
DB2 Version 9.5

for Linux, UNIX, and Windows

Workload Manager Guide and Reference
Updated March, 2008

SC23-5870-01

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Workload Manager Guide and Reference
Updated March, 2008

SC23-5870-01

���

Note

Before using this information and the product it supports, read the general information under Appendix H, “Notices,” on

page 297.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2007, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Part 1. Introduction 1

Chapter 1. Introduction to workload

management concepts 3

Stages of workload management 3

Identification stage of workload management . . . 5

Workloads 6

Work classes 7

Management stage of workload management . . . 8

Monitoring stage of workload management . . . 12

Realtime monitoring 12

Example: Using workload management table

functions 14

Historical monitoring 15

Activities 18

Workload management sample application 18

Part 2. Identification and

management 21

Chapter 2. Service classes 23

Default service superclasses and subclasses 25

Activity-to-service class mapping 26

CPU priority and DB2 service classes 30

Service class prefetch priority 30

States of connections and activities in a service class 31

System-level entities not tracked by service classes 32

Working with service classes 32

Creating a service class 32

Altering a service class 34

Dropping a service class 36

Chapter 3. Workloads 39

Workload assignment 42

Default workloads 44

Assigning a connection to the default administration

workload 46

Working with workloads 47

Creating a workload 47

Altering a workload 48

Allowing occurrences of a workload to access the

database 49

Disallowing occurrences of a workload from

accessing the database 50

Enabling a workload 50

Disabling a workload 51

Granting the USAGE privilege on a workload . . 51

Revoking the USAGE privilege on a workload . 52

Dropping a workload 53

Chapter 4. Thresholds 55

Activity and aggregate thresholds 56

Threshold summary 57

Activity thresholds 57

CONNECTIONIDLETIME threshold 57

ESTIMATEDSQLCOST threshold 58

SQLTEMPSPACE threshold 58

SQLROWSRETURNED threshold 59

ACTIVITYTOTALTIME threshold 60

Activity threshold scope resolution 60

Aggregate thresholds 61

TOTALDBPARTITIONCONNECTIONS threshold 61

TOTALSCPARTITIONCONNECTIONS threshold 62

CONCURRENTWORKLOADOCCURRENCES

threshold 63

CONCURRENTWORKLOADACTIVITIES

threshold 63

CONCURRENTDBCOORDACTIVITIES threshold 65

Threshold evaluation order 66

Working with thresholds 68

Creating a threshold 68

Altering a threshold 73

Dropping a threshold 73

Chapter 5. Work action sets, work

actions, work class sets, and work

classes 75

Work classes and work class sets 75

Work actions and work action sets 77

How work classes, work class sets, work actions,

and work action sets work together and are

associated with other DB2 objects 79

Work class work types and SQL statements 81

Evaluation order of work classes in a work class set 83

Work actions and the work action set domain . . . 83

Thresholds that can be used in work actions . . . 86

Work classifications supported by thresholds . . . 86

Assignment of activities to work classes 87

Application of work actions to database activities . 87

Workload and work action set comparison 89

Working with work action sets and work actions . . 91

Creating a work action set 91

Altering a work action set 92

Disabling a work action set 93

Dropping a work action set 94

Creating a work action 94

Altering a work action 97

Disabling a work action 98

Dropping a work action 99

Working with work class sets and work classes . . 99

Creating a work class set 99

Altering a work class set 100

Dropping a work class set 100

Creating a work class 100

Altering a work class 103

Dropping a work class 103

© Copyright IBM Corp. 2007, 2008 iii

Part 3. Monitoring and control . . . 105

Chapter 6. Monitoring and control . . 107

Monitoring data overview 107

Workload management table functions to obtain

operational information 109

Workload management table functions and

snapshot monitor integration 110

Workload management stored procedures 111

Workload management event monitors 112

Statistics management 113

Statistics for workload management objects . . 113

Histograms in workload management 117

Collecting workload management statistics

using a statistics event monitor 121

Workload management table functions to obtain

statistics 123

Resetting statistics on workload management

objects 124

Monitoring threshold violations 125

Collecting data for individual activities 126

Importing activity information into the Design

Advisor 128

Cancelling activities 128

Guidelines for capturing information about and

investigating a rogue activity 129

Workload management performance modelling . . 129

Working with histograms 130

Creating a histogram template 130

Altering a histogram template 130

Dropping a histogram template 131

Part 4. Examples 133

Chapter 7. Workload management

examples 135

Example: Using service classes 135

Example: Workload assignment 139

Example: Workload assignment when workload

attributes have single values 143

Example: Workload assignment for a unit of work

when multiple workloads exist 145

Example: Workload assignment when workload

attributes have multiple values 148

Example: Using thresholds 149

Example:

CONCURRENTWORKLOADOCCURRENCES,

TOTALDBPARTITIONCONNECTIONS, and

TOTALSCPARTITIONCONNECTIONS thresholds . 151

Example: Using a work class set to manage specific

types of activities 151

Example: Working with a work class defined with

the ALL keyword 152

Example: Using a work action set and database

threshold 154

Example: Using work action sets to determine the

types of work being run 156

Example: Monitoring current system behavior at

different levels using workload management table

functions 156

Example: Obtaining point-in-time statistics from

service classes 159

Example: Aggregating data using workload

management table functions 160

Example: Computing averages and a standard

deviation from histograms in a workload

management configuration 161

Example: Analyzing a service class–related system

slowdown 163

Example: Investigating a workload-related system

slowdown 165

Example: Analyzing workloads by activity type 166

Example: Identifying hung activities 167

Example: Capturing information about an activity

for later analysis 169

Example: Investigating agent usage by service class 171

Example: Tuning a workload management

configuration when capacity planning data is

available 171

Example: Tuning a workload management

configuration when capacity planning information

is unavailable 173

Example: Identifying activities with low estimated

cost and high runtime 178

Part 5. Reference 179

Chapter 8. Procedures and table

functions 181

WLM_CANCEL_ACTIVITY - Cancel an activity 181

WLM_CAPTURE_ACTIVITY_IN_PROGRESS -

Collect activity information for activities event

monitor 182

WLM_COLLECT_STATS - Collect and reset

workload management statistics 184

WLM_GET_ACTIVITY_DETAILS - Return detailed

information about a specific activity 185

WLM_GET_QUEUE_STATS table function - Return

threshold queue statistics 191

WLM_GET_SERVICE_CLASS_AGENTS - List

agents executing in a service class 195

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

- List of workload occurrences 199

WLM_GET_SERVICE_SUBCLASS_STATS - Return

statistics of service subclasses 203

WLM_GET_SERVICE_SUPERCLASS_STATS -

Return statistics of service superclasses 208

WLM_GET_WORK_ACTION_SET_STATS - Return

work action set statistics 210

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

- Return a list of activities 212

WLM_GET_WORKLOAD_STATS - Return

workload statistics 216

Chapter 9. Monitor elements 219

Workload management monitor elements 219

iv Workload Manager Guide and Reference

activate_timestamp - Activate timestamp

monitor element 219

activity_collected - Activity collected monitor

element 219

activity_id - Activity ID monitor element . . . 220

activity_secondary_id - Activity secondary ID

monitor element 220

activity_type - Activity type monitor element 221

act_exec_time - Activity execution time monitor

element 221

act_total - Activities total monitor element . . . 222

arm_correlator - Application response

measurement correlator monitor element . . . 222

bin_id - Histogram bin identifier monitor

element 222

bottom - Histogram bin bottom monitor element 223

concurrent_act_top - Concurrent activity top

monitor element 223

concurrent_connection_top - Concurrent

connection top monitor element 224

concurrent_wlo_act_top - Concurrent WLO

activity top monitor element 224

concurrent_wlo_top - Concurrent workload

occurrences top monitor element 224

coord_act_aborted_total - Coordinator activities

aborted total monitor element 225

coord_act_completed_total - Coordinator

activities completed total monitor element . . . 225

coord_act_lifetime_top - Coordinator activity

lifetime top monitor element 226

coord_act_rejected_total - Coordinator activities

rejected total monitor element 226

coord_partition_num - Coordinator partition

number monitor element 227

cost_estimate_top - Cost estimate top monitor

element 227

coord_act_lifetime_avg - Coordinator activity

lifetime average monitor element 227

coord_act_queue_time_avg - Coordinator

activity queue time average monitor element . . 228

coord_act_exec_time_avg - Coordinator

activities execution time average monitor

element 229

request_exec_time_avg - Request execution time

average monitor element 229

coord_act_est_cost_avg - Coordinator activity

estimated cost average monitor element . . . 230

coord_act_interarrival_time_avg - Coordinator

activity arrival time average monitor element . 231

db_work_action_set_id - Database work action

set ID monitor element 231

db_work_class_id - Database work class ID

monitor element 232

histogram_type - Histogram type monitor

element 232

last_wlm_reset - Time of last reset monitor

element 233

num_threshold_violations - Number of

threshold violations monitor element 233

number_in_bin - Number in bin monitor

element 234

parent_activity_id - Parent activity ID monitor

element 234

parent_uow_id - Parent unit of work ID monitor

element 235

prep_time - Preparation time monitor element 235

queue_assignments_total - Queue assignments

total monitor element 235

queue_size_top - Queue size top monitor

element 236

queue_time_total - Queue time total monitor

element 236

rows_fetched - Rows fetched monitor element 236

rows_modified - Rows modified monitor

element 237

rows_returned - Rows returned monitor element 237

rows_returned_top - Actual rows returned top

monitor element 238

sc_work_action_set_id - Service class work

action set ID monitor element 238

sc_work_class_id - Service class work class ID

monitor element 239

section_env - Section environment monitor

element 239

service_class_id - Service class ID monitor

element 239

service_subclass_name - Service subclass name

monitor element 240

service_superclass_name - Service superclass

name monitor element 240

statistics_timestamp - Statistics timestamp

monitor element 241

temp_tablespace_top - Temporary table space

top monitor element 241

threshold_action - Threshold action monitor

element 242

threshold_domain - Threshold domain monitor

element 242

threshold_maxvalue - Threshold maximum

value monitor element 243

threshold_name - Threshold name monitor

element 243

threshold_predicate - Threshold predicate

monitor element 243

threshold_queuesize - Threshold queue size

monitor element 244

thresholdid - Threshold ID monitor element . . 244

time_completed - Time completed monitor

element 245

time_created - Time created monitor element 245

time_of_violation - Time of violation monitor

element 245

time_started - Time started monitor element . . 246

top - Histogram bin top monitor element . . . 246

uow_id - Unit of work ID monitor element . . 246

wlo_completed_total - Workload occurrences

completed total monitor element 247

work_action_set_id - Work action set ID monitor

element 247

work_action_set_name - Work action set name

monitor element 248

work_class_id - Work class ID monitor element 248

Contents v

work_class_name - Work class name monitor

element 248

workload_id - Workload ID monitor element 249

workload_name - Workload name monitor

element 249

workload_occurrence_id - Workload occurrence

identifier monitor element 250

Chapter 10. Commands 251

SET WORKLOAD command 251

Chapter 11. Configuration parameters 253

wlm_collect_int - Workload management collection

interval configuration parameter 253

Chapter 12. Catalog views 255

SYSCAT.HISTOGRAMTEMPLATEBINS 255

SYSCAT.HISTOGRAMTEMPLATES 255

SYSCAT.HISTOGRAMTEMPLATEUSE 255

SYSCAT.SERVICECLASSES 256

SYSCAT.THRESHOLDS 257

SYSCAT.WORKACTIONS 259

SYSCAT.WORKACTIONSETS 261

SYSCAT.WORKCLASSES 261

SYSCAT.WORKCLASSSETS 262

SYSCAT.WORKLOADAUTH 263

SYSCAT.WORKLOADCONNATTR 263

SYSCAT.WORKLOADS 264

Part 6. Appendixes 265

Appendix A. Workload management

DDL statement considerations 267

Appendix B. Integration of DB2

workload management and the AIX

Workload Manager 269

Appendix C. Processing of stored

procedures in a workload

management solution 277

Appendix D. Naming rules 279

Appendix E. Roles 281

Appendix F. Trusted contexts and

trusted connections 283

Appendix G. Overview of the DB2

technical information 287

DB2 technical library in hardcopy or PDF format 287

Ordering printed DB2 books 290

Displaying SQL state help from the command line

processor 290

Accessing different versions of the DB2

Information Center 291

Displaying topics in your preferred language in the

DB2 Information Center 291

Updating the DB2 Information Center installed on

your computer or intranet server 292

DB2 tutorials 293

DB2 troubleshooting information 294

Terms and Conditions 294

Appendix H. Notices 297

Index 301

vi Workload Manager Guide and Reference

About this book

This book provides information on the DB2® workload management features and

functionality that you can use to obtain a stable, predictable execution environment

that meets your business objectives. Using workload management, both requests

and resources are managed. This book also provides information on monitoring

and performing troubleshooting for the workload on your data server.

© Copyright IBM Corp. 2007, 2008 vii

viii Workload Manager Guide and Reference

Part 1. Introduction

© Copyright IBM Corp. 2007, 2008 1

2 Workload Manager Guide and Reference

Chapter 1. Introduction to workload management concepts

A good workload management system helps to efficiently meet goals in the

environment where work occurs. You can see examples of the need for a good

workload management system all around you.

For example, look at a grocery store. Different activities must be considered:

serving customers, stocking shelves, maintaining inventories, and so on. And some

simple goals must be set. Store owners want to maximize both the number of

customers who move through the store, and the amount that customers purchase,

achieving both goals in a way that customers leave both satisfied and wanting to

come back. Store owners must also ensure that they have sufficient stock for their

customers to buy (but not too much stock, because waste becomes an issue). Store

owners also track what their customers purchase, and use this information to

create advertisements that are designed to induce their customers to return.

Monitoring mechanisms track inventory and send notifications when stocks run

low. Security devices are in place to detect shoplifting. Special fast checkout lanes

are created so that shoppers who only want to purchase a few items can do so

without having to wait behind other customers who are purchasing many items. If

all of these goals are met and all of these operational procedures work well,

customers are satisfied, and are likely to return rather than to go to another store.

These goals and operational procedures are all aspects of workload management.

In a data server environment, you can see even more of a need for effective

management of work, especially now that data servers are being stressed like

never before. Cash registers generate thousands of data inserts, reports are

constantly being generated to determine whether sales targets are being met, batch

applications run to load collected data, and administration tasks such as backups

and reorganizations run to protect the data and make the server run optimally. All

these operations are using the same database system and competing for the same

resources.

To ensure the best chance of meeting goals for running a data server, an efficient

workload management system is critical.

Stages of workload management

Workload management has three clearly defined stages: identification of the work

entering the data server, management of the work when it is running, and

monitoring to ensure that the data server is being used efficiently.

A number of aspects must be considered for successful workload management,

starting with understanding your goals. In the grocery store example described in

Chapter 1, “Introduction to workload management concepts,” goals might include

maximizing customer spending, minimizing shoplifting, and ensuring that

customers leave the store satisfied so that they will return again.

In a data server environment, you must also define goals. Sometimes the goals are

clear, especially when they originate from service level agreement (SLA) objectives.

For example, queries from a particular application can consume no more than 10%

of the total CPU resources. Goals can also be tied to a particular time of day. For

example, an overnight batch utility might have to complete loading data by 8 a.m.

so that the daily sales reports are on time. In other situations, the goals can be

© IBM Corporation 2007, 2008 3

difficult to quantify. A goal might be to keep the database users satisfied and to

prevent aberrant database activity from hampering their day-to-day work. Whether

the goals are quantifiable or not, understanding them is critical when considering

the following stages of workload management:

v Identification. If you want to achieve a goal for some kind of work, you first

must be able to identify details about the work. In the grocery store, you can

identify shopper information through credit cards and debit cards, or an

unpaid-for item through an active security tag on the item. For the data server,

you need to decide how you want to identify the work that enters the system.

