from XML columns of a DB2 table, the output data is in

the serialized string format. This is true whether you retrieve the entire contents of

an XML column or a sequence from the column.

You can use one of the following techniques to retrieve XML data:

v Use the ResultSet.getSQLXML method to retrieve the data. Then use a

SQLXML.getXXX method to retrieve the data into a compatible output data

type.

SQLXML.getXXX methods add XML declarations with encoding specifications to

the output data.

v Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the

data into a compatible data type.

v Use the ResultSet.getObject method to retrieve the data, and then cast it to the

DB2Xml type and assign it to a DB2Xml object. Then use a DB2Xml.getDB2XXX

or DB2Xml.getDB2XmlXXX method to retrieve the data into a compatible output

data type.

DB2Xml.getDB2XmlXXX methods add XML declarations with encoding

specifications to the output data. DB2Xml.getDB2XXX methods do not add XML

declarations with encoding specifications to the output data.

This technique uses the deprecated DB2Xml objects. Use of the previously

described technique is preferable.

The following table lists the ResultSet methods and corresponding output data

types for retrieving XML data.

 Table 39. ResultSet methods and data types for retrieving XML data

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getObject DB2Xml

ResultSet.getSQLXML SQLXML

ResultSet.getString String

The following table lists the methods that you can call to retrieve data from a

java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding

output data types and type of encoding in the XML declarations.

 Table 40. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

Chapter 10. Application programming and routines support 235

Table 40. SQLXML and DB2Xml methods, data types, and added encoding specifications (continued)

Method Output data type Type of XML internal encoding declaration added

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: The following example demonstrates retrieving data from an XML

column into an SQLXML object, and then using the SQLXML.getString method to

retrieve the data into a string.

public void fetchToSQLXML()

 {

 System.out.println(">> fetchToSQLXML: Get XML data as an SQLXML object " +

 "using getSQLXML");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 String colType = meta.getColumnType(1);

 System.out.println("fetchToSQLXML: Column type = " + colType);

 while (rs.next()) {

 // Retrieve the XML data with getSQLXML.

 // Then write it to a string with

 // explicit internal ISO-10646-UCS-2 encoding.

 java.sql.SQLXML xml = rs.getSQLXML(1);

 System.out.println (xml.getString());

 }

 rs.close();

 }

 catch (SQLException sqle) {

236 pureXML Guide

System.out.println("fetchToSQLXML: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToSQLXML: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToSQLXML: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates retrieving data from an XML

column into a String variable.

public void fetchToString()

 {

 System.out.println(">> fetchToString: Get XML data " +

 "using getString");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 String colType = meta.getColumnType(1);

 System.out.println("fetchToString: Column type = " + colType);

 while (rs.next()) {

 stringDoc = rs.getString(1);

 System.out.println("Document contents:");

 System.out.println(stringDoc);

 }

 catch (SQLException sqle) {

 System.out.println("fetchToString: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToString: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToString: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates retrieving data from an XML

column into a DB2Xml object, and then using the DB2Xml.getDB2XmlString

method to retrieve the data into a string with an added XML declaration with an

ISO-10646-UCS-2 encoding specification.

public void fetchToDB2Xml()

 {

 System.out.println(">> fetchToDB2Xml: Get XML data as a DB2XML object " +

 "using getObject");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

Chapter 10. Application programming and routines support 237

String colType = meta.getColumnType(1);

 System.out.println("fetchToDB2Xml: Column type = " + colType);

 while (rs.next()) {

 // Retrieve the XML data with getObject, and cast the object

 // as a DB2Xml object. Then write it to a string with

 // explicit internal ISO-10646-UCS-2 encoding.

 com.ibm.db2.jcc.DB2Xml xml =

 (com.ibm.db2.jcc.DB2Xml) rs.getObject(1);

 System.out.println (xml.getDB2XmlString());

 }

 rs.close();

 }

 catch (SQLException sqle) {

 System.out.println("fetchToDB2Xml: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToDB2Xml: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToDB2Xml: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Invocation of routines with XML parameters in Java applications

SQL or external stored procedures and external user-defined functions can include

XML parameters.

For SQL procedures, those parameters in the stored procedure definition have the

XML type. For external stored procedures and user-defined functions, XML

parameters in the routine definition have the XML AS CLOB type. When you call a

stored procedure or user-defined function that has XML parameters, you need to

use a compatible data type in the invoking statement.

To call a routine with XML input parameters from a JDBC program, use

parameters of the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type. To register

XML output parameters, register the parameters as the java.sql.Types.SQLXML or

com.ibm.db2.jcc.DB2Types.XML type. (The com.ibm.db2.jcc.DB2Xml and

com.ibm.db2.jcc.DB2Types.XML types are deprecated.)

Example: JDBC program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This

example requires JDBC 4.0.

java.sql.SQLXML in_xml = xmlvar;

java.sql.SQLXML out_xml = null;

java.sql.SQLXML inout_xml = xmlvar;

 // Declare an input, output, and

 // input/output XML parameter

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

stmt = con.prepareCall("CALL SP_xml(?,?,?)");

 // Create a CallableStatement object

cstmt.setObject (1, in_xml); // Set input parameter

cstmt.registerOutParameter (2, java.sql.Types.SQLXML);

 // Register out and input parameters

cstmt.registerOutParameter (3, java.sql.Types.SQLXML);

cstmt.executeUpdate(); // Call the stored procedure

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

printString(out_xml.getString());

 // Use the SQLXML.getString

238 pureXML Guide

// method getBytes to convert the

 // value to a string for printing

System.out.println("Input/output parameter value ");

printString(inout_xml.getString());

To call a routine with XML parameters from an SQLJ program, use parameters of

the com.ibm.db2.jcc.DB2Xml type.

Example: SQLJ program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This

example requires JDBC 4.0.

java.sql.SQLXML in_xml = xmlvar;

java.sql.SQLXML out_xml = null;

java.sql.SQLXML inout_xml = xmlvar;

 // Declare an input, output, and

 // input/output XML parameter

...

#sql [myConnCtx] {CALL SP_xml(:IN in_xml,

 :OUT out_xml,

 :INOUT inout_xml)};

 // Call the stored procedure

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

printString(out_xml.getString());

 // Use the SQLXML.getString method to

 // convert the value to a string for printing

System.out.println("Input/output parameter value ");

printString(inout_xml.getString());

XML data in SQLJ applications

In SQLJ applications, you can store data in XML columns and retrieve data from

XML columns.

In DB2 tables, the XML built-in data type is used to store XML data in a column as

a structured set of nodes in a tree format.

In applications, XML data is in the serialized string format.

In SQLJ applications, you can:

v Store an entire XML document in an XML column using INSERT or UPDATE

statements.

v Retrieve an entire XML document from an XML column using single-row

SELECT statements or iterators.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence in the database, and then using

single-row SELECT statements or iterators to retrieve the serialized XML string

data into an application variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string ’XQUERY’, to retrieve the elements of the

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use using single-row SELECT

statements or iterators to retrieve the data into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use using single-row SELECT statements or iterators to retrieve the data

from the result table into application variables.

Chapter 10. Application programming and routines support 239

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML

columns. Invocations of metadata methods, such as

ResultSetMetaData.getColumnTypeName return the integer value

java.sql.Types.SQLXML for an XML column type.

XML column updates in SQLJ applications

When you update or insert data into XML columns of a table in an SQLJ

application, the input data must be in the serialized string format.

The host expression data types that you can use to update XML columns are:

v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ Version 4.0 or later)

v com.ibm.db2.jcc.DB2Xml (deprecated)

v String

v byte

v Blob

v Clob

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

For stream types, you need to use an sqlj.runtime.typeStream host expression,

rather than a java.io.typeInputStream host expression so that you can pass the

length of the stream to the JDBC driver.

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

as internally encoded data. XML data that is sent to the data source as character

data is treated as externally encoded data. The external encoding is the default

encoding for the JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the data source as character data, but the data contains encoding information.

The data source handles incompatibilities between internal and external encoding

as follows:

v If the data source is DB2 Database for Linux, UNIX, and Windows, the data

source generates an error if the external and internal encoding are incompatible,

unless the external and internal encoding are Unicode. If the external and

internal encoding are Unicode, the data source ignores the internal encoding.

v If the data source is DB2 for z/OS, the data source ignores internal encoding.

Data in XML columns is stored in UTF-8 encoding.

Example: Suppose that you use the following statement to insert data from String

host expression xmlString into an XML column in a table. xmlString is a character

type, so its external encoding is used, whether or not it has an internal encoding

specification.

#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xmlString)};

240 pureXML Guide

Example: Suppose that you copy the data from xmlString into a byte array with

CP500 encoding. The data contains an XML declaration with an encoding

declaration for CP500. Then you insert the data from the byte[] host expression

into an XML column in a table.

byte[] xmlBytes = xmlString.getBytes("CP500");

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :xmlBytes)};

A byte string is considered to be internally encoded data. The data is converted

from its internal encoding scheme to UTF-8, if necessary, and stored in its

hierarchical format on the data source.

Example: Suppose that you copy the data from xmlString into a byte array with

US-ASCII encoding. Then you construct an sqlj.runtime.AsciiStream host

expression, and insert data from the sqlj.runtime.AsciiStream host expression into

an XML column in a table on a data source.

byte[] b = xmlString.getBytes("US-ASCII");

java.io.ByteArrayInputStream xmlAsciiInputStream =

 new java.io.ByteArrayInputStream(b);

sqlj.runtime.AsciiStream sqljXmlAsciiStream =

 new sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlAsciiStream)};

sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is

converted from its internal encoding to UTF-8 encoding and stored in its

hierarchical form on the data source.

Example: sqlj.runtime.CharacterStream host expression: Suppose that you

construct an sqlj.runtime.CharacterStream host expression, and insert data from the

sqlj.runtime.CharacterStream host expression into an XML column in a table.

java.io.StringReader xmlReader =

 new java.io.StringReader(xmlString);

sqlj.runtime.CharacterStream sqljXmlCharacterStream =

 new sqlj.runtime.CharacterStream(xmlReader, xmlString.length());

#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljXmlCharacterStream is a character type, so its external encoding is used,

whether or not it has an internal encoding specification.

Example: Suppose that you retrieve a document from an XML column into a

java.sql.SQLXML host expression, and insert the data into an XML column in a

table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

java.sql.SQLXML xmlObject = (java.sql.SQLXML)rs.getObject(2);

#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the

data into another XML column, no conversion occurs.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, and insert the data into an XML column

in a table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

com.ibm.db2.jcc.DB2Xml xmlObject = (com.ibm.db2.jcc.DB2Xml)rs.getObject(2);

#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

Chapter 10. Application programming and routines support 241

After you retrieve the data it is still in UTF-8 encoding, so when you insert the

data into another XML column, no conversion occurs.

XML data retrieval in SQLJ applications

When you retrieve data from XML columns of a database table in an SQLJ

application, the output data must be explicitly or implicitly serialized.

The host expression or iterator data types that you can use to retrieve data from

XML columns are:

v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ Version 4.0 or later)

v com.ibm.db2.jcc.DB2Xml (deprecated)

v String

v byte[]

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval,

the data is converted from UTF-8 to the external application encoding for the

character data types, or the internal encoding for the binary data types. No XML

declaration is added. If the host expression is an object of the java.sql.SQLXML or

com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve

the data from this object. The method that you call determines the encoding of the

output data and whether an XML declaration with an encoding specification is

added.

The following table lists the methods that you can call to retrieve data from a

java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding

output data types and type of encoding in the XML declarations.

 Table 41. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

242 pureXML Guide

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: Suppose that you retrieve data from an XML column into a String host

expression.

#sql iterator XmlStringIter (int, String);

#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};

#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the

external encoding, which is the default JVM encoding, and returned without any

XML declaration.

Example: Suppose that you retrieve data from an XML column into a byte[] host

expression.

#sql iterator XmlByteArrayIter (int, byte[]);

XmlByteArrayIter biter = null;

#sql [ctx] biter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so no data conversion from UTF-8 encoding

occurs, and the data is returned without any XML declaration.

Example: Suppose that you retrieve a document from an XML column into a

java.sql.SQLXML host expression, but you need the data in a binary stream.

#sql iterator SqlXmlIter (int, java.sql.SQLXML);

SqlXmlIter SQLXMLiter = null;

java.sql.SQLXML outSqlXml = null;

#sql [ctx] SqlXmlIter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :SqlXmlIter INTO :row, :outSqlXml};

java.io.InputStream XmlStream = outSqlXml.getBinaryStream();

The FETCH statement retrieves the data into the SQLXML object in UTF-8

encoding. The SQLXML.getBinaryStream stores the data in a binary stream.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, but you need the data in a byte string

with an XML declaration that includes an internal encoding specification for

UTF-8.

#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);

DB2XmlIter db2xmliter = null;

com.ibm.db2.jcc.DB2Xml outDB2Xml = null;

#sql [ctx] db2xmliter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};

byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8

encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML

declaration with a UTF-8 encoding specification and stores the data in a byte array.

Chapter 10. Application programming and routines support 243

PHP

Introduction to PHP application development for DB2

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language

primarily intended for the development of Web applications. The first version of

PHP was created by Rasmus Lerdorf and contributed under an open source license

in 1995. PHP was initially a very simple HTML templating engine, but over time

the developers of PHP added database access functionality, rewrote the interpreter,

introduced object-oriented support, and improved performance. Today, PHP has

become a popular language for Web application development because of its focus

on practical solutions and support for the most commonly required functionality in

Web applications.

For the easiest install and configuration experience on Linux, UNIX, or Windows

operating systems, you can download and install Zend Core for IBM for use in

production systems. Paid support for Zend Core for IBM is available from Zend.

On Windows, precompiled binary versions of PHP are available for download

from http://php.net/. Most Linux distributions include a precompiled version of

PHP. On UNIX operating systems that do not include a precompiled version of

PHP, you can compile your own version of PHP.

PHP is a modular language that enables you to customize the available

functionality through the use of extensions. These extensions can simplify tasks

such as reading, writing, and manipulating XML, creating SOAP clients and

servers, and encrypting communications between server and browser. The most

popular extensions for PHP, however, provide read and write access to databases

so that you can easily create a dynamic database-driven Web site.

We have built on our existing PHP support by developing a new extension called

pdo_ibm for anyone who wishes to use the PHP Application Objects (PDO)

interface. This new extension along with the existing ibm_db2 extension will now

be conveniently included as part of the IBM Data Server Client. The most up to

date versions of ibm_db2 and pdo_ibm are available from the PHP Extension

Community Library (PECL) http://pecl.php.net/. You can use either extension to

access data stored in a DB2 database through your PHP application. The

differences between the extensions are detailed as follows:

v ibm_db2 is an extension written, maintained, and supported by IBM for access

to DB2 databases. The ibm_db2 extension offers a procedural application

programming interface (API) that, in addition to the normal create, read, update,

and write database operations, also offers extensive access to the database

metadata. You can compile the ibm_db2 extension with either PHP 4 or PHP 5.

v pdo_ibm is a driver for the PHP Data Objects (PDO) extension that offers access

to DB2 databases through the standard object-oriented database interface

introduced in PHP 5.1.

A third extension, Unified ODBC, has historically offered access to DB2 database

systems. It is not recommended that you write new applications with this

extension because ibm_db2 and pdo_ibm both offer significant performance and

stability benefits over Unified ODBC. The ibm_db2 extension API makes porting

an application that was previously written for Unified ODBC almost as easy as

globally changing the odbc_ function name to db2_ throughout the source code of

your application.

244 pureXML Guide

http://www.zend.com/core/ibm/
http://www.zend.com/
http://www.php.net/
http://pecl.php.net/

Executing XQuery expressions in PHP (ibm_db2)

After connecting to a DB2 database, your PHP script is ready to issue XQuery

expressions. The db2_exec() and db2_execute() functions execute SQL statements,

through which you can pass your XQuery expressions. A typical use of db2_exec()

is to set the default schema for your application in a common include file or base

class.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To avoid the security threat of injection attacks, db2_exec() should only be used to

execute SQL statements composed of static strings. Interpolation of PHP variables

representing user input into the XQuery expression can expose your application to

injection attacks.

1. Call db2_exec() with the following arguments:

a. The connection resource;

b. A string containing the SQL statement, including the XQuery expression.

The XQuery expression needs to be wrapped in a XMLQUERY clause in the

SQL statement.

c. (Optional): an array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set .
2. Check the value returned by db2_exec():

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.

<?php

$xquery = ’$doc/customerinfo/phone’;

$stmt = db2_exec($conn, "select xmlquery(’$xquery’

PASSING INFO AS \"doc\") from customer");?>

Chapter 10. Application programming and routines support 245

Routines

XML and XQuery support in SQL procedures

SQL procedures support parameters and variables of data type XML. They can be

used in SQL statements in the same way as variables of any other data type. In

addition, variables of data type XML can be passed as parameters to XQuery

expressions in XMLEXISTS, XMLQUERY and XMLTABLE expressions.

The following example shows the declaration, use, and assignment of XML

parameters and variables in an SQL procedure:

 CREATE TABLE T1(C1 XML) %

 CREATE PROCEDURE proc1(IN parm1 XML, IN parm2 VARCHAR(32000))

 LANGUAGE SQL

 BEGIN

 DECLARE var1 XML;

 /* check if the value of XML parameter parm1

 contains an item with a value less than 200 */

 IF(XMLEXISTS(’$x/ITEM[value < 200]’ passing by ref parm1 as "x"))THEN

 /* if it does, insert the value of parm1 into table T1 */

 INSERT INTO T1 VALUES(parm1);

 END IF;

 /* parse parameter parm2’s value and assign it to a variable */

 SET var1 = XMLPARSE(document parm2 preserve whitespace);

 /* insert variable var1 into table T1

 INSERT INTO T1 VALUES(var1);

 END %

In the example above there is a table T1 with an XML column. The SQL procedure

accepts two parameters of data type XML named parm1 and parm2. Within the SQL

procedure an XML variable is declared named var1.

The logic of the SQL procedure checks if the value of XML parameter parm1

contains an item with a value less than 200. If it does, the XML value is directly

inserted into column C1 in table T1.

Then the value of parameter parm2 is parsed using the XMLPARSE function and

assigned to XML variable var1. The XML variable value is then also inserted into

column C1 in table T1.

The ability to implement control flow logic around XQuery operations makes it

easy to develop complex algorithms that query and access XML data stored in a

database.

Cursors for XQuery expressions in SQL procedures

SQL Procedures support the definition of cursors on XQuery expressions. A cursor

on an XQuery expression allows you to iterate over the elements of the XQuery

sequence returned by the expression.

Unlike cursors defined on SQL statements, which can be defined either statically or

dynamically, cursors on XQuery expressions can only be defined dynamically. To

declare a cursor dynamically, it is necessary to declare a variable of type CHAR or

246 pureXML Guide

VARCHAR to contain the XQuery expression that will define the cursor result set.

The XQuery expression must be prepared before the cursor can be opened and the

result set resolved.

An example of an SQL procedure that dynamically declares a cursor for an XQuery

expression, opens the cursor, and fetches XML data is shown here:

CREATE PROCEDURE xmlProc(IN inCust XML, OUT resXML XML)

SPECIFIC xmlProc

LANGUAGE SQL

BEGIN

 DECLARE SQLSTATE CHAR(5);

 DECLARE stmt_text VARCHAR (1024);

 DECLARE customer XML;

 DECLARE cityXml XML;

 DECLARE city VARCHAR (100);

 DECLARE stmt STATEMENT;

 DECLARE cur1 CURSOR FOR stmt;

 -- Get the city of the input customer

 SET cityXml = XMLQUERY(’$cust/customerinfo//city’ passing inCust as "cust");

 SET city = XMLCAST(cityXml as VARCHAR(100));

 -- Iterate over all the customers from the city using an XQUERY cursor

 -- and collect the customer name values into the output XML value

 SET stmt_text = ’XQUERY for $cust

 in db2-fn:xmlcolumn("CUSTOMER.INFO")

 /*:customerinfo/*:addr[*:city= "’ || city ||’"]

 return <Customer>{$cust/../@Cid}{$cust/../*:name}</Customer>’;

 -- Use the name of the city for the input customer data as a prefix

 SET resXML = cityXml;

 PREPARE stmt FROM stmt_text;

 OPEN cur1;

 FETCH cur1 INTO customer;

 WHILE (SQLSTATE = ’00000’) DO

 SET resXML = XMLCONCAT(resXML, customer);

 FETCH cur1 INTO customer;

 END WHILE;

 set resXML = XMLQUERY(’<result> {$res} </result>’

 passing resXML as "res");

END

This SQL procedure collects the IDs and names of customers defined in a table

name CUSTOMER that are located in the same city as the customer for which

XML data is provided as an input parameter.

The SQL procedure above can be called by executing the CALL statement as

follows:

 CALL xmlProc(xmlparse(document ’<customerinfo Cid="5002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C-3T6</pcode-zip>

 </addr>

 <phone type="work">905-566-7258</phone>

 </customerinfo>’ PRESERVE WHITESPACE),?,?)

Chapter 10. Application programming and routines support 247

If this SQL procedure is created and run against the SAMPLE database, it returns

XML data for two customers.

Since parameter markers are not supported for XML values, a workaround to this

limitation is to construct a dynamic SQL statement out of concatenated statement

fragments that include the value of one or more local variables.

For example:

DECLARE person_name VARCHAR(128);

SET person_name = "Joe";

SET stmt_text = ’ for $fname in db2-fn:sqlquery

 ("SELECT doc

 FROM T1

 WHERE DOCID=1")//fullname where $fname/first = ’’’ person_name || ’’’;

This example returns a result set in a variable assignment for an XQuery statement

that contains an SQL fullselect. The result set contains the full names of persons

with the first name Joe. Functionally, the SQL portion selects the XML documents

from column doc in table T1 that have an ID of 1. The XQuery portion then selects

the fullname values in the XML documents where the value first is Joe.

Effect of commits and rollbacks on XML parameter and variable

values in SQL procedures

Commits and rollbacks within SQL procedures affect the values of parameters and

variables of data type XML. During the execution of SQL procedures, upon a

commit or rollback operation, the values assigned to XML parameters and XML

variables will no longer be available.

Attempts to reference an SQL variable or SQL parameter of data type XML after a

commit or rollback operation will cause an error (SQL1354N, 560CE) to be raised.

To successfully reference XML parameters and variables after a commit or rollback

operation occurs, new values must first be assigned to them.

Consider the availability of XML parameter and variable values when adding

ROLLBACK and COMMIT statements to SQL procedures.

XML data type support in external routines

External procedures and functions written in the following programming

languages support parameters and variables of data type XML:

v C

v C++

v COBOL

v Java

v .NET CLR languages

External OLE and OLEDB routines do not support parameters of data type XML.

XML data type values are represented in external routine code in the same way as

CLOB data types.

When declaring external routine parameters of data type XML, the CREATE

PROCEDURE and CREATE FUNCTION statements that will be used to create the

routines in the database must specify that the XML data type is to be stored as a

248 pureXML Guide

CLOB data type. The size of the CLOB value should be close to the size of the

XML document represented by the XML parameter.

The CREATE PROCEDURE statement below shows a CREATE PROCEDURE

statement for an external procedure implemented in the C programming language

with an XML parameter named parm1:

 CREATE PROCEDURE myproc(IN parm1 XML AS CLOB(2M), IN parm2 VARCHAR(32000))

 LANGUAGE C

 FENCED

 PARAMETER STYLE SQL

 EXTERNAL NAME ’mylib!myproc’;

Similar considerations apply when creating external UDFs, as shown in the

example below:

 CREATE FUNCTION myfunc (IN parm1 XML AS CLOB(2M))

 RETURNS SMALLINT

 LANGUAGE C

 PARAMETER STYLE SQL

 DETERMINISTIC

 NOT FENCED

 NULL CALL

 NO SQL

 NO EXTERNAL ACTION

 EXTERNAL NAME ’mylib1!myfunc’

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT

parameters. If you are using Java stored procedures, the heap size

(JAVA_HEAP_SZ configuration parameter) might need to be increased based on

the quantity and size of XML arguments, and the number of external stored

procedures that are being executed concurrently.

Within external routine code, XML parameter and variable values are accessed, set,

and modified in the same way as in database applications.

Specification of a driver for Java routines

Java routine development and invocation requires that a JDBC or SQLJ driver be

specified. Java routines can use one of the following two drivers:

v IBM Data Server Driver for JDBC and SQLJ

v DB2 Type 2 Driver

By default, DB2 uses the IBM Data Server Driver for JDBC and SQLJ. This driver is

preferred because it is more robust, the DB2 Type 2 Driver is deprecated, and

because it is a prerequisite if Java routines contain:

v Parameters of data type XML

v Variables of data type XML

v References to XML data

v References to XML functions

v Any other native-XML feature

If problems occur in the migration of existing Java routines, the

DB2_USE_DB2JCCT2_JROUTINE DB2 environment variable can be set to the value, NO,

to use the legacy IBM DB2 Type 2 Driver. This can be done by issuing the

following command from a DB2 command window:

db2set DB2_USE_DB2JCCT2_JROUTINE=NO

Chapter 10. Application programming and routines support 249

After issuing this command, you must stop and restart the DB2 instance in order

for the change to take effect.

Example: XML and XQuery support in Java (JDBC) procedure

Once the basics of Java procedures, programming in Java using the JDBC

application programming interface (API), and XQuery are understood, you can

start creating and using Java procedures that query XML data.

This example of a Java procedure illustrates:

v the CREATE PROCEDURE statement for a parameter style JAVA procedure

v the source code for a parameter style JAVA procedure

v input and output parameters of data type XML

v use of an XML input parameter in a query

v assignment of the result of an XQuery, an XML value, to an output parameter

v assignment of the result of an SQL statement, an XML value, to an output

parameter

Prerequisites

Before working with this Java procedure example you might want to read

the following topics:

v Java routines

v Routines

v Building Java routine code

The examples below makes use of a table named xmlDataTable defined

and containing data as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)@

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

250 pureXML Guide

(7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

 </doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))@

Procedure

Use the following example as references when making your own Java

procedures:

v Table 42

v Table 43 on page 252

 The Java external code file

The example shows a Java procedure implementation. The example consists of two

parts: the CREATE PROCEDURE statement and the external Java code

implementation of the procedure from which the associated Java class can be built.

The Java source file that contains the procedure implementations of the following

examples is named stpclass.java included in a JAR file named myJAR. The file has

the following format:

 Table 42. Java external code file format

 using System;

 import java.lang.*;

 import java.io.*;

 import java.sql.*;

 import java.util.*;

 import com.ibm.db2.jcc.DB2Xml;

 public class stpclass

 { ...

 // Java procedure implementations

 ...

 }

The Java class file imports are indicated at the top of the file. The

com.ibm.db2.jcc.DB2Xml import is required if any of the procedures in the file

contain parameters or variables of type XML will be used.

It is important to note the name of the class file and JAR name that contains a

given procedure implementation. These names are important, because the

EXTERNAL clause of the CREATE PROCEDURE statement for each procedure

must specify this information so that DB2 can locate the class at run time.

Chapter 10. Application programming and routines support 251

Example 1: Parameter style JAVA procedure with XML parameters

This example shows the following:

v CREATE PROCEDURE statement for a parameter style JAVA procedure

v Java code for a parameter style JAVA procedure with XML parameters

This procedure takes an input parameter, inXML, inserts a row including that value

into a table, queriesXML data using both an SQL statement and an XQuery

expression, and sets two output parameters, outXML1, and outXML2.

 Table 43. Code to create a parameter style JAVA procedure with XML parameters

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT out1XML XML as CLOB (1K),

 OUT out2XML XML as CLOB (1K)

)

 DYNAMIC RESULT SETS 0

 DETERMINISTIC

 LANGUAGE JAVA

 PARAMETER STYLE JAVA

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 DYNAMIC RESULT SETS 0

 PROGRAM TYPE SUB

 NO DBINFO

 EXTERNAL NAME ’myJar:stpclass.xmlProc1’@

252 pureXML Guide

Table 43. Code to create a parameter style JAVA procedure with XML

parameters (continued)

 //***

 // Stored Procedure: XMLPROC1

 //

 // Purpose: Inserts XML data into XML column; queries and returns XML data

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: out1XML -- XML data to be returned

 // out2XML -- XML data to be returned

 //

 //***

 public void xmlProc1(int inNum,

 DB2Xml inXML ,

 DB2Xml[] out1XML,

 DB2Xml[] out2XML

)

 throws Exception

 {

 Connection con = DriverManager.getConnection("jdbc:default:connection");

 // Insert data including the XML parameter value into a table

 String query = "INSERT INTO xmlDataTable (num, inXML) VALUES (?, ?)" ;

 String xmlString = inXML.getDB2String() ;

 stmt = con.prepareStatement(query);

 stmt.setInt(1, inNum);

 stmt.setString (2, xmlString);

 stmt.executeUpdate();

 stmt.close();

 // Query and retrieve a single XML value from a table using SQL

 query = "SELECT xdata from xmlDataTable WHERE num = ? " ;

 stmt = con.prepareStatement(query);

 stmt.setInt(1, inNum);

 ResultSet rs = stmt.executeQuery();

 if (rs.next())

 { out1Xml[0] = (DB2Xml) rs.getObject(1); }

 rs.close() ;

 stmt.close();

 // Query and retrieve a single XML value from a table using XQuery

 query = "XQUERY for $x in db2-fn:xmlcolumn(\"xmlDataTable.xdata\")/doc

 where $x/make = \’Mazda\’

 return <carInfo>{$x/make}{$x/model}</carInfo>";

 stmt = con.createStatement();

 rs = stmt.executeQuery(query);

 if (rs.next())

 { out2Xml[0] = (DB2Xml) rs.getObject(1) ; }

 rs.close();

 stmt.close();

 con.close();

 return ;

 }

Chapter 10. Application programming and routines support 253

Example: XML and XQuery support in C# .NET CLR procedure

Once the basics of procedures, the essentials of .NET common language runtime

routines, XQuery and XML are understood, you can start creating and using CLR

procedures with XML features.

The example below demonstrates a C# .NET CLR procedure with parameters of

type XML as well as how to update and query XML data.

Prerequisites

Before working with the CLR procedure example you might want to read

the following concept topics:

v Common language runtime (CLR) routines

v Creating CLR routines

v Benefits of using routines

v “Building common language runtime (CLR) .NET routines” in the

manual called Developing ADO.NET and OLE DB Applications

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

254 pureXML Guide

</doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))@

Procedure

Use the following examples as references when making your own C# CLR

procedures:

v The C# external code file

v Example 1: C# parameter style GENERAL procedure with XML features

 The C# external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C# code implementation of the procedure from which the associated

assembly can be built.

The C# source file that contains the procedure implementations of the following

examples is named gwenProc.cs and has the following format:

 Table 44. C# external code file format

 using System;

 using System.IO;

 using System.Data;

 using IBM.Data.DB2;

 using IBM.Data.DB2Types;

 namespace bizLogic

 {

 class empOps

 { ...

 // C# procedures

 ...

 }

 }

The file inclusions are indicated at the top of the file. The IBM.Data.DB2 inclusion is

required if any of the procedures in the file contain SQL. The IBM.Data.DB2Types

inclusion is required if any of the procedures in the file contains parameters or

variables of type XML. There is a namespace declaration in this file and a class

empOps that contains the procedures. The use of namespaces is optional. If a

namespace is used, the namespace must appear in the assembly path name

provided in the EXTERNAL clause of the CREATE PROCEDURE statement.

It is important to note the name of the file, the namespace, and the name of the

class, that contains a given procedure implementation. These names are important,

because the EXTERNAL clause of the CREATE PROCEDURE statement for each

procedure must specify this information so that DB2 can locate the assembly and

class of the CLR procedure.

Chapter 10. Application programming and routines support 255

Example 1: C# parameter style GENERAL procedure with XML features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL procedure

v C# code for a parameter style GENERAL procedure with XML parameters

This procedure takes two parameters, an integer inNum and inXML. These values are

inserted into the table xmlDataTable. Then an XML value is retrieved using

XQuery. Another XML value is retrieved using SQL. The retrieved XML values are

assigned to two output parameters, outXML1 and outXML2. No result sets are

returned.

 Table 45. Code to create a C# parameter style GENERAL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: outXML1 -- XML data returned - value retrieved using XQuery

 // outXML2 -- XML data returned - value retrieved using SQL

 //***

256 pureXML Guide

Table 45. Code to create a C# parameter style GENERAL procedure (continued)

 public static void xmlProc1 (int inNum, DB2Xml inXML,

 out DB2Xml outXML1, out DB2Xml outXML2)

 {

 // Create new command object from connection context

 DB2Parameter parm;

 DB2Command cmd;

 DB2DataReader reader = null;

 outXML1 = DB2Xml.Null;

 outXML2 = DB2Xml.Null;

 // Insert input XML parameter value into a table

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "INSERT INTO "

 + "xmlDataTable(num , xdata) "

 + "VALUES(?, ?)";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 parm = cmd.Parameters.Add("@data", DB2Type.Xml);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@data"].Value = inXML ;

 cmd.ExecuteNonQuery();

 cmd.Close();

 // Retrieve XML value using XQuery

 and assign value to an XML output parameter

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "XQUERY for $x " +

 "in db2-fn:xmlcolumn(\"xmlDataTable.xdata\")/doc "+

 "where $x/make = \’Mazda\’ " +

 "return <carInfo>{$x/make}{$x/model}</carInfo>";

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML1 = reader.GetDB2Xml(0); }

 else

 { outXML1 = DB2Xml.Null; }

 reader.Close();

 cmd.Close();

 // Retrieve XML value using SQL

 and assign value to an XML output parameter value

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "SELECT xdata "

 + "FROM xmlDataTable "

 + "WHERE num = ?";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML2 = reader.GetDB2Xml(0); }

 else

 { outXML = DB2Xml.Null; }

 reader.Close() ;

 cmd.Close();

 return;

 }

Chapter 10. Application programming and routines support 257

Example: XML and XQuery support in C procedure

Once the basics of procedures, the essentials of C routines, XQuery and XML are

understood, you can start creating and using C procedures with XML features.