You can use the name of the application that submits the work, the

authorization ID that submits the work, or a combination of elements that

provide some form of identification.

v Management. The management phase includes mechanisms for making steady

progress towards your goal, and actions to take if a goal is not being met. An

example of a mechanism is managing price checks in fast checkout lanes. Fast

checkout lanes should result in faster throughput and satisfied customers, but if

a carton of milk has the wrong price and a price check is required, the fast

checkout lane could slow down. The problem is managed by performing a fast

price check, possibly opening up another checkout lane, and trying to fix the

pricing problem so that it does not occur again. On the data server, you might

find that overall performance is suffering when a few poorly written SQL

statements are running, a surge in volume occurs during peak times, or there is

too much competition between different applications for the same resources. The

management phase includes mechanisms for assigning resources to achieve your

goals, and actions to take if a goal is not being met.

v Monitoring. Monitoring is important for a couple of reasons. First, to determine

whether you are achieving a goal, you must have a mechanism to track progress

toward that goal. Also, monitoring helps to identify the problems that might be

preventing you from achieving your goal. In a store, the store manager can

watch the flow of customers, automatically be alerted to problems such as

shoplifting or dangerously low inventory of a particular sale item, or perform

analysis on historical purchase patterns to determine optimal product placement

in the store. For a data server, there are often explicit goals for response times of

database activities and it is important to have a way to measure this metric, and

watch for trends.

The following figure represents the workload management stages:

4 Workload Manager Guide and Reference

Identification stage of workload management

The first stage of implementing a workload management solution is to identify the

work that runs on the data server.

Different methods can be used to identify database activities. For example, you can

identify activities by their source (that is, who submitted the work). The following

figure shows a number of different sources of work, coming from different users,

groups, and applications. Activities can also be identified by type.

To implement identification, two new database objects are provided: the workload

and the work class objects.

Definition of goals

Identification
of activities

Management

Monitoring

Figure 1. Stages of workload management

User

Organization name

Group or role

Application

Activity type

Figure 2. Various sources and types of database activities on a data server

Chapter 1. Introduction to workload management concepts 5

Workloads

A workload is an object that is used to identify incoming work based on its source

so that it can later be managed. The source is determined using the attributes of

the database connection under which the work is submitted.

The connection attributes are evaluated when the connection is established, and the

connection is assigned to a workload definition at which time a new occurrence of

that workload, referred to as a workload occurrence, is started. If any of the

connection attributes change during the life of that connection, the workload

assignment is reevaluated at the start of the next unit of work after the change

and, if a new workload definition is to be assigned, the old workload occurrence

for the previous assigned workload is ended and a new occurrence is started for

the newly assigned workload definition. While each connection is assigned to one

and only one workload at any one time, it is possible for there to be multiple

connections assigned to the same workload at the same time resulting in the

concurrent existence of multiple workload occurrences related to that definition.

For the connection attributes supported for a workload, see Chapter 3,

“Workloads,” on page 39.

Workload reevaluation occurs at the beginning of each unit of work in the event

that the value of a connection attribute or the workload definition itself changes

during the unit of work. This reevaluation might result in the connection being

associated with a new workload, creating a different workload occurrence.

First example of creating a workload

CREATE WORKLOAD "REPORTING" APPLNAME(’Accounts’) SERVICE CLASS Marketing

This command creates a workload object called REPORTING. All connections with

an application name attribute of Accounts are assigned to this workload and they

run in the Marketing service class, as shown in the following figure:

Second example of creating a workload

CREATE WORKLOAD "SUMMARY" SESSION_USER_GROUP(’Deptmgr’) APPLNAME(’Accounts’)

SERVICE CLASS HumanResources

This command creates a workload object called SUMMARY. All connections with

an application name Accounts and belonging to the session user group Deptmgr

whose session user authorization ID belongs to the DeptMgr group map to the

SUMMARY workload and are assigned to run in the HumanResources service class,

as shown in the following figure:

User
requests MarketingWorkload

REPORTING

Figure 3. The REPORTING workload

User
requests HumanResourcesWorkload

SUMMARY

Figure 4. The SUMMARY workload

6 Workload Manager Guide and Reference

Connections that are not assigned to a custom-defined workload during workload

evaluation will be assigned to the default workload. The default workload ensures

that all database connections are associated with a workload.

Work classes

In addition to using connection attributes that focus on the source of the activities,

you can identify activities based on the type of work through the creation of an

optional work class.

A work class set represents a common definition of work types that can be used in

different parts of the DB2 data server in conjunction with a work action set.

 Table 1. Work types

Work type Description

READ Includes all SELECT and XQuery statements where only data is

being fetched (that is, tables are not being updated)

WRITE Includes all statements that modify data content on the data server

(that is, INSERT, UPDATE, DELETE, and MERGE, even if they are

imbedded in a SELECT statement)

CALL Includes all invocations of procedures using a CALL statement

DML Combines work found in the READ and WRITE work types

DDL Includes statements that create or modify database objects (that is,

CREATE, ALTER, DROP, COMMENT, DECLARE GLOBAL

TEMPORARY TABLE, REFRESH TABLE, RENAME, GRANT,

REVOKE, SET INTEGRITY)

LOAD Includes all work initiated by the load utility on the data server

ALL Includes all types of work

Work classes also introduce the ability to use predictive elements in the

identification for DML work (or READ and WRITE statements). Predictive

elements are very useful because they provide information about database

activities that can be used to take action before these activities start consuming

resources on the data server. The following table provides information about

predictive elements:

 Table 2. Characteristics for predictive identification

Predictive element Description

Estimated cost Uses the estimated cost available from the DB2

compiler to include DML within a given timeron range

(for example, create a work class set for all large

queries with an estimated cost over 1 000 000

timerons)

Estimated cardinality Uses the estimated rows returned (cardinality) from the

DB2 compiler to include DML within a given range of

rows returned (for example, create a work class for

large queries that are estimated to return more than

500 000 rows)

You can also identify activities by using the schema name of the procedure that a

CALL statement calls. Based on workload attributes and work class types, you can

identify work and prepare it for the next stage, the management of the work.

Chapter 1. Introduction to workload management concepts 7

You can also use work actions to partly define how to manage the activities in the

work class. For a work class to be active, you must define at least one work action

for it. For more information, see the description of work action sets in

“Management stage of workload management.”

Management stage of workload management

Following the identification of the work, the next stage is the active management

of the work, where you assign resources and impose controls on that work.

Service classes

The purpose of a service class is to define an execution environment in which the

work can run. This environment can include available resources and various

execution thresholds

When you define a workload, you must indicate the service class where work

associated with that workload runs. The default workload also exists, which

ensures that all data server work is running inside a service class.

Prioritization and resource control

When you create or alter a service class object, you can define a number of

resource controls:

 Table 3. Resource control afforded by service classes

Control Description

Agent priority This control sets a CPU priority level for the agent threads running

in a service class. This priority flows through to the operating

system as a relative (delta) priority to other threads and processes

running in the data server.

Note: Not active when outbound correlator is in use.

Prefetch priority This control assigns a priority to the prefetch requests, which affects

the order in which they are addressed by the data server.

Outbound correlator This control allows a workload to have some of its resources

controlled by an external workload manager such as the AIX®

Workload Manager (currently, the only supported external workload

manager). The tag flows through the agent to the external workload

manager and maps to a resource group defined with the manager.

When DB2 workload management is used in conjunction with the

AIX Workload Manager, additional capabilities are available. You

can use the AIX Workload Manager to control the amount of CPU

allocated to each service class. Options include setting a minimum,

maximum, or relative proportion share of CPU for each service

class.

Service subclasses

Although the service superclass is the highest tier for work, activities only run in

service subclasses. This distinction is important to note. Each service superclass has

a default service subclass defined to run activities that you do not assign to an

explicitly defined subclass. This default subclass is created when the service

superclass is created. You can create addition subclasses in a service class as you

require them to further isolate work or resources.

8 Workload Manager Guide and Reference

You can define only a single level of subclasses (that is, you cannot define a

subclass under another subclass, only under a service superclass).

The following figure is an example of a custom workload management

configuration using workloads and service classes:

As user requests enter the data server, they are identified as belonging to a given

workload and assigned to a service superclass or subclass. There are also system

requests (for example, prefetches) that run under a special default system service

class and DB2-driven maintenance requests (such as an automatic RUNSTATS from

the health monitor) that run under a default maintenance service class.

Thresholds

Resource controls are one way to try to maintain a constant state of well-being on

the data server: well-being meaning that your defined goals are being met. At

times, work comes in that might exceed your normal expectations (a query that is

Service superclass 1

System
requests

User
requests

User
requests

User
requests

User
requests

User
requests

Default system
class

Service
subclass A

Default user
class

Workload D

Workload C

Workload A

Data server

Service
subclass B

Default user workload

Maintenance
requests

Default
maintenance
class

Default service
subclass

Workload B

Figure 5. A custom workload management configuration using workloads and service classes

Chapter 1. Introduction to workload management concepts 9

returning hundreds of thousands of rows, for example), consuming valuable

resources at the expense of all of the other work running on the system.

You can create threshold objects to maintain order in the system, and to catch work

that behaves abnormally. The following tables provide information about the

different thresholds that you can define. The first set of thresholds deals with

activity limits, where the controls pertain to the impact that an activity can have on

how the data server is running. Excess time, abnormally high volumes of data

returned, and abnormally high amounts of resources consumed are warning flags

that potentially troublesome activities could be using up resources that they are not

supposed to.

 Table 4. Activity limit thresholds

Threshold Description

ACTIVITYTOTALTIME Controls the amount of time that any given activity can spend from submission to

completion in the DB2 data server (execution time and queue time). Use to detect

jobs that are taking an abnormally long time to complete.

CONNECTIONIDLETIME Controls the amount of time that a connection sits idle, not working on behalf of

user requests. Use to detect inefficient use of data server resources and application

wait conditions.

ESTIMATEDSQLCOST Controls DML activities that the DB2 optimizer determines to have a large

estimated cost. Use to predict potentially resource-heavy SQL before it starts

executing on the system and identifying poorly written SQL.

SQLROWSRETURNED Controls the number of rows returned when executing SQL. Use to identify when

the amount of data exceeds a reasonable volume.

SQLTEMPSPACE Controls the amount of temporary table space a given activity can consume on a

partition. Use to prevent situations where a few errant SQL statements can use up a

disproportionate amount of temporary space, impeding the progress of other work.

The next set of thresholds deals with concurrency control and is meant to look for

cases where you need to consider limiting the number of certain activities running

at the same time to reduce their impact on the data server.

 Table 5. Concurrency limit thresholds

Threshold Description

CONCURRENTWORKLOADOCCURRENCES Controls the number of active occurrences of a workload that can

run on a coordinator partition at the same time. Use to control the

spread of connections from a specific source.

TOTALDBPARTITIONCONNECTIONS Controls the number of database connections to a given partition

that can be established at the same time. Use to prevent a given

partition from becoming overloaded.

TOTALSCPARTITIONCONNECTIONS Controls the number of database connections to a given partition

for work executing within a given service class at the same time.

Similar to the total database partition connections but more

granular because the connection is linked to a service class.

CONCURRENTWORKLOADACTIVITIES Controls the number of individual activities that can run within a

workload occurrence. Use to limit work within an individual

workload occurrence.

CONCURRENTDBCOORDACTIVITIES Controls the number of concurrent activities in the domain that the

threshold is associated with (database, work action, service

superclass, or service subclass).

10 Workload Manager Guide and Reference

The kind of actions that can be taken when a threshold is violated depends on the

threshold itself.

Collect data

When some thresholds are violated, some form of data is collected. By

default, the fact that a threshold was violated is recorded in an activated

threshold violations event monitor. You might want more detail, though, so

on each threshold definition you can request that more data be captured in

an activated activities event monitor, such as information about individual

activities, the statement text, the compilation environment, and even the

input data values.

Stop execution

A common action when a threshold is violated is to stop the activity from

executing. In this case, an error code is returned to the submitting

application indicating that the threshold was violated.

Continue execution

In some situations, stopping the execution of the activity is too harsh a

measure. A preferable response is to allow the activity to continue to run

and collect the relevant data for an administrator to perform future

analysis to determine how to prevent this condition from happening again.

In this situation, no error code is returned to the submitting application. If

the action is to continue, the user receives no indication that the threshold

was violated.

Work action set

As described in “Work classes” on page 7, you can define work classes to represent

activities of a certain type (such as LOAD activities or READ activities). A work

action provides an action that can be applied to a work class. A work action set

can contain one or more work actions that can be applied to activities in either a

specific superclass or to the database as a whole. For a work class to be active and

have activities assigned to it, there must be a work action defined for the work

class.

If you apply a work action set to a database, there are several types of actions that

you can apply to activities that fall within a work class, such as threshold

definitions, prevent execution, collect activity data, and count activity. Defining a

threshold for a work action is the most powerful database work actions. For

example, perhaps you want to prevent SQL from reading and returning more than

100 000 rows. You can define a single work class for a work action set that

identifies SQL READ statements and a work action with a threshold that would

stop execution if the number of rows returned is more than 100 000. For

information about the possible actions, see “Work actions and the work action set

domain” on page 83.

If you define the work action set for a service superclass, the different types of

actions that you can apply to activities include mapping activities to a service class,

preventing execution, collecting activity or aggregate activity data, and counting

the activities. Typically, the work action set maps an activity to a service subclass

and has thresholds defined on the subclass to help manage the activity.

Chapter 1. Introduction to workload management concepts 11

Monitoring stage of workload management

The third stage of workload management is monitoring. While this is described as

the last stage of workload management, monitoring is ongoing.

The primary purpose of monitoring is to validate the health and efficiency of your

system and the individual workloads running on it. Using table functions, you can

access real-time operational data (such as a list of running workload occurrences

and the activities running in a service class or average response times). Using

event monitors you can capture detailed activity information and aggregate activity

statistics for historical analysis.

Looking at aggregate information should usually be the first step when you build

a monitoring strategy. Aggregates give a good picture of overall data server

activity and are also cheaper because you do not have to collect information on

every activity in which you might be interested. You can collect more detailed

information as you understand the scope of your monitoring needs.

Realtime monitoring

With real-time monitoring, you can determine what is happening on your system

in response to performance issues or problem reports.

Workload D

User
database requests Service superclass 1

Default user class

Workload C

Workload BRequests

Requests

Requests

Requests

Requests

Service
subclass 1.1

Service
subclass 1.2

Subclass 1.3

Workload A

Default user workload

Work action set

Figure 6. Work action set mapping for a service superclass

12 Workload Manager Guide and Reference

Realtime monitoring data includes statistics that represent the current activity on

the system that can help determine usage patterns and resource allocation and

identify problem areas.

The method for accessing the real-time monitor data is through DB2 table

functions. Table functions provide access to a set of data that exists inside a DB2

database (such as the workload management statistics) as a virtual DB2 table

against which you can execute a SELECT statement. This offers you the ability to

write applications to query data and analyze it just as if it were any physical table

on the data server.

Some table functions return sets of information about the work that is currently

executing on a system. This information about work is available at various levels:

 Table 6. Table function information available for running work

Objects for which

information is

collected Description

Workload occurrence The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

table function returns a list of workload occurrences, across database

partitions, assigned to a service class. For each occurrence, there is

information about the current state and the connection attributes

used to assign the workload to the service class and activity

statistics indicating activity volume and success rates.

Service class agents The WLM_GET_SERVICE_CLASS_AGENTS table function returns a

list of database agents associated with a service class or an

application handle. Information returned also shows the current

state of the agent, the action that the agent is performing, and the

status of that action.

Workload occurrence

activities

The WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table

function returns a list of current activities associated with a

workload occurrence. For each activity, information is available

about the current state of the activity (for example, executing or

queued), the type of activity (for example, LOAD, READ, DDL), and

the time at which the activity started.

Activity details The WLM_GET_ACTIVITY_DETAILS table function returns details

about an individual activity. One detail returned is the activity type;

depending on that type, a set of additional data is returned. For

example, for SQL activities, information is available about the

statement text, package data, cost estimates, and rows returned or

modified. Details about the isolation level and CPU times are also

available.

General statistical information is also available at a number of different levels,

including the ones described in the following table:

 Table 7. Statistical information available for a workload management solution

Objects for which

statistics are

returned Description of statistics returned

Super service classes The WLM_GET_SERVICE_SUPERCLASS_STATS table function

shows summary statistics across database partitions at the service

superclass level: namely, high water marks for concurrent

connections (useful when determining peak workload activity).

Chapter 1. Introduction to workload management concepts 13

Table 7. Statistical information available for a workload management solution (continued)

Objects for which

statistics are

returned Description of statistics returned

Service subclasses The WLM_GET_SERVICE_SUBCLASS_STATS table function shows

summary statistics across database partitions at the service subclass

level (all activities run in service subclasses). Statistics include

numbers of completed activities and average execution times (useful

when looking at general system health and distribution of activities

across service classes and database partitions).

Workloads The WLM_GET_WORKLOAD_STATS table function shows

summary statistics across database partitions at the workload level.

This includes high water marks for concurrent workload

occurrences and numbers of completed activities (useful when

monitoring general system health or drilling down to identify

problem areas).

Work action sets The WLM_GET_WORK_ACTION_SET_STATS table function shows

summary statistics across database partitions at the work action set

level: namely, the number of activities of each work class that had

the corresponding work actions applied to them (useful for

understanding the effectiveness of a work action set and

understanding the types of activities executing on the system).

Threshold queues The WLM_GET_QUEUE_STATS table function shows summary

statistics across database partitions for the queues used for their

corresponding thresholds. Statistics include the number of queued

activities (current and total) and total time spent in a queue (useful

when querying current queued activity or validating that a

threshold is correctly defined: excessive queuing might indicate that

a threshold is too restrictive, and very little queuing might indicate

that a threshold is not restrictive enough or not needed).

Statistics are only useful if the time period during which they are collected is

meaningful. Collecting statistics over a very long time, and any time using the

WLM_COLLECT_STATS stored procedure, might be less useful if it becomes

difficult to identify changes to trends or problem areas because there is too much

old data. Thus, there is the ability to reset statistics at any time.

Because of the default workload and default user service classes, monitoring

capabilities exist from the moment that you install the DB2 data server. These can

be a great help in kick starting or validating the identification stage of workload

management by helping to isolate sources of activities that you can use to create

workloads and the service classes to which you can assign them.

Example: Using workload management table functions

A large amount of data is available through workload management real-time

monitoring. The example in this topic shows how you might start using the

information.

In this situation, only the default workload and service class are in place. Use this

example to understand how you can use the table functions to understand what,

exactly, is running on the data server. Follow these steps:

1. Use the Service Superclass Statistics table function to show all of the service

superclasses. After you install or migrate to DB2 9.5, three default superclasses

are defined: one for maintenance activities, one for system activities, and one

for user activities. SYSDEFAULTUSERCLASS is the service class of interest.

14 Workload Manager Guide and Reference

2. Use the Service Subclass Statistics table function to show statistics for all the

service subclasses of the SYSDEFAULTUSERCLASS superclass. For each service

subclass you can see the current volume of requests that are being processed,

the number of activities that have completed execution, and the overall

distribution of activities across database partitions (possibly indicating a

problem if the distribution is uneven). You can optionally obtain additional

statistics including the average lifetime for activities, the average amount of

time activities spend queued, and so on. You can obtain optional statistics for a

service subclass by specifying the COLLECT AGGREGATE ACTIVITY DATA

keyword on the ALTER SERVICE CLASS statement to enable aggregate activity

statistics collection.

3. For a given service subclass, use the Workload Occurrence Information table

function to list the occurrences of a workload that are mapped to the service

subclass. The table function displays all of the connection attributes, which you

can use to identify the source of the activities. This information can be quite

useful in determining custom workload definitions in the future. For example,

perhaps a specific workload occurrence listed here has a large volume of work

from an application as shown by the activities completed counter.

a. For that application, use the Workload Occurrence Activities Information

table function to show the current activities across database partitions that

were created from the application’s connection. You can use this information

for a number of purposes, including identifying activities that might be

causing problems on the data server.

b. For each activity, retrieve more detailed information by using the Activity

Details table function. The data might show that some SQL statements are

returning huge numbers of rows, that some activities have been idle for a

long time, or that some queries are running that have an extremely large

estimated cost. In situations like these, it might make sense to define some

thresholds to identify and prevent potentially damaging behavior in the

future.

Historical monitoring

In addition to the table functions, DB2 workload manager uses event monitors to

capture information that might be of use in the future or for historical analysis.

Three event monitors are available for you to use in your workload management

configuration. Each event monitor serves a different purpose:

Activity event monitor

This monitor captures information about individual activities in a service

class, workload, or work class or activities that violated a threshold. The

amount of data that is captured for each activity is configurable and

should be considered when you determine the amount of disk space and

the length of time required to keep the monitor data. A common use for

activity data is to use it as input to tools such as db2advis or to use access

plans (from the explain utility) to help determine table, column, and index

usage for a set of queries.

Threshold violations event monitor

This monitor captures information when a threshold is violated. It

indicates what threshold was violated, the activity that caused the

violation, and what action was taken when it occurred.

Statistics event monitor

This monitor serves as a low-overhead alternative to capturing detailed

activity information by collecting aggregate data (for example, the number

Chapter 1. Introduction to workload management concepts 15

of activities completed and average execution time). Aggregate data

includes histograms for a number of activity measurements including

lifetime, queue time, execution time and estimated cost. You can use

histograms to understand the distribution of values, identify outliers, and

compute additional statistics such as averages and standard deviations. For

example, histograms can help you understand the variation in lifetime that

users experience. The average life time alone does not reflect what a user

experiences if there is a high degree of variability.

The following figure shows the different monitoring options available to access

workload information: table functions to access real-time statistics and activity

details and historical information captured as efficient aggregates or details

individual activities:

16 Workload Manager Guide and Reference

Service
superclass 1

System
requests

User
requests

User
requests

User
requests

User
requests

User
requests

Workload A

Default system
class

Activity
information

Aggregate activity
information

Service
subclass B

Default user
class

Workload D

Workload B

Workload C

Data server

SQL using table
functions

Service
subclass A

Default user
workload

Legend

Monitoring interface

Maintenance
requests

Default
maintenance
class

Figure 7. Workload management with monitoring

Chapter 1. Introduction to workload management concepts 17

Activities

An activity is an individual piece of work that consumes database resource during

its lifetime. The lifetime can span one or more database requests. A CALL

statement or a cursor are examples of activities; an OPEN and FETCH request are

examples of database requests that occur during the life of a cursor activity.

The data server recognizes the following activities for participation in a workload

management configuration:

v All DML statements

v All DDL statements

v The CALL statement

v The load utility

Work that is not classified as any of the previous activities above is still assigned to

a workload (and the corresponding service class that is specified in the workload

definition), based on the attributes of the connection that the work is submitted

under. However, this work will not have thresholds or work actions applied to it.

In the context of activities, nesting refers to the situation where one activity

invokes another. For example, a stored procedure is an activity. If the stored

procedure contains a DML activity, that activity is a nested activity. If the stored

procedure calls another stored procedure, the second stored procedure is a nested

activity.

Workload management sample application

Comprehensive workload management has been integrated into Version 9.5, giving

you finer control over activities, resources and performance, and deeper insight

into how your system is running. A workload management sample application is

now available on developerWorks®.

The workload management sample application demonstrates how you can use

workload management features to achieve the following objectives:

Protect the system from runaway queries

Runaway queries are costly and cause poor performance. The workload

management sample application identifies queries with the potential to

become runaway queries, and then stops these queries from running after

they have violated a specified threshold.

Limit concurrent resource consumption by individual applications

The sample application shows how to use workload management features

to prevent applications that submit large amounts of concurrent work from

negatively affecting the performance of other applications.

Achieve a specific response time

Workload management features allow you to achieve a specific response

time objective of the form: ″transaction X from application Y shall complete

within 1 second in 90% of cases,″ regardless of what other activity is

running concurrently on the system. The sample application will

demonstrate how to achieve a response time objective.

Consistent response time for short queries

Queries that typically have a response time of less than 1 second should

have a relatively consistent response time regardless of what other

18 Workload Manager Guide and Reference

workloads are running on the system. The sample application uses the

query execution time histogram to monitor consistency.

Protect the system during periods of peak demand

Workload management policy features protect the system from capacity

overload during bursts of peak demand by queuing work once the system

is sufficiently loaded.

Enable concurrent batch extract, transform, and load (ETL) processing and user

queries

Workload management features allow you to run ETL jobs (like loading

data into tables) while controlling the performance impact for users

running queries concurrently.

 To obtain the sample application, see Workload management sample on

developerWorks.

Chapter 1. Introduction to workload management concepts 19

http://www.ibm.com/developerworks/exchange/dw_entryView.jspa?externalID=297&categoryID=1008

20 Workload Manager Guide and Reference

Part 2. Identification and management

© Copyright IBM Corp. 2007, 2008 21

22 Workload Manager Guide and Reference

Chapter 2. Service classes

All database requests are executed in a service class. The service class is the

primary point for resource assignment to all database requests. Service classes are

also used for monitoring and controlling sets of database activities in a database.

Every DB2 service class is either a service superclass or a service subclass in a

service superclass. Each database can have multiple service superclasses and each

service superclass can have multiple service subclasses. Service subclasses can only

belong to one service superclass. The resources of the superclass are shared by all

subclasses in it.

You set up service classes to organize activities in the database so that you can

meet the performance objectives of your organization. Without service classes,

requests cannot be organized into recognizable, logical groupings, as is shown in

the following figure.

You can create different service superclasses to provide the execution environment

for different types of work, then assign the applicable requests to the service

superclasses. Assume that you have applications from two separate lines of

business, finance and inventory. Each line of business would have its own

applications to fulfill its responsibilities to the organization. You can organize the

requests into categories that make sense for your workload management objectives.

In the following figure, different service superclasses are assigned to different lines

of business.

Figure 8. Unorganized work

© IBM Corporation 2007, 2008 23

In the previous figure, the activities in both service superclasses are further

subdivided. The service class provides a two-tier hierarchy: a service superclass

and service subclasses underneath. This hierarchy allows for a more complex

division of execution environment and better emulates a real-world model. Unless

specified otherwise, service subclasses inherit characteristics from the service

superclass. Use the service subclasses to further subdivide work in the service

superclass.

All work actually runs in the service subclasses and a default service subclass is

automatically created when a service superclass is created. That default subclass is

what is used by any work mapped to (and left in) the service superclass. The

service superclass acts as a common background for all of its service subclasses.

Except for histograms and the COLLECT ACTIVITY DATA options, a service

subclass inherits the attributes of its service superclass, unless otherwise specified.

Because different work has different priorities, when using service classes, you can

control a number of characteristics of that service class. For example:

v You can set the I/O page prefetcher priority to be used for work in the service

class.

v You can set the agent CPU priority for all agents in the service class.

v You can control resource usage in the service class by applying constraints on

the work running in a service class by using different types of thresholds.

You use workloads to assign work to service superclasses. You can also assign

work to service subclasses in a service superclass by using workload definitions or

work actions.

You can create service classes by using the CREATE SERVICE CLASS statement.

You can alter service classes by using the ALTER SERVICE CLASS statement. You

can drop service classes by using the DROP SERVICE CLASS statement.

You can view your service classes by querying the SYSCAT.SERVICECLASSES

catalog view.

Finance 1

Finance 2

Finance 3

Finance
service class

Inventory 1

Inventory 2

Inventory 3

Inventory
service class

Figure 9. Work organized by service classes

24 Workload Manager Guide and Reference

Default service superclasses and subclasses

When you install or migrate to DB2 Version 9.5 or later, each new database or

migrated database has three predefined default service superclasses: the default

user class, the default maintenance class, and the default system class.

You cannot disable or drop any of the default service superclasses.

All of the default service superclasses are created with one default service subclass.

You cannot create additional service subclasses for the default service superclasses.

The default service subclass is always created with the name

SYSDEFAULTSUBCLASS, as follows:

All work issued by connections to a default service superclass are processed in the

default service subclass of that service superclass.

Default service superclasses and their default service subclasses are dropped only

when the database is dropped. They cannot be dropped using the DROP SERVICE

CLASS statement.

Default user service superclass (SYSDEFAULTUSERCLASS)

After installing or migrating to DB2 Version 9.5, by default, all activities

run in the SYSDEFAULTUSERCLASS.

Default maintenance service superclass (SYSDEFAULTMAINTENANCECLASS)

The default maintenance service superclass tracks the internal DB2

connections that perform database maintenance and administration tasks.

Connections from the DB2 asynchronous background processing (ABP)

agents are mapped to this service superclass. ABP agents are internal

agents that perform database maintenance tasks. Asynchronous index

cleanup (AIC) is an example of an ABP-driven task. ABP agents

automatically reduce their resource consumption and number of subagents

when the number of user connections increases on the data server. Utilities

that are issued by user connections are mapped using regular service

classes. You cannot implement service class thresholds on

SYSDEFAULTMAINTENANCECLASS.

 The internal connections tracked by the default maintenance service

superclass include:

v ABP connections (including AIC)

v Health monitor initiated backup

SYSDEFAULTSUBCLASS

SYSDEFAULTUSERCLASS

SYSDEFAULTSUBCLASS

SYSDEFAULTSYSTEMCLASS

SYSDEFAULTSUBCLASS

SYSDEFAULTMAINTENANCECLASS

Figure 10. Two-tier service class hierarchy

Chapter 2. Service classes 25

v Health monitor initiated RUNSTATS

v Health monitor initiated REORG

Default system service superclass (SYSDEFAULTSYSTEMCLASS)

The default system service superclass tracks internal DB2 connections and

threads that perform system-level tasks. You cannot define service

subclasses for this service superclass, nor can you associate any workloads

or work actions with it. In addition, you cannot implement service class

thresholds on SYSDEFAULTSYSTEMCLASS. The DB2 threads and

connections tracked by the default system service superclass include:

v ABP daemon

v Query Patroller (QP) connections

v Self Tuning Memory Manager (STMM)

v Prefetcher engine dispatchable units (EDUs) (db2pfchr)

v Page cleaner EDUs (db2pclnr)

v Log reader EDUs (db2loggr)

v Log writer EDUs (db2loggw)

v Log file reader EDUs (db2lfr)

v Deadlock detector EDUs (db2dlock)

v Event monitors (db2evm)

v Connections performing system level tasks

 A Query Patroller connection is an internal connection to the DB2 data server

issued by the QP controller (the server component of QP) when QP is started. This

connection is established as QP is starting up, and after QP has successfully

started, the connection is mapped to the default system service superclass. Whilst

QP is starting up, the connection may temporarily be mapped to another service

class as part of the normal workload mapping process. During this period, the

connection is subject to all controls and thresholds of the service class it is

temporarily mapped to.