The example below demonstrates a C procedure with parameters of type XML as

well as how to update and query XML data.

Prerequisites

Before working with the C procedure example you might want to read the

following concept topics:

v C routines

v Creating C routines

v Benefits of using routines

v Building C routines

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

258 pureXML Guide

</doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))

Procedure

Use the following examples as references when making your own C

procedures:

v The C external code file

v Example 1: C parameter style SQL procedure with XML features

 The C external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C code implementation of the procedure from which the associated

assembly can be built.

The C source file that contains the procedure implementations of the following

examples is named gwenProc.SQC and has the following format:

 Table 46. C external code file format

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <sqlda.h>

 #include <sqlca.h>

 #include <sqludf.h>

 #include <sql.h>

 #include <memory.h>

 // C procedures

 ...

The file inclusions are indicated at the top of the file. There are no extra include

files required for XML support in embedded SQL routines.

It is important to note the name of the file and the name of the function that

corresponds to the procedure implementation. These names are important, because

the EXTERNAL clause of the CREATE PROCEDURE statement for each procedure

must specify this information so that the DB2 database manager can locate the

library and entry point that corresponds to the C procedure.

Example 1: C parameter style SQL procedure with XML features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v C code for a parameter style SQL procedure with XML parameters

This procedure receives two input parameters. The first input parameter is named

inNum and is of type INTEGER. The second input parameters is named inXML and

is of type XML. The values of the input parameters are used to insert a row into

Chapter 10. Application programming and routines support 259

the table xmlDataTable. Then an XML value is retrieved using an SQL statement.

Another XML value is retrieved using an XQuery expression. The retrieved XML

values are respectively assigned to two output parameters, out1XML and out2XML.

No result sets are returned.

 Table 47. Code to create a C parameter style SQL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE C

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: out1XML -- XML data returned - value retrieved using XQuery

 // out2XML -- XML data returned - value retrieved using SQL

 //***

260 pureXML Guide

Table 47. Code to create a C parameter style SQL procedure (continued)

#ifdef __cplusplus

extern "C"

#endif

SQL_API_RC SQL_API_FN testSecA1(sqlint32* inNum,

 SQLUDF_CLOB* inXML,

 SQLUDF_CLOB* out1XML,

 SQLUDF_CLOB* out2XML,

 SQLUDF_NULLIND *inNum_ind,

 SQLUDF_NULLIND *inXML_ind,

 SQLUDF_NULLIND *out1XML_ind,

 SQLUDF_NULLIND *out2XML_ind,

 SQLUDF_TRAIL_ARGS)

{

 char *str;

 FILE *file;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 hvNum1;

 SQL TYPE IS XML AS CLOB(200) hvXML1;

 SQL TYPE IS XML AS CLOB(200) hvXML2;

 SQL TYPE IS XML AS CLOB(200) hvXML3;

 EXEC SQL END DECLARE SECTION;

 /* Check null indicators for input parameters */

 if ((*inNum_ind < 0) || (*inXML_ind < 0)) {

 strcpy(sqludf_sqlstate, "38100");

 strcpy(sqludf_msgtext, "Received null input");

 return 0;

 }

 /* Copy input parameters to host variables */

 hvNum1 = *inNum;

 hvXML1.length = inXML->length;

 strncpy(hvXML1.data, inXML->data, inXML->length);

 /* Execute SQL statement */

 EXEC SQL

 INSERT INTO xmlDataTable (num, xdata) VALUES (:hvNum1, :hvXML1);

 /* Execute SQL statement */

 EXEC SQL

 SELECT xdata INTO :hvXML2

 FROM xmlDataTable

 WHERE num = :hvNum1;

 sprintf(stmt5, "SELECT XMLQUERY(’for $x in $xmldata/doc

 return <carInfo>{$x/model}</carInfo>’

 passing by ref xmlDataTable.xdata

 as \"xmldata\" returning sequence)

 FROM xmlDataTable WHERE num = ?");

 EXEC SQL PREPARE selstmt5 FROM :stmt5 ;

 EXEC SQL DECLARE c5 CURSOR FOR selstmt5;

 EXEC SQL OPEN c5 using :hvNum1;

 EXEC SQL FETCH c5 INTO :hvXML3;

 exit:

 /* Set output return code */

 *outReturnCode = sqlca.sqlcode;

 *outReturnCode_ind = 0;

 return 0;

}

Chapter 10. Application programming and routines support 261

Performance of routines

The performance of routines is impacted by a variety of factors including the type

and implementation of the routine, the number of SQL statements within the

routine, the degree of complexity of the SQL in the routine, the number of

parameters to the routine, the efficiency of the logic within the routine

implementation, the error handling within the routines and more. Because users

often choose to implement routines to improve the performance of applications, it

is important to get the most out of routine performance.

The following table outlines some of the general factors that impact routine

performance and gives recommendations on how to improve routine performance

by altering each factor. For further details on performance factors that impact

specific routine types, refer to the performance and tuning topics for the specific

routine type.

 Table 48. Performance considerations and routine performance recommendations

Performance consideration Performance recommendation

Routine type: procedure, function, method v Procedures, functions, and methods serve different

purposes and are referenced in different places. Their

functional differences make it difficult to compare their

performance directly.

v In general procedures can sometimes be rewritten as

functions (particularly if they return a scalar value and

only query data) and enjoy slight performance

improvements, however these benefits are generally a

result of simplifying the SQL required to implement

the SQL logic.

v User-defined functions with complex initializations can

make use of scratchpads to store any values required

in the first invocation so that they can be used in

subsequent invocations.

Routine implementation: system-defined or user-defined v For equivalent logic, built-in routines perform the best,

followed by system-defined routines, because they

enjoy a closer relationship with the database engine

than do user-defined routines.

v User-defined routines can perform very well if they

are well coded and follow best practices.

262 pureXML Guide

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Routine implementation: SQL or external routine

implementation

v SQL routines are more efficient than external routines

because they are executed directly by the DB2

database server.

v SQL procedures generally perform better than logically

equivalent external procedures.

v For simple logic, SQL function performance will be

comparable to that of an equivalent external function.

v For complex logic, such as math algorithms and string

manipulation functions that require little SQL, it is

better to use an external routine in a low level

programming language such as C since there is less

dependence on SQL support.

v See Comparison of routine implementations for a

comparison of the features, including performance, of

the supported external routine programming language

options.

External routine implementation programming language v See: Comparison of external routine APIs and

programming languages for a comparison of the

performance features that you should consider when

selecting an external routine implementation.

v Java (JDBC and SQLJ APIs)

– Java routines with very large memory requirements

are best created with the FENCED NOT

THREADSAFE clause specified. Java routines with

average memory requirements can be specified with

the FENCED THREADSAFE clause.

– For fenced threadsafe Java routine invocations, DB2

attempts to choose a threaded Java fenced mode

process with a Java heap that is large enough to run

the routine. Failure to isolate large heap consumers

in their own process can result in out-of-Java-heap

errors in multi-threaded Java db2fmp processes.

FENCED THREADSAFE routines, in contrast,

perform better because they can share a small

number of JVMs.

v C and C++

– In general C and C++ routines perform better than

other external routine implementations and as well

as SQL routines.

– To perform their best C and C++ routines should be

compiled in 32-bit format if they will be deployed

to a 32-bit DB2 instance and in 64-bit format if they

will be deployed to a 64-bit DB2 instance.

v COBOL

– In general COBOL performance is good, but

COBOL is not a recommended routine

implementation.

Chapter 10. Application programming and routines support 263

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Number of SQL statements within the routine v Routines should contain more than one SQL statement,

otherwise the overhead of routine invocation is not

performance cost effective.

v Logic that must make several database queries, process

intermediate results, and ultimately return a subset of

the data that was worked with is the best logic for

routine encapsulation. Complex data mining, and large

updates requiring lookups of related data are

examples of this type of logic. Heavy SQL processing

is done on the database server and only the smaller

data result set is passed back to the caller.

Complexity of SQL statements within the routine v It makes good sense to include very complex queries

within your routines so that you capitalize on the

greater memory and performance capabilities of the

database server.

v Do not worry about the SQL statements being overly

complex.

Static or dynamic SQL execution within routines v In general static SQL performs better than dynamic

SQL. In routines there are no additional differences

when you use static or dynamic SQL.

Number of parameters to routines v Minimizing the number of parameters to routines can

improve routine performance as this minimizes the

number of buffers to be passed between the routine

and routine invoker.

Data types of routine parameters v

You can improve the performance of routines by using

VARCHAR parameters instead of CHAR parameters in

the routine definition. Using VARCHAR data types

instead of CHAR data types prevents DB2 from

padding parameters with spaces before passing the

parameter and decreases the amount of time required

to transmit the parameter across a network.

For example, if your client application passes the

string ″A SHORT STRING″ to a routine that expects a

CHAR(200) parameter, DB2 has to pad the parameter

with 186 spaces, null-terminate the string, then send

the entire 200 character string and null-terminator

across the network to the routine.

In comparison, passing the same string, ″A SHORT

STRING″, to a routine that expects a VARCHAR(200)

parameter results in DB2 simply passing the 14

character string and a null terminator across the

network.

Initialization of parameters to routines v It is a good idea to always initialize input parameters

to routines, particularly if the input routine parameter

values are null. For null value routine parameters, a

shorter or empty buffer can be passed to the routine

instead of a full sized buffer, which can improve

performance.

264 pureXML Guide

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Number of local variables in routines v Minimizing the number of local variables declared

within a routine can improve performance by

minimizing the number of SQL statements executed

within the routine.

v In general aim to use as few variables as possible.

Re-use variables if this will not be semantically

confusing.

Initialization of local variables in routines v If possible, it is a good practice to initialize multiple

local variables within a single SQL statement as this

saves on the total SQL execution time for the routine.

Number of result sets returned by procedures v If you can reduce the number of result sets returned

by a routine you can improve routine performance.

Size of result sets returned by routines v Make sure that for each result set returned by a

routine, the query defining the result filters the

columns returned and the number of rows returned as

much as possible. Returning unnecessary columns or

rows of data is not efficient and can result in

sub-optimal routine performance.

Efficiency of logic within routines v As with any application, the performance of a routine

can be limited by a poorly implemented algorithm.

Aim to be as efficient as possible when programming

routines and apply generally recommended coding

best practices as much as possible.

v Analyze your SQL and wherever possible reduce your

query to its simplest form. This can often be done by

using CASE expressions instead of CASE statements or

by collapsing multiple SQL statements into a single

statement that uses a CASE expression as a switch.

Chapter 10. Application programming and routines support 265

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

NOT FENCED clause usage:

v In general, creating your routine with the NOT

FENCED clause, which makes it runs in the same

process as the DB2 database manager, is preferable

over creating it with the FENCED clause, which makes

it run in a special DB2 process outside of the engine’s

address space.

v While you can expect improved routine performance

when running routines as not fenced, user code in

unfenced routines can accidentally or maliciously

corrupt the database or damage the database control

structures. You should only use the NOT FENCED

clause when you need to maximize performance

benefits, and if you deem the routine to be secure. (For

information on assessing and mitigating the risks of

registering C/C++ routines as NOT FENCED, refer to

Security of routines. If the routine is not safe enough

to run in the database manager’s process, use the

FENCED clause when creating the routine. To limit the

creation and running of potentially unsafe code, DB2

requires that a user have a special privilege,

CREATE_NOT_FENCED_ROUTINE in order to create

NOT FENCED routines.

v If an abnormal termination occurs while you are

running a NOT FENCED routine, the database

manager will attempt an appropriate recovery if the

routine is registered as NO SQL. However, for routines

not defined as NO SQL, the database manager will

fail.

v NOT FENCED routines must be precompiled with the

WCHARTYPE NOCONVERT option if the routine

uses GRAPHIC or DBCLOB data.

266 pureXML Guide

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

FENCED THREADSAFE clause usage

v Routines created with the FENCED THREADSAFE

clause run in the same process as other routines. More

specifically, non-Java routines share one process, while

Java(TM) routines share another process, separate from

routines written in other languages. This separation

protects Java routines from the potentially more error

prone routines written in other languages. Also, the

process for Java routines contains a JVM, which incurs

a high memory cost and is not used by other routine

types. Multiple invocations of FENCED THREADSAFE

routines share resources, and therefore incur less

system overhead than FENCED NOT THREADSAFE

routines, which each run in their own dedicated

process.

v If you feel your routine is safe enough to run in the

same process as other routines, use the THREADSAFE

clause when registering it. As with NOT FENCED

routines, information on assessing and mitigating the

risks of registering C/C++ routines as FENCED

THREADSAFE is in the topic, ″Security considerations

for routines″.

v If a FENCED THREADSAFE routine abnormally ends,

only the thread running this routine is terminated.

Other routines in the process continue running.

However, the failure that caused this thread to

abnormally end can adversely affect other routine

threads in the process, causing them to trap, hang, or

have damaged data. After one thread abends, the

process is no longer used for new routine invocations.

Once all the active users complete their jobs in this

process, it is terminated.

v When you register Java routines, they are deemed

THREADSAFE unless you indicate otherwise. All

other LANGUAGE types are NOT THREADSAFE by

default. Routines using LANGUAGE OLE and OLE

DB cannot be specified as THREADSAFE.

v NOT FENCED routines must be THREADSAFE. It is

not possible to register a routine as NOT FENCED

NOT THREADSAFE (SQLCODE -104).

v Users on UNIX(R) can see their Java and C

THREADSAFE processes by looking for db2fmp (Java)

or db2fmp (C).

Chapter 10. Application programming and routines support 267

Table 48. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

FENCED NOT THREADSAFE mode

v FENCED NOT THREADSAFE routines each run in

their own dedicated process. If you are running

numerous routines, this can have a detrimental effect

on database system performance. If the routine is not

safe enough to run in the same process as other

routines, use the NOT THREADSAFE clause when

registering the routine.

v On UNIX, NOT THREADSAFE processes appear as

db2fmp (pid) (where pid is the process id of the agent

using the fenced mode process) or as db2fmp (idle) for

a pooled NOT THREADSAFE db2fmp.

Level of SQL access in routine: NO SQL, CONTAINS

SQL, READS SQL DATA, MODIFIES SQL DATA

v Routines that are created with a lower level of SQL

access clause will perform better than routines created

with a higher level of SQL access clause. Therefore you

should declare your routines with the most restrictive

level of SQL access clause. For example, if your

routine only reads SQL data, do not create it with the

MODIFIES SQL DATA clause, but rather create it with

the more restrictive READS SQL DATA clause.

Determinism of routine (DETERMINISTIC or NOT

DETERMINISTIC clause specification)

v Declaring a routine with the DETERMINISTIC or NOT

DETERMINISTIC clause has no impact on routine

performance.

Number and complexity of external actions made by

routine (EXTERNAL ACTION clause specification)

v Depending on the number of external actions and the

complexity of external actions performed by an

external routine, routine performance can be hindered.

Factors that contribute to this are network traffic,

access to files for writing or reading, the time required

to execute the external action, and the risk associated

with hangs in external action code or behaviors.

Routine invocation when input parameters are null

(CALLED ON NULL INPUT clause specification)

v If receiving null input parameter values results in no

logic being executed and an immediate return by the

routine, you can modify your routine so that it is not

fully invoked when null input parameter values are

detected. To create a routine that ends invocation early

if routine input parameters are received, create the

routine and specify the CALLED ON NULL INPUT

clause.

Procedure parameters of type XML v The passing of parameters of data type XML is

significantly less efficient in external procedures

implemented in either the C or JAVA programming

language than in SQL procedures. When passing one

or more parameters of data type XML, consider using

SQL procedures instead of external procedures.

v XML data is materialized when passed to stored

procedures as IN, OUT, or INOUT parameters. If you

are using Java stored procedures, the heap size

(JAVA_HEAP_SZ configuration parameter) might need

to be increased based on the quantity and size of XML

arguments, and the number of external stored

procedures that are being executed concurrently.

268 pureXML Guide

Once routines are created and deployed, it might be harder to determine what

environmental and routine specific factors are impacting routine performance, and

hence it is important to design routines with performance in mind.

Sample applications

pureXML Samples

The pureXML feature enables well-formed XML documents to be stored in their

hierarchical format within columns of a table. XML columns are defined with the

new XML data type. Because the pureXML feature is fully integrated into the DB2

database system, the stored XML data can be accessed and managed by leveraging

DB2 functionality. This functionality includes administration support, application

development support and efficient search and retrieval of XML via support for

XQuery, SQL or a combination of SQL/XML functions.

There are various samples provided to demonstrate the XML support; these are

broadly categorized as:

Administration samples

These samples demonstrate the following features:

v XML schema support : Schema registration and validation of XML

documents

v XML data indexing support : Indexes on different node types of XML

value

v Utility support for XML : Import , export, runstats, db2look, and

db2batch support for the XML data type

Application Development samples

These samples demonstrate the following features:

v XML insert, update, and delete : Inserting XML values in XML typed

columns, updating and deleting existing values

v XML parsing, validation, and serialization support : Implicit and explicit

parsing of compatible data types, validating an XML document,

serializing XML data

v Hybrid use of SQL and XQuery : Using SQL/XML functions like

XMLTABLE, XMLQUERY and the XMLEXISTS predicate

v XML data type support in SQL and external procedures: Passing XML

data to SQL and external procedures by including parameters of data

type XML

v Annotated XML schema decomposition support : Decomposing an XML

document based on annotated XML schemas

v XML publishing functions : Using functions to construct XML values

XQuery samples

These samples demonstrate the use of axes, FLWOR expressions, and

queries written with XQuery and SQL/XML.

These samples can be found in the following location:

v On Windows: %DB2PATH%\sqllib\samples\xml (where %DB2PATH% is a variable that

determines where DB2 database server is installed)

v On UNIX: $HOME/sqllib/samples/xml (where $HOME is the home directory of

the instance owner)

Chapter 10. Application programming and routines support 269

pureXML - Administration samples

These samples demonstrate pureXML support for various administration features,

including: XML schema support, Utility support, XML data indexing support.

These samples are available in various programming languages and can be found

in the language specific sub-directories in the following location:

v On Windows: %DB2PATH%\sqllib\samples\xml (where %DB2PATH% is a variable that

determines where DB2 database server is installed)

v On UNIX: $HOME/sqllib/samples/xml (where $HOME is the home directory of

the instance owner)

 Table 49. XML schema support - Samples for schema registration, validation and compatible

schema evolution

Samples By Language Sample program name Program description

CLI xsupdate.c Update a registered XML schema

ensuring that the original and the

new schemas are compatible.

C xmlschema.sqc Register the XML schema to the

database and use the registered

schema to validate and insert an

XML document.

CLP xmlschema.db2 Register the XML schema to the

database and use the registered

schema to validate and insert an

XML document.

xsupdate.db2 Update a registered XML schema

ensuring that the original and the

new schemas are compatible.

JDBC XmlSchema.java Register the XML schema to the

database and use the registered

schema to validate and insert an

XML document.

XsUpdate.java Update a registered XML schema

ensuring that the original and the

new schemas are compatible.

SQLJ XmlSchema.sqlj Register the XML schema to the

database and use the registered

schema to validate and insert an

XML document.

270 pureXML Guide

Table 50. Utility support: Samples for Import, export, runstats, db2look, and db2batch

support for XML data type

Samples By Language Sample program name Program description

C xmlrunstats.sqc Perform RUNSTATS on a table

containing XML type columns.

lobstoxml.sqc Move LOB data into an XML column

using IMPORT and EXPORT

commands.

impexpxml.sqc Import and Export XML documents.

xmlload.sqc Load XML documents into DB2

tables using the various LOAD

command options.

CLP xmlrunstats.db2 Perform RUNSTATS on a table

containing XML type columns.

xmldb2batch.db2 db2batch support for XML datatype.

xmldb2look.db2 db2look support for XML datatype.

lobstoxml.db2 Move LOB data into an XML column

using IMPORT and EXPORT

commands.

impexpxml.db2 Import and Export XML documents.

xmlload.db2 Load XML documents into DB2

tables using the various LOAD

command options.

JDBC XmlRunstats.java Perform RUNSTATS on a table

containing XML type columns.

 Table 51. XML data indexing support: Samples for indices over XML data

Samples By Language Sample program name Program description

C xmlindex.sqc Create an index and use it in an

XQuery query.

xmlconst.sqc Create an index with UNIQUE and

VARCHAR length constraints using

XML patterns.

CLI xmlindex.c Create an index and use it in an

XQuery query.

xmlconst.c Create an index with UNIQUE and

VARCHAR length constraints using

XML patterns.

CLP xmlindex.db2 Create an index and use it in an

XQuery query.

xmlconst.db2 Create an index with UNIQUE and

VARCHAR length constraints using

XML patterns.

JDBC XmlIndex.java Create an index and use it in an

XQuery query.

XmlConst.java Create an index with UNIQUE and

VARCHAR length constraints using

XML patterns.

Chapter 10. Application programming and routines support 271

Table 51. XML data indexing support: Samples for indices over XML data (continued)

Samples By Language Sample program name Program description

SQLJ XmlIndex.sqlj Create an index and use it in an

XQuery query.

XmlConst.sqlj Create an index with UNIQUE and

VARCHAR length constraints using

XML patterns.

pureXML - Application Development samples

These samples demonstrate XML support for application development features

such as insert, update, and delete, XML parsing, validation, and serialization,

hybrid use of SQL/XML, XML data type support in SQL and external stored

procedures, XML decomposition, SQL/XML publishing functions.

These samples are available in various programming languages and can be found

in the language specific sub-directories in the following location:

v On Windows: %DB2PATH%\sqllib\samples\xml (where %DB2PATH% is a variable that

determines where DB2 database server is installed)

v On UNIX: $HOME/sqllib/samples/xml (where $HOME is the home directory of

the instance owner)

 Table 52. pureXML - Application development samples

Samples by language Sample program name Program description

CLI xmlinsert.c Insert an XML document into a

column of XML datatype.

xmlupdel.c Update and delete XML

documents in the tables.

xmlread.c Read XML data stored in tables.

reltoxmldoc.c Create an XML document

directly from data stored in

relational tables using various

SQL/XML publishing functions.

xmltotable.c Insert the data from an XML

document into relational tables

using SQL/XML functions like

XMLTABLE, XMLQUERY and

the XMLEXISTS predicate.

simple_xmlproc.c Simple stored procedure with

XML type parameters.

simple_xmlproc_client.c Client program to call the

routine in simple_xmlproc.c.

simple_xmlproc_create.db2 CLP script to register the stored

procedure in simple_xmlproc.c

simple_xmlproc_drop.db2 CLP script to drop the stored

procedure in simple_xmlproc.c

272 pureXML Guide

Table 52. pureXML - Application development samples (continued)

Samples by language Sample program name Program description

C xmlinsert.sqc Insert an XML document into a

column of XML datatype.

xmlupdel.sqc Update and delete XML

documents in the tables.

xmlread.sqc Read XML data stored in tables.

reltoxmltype.sqc Create an XML object from data

stored in relational tables using

various SQL/XML publishing

functions.

xmldecomposition.sqc Decompose data stored in an

XML file and insert the data into

tables. Specify the order of

insertion to be used during XML

document shredding.

recxmldecomp.sqc Register a recursive XML schema

to the XSR and enable it for

decomposition.

simple_xmlproc.sqc Simple stored procedure with

XML type parameters.

simple_xmlproc_client.db2 CLP script to call the routine in

simple_xmlproc.sqc

simple_xmlproc_create.db2 CLP script to register the stored

procedure in simple_xmlproc.sqc

simple_xmlproc_drop.db2 CLP script to drop the stored

procedure in simple_xmlproc.sqc

xmltrig.sqc Use the trigger processing

capability for enforced automatic

validation of incoming XML

documents.

xmlintegrate.sqc Use the XMLROW and

XMLGROUP functions for

mapping relational data to XML.

Demonstrate XMLQuery default

passing mechanism and the

default column specification for

XMLTABLE.

xmlcheckconstraint.sqc Create tables with check

constraints on an XML column

using IS VALIDATED and IS

NOT VALIDATED predicates

and specify one or more

schemas using the ACCORDING

TO XMLSCHEMA clause.

xmlxslt.sqc Use the XSLTRANSFORM

function to convert XML

documents residing in the

database into HTML, plain text,

or other forms of XML using

style sheets.

Chapter 10. Application programming and routines support 273

Table 52. pureXML - Application development samples (continued)

Samples by language Sample program name Program description

CLP xmlinsert.db2 Insert an XML document into a

column of XML datatype.

xmlupdel.db2 Update and delete XML

documents in the tables.

reltoxmldoc.db2 Create an XML document

directly from data stored in

relational tables using various

SQL/XML publishing functions.

reltoxmltype.db2 Create an XML object from data

stored in relational tables using

various SQL/XML publishing

functions.

xmldecomposition.db2 Decompose data stored in an

XML file and insert the data into

tables. Specify the order of

insertion to be used during XML

document shredding.

recxmldecomp.db2 Register a recursive XML schema

to the XSR and enable it for

decomposition.

simple_xmlproc.db2 Simple stored procedure with

XML type parameters

xmltotable.db2 Insert the data from an XML

document into relational tables

using SQL/XML functions like

XMLTABLE, XMLQUERY and

the XMLEXISTS predicate.

xmltrig.db2 Use the trigger processing

capability for enforced automatic

validation of incoming XML

documents.

xmlintegrate.db2 Use the XMLROW and

XMLGROUP functions for

mapping relational data to XML.

Demonstrate XMLQuery default

passing mechanism and the

default column specification for

XMLTABLE..

xmlcheckconstraint.db2 Create tables with check

constraints on an XML column

using IS VALIDATED and IS

NOT VALIDATED predicates

and specify one or more

schemas using the ACCORDING

TO XMLSCHEMA clause.

xmlxslt.db2 Use the XSLTRANSFORM

function to convert XML

documents residing in the

database into HTML, plain text,

or other forms of XML using

style sheets.

274 pureXML Guide

Table 52. pureXML - Application development samples (continued)

Samples by language Sample program name Program description

JDBC XmlInsert.java Insert an XML document into a

column of XML datatype.

XmlUpDel.java Update and delete XML

documents in the tables.

XmlRead.java Read XML data stored in tables.

RelToXmlDoc.java Create an XML document

directly from data stored in

relational tables using SQL/XML

publishing functions.

RelToXmlType.java Create an XML object from data

stored in relational tables using

various SQL/XML publishing

functions.

XmlDecomposition.java Decompose data stored in an

XML file and insert the data into

tables. Specify the order of

insertion to be used during XML

document shredding.

RecXmlDecomp.java Register a recursive XML schema

to the XSR and enable it for

decomposition.

Simple_XmlProc.java Simple stored procedure with

XML type parameters.

Simple_XmlProc_Client.java Client program to call the

routine in Simple_XmlProc.java.

Simple_XmlProc_Create.db2 CLP script to register the stored

procedure in

Simple_XmlProc.java

Simple_XmlProc_Drop.db2 CLP script to drop the stored

procedure in

Simple_XmlProc.java

XmlToTable.java Insert the data from an XML

document into relational tables

using SQL/XML functions like

XMLTABLE, XMLQUERY and

the XMLEXISTS predicate.

XmlTrig.java Use the trigger processing

capability for enforced automatic

validation of incoming XML

documents.

XmlCheckConstraint.java Create tables with check

constraints on an XML column

using IS VALIDATED and IS

NOT VALIDATED predicates

and specify one or more

schemas using the ACCORDING

TO XMLSCHEMA clause.

Chapter 10. Application programming and routines support 275

Table 52. pureXML - Application development samples (continued)

Samples by language Sample program name Program description

SQLJ XmlInsert.sqlj Insert an XML document into a

column of XML datatype.

XmlUpDel.sqlj Update and delete XML

documents in the tables.

XmlRead.sqlj Read XML data stored in tables.

RelToXmlDoc.sqlj Create an XML document

directly from data stored in

relational tables using SQL/XML

publishing functions.

RelToXmlType.sqlj Create an XML object from data

stored in relational tables using

SQL/XML publishing functions.

XmlToTable.sqlj Insert the data from an XML

document into relational tables

using SQL/XML functions like

XMLTABLE, XMLQUERY and

the XMLEXISTS predicate.

XmlIntegrate.sqlj Use the XMLROW and

XMLGROUP functions for

mapping relational data to XML.

Demonstrate XMLQuery default

passing mechanism and the

default column specification for

XMLTABLE..

XmlXslt.sqlj Use the XSLTRANSFORM

function to convert XML

documents residing in the

database into HTML, plain text,

or other forms of XML using

style sheets.

276 pureXML Guide

Chapter 11. XML data encoding

XML data encoding

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data.

The application data type that you use to exchange the XML data between the

application and the XML column determines how the encoding is derived.

v XML data that is in character or graphic application data types is considered to

be externally encoded. Like character and graphic data, XML data that is in

these data types is considered to be encoded in the application code page.

v XML data that is in a binary application data type or binary data that is in a

character data type is considered to be internally encoded.

Externally coded XML data might contain internal encoding, such as when an

XML document in a character data type contains an encoding declaration. When

you send externally encoded data to a DB2 database, the database manager checks

for internal encoding.

If the external encoding and the internal encoding are not Unicode encoding, the

effective CCSID that is associated with the internal encoding must match the

external encoding. Otherwise, an error occurs. If the external encoding and the

internal encoding are Unicode encoding, and the encoding schemes do not match,

the DB2 database server ignores the internal encoding.

Background information on XML internal encoding

XML data in a binary application data type has internal encoding. With internal

encoding, the content of the data determines the encoding. The DB2 database

system derives the internal encoding from the document content according to the

XML standard.

Internal encoding is derived from three components:

Unicode Byte Order Mark (BOM)

A byte sequence that consists of a Unicode character code at the beginning

of XML data. The BOM indicates the byte order of the following text. The

DB2 database manager recognizes a BOM only for XML data. For XML

data that is stored in a non-XML column, the database manager treats a

BOM value like any other character or binary value.

XML declaration

A processing instruction at the beginning of an XML document. The

declaration provides specific details about the remainder of the XML.

Encoding declaration

An optional part of the XML declaration that specifies the encoding for the

characters in the document.

The DB2 database manager uses the following procedure to determine the

encoding:

© Copyright IBM Corp. 2006, 2007 277

1. If the data contains a Unicode BOM, the BOM determines the encoding. The

following table lists the BOM types and the resultant data encoding:

 Table 53. Byte order marks and resultant document encoding

BOM type BOM value Encoding

UTF-8 X’EFBBBF’ UTF-8

UTF-16 Big Endian X’FEFF’ UTF-16

UTF-16 Little Endian X’FFFE’ UTF-16

UTF-32 Big Endian X’0000FEFF’ UTF-32

UTF-32 Little Endian X’FFFE0000’ UTF-32

2. If the data contains an XML declaration, the encoding depends on whether

there is an encoding declaration:

v If there is an encoding declaration, the encoding is the value of the encoding

attribute. For example, the encoding is EUC-JP for XML data with the

following XML declaration:

<?xml version="1.0" encoding="EUC-JP"?>

v If there is an encoding declaration and a BOM, the encoding declaration

must match the encoding from the BOM. Otherwise, an error occurs.

v If there is no encoding declaration and no BOM, the database manager

determines the encoding from the encoding of the XML declaration:

– If the XML declaration is in single-byte ASCII characters, the encoding of

the document is UTF-8.

– If the XML declaration is in double-byte ASCII characters, the encoding of

the document is UTF-16.
3. If there is no XML declaration and no BOM, the encoding of the document is

UTF-8.

Considerations

Encoding considerations for input of XML data to a database

When you store XML data in a DB2 table, some rules apply.

The following rules need to be observed:

v If the internal and external encoding are not Unicode encoding, for externally

encoded XML data (data that is sent to the database server using character data

types), any internally encoded declaration must match the external encoding.

Otherwise, an error occurs, and the database manager rejects the document.

If the external encoding and the internal encoding are Unicode encoding, and

the encoding schemes do not match, the DB2 database server ignores the

internal encoding.

v For internally encoded XML data (data that is sent to the database server using

binary data types), the application must ensure that the data contains accurate

encoding information.

Encoding considerations for retrieval of XML data from a

database

When you retrieve XML data from a DB2 table, you need to avoid data loss and

truncation. Data loss can occur when characters in the source data cannot be

278 pureXML Guide

represented in the encoding of the target data. Truncation can occur when

conversion to the target data type results in expansion of the data.

Data loss is less of a problem for Java and .NET applications than for other types

of applications because Java and .NET string data types use Unicode UTF-16 or

UCS-2 encoding. Truncation is possible because expansion can occur when UTF-8

characters are converted to UTF-16 or UCS-2 encoding.

Encoding considerations for passing XML data in routine

parameters

In a DB2 database system, several XML data types are available for parameters in a

stored procedure or user-defined function definition.

The following XML data types are available:

XML For SQL procedures.

XML AS CLOB

For external SQL procedures and external user-defined functions.

Data in XML AS CLOB parameters is subject to character conversion, if the

application encoding is not UTF-8. You should avoid the overhead of character

conversion in an external user-defined function or stored procedure. Any

application character or graphic data type can be used for the parameters in the

calling application, but the source data should not contain an encoding declaration.

Additional code page conversion might occur, which can make the encoding

information inaccurate. If the data is further parsed in the application, data

corruption can result.

Encoding considerations for XML data in JDBC, SQLJ, and

.NET applications

Typically, there are fewer XML encoding considerations for Java applications than

for DB2 CLI or embedded SQL applications. Although the encoding considerations

for internally encoded XML data are the same for all applications, the situation is

simplified for externally encoded data in Java applications because the application

code page is always Unicode.