Activity-to-service class mapping

All database connections are assigned to a workload at the beginning of the first

unit of work. When a workload occurrence is started, all activities running under

that workload occurrence are mapped to service classes based on the service class

name specified in the workload definition. If the workload occurrence is assigned

to a service superclass, any work submitted for that workload occurrence can be

reassigned to a user-defined service subclass in that service superclass by a work

action (applied to a work class) if a work action set is defined for the service

superclass (that is, not the default service subclass).

The data server assigns a connection to a workload definition if the connection

meets the criteria defined for that workload definition. For example, you can set

up a workload management implementation so that all connections from

application A belong to the workload definition Alpha, while all connections from

application B belong to the workload definition Beta.

You can use the workload to map activities from a connection to a service

superclass by specifying the SERVICE CLASS keyword of the CREATE

WORKLOAD statement. Assuming that no work class or work action applies to

the activity, the activity is run in the default service subclass of the service

superclass.

26 Workload Manager Guide and Reference

You can also use a workload to map activities from a connection to a service

subclass in the service superclass by specifying the UNDER keyword for the

SERVICE CLASS keyword of the CREATE WORKLOAD statement. In this

situation, the connection still belongs to the service superclass, but all activities

issued from that connection are automatically mapped to the service subclass

specified in the workload definition.

Note: Only the coordinator agent does service superclass mapping for the

connection. If the coordinator agent spawns subagents, the subagents inherit the

superclass mapping of the coordinator agent.

The following figure shows the relationship between connections, workloads, and

service superclasses. Connections that meet the definition of workload A are

mapped to service superclass 1; connections that meet the definition of workloads

B or C are mapped to service superclass 2; connections that meet the definition of

workload D are mapped to the SYSDEFAULTUSERCLASS service superclass.

User connections

DB2 internal
maintenance connections

SYSDEFAULTUSERCLASS

Service superclass 1

Service superclass 2

DB2 internal system
entities and connections

SYSDEFAULTSYSTEMCLASS

Connections

Connections

Connections

Connections

Connections

Connections

SYSDEFAULTMAINTENANCECLASS

Workload C

Workload B

Workload A

Workload D

Default workload

Entities and
connections

Figure 11. Mapping of database connections to a service superclass

Chapter 2. Service classes 27

If you have a more complex workload management configuration, you might want

to handle activities differently based on either the activity type or some other

activity attribute. For example, you might want to do one of the following actions:

v Put DML in a different service subclass than DDL.

v Put all read-type queries with an estimated cost of less than 100 timerons in a

different service subclass than all the other read-type queries.

In a more complex configuration you can set up the workload to map activities

from the connection to the service superclass. Then, using work actions (contained

in a work action set that is applied to the service superclass), you can remap

activities, based on their type or attribute, to specific service subclasses in a service

superclass.

Specifically, you could apply a work action set that contains a MAP ACTIVITY

work action to the service superclass. All activities that are both mapped to the

service superclass and match a work class to which a MAP ACTIVITY work action

is associated are mapped to the service subclass specified by the work action.

If a workload maps an activity to a service subclass, that activity is not affected by

any work action in a work action set that is applied to the service superclass.

v An activity can be mapped to one service subclass in a service superclass by a

workload.

v A work action that maps the activity to a different service subclass in the same

service superclass also applies to the activity.

If an activity is not mapped to a service subclass through a workload or a work

action, the activity is mapped to the default subclass (SYSDEFAULTSUBCLASS) of

the service superclass for that activity.

When database activities have been mapped to their respective service superclasses

and service subclasses, you can implement controls on all the activities in a

particular service class. Statistics are available at the service-class level that you can

use to monitor database activities in that service class.

The following figure shows connections to the database being mapped to a service

superclass or service subclass through workloads. For information on how work

actions are used to map activities to a service subclass, see “Work actions and

work action sets” on page 77

28 Workload Manager Guide and Reference

Connections that do not map to a user-defined workload definition are mapped to

the default user workload definition, SYSDEFAULTUSERWORKLOAD. By default,

connections from the default workload definition

(SYSDEFAULTUSERWORKLOAD) are mapped to the SYSDEFAULTUSERCLASS

service superclass, which is the default service superclass for user requests. You

can alter the SYSDEFAULTUSERWORKLOAD workload so that it maps to a

different service class. Internal DB2 maintenance connections are mapped to the

SYSDEFAULTMAINTENANCECLASS, which is the default service superclass for

maintenance requests. Internal system entities and connections are mapped to

Workload D

User
database requests

Maintenance
database requests

Service
superclass 1

SYSDEFAULTUSERCLASS

Workload C

Workload B

SYSDEFAULTUSERWORKLOAD

Requests

Requests

Requests

Requests

Requests

Service
subclass 1.1

Service
subclass 1.2

Service
subclass 1.3

Workload A
Default service
subclass

SYSDEFAULTMAINTENANCECLASSRequests

M:1 N:1

System
database requests

SYSDEFAULTSYSTEMCLASSRequests

Figure 12. Database connections being mapped to a service superclass

Chapter 2. Service classes 29

SYSDEFAULTSYSTEMCLASS, which is the default service superclass for internal

DB2 connections and threads that perform system-level tasks.

CPU priority and DB2 service classes

With DB2 service classes, every service class can be associated with a relative agent

priority. This priority is set for all agents that work in a service class and is relative

to the agent priority of all other DB2 agents. If you do not specify the agent

priority value for a service class, all agents in that service class have the same

priority as all other DB2 agents.

Setting the agent priority for a DB2 service class only adjusts the priority of agents

running in that service class for new work that enters. Other non-agent threads

running in the service class do not use the agent priority value specified for the

service class.

If you are integrating DB2 service classes with the AIX workload manager, you can

use the AIX Workload Manager to specify the CPU priorities to be used for the

operating system class, then have the DB2 service class inherit this value through

the OUTBOUND CORRELATOR value of the DB2 service class. In this situation,

the CPU priority you specify using the operating system workload manager will

control the priority for agents that run in the DB2 service class, and any service

class agent priority setting is ignored.

The agentpri database manager configuration parameter sets the absolute CPU

priority of all agents in a DB2 instance to a fixed value. When the absolute priority

is set for an agent, its relative priority cannot be altered. For this reason, agentpri

is not compatible with service class agent priority or integration with the AIX

Workload Manager. If agentpri is set to a non-default value, the service class agent

priority and AIX Workload Manager have no effect on the priority of agents. You

should not use this deprecated configuration parameter in a workload

management configuration.

Note that on AIX, the instance owner must have CAP_NUMA_ATTACH and

CAP_PROPAGATE capabilities to set a higher relative priority for agents in a

service class using AGENT PRIORITY. To grant these capabilities, logon as root

and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

Service class prefetch priority

Prefetchers retrieve data from disk and store this data in buffer pools so that it can

be quickly accessed by agents. In DB2 workload management, each service

superclass and subclass can be assigned to have a different prefetch priority.

Agents send read-ahead requests to the database prefetch queue. The prefetchers

take these read-ahead requests from the queue, then retrieve the data into the

buffer pools. When an agent requires specific data, it first checks the buffer pools

to see if the data is available. If not, the agent retrieves the data from disk.

Prefetchers perform expensive disk I/O operations, which frees agents to perform

computational work in parallel.

Any connection routed to a service class has its prefetch requests processed

according to the prefetch priority assigned for the service class. Each service class

can be associated with one of the three prefetch priorities: high, medium, or low.

30 Workload Manager Guide and Reference

You specify the prefetch priority of a service class with the PREFETCH PRIORITY

keyword on either the CREATE or ALTER SERVICE CLASS statement.

Specifying DEFAULT for a service superclass sets a medium prefetch priority for

the service superclass. You can specify a different prefetch priority for any service

subclass in the service superclass, but if you use the default prefetch priority for

the service subclass, the service subclass inherits its prefetch priority setting from

its service superclass.

High-priority prefetch requests are processed before medium-priority prefetch

requests, which, in turn, are processed before low-priority prefetch requests.

States of connections and activities in a service class

Service classes collect connection statistics for each service class. You can see which

connections and activities are in a service class, and the state of either the

connection or activity.

States of a connection

Following are the possible states of a connection in a service class:

Connected

The connection successfully connected to the database but is not yet

associated with its workload and service superclass.

Mapped

The connection is mapped to a workload and has joined a service

superclass. The connection can now submit activities for execution.

Transient

The connection is attempting to join a service class that has reached its

connections threshold. The connection is queued to join the service class.

When the service class is not violating its connections threshold, the

connection will join the service class. A connection in the transient state

cannot submit activities for execution.

Terminating

The connection received a connect reset from the client or is being

terminated because of a force or an error condition.

States of an activity

Following are the possible states of an activity in a service class:

Initializing

The activity was created and is being prepared for execution.

Queued

The activity cannot be executed because of a concurrency threshold at the

database or service class level. The activity is queued until it is allowed to

execute.

Note: On the AIX operating system, if a queued activity receives

SQL4297N, ensure that the DB2 client and data server have the following

APAR installed:

v For AIX 5.3, IY89429

v For AIX 5.2, IY89387

Chapter 2. Service classes 31

Executing

The activity is executing.

QP Queued

The activity is queued by Query Patroller.

Terminating

The activity is being terminated.

System-level entities not tracked by service classes

Service classes are used for monitoring and controlling objects at the database

level. However, not all DB2 entities work directly in a database.

Because service classes work in a database and are stored in the catalog tables of

the database, entities that do not work in a database cannot be tracked by service

classes. Instance-level entities, such as the system controller and the health monitor

daemons, work at the instance level and are not directly associated with any

database. Agents that perform instance attachments and gateway connections are

not tracked by service classes either. Because instance attachment agents and

gateway agents do not work in a database, they are not tracked by service classes.

The following list is a partial list of entities that do not work within a database and

are not tracked by service classes:

v DB2 system controllers (db2sysc)

v IPC listeners (db2ipccm)

v TCP listeners (db2tcpcm)

v FCM daemons (db2fcms, db2fcmr)

v DB2 resynchronization agents (db2resync)

v Idle agents (agents with no database association)

v Instance attachment agents

v Gateway agents

v All other instance-level EDUs

Working with service classes

Creating a service class

You create service superclasses and service subclasses under them using the DDL

statement CREATE SERVICE CLASS.

To create a service class, you require DBADM, SYSADM, or SYSCNTRL authority.

Also see the following topics for other prerequisites:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

To create a service class:

1. Specify one or more of the following properties for the service class on the

CREATE SERVICE CLASS statement:

v Specify the name of the service class:

32 Workload Manager Guide and Reference

Note: Once set, the name of a service class cannot be changed.

– If you are creating a service superclass, the name must be unique among

all service superclasses in the database.

When a service superclass is created, its associated default service subclass

is automatically created. Only after you have created a service superclass

can you create other service subclasses under it.

– If you are creating a service subclass, the name must be unique among all

service subclasses in the service superclass. A service subclass cannot have

the same name as its service superclass.
v If you are creating a service subclass, specify the name of the parent service

superclass. After a service subclass is created under a service superclass, it

cannot be associated with a different service superclass.

v Optional: Specify the agent priority for the service class. When the agent

priority is set to DEFAULT, agents in the service class are assigned the same

priority that the operating system assigns all DB2 threads. If you set the

AGENT PRIORITY parameter to a value other than DEFAULT, the agent

threads are set to a priority equal to the default priority, plus the value set

when the next activity begins. For example, if the default priority is 20 and

you set agent priority to -10, the resulting agent priority is set to 20 + (-10) =

10.

An agent priority of DEFAULT evaluates to a numeric value of -32768.

On Linux® and UNIX®, the valid values are -32768, -20 to 20 (a negative

value indicates a higher relative priority). On Windows-based platforms, the

valid values are -32768, -6 to 6 (a negative value indicates a lower relative

priority)

v Specify the outbound correlator string if you want to associate the DB2

service class to an AIX service class. A null value indicates no external WLM

service class association.

If the outbound correlator is set, all threads in the DB2 service class are

associated with the operating system workload manager using the outbound

correlator when the next activity begins.

If the outbound correlator is set to NONE for a service subclass and the

outbound correlator is specified for the associated service superclass, the

service subclass inherits the outbound correlator specified for its service

superclass.

v Specify the prefetch priority. You can specify the priority with which agents

in the service class can submit their prefetch requests. Depending on the

value specified, the prefetch requests are routed to the high, medium, or low

priority prefetch queues. The default prefetch priority is medium.

v Activity data to collect. When activity data collection is enabled, information

about an activity is sent from the coordinator partition to the applicable

event monitor at the end of the activity. If you want, you can write data to

the event monitor from all database partitions on which the activity ran,

including information about the statement that was run, its compilation

environment, and any applicable input data values. You can also specify that

no data activity is collected. By default, no activity data is collected.

v Collected aggregate activity information. The aggregate activity information

used for the service class only changes after the alter service class operation

is committed.

v Whether to alter the histogram templates used by a service subclass that has

enabled aggregate activity data collection using COLLECT AGGREGATE

ACTIVITY DATA or aggregate request data collection using COLLECT

Chapter 2. Service classes 33

AGGREGATE REQUEST DATA. Updating the histogram templates used by a

service subclass will update the corresponding rows in the

SYSCAT.HISTOGRAMTEMPLATEUSE view which displays the histogram

templates referenced by a service class or work action. For more information

on histograms and histogram templates, see “Histograms in workload

management” on page 117.

v Specify whether the service class is enabled or disabled.

– If a service class is created as enabled (the default), connections and

activities can be mapped to the service class. If a service class is created as

disabled, new connections and activities mapped to it are rejected.

– If you create a service superclass as disabled, all service subclasses that

you associate with this service superclass behave as though they are

disabled, even though they may be displayed as being enabled when you

query the SYSCAT.SERVICECLASSES view.
2. Commit your changes. When you commit your changes the service class is

added to the SYSCAT.SERVICECLASSES view.

Altering a service class

If you want to change a service class definition, use the ALTER SERVICE CLASS

statement.

To alter a service class, you require DBADM, SYSADM, or SYSCNTRL authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

Activities that have already acquired resources and are running are not affected by

the ALTER statement. These activities will hold their resources and run until

completion. However, if a subagent request is sent to a remote database partition

during the ALTER SERVICE CLASS operation, the service class definition seen by

the coordinator agent and the subagent can differ. Consider the following example

in which the prefetch priority for the service class is initially set to MEDIUM:

 Table 8. Differences between the views of a coordinator agent and subagent of an altered

service class

Event order Connection 1 Connection 2

1 Coordinating agent sends

DSS request to remote

partition (prefetch priority of

service class was previously

set to MEDIUM)

2 ALTER SERVICE CLASS

issued; set prefetch priority

to HIGH

3 COMMIT is issued (the

altered service class property

is committed at the catalog

partition and loaded to

memory at all database

partitions)

34 Workload Manager Guide and Reference

Table 8. Differences between the views of a coordinator agent and subagent of an altered

service class (continued)

Event order Connection 1 Connection 2

4 Remote subagent: receive

DSS request. At this time, the

subagent sees the new

prefetch priority of HIGH for

the service class definition

This situation described in the previous table is temporary, and only affects

connections that issue subagent requests during the ALTER SERVICE CLASS

operation. All new connections will see the updated service class definition with

the prefetch priority of HIGH.

To alter a service class:

1. Specify one or more of the following properties for the service class on the

ALTER SERVICE CLASS statement:

v Specify whether the service class is enabled or disabled. If you change a

service class from enabled to disabled, existing connections or activities

remain with the service class and continue to use previously allocated

resources until complete. You can disable a service class if the work coming

to the service class is overwhelming the system, or you want to reject all

work coming to the service class.

When a service superclass is disabled the following happens:

a. The service superclass is disabled.

b. Its service subclasses are disabled.

The service subclasses are only disabled while their service superclass is

disabled. When the service superclass is enabled, the service subclasses

return to their previous states as defined in the catalog table.

When a service subclass is disabled, its service superclass is not affected, nor

other service subclasses associated with the service superclass.

You cannot explicitly disable a default service subclass. To prevent new

requests from running under a default service subclass, you must disable the

associated service superclass.

v Specify the agent priority for the service class. When the agent priority is set

to DEFAULT, agents in the service class are assigned the same priority that

the operating system assigns all DB2 threads. If you set the AGENT

PRIORITY parameter to a value other than DEFAULT, the agent threads are

set to a priority equal to the default priority, plus the value set when the next

activity begins. For example, if the default priority is 20 and you set agent

priority to -10, the resulting agent priority is set to 20 + (-10) = 10.

An agent priority of DEFAULT evaluates to a numeric value of -32768.

On Linux and UNIX, the valid values are -32768, -20 to 20 (a negative value

indicates a higher relative priority). On Windows-based platforms, the valid

values are -32768, -6 to 6 (a negative value indicates a lower relative priority)

v Specify the prefetch priority. You can specify the priority with which agents

in the service class can submit their prefetch requests. Depending on the

value specified, the prefetch requests are routed to the high, medium, or low

priority prefetch queues. The default prefetch priority is medium. If the

prefetch priority is altered after a prefetch request is submitted, the request

will not change its priority.

Chapter 2. Service classes 35

v Specify the outbound correlator string if you want to associate the DB2

service class to an AIX service class. A null value indicates no external WLM

service class association.

If the outbound correlator is changed from a non-null value to a null value,

all threads in the DB2 service class will disassociate with the operating

system workload manager when the next activity begins.

If the outbound correlator is set to NONE for a service subclass and the

outbound correlator is specified for the associated service superclass, the

service subclass inherits the outbound correlator specified for its service

superclass.

If a service superclass uses an outbound correlator, the agent priority of the

service superclass must be set to default.

If a service subclass uses an outbound correlator (either explicitly as part of

the service subclass definition or implicitly through inheritance from the

service superclass), the agent priority of the service subclass must be set to

default.

v Activity data to collect. When activity data collection is enabled, information

about an activity is sent from the coordinator partition to the applicable

event monitor at the end of the activity. If you want, you can write data to

the event monitor from all database partitions on which the activity ran,

including information about the statement that was run, its compilation

environment, and any applicable input data values. You can also specify that

no data activity is collected. By default, no activity data is collected.

v Collected aggregate activity information. The aggregate activity information

used for the service class only changes after the alter service class operation

is committed.

v Whether to alter the histogram templates used by a service subclass that has

enabled aggregate activity data collection using COLLECT AGGREGATE

ACTIVITY DATA or aggregate request data collection using COLLECT

AGGREGATE REQUEST DATA. Updating the histogram templates used by a

service subclass will update the corresponding rows in the

SYSCAT.HISTOGRAMTEMPLATEUSE view which displays the histogram

templates referenced by a service class or work action. For more information

on histograms and histogram templates, see “Histograms in workload

management” on page 117.
2. Commit your changes. When you commit your changes the service class is

updated in the SYSCAT.SERVICECLASSES view.

Dropping a service class

You drop service classes using the DDL statement DROP SERVICE CLASS.

To drop a service class, you require DBADM or SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

Following are the restrictions for dropping a service class:

v You cannot drop the default service superclasses (SYSDEFAULTUSERCLASS,

SYSDEFAULTMAINTENANCECLASS, and SYSDEFAULTSYSTEMCLASS) or

their associated service subclasses. The only way to drop the default service

superclasses and their associated service subclasses is to drop the database.

v A service class cannot be dropped if any of the following conditions apply to the

service class:

36 Workload Manager Guide and Reference

– It is enabled

– It is referenced by any workload, work action or threshold

– Any connection or activity is currently mapped to the service class

To drop a service class:

1. Disable the service class by using the ALTER SERVICE CLASS statement. If you

are dropping a service superclass, this action disables all service subclasses

associated with the service superclass. Disabling a service class prevents any

additional activities from being associated with it. After disabling the service

class, issue a COMMIT statement.

Activities already running under the service class will continue to run. You can

list agents that are currently mapped to a service class using the

WLM_GET_SERVICE_CLASS_AGENTS table function. If you do not want

these activities to complete, you can use the application identifier returned by

the table function and use the FORCE APPLICATION command to force these

applications off the database.

2. Use the DROP WORKLOAD statement to drop all workloads associated with

the service class. Issue a COMMIT statement after dropping each workload.

3. Drop all applicable work actions that are associated with the service class you

want to drop:

v If you are dropping a service superclass, and a work action set is associated

with it, drop that work action set using the DROP WORK ACTION SET

statement. Issue a commit statement after dropping the work action set.

v If you are dropping a service subclass and a work action maps to that service

subclass, drop the work action using the DROP WORK ACTION keyword of

the ALTER WORK ACTION SET statement. Alternatively, you can also drop

the work action set that contains the work action that maps to the service

subclass by using the DROP WORK ACTION SET statement. Issue a

COMMIT statement after dropping each work action, or after dropping the

work action set.
4. Use the DROP THRESHOLD statement to drop all thresholds associated with

the service class you want to drop. Issue a COMMIT statement after dropping

each threshold.

5. Depending on the object you are dropping, do the following:

v If you are dropping a service subclass, use the DROP SERVICE CLASS

statement to drop the service subclass.

v If you are dropping a service superclass, use the DROP SERVICE CLASS

statement to drop all service subclasses associated with the service

superclass, and issue a COMMIT statement after dropping each service

subclass. Then issue the DROP SERVICE CLASS statement to drop the

service superclass.

Note: You cannot manually drop the default service subclass for the service

superclass. The default service subclass for a service superclass is dropped

when the service superclass is dropped.
6. Commit your changes. When you commit your changes the service class is

removed from the SYSCAT.SERVICECLASSES view.

Chapter 2. Service classes 37

38 Workload Manager Guide and Reference

Chapter 3. Workloads

A workload is an entity that you define that identifies submitted database work

based on its source, according to the database connection attributes, so that it can

later be managed. Using workloads, you can assign work to a service superclass or

to a service subclass in a service superclass.

A workload object consists of the following items:

v A workload name that is unique in the database.

v A unique integer identifier for the workload, generated and used internally by

the data server.

v Database connection attributes that must be satisfied for a database connection

or application to be associated with the workload.

v Workload attributes, including the following items:

– The name of the DB2 service class to which the workload is to be assigned; if

you don’t specify a service class name, the workload is mapped to the default

user service class, SYSDEFAULTUSERCLASS.

– A value that indicates whether an occurrence of the workload is allowed to

access the database. By default, workload occurrences can access the database.

For more information, see “Allowing occurrences of a workload to access the

database” on page 49 and “Disallowing occurrences of a workload from

accessing the database” on page 50

– A value that indicates whether the workload is disabled. The default is

enabled. For more information, see “Enabling a workload” on page 50 and

“Disabling a workload” on page 51.
v The evaluation order or position of the workload relative to other workloads on

the data server. For more information, see “Workload assignment” on page 42.

You can create workloads by using the CREATE WORKLOAD statement. You can

alter workloads by using the ALTER WORKLOAD statement. You can drop

workloads by using the DROP WORKLOAD statement.

You can view your workloads by querying the SYSCAT.WORKLOADS view. You

can view the connection attributes that you specified for each workload by

querying the SYSCAT.WORKLOADCONNATTR view. You can view who is

authorized to use a workload by querying the SYSCAT.WORKLOADAUTH view.

The supported database connection attributes are as follows. You must specify at

least one database connection attribute in the workload, and each connection

attribute can have one or more values. If you do not specify a value for a specific

connection attribute for the workload, the data server does not examine that

attribute during workload evaluation.

 Table 9. Connection attributes in a workload definition

Connection attribute Description

Application name The name of the application running at the

client, as known to the data server. The

application name is equivalent to the value

shown in the Application name field in the

system monitor output. See the appl_name

monitor element for more information.

© Copyright IBM Corp. 2007, 2008 39

Table 9. Connection attributes in a workload definition (continued)

Connection attribute Description

System authorization ID The authorization ID of the user who

connected to the database, as set in the

SYSTEM_USER special register. You can

change the value of SYSTEM_USER by

connecting as a user with a different

authorization ID.

Session authorization ID The authorization ID that is used for the

current session of the application, as set in

the SESSION_USER special register. You can

change the value of SESSION_USER using

the SET SESSION AUTHORIZATION

statement.

Group of session authorization ID The groups to which the current session user

belongs.

Role of session authorization ID The roles granted to the current session user.

For more information, see:

v Roles

v GRANT ROLE statement

v REVOKE ROLE statement

Client user ID The client user ID from the client

information as set in the CURRENT

CLIENT_USERID (or CLIENT USERID)

special register. You can change the value of

the client user ID by using the sqleseti (set

client information) API

Client application name The application name from the client

information as set in the CURRENT

CLIENT_APPLNAME (or CLIENT

APPLNAME) special register. The client

application name is equivalent to the value

shown in the TP Monitor client

application name field in the system

monitor output. You can change the value of

the client application name by using the

sqleseti API.

Client workstation name The workstation name from the client

information as set in the CURRENT

CLIENT_WRKSTNNAME (or CLIENT

WRKSTNNAME) special register. You can

change the value of the client workstation

name by using the sqleseti API.

Client accounting string The accounting string from the client

information as set in the CURRENT

CLIENT_ACCTNG (or CLIENT ACCTNG)

special register. You can change the value of

the client accounting string by using the

sqleseti API.

In a three-tier client/server environment, the database connection is established by

the application server that is working on behalf of the clients. The application

server can use the sqleseti API to pass client information to the DB2 data server;

otherwise, only the information about the application server is passed, and that

40 Workload Manager Guide and Reference

information is likely to be the same for all client requests that are routed through

this application server. By specifying client information attributes such as the client

user ID, client application name, client workstation name, and client accounting

string in the workload definition, you can assign users running from different

clients to different workloads (and to different service classes).

At the beginning of the first unit of work, the database connection is assigned to a

workload if its connection attributes match the connection attributes that you

specified in the workload definition. The database connection is reassigned to a

different workload at the beginning of the next unit of work if a connection

attribute changes. For more information, see “Workload assignment” on page 42

SYSDEFAULTUSERWORKLOAD is the default workload. If the connection

attributes do not map to any workload that you defined, the database connection

is assigned to SYSDEFAULTUSERWORKLOAD, and the work is executed in the

SYSDEFAULTUSERCLASS service class by default. This situation occurs in a new

database or a newly migrated database because no workloads other than the

default workloads exist.

As you analyze the usage characteristics of your environment, you can use the

CREATE WORKLOAD statement to create your own workloads and map them to

specific service classes. When you create the workload, you define both the values

that are used to evaluate the connection attributes during workload assignment

and the order in which the workload is evaluated relative to other workloads.

Because more than one workload can match incoming connection attributes, being

able to change the evaluation order enables you to determine which matching

workload is chosen. Whether or not the session user has the USAGE privilege on

the workload also determines which matching workload is chosen. For more

information, see “Workload assignment” on page 42.

A workload occurrence is a database connection with attributes that match a

workload definition. When the workload assignment completes, an occurrence of a

workload is started in the data server and runs in the service class specified in the

workload definition. This workload occurrence lasts until the connection terminates

or a connection attribute changes, in which case workload reevaluation occurs at

the beginning of the next unit of work. Workload reevaluation and reassignment

occurs at unit of work boundaries. Therefore, a workload occurrence consists of

one or more units of work in a database connection that is associated with a

workload defined in the data server. More than one workload occurrence can run

on the data server concurrently for each workload.

The following figure shows multiple requests being evaluated against workloads in

the order A, B, C, and D, then assigned to specific workloads and executed in the

applicable service class. Requests that cannot be matched to an existing workload

are matched to the SYSDEFAULTUSERWORKLOAD workload and executed by

default in the SYSDEFAULTUSERCLASS service superclass. For information about

the types of activities that run in the default maintenance class and default system

class, see “Default service superclasses and subclasses” on page 25.

Chapter 3. Workloads 41

Workload assignment

At the beginning of the first unit of work after a database connection is

established, the data server assigns the connection to a workload by evaluating the

connection attributes of each workload that is enabled.

The order in which the workloads are evaluated is determined by the

EVALUATIONORDER column value of each workload in the

SYSCAT.WORKLOADS table. If a workload with matching connection attributes is

Workload D

User
database requests

System
maintenance requests

Service
superclass 1

Default user class

Requests

Workload C

Workload B

SYSDEFAULTUSERWORKLOAD

Application

Service
subclass 1.1

Service
subclass 1.2

Service
subclass 1.3

Workload A
Default service
subclass

Default maintenance class

System
database requests

Requests Default system class

Application

Application

Application

Application

Figure 13. Service classes and workloads

42 Workload Manager Guide and Reference

found, the data server checks whether the current session user has the USAGE

privilege on the workload. If the user has the USAGE privilege on the matching

workload, the workload assignment is complete, and the connection is assigned to

that workload. If the user does not have the USAGE privilege on the matching

workload, the data server continues to evaluate workloads until it finds a matching

workload on which the session user has the USAGE privilege. If no matching

workload is found, the data server attempts to use the

SYSDEFAULTUSERWORKLOAD workload. If the current session user does not

have the USAGE privilege on that workload, SQL4707N is returned, and the unit

of work is rejected. Otherwise, the connection is assigned to the

SYSDEFAULTUSERWORKLOAD workload.

You can set the evaluation order by using the POSITION keyword of the CREATE

WORKLOAD or ALTER WORKLOAD statement, as follows:

v By specifying the absolute position of the workload in the evaluation order, as

shown in the following example:

CREATE WORKLOAD...POSITION AT 2

POSITION AT 2 means that the workload is to be positioned second in the

evaluation order. A matching workload that is positioned higher in the

evaluation order is evaluated first. That is, if the workloads at both position 2

and position 3 match, the workload at position 2 is evaluated before the

workload at position 3.

If the position that you specify on the CREATE WORKLOAD or ALTER

WORKLOAD statement is greater than the total number of existing workloads,

the workload is positioned next to last in the evaluation order, before the

SYSDEFAULTUSERWORKLOAD workload. The effect is the same as specifying

POSITION LAST on the CREATE WORKLOAD or ALTER WORKLOAD

statement.

v By using the POSITION BEFORE workload-name or POSITION AFTER

workload-name keyword, where workload-name is an existing workload. This

keyword specifies the position of a new or altered workload relative to another

workload in the evaluation order, as shown in the following example:

ALTER WORKLOAD...POSITION BEFORE workload2

If you do not specify the POSITION keyword, by default, the new workload is

positioned after the other defined workloads in the evaluation order but before the

SYSDEFAULTUSERWORKLOAD workload, which is always considered last.

The workload assignment is reevaluated at the beginning of a new unit of work if

the data server detects that one of the following events occurred:

v A relevant connection attribute changed. See the table in Chapter 3,

“Workloads,” on page 39 for a list of connection attributes that you can specify

in a workload definition. Workload reevaluation also occurs if the current

session authorization ID changes because the database connection switches

because of a trusted context. For more information, see Trusted contexts and

trusted connections.

v You created or altered a workload.

v You granted the USAGE privilege on a workload to a user, a group, or a role or

revoked the USAGE privilege on a workload from a user, group, or role.

A connection cannot be reassigned to a different workload while an activity is still

active. An activity is an operation that maintains resources across multiple UOWs,

such as a load operation, a stored procedure or table function, or a WITH HOLD

Chapter 3. Workloads 43

cursor. The current workload occurrence runs until all activities complete. The

workload reassignment then occurs at the beginning of the next unit of work.