General recommendations for input of XML data in Java

applications

v If the input data is in a file, read the data in as a binary stream

(setBinaryStream) so that the database manager processes it as internally

encoded data.

v If the input data is in a Java application variable, your choice of application

variable type determines whether the DB2 database manager uses any internal

encoding. If you input the data as a character type (for example, setString), the

database manager converts the data from UTF-16 (the application code page) to

UTF-8 before storing it.

General recommendations for output of XML data in Java

applications

v If you output XML data to a file as non-binary data, you should add XML

internal encoding to the output data.

Chapter 11. XML data encoding 279

The encoding for the file system might not be Unicode, so string data can

undergo conversion when it is stored in the file. If you write data to a file as

binary data, conversion does not occur.

For Java applications, the database server does not add an explicit declaration

for an implicit XML serialize operation. If you cast the output data as the

com.ibm.db2.jcc.DB2Xml type, and invoke one of the getDB2Xmlxxx methods, the

JDBC driver adds an encoding declaration, as shown in the following table.

 getDB2Xmlxxx Encoding in declaration

getDB2XmlString ISO-10646-UCS-2

getDB2XmlBytes(String targetEncoding) Encoding specified by targetEncoding

getDB2XmlAsciiStream US-ASCII

getDB2XmlCharacterStream ISO-10646-UCS-2

getDB2XmlBinaryStream(String

targetEncoding)

Encoding specified by targetEncoding

For an explicit XMLSERIALIZE function with INCLUDING

XMLDECLARATION, the database server adds encoding, and the JDBC driver

does not modify it. The explicit encoding that the database server adds is UTF-8

encoding. Depending on how the value is retrieved by the application, the actual

encoding of the data might not match the explicit internal encoding.

v If the application sends the output data to an XML parser, you should retrieve

the data in a binary application variable, with UTF-8, UCS-2, or UTF-16

encoding.

Scenarios

Encoding scenarios for input of internally encoded XML data

to a database

The following examples demonstrate how internal encoding affects data conversion

and truncation during input of XML data to an XML column. In general, use of a

binary application data type minimizes code page conversion problems during

input to a database.

Scenario 1

 Encoding source Value

Data encoding UTF-8 Unicode input data, with or without a UTF-8 BOM or XML

encoding declaration

Application data

type

Binary

Application code

page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: None.

280 pureXML Guide

Data loss: None.

Truncation: None.

Scenario 2

 Encoding source Value

Data encoding UTF-16 Unicode input data containing a UTF-16 BOM or XML encoding

declaration

Application data

type

Binary

Application code

page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: the DB2 database server converts the data from UTF-16 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss or truncation: No data loss occurs. Truncation can occur during conversion

from UTF-16 to UTF-8, due to expansion.

Scenario 3

 Encoding source Value

Data encoding ISO-8859-1 input data containing an XML encoding declaration

Application data

type

Binary

Application code

page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 819 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Scenario 4

 Encoding source Value

Data encoding Shift_JIS input data containing an XML encoding declaration

Application data

type

Binary

Chapter 11. XML data encoding 281

Encoding source Value

Application code

page

Not applicable

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 943 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Encoding scenarios for input of externally encoded XML data

to a database

The following examples demonstrate how external encoding affects data

conversion and truncation during input of XML data to an XML column.

In general, when you use a character application data type, there is not a problem

with code page conversion during input to a database.

Only scenario 1 and scenario 2 apply to Java and .NET applications, because the

application code page for Java and .NET applications is always Unicode.

Scenario 1

 Encoding source Value

Data encoding UTF-8 Unicode input data, with or without an appropriate encoding

declaration or BOM

Application data

type

Character

Application code

page

1208 (UTF-8)

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))

Character conversion: None.

Data loss: None.

Truncation: None.

282 pureXML Guide

Scenario 2

 Encoding source Value

Data encoding UTF-16 Unicode input data, with or without an appropriate encoding

declaration or BOM

Application data

type

Graphic

Application code

page

Any SBCS code page or CCSID 1208

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS DBCLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from UTF-16 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-16 to UTF-8, due to

expansion.

Scenario 3

 Encoding source Value

Data encoding ISO-8859-1 input data, with or without an appropriate encoding

declaration

Application data

type

Character

Application code

page

819

Example input statements:

INSERT INTO T1 (XMLCOL) VALUES (?)

INSERT INTO T1 (XMLCOL) VALUES

 (XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 819 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Scenario 4

 Encoding source Value

Data encoding Shift_JIS input data, with or without an appropriate encoding declaration

Application data

type

Graphic

Chapter 11. XML data encoding 283

Encoding source Value

Application code

page

943

Example input statements:

INSERT INTO T1 VALUES (?)

INSERT INTO T1 VALUES

 (XMLPARSE(DOCUMENT CAST(? AS DBCLOB)))

Character conversion: The DB2 database system converts the data from CCSID 943 to

UTF-8 when it performs the XML parse for storage in the XML column.

Data loss: None.

Truncation: None.

Encoding scenarios for retrieval of XML data with implicit

serialization

The following examples demonstrate how the target encoding and application code

page affect data conversion, truncation, and internal encoding during XML data

retrieval with implicit serialization.

Only scenario 1 and scenario 2 apply to Java and .NET applications, because the

application code page for Java applications is always Unicode. In general, code

page conversion is not a problem for Java and .NET applications.

Scenario 1

 Encoding source Value

Target data

encoding

UTF-8 Unicode

Target

application data

type

Binary

Application code

page

Not applicable

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: None.

Data loss: None.

Truncation: None.

Internal encoding in the serialized data: For applications other than Java or .NET

applications, the data is prefixed by the following XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

For Java or .NET applications, no encoding declaration is added, unless you cast

the data as the com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to

284 pureXML Guide

retrieve the data. The declaration that is added depends on the getDB2Xmlxxx that

you use.

Scenario 2

 Encoding source Value

Target data

encoding

UTF-16 Unicode

Target

application data

type

Graphic

Application code

page

Any SBCS code page or CCSID 1208

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-8 to UTF-16, due to

expansion.

Internal encoding in the serialized data: For applications other than Java or .NET

applications, the data is prefixed by a UTF-16 Byte Order Mark (BOM) and the

following XML declaration:

<?xml version="1.0" encoding="UTF-16" ?>

For Java or .NET applications, no encoding declaration is added, unless you cast

the data as the com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to

retrieve the data. The declaration that is added depends on the getDB2Xmlxxx that

you use.

Scenario 3

 Encoding source Value

Target data

encoding

ISO-8859-1 data

Target

application data

type

Character

Application code

page

819

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in

CCSID 819. The DB2 database system generates an error.

Chapter 11. XML data encoding 285

Truncation: None.

Internal encoding in the serialized data: The data is prefixed by the following XML

declaration:

<?xml version="1.0" encoding="ISO-8859-1" ?>

Scenario 4

 Encoding source Value

Target data

encoding

Windows-31J data (superset of Shift_JIS)

Target

application data

type

Graphic

Application code

page

943

Example output statements:

SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in

CCSID 943. The DB2 database system generates an error.

Truncation: Truncation can occur during conversion from UTF-8 to CCSID 943 due

to expansion.

Internal encoding in the serialized data: The data is prefixed by the following XML

declaration:

<?xml version="1.0" encoding="Windows-31J" ?>

Encoding scenarios for retrieval of XML data with explicit

XMLSERIALIZE

The following examples demonstrate how the target encoding and application code

page affect data conversion, truncation, and internal encoding during XML data

retrieval with an explicit XMLSERIALIZE invocation.

Only scenario 1 and scenario 2 apply to Java and .NET applications, because the

application code page for Java applications is always Unicode.

Scenario 1

 Encoding source Value

Target data

encoding

UTF-8 Unicode

Target

application data

type

Binary

Application code

page

Not applicable

286 pureXML Guide

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS BLOB(1M) INCLUDING XMLDECLARATION) FROM T1

Character conversion: None.

Data loss: None.

Truncation: None.

Internal encoding in the serialized data: The data is prefixed by the following XML

declaration:

<?xml version="1.0" encoding="UTF-8" ?>

Scenario 2

 Encoding source Value

Target data

encoding

UTF-16 Unicode

Target

application data

type

Graphic

Application code

page

Any SBCS code page or CCSID 1208

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-8 to UTF-16, due to

expansion.

Internal encoding in the serialized data: None, because EXCLUDING

XMLDECLARATION is specified. If INCLUDING XMLDECLARATION is

specified, the internal encoding indicates UTF-8 instead of UTF-16. This can result

in XML data that cannot be parsed by application processes that rely on the

encoding name.

Scenario 3

 Encoding source Value

Target data

encoding

ISO-8859-1 data

Target

application data

type

Character

Application code

page

819

Chapter 11. XML data encoding 287

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in

CCSID 819. If a character cannot be represented in CCSID 819, the DB2 database

manager inserts a substitution character in the output and issues a warning.

Truncation: None.

Internal encoding in the serialized data: None, because EXCLUDING

XMLDECLARATION is specified. If INCLUDING XMLDECLARATION is

specified, the database manager adds internal encoding for UTF-8 instead of

ISO-8859-1. This can result in XML data that cannot be parsed by application

processes that rely on the encoding name.

Scenario 4

 Encoding source Value

Target data

encoding

Windows-31J data (superset of Shift_JIS)

Target

application data

type

Graphic

Application code

page

943

Example output statements:

SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in

CCSID 943. If a character cannot be represented in CCSID 943, the database

manager inserts a substitution character in the output and issues a warning.

Truncation: Truncation can occur during conversion from UTF-8 to CCSID 943 due

to expansion.

Internal encoding in the serialized data: None, because EXCLUDING

XMLDECLARATION is specified. If INCLUDING XMLDECLARATION is

specified, the internal encoding indicates UTF-8 instead of Windows-31J. This can

result in XML data that cannot be parsed by application processes that rely on the

encoding name.

288 pureXML Guide

Chapter 12. Annotated XML schema decomposition

Annotated XML schema decomposition

Annotated XML schema decomposition, also referred to as ″decomposition″ or

″shredding,″ is the process of storing content from an XML document in columns

of relational tables. Annotated XML schema decomposition operates based on

annotations specified in an XML schema. After an XML document is decomposed,

the inserted data has the SQL data type of the column that it is inserted into.

An XML schema consists of one or more XML schema documents. In annotated

XML schema decomposition, or schema-based decomposition, you control

decomposition by annotating a document’s XML schema with decomposition

annotations. These annotations specify details such as the name of the target table

and column the XML data is to be stored in, the default SQL schema for when a

target table’s SQL schema is not identified, the order in which XML data should be

inserted into target tables, as well as any transformation of the content before it is

stored. Refer to the summary of decomposition annotations for further examples of

what can be specified through these annotations.

The annotated schema documents must be stored in and registered with the XML

schema repository (XSR). The schema must then be enabled for decomposition.

After the successful registration of the annotated schema, decomposition can be

performed either by calling one of the decomposition stored procedures or by

executing the DECOMPOSE XML DOCUMENT command.

Note that schema-based decomposition can be disabled or made inoperative. Refer

to the topic on decomposition disablement for more information.

Advantage of annotated XML schema decomposition

Annotated XML schema decomposition can be a solution for storing XML

documents that conform to an XML schema, but where the XML schema does not

readily match the definitions of the tables into which you are storing the

documents.

In cases where the XML schema does not clearly match the table structure, you

might need to adjust either the XML schema or the relational schema, or both, in

order for the documents to fit the table structure. Changes to the XML or relational

schema, however, might not always be possible or could be prohibitively

expensive, especially if existing applications expect the relational schema to have a

particular structure.

Annotated XML schema decomposition addresses this problem by enabling you to

decompose documents that are based on new or existing XML schemas, into new

or existing tables. This is possible because of the various features available in

annotated XML schema decomposition. These features, which are expressed as

annotations added to the XML schema documents, offer flexibility in mapping an

XML schema structure to a relational table structure.

© Copyright IBM Corp. 2006, 2007 289

Decomposing XML documents with annotated XML schemas

When you want to store pieces of an XML document in columns of one or more

tables, you can use annotated XML schema decomposition. This type of

decomposition breaks an XML document down for storage in tables, based on the

annotations specified in a registered annotated XML schema.

To decompose XML documents using annotated XML schemas:

1. If using a database created from earlier versions of DB2 database products, run

the BIND command using the list file xdb.lst, which is found in the

sqllib/bnd directory.

2. Annotate the schema documents with XML decomposition annotations.5

3. Register the schema documents and enable the schema for decomposition.

4. If any of the registered schema documents that belongs to the XML schema

have changed, then all documents for this XML schema must be registered

again and the XML schema must be enabled for decomposition.

5. Decompose the XML document with either of the following methods, providing

the XSR object name for the XML schema:

a. Call the xdbDecompXML stored procedure that is just large enough for the

size of the document being decomposed.

6

b. Issue the DECOMPOSE XML DOCUMENT command.

Registering and enabling XML schemas for decomposition

Once an annotated schema has been successfully registered and enabled for

decomposition, you can use it to decompose XML documents.

Prerequisites

v Ensure that at least one element or attribute declaration in the XML schema is

annotated with an XML decomposition annotation. This annotated element or

attribute must be a descendant of, or itself be, a global element of complex type.

v Ensure that the applheapsz configuration parameter is set to at least 1024.

Procedure

Choose one of the following methods to register and enable XML schemas for

decomposition:7

v Stored procedures:

1. Call the XSR_REGISTER stored procedure, passing in the primary schema

document.

2. If the XML schema consists of more than one schema document, call the

XSR_ADDSCHEMADOC stored procedure for each of the schema documents

that have not yet been registered.

3. Call the XSR_COMPLETE stored procedure with the isusedfordecomposition

parameter set to 1.

5. All tables and columns referenced in the set of annotated schema documents that compose the XML schema must exist in the

database before the schema documents are registered with the XML schema repository (XSR).

6. If you are using scripts or applications to decompose several documents of which the size is unknown, consider using the

DECOMPOSE XML DOCUMENT command to decompose, rather than the xdbDecompXML stored procedure, as the command

automatically calls the stored procedure appropriate for the size of the document.

7. If the XML schema was previously registered using any of these methods, but not enabled for decomposition, you can enable the

schema for decomposition by issuing the ALTER XSROBJECT SQL statement with the ENABLE DECOMPOSITION option.

290 pureXML Guide

v Command line:

– If the XML schema consists of only one schema document, issue the

REGISTER XML SCHEMA command with the COMPLETE and ENABLE

DECOMPOSITION options.

– If the XML schema consists of more than one schema document:

1. For each schema document except the last, issue the REGISTER XML

SCHEMA command.

2. For the last schema document that has not yet been registered, issue the

REGISTER XML SCHEMA command with the COMPLETE and ENABLE

DECOMPOSITION options.
v JDBC interface:

1. Call the DB2Connection.registerDB2XMLSchema method and set the

isUsedForDecomposition boolean parameter to true to enable

decomposition.8

When an XML schema is enabled for decomposition, a dependency is created

between each table referenced in the schema and the XSR object that corresponds

to this schema. This dependency prevents any table referenced in the schema from

being renamed. The XSR object for the XML schema must be disabled for

decomposition in order for a referenced table to be renamed. The tables referenced

by XSR objects can be found in the SYSCAT.XSROBJECTDEP catalog view.

Annotated XML schema decomposition and recursive XML

documents

XML schemas containing recursion can be registered in the XML schema repository

(XSR) and enabled for decomposition, with the restriction that the recursive

relationships themselves cannot be decomposed as scalar values into a target table.

By using appropriate schema annotations, the recursive sections can be stored and

later retrieved as serialized markup.

Types of recursion

An XML schema is said to be recursive when the definition of types in it allow for

elements of the same name and type to appear in their own definition. Recursion

may be explicit or implicit.

Explicit recursion

 Explicit recursion occurs when an element is defined in terms of itself. This

is shown in the following example, where the element <root> is explicitly

referred to in its own definition using the ref element declaration attribute:

<xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element ref="root" minOccurs=”0”/>

 </xs:sequence>

 </xs:complexType>

8. This method exists in two forms: one form for XML schema documents that are input from an InputStream object, and one form

for XML schema documents that are in a String.

Chapter 12. Annotated XML schema decomposition 291

</xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

With explicit recursion, a recursive branch is delimited as follows:

v The start of a recursive branch is a declaration of element Y whose

ancestors do not consist of another element declaration of Y. The start of

a recursive branch can have multiple branches of descendants; for a

particular descendant branch, if the branch has another element

declaration of Y, the branch is considered a recursive branch.

v The end of a recursive branch is the highest level element declaration of

Y that is a descendant of the start of the branch. Note that the end of

branch is specifically an element reference

The node that is a start of a recursive branch can serve as the starting node

for multiple recursive branches. In the following example there are two

explicitly recursive branches:

1. <root> (*), , <root> (**)

2. <root> (*), , <root> (***)

<xs:element name="root"> <!-- * -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element ref="root" minOccurs=”1”/> <!-- ** -->

 <xs:element ref="root" minOccurs=”1”/> <!-- *** -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

A recursive branch delineates how its member elements are decomposed.

In the instance document, the occurrence of element Y that corresponds to

the start of the recursive branch, and its descendants, up to the occurrence

of Y that corresponds to the end of that branch, can be decomposed as

scalar values. The occurrence of Y in the instance document corresponding

to the end of the recursive branch, marks the recursive region. The

recursive region begins with the starting element tag of this occurrence of

Y, and ends with the end element tag of the occurrence. All elements and

attributes in the instance document that are in this recursive region can be

decomposed as markup or as string values, depending on the value

specified for the db2-xdb:contentHandling decomposition annotation.

Implicit recursion

 Implicit recursion occurs when an element with a complex type definition

contains another element, also defined as a complex type, where the latter

has as its type attribute the name of a complex type definition of which it

is a part. This is shown in the following example, where the element

<beginRecursion> refers to the type “rootType” and the element

<beginRecursion> is itself part of the type “rootType” being defined:

292 pureXML Guide

<xs:element name="root" type="rootType"/>

<xs:complexType name="rootType">

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element name="beginRecursion" type="rootType" minOccurs=”0”/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

With implicit recursion, a recursive branch is delimited as follows:

v The start of a recursive branch is a declaration of element Y of

complexType type CT whose ancestors do not consist of another element

declaration of type CT. The start of a recursive branch can have multiple

branches of descendants; for a particular descendant branch, if the

branch has another element declaration of Z of type CT, the branch is

considered a recursive branch.

v The end of a recursive branch is the highest level element declaration of

type CT that is a descendant of the start of the branch.

The node that is a start of a recursive branch can serve as the starting node

for multiple recursive branches. In the following example there are two

implicitly recursive branches:

1. <root>, , <beginRecursion>

2. <root>, , <anotherRecursion>

<xs:element name="root" type="rootType"/>

<xs:complexType name="rootType">

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element name="beginRecursion" type="rootType" minOccurs=”2”/>

 <xs:element name="anotherRecursion" type="rootType" minOccurs=”0”/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

There is a slight difference in how this second, implicit type of recursion is

decomposed, as compared to explicit recursion. In the instance document,

the occurrence of element Y that corresponds to the start of the recursive

branch, and its descendants, up to the occurrence of Z that corresponds to

the end of that branch, can be decomposed as scalar values. This

occurrence of Z in the instance document marks the recursive region. The

recursive region begins after the starting element tag of Z, and ends

immediately before the end element tag of Z. All element descendants of

this occurrence of Z lie in this recursive region. However, the attributes of

this occurrence are outside the recursive region and can therefore be

decomposed as scalar values.

Chapter 12. Annotated XML schema decomposition 293

Decomposition behavior for recursive branches

For both types of recursion, the recursive branch delineates non-recursive and

recursive regions in the corresponding part of the instance document. Only the

non-recursive regions of an XML instance document can be decomposed as scalar

values into a target database table. This restriction includes any non-recursive

regions within one branch that are part of a recursive region of an enclosing

branch. That is, if recursive branch RB2 is completely encompassed by recursive

branch RB1, then for some instances of RB2 in the instance XML document, its

non-recursive region can fall inside the recursive region of an instance of RB1. In

this case, this non-recursive region cannot be decomposed as scalar values; instead

it is part of the markup which is the decomposition result for RB1. For any

instance of RB2, only the non-recursive region of the instance that is not inside any

other recursive region can be decomposed as scalar values.

For example, the following XML schema contains two recursive branches:

1. RB1 (<root> (identified with *), , <root> (identified with **))

2. RB2 (<d>, <d>)
<xs:element name="d">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="d">

 </xs:sequence>

 <xs:attribute name="id" type="xs:int"/>

 </xs:complexType>

</xs:element>

<xs:element name="root"> <!-- * -->

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element ref="d"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element ref="root" minOccurs=”1”/> <!-- ** -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The recursive regions of an associated instance document are highlighted below.

There are two instances of RB2 (<d>, <d>) in the instance document, but only the

non-recursive region of the first instance of RB2 (<d> identified by #) can be

decomposed as scalar values. That is, the attribute id="1" can be decomposed. The

non-recursive region of the second instance of RB2 is completely within the second

highlighted area, which is a recursive region of the instance of RB1. Therefore, the

attribute id="2" cannot be decomposed.

<root>

 <a>a str1

 <d id="1"> <d id="11"> </d> </d>

 <c>c str1</c>

 <root>

 <a>a str11

 <d id="2"> <d id="22"> </d> </d>

 <c>c str11</c>

294 pureXML Guide

 </root>

</root>

Example: Using the db2-xdb:contentHandling decomposition

annotation with both types of recursion

This example demonstrates decomposition behavior for both the explicit and

implicit type of recursion, and the results of setting different values for the

db2-xdb:contentHandling annotation. In the following two XML instance

documents the recursive regions are highlighted.

In Document 1, recursion begins when the <root> element appears below itself:

<root>

 <a>a str1

 <c>c str1</c>

 <root>

 <a>a str11

 <c>c str11</c>

 </root>

</root>

In Document 2, recursion begins for elements below the element

<beginRecursion>:

<root>

 <a>a str2

 <c>c str2</c>

 <beginRecursion>

 <a>a str22

 <c>c str22</c>

 </beginRecursion>

</root>

In an instance document, all elements or attributes and their contents that appear

between the beginning of recursion and end of recursion cannot be decomposed as

scalar values into table-column pairs. However a serialized markup version of the

items between the beginning of recursion and end of recursion can be obtained by

annotating an element (of complexType) in the recursive branch with the

db2-xdb:contentHandling attribute set to “serializeSubtree”. A text serialization of

all the character data in this part can also be obtained by setting

db2-xdb:contentHandling to “stringValue”. In general, the content or markup of

the recursive path can be obtained by setting the db2-xdb:contentHandling

attribute appropriately at any complexType element of the recursive branch or on

an element that is an ancestor of the elements in the recursive branch.

For instance, annotating element in the following XML schema:

<xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b"

 db2-xdb:rowSet=”TABLEx”

Chapter 12. Annotated XML schema decomposition 295

db2-xdb:column=”COLx”

 db2-xdb:contentHandling=”serializeSubtree”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element ref="root" minOccurs=”0”/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

results in this XML fragment being inserted into a row of TABLEx, COLx when

Document 1 is decomposed:

 <c>c str1</c>

 <root>

 <a>a str11

 <c>c str11</c>

 </root>

Similarly, annotating element “beginRecursion” in the following XML schema:

<xs:element name="root" type="rootType"/>

<xs:complexType name="rootType">

 <xs:sequence>

 <xs:element name="a" type="xs:string"/>

 <xs:element name="b">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="c" type="xs:string"/>

 <xs:element name="beginRecursion"

 type="rootType" minOccurs=”0”

 db2-xdb:rowSet=”TABLEx”

 db2-xdb:column=”COLx”

 db2-xdb:contentHandling=”serializeSubtree”/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

results in this XML fragment being inserted into a row of TABLEx, COLx when

Document 2 is decomposed:

 <beginRecursion>

 <a>a str22

 <c>c str22</c>

 </beginRecursion>

Disabling of annotated XML schema decomposition

Annotated XML schema decomposition can be made inoperative by DB2 under

certain conditions or explicitly disabled by a user.

296 pureXML Guide

Conditions that make decomposition inoperative

Schema-based decomposition is automatically made inoperative if any of the

following conditions are satisfied, for annotated schemas that have been previously

registered and enabled for decomposition. (Note that an XML schema that is made

inoperative for decomposition can still be used for validation performed outside of

the context of decomposition, such as with the XMLVALIDATE SQL/XML

function.) The corrective action needed to re-enable decomposition is listed for

each condition.

 Table 54. Conditions that make decomposition inoperative and corresponding corrective

action

Condition Action to re-enable decomposition

Table referenced in annotation is dropped Remove the reference to the dropped table

from the schema document, re-register the

entire annotated schema, and enable the

schema for decomposition

Column referenced in annotation has its data

type changed to a type that is compatible

with the XML schema type

Re-enable the schema for decomposition by

executing the ALTER XSROBJECT SQL

statement with the ENABLE

DECOMPOSITION option

Column referenced in annotation has its data

type changed to a type that is incompatible

with the XML schema type

Adjust the annotations as required,

re-register the entire annotated schema, and

enable the schema for decomposition

Document that belongs to the annotated

schema changes

Re-register all of the documents that form

that schema and enable the schema for

decomposition

For more information, refer to the task documentation on registering annotated

schemas and enabling decomposition.

Explicit disabling

You can explicitly disable schema-based decomposition by executing either of the

following SQL statements, specifying the XSR object that corresponds to the

annotated schema you want to disable:

v ALTER XSROBJECT with the DISABLE DECOMPOSITION option

Note: An XML schema that is disabled for decomposition can still be used for

validation.

v DROP with the XSROBJECT option

Note: Which option to choose depends on what the XML schema is needed for. If

the schema is needed for validation, then it should be disabled for decomposition,

rather than dropped. If the schema is used only for decomposition, and you do not

expect to use it again for decomposition, then you can drop the XSR object.

xdbDecompXML stored procedures for annotated schema

decomposition

Annotated XML schema decomposition can be invoked by calling one of six stored

procedures.

Annotated XML schema decomposition stored procedures:

v xdbDecompXML

Chapter 12. Annotated XML schema decomposition 297

v xdbDecompXML10MB

v xdbDecompXML25MB

v xdbDecompXML50MB

v xdbDecompXML75MB

v xdbDecompXML100MB

These stored procedures differ only in the size of the xmldoc argument, which

specifies the size of the input document to be decomposed. Call the stored

procedure that is just large enough for the size of the document you want to

decompose, to minimize system memory usage. For example, to decompose a

document 1MB in size, use the xdbDecompXML stored procedure.

The syntax for xdbDecompXML is presented below; refer to the description of the

xmldoc argument for specifications of the xmldoc argument for the

xdbDecompXML10MB, xdbDecompXML25MB, xdbDecompXML50MB,

xdbDecompXML75MB, and xdbDecompXML100MB stored procedures.

Syntax

�� xdbDecompXML (rschema , xmlschemaname , xmldoc , documentid , �

� validation , reserved , reserved , reserved) ��

The schema of the stored procedure is SYSPROC.

The xdbDecompXML procedure decomposes a single XML document. The

procedure executes with the read stability isolation level.

The stored procedure runs atomically; if it fails during execution, all operations

performed by the stored procedure are rolled back. To commit the changes made

by xdbDecompXML, the caller must execute the COMMIT SQL statement, as the

stored procedure itself does not execute COMMIT.

The authorization ID belonging to the statement that calls this stored procedure

must have one of the following:

v CONTROL privilege on all target tables referenced in the set of annotated

schema documents

v SYSADM or DBADM authority

or all of the following:

v INSERT privilege on all target tables referenced in the annotated schema

v SELECT, INSERT, UPDATE, or DELETE privilege, as applicable, on any table

referenced by the db2-xdb:expression or db2-xdb:condition annotation

rschema

An input argument of type VARCHAR(128) that specifies the SQL schema part

of the two-part XSR object name registered with the XML schema repository. If

this value is NULL, then the SQL schema part is assumed to be the current

value of the CURRENT SCHEMA special register.

xmlschemaname

An input argument of type VARCHAR(128) that specifies the schema name of

the two-part XSR object name registered with the XML schema repository. This

value cannot be NULL.

298 pureXML Guide

xmldoc

An input argument of type BLOB(1M) that specifies the buffer containing the

XML document to be decomposed.

Note:

v For the xdbDecompXML10MB stored procedure, this argument is of type

BLOB(10M).

v For the xdbDecompXML25MB stored procedure, this argument is of type

BLOB(25M).

v For the xdbDecompXML50MB stored procedure, this argument is of type

BLOB(50M).

v For the xdbDecompXML75MB stored procedure, this argument is of type

BLOB(75M).

v For the xdbDecompXML100MB stored procedure, this argument is of type

BLOB(100M).

documentid

An input argument of type VARCHAR(1024) that specifies the identifier for the

input XML document to be decomposed. The value provided in this argument

will be substituted for any use of $DECOMP_DOCUMENTID specified in the

db2-xdb:expression or db2-xdb:condition annotations in the corresponding

XML schema.

validation

An input argument of type INTEGER that indicates whether validation will be

performed on the document before it is decomposed. The possible values are:

0 Validation is not performed on the input document before it is

decomposed.

1 Validation is performed on the input document against DTDs or XML

schema documents previously registered with the XML schema repository.

The input XML document is decomposed only if the validation is

successful.

reserved

The reserved arguments are input arguments reserved for future use. The values

passed for these arguments must be NULL.

Output

There is no explicit output argument for this stored procedure. Check the sqlcode

field of the SQLCA structure for any errors that might have occurred during

decomposition. The possible sqlcode values following the completion of

decomposition are:

0 Document was successfully decomposed.

positive integer

Document was successfully decomposed, but with warning conditions. The

warnings are logged in the db2diag.log file, located in the first occurrence data

capture (FODC) storage directory.

negative integer

Document could not be decomposed. The sqlcode indicates the reason for the

failure. Check the db2diag.log file for details of the failure.

Chapter 12. Annotated XML schema decomposition 299

DECOMPOSE XML DOCUMENT

This command invokes a stored procedure to decompose a single XML document

using a registered and decomposition-enabled XML schema..

Authorization

One of the following groups of privileges or authorities is required:

v All of the following privileges:

– INSERT privileges on the target table, as required for the operation specified

in the action file

– SELECT, INSERT, UPDATE or DELETE privileges as required, on any table

referenced in the db2-xdb:expression or db2-xdb:condition annotation

– USAGE privilege on the XML schema if the VALIDATE option is specified
v One of the following privileges or authorities:

– CONTROL privilege on the target table

– sysadm or dbadm authority

Required connection

Database.

Command syntax

�� DECOMPOSE XML DOCUMENT xml-document-name XMLSCHEMA xml-schema-name �

�
VALIDATE

 ��

Command parameters

DECOMPOSE XML DOCUMENT xml-document-name

xml-document-name is the file path and file name of the input XML

document to be decomposed.

XMLSCHEMA xml-schema-name

xml-schema-name is the name of an existing XML schema registered with

the XML schema repository to be used for document decomposition.

xml-schema-name is a qualified SQL identifier consisting of an optional SQL

schema name followed by a period and the XML schema name. If the SQL

schema name is not specified, it is assumed to be the value of the DB2

special register CURRENT SCHEMA.

VALIDATE

This parameter indicates that the input XML document is to be validated

first, then decomposed only if the document is valid. If VALIDATE is not

specified, the input XML document will not be validated before

decomposition.

Examples

The following example specifies that the XML document ~./gb/document1.xml is

to be validated and decomposed with the registered XML schema

DB2INST1.GENBANKSCHEMA.

300 pureXML Guide

DECOMPOSE XML DOCUMENT ./gb/document1.xml

 XMLSCHEMA DB2INST1.GENBANKSCHEMA

 VALIDATE

The following example specifies that the XML document ./gb/document2.xml is to

be decomposed without validation with the registered XML schema

DB2INST2.″GENBANK SCHEMA1″, on the assumption that the value of the DB2

special register CURRENT SCHEMA is set to DB2INST2.

DECOMPOSE XML DOCUMENT ./gb/document2.xml

 XMLSCHEMA "GENBANK SCHEMA1"

XML decomposition annotations

Annotated XML schema decomposition relies on annotations added to XML

schema documents. These decomposition annotations function as mappings

between the elements or attributes of the XML document to their target tables and

columns in the database. Decomposition processing refers to these annotations to

determine how to decompose an XML document.

The XML decomposition annotations belong to the http://www.ibm.com/xmlns/
prod/db2/xdb1 namespace and are identified by the ″db2-xdb″ prefix throughout

the documentation. You can select your own prefix; however, if you do, you must

bind your prefix to the following namespace: http://www.ibm.com/xmlns/prod/
db2/xdb1. The decomposition process recognizes only annotations that are under

this namespace at the time the XML schema is enabled for decomposition.

The decomposition annotations are recognized by the decomposition process only

if they are added to element and attribute declarations, or as global annotations, in

the schema document. They are either specified as attributes or as part of an

<xs:annotation> child element of the element or attribute declaration. Annotations

added to complex types, references, or other XML schema constructs are ignored.

Although these annotations exist in the XML schema documents, they do not affect

the original structure of the schema document, nor do they participate in the

validation of XML documents. They are referred to only by the XML

decomposition process.

Two annotations that are core features of the decomposition process are:

db2-xdb:rowSet and db2-xdb:column. These annotations specify the decomposed

value’s target table and column, respectively. These two annotations must be

specified in order for the decomposition process to successfully complete. Other

annotations are optional, but can be used for further control of how the

decomposition process operates.

XML decomposition annotations - Specification and scope

Annotations for decomposition can be specified as either element or attribute

declarations in an XML schema document.

Annotations can be specified as either:

v a simple attribute on an element or attribute declaration, or

v a structured (complex) child element of an element or attribute declaration,

which consists of simple elements and attributes

Chapter 12. Annotated XML schema decomposition 301

Annotations as attributes

Annotations specified as simple attributes on element or attribute declarations

apply only to that element or attribute on which it is specified.

For example, the db2-xdb:rowSet and db2-xdb:column decomposition annotations

can be specified as attributes. These annotations would be specified as follows:

<xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="ISBN"/>

The db2-xdb:rowSet and db2-xdb:column annotations apply only to this element

named isbn.

Annotations as structured child elements

Annotations specified as structured children elements of an element or attribute

declaration must be specified in the schema document within the

<xs:annotation><xs:appinfo></xs:appinfo></xs:annotation> hierarchy defined by

XML Schema.

For example, the db2-xdb:rowSet and db2-xdb:column annotations can be specified

as children elements (they are children of the <db2-xdb:rowSetMapping>

annotation) as follows:

<xs:element name="isbn" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

Specifying the db2-xdb:rowSet and db2-xdb:column annotations as children

elements is equivalent to specifying these annotations as attributes (which was

shown previously). While more verbose than the method of specifying annotations

as attributes, specifying annotations as children elements is required when you

need to specify more than one <db2-xdb:rowSetMapping> for an element or

attribute; that is, when you need to specify multiple mappings on the same

element or attribute declaration.

Global annotations

When an annotation is specified as a child of the <xs:schema> element, it is a

global annotation that applies to all of the XML schema documents that make up

the XML schema.

For example, the <db2-xdb:defaultSQLSchema> annotation indicates the default

SQL schema for all unqualified tables referenced in the XML schema.

<db2-xdb:defaultSQLSchema> must be specified as a child element of

<xs:schema>:

<xs:schema>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>

302 pureXML Guide

</xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

This declaration specifies that all unqualified tables across all schema documents

that form this XML schema will have the SQL schema of ″admin″.

Refer to the documentation for a specific annotation to determine how a particular

annotation can be specified.

XML decomposition annotations - Summary

DB2 supports a set of annotations used by the annotated XML schema

decomposition process to map elements and attributes from an XML document to

target database tables. The following summary of some of the XML decomposition

annotations is grouped by the tasks and actions you use the annotations to

perform.

For more information about a specific annotation, refer to the detailed

documentation about it.

 Table 55. Specifying the SQL schema

Action XML decomposition annotation

Specify the default SQL schema for all tables

that do not specify their SQL schema

db2-xdb:defaultSQLSchema

Specify an SQL schema different from the

default for a specific table

db2-xdb:table (<db2-xdb:SQLSchema> child

element)

 Table 56. Mapping XML elements or attributes to target base tables

Action XML decomposition annotation

Map a single element or attribute to single

column and table pair

db2-xdb:rowSet with db2-xdb:column as

attribute annotations or

db2-xdb:rowSetMapping

Map a single element or attribute to one or

more distinct column and table pairs

db2-xdb:rowSetMapping

Map multiple elements or attributes to

single column and table pair

db2-xdb:table

Specify ordering dependencies between

target tables

db2-xdb:rowSetOperationOrder,

db2-xdb:rowSet, db2-xdb:order

 Table 57. Specifying the XML data to be decomposed

Action XML decomposition annotation

Specify the type of content to be inserted for

an element of complex type (text, string, or

markup)

db2-xdb:contentHandling

Specify any content transformation to be

applied before insertion

 db2-xdb:normalization, db2-xdb:expression,
 db2-xdb:truncate

Filter the data to be decomposed based on

the item’s content or the context in which it

appears

 db2-xdb:condition db2-xdb:locationPath

Chapter 12. Annotated XML schema decomposition 303

db2-xdb:defaultSQLSchema decomposition annotation

The db2-xdb:defaultSQLSchema annotation specifies the default SQL schema for all

table names referenced in the XML schema that are not explicitly qualified using

the db2-xdb:table annotation.

<db2-xdb:defaultSQLSchema> belongs to the set of decomposition annotations that

can be added to an XML schema document to describe the mappings between

elements and attributes of XML documents to DB2 base tables. The decomposition

process uses the annotated XML schema to determine how elements and attributes

of an XML document should be decomposed into DB2 tables.

Annotation type

Child element of <xs:appinfo> that is a child of a global <xs:annotation> element.

How to specify

db2-xdb:defaultSQLSchema is specified in the following way (where value

represents a valid value for the annotation):

<xs:schema>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>value</db2-xdb:defaultSQLSchema>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

Either an ordinary or delimited SQL schema name. Ordinary, or undelimited, SQL

schema names are case-insensitive. To specify a delimited SQL schema, use

quotation marks that are normally used to delimit SQL identifiers. SQL schema

names that contain the special characters ’<’ and ’&’ must be escaped in the XML

schema document.

Details

All tables referenced in annotated schemas must be qualified with their SQL

schema. Tables can be qualified in two ways, either by explicitly specifying the

<db2-xdb:SQLSchema> child element of the <db2-xdb:table> annotation or by

using the <db2-xdb:defaultSQLSchema> global annotation. For any unqualified

table name, the value specified in <db2-xdb:defaultSQLSchema> is used as its SQL

schema name. If multiple schema documents in an annotated schema specify this

annotation, all values must be the same.

Example

The following example shows how the ordinary, or undelimited, SQL identifier

admin is defined as the SQL schema for all unqualified tables in the annotated

schema:

304 pureXML Guide

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

The following example shows how the delimited SQL identifier admin schema is

defined as the SQL schema for all unqualified tables in the annotated schema. Note

that admin schema must be delimited with quotation marks:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>"admin schema"</db2-xdb:defaultSQLSchema>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

db2-xdb:rowSet decomposition annotation

The db2-xdb:rowSet annotation specifies an XML element or attribute mapping to

a target base table.

db2-xdb:rowSet belongs to the set of decomposition annotations that can be added

to an XML schema document to describe the mappings between elements and

attributes of XML documents to DB2 base tables. The decomposition process uses

the annotated XML schema to determine how elements and attributes of an XML

document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or child element of

<db2-xdb:rowSetMapping> or <db2-xdb:order>

How to specify

db2-xdb:rowSet is specified in any of the following ways (where value represents a

valid value for the annotation):

v <xs:element db2-xdb:rowSet="value" />

v <xs:attribute db2-xdb:rowSet="value" />

v <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:rowSetMapping>

v <db2-xdb:order>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:order>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Chapter 12. Annotated XML schema decomposition 305

Valid values

Any identifier that adheres to the rules for SQL identifiers. Refer to the identifiers

documentation for more information.

Details

The db2-xdb:rowSet annotation maps an XML element or attribute to a target base

table. This annotation can either identify a table name directly, or identify a rowSet

name in more complex mappings, where the rowSet is then associated with a table

name through the db2-xdb:table annotation. In simple mappings, this annotation

specifies the name of the table the value is to be decomposed into. In more

complex mappings, where multiple rowSets (each with a distinct name) map to the

same table, then this annotation names the rowSet, rather than the table name.

The target base table into which this XML element’s or attribute’s value will be

decomposed is determined by the presence of other annotations in the set of

schema documents that form the annotated schema:

v If the value of db2-xdb:rowSet does not match any of the <db2-xdb:rowSet>

children elements of the <db2-xdb:table> global annotation, then the name of the

target table is the value specified by this annotation, qualified by an SQL schema

defined by the <db2-xdb:defaultSQLSchema> global annotation. This usage of

db2-xdb:rowSet is for the case in which, for a particular table, there is only one

set of elements or attributes that maps to the table.

v If the value of db2-xdb:rowSet matches a <db2-xdb:rowSet> child element of the

<db2-xdb:table> global annotation, then the name of the target table is the table

named in the <db2-xdb:name> child of <db2-xdb:table>. This usage of

db2-xdb:rowSet is for the more complex case in which, for a particular table,

there are multiple (possibly overlapping) sets of elements or attributes that map

to that table.

Important: Ensure that the table that this annotation refers to exists in the

database when the XML schema is registered with the XML schema repository.

(The columns specified in the db2-xdb:column annotations must also exist when

registering the XML schema.) If the table does not exist, then an error is returned

when the XML schema is enabled for decomposition. If <db2-xdb:table> specifies

an object other than a table, then an error is returned as well.

When the db2-xdb:rowSet annotation is used, either the db2-xdb:column

annotation or the db2-xdb:condition annotation must be specified. The combination

of db2-xdb:rowSet and db2-xdb:column describe the table and column to which

this element or attribute will be decomposed into. The combination of

db2-xdb:rowSet and db2-xdb:condition specifies the condition that must be true for

any rows of that rowSet to be inserted into the table (referred to either directly, or

indirectly through the <db2-xdb:table> annotation).

Example

The two ways of using db2-xdb:rowSet listed above, are demonstrated next.

Single set of elements or attributes mapped to a table

Assume for the following section of an annotated schema that the

BOOKCONTENTS table belongs to the SQL schema specified by

306 pureXML Guide

<db2-xdb:defaultSQLSchema>, and that there is no global <db2-xdb:table> element

present which has a <db2-xdb:rowSet> child element that matches

″BOOKCONTENTS″.

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTCONTENT" />

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTNUM" />

 <xs:attribute name="title" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTTITLE" />

 </xs:complexType>

 <xs:simpleType name="paragraphType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

Consider the following element from an XML document:

 <book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 ...

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

 </chapter>

 ...

 </book>

The BOOKCONTENTS table is then populated as follows:

 Table 58. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 Introduction to XML XML is fun...

1-11-111111-1 2 XML and Databases XML can be used

with...

...

1-11-111111-1 10 Further Reading Recommended

tutorials...

Chapter 12. Annotated XML schema decomposition 307

Multiple sets of elements or attributes mapped to the same table

For the case where there exists a <db2-xdb:rowSet> child element of the

<db2-xdb:table> global annotation that matches the value specified in the

db2-xdb:rowSet annotation, the element or attribute is mapped to a table through

the <db2-xdb:table> annotation. Assume for the following section of an annotated

schema that the ALLBOOKS table belongs to the SQL schema specified by

<db2-xdb:defaultSQLSchema>.

<!-- global annotation -->

<xs:annotation>

 <xs:appinfo>

 <db2-xdb:table>

 <db2-xdb:name>ALLBOOKS</db2-xdb:name>

 <db2-xdb:rowSet>book</db2-xdb:rowSet>

 <db2-xdb:rowSet>textbook</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

</xs:annotation>

<xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer"

 db2-xdb:rowSet="book" db2-xdb:column="AUTHORID" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:rowSet="book" db2-xdb:column="ISBN" />

 <xs:attribute name="title" type="xs:string"

 db2-xdb:rowSet="book" db2-xdb:column="TITLE" />

 </xs:complexType>

</xs:element>

<xs:element name="textbook">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="textbook" db2-xdb:column="ISBN" />

 <xs:element name="title" type="xs:string"

 db2-xdb:rowSet="textbook" db2-xdb:column="TITLE" />

 <xs:element name="primaryauthorID" type="xs:integer"

 db2-xdb:rowSet="textbook" db2-xdb:column="AUTHORID" />

 <xs:element name="coauthorID" type="xs:integer"

 minOccurs="0" maxOccurs="unbounded" />

 <xs:element name="subject" type="xs:string" />

 <xs:element name="edition" type="xs:integer" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer" />

 <xs:attribute name="title" type="xs:string" />

</xs:complexType>

<xs:simpleType name="paragraphType">

 <xs:restriction base="xs:string"/>

</xs:simpleType>

Consider the following elements from an XML document:

308 pureXML Guide

<book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

 </chapter>

</book>

<textbook>

 <isbn>0-11-011111-0</isbn>

 <title>Programming with XML</title>

 <primaryauthorID>435</primaryauthorID>

 <subject>Programming</subject>

 <edition>4</edition>

 <chapter number="1" title="Programming Basics">

 <paragraph>Before you being programming...</paragraph>

 </chapter>

 <chapter number="2" title="Writing a Program">

 <paragraph>Now that you have learned the basics...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Advanced techniques">

 <paragraph>You can apply advanced techniques...</paragraph>

 </chapter>

</textbook>

In this example, there are two sets of elements or attributes that map to the table

ALLBOOKS:

v /book/@isbn, /book/@authorID, /book/title

v /textbook/isbn, /textbook/primaryauthorID, /textbook/title

The sets are distinguished by associating different rowSet names to each.

 Table 59. ALLBOOKS

ISBN TITLE AUTHORID

1-11-111111-1 My First XML Book 22

0-11-011111-0 Programming with XML 435

db2-xdb:table decomposition annotation

The <db2-xdb:table> annotation maps multiple XML elements or attributes to the

same target column; or enables you to specify a target table that has an SQL

schema different from the default SQL schema specified by <db2-
xdb:defaultSQLSchema>.

<db2-xdb:table> belongs to the set of decomposition annotations that can be added

to an XML schema document to describe the mappings between elements and

attributes of XML documents to DB2 base tables. The decomposition process uses

the annotated XML schema to determine how elements and attributes of an XML

document should be decomposed into DB2 tables.

Annotation type

Global child element of <xs:appinfo> (which is a child element of <xs:annotation>)

Chapter 12. Annotated XML schema decomposition 309

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported children elements of <db2-xdb:table>, listed in the

order in which they must appear if they are specified:

<db2-xdb:SQLSchema>

(Optional) The SQL schema of the table.

<db2-xdb:name>

The name of the base table. This table name, when qualified with the value

of either the preceding <db2-xdb:SQLSchema> annotation or the

<db2-xdb:defaultSQLSchema> annotation, must be unique among all

<db2-xdb:table> annotations across the set of XML schema documents that

form the annotated schema.

<db2-xdb:rowSet>

All elements and attributes that specify the same value for

<db2-xdb:rowSet> form a row. Because more than one <db2-xdb:rowSet>

element can be specified for the same value of <db2-xdb:name>, more than

one set of mappings can be associated with a single table. The combination

of the <db2-xdb:rowSet> value with the columns specified in the

db2-xdb:column annotation allows more than one set of elements or

attributes from a single XML document to be mapped to columns of the

same table.

 At least one <db2-xdb:rowSet> element must be specified, and each

<db2-xdb:rowSet> element must be unique among all <db2-xdb:table>

annotations across the set of XML schema documents that form the

annotated schema, for the annotation to be valid.

Whitespace within the character content of the children elements of

<db2-xdb:table> is significant and not normalized. Content of these elements must

follow the spelling rules for SQL identifiers. Undelimited values are

case-insensitive; for delimited values, quotation marks are used as the delimiter.

SQL identifiers that contain the special characters ’<’ and ’&’, must be escaped.

Details

The <db2-xdb:table> annotation must be used in either of the following cases:

v when multiple ancestry lines are mapped to the same column of a table

(mappings involving single location paths, meaning that there is only one set of

column mappings for the table, do not need to use this annotation; the

db2-xdb:rowSet annotation can be used instead)

v when the table that is to hold the decomposed data is not of the same SQL

schema as is defined by the <db2-xdb:defaultSQLSchema> annotation.

Only base tables can be specified; other types of tables, such as typed, summary,

temporary, or materialized query tables, are not supported for this mapping.

Nicknames can be specified for DB2 Database for Linux, UNIX, and Windows data

source objects only. Views and table aliases are not currently permitted for this

annotation.

310 pureXML Guide

Example

The following example shows how the <db2-xdb:table> annotation can be used to

group related elements and attributes together to form a row, when multiple

location paths are being mapped to the same column. Consider first the following

elements from an XML document (modified slightly from examples used for other

annotations).

<root>

 ...

 <book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <email>author22@anyemail.com</email>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 ...

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

 </chapter>

 </book>

 ...

 <author ID="0800" email="author800@email.com">

 <firstname>Alexander</firstname>

 <lastname>Smith</lastname>

 <activeStatus>0</activeStatus>

 </author>

 ...

<root>

Assume that the purpose of this decomposition mapping is to insert rows that

consist of author IDs and their corresponding email addresses into the same table,

AUTHORSCONTACT. Notice that author IDs and email addresses appear in both

the <book> element and the <author> element. Thus, more than one location path

will need to be mapped to the same columns of the same table. The

<db2-xdb:table> annotation, therefore, must be used. A section from the annotated

schema is presented next, showing how <db2-xdb:table> is used to associate

multiple paths to the same table.

<!-- global annotation -->

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>adminSchema</db2-xdb:defaultSQLSchema>

 <db2-xdb:table>

 <db2-xdb:SQLSchema>user1</db2-xdb:SQLSchema>

 <db2-xdb:name>AUTHORSCONTACT</db2-xdb:name>

 <db2-xdb:rowSet>bookRowSet</db2-xdb:rowSet>

 <db2-xdb:rowSet>authorRowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer"

 db2-xdb:rowSet="bookRowSet" db2-xdb:column="AUTHID" />

 <xs:element name="email" type="xs:string"

 db2-xdb:rowSet="bookRowSet" db2-xdb:column="EMAILADDR" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

Chapter 12. Annotated XML schema decomposition 311

</xs:sequence>

 <xs:attribute name="isbn" type="xs:string" />

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string" />

 <xs:element name="lastname" type="xs:string" />

 <xs:element name="activeStatus" type="xs:boolean" />

 </xs:sequence>

 <xs:attribute name="ID" type="xs:integer"

 db2-xdb:rowSet="authorRowSet" db2-xdb:column="AUTHID" />

 <xs:attribute name="email" type="xs:string"

 db2-xdb:rowSet="authorRowSet" db2-xdb:column="EMAILADDR" />

 </xs:complexType>

 </xs:element>

The <db2-xdb:table> annotation identifies the name of the target table for a

mapping with the db2-xdb:name child element. In this example,

AUTHORSCONTACT is the target table. To ensure that the ID and email addresses

from the <book> element are kept separate from those of the <author> element

(that is, each row contains logically related values), the <db2-xdb:rowSet> element

is used to associate related items. Even though in this example, the <book> and

<author> elements are separate entities, there can be cases where the entities to be

mapped are not separate and require a logical separation, which can be achieved

through the use of rowSets.

Note that the AUTHORSCONTACT table exists in an SQL schema different from

the default SQL schema, and the <db2-xdb:SQLSchema> element is used to specify

this. The resulting AUTHORSCONTACT table is shown below:

 Table 60. AUTHORSCONTACT

AUTHID EMAILADDR

22 author22@anyemail.com

0800 author800@email.com

This example illustrates how the logical grouping of values through rowSets

ensure that unrelated values are not unintentionally mapped to the same table and

column pair. In this example, /root/book/authorID and /root/author/@ID are

mapped to the same table and column pair. Similarly, /root/book/email and

/root/author/@email are mapped to the same table and column pair. Consider the

case if rowSets were not available. If, for example, the /root/book/email element

was not present in an instance of the <author> element and rowSets could not be

used, then it would not be possible to determine if the email from the <author>

element should be associated with /root/book/authorID or /root/author/@ID or

both. Thus the rowSets associated with a single table in the <db2-xdb:table>

annotation helps logically distinguish among different sets of rows.

db2-xdb:column decomposition annotation

The db2-xdb:column annotation specifies a column name of the table to which an

XML element or attribute has been mapped.

db2-xdb:column belongs to the set of decomposition annotations that can be added

to an XML schema document to describe the mappings between elements and

312 pureXML Guide

attributes of XML documents to DB2 base tables. The decomposition process uses

the annotated XML schema to determine how elements and attributes of an XML

document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or child element of

<db2-xdb:rowSetMapping>

How to specify

db2-xdb:column is specified in any of the following ways (where value represents a

valid value for the annotation):

v <xs:element db2-xdb:rowSet="value" db2-xdb:column="value" />

v <xs:attribute db2-xdb:rowSet="value" db2-xdb:column="value" />

v <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 <db2-xdb:column>value</db2-xdb:column>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

Any base table column name that adheres to the following:

v Undelimited column names are case-insensitive. For delimited column names,

escape the delimiter with ". For example, to specify a two word column

name, ″col one″, db2-xdb:column would be set as follows:

db2-xdb:column=""col one""

(Note that these conditions are requirements specific to this annotation.)

v Only columns of the following data types can be specified in this annotation: all

data types supported by the CREATE TABLE SQL statement, except user-defined

structured types.

Details

The db2-xdb:column annotation, specified as an attribute in the declaration of an

XML element or attribute, or as a child element of <db2-xdb:rowSetMapping>,

maps an XML element or attribute to the column name of a target table. When this

annotation is used, the db2-xdb:rowSet annotation must be specified as well.

Together they describe the table and column that will hold the decomposed value

for this element or attribute.

Example

The following example shows how content from the <book> element can be

inserted into columns of a table called BOOKCONTENTS, using the

db2-xdb:column annotation. A section of the annotated schema is presented first.

<xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer" />

Chapter 12. Annotated XML schema decomposition 313

<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

</xs:element>

<xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"

 db2-xdb:rowSet="BOOKCONTENTS"

 db2-xdb:column="CHPTCONTENT" />

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer"

 db2-xdb:rowSet="BOOKCONTENTS"

 db2-xdb:column="CHPTNUM" />

 <xs:attribute name="title" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS"

 db2-xdb:column="CHPTTITLE" />

</xs:complexType>

<xs:simpleType name="paragraphType">

 <xs:restriction base="xs:string"/>

</xs:simpleType>

The <book> element that is being mapped is presented next, followed by the

resulting BOOKCONTENTS table after the decomposition has completed. .

<book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 ...

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

 </chapter>

</book>

 Table 61. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 Introduction to XML XML is fun...

1-11-111111-1 2 XML and Databases XML can be used

with...

...

1-11-111111-1 10 Further Reading Recommended

tutorials...

db2-xdb:locationPath decomposition annotation

The db2-xdb:locationPath annotation maps an XML element or attribute globally

declared or as part of a reusable group, to different table and column pairs,

depending on the ancestry of the element or attribute. Reusable groups are

globally declared named complex types, named model groups, and named

attribute groups.

314 pureXML Guide

db2-xdb:locationPath belongs to the set of decomposition annotations that can be

added to an XML schema document to describe the mappings between elements

and attributes of XML documents to DB2 base tables. The decomposition process

uses the annotated XML schema to determine how elements and attributes of an

XML document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-
xdb:rowSetMapping>

How to specify

db2-xdb:locationPath is specified in any of the following ways (where value

represents a valid value for the annotation):

v <xs:element db2-xdb:locationPath="value" />

v <xs:attribute db2-xdb:locationPath="value" />

v <db2-xdb:rowSetMapping db2-xdb:locationPath="value">

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

The value of db2-xdb:locationPath must have the following syntax:

location path := ‘/’ (locationstep ‘/’)* lastlocationstep

locationstep := (prefix‘:’)? name

lastlocationstep := locationstep | ‘@’ (prefix:)? name

where name is an element or attribute name, and prefix is a namespace prefix.

Notes:

v All namespace prefixes used in the location path must have been associated with

a namespace in the schema document that contains the annotation specifying

this location path.

v A namespace prefix binding can be created by adding a namespace declaration

to the <xs:schema> element of the schema document.

v If prefix is empty, then name is assumed to be in no namespace. If a default

namespace is declared in the schema document, and a name in locationstep

belongs to that namespace, a namespace prefix must be declared for the default

namespace and used to qualify the name; in db2-xdb:locationPath, an empty

prefix does not refer to the default namespace.

Details

The db2-xdb:locationPath annotation is used to describe the mappings for elements

or attributes that are either declared globally or as part of either a:

v named model group

v named attribute group

v global complex type declaration

Chapter 12. Annotated XML schema decomposition 315

v global element or attribute of simple or complex type

For element or attribute declarations that cannot be reused (local declarations that

are not part of named complex type definitions or named model or attribute

groups), the db2-xdb:locationPath annotation has no effect.

db2-xdb:locationPath should be used when global element or attribute declarations

are used as references from various ancestry lines. (for example: <xs:element

ref=″abc″>). Because annotations cannot be specified directly on references, they

must instead be specified on the corresponding global element or attribute

declaration. Because the corresponding element or attribute declaration is global,

the element or attribute can be referenced from many different contexts within the

XML schema. In general, db2-xdb:locationPath should be used to distinguish the

mappings in these different contexts. For named complex types, model groups, and

attribute groups, the element and attribute declarations should be annotated for

each context in which they are mapped for decomposition. The

db2-xdb:locationPath annotation should be used to specify the target rowSet and

column pair for each locationPath. The same db2-xdb:locationPath value can be

used for different rowSet and column pairs.

Example

The following example shows how the same attribute can be mapped to different

tables depending on the context in which this attribute appears. A section of the

annotated schema is presented first.

 <!-- global attribute -->

 <xs:attribute name="title" type="xs:string"

 db2-xdb:rowSet="BOOKS"

 db2-xdb:column="TITLE"

 db2-xdb:locationPath="/books/book/@title">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping db2-xdb:locationPath="/books/book/chapter/@title">

 <db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>

 <db2-xdb:column>CHPTTITLE</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 <xs:element name="books">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string" />

 <xs:attribute ref="title" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer" />

316 pureXML Guide

<xs:attribute ref="title" />

 </xs:complexType>

 <xs:simpleType name="paragraphType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

Note that there is only one attribute declaration named ″title″, but there are two

references to this attribute in different contexts. One reference is from the <book>

element, and the other is from the <chapter> element. The value of the ″title″

attribute needs to be decomposed into different tables depending on the context.

This annotated schema specifies that a ″title″ value is decomposed into the BOOKS

table if it is a book title and into the BOOKCONTENTS table if it is a chapter title.

The <books> element that is being mapped is presented next, followed by the

resulting BOOKS table after the decomposition has completed.

<books>

 <book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 ...

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

 </chapter>

 </book>

...

</books>

 Table 62. BOOKS

ISBN TITLE CONTENT

NULL My First XML Book NULL

 Table 63. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

NULL NULL Introduction to XML NULL

NULL NULL XML and Databases NULL

...

NULL NULL Further Reading NULL

db2-xdb:expression decomposition annotation

The db2-xdb:expression annotation specifies a customized expression, the result of

which is inserted into the table this element is mapped to.

db2-xdb:expression belongs to the set of decomposition annotations that can be

added to an XML schema document to describe the mappings between elements

and attributes of XML documents to DB2 base tables. The decomposition process

uses the annotated XML schema to determine how elements and attributes of an

XML document should be decomposed into DB2 tables.

Chapter 12. Annotated XML schema decomposition 317

Annotation type

Attribute of <xs:element> or <xs:attribute>, or optional child element of

<db2-xdb:rowSetMapping>, effective only on annotations that include a column

mapping

How to specify

db2-xdb:expression is specified in any of the following ways (where value

represents a valid value for the annotation):

v <xs:element db2-xdb:expression="value" db2-xdb:column="value" />

v <xs:attribute db2-xdb:expression="value" db2-xdb:column="value" />

v <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 <db2-xdb:column>value</db2-xdb:column>

 <db2-xdb:expression>value</db2-xdb:expression>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

The value of db2-xdb:expression must have the following syntax, which constitutes

a subset of SQL expressions:

expression := function (arglist) | constant | $DECOMP_CONTENT | $DECOMP_ELEMENTID |

 $DECOMP_DOCUMENTID | (scalar-fullselect) | expression operator expression |

 (expression) | special-register | CAST (expression AS data-type) |

 XMLCAST (expression AS data-type) | XML-function

operator := + | - | * | / | CONCAT

arglist := expression | arglist, expression

Details

The db2-xdb:expression annotation enables you to specify a customized expression,

which is applied to the content of the XML element or attribute being annotated

when $DECOMP_CONTENT is used. The result of evaluating this expression is

then inserted into the column specified during decomposition.

This annotation is also useful in cases where you want to insert constant values

(such as the name of an element), or generated values that do not appear in the

document.

db2-xdb:expression must be specified using valid SQL expressions, and the type of

the evaluated expression must be statically determinable and compatible with the

type of the target column that the value is to be inserted into. The following subset

of SQL expressions are supported; any other SQL expressions not described below

are unsupported and have an undefined behavior in the context of this annotation.

function (arglist)

A built-in or user-defined scalar SQL function. The arguments of a scalar

function are individual scalar values. A scalar function returns a single

value (possibly null). Refer to the documentation on functions for more

information.

318 pureXML Guide

constant

A value, sometimes called a literal, that is a string constant or a numeric

constant. Refer to the documentation on constants for more information.

$DECOMP_CONTENT

The value of the mapped XML element or attribute from the document,

constructed according to the setting of the db2-xdb:contentHandling

annotation. Refer to the decomposition keywords documentation for more

information.

$DECOMP_ELEMENTID

A system-generated integer identifier that uniquely identifies within the

XML document, the element or attribute this annotation describes. Refer to

the decomposition keywords documentation for more information.

$DECOMP_DOCUMENTID

The string value specified in the documentid input parameter of the

xdbDecompXML stored procedure, which identifies the XML document

being decomposed. Refer to the decomposition keywords documentation

for more information.

(scalar-fullselect)

A fullselect, enclosed in parentheses, that returns a single row consisting of

a single column value. If the fullselect does not return a row, the result of

the expression is the NULL value.

expression operator expression

The result of two supported expression operands, as defined in the

supported values listing above. Refer to the documentation on expressions

for details on expression operations.

(expression)

An expression enclosed in parentheses that conforms to the list of

supported expressions defined above.

special-register

The name of a supported special register. This setting evaluates to the

value of the special register for the current server. Refer to the

documentation for special registers for a complete listing of supported

special registers.

CAST (expression AS data-type)

The expression cast to the specified SQL data type, if the expression is not

NULL. If the expression is NULL, the result is a null value of the SQL data

type specified. When inserting a NULL value into a column, the expression

must cast NULL into a compatible column type (for example: CAST

(NULL AS INTEGER), for an integer column).

XMLCAST (expression AS data-type)

The expression cast to the specified data type, if the expression is not

NULL. The expression or the target data type must be the XML type. If the

expression is NULL, the target type must be XML, and the result is a null

XML value.

XML-function

Any supported SQL/XML function.

Example

The following example shows how the db2-xdb:expression annotation can be used

to apply a value from the XML document to a user-defined function. The result

Chapter 12. Annotated XML schema decomposition 319

returned from the UDF is then inserted into the database, rather than the value

from the document itself. A section of the annotated schema is presented first.

<xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string" />

 <xs:element name="lastname" type="xs:string" />

 <xs:element name="activeStatus" type="xs:boolean" />

 <xs:attribute name="ID" type="xs:integer"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="NUMBOOKS"

 db2-xdb:expression="AuthNumBooks (INTEGER ($DECOMP_CONTENT))" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Assume that there is a user-defined function called AuthNumBooks that takes an

integer parameter, which represents the author’s ID, and returns the total number

of books that author has in the system.

The <author> element that is being mapped is presented next.

<author ID="22">

 <firstname>Ann</firstname>

 <lastname>Brown</lastname>

 <activeStatus>1</activeStatus>

</author>

$DECOMP_CONTENT is replaced with the value ″22″ from the instance of the ID

attribute. Because $DECOMP_CONTENT is always substituted with a character

type, and because the AuthNumBooks UDF takes an integer parameter, the

db2-xdb:expression annotation must cast $DECOMP_CONTENT to an integer.

Assume that the UDF returns the integer 8 for this author whose ID is 22; 8 is then

inserted into the NUMBOOKS column of the AUTHORS table, as shown next.

 Table 64. AUTHORS

AUTHID FIRSTNAME SURNAME ACTIVE NUMBOOKS

NULL NULL NULL NULL 8

db2-xdb:condition decomposition annotation

The db2-xdb:condition annotation specifies a condition that determines if a row

will be inserted into a table. A row that satisfies the condition might be inserted

(depending on other conditions for the rowSet, if any); a row that does not satisfy

the condition will not be inserted.

db2-xdb:condition belongs to the set of decomposition annotations that can be

added to an XML schema document to describe the mappings between elements

and attributes of XML documents to DB2 base tables. The decomposition process

uses the annotated XML schema to determine how elements and attributes of an

XML document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or optional child element of

<db2-xdb:rowSetMapping>. Condition is applied regardless of whether the

annotation to which it belongs contains a column mapping.

320 pureXML Guide

How to specify

db2-xdb:condition is specified in any of the following ways (where value represents

a valid value for the annotation):

v <xs:element db2-xdb:condition="value" />

v <xs:attribute db2-xdb:condition="value" />

v <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 <db2-xdb:condition>value</db2-xdb:condition>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

SQL predicates of the following types: basic, quantified, BETWEEN, EXISTS, IN, IS

VALIDATED, LIKE, NULL, and XMLEXISTS. The predicates must also consist of

expressions that are supported by the db2-xdb:expression annotation, column

names or both.

Details

The db2-xdb:condition annotation enables you to specify conditions under which

values are inserted into the database during decomposition. This annotation filters

rows by applying user-specified conditions. The rows that satisfy the specified

conditions are inserted into the database; rows that do not meet the conditions are

not inserted during decomposition.

If the db2-xdb:condition annotation is specified on multiple element or attribute

declarations of the same rowSet, then the row will be inserted only when the

logical AND of all conditions evaluate to true.

Column names in db2-xdb:condition

Because db2-xdb:condition consists of SQL predicates, column names can be

specified in this annotation. If a db2-xdb:condition annotation involving a rowSet

contains an unqualified column name, there must exist a mapping to that column

among all of the mappings involving that rowSet. Other column names, when

used in predicates containing SELECT statements, must be qualified. If

db2-xdb:condition specifies an unqualified column name, but the element or

attribute for which db2-xdb:condition is specified does not have a column mapping

specified, then when the condition is evaluated, the value that is evaluated is the

content of the element or attribute that maps to the referenced column name.

Consider the following example:

<xs:element name="a" type="xs:string"

 db2-xdb:rowSet="rowSetA" db2-xdb:condition="columnX=’abc’" />

<xs:element name="b" type="xs:string"

 db2-xdb:rowSet="rowSetB" db2-xdb:column="columnX" />

Notice that <a> does not have a column mapping specified, but the condition

references the column ″columnX″. When the condition is evaluated, ″columnX″ in

Chapter 12. Annotated XML schema decomposition 321

the condition will be replaced with the value from , because has specified

a column mapping for ″columnX″, while <a> does not have a column mapping. If

the XML document contained:

<a>abc

def

then the condition would evaluate to false in this case, because the value from

, ″def″, is evaluated in the condition.