An attempted workload assignment or reassignment results in an SQL4707N error

if either of the following cases exists:

v The data server attempts to assign the connection to a workload that is

disallowed access to the database. For more information, see “Disallowing

occurrences of a workload from accessing the database” on page 50.

v The data server attempts to assign the connection to the

SYSDEFAULTUSERWORKLOAD workload, but the current session user does

not have the USAGE privilege on this workload.

If you have DBADM or SYSADM authority, you can assign your database

connection to the SYSDEFAULTADMWORKLOAD workload, the default

administrator workload. See “Assigning a connection to the default administration

workload” on page 46 for more information.

XA transactions and workload reassignment

XA calls such as XA_END (success), XA commit, and XA rollback issue a DB2

COMMIT or ROLLBACK, which indicates the end of a unit of work. Because

workload reevaluation can occur at the beginning of a unit of work, these XA calls

can initiate workload reevaluation, although the reason for workload reevaluation

is not directly related to the XA transaction itself.

Default workloads

The default user workload, SYSDEFAULTUSERWORKLOAD, and the default

administration workload, SYSDEFAULTADMWORKLOAD, are created at database

creation time. You cannot drop them.

After DB2 installation or migration to Version 9.5 or later, all connections are

assigned to the default workload, SYSDEFAULTUSERWORKLOAD. Connections

that belong to this default workload are mapped to the default user service

superclass, SYSDEFAULTUSERCLASS. You can remap connections from the default

workload to user-defined workloads to use other user-defined service classes, if

required. In addition, you can alter SYSDEFAULTUSERWORKLOAD so that it

maps connections to a different service class than SYSDEFAULTUSERCLASS.

You can view the SYSDEFAULTUSERWORKLOAD workload by querying the

SYSCAT.WORKLOADS table. The following table shows the entry for the

SYSDEFAULTUSERWORKLOAD workload in the SYSCAT.WORKLOADS view.

See “Workload assignment” on page 42 for information on how to assign a

connection to the SYSDEFAULTUSERWORKLOAD workload.

 Table 10. SYSDEFAULTUSERWORKLOAD entry in SYSCAT.WORKLOADS

Column Value

Modifiable using the ALTER

WORKLOAD statement if you have

DBADM or SYSADM access

WORKLOADID 1 No

WORKLOADNAME SYSDEFAULTUSERWORKLOAD No

EVALUATIONORDER Second last one No

CREATE_TIME Timestamp of database creation No

44 Workload Manager Guide and Reference

Table 10. SYSDEFAULTUSERWORKLOAD entry in SYSCAT.WORKLOADS (continued)

Column Value

Modifiable using the ALTER

WORKLOAD statement if you have

DBADM or SYSADM access

ALTER_TIME Timestamp of the last update of the

workload definition

No (but the data server modifies this

column when you update the

workload definition)

ENABLED Y No

ALLOWACCESS Y Yes

SERVICECLASSNAME SYSDEFAULTSUBCLASS Yes

PARENTSERVICECLASSNAME SYSDEFAULTUSERCLASS Yes

COLLECTAGGACTDATA N No (reserved for future use)

COLLECTACTDATA N Yes

COLLECTACTPARTITION C Yes

EXTERNALNAME NULL No

For more information, see SYSCAT.WORKLOADS.

Only units of work submitted by a session user with SYSADM or DBADM

authority can be assigned to the SYSDEFAULTADMWORKLOAD workload. This

workload allows SYSADM and DBADM users to query the database and perform

administrative or monitoring tasks in case the following events occur:

v The workload to which the administrator is assigned is not allowed to access the

database (that is, the DISALLOW DB ACCESS keyword of the CREATE

WORKLOAD or ALTER WORKLOAD statement was specified for the

workload).

v A threshold was violated, preventing the administrator from performing work

on the database.

The SYSDEFAULTADMWORKLOAD workload differs from other workloads in the

following ways:

v You cannot drop or disable it.

v You cannot specify DISALLOW DB ACCESS for it.

v None of the thresholds apply to occurrences of this workload and the activities

in it.

v You can run this workload only in the SYSDEFAULTUSERCLASS service

superclass. See “Default service superclasses and subclasses” on page 25 for

more information.

v You can assign a connection to this workload only by using the SET

WORKLOAD command. You can issue this command only from the CLP

interface. For more information, see “Assigning a connection to the default

administration workload” on page 46.

You can view the SYSDEFAULTADMWORKLOAD workload by querying the

SYSCAT.WORKLOADS table. The following table shows the entry for the

SYSDEFAULTADMWORKLOAD workload in the SYSCAT.WORKLOADS table:

Chapter 3. Workloads 45

Table 11. SYSDEFAULTADMWORKLOAD entry in SYSCAT.WORKLOADS

Column Value

Modifiable using the ALTER

WORKLOAD statement if you have

DBADM or SYSADM access

WORKLOADID 2 No

WORKLOADNAME SYSDEFAULTADMWORKLOAD No

EVALUATIONORDER Last one No

CREATE_TIME Timestamp of database creation No

ALTER_TIME Timestamp of the last update of the

workload definition

No (but the data server modifies this

column when you update the

workload definition)

ENABLED Y No

ALLOWACCESS Y No

SERVICECLASSNAME SYSDEFAULTSUBCLASS No

PARENTSERVICECLASSNAME SYSDEFAULTUSERCLASS No

COLLECTAGGACTDATA N No (reserved for future use)

COLLECTACTDATA N Yes

COLLECTACTPARTITION C Yes

EXTERNALNAME NULL No

For more information, see SYSCAT.WORKLOADS.

Assigning a connection to the default administration workload

You can use the SET WORKLOAD command to assign a connection to the default

administration workload, SYSDEFAULTADMWORKLOAD.

Although you require no special authority to use the SET WORKLOAD command,

you require SYSADM or DBADM authority to assign a connection to the default

administration workload. Otherwise, SQL0552N is returned during workload

assignment.

The default administration workload (SYSDEFAULTADMWORKLOAD) is a special

DB2-supplied workload definition that is not subject to any DB2 thresholds. This

workload is intended to allow the database administrator to perform their work or

to take corrective actions, as required. As this workload is not affected by

thresholds, it has limited workload management control and is not recommended

for use in submitting regular day-to-day work.

To assign a connection to the default administration workload, issue the SET

WORKLOAD command as follows:

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

When the command takes effect depends on when you issue it:

v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

command before the connection to the database, after the connection is

established, it is assigned to SYSDEFAULTADMWORKLOAD at the beginning of

the first unit of work.

v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

command at the beginning of a unit of work, after a connection to the database

46 Workload Manager Guide and Reference

is established, the connection is assigned to SYSDEFAULTADMWORKLOAD

when the first request that is not an sqleseti (Set Client Information) request is

submitted.

v If you issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

command at the middle of a unit of work, after a connection is established, the

connection is assigned to SYSDEFAULTADMWORKLOAD at the beginning of

the next unit of work.

When a connection is assigned to SYSDEFAULTADMWORKLOAD, workload

reassignment is performed at the beginning of the next unit of work if either of the

following situations occurs:

v You revoke SYSADM or DBADM authority from the session user. In this

situation, SQL0552N is returned.

v You issue a SET WORKLOAD TO AUTOMATIC command. This command

indicates that the next unit of work should not be assigned to the

SYSDEFAULTADMWORKLOAD workload and that a normal workload

evaluation is to be performed at the beginning of the next unit of work. For

more information, see “Workload assignment” on page 42.

Working with workloads

Creating a workload

Use a CREATE WORKLOAD statement to add a workload to the catalogs.

To create a workload, you require DBADM or SYSADM authority.

See the following topics for more information about prerequisites:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

To create a workload:

1. Specify one or more of the following properties for the workload using the

CREATE WORKLOAD statement:

v The name of the workload.

v The position of the workload relative to other workloads when cached in the

memory. The position of the new workload determines the order in which it

is evaluated during workload assignment. By default, the new workload is

positioned last, which means that it is evaluated last, immediately before the

default user workload is considered. For more information, see “Workload

assignment” on page 42.

v The type of activity information to collect. By default, no information for

activities associated with the workload is sent to an activities event monitor.

v The connection attributes. The incoming connection must supply matching

connection attributes to those that you specified for the workload for a match

to occur. For more information, see Chapter 3, “Workloads,” on page 39.

When specifying the connection attributes, note that values are ORed and

attributes are ANDed: for example, UserID (bob OR sue OR frank) AND

Application (SAS).

v A value that indicates whether occurrences of this workload are allowed to

access the database. By default, occurrences of this workload are allowed to

access the database.

Chapter 3. Workloads 47

v A value that indicates whether the workload is enabled or disabled. By

default, the workload is enabled.

v The service class under which occurrences of this workload are to be

executed. The SYSDEFAULTUSERCLASS service superclass is the default.

If you specify a user-defined service superclass and do not map the

workload to run in a user-defined service subclass under the service

superclass, the workload occurrences will run in the

SYSDEFAULTSUBCLASS service subclass of the service superclass.

Note: You cannot specify the SYSDEFAULTSUBCLASS service subclass

under any service superclass, including the SYSDEFAULTUSERCLASS

service superclass.

If you do not want occurrences of the workload to run in the

SYSDEFAULTSUBCLASS service subclass, you can map the workload for

execution in a user-defined service subclass through the workload. You can

also use a work action to map the workload to a different service subclass

(for more information, see “Work actions and work action sets” on page 77).
2. Commit your changes. When you commit your changes the workload is added

to the SYSCAT.WORKLOADS view. Committing the change causes a workload

reevaluation to take place at the beginning of the next unit of work of each

application. Depending on which workload is chosen, the application might be

reassigned to a different workload.

After you create a workload, you might need to grant the USAGE privilege on it to

one or more session users. (Session users with SYSADM or DBADM authority

have an implicit privilege to use any workload.) Even if a connection provides an

exact match to the connection attributes of the workload, if the session user does

not have the USAGE privilege on the workload, the data server does not consider

the workload when performing workload evaluation. For more information, see

“Granting the USAGE privilege on a workload” on page 51.

Altering a workload

An ALTER WORKLOAD statement changes a workload in the catalogs.

To alter a workload, you require DBADM or SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

To alter a workload:

1. Specify one or more of the following properties for the workload using the

ALTER WORKLOAD statement:

v The connection attributes. You can add connection attributes to and drop

connection attributes from the workload definition unless it is the

SYSDEFAULTUSERWORKLOAD or SYSDEFAULTADMWORKLOAD

workload. The incoming connection must supply matching connection

attributes to those that you specified for the workload for a match to occur.

For more information, see Chapter 3, “Workloads,” on page 39. To see the

connection attributes for a workload, query the

SYSCAT.WORKLOADCONNATTR view.

v A value that indicates whether an occurrence of this workload is allowed to

access the database. By default, an occurrence of this workload is allowed to

access the database. You cannot disallow the

SYSDEFAULTADMWORKLOAD workload access to the database.

48 Workload Manager Guide and Reference

v A value that indicates whether the workload is enabled or disabled. By

default, the workload is enabled. You cannot disable the

SYSDEFAULTUSERWORKLOAD or the SYSDEFAULTADMWORKLOAD

workload.

v The service class under which occurrences of this workload are to be

executed. The SYSDEFAULTUSERCLASS service superclass is the default. If

you specify a user-defined service superclass, you can specify a service

subclass under the service superclass. You cannot specify the

SYSDEFAULTSUBCLASS subclass under any service superclass, including

the SYSDEFAULTUSERCLASS service superclass. In addition, you cannot

specify the SYSDEFAULTSYSTEMCLASS or

SYSDEFAULTMAINTENANCECLASS service superclass.

v The position of the workload relative to other workloads, which determines

the order in which the workload is evaluated during workload assignment.

By default, a new workload is positioned last, which means that it is

evaluated last, immediately before the default user workload is considered.

You cannot specify the position of the SYSDEFAULTUSERWORKLOAD or

the SYSDEFAULTADMWORKLOAD workload. For more information, see

“Workload assignment” on page 42.

v The type of activity information to collect. By default, no information for

activities associated with the workload is sent to an activities event monitor.
2. Commit your changes. When you commit your changes the workload is

updated in the SYSCAT.WORKLOADS view. The committed change causes a

workload reevaluation to take place at the beginning of the next unit of work

of each application. Depending on which workload is chosen, the application

might be reassigned to a different workload.

After you alter a workload, you might need to grant the USAGE privilege on it to

one or more session users. (Session users with SYSADM or DBADM authority

have an implicit privilege to use any workload.) Even if a connection provides an

exact match to the connection attributes of the workload, if the session user does

not have the USAGE privilege on the workload, the data server does not associate

the connection with the workload to create an occurrence of the workload. For

more information, see “Granting the USAGE privilege on a workload” on page 51.

Allowing occurrences of a workload to access the database

If you have a workload that is not allowed to access the database but now want to

permit occurrences of that workload to run, alter the workload so that it is allowed

to access the database. By default, when a workload is created, it is allowed to

access the database.

To alter a workload so that it can access a database, you require DBADM or

SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

When you disallow a workload access to the database, the data server still

examines that workload when performing workload assignment. However, all

occurrences of that workload are rejected with an error. To allow a workload to

access the database:

1. Use the ALLOW DB ACCESS option of the ALTER WORKLOAD statement to

allow the workload to access the database. For example, to allow a workload

called WL1 to access the database, specify the following statement:

Chapter 3. Workloads 49

ALTER WORKLOAD WL1 ALLOW DB ACCESS

2. Commit your changes. When you commit your changes workload is updated in

the SYSCAT.WORKLOADS view.

Altering a workload to allow its occurrences to access the database takes effect

when the data server analyzes the next unit of work for that workload. For

example, if you specified DISALLOW DB ACCESS for workload A and alter the

workload by specifying ALLOW DB ACCESS, new occurrences of workload A are

allowed to execute. Previously, any occurrence of workload A would have been

rejected with an error.

Disallowing occurrences of a workload from accessing the

database

Use this task to control which workloads can access the database. Before a

workload occurrence begins to run, the data server checks whether the workload is

allowed to access the database. If you disallow the workload occurrence from

accessing the database, an error is returned indicating that the workload

occurrence is rejected.

To disallow a workload from accessing the database, you require DBADM or

SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

Disallowing a workload occurrence differs from disabling a workload. When you

disable a workload, the workload definition is not cached in memory and is

therefore not considered for workload assignment. To disallow a workload from

accessing a database:

1. Use the DISALLOW DB ACCESS option of the ALTER WORKLOAD statement,

as shown in the following example:

ALTER WORKLOAD workload-name DISALLOW DB ACCESS ...

2. Commit your changes. When you commit your changes, the workload is

updated in the SYSCAT.WORKLOADS view.

Altering a workload to disallow its occurrences from accessing a database takes

effect at the beginning of the next unit of work for workload occurrences that are

already running. For example, if you specify ALLOW DB ACCESS for workload A

and alter the workload by specifying DISALLOW DB ACCESS, occurrences of

workload A that are already running receive an SQL error at the beginning of the

next unit of work. New occurrences of workload A are rejected.

Enabling a workload

The DB2 data server checks the connection attributes specified for a workload

against the connection attributes of the current session. The data server does not

consider a disabled workload when it looks for a matching workload.

To alter a workload, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

50 Workload Manager Guide and Reference

By default, a workload is enabled when you create it. If you create a workload as

disabled, you must enable it for the data server to consider the workload when it

performs workload evaluation.

To enable a workload:

1. Identify the workload that you want to enable. You can display the set of

disabled workloads by querying the SYSCAT.WORKLOADS view, as shown in

the following example:

SELECT * FROM SYSCAT.WORKLOADS WHERE ENABLED=’N’

2. Use the ALTER WORKLOAD statement to enable the disabled workload:

ALTER WORKLOAD...ENABLE

If the ALTER WORKLOAD statement is successful, the definition for the

workload is written to the database catalog.