If $DECOMP_CONTENT (a decomposition keyword that specifies the value of the

mapped element or attribute as character data), instead of the column name, is

used in the db2-xdb:condition attached to the element <a> declaration, then the

condition is evaluated using the value of <a>, rather than .

<xs:element name="a" type="xs:string"

 db2-xdb:rowSet="rowSetA" db2-xdb:condition="$DECOMP_CONTENT=’abc’" />

<xs:element name="b" type="xs:string"

 db2-xdb:rowSet="rowSetB" db2-xdb:column="columnX" />

If the XML document contained:

<a>abc

def

then the condition would evaluate to true in this case, because the value from <a>,

″abc″, is used in the evaluation.

This conditional processing, using column names and $DECOMP_CONTENT, can

be useful in cases where you want to decompose only a value based on the value

of another element or attribute that will not be inserted into the database.

Conditions specified on mapped elements or attributes absent

from the document

If a condition is specified on an element or attribute, but that element or attribute

does not appear in the XML document, then the condition is still applied. For

example, consider the following element mapping from an annotated schema

document:

<xs:element name="intElem" type="xs:integer"

 db2-xdb:rowSet="rowSetA" db2-xdb:column="colInt"

 db2-xdb:condition="colInt > 100" default="0" />

If the <intElem> element does not appear in the XML document, the condition

″colInt > 100″ is still evaluated. Because <intElem> does not appear, a default value

of 0 is used in the condition evaluation for ″colInt″. The condition is then

evaluated as: 0 > 100, which evaluates to false. The corresponding row is therefore

not inserted during decomposition.

Example

Consider the following <author> element from an XML document:

<author ID="0800">

 <firstname>Alexander</firstname>

 <lastname>Smith</lastname>

 <activeStatus>1</activeStatus>

</author>

322 pureXML Guide

Depending on the conditions specified by db2-xdb:condition, the values from this

<author> element might or might not be inserted into the target tables during

decomposition. Two cases are presented next.

All conditions satisfied

The following section from the annotated schema that corresponds to the <author>

element above, specifies that this element should only be decomposed if the

author’s ID falls between 1 and 999, the <firstname> and <lastname> elements are

not NULL, and the value of the <activeStatus> element equals 1:

<xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="GIVENNAME"

 db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL" />

 <xs:element name="lastname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"

 db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL" />

 <xs:element name="activeStatus" type="xs:integer"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="statusCode"

 db2-xdb:condition="$DECOMP_CONTENT=1" />

 <xs:attribute name="ID" type="xs:integer"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"

 db2-xdb:condition="$DECOMP_CONTENT BETWEEN 1 and 999 />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Because all of the conditions specified by db2-xdb:condition are satisfied by the

values in the example <author> element above, the AUTHORS table is populated

with the data from the <author> element.

 Table 65. AUTHORS

AUTHID GIVENNAME SURNAME STATUSCODE NUMBOOKS

0800 Alexander Smith 1 NULL

One condition fails

The following annotated schema specifies that the <author> element should only

be decomposed if the author’s ID falls between 1 and 100, and the <firstname> and

<lastname> elements are not NULL:

<xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="GIVENNAME"

 db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL"/>

 <xs:element name="lastname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"

 db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL"/>

 <xs:element name="activeStatus" type="xs:integer" />

 <xs:attribute name="ID" type="xs:integer"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"

 db2-xdb:condition="$DECOMP_CONTENT BETWEEN 1 and 100 />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Chapter 12. Annotated XML schema decomposition 323

Although the <firstname> and <lastname> elements of the example <author>

element meet the conditions specified, the value of the ID attribute does not, and

so the entire row is not inserted during decomposition. This is because the logical

AND of all three conditions specified on the AUTHORS table is evaluated. In this

case, one of the conditions is false, and so the logical AND evaluates to false, and

therefore, no rows are inserted.

db2-xdb:contentHandling decomposition annotation

The db2-xdb:contentHandling annotation specifies the type of content that will be

decomposed into a table for an element of complex type or simple type.

db2-xdb:contentHandling belongs to the set of decomposition annotations that can

be added to an XML schema document to describe the mappings between

elements and attributes of XML documents to DB2 base tables. The decomposition

process uses the annotated XML schema to determine how elements and attributes

of an XML document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element>, or attribute of <db2-xdb:rowSetMapping>, that applies

to complex type or simple type element declarations

How to specify

db2-xdb:contentHandling is specified in any of the following ways (where value

represents a valid value for the annotation):

v <xs:element db2-xdb:contentHandling="value" />

v <db2-xdb:rowSetMapping db2-xdb:contentHandling="value">

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following case-sensitive tokens:

v text

v stringValue

v serializeSubtree

Details

The db2-xdb:contentHandling annotation, specified as an attribute in the

declaration of an XML element, indicates what value is to be inserted into the

tables and columns specified by db2-xdb:rowSet and db2-xdb:column, respectively,

during decomposition. The three valid values for db2-xdb:contentHandling are:

text

v What is inserted: the concatenation of character data (including character

content of CDATA sections) within this element.

324 pureXML Guide

v What is excluded: this element’s comments and processing instructions,

CDATA section delimiters (″<![CDATA[″ ″]]>″), as well as this element’s

descendants (including tags and content).

stringValue

v What is inserted: the concatenation of this element’s character data

(including character content of CDATA sections) with the character data

in this element’s descendants, in document order.

v What is excluded: comments, processing instructions, CDATA section

delimiters (″<![CDATA[″ ″]]>″), and the start and end tags of this

element’s descendants.

serializeSubtree

v What is inserted: the markup of everything between this element’s start

and end tags, including this element’s start and end tags. This includes

comments, processing instructions, and CDATA section delimiters

(″<![CDATA[″ ″]]>″).

v What is excluded: nothing.

v Notes: The serialized string that is inserted might not be identical to the

corresponding section in the XML document because of factors such as:

default values specified in the XML schema, expansion of entities, order

of attributes, whitespace normalization of attributes, and processing of

CDATA sections.

Because the serialized string that results from this setting is an XML

entity, there are code page issues that should be considered. If the target

column is of character or graphic types, the XML fragment is inserted in

the database’s code page. When such an entity is passed by an

application to an XML processor, the application must explicitly inform

the processor of the entity’s encoding, because the processor would not

automatically detect encodings other than UTF-8. If the target column is

of type BLOB, however, then the XML entity is inserted in UTF-8

encoding. In this case, the XML entity can be passed to the XML

processor without needing to specify an encoding.

If an XML element declaration that is annotated for decomposition is of complex

type and contains complex content, but does not have db2-xdb:contentHandling

specified, then the default behavior follows the ″serializeSubtree″ setting. For all

other cases of annotated element declarations, the default behavior if

db2-xdb:contentHandling is not specified follows the ″stringValue″ setting.

If an element is declared to be of complex type and has an element-only or empty

content model (that is, the ″mixed″ attribute of the element declaration is not set to

true or 1), then db2-xdb:contentHandling cannot be set to ″text″.

Specifying the db2-xdb:contentHandling annotation on an element does not affect

the decomposition of any of the element’s descendants.

The setting of db2-xdb:contentHandling affects the value that is substituted for

$DECOMP_CONTENT in either of the db2-xdb:expression or db2-xdb:condition

annotations. The substituted value is first processed according to the

db2-xdb:contentHandling setting, before it is passed for evaluation.

Note that if validation has been performed, either prior to decomposition or

during, the content being processed by db2-xdb:contentHandling will already have

its entities resolved.

Chapter 12. Annotated XML schema decomposition 325

Example

The following example illustrates how the different settings of the

db2-xdb:contentHandling annotation can be used to yield different results in the

target table. The annotated schema is presented first, showing how the

<paragraph> element is annotated with db2-xdb:contentHandling. (The annotated

schema is presented only once, with db2-xdb:contentHandling set to ″text″.

Subsequent examples in this section assume the same annotated schema, which

differ only by the value db2-xdb:contentHandling is set to.)

<xs:schema>

 <xs:element name="books">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer" />

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTCONTENT"

 db2-xdb:contentHandling="text" />

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTNUM" />

 <xs:attribute name="title" type="xs:string"

 db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTTITLE" />

 </xs:complexType>

 <xs:complexType name="paragraphType" mixed="1">

 <xs:choice>

 <xs:element name="b" type="xs:string" minOccurs="0" maxOccurs="unbounded" />

 </xs:choice>

 </xs:complexType>

</xs:schema>

The <books> element that is being mapped is presented next.

<books>

 <book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is lots of fun...</paragraph>

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph><!-- Start of chapter -->XML can be used with...</paragraph>

 <paragraph><?processInstr example?>

 Escape characters such as <![CDATA[<, >, and &]]>...</paragraph>

 </chapter>

 ...

 <chapter number="10" title="Further Reading">

 <paragraph>Recommended tutorials...</paragraph>

326 pureXML Guide

</chapter>

 </book>

 ...

<books>

The next three tables show the result of decomposing the same XML element with

differing values for db2-xdb:contentHandling.

Note: The resulting tables below contain quotation marks around the values in the

CHPTTITLE and CHPTCONTENT columns. These quotation marks do not exist in

the columns, but are presented here only to show the boundaries and whitespaces

of the inserted strings.

db2-xdb:contentHandling=″text″

 Table 66. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 ″Introduction to

XML″

″XML is fun...″

1-11-111111-1 2 ″XML and

Databases″

″XML can be used with...″

1-11-111111-1 2 ″XML and

Databases″

″

 Escape characters such

as <, >, and & ...″

...

1-11-111111-1 10 ″Further

Reading″

″Recommended tutorials...″

Observe how the content of the element of the first paragraph of chapter 1 is

not inserted when the ″text″ setting is used. This is because the ″text″ setting

excludes any content from descendants. Notice also that the comment and

processing instruction from the first paragraph of chapter 2 are excluded when the

″text″ setting is used. Whitespace from the concatenation of character data from the

<paragraph> elements is preserved.

db2-xdb:contentHandling=″stringValue″

 Table 67. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 ″Introduction to

XML″

″XML is lots of fun...″

1-11-111111-1 2 ″XML and

Databases″

″XML can be used with...″

1-11-111111-1 2 ″XML and

Databases″

″

 Escape characters such

as <, >, and & ...″

...

1-11-111111-1 10 ″Further

Reading″

″Recommended tutorials...″

Chapter 12. Annotated XML schema decomposition 327

The difference between this table and the previous table is found in the

CHPTCONTENT column of the first row. Notice how the string ″lots of″, which

comes from the descendant of the <paragraph> element, has been inserted.

When db2-xdb:contentHandling was set to ″text″, this string was excluded, because

the ″text″ setting excludes the content of descendants. The ″stringValue″ setting,

however, includes content from descendants. Like the ″text″ setting, comments and

processing instructions are not inserted, and whitespace is preserved.

db2-xdb:contentHandling=″serializeSubtree″

 Table 68. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 ″Introduction to

XML″

″<paragraph>XML is lots

of fun...</paragraph>″

1-11-111111-1 2 ″XML and

Databases″

″<paragraph><!-- Start of chapter

-->XML can be used

with...</paragraph>″

1-11-111111-1 2 ″XML and

Databases″

″<paragraph><?processInstr

example?>

 Escape characters such

as <![CDATA[<, >, and &

]]>...</paragraph>″

...

1-11-111111-1 10 ″Further

Reading″

″<paragraph>Recommended

tutorials...</paragraph>″

The difference between this table and the previous two tables is that all markup

from the descendants of <paragraph> elements are inserted (including the

<paragraph> start and end tags). This includes the start and end tags in the

CHPTCONTENT column of the first row, as well as the comment and processing

instruction in the second and third rows, respectively. As in the previous two

examples, whitespace from the XML document has been preserved.

db2-xdb:normalization decomposition annotation

The db2-xdb:normalization annotation specifies the normalization of whitespace in

the XML data to be inserted or to be substituted for $DECOMP_CONTENT (when

used with db2-xdb:expression).

db2-xdb:normalization belongs to the set of decomposition annotations that can be

added to an XML schema document to describe the mappings between elements

and attributes of XML documents to DB2 base tables. The decomposition process

uses the annotated XML schema to determine how elements and attributes of an

XML document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-
xdb:rowSetMapping>

How to specify

db2-xdb:normalization is specified in any of the following ways (where value

represents a valid value for the annotation):

328 pureXML Guide

v <xs:element db2-xdb:normalization="value" />

v <xs:attribute db2-xdb:normalization="value" />

v <db2-xdb:rowSetMapping db2-xdb:normalization="value">

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following case-sensitive tokens:

v canonical

v original (default)

v whitespaceStrip

Note: The db2-xdb:normalization attribute is valid only for mappings between

certain XML schema types and SQL character types. Refer to the Details section for

the list of supported XML schema types that can be normalized for SQL character

columns.

Details

When inserting XML values into character type target columns (CHAR,

VARCHAR, LONG VARCHAR, CLOB, DBCLOB, GRAPHIC, VARGRAPHIC,

LONG VARGRAPHIC), it might be necessary to normalize the data being inserted.

Different types of normalization can be specified with the db2-xdb:normalization

annotation; the valid values, which are case-sensitive settings are:

canonical

The XML value is converted to its canonical form, according to its XML

schema type, before being inserted into the target column or substituted

for occurrences of $DECOMP_CONTENT in the same mapping as this

db2-xdb:normalization annotation.

original

The original character data, following any processing by an XML parser, of

the element content or attribute value (depending on whether this

mapping is for an XML element or XML attribute) is inserted into the

target column or substituted for occurrences of $DECOMP_CONTENT in

the same mapping as this db2-xdb:normalization annotation. If the

db2-xdb:normalization attribute is not specified for a mapping where this

annotation is relevant, then the decomposition process normalizes data

according to the ″original″ setting.

whitespaceStrip

The XML value has all leading and trailing whitespace removed, and

consecutive whitespace is collapsed into a single whitespace character,

before being inserted into the target column or substituted for occurrences

of $DECOMP_CONTENT in the same mapping as this

db2-xdb:normalization annotation.

db2-xdb:normalization is applicable when an element or attribute of (or derived

from) one of these atomic XML schema types is mapped to a column of character

Chapter 12. Annotated XML schema decomposition 329

type (CHAR, VARCHAR, LONG VARCHAR, CLOB, DBCLOB, GRAPHIC,

VARGRAPHIC, and LONG VARGRAPHIC).

v byte, unsigned byte

v integer, positiveInteger, negativeInteger, nonPositiveInteger, nonNegativeInteger

v int, unsignedInt

v long, unsignedLong

v short, unsignedShort

v decimal

v float

v double

v boolean

v time

v date

v dateTime

db2-xdb:normalization will be ignored if specified on any other types. Note that

these are XML schema types for which the W3C recommendation, XML Schema

Part 2: Datatypes Second Edition, has a canonical representation.

Because the db2-xdb:normalization annotation is valid only for certain XML

schema to SQL character type mappings, when the annotation is specified for

unsupported mappings, it is ignored.

Example

The following example shows how whitespace normalization can be controlled

with the db2-xdb:normalization annotation. The annotated schema is presented

first.

 <xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="FIRSTNAME" />

 <xs:element name="lastname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"

 db2-xdb:normalization="whitespaceStrip" />

 <xs:element name="activeStatus" type="xs:boolean"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="ACTIVE"

 db2-xdb:normalization="canonical" />

 <xs:attribute name="ID" type="xs:integer"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"

 db2-xdb:normalization="whitespaceStrip" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

The <author> element that is being mapped is presented next (notable whitespaces

are represented below by the ’_’ underscore character for the purpose of

demonstration), followed by the resulting AUTHORS table after the decomposition

has completed.

 <author ID="__22">

 <firstname>Ann</firstname>

 <lastname>__Brown_</lastname>

 <activeStatus>1</activeStatus>

 </author>

330 pureXML Guide

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

Table 69. AUTHORS

AUTHID FIRSTNAME SURNAME ACTIVE NUMBOOKS

22 Ann __Brown_ true NULL

The ″whitespaceStrip″ setting causes the leading whitespace from the ″ID″ attribute

to be removed before the value is inserted into the target table. Notice, however,

that the leading and trailing whitespace from the <lastname> element is not

stripped, even though the ″whitespaceStrip″ setting was specified. This is because

the <lastname> element has an XML schema type of string, which is not an

applicable type for db2-xdb:normalization. The <activeStatus> child element of

<author> is defined as a boolean type, and the canonical representation of boolean

types is either the literal ″true″ or ″false″. The ″canonical″ setting for the

<activeStatus> element results in the canonical form of ″1″, which is ″true″, being

inserted into the ACTIVE column of the AUTHORS table.

If in the XML schema presented above, the ″ID″ attribute had been annotated with

db2-xdb:normalization=″original″ instead, then the original value from the

document, ″__22″ (where the underscore character represents whitespace), would

have been inserted into the AUTHID column.

db2-xdb:order decomposition annotation

The db2-xdb:order annotation specifies the insertion order of rows among different

tables.

db2-xdb:order belongs to the set of decomposition annotations that can be added

to an XML schema document to describe the mappings between elements and

attributes of XML documents to DB2 base tables. The decomposition process uses

the annotated XML schema to determine how elements and attributes of an XML

document should be decomposed into DB2 tables.

Annotation type

Child element of <db2-xdb:rowSetOperationOrder>

How to specify

db2-xdb:order is specified in the following way (where value represents a valid

value for the annotation):

<xs:schema>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetOperationOrder>

 <db2-xdb:order>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

 </db2-xdb:order>

 </db2-xdb:rowSetOperationOrder>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Chapter 12. Annotated XML schema decomposition 331

Valid structure

The following are supported children elements of <db2-xdb:order>:

db2-xdb:rowSet

Specifies an XML element or attribute mapping to a target base table.

Details

Thedb2-xdb:order annotation is used to define the order of insertion of the rows

belonging to a given rowSet, relative to the rows belonging to another rowSet. This

enables XML data to be inserted into target tables in a way consistent with any

referential integrity constraints defined on the tables as part of the relational

schema.

All rows of a given rowSet RS1 are inserted before any rows belonging to another

rowSet RS2 if RS1 is listed before RS2 within db2-xdb:order. Multiple instances of

this element can be specified in order to define multiple insert order hierarchies.

For rowSets that do not appear in any element, their rows may be inserted in any

order, relative to the rows of any other rowSet.. Also, the content of each

<db2-xdb:rowSet> element must be either an explicitly defined rowSet or the name

of an existing table for which no explicit rowSet declaration was made.

Multiple rowSet insertion hierarchies can be defined, though a rowSet can appear

in only one instance of the <db2-xdb:order> element, and it can appear only once

within that element.

For delimited SQL identifiers specified in the children elements, the quotation

marks delimiter must be included in the character content and need not be

escaped. The ‘&’ and ‘<’ characters used in SQL identifiers, however, must be

escaped.

Example

The following example demonstrates the use of the db2-xdb:order annotation.

<xs:schema>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetOperationOrder>

 <db2-xdb:order>

 <db2-xdb:rowSet>CUSTOMER</db2-xdb:rowSet>

 <db2-xdb:rowSet>PURCHASE_ORDER</db2-xdb:rowSet>

 </db2-xdb:order>

 <db2-xdb:order>

 <db2-xdb:rowSet>ITEMS_MASTER</db2-xdb:rowSet>

 <db2-xdb:rowSet>PO_ITEMS</db2-xdb:rowSet>

 </db2-xdb:order>

 </db2-xdb:rowSetOperationOrder>

 </xs:appinfo>

 </xs:annotation>

</xs:schema>

Two disjoint hierarchies for order of insertion are specified in the above example.

The first hierarchy specifies that all content for the CUSTOMER rowSet or table is

inserted prior to any content collected for PURCHASE_ORDER, and the second

hierarchy specifies that all content for the ITEMS_MASTER rowSet or table will be

332 pureXML Guide

inserted before any content is inserted into PO_ITEMS. Note that the order

between the two hierarchies is undefined. For example, any content for the

PURCHASE_ORDER rowSet or table may be inserted before or after any content is

inserted into ITEMS_MASTER.

Restrictions

Specifying the order for rowSet insertions is subject to the following restrictions:

v On 32-bit systems, decomposition of large documents with insertion order

requirements can cause the system to run out of memory.

v On 64-bit systems, an out of memory condition might occur if the administrator

has restricted the virtual memory space allowed for a process. Specifying a

sufficiently large or unlimited virtual memory setting for processes can help

prevent out of memory conditions, but this might adversely affect the overall

performance of the system.

db2-xdb:truncate decomposition annotation

The db2-xdb:truncate annotation specifies whether truncation is permitted when an

XML value is inserted into a character target column.

db2-xdb:truncate belongs to the set of decomposition annotations that can be

added to an XML schema document to describe the mappings between elements

and attributes of XML documents to DB2 base tables. The decomposition process

uses the annotated XML schema to determine how elements and attributes of an

XML document should be decomposed into DB2 tables.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-
xdb:rowSetMapping>

How to specify

db2-xdb:truncate is specified in any of the following ways (where value represents

a valid value for the annotation):

v <xs:element db2-xdb:truncate="value" />

v <xs:attribute db2-xdb:truncate="value" />

v <db2-xdb:rowSetMapping db2-xdb:truncate="value">

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following tokens:

v 0 (equivalent to false; default)

v 1 (equivalent to true)

v false (case-sensitive; default)

v true (case-sensitive)

Chapter 12. Annotated XML schema decomposition 333

Details

An XML value being inserted into a target character column might be larger than

the column size; in this case, the value must be truncated for a successful

decomposition. The db2-xdb:truncate attribute indicates whether or not truncation

will be permitted when the value is too large for the target column. If this attribute

is set to ″false″ or ″0″, to indicate that truncation is not permitted, and the XML

value being inserted is too large for the target column, an error occurs during

decomposition of the XML document and the value is not inserted. The ″true″ or

″1″ settings indicate that data truncation is allowed during insertion.

db2-xdb:truncate is applicable only when the target column is either:

v of a character type, or

v of DATE, TIME, or TIMESTAMP type, and the XML value is of type xs:date,

xs:time, or xs:dateTime, respectively.

If the db2-xdb:expression annotation is specified on the same element or attribute

declaration as db2-xdb:truncate, then the value of db2-xdb:truncate is ignored, as

the expression can perform truncation if it is defined as such.

When decomposing into SQL datetime columns, XML values that specify a

timezone and have an XML schema type of date, time, or timestamp,

db2-xdb:truncate must be set to ″true″ or ″1″. This is because the structure of SQL

datetime types does not provide for timezone specification.

Example

The following example shows how truncation can be applied to an <author>

element. A section of the annotated schema is presented first.

<xs:element name="author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"

 db2-xdb:rowSet="AUTHORS" db2-xdb:column="FIRSTNAME"

 db2-xdb:truncate="true" />

 <xs:element name="lastname" type="xs:string" />

 <xs:element name="activeStatus" type="xs:boolean" />

 <xs:element name="activated" type="xs:date"

 db2-xdb:truncate="true" />

 <xs:attribute name="ID" type="xs:integer" />

 <xs:sequence>

 </xs:complexType>

</xs:element>

The <author> element that is being mapped is presented next.

<author ID="0800">

 <firstname>Alexander</firstname>

 <lastname>Smith</lastname>

 <activeStatus>0</activeStatus>

 <activated>2001-10-31Z</activated>

</author>

Assume that the FIRSTNAME column was defined as a CHAR SQL type of size 7,

and that the ACTIVEDATE column was defined as a DATE SQL type. The

AUTHORS table that results after the decomposition has completed is presented

next.

334 pureXML Guide

Table 70. AUTHORS

AUTHID FIRSTNAME SURNAME ACTIVE ACTIVEDATE NUMBOOKS

NULL Alexand NULL NULL 2001-10-31 NULL

Because the <firstname> value ″Alexander″ is larger than the SQL column size,

truncation is necessary in order to insert the value. Notice also that because the

<activated> element contained a timezone in the XML document, db2-xdb:truncate

was set to ″true″ to ensure the date was successfully inserted during

decomposition.

Because truncation is required in order to insert the value from the <firstname>

element or the <activated> element, if db2-xdb:truncate was not specified, then the

default value of db2-xdb:truncate is assumed (truncation not permitted), and an

error would have been generated to indicate that a row has not been inserted.

db2-xdb:rowSetMapping decomposition annotation

The <db2-xdb:rowSetMapping> annotation maps a single XML element or attribute

to one or more column and table pairs.

<db2-xdb:rowSetMapping> belongs to the set of decomposition annotations that

can be added to an XML schema document to describe the mappings between

elements and attributes of XML documents to DB2 base tables. The decomposition

process uses the annotated XML schema to determine how elements and attributes

of an XML document should be decomposed into DB2 tables.

Annotation type

Child element of <xs:appinfo> (which is a child element of <xs:annotation>) that is

a child element of <xs:element> or <xs:attribute>

How to specify

db2-xdb:rowSetMapping is specified in any of the following ways (where value

represents a valid value for the annotation):

v <xs:element>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:element>

v <xs:attribute>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:attribute>

Chapter 12. Annotated XML schema decomposition 335

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported attributes of <db2-xdb:rowSetMapping>:

db2-xdb:contentHandling

Enables specification of the type of content that will be decomposed into a

table for an element that is of complex type.

db2-xdb:locationPath

Enables mapping of an XML element or attribute declared as part of a

reusable group, to different table and column pairs, depending on the

ancestry of the element or attribute.

db2-xdb:normalization

Enables specification of the normalization behavior for the content of the

XML element or attribute mapped to a character target column, before the

content is inserted.

db2-xdb:truncate

Enables specification of whether truncation is permitted when an XML

value is inserted into a character target column.

These attributes of <db2-xdb:rowSetMapping> are also available as attributes of

XML element or attribute declarations; the same behaviors and requirements apply

to these whether they are attributes of <db2-xdb:rowSetMapping> or of

<xs:element> or <xs:attribute>. Refer to the individual corresponding

documentation of these annotations for details.

The following are supported children elements of <db2-xdb:rowSetMapping>,

listed in the order in which they must appear if they are specified:

<db2-xdb:rowSet>

Maps an XML element or attribute to a target base table.

<db2-xdb:column>

(Optional) Maps an XML element or attribute to a base table column. This

element is required if db2-xdb:expression is present in the

db2-xdb:rowSetMapping annotation.

 <db2-xdb:column> can be optional in cases where a value is not intended

to be inserted into the table, but is used only for conditional processing.

For example, if an element is to be decomposed based on the value of

another element, then the other element does not require a column

mapping, as its value is not being inserted.

<db2-xdb:expression>

(Optional) Specifies a customized expression, the result of which is inserted

into the table named by the db2-xdb:rowSet attribute.

 If db2-xdb:expression specifies $DECOMP_CONTENT and

db2-xdb:normalization is specified in the same mapping, then the

$DECOMP_CONTENT value for db2-xdb:expression will be normalized

before it is passed to the expression for evaluation, if applicable.

<db2-xdb:condition>

(Optional) Specifies a condition for evaluation.

336 pureXML Guide

Note that these children elements of <db2-xdb:rowSetMapping> have the same

semantics and syntax as their corresponding attribute annotations, except that

quotation marks do not need to be escaped.

For further details, refer to the corresponding documentation of the attribute

versions of these annotations.

Details

<db2-xdb:rowSetMapping> can be used to map an XML element or attribute to a

single target table and column, to multiple target columns of the same table, or to

multiple tables and columns. There are two equivalent methods for mapping to a

single table and column: the combination of the db2-xdb:rowSet and

db2-xdb:column annotations (which are attributes of the element or attribute being

mapped), or specifying <db2-xdb:rowSetMapping> (which is a child element of the

element or attribute being mapped). Both methods yield the same results and

differ only in their notation.

All whitespace in the character content of the child elements of

<db2-xdb:rowSetMapping> is significant; no whitespace normalization is

performed. For delimited SQL identifiers specified in the children elements, the

quotation marks delimiter must be included in the character content and not

escaped. The ‘&’ and ‘<’ characters used in SQL identifiers, however, must be

escaped.

Example

The following example shows how a single attribute, named ″isbn″, can be

mapped to more than one table with the <db2-xdb:rowSetMapping> annotation. A

section of the annotated schema is presented first. It shows how the isbn value is

mapped to both the BOOKS and BOOKCONTENTS tables.

<xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer"/>

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>BOOKS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

</xs:element>

The <book> element that is being mapped is presented next, followed by the

resulting BOOKS and BOOKCONTENTS tables after the decomposition has

completed.

Chapter 12. Annotated XML schema decomposition 337

<book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <!-- this book does not have a preface -->

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 ...

 </chapter>

 ...

</book>

 Table 71. BOOKS

ISBN TITLE CONTENT

1-11-111111-1 NULL NULL

 Table 72. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 NULL NULL NULL

Alternative mapping using combination of <db2-
xdb:rowSetMapping> and db2-xdb:rowSet and db2-xdb:column

The following section of an annotated schema is equivalent to the XML schema

fragment presented above, as it yields the same decomposition results. The

difference between the two schemas is that this schema replaces one mapping with

the db2-xdb:rowSet and db2-xdb:column combination, instead of using only the

<db2-xdb:rowSetMapping> annotation.

<xs:element name="book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="authorID" type="xs:integer"/>

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

 </xs:sequence>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:rowSet="BOOKS" db2-xdb:column="ISBN" >

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="title" type="xs:string" />

 </xs:complexType>

</xs:element>

db2-xdb:rowSetOperationOrder decomposition annotation

The db2-xdb:rowSetOperationOrder annotation is a parent for one or more

db2-xdb:order elements. See the section for db2-xdb:order for details on usage in

defining order of insertion of rows among different tables.

db2-xdb:rowSetOperationOrder belongs to the set of decomposition annotations

that can be added to an XML schema document to describe the mappings between

elements and attributes of XML documents to DB2 base tables. The decomposition

process uses the annotated XML schema to determine how elements and attributes

of an XML document should be decomposed into DB2 tables.

338 pureXML Guide

Annotation type

Child element of <xs:appinfo> that is a child of a global <xs:annotation> element.

How to specify

db2-xdb:rowSetOperationOrder is specified in the following way (where value

represents a valid value for the annotation):

<xs:schema>

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetOperationOrder>

 <db2-xdb:order>

 <db2-xdb:rowSet>value</db2-xdb:rowSet>

 ...

 </db2-xdb:order>

 </db2-xdb:rowSetOperationOrder>

 </xs:appinfo>

 </xs:annotation>

 ...

</xs:schema>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported children elements of <db2-xdb:rowSetOperationOrder

>:

db2-xdb:order

Details

<db2-xdb:rowSetOperationOrder> groups together <db2-xdb:order> elements.

Multiple instances of the child <db2-xdb:order> element can be present, allowing

the definition of multiple insertion hierarchies.

By allowing you to control the order in which contents of XML documents are

inserted, the db2-xdb:rowSetOperationOrder and db2-xdb:order annotations

together provide a way to ensure that the XML schema decomposition process

respects any referential integrity constraints on target tables, as well as any other

application requirements that rows of a table be inserted before rows of another

table.

The db2-xdb:rowSetOperationOrder annotation can appear only once in an XML

schema.

Example

See the section for the db2-xdb:order annotation for examples of specifying the

order of rowSet insertion.

Keywords for annotated XML schema decomposition

Annotated XML schema decomposition offers decomposition keywords for use in

the db2-xdb:condition and db2-xdb:expression annotations.

Chapter 12. Annotated XML schema decomposition 339

$DECOMP_CONTENT

The value of the mapped XML element or attribute from the document,

constructed according to the setting of the db2-xdb:contentHandling

annotation. The value replaced for $DECOMP_CONTENT in the

expression should always be considered a character type. Refer to the

limits and restrictions documentation for the maximum string length of

and maximum number of $DECOMP_CONTENT instances supported. If

db2-xdb:expression specifies $DECOMP_CONTENT and

db2-xdb:normalization is specified in the same mapping, then the

$DECOMP_CONTENT value for db2-xdb:expression will be normalized

before it is passed to the expression for evaluation, if applicable.

 $DECOMP_CONTENT can be used to process the value of the mapped

element or attribute, using customized expressions, rather than directly

inserting that value.

$DECOMP_DOCUMENTID

The string value specified in the documentid input parameter of the

xdbDecompXML stored procedure, which identifies the XML document

being decomposed. When the document is decomposed, the input value

provided to the xdbDecompXML stored procedure is used as the value

substituted for $DECOMP_DOCUMENTID.

 Applications can pass into xdbDecompXML, uniquely generated document

IDs. These IDs can then be directly inserted into the database. The IDs can

also be passed into expressions that generate unique identifiers for

elements or attributes. $DECOMP_DOCUMENTID can be used, therefore,

to insert unique identifiers that are not present in the XML document.

$DECOMP_ELEMENTID

A system-generated integer identifier that uniquely identifies within the

XML document, the element or attribute this annotation describes. This

value will remain unchanged between decomposition operations for the

same XML document, as long as the document does not change in any of

the following ways: element addition, element deletion, or a change in an

element’s position in document order. If the document is modified in these

ways and decomposed again, elements might not have the same identifier

as they did following the previous decomposition.

$DECOMP_ELEMENTID specified on an attribute is defined to be the

value of the $DECOMP_ELEMENTID for the element to which this

attribute belongs.

 The value generated by $DECOMP_ELEMENTID can also be used to

indicate the order of elements in the original document. This can be useful

in cases where the XML document needs to be re-composed from relational

tables.

How decomposition results are formed in annotated XML schema

decomposition

While typical decomposition processes decompose only XML element or attribute

content, annotated XML schema decomposition supports the insertion of values

that do not necessarily exist in the XML document.

Decomposed content can be any of the following:

v the value of an attribute in the XML document

340 pureXML Guide

v the value of an element in the XML document, where the exact content depends

on the setting of the <db2-xdb:contentHandling> annotation:

– text - character data from this element only (not its descendants)

– stringValue - character data from this element and its descendants

– serializedSubtree - markup of all content between this element’s start and end

tags

Refer to the <db2-xdb:contentHandling> documentation for more information.

v a value based on the content of a mapped attribute or element in the XML

document

v a generated value that is independent of any values in the XML document

The latter two values are possible through the db2-xdb:expression annotation. This

annotation allows you to specify an expression, the result of which is inserted

during decomposition.

The value from an XML document can be applied to an expression to generate a

result, thereby transforming the data before it is inserted into the target column.

An expression can also generate a value that is based on the mapped element or

attribute (such as the element’s name). db2-xdb:expression also allows constants to

be specified, where the constant might or might not be related to the mapped

value from the XML document.db2-xdb:expression enables you to combine any of

these techniques to generate a value for insertion.

Note that the expression is invoked as many times as the element or attirubte with

which it is associated, is encountered in the XML document.

Effect of validation on XML decomposition results

Annotated XML schema decomposition does not require input documents to be

validated, but validation before or during decomposition is recommended, because

it has several benefits.

You can perform validation before decomposition (using the XMLVALIDATE

SQL/XML function), or during decomposition as part of the call to the

xdbDecompXML stored procedure or the DECOMPOSE XML DOCUMENT

command. Validating the XML documents being decomposed ensures that:

v values are decomposed into tables only when the entire document is valid

according to the specified XML schema (this ensures that only valid values are

stored in the database)

v default values defined for an element or attribute are inserted into the database

(when validation is performed using one of the xdbDecompXML decomposition

stored procedures and when the element or attribute does not appear in the

XML document)

v all entities in the XML document will be resolved, for validation performed

during decomposition (if an entity in the XML document has not been registered

prior to decomposition, an error will be returned)

v non-default whitespace normalization occurs, as specified in the schema (when

validation if performed using one of the xdbDecompXML decomposition stored

procedures)

Validating the input documents against the registered XML schema is

recommended, because the decomposition process assumes that input documents

are valid according to the corresponding annotated schema. If the validation is not

performed and the input documents are invalid, decomposition can insert different

Chapter 12. Annotated XML schema decomposition 341

rows for the same input document (compared to when validation is performed, for

reasons such as entity resolution or default attribute additions), or the

decomposition might yield unexpected results. The results of and the side effects

on existing data from decomposing an invalid document are undefined.

Note that errors in the schema, such as non-deterministic content models, or

incorrect type derivations can cause the decomposition process to fail when

validation is performed during decomposition. Verify that your annotated schema

is correct and re-register the schema before attempting the decomposition again.

Treatment of CDATA sections in annotated XML schema

decomposition

The contents of CDATA sections are inserted into the database for elements that

are annotated for decomposition. The CDATA section delimiters (″<![CDATA[″ and

″]]>″) are not inserted. The CDATA contents are subject to line-ending

normalization by the XML parser.

If the XML element declaration in the XML schema is annotated with the attribute

db2-xdb:contentHandling=″serializeSubtree″, however, then the CDATA section,

including the CDATA delimiters, are inserted.

NULL values and empty strings in annotated XML schema

decomposition

Annotated XML schema decomposition inserts NULL values or empty strings

under certain conditions.

XML elements

The following table shows when an empty string or a NULL value is inserted into

the database for elements in the XML document.

 Table 73. NULL handling for mapped elements

Condition Empty string NULL value

Element missing from document X

Element satisfies all of the following

conditions:

v is present in the document

v contains the xsi:nil="true" or

xsi:nil="1" attribute in the start tag

 X

Element satisfies all of the following

conditions:

v is present and empty in the document

v does not contain the xsi:nil="true" or

xsi:nil="1" attribute in the start tag

v is derived from or declared to be of list

type, union type, complex type with

mixed content, or the following atomic

built-in types: xsd:string,

xsd:normalizedString, xsd:token,

xsd:hexBinary, xsd:base64Binary,

xsd:anyURI, xsd:anySimpleType; any

other types will result in an error.

X

342 pureXML Guide

Table 73. NULL handling for mapped elements (continued)

Condition Empty string NULL value

Note:

1. If a mapping involves the db2-xdb:condition or db2-xdb:expression annotations, then

the empty string or NULL value (as shown in this table) is passed as the argument for

expression evaluation.

2. If a target column is of type CHAR or GRAPHIC, an empty string is inserted as a

string of blank characters.

XML attributes

The following table shows when an empty string or a NULL value is inserted into

the database when XML attributes annotated for decomposition contain NULL

values in the document or are missing.

 Table 74. NULL handling for mapped attributes

Condition Empty string NULL value

Attribute missing from document (either

because no validation was performed, or

there was no default value provided by

validation)

 X

Attribute satisfies all of the following

conditions:

v is present and empty in the document

v is derived from or declared to be of list

type, union type, or the following atomic

built-in types: xsd:string,

xsd:normalizedString, xsd:token,

xsd:hexBinary, xsd:base64Binary,

xsd:anyURI, xsd:anySimpleType; any

other types will result in an error.

X

Note: If a mapping involves the db2-xdb:condition or db2-xdb:expression annotations, then

the empty string or NULL value (as shown in this table) is passed as the argument for

expression evaluation.

Checklist for annotated XML schema decomposition

Annotated XML schema decomposition can become complex. To make the task

more manageable, you should take several things into consideration.

Annotated XML schema decomposition requires you to map possibly multiple

XML elements and attributes to multiple columns and tables in the database. This

mapping can also involve transforming the XML data before inserting it, or

applying conditions for insertion.

The following are items to consider when annotating your XML schema, along

with pointers to related documentation:

v Understand what decomposition annotations are available to you.

v Ensure, during mapping, that the type of the column is compatible with the

XML schema type of the element or attribute it is being mapped to.

v Structure your XML schema to minimize demands made on system memory

resources.

Chapter 12. Annotated XML schema decomposition 343

v Ensure complex types derived by restriction or extension are properly annotated.

v Confirm that no decomposition limits and restrictions are violated.

v Ensure that the tables and columns referenced in the annotation exist at the time

the schema is registered with the XSR.

Annotations of derived complex types for annotated XML

schema decomposition

When annotating complex types derived by restriction or extension for

decomposition, you need to apply additional mappings.

Derived by restriction

Complex types that are derived by restriction require that the common elements

and attributes from the base type be repeated in the definition of the derived type.

Decomposition annotations that are present in the base type, therefore, must also

be included in the derived type.

Derived by extension

In the definition of complex types derived by extension, only the elements and

attributes that are in addition to the base type are specified. If the decomposition

mappings for the derived type differ from the mappings of the base type, then

decomposition annotations must be added to the base type to clearly differentiate

the mappings of the base from the derived types.

The following example shows how a type derived by extension,

outOfPrintBookType, can be mapped to a different table than its base type,

bookType. Notice how the db2-xdb:locationPath annotation is specified in the

bookType base type to clearly differentiate which mappings apply to the base type,

and which apply to the derived type. The <lastPublished> and <publisher>

elements of the derived type outOfPrintType do not require the

db2-xdb:locationPath annotation in this example, as these elements are involved

only in a single mapping.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:table>

 <db2-xdb:name>BOOKS</db2-xdb:name>

 <db2-xdb:rowSet>inPrintRowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 <db2-xdb:table>

 <db2-xdb:name>OUTOFPRINT</db2-xdb:name>

 <db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="books">

 <xs:complexType>

 <xs:choice>

 <xs:element name="book" type="bookType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="outOfPrintBook" type="outOfPrintBookType"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="bookType">

 <xs:sequence>

344 pureXML Guide

<xs:element name="authorID" type="xs:integer"/>

 <xs:element name="chapter" type="chapterType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string"

 db2-xdb:locationPath="/books/book/@title"

 db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="TITLE">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping db2-xdb:locationPath="/books/outOfPrintBook/@title">

 <db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>

 <db2-xdb:column>TITLE</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="isbn" type="xs:string"

 db2-xdb:locationPath="/books/book/@isbn"

 db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="ISBN">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping db2-xdb:locationPath="/books/outOfPrintBook/@isbn">

 <db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:complexType name="outOfPrintBookType">

 <xs:complexContent>

 <xs:extension base="bookType">

 <xs:sequence>

 <xs:element name="lastPublished" type="xs:date"

 db2-xdb:rowSet="outOfPrintRowSet" db2-xdb:column="LASTPUBDATE"/>

 <xs:element name="publisher" type="xs:string"

 db2-xdb:rowSet="outOfPrintRowSet" db2-xdb:column="PUBLISHER"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:simpleType name="paragraphType">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:complexType name="chapterType">

 <xs:sequence>

 <xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"

 db2-xdb:locationPath="/books/book/chapter/paragraph"

 db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="CONTENT">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping

 db2-xdb:locationPath="/books/outOfPrintBook/chapter/paragraph">

 <db2-xdb:rowSet>outOfPrintBook</db2-xdb:rowSet>

 <db2-xdb:column>CONTENT</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="number" type="xs:integer"/>

 <xs:attribute name="title" type="xs:string"/>

 </xs:complexType>

</xs:schema>

Chapter 12. Annotated XML schema decomposition 345

The annotations indicate that values from the <book> element will be decomposed

into the BOOKS table, while values from the <outOfPrintBook> element will be

decomposed into the OUTOFPRINT table.

Consider the following element from an XML document:

<books>

 <book isbn="1-11-111111-1" title="My First XML Book">

 <authorID>22</authorID>

 <chapter number="1" title="Introduction to XML">

 <paragraph>XML is fun...</paragraph>

 </chapter>

 <chapter number="2" title="XML and Databases">

 <paragraph>XML can be used with...</paragraph>

 </chapter>

 </book>

 <outOfPrintBook isbn="7-77-777777-7" title="Early XML Book">

 <authorID>41</authorID>

 <chapter number="1" title="Introductory XML">

 <paragraph>Early XML...</paragraph>

 </chapter>

 <chapter number="2" title="What is XML">

 <paragraph>XML is an emerging technology...</paragraph>

 </chapter>

 <lastPublished>2000-01-31</lastPublished>

 <publisher>Early Publishers Group</publisher>

 </outOfPrintBook>

</books>

The following tables result from decomposing the document that this element

belongs to, using the preceding annotated schema:

 Table 75. BOOKS

ISBN TITLE CONTENT

1-11-111111-1 My First XML Book XML is fun...

1-11-111111-1 My First XML Book XML can be used with...

 Table 76. OUTOFPRINT

ISBN TITLE CONTENT LASTPUBDATE PUBLISHER

7-77-777777-7 Early XML Book Early XML... 2000-01-31 Early Publishers

Group

7-77-777777-7 Early XML Book XML is an

emerging

technology...

2000-01-31 Early Publishers

Group

XML schema structuring recommendations for decomposition

You can minimize the demands made on your system’s memory resources from

annotated schema decomposition by adjusting the order of elements in your

annotated XML schema.

For very large documents, following this recommendation might make a difference

in whether the document can be decomposed without having to increase the

amount of available memory for the DB2 database server. For sibling elements that

are annotated for decomposition, elements of simple types should be placed before

the sibling elements of complex type in the annotated schema. Similarly, sibling

elements that have the maxOccurs attribute set to 1 should be placed before

siblings that have maxOccurs > 1.

346 pureXML Guide

The memory consumption required by annotated schema decomposition is affected

by the structure of the XML schema because each item that forms a row must be

held in memory until all of the items that form the row are processed. These

schema structuring recommendations organize the items of a row in such as way

as to minimize the number of items that must be kept in memory.

The following example shows the recommended XML schema structuring for

mapped sibling elements contrasted with the less optimal structuring. Notice how

<complexElem>, which is of complex type, is placed before <status>, which is of

simple type, in the less optimal example. Placing <complexElem> after the <id>

and <status> elements improves decomposition runtime efficiency.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

 <-- Recommended structuring with simple types placed before

 the recurring element <wrapper>, which is of complex type -->

 <xs:complexType name="typeA">

 <xs:sequence>

 <xs:element name="id" type="xs:integer"

 db2-xdb:rowSet="relA" db2-xdb:column="ID" />

 <xs:element name="status" type="xs:string"

 db2-xdb:rowSet="relA" db2-xdb:column="status" />

 <xs:element name="wrapper" type="typeX" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <-- Less optimal structuring with recurring complex type element

 appearing before the simple type element -->

 <--

 <xs:complexType name="typeA">

 <xs:sequence>

 <xs:element name="id" type="xs:integer"

 db2-xdb:rowSet="relA" db2-xdb:column="ID" />

 <xs:element name="wrapper" type="typeX" maxOccurs="unbounded"/>

 <xs:element name="status" type="xs:string"

 db2-xdb:rowSet="relA" db2-xdb:column="status" />

 </xs:sequence>

 </xs:complexType> -->

 <xs:complexType name="typeX">

 <xs:sequence>

 <xs:element name="elem1" type="xs:string"

 db2-xdb:rowSet="relA" db2-xdb:column="elem1" />

 <xs:element name="elem2" type="xs:long"

 db2-xdb:rowSet="relA" db2-xdb:column="elem2" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="A" type="typeA" />

</xs:schema>

Note that <id>, <status>, <elem1>, and <elem2> are mapped to the same rowSet,

that is, together they form a row. Memory associated with a row is released when

a row is complete. In the less optimal case presented above, none of the rows

associated with the rowSet relA can be considered complete until the <status>

element is reached in the document. The <wrapper> element must be processed

first, however, as it occurs before the <status> element. This means that all

instances of <wrapper> must be buffered in memory until the <status> element is

reached (or the end of <A> is reached, if <status> is absent from the document).

The impact of this structure becomes significant if there are a high number of

instances of an element. For example, if there were 10 000 instances of the

Chapter 12. Annotated XML schema decomposition 347

<wrapper> element, then all 10 000 instances would have to be held in memory

until the rowSet was complete. In the optimal case presented above, however,

memory associated with the rows of rowset relA, can be released when <elem2> is

reached.

Examples of mappings in annotated XML schema decomposition

Annotated XML schema decomposition relies on mappings to determine how to

decompose an XML document into tables. Mappings are expressed as annotations

added to the XML schema document. These mappings describe how you want an

XML document to be decomposed into tables. The following examples show some

common mapping scenarios.

Common mapping scenarios:

rowSets in annotated XML schema decomposition

db2-xdb:rowSet identifies the target table into which a value is decomposed. This

annotation can be set either to a table name or a rowSet name.

A rowSet is specified with the db2-xdb:rowSet annotation, which is added to the

XML schema document as either an attribute of an element or attribute declaration,

or a child of the <db2-xdb:rowSetMapping> annotation.

The set of mappings, across all schema documents that form the XML schema,

which has the same db2-xdb:rowSet value for an instance of an element or

attribute, defines a row.

For example, consider the following XML document:

<publications>

 <textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

 </textbook>

 <childrensbook title="Children’s Fables">

 <isbn>5-55-555555-5</isbn>

 <author>Bob Carter</author>

 <author>Melaine Snowe</author>

 <publicationDate>1999</publicationDate>

 </childrensbook>

</publications>

To decompose this document such that each book’s isbn and title (whether it is a

textbook or children’s book) is inserted into the same table (named

ALLPUBLICATIONS), multiple rowSets must be defined: a rowSet to group values

related to textbooks, and another to group values related to children’s books.

rowSets, in this case, ensure that only values that are semantically related are

grouped together to form a row. That is, the use of rowSets will group the isbn

value for a textbook with its title, and the isbn value for a children’s book with its

title. This ensures that a row does not contain the isbn value from a textbook,

while having the title from a children’s book.

Without rowSets, it is impossible to determine which values should be grouped

together to form a row that is still semantically correct.

348 pureXML Guide

The application of rowSets in an XML schema document is presented next. The

two rowSets, textbk_rowSet and childrens_rowSet, are specified on the isbn

element declaration of the <textbook> and <childrensbook> elements respectively.

These rowsets are then associated with the ALLPUBLICATIONS table through the

<db2-xdb:table> annotation.

Note that using the rowSet annotation not as a table identifier, but as a rowSet

identifier allows you to easily change table names referenced in the XML schema.

This is because, when the value of db2-xdb:rowSet represents an identifier rather

than a table name, you need to use the <db2-xdb:table><db2-xdb:name></db2-
xdb:name></db2-xdb:table> annotation to actually specify the table name. With

this method, you need to update the table name in only one place, if required.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>

 <db2-xdb:table>

 <db2-xdb:name>ALLPUBLICATIONS</db2-xdb:name>

 <db2-xdb:rowSet>textbk_rowSet</db2-xdb:rowSet>

 <db2-xdb:rowSet>childrens_rowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="publications">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_ISBN"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_TITLE"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="childrensbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_ISBN"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_TITLE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The table that results from decomposing using this annotated XML schema is

shown next.

Chapter 12. Annotated XML schema decomposition 349

Table 77. ALLPUBLICATIONS

ISBN PUBS_TITLE

0-11-011111-0 Programming with XML

5-55-555555-5 Children’s Fables

While the example presented above shows a simple case of decomposing using

rowSets, rowSets can be used in more complex mappings to group together

multiple items from different parts of an XML schema to form rows on the same

table and column pair.

Conditional transformations

rowSets allow you to apply different transformations to the values being

decomposed, depending on the values themselves.

For example, consider the following two instances of an element named

″temperature″:

<temperature unit="Celsius">49</temperature>

<temperature unit="Farenheit">49</temperature>

If the values of these elements are to be inserted into the same table, and you want

the table to contain consistent values (all Celcius values, for example), then you

need to convert the values that have the attribute unit=″Farenheit″ to Celcius

before inserting. You can do this by mapping all elements with the attribute

unit=″Celsius″ to one rowSet and all elements with the attribute unit=″Farenheit″

to another rowSet. The rowSet for Farenheit values can then have a conversion

formula applied before insertion.

Notice that the mapping on the attribute declaration of ″unit″ does not contain any

db2-xdb:column specification. This means that value of the item will only be used

for condition evaluation and not for storage into the table specified by the

db2-xdb:rowSet specification.

The following XML schema document could be used to insert the Celcius and

converted Farenheit values into the same table:

....

<!-- Global annotation -->

<db2-xdb:table>

 <db2-xdb:name>TEMPERATURE_DATA</db2-xdb:name>

 <db2-xdb:rowSet>temp_celsius</db2-xdb:rowSet>

 <db2-xdb:rowSet>temp_fahrenheit</db2-xdb:rowSet>

</db2-xdb:table>

...

<xs:element name="temperature">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>temp_celsius</db2-xdb:rowSet>

 <db2-xdb:column>col1</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>temp_fahrenheit</db2-xdb:rowSet>

 <db2-xdb:column>col1</db2-xdb:column>

 <db2-xdb:expression>

 myudf_convertTocelsius($DECOMP_CONTENT)

 </db2-xdb:expression>

 </db2-xdb:rowSetMapping>

350 pureXML Guide

</xs:appinfo>

 </xs:annotation>

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:int">

 <xs:attribute name="unit" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>temp_celsius</db2-xdb:rowSet>

 <db2-xdb:condition>

 $DECOMP_CONTENT = ’Celsius’

 </db2-xdb:condition>

 </db2-xdb:rowSetMapping>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>temp_fahrenheit</db2-xdb:rowSet>

 <db2-xdb:condition>

 $DECOMP_CONTENT = ’fahrenheit’

 </db2-xdb:condition>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Decomposition annotation example: Mapping to an XML

column

In annotated XML schema decomposition, you can map an XML fragment to a

column defined using the XML data type.

Consider the following XML document:

<publications>

 <textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

 </textbook>

</publications>

If you wanted to store the <textbook> XML element and book title as follows, you

would add annotations to the declarations of the <textbook> element and title

attribute in the corresponding XML schema document. The annotations should

specify the DETAILS and TITLE columns, where the DETAILS column has been

defined with the XML type, as well as the TEXTBOOKS table.

 Table 78. TEXTBOOKS

TITLE DETAILS

Programming with XML <textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

</textbook>

Chapter 12. Annotated XML schema decomposition 351

Depending on the annotation, an annotation can be specified in the schema

document as an attribute or an element. Some annotations can be specified as

either. Refer to the documentation for each specific annotation to determine how a

particular annotation can be specified.

Specify the target table and column using either db2-xdb:rowSet and

db2-xdb:column as attributes of <xs:element> or <xs:attribute> or the

<db2-xdb:rowSet> and <db2-xdb:column> children elements of

<db2-xdb:rowSetMapping>. Specifying these mappings as elements or attributes

are equivalent.

The following fragment of the XML schema document shows how two mappings

are added to the <textbook> element and title attribute by specifying annotations

as attributes.

<xs:element name="publications">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="textbook" maxOccurs="unbounded"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="DETAILS">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="TITLE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The db2-xdb:rowSet annotations specify the name of the target table, and the

db2-xdb:column annotations specify the name of the target column. Because the

<textbook> element is of complex type and contains complex content, and the

db2-xdb:contentHandling annotation was not specified, by default, all markup

within the element (including its start and end tags) is inserted into the XML

column according to the serializeSubtree setting of db2-xdb:contentHandling.

Whitespace within the XML document is preserved. Refer to the

db2-xdb:contentHandling documentation for more detail.

Decomposition annotation example: A value mapped to a

single table that yields a single row

Mapping a value from an XML document to a single table and column pair is a

simple form of mapping in annotated XML schema decomposition. This example

shows the simpler case of a one to one relationship between values in a rowSet.

The result of this mapping depends on the relationship between items mapped to

the same rowSet. If the values that are mapped together in a single rowSet have a

one to one relationship, as determined by the value of the maxOccurs attribute of

the element or the containing model group declaration, a single row will be

formed for each instance of the mapped item in the XML document. If the values

in a single rowSet have a one to many relationship, where one value appears only

once in the document for multiple instances of another item, as indicated by the

value of the maxOccurs attribute, then multiple rows will result when the XML

document is decomposed.

352 pureXML Guide

Consider the following XML document:

<publications>

 <textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

 </textbook>

</publications>

If you wanted the values of the <isbn> and <publicationDate> elements, as well as

the title attribute, to be decomposed into the TEXTBOOKS table as follows, you

need to add annotations to the declarations for these elements and attributes in the

corresponding XML schema document. The annotations would specify the table

and column names that each item is mapped to.

 Table 79. TEXTBOOKS

ISBN TITLE DATE

0-11-011111-0 Programming with XML 2002

Depending on the annotation, an annotation can be specified in the schema

document as an attribute or an element. Some annotations can be specified as

either. Refer to the documentation for each specific annotation to determine how a

particular annotation can be specified.

For the case of mapping a value to single table and column pair, you need to

specify the table and column on the value being mapped. This is done using either

db2-xdb:rowSet and db2-xdb:column as attributes of <xs:element> or <xs:attribute>

or the <db2-xdb:rowSet> and <db2-xdb:column> children elements of

<db2-xdb:rowSetMapping>. Specifying these mappings as elements or attributes

are equivalent.

The following example shows how to map elements and attributes from the

<textbook> element to the TEXTBOOKS table by specifying annotations as

attributes.

<xs:element name="publications">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="ISBN"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="DATE"/>

 <xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="TITLE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Chapter 12. Annotated XML schema decomposition 353

The maxOccurs XML Schema attribute has a default value of 1, and so each of the

items mapped to the TEXTBOOKS rowSet has a one to one relationship with each

other. Because of this one to one relationship, a single row is formed for each

instance of the <textbook> element.

Decomposition annotation example: A value mapped to a

single table that yields multiple rows

Mapping a value from an XML document to a single table and column pair is a

simple form of mapping in annotated XML schema decomposition. This example

shows the more complex case of a one to many relationship between values in a

rowSet.

The result of this mapping depends on the relationship between items mapped to

the same rowSet. If the values that are mapped together in a single rowSet have a

one to one relationship, as determined by the value of the maxOccurs attribute of

the element or the containing model group declaration, a single row will be

formed for each instance of the mapped item in the XML document. If the values

in a single rowSet have a one to many relationship, where one value appears only

once in the document for multiple instances of another item, as indicated by the

value of the maxOccurs attribute, then multiple rows will result when the XML

document is decomposed.

Consider the following XML document:

<textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

</textbook>

If you wanted to store the ISBN and authors for a textbook as follows, you would

add annotations to the declarations of the <isbn> and <author> elements in the

corresponding XML schema document. The annotations should specify the ISBN

and AUTHNAME columns, as well as the TEXTBOOK_AUTH table.

 Table 80. TEXTBOOKS_AUTH

ISBN AUTHNAME

0-11-011111-0 Mary Brown

0-11-011111-0 Alex Page

Depending on the annotation, an annotation can be specified in the schema

document as an attribute or an element. Some annotations can be specified as

either. Refer to the documentation for each specific annotation to determine how a

particular annotation can be specified.

For the case of mapping a value to single table and column pair, you need to

specify the table and column on the value being mapped. This is done using either

db2-xdb:rowSet and db2-xdb:column as attributes of <xs:element> or

<xs:attribute>, or the <db2-xdb:rowSet> and <db2-xdb:column> children elements

of <db2-xdb:rowSetMapping>.

Specifying these mappings as elements or attributes is equivalent. The mappings

are specified as elements in the XML schema document presented next.

354 pureXML Guide

<xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>TEXTBOOKS_AUTH</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>TEXTBOOKS_AUTH</db2-xdb:rowSet>

 <db2-xdb:column>AUTHNAME</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

Notice how the <isbn> element is mapped only once to the ISBN column, yet it

appears in two rows in the table. This happens automatically during the

decomposition process because there are multiple authors per ISBN value. The

value of <isbn> is duplicated in each row for every author.

This behavior occurs because a one to many relationship is detected between the

<isbn> and <author> elements, as the maxOccurs attribute for <author> is greater

than 1.

Note that a one to many relationship can involve more than two items, and

include sets of items. The one to many relationship can also be deeply nested,

where an item already involved in a one to many relationship can participate in

another one to many relationship.

Decomposition annotation example: A value mapped to

multiple tables

A single value from an XML document can be mapped to multiple tables. This

example shows how to annotate an XML schema document to map a single value

to two tables.

Consider the following XML document.

<textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

</textbook>

To map a textbook’s ISBN to the following two tables, you need to create two

mappings on the <isbn> element. This can be done by adding multiple

Chapter 12. Annotated XML schema decomposition 355

<db2-xdb:rowSetMapping> elements to the <isbn> element declaration in the XML

schema document.

 Table 81. TEXTBOOKS

ISBN TITLE

0-11-011111-0 Programming with XML

 Table 82. SCHOOLPUBS

ISBN SCHOOL

0-11-011111-0 University of London

The following fragment of the XML schema document shows how two mappings

are added to the <isbn> element declaration to specify the mappings to two tables.

The value of the title attribute and <university> element also included in the

mappings.

<xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>SCHOOLPUBS</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>SCHOOLPUBS</db2-xdb:rowSet>

 <db2-xdb:column>SCHOOL</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>

 <db2-xdb:column>TITLE</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

</xs:element>

356 pureXML Guide

Complex types that appear multiple times

If a complex type is referred to in multiple places in an XML schema, you can map

it to different tables and columns depending on its location in the schema, using

the db2-xdb:locationPath annotation.

In this case, the complex type element or attribute declaration needs to be

annotated with multiple <db2-xdb:rowSetMapping> annotations (one for each

mapping) where each mapping is distinguished by the db2-xdb:locationPath

attribute.

Decomposition annotation example: Grouping multiple values

mapped to a single table

In annotated XML schema decomposition, you can map multiple values from

unrelated elements to the same table, while preserving the relationship between

logically-related values. This is possible by declaring multiple rowSets, which are

used to group related items to form a row, as shown in this example.

For example, consider the following XML document:

<publications>

 <textbook title="Programming with XML">

 <isbn>0-11-011111-0</isbn>

 <author>Mary Brown</author>

 <author>Alex Page</author>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

 </textbook>

 <childrensbook title="Children’s Fables">

 <isbn>5-55-555555-5</isbn>

 <author>Bob Carter</author>

 <author>Melaine Snowe</author>

 <publicationDate>1999</publicationDate>

 </childrensbook>

</publications>

To generate the following table after decomposition, you need to ensure that values

relating to a textbook are not grouped in the same row as values associated with a

children’s book. Use multiple rowSets to group related values and yield logically

meaningful rows.

 Table 83. ALLPUBLICATIONS

PUBS_ISBN PUBS_TITLE

0-11-011111-0 Programming with XML

5-55-555555-5 Children’s Fables

In a simple mapping scenario, where you are mapping a single value to a single

table and column pair, you could just specify the table and column you want to

map the value to.

This example shows a more complex case, however, where multiple values are

mapped to the same table and must be logically grouped. If you were to simply

map each ISBN and title to the PUBS_ISBN and PUBS_TITLE columns, without the

use of rowSets, the decomposition process would not be able to determine which

ISBN value belonged with which title value. By using rowSets, you can group

logically related values to form a meaningful row.

Chapter 12. Annotated XML schema decomposition 357

The following XML schema document shows how two rowSets are defined to

distinguish values of the <textbook> element from values of the <childrensbook>

element.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:table>

 <db2-xdb:name>ALLPUBLICATIONS</db2-xdb:name>

 <db2-xdb:rowSet>textbk_rowSet</db2-xdb:rowSet>

 <db2-xdb:rowSet>childrens_rowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="publications">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_ISBN"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_TITLE"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="childrensbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string"

 db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_ISBN"/>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

 <xs:element name="publicationDate" type="xs:gYear"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"

 db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_TITLE"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice how the db2-xdb:rowSet mappings in each of the element and attribute

declarations do not specify the name of a table, but rather the name of a rowSet.

The rowSets are associated with the ALLPUBLICATIONS table in the

<db2-xdb:table> annotation, which must be specified as a child of <xs:schema>.

By specifying multiple rowSets that map to the same table, you can ensure that

logically related values form a row in the table.

Decomposition annotation example: Multiple values from

different contexts mapped to a single table

In annotated XML schema decomposition, you can map multiple values to the

same table and column, such that a single column can contain values that have

come from different parts of a document. This is possible by declaring multiple

rowSets, as shown in this example.

358 pureXML Guide

For example, consider the following XML document:

<publications>

 <textbook title="Principles of Mathematics">

 <isbn>1-11-111111-1</isbn>

 <author>Alice Braun</author>

 <publisher>Math Pubs</publisher>

 <publicationDate>2002</publicationDate>

 <university>University of London</university>

 </textbook>

</publications>

You can map both the author and the publisher to the same table that contains

contacts for a particular book.

 Table 84. BOOKCONTACTS

ISBN CONTACT

1-11-111111-1 Alice Braun

1-11-111111-1 Math Pubs

The values in the CONTACT column of the resulting table come from different

parts of the XML document: one row might contain an author’s name (from the

<author> element, while another row contains a publisher’s name (from the

<publisher> element).

The following XML schema document shows how multiple rowSets can be used to

generate this table.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:table>

 <db2-xdb:name>BOOKCONTACTS</db2-xdb:name>

 <db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>

 <db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>

 </db2-xdb:table>

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="publications">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="textbook" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="isbn" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>

 <db2-xdb:column>ISBN</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="author" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:appinfo>

Chapter 12. Annotated XML schema decomposition 359

<db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>

 <db2-xdb:column>CONTACT</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="publisher" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <db2-xdb:rowSetMapping>

 <db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>

 <db2-xdb:column>CONTACT</db2-xdb:column>

 </db2-xdb:rowSetMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="publicationDate" type="xs:gYear"/>

 <xs:element name="university" type="xs:string"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="title" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice how the db2-xdb:rowSet mappings in each of the element declarations do

not specify the name of a table, but rather the name of a rowSet. The rowSets are

associated with the BOOKCONTACTS table in the <db2-xdb:table> annotation,

which must be specified as a child of <xs:schema>.

XML schema to SQL types compatibility for annotated schema

decomposition

Annotated XML schema decomposition enables XML values to be stored in

columns of tables. XML values can be decomposed only into compatible SQL

columns. The following table lists which XML schema types are compatible with

which SQL column types.

 Table 85. Compatible XML schema and SQL data types

XML schema type

SQL type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 D

E

C

I

M

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

(

1

6

)

 D

E

C

F

L

O

A

T

(

3

4

)

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 C

H

A

R

F

B

D†

 B

L

O

B

 V

A

R

C

H

A

R

F

B

D†

 L

O

N

G

V

A

R

C

H

A

R

F

B

D†

string, normalizedString,

token

1 1 1 1 1 1 1 1 2 3 4 6 5 5 5 6a 5a 5a 5a 7a 7 7 7

base64Binary, hexBinary - - - - - - - - - - - 8a 8 8 8 - - - - 8c 8b 8b 8b

byte, unsigned byte 0a 0a 0a 0a 0a 0a 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

360 pureXML Guide

Table 85. Compatible XML schema and SQL data types (continued)

XML schema type

SQL type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 D

E

C

I

M

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

(

1

6

)

 D

E

C

F

L

O

A

T

(

3

4

)

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 C

H

A

R

F

B

D†

 B

L

O

B

 V

A

R

C

H

A

R

F

B

D†

 L

O

N

G

V

A

R

C

H

A

R

F

B

D†

integer, positiveInteger,

negativeInteger,

nonNegativeInteger,

nonPositiveInteger

10 10 10 11 11 11 10 10 - - - 9a* 9* 9* 9* - - - - - - - -

int 10 0a 0a 11 11 0a 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

unsignedInt 10 10 0a 11 11 0a 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

long 10 10 0a 11 11 11 10 0a - - - 9a* 9* 9* 9* - - - - - - - -

unsignedLong 10 10 10 11 11 11 10 0a - - - 9a* 9* 9* 9* - - - - - - - -

short 0a 0a 0a 0a 0a 0a 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

unsignedShort 10 0a 0a 0a 0a 0a 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

decimal 21 21 21 11 11 11 11 11 - - - 9a* 9* 9* 9* - - - - - - - -

float 22 22 22 17 16 17 0a 0a - - - 9a* 9* 9* 9* - - - - - - - -

double 22 22 22 16 16 17 11 11 - - - 9a* 9* 9* 9* - - - - - - - -

boolean 12 12 12 12 12 12 12 12 - - - 9a* 9* 9* 9* - - - - - - - -

time - - - - - - - - - 14 - 13a* 13* 13* 13* - - - - - - - -

dateTime - - - - - - - - 15 15 19 13a* 13* 13* 13* - - - - - - - -

duration, gMonth, gYear,

gDay, gMonthDay,

gYearMonth

- - - - - - - - - - - 13a 13 13 13 - - - - - - - -

date - - - - - - - - 20 - - 13a* 13* 13* 13* - - - - - - - -

Name, NCName,

NOTATION, ID, IDREF,

QName, NMTOKEN,

ENTITY

- - - - - - - - - - - 6 5 5 5 6a 5a 5a 5a 7a 7 7 7

ENTITIES, NMTOKENS,

IDREFS, list types

- - - - - - - - - - - 6b 5b 5b 5b 6c 5c 5c 5c 7c 7b 7b 7b

anyURI - - - - - - - - - - - 18a 18 18 18 - - - - 7a 7 7 7

language - - - - - - - - - - - 6 5 5 5 - - - - 7a 7 7 7

anySimpleType, union types - - - - - - - - - - - 6d 5d 5d 5d 6e 5e 5e 5e 7e 7d 7d 7d

anyType - - - - - - - - - - - 6d 5d 5d 5d 6e 5e 5e 5e 7e 7d 7d 7d

Legend

† FOR BIT DATA

* The db2-xdb:normalization annotation is used to determine the format of

the string that is inserted into the database.