3. Commit your changes. When you commit your changes the workload is

updated in the SYSCAT.WORKLOADS view.

Enabling a workload takes effect at the beginning of the next unit of work. At that

point, a workload reevaluation occurs, and the data server considers the newly

enabled workload when it performs workload reevaluation.

Disabling a workload

Use this task to prevent specific workloads from being considered during

workload assignment The DB2 data server checks the connection attributes that

you specify for a workload against the connection attributes of the current session.

If you disable a workload, the data server does not consider it when it looks for a

matching workload. Instead, the data server assigns the unit of work to the next

matching workload. If no custom-defined workload matches, the unit of work is

assigned to the default workload.

To create or alter a workload, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

To disable a workload:

1. Use the DISABLE option of the ALTER WORKLOAD statement to disable the

workload:

ALTER WORKLOAD...DISABLE

2. Commit your changes. When you commit your changes, the workload is

updated in the SYSCAT.WORKLOADS view.

Disabling a workload takes effect at the beginning of the next unit of work. At that

point, a workload reevaluation occurs, and the connection is assigned to the next

enabled workload that matches the connection attributes and for which there is

authorization.

Granting the USAGE privilege on a workload

For a workload to be associated with a connection, the session user must have the

USAGE privilege on that workload. Users with the SYSADM and DBADM

authorities implicitly have the USAGE privilege on all workloads.

Chapter 3. Workloads 51

To use the GRANT USAGE ON WORKLOAD statement, you require SYSADM or

DBADM authority

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

When the data server finds a workload that matches the attributes of an incoming

connection, the data server checks whether the session user has the USAGE

privilege on that workload. If the session user does not have the USAGE privilege

on that workload, the data server looks for the next matching workload. (In other

words, the workloads for which the session user does not have the USAGE

privilege are treated as if they do not exist.) Therefore, the workload USAGE

privilege gives you the ability to further control which workload among the

matching workloads a user, group, or role should be assigned to. For example, you

can define more than one workload with the same connection attributes and grant

the USAGE privilege on each of these workloads to only certain users, groups, or

roles. For more information, see “Workload assignment” on page 42.

The client can set the client user ID, client application name, client workstation

name, and client accounting string (which are some of the connection attributes

that are used to assign a connection to a workload) without authorization.

Therefore, the workload USAGE privilege also allows you to control which session

user has the authority to use a workload.

You can view the USAGE privilege information by querying the

SYSCAT.WORKLOADAUTH view.

If you create a database without the RESTRICT option, the USAGE privilege on the

SYSDEFAULTUSERWORKLOAD workload is granted to PUBLIC at database

creation time. Otherwise, you must explicitly grant the USAGE privilege on this

workload to non-SYSADM and non-DBADM users. If the session user does not

have the USAGE privilege on any of the workloads, including

SYSDEFAULTUSERWORKLOAD, SQL4707N is returned when the data server

attempts to associate a workload with the database connection.

To grant the USAGE privilege on a workload:

1. Use the GRANT USAGE ON WORKLOAD statement. You can grant the

USAGE privilege to specific users, groups, roles, or PUBLIC. For example, to

grant the USAGE privilege on the ACCOUNTS workload to the CPA group,

you would issue the following statement:

GRANT USAGE ON WORKLOAD ACCOUNTS TO GROUP CPA

You cannot grant the USAGE privilege on the SYSDEFAULTADMWORKLOAD

workload. The SYSDEFAULTADMWORKLOAD workload can only be used by

SYSADM and DBADM users who issue the SET WORKLOAD TO

SYSDEFAULTADMWORKLOAD command.

2. Commit your changes. When you commit your changes, the

SYSCAT.WORKLOADAUTH view is updated. Until the GRANT statement is

committed, the data server cannot consider the workload when performing

workload assignment for the newly authorized users, groups, or roles.

Revoking the USAGE privilege on a workload

Use the REVOKE USAGE ON WORKLOAD statement to revoke the USAGE

privilege on a workload.

52 Workload Manager Guide and Reference

To use the REVOKE USAGE ON WORKLOAD statement, you require SYSADM or

DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

You cannot explicitly revoke the USAGE privilege on the

SYSDEFAULTADMWORKLOAD workload. Only SYSADM and DBADM users

who issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD command

can use this workload. Therefore, REVOKE USAGE ON WORKLOAD statements

do not work for SYSDEFAULTADMWORKLOAD.

To revoke the USAGE privilege on a workload:

1. Use the REVOKE USAGE ON WORKLOAD statement. You can revoke the

USAGE privilege from specific users, groups, roles, or PUBLIC. For example, to

revoke the USAGE privilege on the ACCOUNTS workload from PUBLIC, you

would specify the following statement:

REVOKE USAGE ON WORKLOAD ACCOUNTS FROM PUBLIC

2. Commit your changes. When you commit your changes, the

SYSCAT.WORKLOADAUTH view is updated. Until the REVOKE statement is

committed, the data server considers the workload when performing workload

assignment.

Dropping a workload

Dropping a workload removes it from the database catalog.

To drop a workload, you require DBADM or SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

To drop a workload:

1. Disable the workload by specifying the ALTER WORKLOAD statement. See

“Disabling a workload” on page 51 for more information. Disabling the

workload prevents new occurrences of the workload from being able to run

against the database.

2. Ensure that no occurrences of this workload are running by using the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.

For more information, see

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.

The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table

function returns the application handles corresponding to the active workload

occurrences. You can use the FORCE APPLICATION command to terminate the

applications using the application handles.

3. Drop the workload by specifying the DROP WORKLOAD statement. For

example, to drop the ACCTNG workload, specify the following statement:

DROP WORKLOAD ACCTNG

4. Commit your changes. When you commit your changes, the workload is

removed from the SYSCAT.WORKLOADS view. In addition, authorization

information for the workload is removed from the SYSCAT.WORKLOADAUTH

view.

Chapter 3. Workloads 53

54 Workload Manager Guide and Reference

Chapter 4. Thresholds

You can use thresholds to detect resource misuse or the beginning of system

overload.

Using thresholds, you can explicitly establish limits over the consumption of a

specific resource. If a threshold is violated, a specified action can be triggered. The

supported actions are as follows:

v Stop processing the activity that caused the threshold to be violated (STOP

EXECUTION)

v Continue processing (CONTINUE)

v Collect information about the activity that violated the threshold

Whether an activity that violates a threshold is stopped or allowed to continue,

you can collect detailed information about the activity. Information about the

activity that violated the threshold is collected by the active ACTIVITIES event

monitor when the activity completes execution.

Whether or not you collect information about the activity that violated the

threshold, a threshold violations record is written to the active THRESHOLD

VIOLATIONS event monitor when the threshold is violated.

Thresholds are classified into two general categories:

v Activity thresholds. An activity threshold applies to an individual activity. For

example, the maximum activity total time threshold is an activity threshold

because it limits the total amount of time a single activity can remain in the data

server.

v Aggregate thresholds. An aggregate threshold sets a limit on a measurement that

is computed across a set of multiple activities. For example, the maximum

number of concurrent activities in a service class is an aggregate threshold.

Each threshold applies to a domain. The domain of a threshold defines the database

object that the threshold operates on. Only activities taking place in the domain of

a threshold may be affected by it. The threshold domains are as follows:

v Database

v Service superclass

v Service subclass

v Work action

v Workload

In each of these threshold domains, the threshold might be enforceable over a

single workload occurrence, a database partition, or all the partitions of a database.

This is known as the enforcement scope of the threshold.

Service class aggregate thresholds have one of two enforcement scopes: database

and database partition. An example of an aggregate threshold that applies at the

database partition level is the maximum number of concurrent connections for a

service superclass on a partition. An example of an aggregate threshold that

applies at the database level (that is, across all database partitions) is the maximum

number of concurrent activities for a service class across all partitions.

© Copyright IBM Corp. 2007, 2008 55

Some thresholds have a built-in queue and are defined with two boundaries: a

threshold boundary and a queueing boundary. These thresholds are known as queueing

thresholds. The threshold boundary of a queuing threshold typically enforces some

level of concurrency (such as the maximum number of concurrent activities),

beyond which additional requests are queued. The queueing boundary defines the

upper limit for the queue. Specifically, when an activity violates the threshold

boundary of a queuing threshold, new work requests being tracked by that

threshold are queued automatically in a first-in, first-out fashion, until the queue

reaches the size specified by the queueing boundary. When the queue is full, the

upper boundary is reached, and the action specified for the threshold is applied to

any newly arriving work being tracked by that threshold. For example, an action

of STOP EXECUTION causes the newly arriving work to be rejected.

It is also possible to define the upper boundary as being unbounded, in which case

there is no upper limit to the size of the queue. In this situation, newly arriving

work is added to the queue. If you define a hard limit for the upper boundary and

define an action of CONTINUE as the threshold action, all newly arriving work

that violates the threshold boundary is added to the queue, and the threshold

behaves as if its queueing boundary were unbounded.

Different thresholds track different types of work. For example, a threshold might

track SQL-based activities, utilities such as the load utility, connections, workload

occurrences, and so on. Work that is of interest to a threshold is referred to as the

tracked work for that threshold. For example, a threshold that is based on a number

of timerons applies only to work that has a timeron value associated with it (in

this situation, DML-based activities) and does not include other types of work such

as DDL or utilities.

A threshold can be either predictive or reactive:

v The boundaries of a predictive threshold are checked before the tracked work

starts running. To check whether a predictive threshold would be violated, the

data server obtains usage estimates from the SQL compiler.

v The boundaries of a reactive threshold are checked while a tracked piece of

work is executing. Approximate runtime usage estimates of the controlled

resource are used to evaluate the boundaries of reactive thresholds. The runtime

usage estimates are not obtained continuously but rather at selected predefined

checkpoints during the lifetime of the tracked work.

Thresholds do not apply to all statements. For example, they do not apply to

COMMIT, ROLLBACK, SAVEPOINT, and ROLLBACK to SAVEPOINT statements.

You can create thresholds by using the CREATE THRESHOLD statement. You can

alter thresholds by using the ALTER THRESHOLD statement. You can drop

thresholds by using the DROP THRESHOLD statement.

You can view your thresholds by querying the SYSCAT.THRESHOLDS view.

Activity and aggregate thresholds

Two types of workload management thresholds are supported: activity thresholds

and aggregate thresholds.

An activity threshold applies to an individual activity. When the resource usage of

an individual activity violates the upper bound of the threshold that is tracking it,

the corresponding action is triggered and applied once to the activity. After being

56 Workload Manager Guide and Reference

applied, the activity threshold is deactivated for that activity. For example, assume

that you define a time threshold of 5 minutes and the action for this threshold is

CONTINUE. If an activity violates this threshold, the threshold is applied once, not

reapplied every 5 minutes.

An aggregate threshold places collective control over elements of work in a

database. The boundary that you define using an aggregate threshold operates as a

running total, to which any work tracked by the threshold contributes. When

newly instantiated work causes the upper boundary to be violated, the

corresponding action is triggered. The work that caused the upper boundary to be

violated is the only one affected by the triggered action.

Threshold summary

The table in this topic provides a quick summary of the available thresholds, with

their corresponding definition domains and enforcement scopes.

 Table 12. Thresholds with definition domains and enforcement scopes

Thresholds with database enforcement scope Thresholds with database partition enforcement scope

Thresholds with workload occurrence enforcement

scope

Thresholds with database

threshold domain

v “CONCURRENTDBCOORDACTIVITIES threshold”

on page 65

v “ESTIMATEDSQLCOST threshold” on page 58

v “SQLROWSRETURNED threshold” on page 59

v “ACTIVITYTOTALTIME threshold” on page 60

v “CONNECTIONIDLETIME threshold”

v “TOTALDBPARTITIONCONNECTIONS threshold”

on page 61

v “SQLTEMPSPACE threshold” on page 58

N/A

Thresholds with work action

set threshold domain

v “CONCURRENTDBCOORDACTIVITIES threshold”

on page 65

v “ESTIMATEDSQLCOST threshold” on page 58

v “SQLROWSRETURNED threshold” on page 59

v “ACTIVITYTOTALTIME threshold” on page 60

v “SQLTEMPSPACE threshold” on page 58

N/A

Thresholds with service

superclass threshold domain

v “CONCURRENTDBCOORDACTIVITIES threshold”

on page 65

v “ESTIMATEDSQLCOST threshold” on page 58

v “SQLROWSRETURNED threshold” on page 59

v “ACTIVITYTOTALTIME threshold” on page 60

v “CONNECTIONIDLETIME threshold”

v “TOTALSCPARTITIONCONNECTIONS threshold” on

page 62

v “SQLTEMPSPACE threshold” on page 58

N/A

Thresholds with service

subclass threshold domain

v “CONCURRENTDBCOORDACTIVITIES threshold”

on page 65

v “ESTIMATEDSQLCOST threshold” on page 58

v “SQLROWSRETURNED threshold” on page 59

v “ACTIVITYTOTALTIME threshold” on page 60

v “SQLTEMPSPACE threshold” on page 58

N/A

Thresholds with workload

definition threshold domain

N/A

v “CONCURRENTWORKLOADOCCURRENCES

threshold” on page 63

v “CONCURRENTWORKLOADACTIVITIES threshold”

on page 63

Activity thresholds

CONNECTIONIDLETIME threshold

The CONNECTIONIDLETIME threshold specifies a maximum amount of time that

a connection can be idle (that is, not working on a user request).

Type Activity

Definition domain

Database or service superclass

Enforcement scope

Database

Tracked work

User connections

Chapter 4. Thresholds 57

Queuing

No

Unit Time duration expressed in minutes, hours, or days

Predictive or reactive

Reactive

If a connection remains idle for longer than the duration specified by the threshold

and the threshold action is STOP EXECUTION, the connection is closed.

This threshold has a granularity of 5 minutes, so all values that you specify for the

threshold are rounded to the nearest nonzero multiple of 5 minutes.

ESTIMATEDSQLCOST threshold

The ESTIMATEDSQLCOST threshold specifies the maximum estimated cost that is

permitted for DML activities.

Type Activity

Definition domain

Database, service superclass, service subclass, work action

Enforcement scope

Database

Tracked work

See the information later in this topic

Queuing

No

Unit Estimated SQL cost expressed in timerons

Predictive or reactive

Predictive

Activities tracked by this threshold are as follows:

v DML activities that are issued at the coordinator partition.

v Nested DML activities that are invoked from a user application. Consequently,

DML activities that are issued by the data server internally, such as DML issued

from within the DB2 utilities, SYSPROC stored procedures, internal SQL, and so

on) are unaffected by this threshold unless their cost is included in the parent

activity estimate. In this situation, these activities are indirectly tracked. A trigger

is an example of an indirectly tracked activity.

For information about the activities that fall under the work class with the DML

work type, see “Work class work types and SQL statements” on page 81.

The data server considers IMPORT, EXPORT, and other CLP commands to be user

logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP

commands are subject to thresholds.

SQLTEMPSPACE threshold

The SQLTEMPSPACE threshold specifies the maximum amount of temporary table

space that can be consumed by a DML activity at any database partition. DML

activities often use temporary table space for operations such as sorting and the

manipulation of intermediate result sets.

58 Workload Manager Guide and Reference

Type Activity

Definition domain

Database, service superclass, service subclass, work action

Enforcement scope

Database partition

Tracked work

See the information later in this topic

Queuing

No

Unit Amount of temporary table space expressed in kilobytes (KB), megabytes

(MB), or gigabytes (GB)

Predictive or reactive

Reactive

Activities tracked by this threshold are as follows:

v DML activities that are issued at the coordinator partition.

v Nested DML activities that are derived from user applications. Consequently,

DML activities that are issued by DB2 logic (such as utilities, SYSPROC

procedures, or internal SQL) are unaffected by this threshold.