– Data types are not compatible for annotated XML schema decomposition.

0 Data types are compatible.

0a Compatible, and where -0 is in the value space of the XML type, -0 is

stored as 0 in the database.

1 Compatible if the string is in an acceptable lexical form for the target SQL

type and can be converted to a numeric value in the range of the SQL

type. Loss of significant digits can occur.

Chapter 12. Annotated XML schema decomposition 361

2 Compatible if the string is of a valid date format: yyyy-mm-dd, mm/dd/yyyy,

or dd.mm.yyyy.

3 Compatible if the string is of a valid time format: hh.mm.ss, hh:mm AM or

PM, or hh:mm:ss.

4 Compatible if the string is of a valid timestamp format:

yyyy-mm-dd-hh.mm.ss.nnnnnn or yyyy-mm-dd hh.mm.ss.nnnnnn.

5 Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. String

length is computed after normalization, where the input string is

normalized according to the whitespace facet of the XML schema type.

5a Compatible according to the conditions described in 5. Additionally, the

input string must be composed of double-byte characters.

5b Compatible according to the conditions described in 5. Additionally, the

value that is inserted into the target column is the string of concatenated

list items, each separated by a single space (in accordance with the

″collapse″ whitespace facet for lists).

5c Compatible according to the conditions described in 5a. Additionally, the

value that is inserted into the target column is the string of concatenated

list items, each separated by a single space (in accordance with the

″collapse″ whitespace facet for lists).

5d Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. The value

that is inserted into the target column in either case is the character content

of the element or attribute.

5e Compatible according to the conditions described in 5d. Additionally, The

input string must be composed of double-byte characters.

6 Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. String

length is computed after normalization, where the input string is

normalized according to the whitespace facet of the XML schema type. If

the length of the input XML string is less than the defined length of the

target column, then the string is right-padded with blanks when inserted.

6a Compatible according to the conditions described in 6. Additionally, the

input string must be composed of double-byte characters.

6b Compatible according to the conditions described in 6. Additionally, the

value that is inserted into the target column is the string of concatenated

list items, each separated by a single space (in accordance with the

″collapse″ whitespace facet for lists).

6c Compatible according to the conditions described in 6a. Additionally, the

value that is inserted into the target column is the string of concatenated

list items, each separated by a single space (in accordance with the

″collapse″ whitespace facet for lists).

6d Compatible if the length of the XML input string, in bytes, is less than or

362 pureXML Guide

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. The value

that is inserted into the target column in either case is the character content

of the element or attribute. If the length of the input XML string is less

than the defined length of the target column, then the string is

right-padded with blanks when inserted.

6e Compatible according to the conditions described in 6d. Additionally, The

input string must be composed of double-byte characters.

7 Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. String

length is computed after normalization, where the input string is

normalized according to the whitespace facet of the XML schema type.

7a Compatible according to the conditions described in 7. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

7b Compatible according to the conditions described in 7. Additionally, the

value that is inserted into the target column is the string of concatenated

list items, each separated by a single space (in accordance with the

″collapse″ whitespace facet for lists).

7c Compatible according to the conditions described in 7b. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

7d Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. The value

that is inserted into the target column in either case is the character content

of the element or attribute.

7e Compatible according to the conditions described in 7d. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

8 Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. The

encoded (original) string is inserted.

8a Compatible according to the conditions described in 8. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

8b Compatible if the length of the XML input string, in bytes, is less than or

equal to the length of the target column in bytes. If the input string is

longer than the target column, then the string is compatible only if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping. The value

that is inserted into the target column is the decoded string.

8c Compatible according to the conditions described in 8b. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

Chapter 12. Annotated XML schema decomposition 363

9 Compatible if the length of the XML input string, computed after

processing according to the db2-xdb:normalization setting, is less than or

equal to the length of the target column. Also compatible if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping.

9a Compatible according to the conditions described in 9. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

10 Compatible if the XML type is in the range of the SQL type. Where -0 is in

the value space of the XML type, -0 is stored as 0 in the database.

11 Compatible if the XML value is in the range of the SQL type. Loss of

significant digits can occur. Where -0 is in the value space of the XML type,

-0 is stored as 0 in the database.

12 Compatible, and the value inserted is ’0’ (for false) or ’1’ (for true).

13 Compatible if the length of the XML input string, computed after

processing according to the db2-xdb:normalization setting, is less than or

equal to the length of the target column. Also compatible if

db2-xdb:truncate is set to ″true″ or ″1″ for this column mapping.

13a Compatible according to the conditions described in 13. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

14 For XML values that contain subseconds, compatible only if the

decomposition annotation specifies db2-xdb:truncate as ″true″ or ″1″. For

XML values with time zone indicators, compatible if db2-xdb:truncate is

set to ″true″ or ″1″; values are inserted without the time zone.

15 Compatible if the year is composed of four digits and is not preceded by

the ’-’ sign. Compatible if the XML value does not have a time zone

indicator. If the XML value has a time zone indicator, then the values are

compatible if db2-xdb:truncate is set to ″true″ or ″1″.

16 Compatible if the value is in the range of the SQL type and is not ″INF″,

″-INF″ or ″NaN″. Where -0 is in the value space of the XML type, -0 is

stored as 0 in the database. Loss of significant digits can occur.

17 Compatible if the value is not ″INF″, ″-INF″ or ″NaN″. Where -0 is in the

value space of the XML type, -0 is stored as 0 in the database.

18 Compatible if the string length of the URI, in bytes, is less than or equal to

the length of the target column in bytes. If the input string is longer than

the target column, then the string is compatible only if db2-xdb:truncate is

set to ″true″ or ″1″ for this column mapping. Note that the URI itself, not

the resource the URI points to, is inserted.

18a Compatible according to the conditions described in 18. Additionally, if the

length of the input XML string is less than the defined length of the target

column, then the string is right-padded with blanks when inserted.

19 Compatible if the year is composed of four digits and is not preceded by

the ’-’ sign. For XML values with time zone indicators, compatible if

db2-xdb:truncate is set to ″true″ or ″1″. (Values are inserted without the

time zone in this case.) If subseconds are specified with more than six

digits, compatible if db2-xdb:truncate is set to ″true″ or ″1″.

20 Compatible if the year is composed of four digits and is not preceded by

364 pureXML Guide

the ’-’ sign. For XML values with time zone indicators, compatible if

db2-xdb:truncate is set to ″true″ or ″1″. (Date values are inserted without

the time zone in this case.)

21 The fractional part of the number is truncated. Compatible if the whole

part is in the range of the SQL type. Where -0 is in the value space of the

XML type, -0 is stored as 0 in the database.

22 The fractional part of the number is truncated. Compatible if the whole

part is in the range of the SQL type, and the value is not ″INF″, ″-INF″ or

″NaN″. Where -0 is in the value space of the XML type, -0 is stored as 0 in

the database.

Limits and restrictions for annotated XML schema decomposition

Certain limits and restrictions apply to annotated XML schema decomposition.

Limits

 Table 86. Limits for annotated XML schema decomposition

Condition Limit value

Maximum size of document to be

decomposed

100 MB

Maximum number of tables referred to in a

single annotated XML schema

100

Maximum number of

$DECOMP_CONTENT or

$DECOMP_ELEMENTID instances in an

db2-xdb:expression annotation

10

Maximum number of steps in

db2-xdb:locationPath

100

Maximum number of namespaces explicitly

listed in the ″namespace″ attribute of

<xs:any> or <xs:anyAttribute> (if the list

contains the special values

##targetNamespace or ##local, then these

also count towards the limit)

25

Maximum string length of the value of

db2-xdb:name (table name),

db2-xdb:column, db2-
xdb:defaultSQLSchema, or

db2-xdb:SQLSchema

same as the limit for the corresponding DB2

object

Maximum string length of the value of

db2-xdb:rowSet

same as the limit for db2-xdb:name

Maximum string length for value of

$DECOMP_CONTENT

1024 bytes

Restrictions

Annotated XML schema decomposition does not support the following:

v decomposition of element of attribute wildcards: elements or attributes in the

XML document that correspond to the <xs:any> or <xs:anyAttribute> declaration

in the XML schema are not decomposed.

Chapter 12. Annotated XML schema decomposition 365

If, however, these elements or attributes are children of elements that are

decomposed with db2-xdb:contentHandling set to ″serializeSubtree″ or

″stringValue″, then the contents of the wildcard elements or attributes will be

decomposed as part of the serialized subtree or string value. These wildcard

element or attributes must satisfy the namespace constraints specified in the

corresponding <xs:any> or <xs:anyAttribute> declaration, however, in order to

be part of the serialization.

v substitution groups: an error is generated if a member of a substitution group

appears in the XML document where the group head appears in the XML

schema, for cases when the substition group members are used not only as the

root element of the document.

As a workaround, the element declarations of the substitution group’s head and

members can instead be changed to a named model group of type xs:choice. For

example, these substitution group declarations

<xs:element name="head" type="BaseType" />

<xs:element name="member1" type="derived1FromBaseType" substitutionGroup="head"/>

<xs:element name="member2" type="derived2FromBaseType" substitutionGroup="head"/>

<xs:element name="member3" type="derived3FromBaseType" substitutionGroup="head"/>

can be changed to an equivalent named model group:

<xs:group name="mysubstitutiongrp">

 <xs:choice>

 <xs:element name="head" type="BaseType"/>

 <xs:element name="member1" type="derived1FromBaseType"/>

 <xs:element name="member2" type="derived2FromBaseType"/>

 <xs:element name="member3" type="derived3FromBaseType"/>

 </xs:choice>

</xs:group>

Occurrences of the <head> element can then be replaced with the newly defined

named model group in the XML document.

v runtime substitution using xsi:type: an element is decomposed according to the

mappings in the schema type associated with the element name in the schema.

Specifying a different type for an element in the document through the use of

xsi:type results in an error being returned during decomposition.

Ensure that the type of an element specified with xsi:type in the XML document

matches the type specified for that element in the context. If the content of the

element or its descendants does not need to be decomposed individually, then

the type of the element can be changed to xs:anyType in the XML schema. With

this change, the XML documents do not need to be modified.

v recursive elements: XML schemas containing recursion can be registered in the

XML schema repository (XSR) and enabled for decomposition. However, the

recursive sections of an associated XML instance document cannot be

decomposed as scalar values into a target table. By using appropriate schema

annotations, the recursive sections can be stored and later retrieved as serialized

markup.

v updates to or deletion of existing rows in target tables: decomposition only

supports the insertion of new rows. (You can still update or delete rows outside

of the XML decomposition process.)

v attributes of simple type derived from NOTATION: decomposition inserts only

the notation name.

v attributes of type ENTITY: decomposition inserts only the entity name.

v multiple mappings to the same rowSet and column with db2-xdb:expression and

db2-xdb:condition: where multiple items can be legally mapped to the same

rowSet and column, according to mapping rules, the mappings must not contain

the db2-xdb:expression or db2-xdb:condition annotations.

366 pureXML Guide

Troubleshooting considerations for annotated XML schema

decomposition

If you find that decomposition is not yielding expected results, several issues

should be considered.

General considerations

v Check that the XSR object that corresponds to your XML schema appears as

enabled in the DECOMPOSITION column of the SYSCAT.XSROBJECTS catalog

view. If the XSR object is not enabled, consider taking the corrective actions

described in the disablement documentation.

v Ensure that the limits and restrictions for XML decomposition are not violated.

v Ensure that the XML document is valid according to its XML schema. Validation

is not a requirement for decomposition, however, if you expect certain behavior,

such as character entity expansion, then perform decomposition with validation.

XML schema issues

v Ensure that XML schema does not contain errors such as non-deterministic

content models, as these types of errors can cause decomposition to fail when

validation is performed, or undefined decomposition results if validation is not

performed.

v Ensure that the non-global annotations have been declared only on element or

attribute declarations and not on complex types, element/attribute references,

model groups or any other xml schema construct. Also check that the

annotations are declared in their supported format: as attributes, elements, or

global annotations. (Refer to the documentation on each annotation for details of

how to specify an annotation.)

v Ensure that complex types derived by extension or restriction are annotated

properly.

Specific errors

Adjusting database configuration parameters can resolve the following errors:

v SQL0954 received when the annotated XML schema contains a large number of

rowSets: increase the application heap size using the applheapsz configuration

parameter

v SQL0954 received when the annotated XML schema contains complex or many

expressions in each rowSet: increase the application heap size using the

applheapsz configuration parameter

v SQL0964 received when decomposition results in a large number of rows:

increase the number of primary or secondary log files available using the

logprimary and logsecond configuration parameters. You can also increase the

size of the primary and secondary log files with the logfilesz configuration

parameter.

Locking and concurrency

If you are experiencing lock escalation or deadlock when decomposing documents,

adjust concurrency control through your application. If an application makes

multiple concurrent invocations of any of the xdbDecompXML stored procedures,

where many of the same tables are involved in the multiple decomposition

operations, then the application needs to manage the concurrent access to these

tables to prevent lock escalation and deadlock.

Chapter 12. Annotated XML schema decomposition 367

One way to adjust concurrency control is to explicitly lock all tables involved in

the decomposition before invoking the xdbDecompXML stored procedure. Then

execute the COMMIT or ROLLBACK statements as appropriate after the stored

procedure has returned. Because the decomposition of large documents can result

in a large number of rows being inserted, and because each row is locked by

default during an insert operation, an application that is inserting many rows can

hold many row locks, leading to lock escalation. By obtaining table locks instead,

you can avoid the overhead of obtaining row locks and of lock escalation.

If the reduced concurrency associated with obtaining table locks is not appropriate

for your application, you can increase either or both of the maxlocks and locklist

database configuration parameters, which decreases the likelihood of lock

escalation.

Set the locktimeout database configuration parameter to prevent an application

from waiting indefinitely to obtain a lock.

Mapping verification in catalog view

If you are still experiencing problems with decomposition after verifying the

conditions above, check that the MAPPINGDESCRIPTION column of the

SYSCAT.XDBMAPSHREDTREES catalog view matches the mappings you intended.

The MAPPINGDESCRIPTION column contains details on how each item in a

rowSet was mapped, including:

v target column name

v target column type

v item’s XML schema type

v values specified for db2-xdb:contentHandling, db2-xdb:normalization,

db2-xdb:truncate, db2-xdb:expression, and db2-xdb:condition

Note that the columns of SYSCAT.XDBMAPSHREDTREES other than

MAPPINGDESCRIPTION are intended for DB2 customer support.

Schema for XML decomposition annotations

Annotated XML schema decomposition supports a set of decomposition

annotations that enable you to specify how XML documents are to be decomposed

and inserted into database tables. This topic shows the XML schema for the

annotated schema as defined by XML decomposition.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.ibm.com/xmlns/prod/db2/xdb1"

 targetNamespace="http://www.ibm.com/xmlns/prod/db2/xdb1"

 elementFormDefault="qualified" >

 <xs:element name="defaultSQLSchema" type="xs:string"/>

 <xs:attribute name="rowSet" type="xs:string"/>

 <xs:attribute name="column" type="xs:string"/>

 <xs:attribute name="locationPath" type="xs:string"/>

 <xs:attribute name="truncate" type="xs:boolean"/>

 <xs:attribute name="contentHandling">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="text"/>

 <xs:enumeration value="serializeSubtree"/>

 <xs:enumeration value="stringValue"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="normalization" >

368 pureXML Guide

<xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="original"/>

 <xs:enumeration value="whitespaceStrip"/>

 <xs:enumeration value="canonical"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="expression" type="xs:string"/>

 <xs:attribute name="condition" type="xs:string"/>

 <xs:element name="table">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SQLSchema" type="xs:string" minOccurs="0"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="rowSet" type="xs:string"

 maxOccurs="unbounded" form="qualified"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="rowSetMapping">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="rowSet" type="xs:string" />

 <xs:element name="column" type="xs:string" minOccurs="0"/>

 <xs:element name="expression" type="xs:string" minOccurs="0" />

 <xs:element name="condition" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute ref="truncate" />

 <xs:attribute ref="locationPath" />

 <xs:attribute ref="normalization" />

 <xs:attribute ref="contentHandling" />

 </xs:complexType>

 </xs:element>

 <xs:element name=’rowSetOperationOrder’>

 <xs:complexType>

 <xs:choice minOccurs=’1’ maxOccurs=’1’>

 <xs:element name=’order’ type=’orderType’ minOccurs=’1’

 maxOccurs=’unbounded’/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:complexType name=’orderType’>

 <xs:sequence>

 <xs:element name=’rowSet’ type=’xsd:string’ minOccurs=’2’

 maxOccurs=’unbounded’/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Chapter 12. Annotated XML schema decomposition 369

370 pureXML Guide

Chapter 13. Restrictions on pureXML

Restrictions on pureXML

The pureXML feature is subject to certain restrictions. This topic provides an

overview of key restrictions. For further detail, refer to the documentation for a

specific feature.

Restrictions on XML column definitions

XML columns:

v can be part of an index only if the index is an index over XML data

v can be referenced in CHECK constraints only in conjunction with a VALIDATED

predicate

v can be referenced in the triggered-action of a BEFORE TRIGGER only to invoke

the XMLVALIDATE function from a SET statement, to SET values to NULL, or

to leave values of type XML unchanged

v cannot be included as columns of keys, including primary, foreign, and unique

keys, dimension keys of multi-dimensional clustering (MDC) tables, sequence

keys of range-clustered tables, distribution keys, and data partitioning keys.

v cannot have a default value specified by the WITH DEFAULT clause; if the

column is nullable, the default for the column is NULL

v cannot be used in a range-clustered table (RCT)

v cannot be used in a multi-dimensional clustering (MDC) table

v cannot be used in a table with a distribution key

v cannot be used in a table partitioned by range

v cannot be used in a CCSID UNICODE table in a non-Unicode database

v cannot be included in typed tables and typed views

v cannot be added to tables that have type-1 indexes defined on them (note that

type-1 indexes are deprecated indexes; new indexes are always created as type-2

indexes)

v cannot be referenced in generated columns

v cannot be specified in the select-list of scrollable cursors

v cause data blocking to be disabled when retrieving XML data

Restrictions on database partitions

Database partitioning is restricted with the pureXML feature:

v The use of the pureXML feature prevents future use of database partitioning.

v An XML column or XML schema repository (XSR) object cannot be defined in a

table of a database with more than one database partition defined.

v If a database is defined with a single database partition and includes XML

columns or XSR objects, then a new database partition cannot be added.

Additional restrictions

While there is no architectural limit on the size of an XML value stored in the

database, serialized XML data that is exchanged with the database is effectively

limited to 2GB.

© Copyright IBM Corp. 2006, 2007 371

Additional restrictions exist for creating indexes on XML columns and for

transforming with XSLT stylesheets. Please see the Related reference section below.

372 pureXML Guide

Appendix A. Encoding mappings

Mappings of encoding names to effective CCSIDs for stored XML data

If data that you store in an XML column is in a binary application variable, or is

an internally encoded XML type, the DB2 database manager examines the data to

determine the encoding. If the data has an encoding declaration, the database

manager maps the encoding name to a CCSID.

Table 87 lists these mappings. If an encoding name is not in Table 87, the database

manager returns an error.

The normalized encoding name in the first column of Table 87 is the result of

converting the encoding name to uppercase, and stripping out all hyphens, plus

signs, underscores, colons, periods, and spaces. For example, ISO88591 is the

normalized encoding name for ISO 8859-1, ISO-8859-1, and iso-8859-1.

 Table 87. Encoding names and effective CCSIDs

Normalized encoding name CCSID

437 437

646 367

813 813

819 819

850 850

852 852

855 855

857 857

862 862

863 863

866 866

869 869

885913 901

885915 923

88591 819

88592 912

88595 915

88597 813

88598 62210

88599 920

904 904

912 912

915 915

916 916

920 920

© Copyright IBM Corp. 2006, 2007 373

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

923 923

ANSI1251 1251

ANSIX341968 367

ANSIX341986 367

ARABIC 1089

ASCII7 367

ASCII 367

ASMO708 1089

BIG5 950

CCSID00858 858

CCSID00924 924

CCSID01140 1140

CCSID01141 1141

CCSID01142 1142

CCSID01143 1143

CCSID01144 1144

CCSID01145 1145

CCSID01146 1146

CCSID01147 1147

CCSID01148 1148

CCSID01149 1149

CP00858 858

CP00924 924

CP01140 1140

CP01141 1141

CP01142 1142

CP01143 1143

CP01144 1144

CP01145 1145

CP01146 1146

CP01147 1147

CP01148 1148

CP01149 1149

CP037 37

CP1026 1026

CP1140 1140

CP1141 1141

CP1142 1142

CP1143 1143

CP1144 1144

374 pureXML Guide

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CP1145 1145

CP1146 1146

CP1147 1147

CP1148 1148

CP1149 1149

CP1250 1250

CP1251 1251

CP1252 1252

CP1253 1253

CP1254 1254

CP1255 1255

CP1256 1256

CP1257 1257

CP1258 1258

CP1363 1363

CP1383 1383

CP1386 1386

CP273 273

CP277 277

CP278 278

CP280 280

CP284 284

CP285 285

CP297 297

CP33722 954

CP33722C 954

CP367 367

CP420 420

CP423 423

CP424 424

CP437 437

CP500 500

CP5346 5346

CP5347 5347

CP5348 5348

CP5349 5349

CP5350 5350

CP5353 5353

CP813 813

CP819 819

Appendix A. Encoding mappings 375

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CP838 838

CP850 850

CP852 852

CP855 855

CP857 857

CP858 858

CP862 862

CP863 863

CP864 864

CP866 866

CP869 869

CP870 870

CP871 871

CP874 874

CP904 904

CP912 912

CP915 915

CP916 916

CP920 920

CP921 921

CP922 922

CP923 923

CP936 1386

CP943 943

CP943C 943

CP949 970

CP950 950

CP964 964

CP970 970

CPGR 869

CSASCII 367

CSBIG5 950

CSEBCDICCAFR 500

CSEBCDICDKNO 277

CSEBCDICES 284

CSEBCDICFISE 278

CSEBCDICFR 297

CSEBCDICIT 280

CSEBCDICPT 37

CSEBCDICUK 285

376 pureXML Guide

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CSEBCDICUS 37

CSEUCKR 970

CSEUCPKDFMTJAPANESE 954

CSGB2312 1383

CSHPROMAN8 1051

CSIBM037 37

CSIBM1026 1026

CSIBM273 273

CSIBM277 277

CSIBM278 278

CSIBM280 280

CSIBM284 284

CSIBM285 285

CSIBM297 297

CSIBM420 420

CSIBM423 423

CSIBM424 424

CSIBM500 500

CSIBM855 855

CSIBM857 857

CSIBM863 863

CSIBM864 864

CSIBM866 866

CSIBM869 869

CSIBM870 870

CSIBM871 871

CSIBM904 904

CSIBMEBCDICATDE 273

CSIBMTHAI 838

CSISO128T101G2 920

CSISO146SERBIAN 915

CSISO147MACEDONIAN 915

CSISO2INTLREFVERSION 367

CSISO646BASIC1983 367

CSISO88596I 1089

CSISO88598I 916

CSISOLATIN0 923

CSISOLATIN1 819

CSISOLATIN2 912

CSISOLATIN5 920

Appendix A. Encoding mappings 377

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

CSISOLATIN9 923

CSISOLATINARABIC 1089

CSISOLATINCYRILLIC 915

CSISOLATINGREEK 813

CSISOLATINHEBREW 62210

CSKOI8R 878

CSKSC56011987 970

CSMACINTOSH 1275

CSMICROSOFTPUBLISHING 1004

CSPC850MULTILINGUAL 850

CSPC862LATINHEBREW 862

CSPC8CODEPAGE437 437

CSPCP852 852

CSSHIFTJIS 943

CSUCS4 1236

CSUNICODE11 1204

CSUNICODE 1204

CSUNICODEASCII 1204

CSUNICODELATIN1 1204

CSVISCII 1129

CSWINDOWS31J 943

CYRILLIC 915

DEFAULT 367

EBCDICATDE 273

EBCDICCAFR 500

EBCDICCPAR1 420

EBCDICCPBE 500

EBCDICCPCA 37

EBCDICCPCH 500

EBCDICCPDK 277

EBCDICCPES 284

EBCDICCPFI 278

EBCDICCPFR 297

EBCDICCPGB 285

EBCDICCPGR 423

EBCDICCPHE 424

EBCDICCPIS 871

EBCDICCPIT 280

EBCDICCPNL 37

EBCDICCPNO 277

378 pureXML Guide

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

EBCDICCPROECE 870

EBCDICCPSE 278

EBCDICCPUS 37

EBCDICCPWT 37

EBCDICCPYU 870

EBCDICDE273EURO 1141

EBCDICDK277EURO 1142

EBCDICDKNO 277

EBCDICES284EURO 1145

EBCDICES 284

EBCDICFI278EURO 1143

EBCDICFISE 278

EBCDICFR297EURO 1147

EBCDICFR 297

EBCDICGB285EURO 1146

EBCDICINTERNATIONAL500EURO 1148

EBCDICIS871EURO 1149

EBCDICIT280EURO 1144

EBCDICIT 280

EBCDICLATIN9EURO 924

EBCDICNO277EURO 1142

EBCDICPT 37

EBCDICSE278EURO 1143

EBCDICUK 285

EBCDICUS37EURO 1140

EBCDICUS 37

ECMA114 1089

ECMA118 813

ELOT928 813

EUCCN 1383

EUCJP 954

EUCKR 970

EUCTW 964

EXTENDEDUNIXCODEPACKEDFORMATFORJAPANESE 954

GB18030 1392

GB2312 1383

GBK 1386

GREEK8 813

GREEK 813

HEBREW 62210

Appendix A. Encoding mappings 379

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

HPROMAN8 1051

IBM00858 858

IBM00924 924

IBM01140 1140

IBM01141 1141

IBM01142 1142

IBM01143 1143

IBM01144 1144

IBM01145 1145

IBM01146 1146

IBM01147 1147

IBM01148 1148

IBM01149 1149

IBM01153 1153

IBM01155 1155

IBM01160 1160

IBM037 37

IBM1026 1026

IBM1043 1043

IBM1047 1047

IBM1252 1252

IBM273 273

IBM277 277

IBM278 278

IBM280 280

IBM284 284

IBM285 285

IBM297 297

IBM367 367

IBM420 420

IBM423 423

IBM424 424

IBM437 437

IBM500 500

IBM808 808

IBM813 813

IBM819 819

IBM850 850

IBM852 852

IBM855 855

380 pureXML Guide

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

IBM857 857

IBM862 862

IBM863 863

IBM864 864

IBM866 866

IBM867 867

IBM869 869

IBM870 870

IBM871 871

IBM872 872

IBM902 902

IBM904 904

IBM912 912

IBM915 915

IBM916 916

IBM920 920

IBM921 921

IBM922 922

IBM923 923

IBMTHAI 838

IRV 367

ISO10646 1204

ISO10646UCS2 1200

ISO10646UCS4 1232

ISO10646UCSBASIC 1204

ISO10646UNICODELATIN1 1204

ISO646BASIC1983 367

ISO646IRV1983 367

ISO646IRV1991 367

ISO646US 367

ISO885911987 819

ISO885913 901

ISO885915 923

ISO885915FDIS 923

ISO88591 819

ISO885921987 912

ISO88592 912

ISO885951988 915

ISO88595 915

ISO885961987 1089

Appendix A. Encoding mappings 381

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

ISO88596 1089

ISO88596I 1089

ISO885971987 813

ISO88597 813

ISO885981988 62210

ISO88598 62210

ISO88598I 916

ISO885991989 920

ISO88599 920

ISOIR100 819

ISOIR101 912

ISOIR126 813

ISOIR127 1089

ISOIR128 920

ISOIR138 62210

ISOIR144 915

ISOIR146 915

ISOIR147 915

ISOIR148 920

ISOIR149 970

ISOIR2 367

ISOIR6 367

JUSIB1003MAC 915

JUSIB1003SERB 915

KOI8 878

KOI8R 878

KOI8U 1168

KOREAN 970

KSC56011987 970

KSC56011989 970

KSC5601 970

L1 819

L2 912

L5 920

L9 923

LATIN0 923

LATIN1 819

LATIN2 912

LATIN5 920

LATIN9 923

382 pureXML Guide

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

MAC 1275

MACEDONIAN 915

MACINTOSH 1275

MICROSOFTPUBLISHING 1004

MS1386 1386

MS932 943

MS936 1386

MS949 970

MSKANJI 943

PCMULTILINGUAL850EURO 858

R8 1051

REF 367

ROMAN8 1051

SERBIAN 915

SHIFTJIS 943

SJIS 943

SUNEUGREEK 813

T101G2 920

TIS20 874

TIS620 874

UNICODE11 1204

UNICODE11UTF8 1208

UNICODEBIGUNMARKED 1200

UNICODELITTLEUNMARKED 1202

US 367

USASCII 367

UTF16 1204

UTF16BE 1200

UTF16LE 1202

UTF32 1236

UTF32BE 1232

UTF32LE 1234

UTF8 1208

VISCII 1129

WINDOWS1250 1250

WINDOWS1251 1251

WINDOWS1252 1252

WINDOWS1253 1253

WINDOWS1254 1254

WINDOWS1255 1255

Appendix A. Encoding mappings 383

Table 87. Encoding names and effective CCSIDs (continued)

Normalized encoding name CCSID

WINDOWS1256 1256

WINDOWS1257 1257

WINDOWS1258 1258

WINDOWS28598 62210

WINDOWS31J 943

WINDOWS936 1386

XEUCTW 964

XMSWIN936 1386

XUTF16BE 1200

XUTF16LE 1202

XWINDOWS949 970

Mappings of CCSIDs to encoding names for serialized XML output

data

As part of an implicit or explicit XMLSERIALIZE operation, the DB2 database

manager might add an encoding declaration at the beginning of serialized XML

output data.

That declaration has the following form:

<?xml version="1.0" encoding="encoding-name"?>

In general, the character set identifier in the encoding declaration describes the

encoding of the characters in the output string. For example, when XML data is

serialized to the CCSID that corresponds to the target application data type, the

encoding declaration describes the target application variable CCSID. An exception

is the case where the application performs an explicit XMLSERIALIZE function

with INCLUDING XMLDECLARATION. When you specify INCLUDING

XMLDECLARATION, the database manager generates an encoding declaration for

UTF-8. If the target data type is a CLOB or DBCLOB type, additional code page

conversion might occur, which can make the encoding information inaccurate. If

the data is further parsed in the application, data corruption can result.

Where possible, the DB2 database manager chooses the IANA registry name for

the CCSID, as prescribed by the XML standard.

 Table 88. CCSIDs and corresponding encoding names

CCSID Encoding name

37 IBM037

273 IBM273

277 IBM277

278 IBM278

280 IBM280

284 IBM284

285 IBM285

384 pureXML Guide

Table 88. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

297 IBM297

367 US-ASCII

420 IBM420

423 IBM423

424 IBM424

437 IBM437

500 IBM500

808 IBM808

813 ISO-8859-7

819 ISO-8859-1

838 IBM-Thai

850 IBM850

852 IBM852

855 IBM855

857 IBM857

858 IBM00858

862 IBM862

863 IBM863

864 IBM864

866 IBM866

867 IBM867

869 IBM869

870 IBM870

871 IBM871

872 IBM872

874 TIS-620

878 KOI8-R

901 ISO-8859-13

902 IBM902

904 IBM904

912 ISO-8859-2

915 ISO-8859-5

916 ISO-8859-8-I

920 ISO-8859-9

921 IBM921

922 IBM922

923 ISO-8859-15

924 IBM00924

932 Shift_JIS

943 Windows-31J

Appendix A. Encoding mappings 385

Table 88. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

949 EUC-KR

950 Big5

954 EUC-JP

964 EUC-TW

970 EUC-KR

1004 Microsoft-Publish

1026 IBM1026

1043 IBM1043

1047 IBM1047

1051 hp-roman8

1089 ISO-8859-6

1129 VISCII

1140 IBM01140

1141 IBM01141

1142 IBM01142

1143 IBM01143

1144 IBM01144

1145 IBM01145

1146 IBM01146

1147 IBM01147

1148 IBM01148

1149 IBM01149

1153 IBM01153

1155 IBM01155

1160 IBM-Thai

1161 TIS-620

1162 TIS-620

1163 VISCII

1168 KOI8-U

1200 UTF-16BE

1202 UTF-16LE

1204 UTF-16

1208 UTF-8

1232 UTF-32BE

1234 UTF-32LE

1236 UTF-32

1250 windows-1250

1251 windows-1251

1252 windows-1252

1253 windows-1253

386 pureXML Guide

Table 88. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

1254 windows-1254

1255 windows-1255

1256 windows-1256

1257 windows-1257

1258 windows-1258

1275 MACINTOSH

1363 KSC_5601

1370 Big5

1381 GB2312

1383 GB2312

1386 GBK

1392 GB18030

4909 ISO-8859-7

5039 Shift_JIS

5346 windows-1250

5347 windows-1251

5348 windows-1252

5349 windows-1253

5350 windows-1254

5351 windows-1255

5352 windows-1256

5353 windows-1257

5354 windows-1258

5488 GB18030

8612 IBM420

8616 IBM424

9005 ISO-8859-7

12712 IBM424

13488 UTF-16BE

13490 UTF-16LE

16840 IBM420

17248 IBM864

17584 UTF-16BE

17586 UTF-16LE

62209 IBM862

62210 ISO-8859-8

62211 IBM424

62213 IBM862

62215 ISO-8859-8

62218 IBM864

Appendix A. Encoding mappings 387

Table 88. CCSIDs and corresponding encoding names (continued)

CCSID Encoding name

62221 IBM862

62222 ISO-8859-8

62223 windows-1255

62224 IBM420

62225 IBM864

62227 ISO-8859-6

62228 windows-1256

62229 IBM424

62231 IBM862

62232 ISO-8859-8

62233 IBM420

62234 IBM420

62235 IBM424

62237 windows-1255

62238 ISO-8859-8-I

62239 windows-1255

62240 IBM424

62242 IBM862

62243 ISO-8859-8-I

62244 windows-1255

62245 IBM424

62250 IBM420

388 pureXML Guide

Appendix B. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 2006, 2007 389

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 89. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

390 pureXML Guide

Table 89. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 90. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 91. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix B. Overview of the DB2 technical information 391

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 389.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

392 pureXML Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix B. Overview of the DB2 technical information 393

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

394 pureXML Guide

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix B. Overview of the DB2 technical information 395

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

396 pureXML Guide

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix B. Overview of the DB2 technical information 397

398 pureXML Guide

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 399

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

400 pureXML Guide

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix C. Notices 401

http://www.ibm.com/legal/copytrade.shtml

402 pureXML Guide

Index

Special characters
.NET

common language runtime
routine example 254

A
about this book i

ADD XMLSCHEMA DOCUMENT command
syntax 200

annotated XML schema decomposition 289

advantage 289

annotations
considerations 343

db2-xdb:column 312

db2-xdb:condition 320

db2-xdb:contentHandling 324

db2-xdb:defaultSQLSchema 304

db2-xdb:expression 317

db2-xdb:locationPath 315

db2-xdb:normalization 328

db2-xdb:order 331

db2-xdb:rowSet 305

db2-xdb:rowSetMapping 335

db2-xdb:rowSetOperationOrder 338

db2-xdb:table 309

db2-xdb:truncate 333

overview 301

schema 368

specification 301

summary 303

CDATA sections 342

data type compatibility 360

decomposing documents 290

registering schemas 290

derived complex types 344

disabling 297

empty strings 342

enabling schemas 290

examples 348, 352, 354, 355, 357, 359

keywords 340

NULL values 342

recursive documents 291

registering schemas 290

restrictions 365

results 340

rowSets 348

schema structuring 346

troubleshooting 367

validation 341

xdbDecompXML stored procedures 297

archiving XML 123

ASC clause
CREATE INDEX statement 142

atomic values 11

attribute nodes 14

auxiliary storage objects
XML data specifier 210

B
BOM (byte order mark)

Unicode 277

byte order mark (BOM)
Unicode 277

C
C

procedures
example 258

XML support 258

XQuery support 258

C# .NET
routines

example 254

casting
between data types 67

reference types 67

user-defined types 67

XML values
XMLQUERY example 67

CDATA in decomposition 342

check constraints
XML support 48

CLI (call level interface)
SQL/XML functions 224

XML data 224

changing default type 227

inserts 225

retrieval 226

updates 225

XQuery expressions 224

CLI applications
XML data 224

CLI/ODBC keywords
MapXMLCDefault 227

MapXMLDescribe 227

CLOSE in CREATE INDEX statement 142

CLR (common language runtime)
routines

XML support 254

XQuery support 254

CLUSTER clause
CREATE INDEX statement 142

columns
creating index keys 142

combining updating expressions 169

command line processor (CLP)
registering an XSR object 177

XML support 17

commands
DECOMPOSE XML DOCUMENT 300

UPDATE XMLSCHEMA 204

comment nodes 15

compatibility
data types

for decomposition 360

COMPLETE XMLSCHEMA command
syntax 202

© Copyright IBM Corp. 2006, 2007 403

constructing XML 104

examples 106

from a single table 107

from multiple tables 107

from table rows 108

special character handling 118

with constant values 106

with XQuery 109

Control Center
XML support 17

COPY
CREATE INDEX statement 142

CREATE INDEX statement
column-names in index keys 142

description 142

index over XML data
examples 158

XML column 142

cursors
XQuery 246

D
data model

XQuery and XPath 10

data server developer tool
XML support 17

data types
casting between 67

XML 3

compatibility for decomposition 360

database managed space (DMS)
used to improve performance 56

DB2 .NET Data Provider
XML support 17

DB2 Information Center
updating 394

versions 393

viewing in different languages 393

DB2 Net Search Extender (NSE)
full-text search of XML data 103

DB2 XQuery functions
sqlquery 58

xmlcolumn 58

DB2 XQuery, overview 57

DB2 XQuery, updating XML data 168

DB2_USE_DB2JCCT2_JROUTINE
specifying drivers 249

db2-fn:sqlquery function
querying with

using parameters 93

type casting 93

DDL (data definition language)
statements

altering XSR objects 181

debugging
XML decomposition 367

DECOMP_CONTENT keyword 340

DECOMP_DOCUMENTID keyword 340

DECOMP_ELEMENTID keyword 340

DECOMPOSE XML DOCUMENT command
description 300

decomposing XML 289, 290

annotated XML schema
advantage 289

annotations
considerations 343

decomposing XML (continued)
annotations (continued)

db2-xdb:column 312

db2-xdb:condition 320

db2-xdb:contentHandling 324

db2-xdb:defaultSQLSchema 304

db2-xdb:expression 317

db2-xdb:locationPath 315

db2-xdb:normalization 328

db2-xdb:order 331

db2-xdb:rowSet 305

db2-xdb:rowSetMapping 335

db2-xdb:rowSetOperationOrder 338

db2-xdb:table 309

db2-xdb:truncate 333

keywords 340

overview 301

schema 368

specification 301

summary 303

CDATA sections 342

data type compatibility 360

derived complex types 344

disabling 297

empty strings 342

enabling schemas 290

examples 348, 352, 354, 355, 357, 359

mapping 351

NULL values 342

recursive documents 291

registering schemas 290

restrictions 365

results 340

rowSets 348

schema structuring 346

troubleshooting 367

validation 341

xdbDecompXML stored procedures 297

DEFER
in CREATE INDEX statement 142

deleting
XML 173

deregisterDB2XMLObject 178

DESC clause
CREATE INDEX statement 142

DMS (database managed space)
used to improve performance 56

document nodes
description 13

document order 15

documentation
PDF or printed 389

terms and conditions of use 396

documentation overview 389

down-level clients
retrieval of data from XML columns 104

E
element nodes 13

embedded SQL
Input and output variables 232

empty string
in decomposition 342

enabling
XML schemas for decomposition 290

404 pureXML Guide

encoding
declarations

CCSID mappings 384

mappings to CCSIDs 373

XML data 277

background on internal encoding 277

CCSIDs to encoding names 384

encoding scenarios 284

in JDBC, SQLJ and .NET 279

input considerations 278

names to CCSID mappings 373

non-Unicode 51

retrieval 279

routine parameter considerations 279

scenarios 280, 282, 286

errors from XQuery updates 169

example
deregisterDB2XMLObject 178

registerDB2XMLSchema 178

examples
XML decomposition 348, 352, 354, 355, 357, 359

mapping 351

EXPLAIN statement
XML support 17

explicit XML parsing 41

exporting
XML data 211

expressions
errors when updating XML data 169

updating XML data 168

EXTEND USING clause
CREATE INDEX statement 142

external XML encoding
considerations

for JDBC, SQLJ, and .NET 279

input of XML 278

scenarios
input 282

F
FREEPAGE in CREATE INDEX statement 142

full-text search of XML data 103

functions
scalar

XMLQUERY 74

XSLTRANSFORM 115

table
XMLTABLE 81

G
GBPCACHE

in CREATE INDEX statement 142

H
help

displaying 393

for SQL statements 392

hierarchy, nodes 15

I
IBM Data Server Driver for JDBC and SQLJ

XML support, SQLJ 239

identity of nodes 16

ignorable whitespace
in validation 45

implicit XML parsing 41

IMPORT command
recreation of indexes over XML data 142

importing
XML data 214

INCLUDE clause
CREATE INDEX statement 142

INDEX clause
CREATE INDEX statement 142

index over XML data
best practices

overview 96

best practices overview 96

Casting rules for join predicates 101

complex data type 135

CREATE INDEX statement 142

examples 158

data type 127

complex 135

conversion 128

conversion summary tables 133

of literals 100

of XQuery pattern expressions 127

data type conversion 128

summary tables 133

data type of literals 100

database objects associated with 140, 141

enforcing unique entries 139

indeterminate query evaluation 103

index definition
restrictiveness 97

index entries
when specifying text() 99

index keys
XQuery pattern expressions 124

invalid index objects 142

Logical and physical indexes 140

overview 123

recreation of 142

restrictions 160

specifying text() 99

Syntax and option descriptions 142

troubleshooting 161

CREATE INDEX failure 131

document rejection 131

invalid XML values 129

SQL20305N 162

SQL20306N 164

UNIQUE keyword semantics 139

use by queries 97

XML namespaces 126

XML patterns
namespace declaration 126

XMLEXISTS predicate usage 87

indexes
casting rules for join predicates 101

keys
XQuery pattern expressions over XML data 124

resolving errors when loading XML data 215

XMLEXISTS predicate usage 87

Index 405

Information Center
updating 394

versions 393

viewing in different languages 393

inserting data
XML 40

CLI applications 225

overview 39

internal XML encoding
considerations

for JDBC, SQLJ, and .NET 279

input of XML 278

scenarios
input 280

items in sequences 10

J
Java

routines
specifying drivers 249

JDBC (Java database connectivity)
routines

examples 250

XML support 250

XQuery support 250

XML data
encoding 279

L
load utility

XML data
resolving indexing errors 215

loading
XML data 214

LOBs (large objects)
importing and exporting 209

M
managing

XML result sets 94

mapping
XML column

example 351

moving data
considerations for moving XML data 208

N
nodes

attribute 14

comment
description 15

document
description 13

duplicate 16

element 13

hierarchy 15

identity 16

overview 11, 13

processing instruction
description 15

properties 12

nodes (continued)
string values 16

text
description 14

typed values 16

notices 399

NULL value
SQL

decomposition 342

O
objects

associated with XML columns 141

ON clause
CREATE INDEX statement 142

ordering DB2 books 392

P
parsing

explicit 41

CLI applications 225

implicit 41

CLI applications 225

PCTFREE clause
CREATE INDEX statement 142

performance
routines 262

PHP 244

ibm_db2
XQuery expressions 245

Introduction 244

PIECESIZE
CREATE INDEX statement 142

predicates
XMLEXISTS 88

printed books
ordering 392

problem determination
online information 396

tutorials 396

XML decomposition 367

procedures
effects of commits and rollbacks on XML parameters and

variables 248

XML parameters 246

XML variables 246

processing instruction nodes
description 15

programming languages
supported

for XML 223

publishing
XML

special character handling 118

values 104

XML values
examples 106

from a single table 107

from multiple tables 107

from table rows 108

with constant values 106

with XQuery 109

pureXML 1

adding XML columns 39

406 pureXML Guide

pureXML (continued)
administration

samples 270

articles on 19

check constraints 48

constructing XML 104

examples 106

from a single table 107

from multiple tables 107

from table rows 108

with constant values 106

with XQuery 109

data integrity
options 45

deleting XML 173

developerWorks 19

encoding 277

non-Unicode 51

event publishing support 19

external resources
developerWorks 19

federation support 19

full-text search 103

inserting XML 40

overview 39

parsing 41

publishing XML 104

examples 106

from a single table 107

from multiple tables 107

from table rows 108

special character handling 118

with constant values 106

with XQuery 109

querying 57

comparison of methods 61

with SQL 60

XMLEXISTS predicate 86

XMLQUERY overview 64

XMLTABLE overview 77

replication support 19

restrictions 371

sample programs 269

samples 270, 272

serialization 119

SQL/XML functions
publishing 104

XMLQUERY overview 64

XMLTABLE overview 77

storage
base table row storage 36

overview 35

XML storage object 35

table creation 39

tools support 17

triggers 50

tutorial 21

creating a DB2 database and table 22

creating indexes over XML data 22

deleting XML documents 26

inserting XML documents 23

querying XML data 27

transforming with XSLT 32

updating XML documents 24

validating XML documents 30

updating XML 172

validation 45

pureXML (continued)
XML documents

using XML namespaces 62

XML schema retrieval 191

XML schema repository 175

XML schemas
compatibility requirements for evolving 181

component retrieval 191

evolving 181

example of evolving 188

listing all registered 190

XSR objects 175

registration 175

Q
queries

index over XML data
indeterminate query evaluation 103

structure 58

query languages
XML data 60

query performance
impact of system managed space 56

querying XML 57

comparison of methods 61

with SQL 60

constant and parameter marker passing 91

passing column names 91

XMLEXISTS 86

XMLQUERY 64

XMLTABLE 77

R
reference types

casting 67

REGISTER XMLSCHEMA command
syntax 199

REGISTER XSROBJECT command
syntax 202

registerDB2XMLSchema 178

registering
XML schemas for decomposition 290

REORG INDEX command
recreation of indexes over XML data 142

REORG TABLE command
recreation of indexes over XML data 142

restrictions
for indexes over XML data 160

pureXML 371

result sets
XML 94

retrieving data
XML 57

CLI applications 226

encoding considerations 279

encoding scenarios 284, 286

routines
C/C++

xml data type support 248

COBOL
xml data type support 248

common language runtime
xml data type support 248

Index 407

routines (continued)
external

xml data type support 248

invocation from Java programs
XML parameters 238

Java
xml data type support 248

performance 262

XML support
encoding considerations 279

rows
index keys with UNIQUE clause 142

indexes 142

rowSets in decomposition 348

S
schemas

repository 175

sequences
description 10

serialization
CCSID to encoding name mappings 384

differences in XML document 121

explicit 119

CLI applications 226

implicit 119

CLI applications 224, 226

shredding XML 289, 290

SQL fullselect
using with XQuery

parameter passing 93

SQL statements
CREATE INDEX 142

displaying help 392

passing parameters to XQuery expressions 90

SQL/XML
CREATE INDEX statement 142

functions
XMLQUERY overview 64

XMLTABLE overview 77

SQLJ (embedded SQL for Java)
XML data

encoding 279

sqlquery function 58

storage
pureXML 1

XML data specifier 210

storage requirements
XML documents 37

stored procedures
registering an XSR object 177

XSR_ADDSCHEMADOC 192

XSR_COMPLETE 194

XSR_DTD 195

XSR_ENTITY 196

XSR_REGISTER 191

XSR_UPDATE 197

storing XML data
encoding 277

considerations 278

name to CCSID mappings 373

non-Unicode 51

inserting 40

overview 39

pureXML 1

updating 167

string values of nodes 16

T
tables

creating
with XML columns 39

indexes 142

terms and conditions
use of publications 396

text nodes
description 14

text search
full-text search of XML data 103

triggers
XML support 50

troubleshooting
indexes over XML data 161

CREATE INDEX failure 131

document rejection 131

invalid XML values 129

SQL20305N 162

SQL20306N 164

online information 396

tutorials 396

XML decomposition 367

tutorials
pureXML 21

creating a DB2 database and table 22

creating indexes over XML data 22

deleting XML documents 26

inserting XML documents 23

querying XML data 27

transforming with XSLT 32

updating XML documents 24

validating XML documents 30

troubleshooting and problem determination 396

Visual Explain 395

type 2 indexes 142

typed values of nodes 16

U
UNIQUE clause

CREATE INDEX statement 142

UPDATE XMLSCHEMA command
syntax 204

updates
DB2 Information Center 394

Information Center 394

of XML columns 167

XML columns 167

updating
XML 172

updating expressions 168

combining 169

updating XML data using XQuery 168

user-defined types (UDTs)
casting 67

USING clause
CREATE INDEX statement 142

V
validating

XML data 45

408 pureXML Guide

validating (continued)
decomposition 341

values, atomic 11

Visual Explain
tutorial 395

XML support 17

W
whitespace

boundary 41

in validation 45

parsing 41

X
xdbDecompXML stored procedures 297

XDM, see XQuery and XPath data model 10

XML
adding XML columns 39

application development 223

samples 272

archival data types 123

C/C++ applications
Executing XQuery expressions 229

COBOL applications
Executing XQuery expressions 229

constructing 104

special character handling 118

CREATE INDEX statement 142

data integrity
options 45

data type 227, 248

CLI applications 224

identifying in SQLDA 232

importing and exporting 209

indexing 123

declarations 227

encoding 277

decomposition 289

advantage 289

annotations 301, 303, 304, 305, 309, 312, 315, 317, 320,

324, 328, 331, 333, 335, 338, 343, 368

CDATA sections 342

data type compatibility 360

decomposing documents 290

derived complex types 344

disabling 297

empty strings 342

enabling schemas 290

examples 348, 351, 352, 354, 355, 357, 359

keywords 340

limits 365

NULL values 342

recursive documents 291

registering schemas 290

restrictions 365

results 340

rowSets 348

schema structuring 346

troubleshooting 367

validation 341

xdbDecompXML stored procedures 297

deleting 173

encoding
data 227

XML (continued)
encoding (continued)

internal 277

input methods 4

inserting 40

overview 39

model comparison 8

native XML data store 1

output methods 4

parameters
commits and rollbacks 248

invoking routines from Java programs 238

procedures 246

parsing
CLI applications 225

programming language support 223

publishing 104

special character handling 118

pureXML tutorial 21

creating a DB2 database and table 22

creating indexes over XML data 22

deleting XML documents 26

inserting XML documents 23

querying XML data 27

transforming with XSLT 32

updating XML documents 24

validating XML documents 30

querying with SQL 60

constant and parameter marker passing 91

passing column names 91

XMLEXISTS predicate 86

XMLQUERY 64, 66

XMLTABLE 77, 79, 80

serialization
CLI applications 224, 226

storage
base table row storage 36

document differences 121

encoding name to CCSID mappings 373

XML storage object 35

support
for check constraints 48

in triggers 50

tools 17

tables
creation for pureXML data 39

transforming
XSLTRANSFORM 109, 111, 112, 113, 115

updating 172

updating columns 167

validation 45

variables in procedures 246

XMLQUERY function 231

XQuery expressions 229, 231

XML columns
adding 39

CREATE INDEX statement 142

data type 3

defining 39

in federated systems 19

in remote data sources 19

indexing
overview 123

inserting into 40

overview 39

updates
examples 167

Index 409

XML data
CLI applications 224

inserting 225

retrieval 226

updating 225

considerations for moving 208

CREATE INDEX statement 142

creating tables 39

deleting 173

encoding 277

CCSIDs to encoding names 384

names to CCSID mappings 373

non-Unicode 51

exporting 211

importing 214

indeterminate query evaluation 103

indexing
overview 123

inserting 40

overview 39

Java applications 232

loading 214

model 8

movement 207

Query and XPath Data Model 208

querying in DB2 database 60

retrieving data in Java applications 242

retrieving from tables in Java applications 235

updating 167, 172

updating tables in Java applications 233, 240

XML data retrieval 57

C applications 228

CLI applications 226

COBOL applications 228

document differences 121

down-level clients 104

introduction 57

XMLEXISTS 86

XMLQUERY 64

XMLTABLE 77

XML data store 1

XML data type
event publishing 19

replication 19

XML documents
archival data types 123

differences after storage and retrieval 121

storage
base table row storage 36

overview 35

requirements 37

XML storage object 35

using XML namespaces 62

XML encoding
considerations

for routine parameters 279

in JDBC, SQLJ, and .NET 279

input of XML 278

retrieval of XML 279

internal
background 277

scenarios
input of externally encoded data 282

input of internally encoded data 280

retrieval with explicit serialization 286

retrieval with implicit serialization 284

XML schema registration
Java API 178

XML schema removal
Java API 178

XML schemas
enabling for decomposition 290

evolving 181

compatibility requirements 181

example 188

indexes over XML data 134

registering for decomposition 290

repository
ADD XMLSCHEMA DOCUMENT command 200

altering objects 181

COMPLETE XMLSCHEMA command 202

decomposition 290

overview 175

REGISTER XMLSCHEMA command 199

REGISTER XSROBJECT command 202

registration 175

retrieval 191

Uniform Resource Identifier (URI) location

reference 175

UPDATE XMLSCHEMA command 204

validation 45

XSR objects 175, 181

retrieval 191

structuring for decomposition 346

validation 45

XML support
IBM Data Server Driver for JDBC and SQLJ 239

XMLAGG aggregate function
publishing XML 104

XMLATTRIBUTES scalar function
publishing XML 104

xmlcolumn function 58

XMLCOMMENT scalar function
publishing XML 104

XMLDOCUMENT scalar function
publishing XML 104

XMLELEMENT scalar function
publishing XML 104

XMLEXISTS function 60

XMLEXISTS predicate 88

querying with 86

passing column names 91

passing constants 91

passing parameter markers 91

type casting 91

XMLFOREST scalar function
publishing XML 104

XMLGROUP aggregate function
publishing XML 104

XMLNAMESPACES declaration
publishing XML 104

XMLPARSE scalar function
parsing overview 41

XMLPI scalar function
publishing XML 104

XMLQUERY function 60

XMLQUERY scalar function
description 74

overview 64

querying with
passing column names 91

passing constants 91

passing parameter markers 91

410 pureXML Guide

XMLQUERY scalar function (continued)
results

casting to non-XML types 67

empty sequences 66

non-empty sequences 64

XMLROW scalar function
publishing XML 104

XMLSERIALIZE scalar function
serialization overview 119

XMLTABLE function 60

XMLTABLE table function
description 81

example 79, 80

overview 77

querying with
passing column names 91

XMLTEXT scalar function
publishing XML 104

XMLVALIDATE scalar function
validation overview 45

XQuery
combining updating expressions 169

invoking from SQL 60

overview 57

updating expressions 168

XQuery and XPath data model 10

XQuery expressions
passing parameters to SQL statements 90

XQuery statements 227

calling from SQL 246

comparison to SQL 61

invoking from SQL
XMLEXISTS 86

XMLQUERY 64

XMLTABLE 77

pattern expressions
used for index keys 124

Query and XPath Data Model 208

results 94

specifying in the CLP 17

XQuery updates
errors 169

XSLT transforms
example 112, 113

important considerations 115

overview 109

parameter passing 111

XSLTRANSFORM scalar function
description 115

publishing XML 104

XSR objects 175

altering objects 181

registration 175

through command line processor 177

through stored procedure 177

XSR_ADDSCHEMADOC stored procedure 192

XSR_COMPLETE stored procedure 194

XSR_DTD stored procedure 195

XSR_ENTITY stored procedure 196

XSR_REGISTER stored procedure 191

XSR_UPDATE stored procedure 197

Index 411

412 pureXML Guide

����

Printed in USA

SC23-5871-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

pu
re

XM
L

Gu
id

e
�
�

�

	Contents
	About this book
	Chapter 1. Introduction
	pureXML overview
	XML data type
	XML input and output overview
	Comparison of the XML model and the relational model
	XQuery and XPath data model
	Sequences and items
	Atomic values
	Node hierarchies
	Node properties
	Node kinds
	Document nodes
	Element nodes
	Attribute nodes
	Text nodes
	Processing instruction nodes
	Comment nodes

	Document order of nodes
	Node identity
	Typed values and string values of nodes

	Tools that support XML
	Federation support for pureXML
	Replication and event publishing support for pureXML
	Articles on XML support

	Chapter 2. Tutorial
	Tutorial for pureXML
	Exercise 1: Creating a DB2 database and table that can store XML data
	Exercise 2: Creating indexes over XML data
	Exercise 3: Inserting XML documents into XML typed columns
	Exercise 4: Updating XML documents stored in an XML column
	Exercise 5: Deleting rows based on the content of XML documents
	Exercise 6: Querying XML data
	Exercise 7: Validating XML documents against XML schemas
	Exercise 8: Transforming with XSLT stylesheets

	Chapter 3. XML storage
	XML storage overview
	XML storage object
	XML base table row storage
	Storage requirements for XML documents

	Chapter 4. Inserting XML data
	Inserting XML data overview
	Creation of tables with XML columns
	Addition of XML columns to existing tables
	Insertion into XML columns
	XML parsing
	XML data integrity
	XML validation
	Check constraints on XML columns
	Trigger processing of XML data

	Using XML in a non-Unicode database
	Preference of database managed table spaces for native XML data store performance

	Chapter 5. Querying XML data
	Querying XML data
	Introduction to XQuery
	Retrieving DB2 data with XQuery functions
	Introduction to querying XML data with SQL
	Comparison of XQuery to SQL
	Comparison of methods for querying XML data
	Specifying XML namespaces
	XMLQUERY function overview
	Non-empty sequences returned by XMLQUERY
	Empty sequences returned by XMLQUERY
	Casting of XMLQUERY results to non-XML types
	Casting between data types
	XMLQUERY

	XMLTABLE function overview
	XMLTABLE example: Inserting values returned from XMLTABLE
	XMLTABLE example: Returning one row for each occurrence of an item
	XMLTABLE

	XMLEXISTS predicate when querying XML data
	XMLEXISTS predicate usage
	XMLEXISTS predicate

	Passing parameters between SQL statements and XQuery expressions
	Constant and parameter marker passing to XMLEXISTS and XMLQUERY
	Simple column name passing with XMLEXISTS, XMLQUERY, or XMLTABLE
	Passing parameters from XQuery to SQL

	Data retrieval with XQuery
	Guidelines for matching indexes with queries overview
	Restrictiveness of index definitions
	Considerations when specifying text() nodes
	Data type of literals
	Join predicate conversion
	Indeterminate query evaluation

	Full-text search in XML documents
	Retrieval of data in XML columns to earlier DB2 clients
	SQL/XML publishing functions for constructing XML values
	Examples of publishing XML values
	Example: Construct an XML document with constant values
	Example: Construct an XML document with values from a single table
	Example: Construct an XML document with values from multiple tables
	Example: Construct an XML document with values from table rows that contain null elements
	Example: Publishing data with XQuery

	Transforming with XSLT stylesheets
	Passing parameters to XSLT stylesheets at runtime
	XSLT example: Using XSLT as a formatting engine
	XSLT example: Using XSLT for data exchange
	Important considerations for transforming XML documents
	XSLTRANSFORM scalar function

	Special character handling in SQL/XML publishing functions

	XML serialization
	Differences in an XML document after storage and retrieval
	Data types for archiving XML documents

	Chapter 6. Indexing XML data
	Indexing XML data overview
	Index XML pattern expressions
	XML namespace declarations
	Data types associated with index XML pattern expressions
	Data type conversion for indexes over XML data
	Invalid XML values
	Document rejection or CREATE INDEX statement failure
	Summary tables for conversion to the index XML data type

	XML schemas and index key generation
	Indexing elements with complex schema types
	UNIQUE keyword semantics
	Database objects associated with XML data indexing
	Logical and physical indexes over XML data
	Other database objects associated with XML columns
	Recreation of indexes over XML data

	CREATE INDEX
	Sample queries against indexes over XML data
	Restrictions on indexes over XML data
	Common XML indexing issues
	Troubleshooting SQL20305N messages issued by INSERT or UPDATE statements
	Troubleshooting SQL20306N messages issued by CREATE INDEX statements on populated tables

	Chapter 7. Updating XML data
	Updating XML data
	Use of updating expressions in a transform expression
	Updating XML documents with information from other tables
	Deletion of XML data from tables

	Chapter 8. XML schema repository
	Dependency management for XML schemas, DTDs, and external entities
	XSR objects
	XSR object registration
	Registering XSR objects through stored procedures
	Registering XSR objects through the command line processor
	Java support for XML schema registration and removal

	Altering registered XSR objects
	Evolving an XML schema
	Compatibility requirements for evolving an XML schema
	Scenario: Evolving an XML schema

	Examples of extracting XML schema information
	Listing XML schemas registered with the XSR
	Retrieving all components of an XML schema registered with the XSR
	Retrieving the XML schema of an XML document

	Stored procedures
	XSR_REGISTER procedure
	XSR_ADDSCHEMADOC procedure
	XSR_COMPLETE procedure
	XSR_DTD procedure
	XSR_EXTENTITY procedure
	XSR_UPDATE procedure

	Commands
	REGISTER XMLSCHEMA
	ADD XMLSCHEMA DOCUMENT
	COMPLETE XMLSCHEMA
	REGISTER XSROBJECT
	UPDATE XMLSCHEMA

	Chapter 9. XML data movement
	XML data movement overview
	Important considerations for XML data movement
	Query and XPath Data Model
	LOB and XML file behavior when importing and exporting
	XML data specifier
	Exporting XML data
	Importing XML data
	Loading XML data
	Resolving indexing errors when loading XML data

	Chapter 10. Application programming and routines support
	Application programming language support for XML
	CLI
	XML data handling in CLI applications - Overview
	XML column inserts and updates in CLI applications
	XML data retrieval in CLI applications
	Changing of default XML type handling in CLI applications

	Embedded SQL
	Declaring XML host variables in embedded SQL applications
	Example: Referencing XML host variables in embedded SQL applications
	Executing XQuery expressions in embedded SQL applications
	Recommendations for developing embedded SQL applications with XML and XQuery
	Identifying XML values in an SQLDA

	Java
	XML data in JDBC applications
	XML column updates in JDBC applications
	XML data retrieval in JDBC applications
	Invocation of routines with XML parameters in Java applications

	XML data in SQLJ applications
	XML column updates in SQLJ applications
	XML data retrieval in SQLJ applications

	PHP
	Introduction to PHP application development for DB2
	Executing XQuery expressions in PHP (ibm_db2)

	Routines
	XML and XQuery support in SQL procedures
	Cursors for XQuery expressions in SQL procedures
	Effect of commits and rollbacks on XML parameter and variable values in SQL procedures

	XML data type support in external routines
	Specification of a driver for Java routines
	Example: XML and XQuery support in Java (JDBC) procedure
	Example: XML and XQuery support in C# .NET CLR procedure
	Example: XML and XQuery support in C procedure

	Performance of routines

	Sample applications
	pureXML Samples
	pureXML - Administration samples
	pureXML - Application Development samples

	Chapter 11. XML data encoding
	XML data encoding
	Background information on XML internal encoding
	Considerations
	Encoding considerations for input of XML data to a database
	Encoding considerations for retrieval of XML data from a database
	Encoding considerations for passing XML data in routine parameters
	Encoding considerations for XML data in JDBC, SQLJ, and .NET applications

	Scenarios
	Encoding scenarios for input of internally encoded XML data to a database
	Encoding scenarios for input of externally encoded XML data to a database
	Encoding scenarios for retrieval of XML data with implicit serialization
	Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE

	Chapter 12. Annotated XML schema decomposition
	Annotated XML schema decomposition
	Advantage of annotated XML schema decomposition
	Decomposing XML documents with annotated XML schemas
	Registering and enabling XML schemas for decomposition
	Annotated XML schema decomposition and recursive XML documents

	Disabling of annotated XML schema decomposition
	xdbDecompXML stored procedures for annotated schema decomposition
	DECOMPOSE XML DOCUMENT
	XML decomposition annotations
	XML decomposition annotations - Specification and scope
	XML decomposition annotations - Summary
	db2-xdb:defaultSQLSchema decomposition annotation
	db2-xdb:rowSet decomposition annotation
	db2-xdb:table decomposition annotation
	db2-xdb:column decomposition annotation
	db2-xdb:locationPath decomposition annotation
	db2-xdb:expression decomposition annotation
	db2-xdb:condition decomposition annotation
	db2-xdb:contentHandling decomposition annotation
	db2-xdb:normalization decomposition annotation
	db2-xdb:order decomposition annotation
	db2-xdb:truncate decomposition annotation
	db2-xdb:rowSetMapping decomposition annotation
	db2-xdb:rowSetOperationOrder decomposition annotation
	Keywords for annotated XML schema decomposition

	How decomposition results are formed in annotated XML schema decomposition
	Effect of validation on XML decomposition results
	Treatment of CDATA sections in annotated XML schema decomposition
	NULL values and empty strings in annotated XML schema decomposition

	Checklist for annotated XML schema decomposition
	Annotations of derived complex types for annotated XML schema decomposition
	XML schema structuring recommendations for decomposition

	Examples of mappings in annotated XML schema decomposition
	rowSets in annotated XML schema decomposition
	Decomposition annotation example: Mapping to an XML column
	Decomposition annotation example: A value mapped to a single table that yields a single row
	Decomposition annotation example: A value mapped to a single table that yields multiple rows
	Decomposition annotation example: A value mapped to multiple tables
	Decomposition annotation example: Grouping multiple values mapped to a single table
	Decomposition annotation example: Multiple values from different contexts mapped to a single table

	XML schema to SQL types compatibility for annotated schema decomposition
	Limits and restrictions for annotated XML schema decomposition
	Troubleshooting considerations for annotated XML schema decomposition
	Schema for XML decomposition annotations

	Chapter 13. Restrictions on pureXML
	Restrictions on pureXML

	Appendix A. Encoding mappings
	Mappings of encoding names to effective CCSIDs for stored XML data
	Mappings of CCSIDs to encoding names for serialized XML output data

	Appendix B. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix C. Notices
	Index