The data server considers IMPORT, EXPORT, and other CLP commands to be user

logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP

commands are subject to thresholds.

SQLROWSRETURNED threshold

The SQLROWSRETURNED threshold specifies the maximum number of rows that

can be returned by the data server to the client.

Type Activity

Definition domain

Database, service superclass, service subclass, work action

Enforcement scope

Database

Tracked work

See the information later in this topic

Queuing

No

Unit Number of rows

Predictive or reactive

Reactive

When multiple result sets are returned by a CALL statement, the threshold applies

to each result set separately and not as an aggregate to the total number of rows

returned across all result sets. For example, if you define the threshold for 20 rows

and the CALL statement returns two result sets returning 15 rows and 19 rows

respectively, the threshold is not triggered.

Activities tracked by this threshold are as follows:

v DML activities that are issued at the coordinator partition.

Chapter 4. Thresholds 59

v Nested DML activities that are invoked from a user application. Consequently,

DML activities that are issued by the data server internally, such as DML issued

from within the DB2 utilities, SYSPROC stored procedures, internal SQL, and so

on) are unaffected by this threshold.

The data server considers IMPORT, EXPORT, and other CLP commands to be user

logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP

commands are subject to thresholds.

ACTIVITYTOTALTIME threshold

The ACTIVITYTOTALTIME threshold specifies the maximum amount of time that

the data server should spend processing an activity.

Type Activity

Definition domain

Database, service superclass, service subclass, work action

Enforcement scope

Database

Tracked work

Recognized coordinator and nested activities (see “Activities” on page 18)

Queuing

No

Unit Time duration expressed in minutes, hours, or days

Predictive or reactive

Reactive

In situations where the activity is queued by a queuing threshold, the total activity

time includes the time spent in the queue awaiting execution. When a cursor is

opened, the activity associated with the cursor lasts until the cursor is closed.

This threshold has a granularity of 5 minutes. Therefore, all values that you specify

for this threshold are rounded to the nearest nonzero multiple of 5 minutes.

When a time threshold is applied to a stored procedure, it also applies to work

happening inside the stored procedure. Consequently, when a stored procedure

time threshold expires, any work happening inside the stored procedure is

stopped. Hierarchies of stored procedure invocations can lead to hierarchies of

time thresholds being applied to activities executing in the innermost levels of

nesting. The most restrictive time threshold in the hierarchy (that is, the time

threshold with the closest deadline) is always the one that applies.

The data server considers IMPORT, EXPORT, and other CLP commands to be user

logic. Activities that are invoked from within IMPORT, EXPORT, and other CLP

commands are subject to thresholds.

Activity threshold scope resolution

Because activity thresholds apply to individual activities, when multiple thresholds

apply to one activity, a decision must be made as to which threshold to enforce.

This issue does not exist for aggregate thresholds because the same activity can

contribute to multiple aggregates simultaneously (for example, as occurs with

concurrency thresholds).

60 Workload Manager Guide and Reference

Resolution of the activity threshold to apply to an executing activity follows the

rule that a value defined in a local domain overrides any value from a wider or

more global domain. Following is the hierarchy of domains, from local to global:

1. Workload

2. Service subclass

3. Service superclass

4. Work action

5. Database

As an example, a maximum execution time of 1 hour for all database queries

defined in the database domain can be overridden by a maximum execution time

of 5 hours for the service superclass LARGE QUERIES, which can be overridden

by a maximum execution time of 10 hours for the service subclass VERY LARGE

QUERIES. Similarly, the maximum execution time of 1 hour defined in the

database domain can be overridden by a value of 10 minutes in a different service

superclass geared towards important queries that complete quickly.

Aggregate thresholds

TOTALDBPARTITIONCONNECTIONS threshold

The TOTALDBPARTITIONCONNECTIONS threshold specifies the maximum

number of concurrent database connections on a coordinator partition for a

database. That is, this threshold controls the maximum number of clients that can

connect to the database on each of its database partitions. This threshold is not

enforced for users with DBADM authority.

Type Aggregate

Definition domain

Database

Enforcement scope

Database partition

Tracked work

Connections

Queuing

Yes (enforced at 0)

Unit Number of concurrent connections

Predictive or reactive

Predictive

For example, if you set the TOTALDBPARTITIONCONNECTIONS threshold to 10

and the database has five partitions, each partition can have up to 10 clients

connected concurrently, for a total of 50 client connections across the entire

database.

The TOTALDBPARTITIONCONNECTIONS threshold controls only coordinator

connections. Connections made by subagents are not counted towards the

threshold.

This threshold is useful for situations in which you want to have multiple

databases in the same instance. Setting a TotalDBPartitionConnections threshold on

Chapter 4. Thresholds 61

a database partition ensures that client connections from one database cannot use

all of the available connections on a database partition.

Ensure that you set the max_connections database manager configuration

parameter high enough to support the maximum number of connections that you

expect across the database. If you set a TOTALDBPARTITIONCONNECTIONS

threshold for a database, you must set max_connections to at least the threshold

value. If you want to run multiple databases on the same instance, ensure that you

set max_connections high enough to support the maximum number of connections

for all databases. The data server does not check for this condition because it is

impossible to know beforehand how many of the databases will be active

concurrently.

TOTALSCPARTITIONCONNECTIONS threshold

The TOTALSCPARTITIONCONNECTIONS threshold specifies the maximum

number of concurrent database connections on a coordinator partition for a service

superclass.

Type Aggregate

Definition domain

Service superclass

Enforcement scope

Database partition

Tracked work

Connections

Queuing

Yes

Unit Number of concurrent connections in service class

Predictive or reactive

Predictive

When the TOTALSCPARTITIONCONNECTIONS threshold in the service class is

reached, subsequent coordinator connections that join the service superclass are

queued until the specified queue size is reached. By default, the queue size is zero,

which means that no connections can be queued. If a connection joins the queue of

a TOTALSCPARTITIONCONNECTIONS threshold, the connection is considered to

be in a transient state.

Tracked connections include both new client connections and existing client

connections that switch to the service class from another service class. Connections

switch service classes by associating with a different workload definition that is

mapped to a different service class. Workload reevaluation occurs only at

transaction boundaries, so connections can switch service classes only at

transaction boundaries; however, because resources that are associated with WITH

HOLD cursors are maintained across transaction boundaries, connections with

open WITH HOLD cursors cannot switch service superclasses. When the

connection concentrator is on, any application that is switched leaves the service

class and returns the ticket that is held by the

TOTALSCPARTITIONCONNECTIONS threshold. When the application is switched

in at the subsequent statement, it must rejoin the service class and consequently

pass the threshold.

62 Workload Manager Guide and Reference

When the queue size threshold is reached, the threshold action is triggered. The

TOTALSCPARTITIONCONNECTIONS threshold controls only coordinator

connections. Connections made by subagents are not counted towards the

threshold.

If you set a threshold value for TOTALDBPARTITIONCONNECTIONS, set it large

enough to accommodate the threshold that you specify for

TOTALSCPARTITIONCONNECTIONS. For example, if you define five service

superclasses for a database and each of them has a

TOTALSCPARTITIONCONNECTIONS threshold value of 10, the

TOTALDBPARTITIONCONNECTIONS threshold value should be at least 50.

CONCURRENTWORKLOADOCCURRENCES threshold

The CONCURRENTWORKLOADOCCURRENCES threshold is an aggregate

threshold that specifies the maximum number of workload occurrences that can

run concurrently on the coordinator partition.

Type Aggregate

Definition domain

Workload

Enforcement scope

Database partition

Tracked work

Workload occurrences

Queuing

No

Unit Number of concurrent workload occurrences

Predictive or reactive

Predictive

When a workload occurrence is started, if the work that it generates is sent to

non-coordinator partitions, the work on these partitions does not count towards

the concurrent threshold total on the coordinator partition. For example, assume

that a CONCURRENTWORKLOADOCCURRENCES threshold is defined to permit

only one occurrence of workload A on a database partition. Then assume that an

application connects to database partition 1, resulting in an occurrence of workload

A being started, and that this workload causes work to be sent to database

partitions 1, 2, and 3. In this situation, the total number of occurrences of workload

A is one on database partition 1 and zero on database partitions 2 and 3. Therefore,

if another application connects to database partition 1 and another occurrence of

workload A is started on database partition 1, that workload is rejected. However,

new occurrences of workload A can still be started on database partitions 2 and 3.

CONCURRENTWORKLOADACTIVITIES threshold

The CONCURRENTWORKLOADACTIVITIES threshold specifies the maximum

number of coordinator and nested activities that can concurrently run in a

workload occurrence.

Type Aggregate

Definition domain

Workload

Chapter 4. Thresholds 63

Enforcement scope

Workload occurrence

Tracked work

Recognized coordinator and nested activities (see “Activities” on page 18)

Queuing

No

Unit Number of concurrent workload activities

Predictive or reactive

Predictive

This threshold applies to a single workload occurrence. If you have multiple

occurrences of a workload running concurrently, the threshold applies separately to

each workload occurrence. The tracked activities included all recognized

coordinator activities and any nested activities that are generated as a result of the

execution of the coordinator activity. For example, if a stored procedure is called

and that stored procedure executes some SQL, both the CALL statement (which is

the coordinator activity) and the SQL statements executed by the stored procedure

(which are the nested activities) count towards the threshold total.

COMMIT, ROLLBACK, and ROLLBACK to SAVEPOINT statements are unaffected

by this threshold.

Nested activity considerations

The nested activities that are tracked by this threshold must satisfy the following

criteria:

v They must be a recognized coordinator activity. Nested coordinator activities

that are not recognized types as described in “Work class work types and SQL

statements” on page 81 are not counted. Similarly, nested subagent activities

such as RPC requests, DSS requests, and nested DSS requests are not counted

either.

v They must be directly invoked from user logic, such as a user-written stored

procedure issuing SQL or from the SYSPROC.ADMIN_CMD stored procedure.

Nested coordinator activities that are started by the invocation of a DB2 utility

or any other code in the SYSIBM, SYSFUN. or SYSPROC schemas are not

counted towards the upper boundary specified by this threshold.

Example

In this example, the CONCURRENTWORKLOADACTIVITIES threshold maximum

value is set to 5. The user logic causes the following sequence of operations to

occur in a workload occurrence:

1. Issue a load command: the current number of workload activities is 1.

v The load command internally issues some SQL. The current number of

workload activities is 1. (SQL generated by a utility does not count against

the CONCURRENTWORKLOADACTIVITIES threshold.)

v The load command ends. The current number of workload activities is 0.
2. CALL the SYSPROC.SP1 stored procedure. The current number of workload

activities is 1.

v The SYSPROC.SP1 stored procedure generates some SQL. The current

number of workload activities is 1. (SQL generated by a utility does not

count against the CONCURRENTWORKLOADACTIVITIES threshold.)

64 Workload Manager Guide and Reference

v The SYSPROC.SP1 stored procedure ends. The current number of workload

activities is 0.
3. Open a cursor C1. The current number of workload activities is 1.

4. Issue a runstats command. The current number of workload activities is 1.

v The runstats command generates some SQL. The current number of

workload activities is 1.

v The runstats command ends. The current number of workload activities is 1.
5. Close the cursor C1. The current number of workload activities is 0.

6. CALL the BOB.SP1 stored procedure. The current number of workload

activities is 1.

v The BOB.SP1 stored procedure opens three cursors. The current number of

workload activities is 4.

v The BOB.SP1 stored procedure calls the SYSPROC.SP2 stored procedure. The

current number of workload activities is 5.

– The SYSPROC.SP2 stored procedure issues some SQL. The current number

of workload activities is 5.

– The SYSPROC.SP2 stored procedure ends. The current number of

workload activities is 4.
v The BOB.SP1 stored procedure calls the BOB.SP2 stored procedure. The

current number of workload activities is 5.

– The BOB.SP2 stored procedure issues some SQL. At this point, the

threshold is triggered.

– The BOB.SP2 stored procedure ends. The current number of workload

activities is 4.
v The BOB.SP1 stored procedure ends. The current number of workload

activities is 0.
7. Open a cursor C2. The current number of workload activities is 1.

8. CALL the BOB.SP2 stored procedure. The current number of workload

activities is 2.

CONCURRENTDBCOORDACTIVITIES threshold

The CONCURRENTDBCOORDACTIVITIES threshold specifies the maximum

number of recognized coordinator activities that can run concurrently across all

database partitions in the specified definition domain. If an application starts more

than one concurrent activity, it might have to pass this threshold more than once,

potentially consuming the concurrency available for this threshold and creating a

self-deadlock scenario.

Type Aggregate

Definition domain

Database, work action, service superclass, service subclass

Enforcement scope

Database

Tracked work

Recognized coordinator and nested activities (see “Work class work types

and SQL statements” on page 81)

Queuing

Yes

Unit Number of concurrent database activities

Chapter 4. Thresholds 65

Predictive or reactive

Predictive

This threshold is a generalization of the CONCURRENTWORKLOADACTIVITIES

threshold. The CONCURRENTWORKLOADACTIVITIES applies only to activities

running in a workload domain, but you can apply the

CONCURRENTDBCOORDACTIVITIES threshold to a variety of domains, ranging

from the entire database to a single work action. Similar to the

CONCURRENTWORKLOADACTIVITIES threshold, the

CONCURRENTDBCOORDACTIVITIES threshold tracks coordinator activities and

any nested activities generated. Unlike the

CONCURRENTWORKLOADACTIVITIES threshold, the

CONCURRENTDBCOORDACTIVITIES threshold is a queuing threshold.

When creating queuing thresholds of the CONCURRENTDBCOORDACTIVITIES

type, be aware of configurations that might lead to queue-based contention. For

example:

1. A concurrency threshold of type CONCURRENTDBCOORDACTIVITIES is

created with a maximum concurrency value of 1 and a queue size greater than

1.

2. An application opens a cursor (or calls a stored procedure) that the DB2 data

server recognizes as activity A1, which consumes the unique ticket that is

available for the threshold.

3. While the activity A1 is still active, the application now issues a second SQL

statement, which the data server recognizes as activity A2, and which is also

subject to the concurrency threshold. Because the A1 activity is already

running, the new activity A2 is queued.

The application is now in a situation that cannot be resolved. It is waiting for

A2 to execute but A2 is waiting for A1 to finish executing. This situation will

not resolve itself without external intervention.

This example can be generalized to multiple applications and queues. You can

resolve this situation by increasing the concurrency values, or cancelling certain

activities if the concurrency values are correctly set. You can also use time

thresholds to prevent an activity from remaining queued indefinitely, which allows

scenarios like this one to resolve themselves without intervention.

Threshold evaluation order

Although certain thresholds are evaluated independently of other thresholds

(because they are driven by specific events such as a new connection or a new

workload occurrence), other thresholds are interdependent and must be evaluated

in a specific order when you define them in the same database.

The evaluation of thresholds occurs as follows:

v CONCURRENTWORKLOADOCCURRENCES. This threshold is evaluated

independently when a new workload occurrence is started for a workload

definition that has this threshold applied to it.

v TOTALDBPARTITIONCONNECTIONS. This threshold is evaluated

independently when a new connection is made to a database.

v TOTALSCPARTITIONCONNECTIONS. This threshold is evaluated when a

connection joins a service class (either a new connection or a transfer between

service classes as a result of workload reassignment).

66 Workload Manager Guide and Reference

The remaining thresholds are all based on recognized activities resulting from an

SQL statement or the execution of a utility such as the load utility. Predictive

thresholds are checked before reactive thresholds because a check must be done to

ensure that predictive thresholds are not violated before a database activity can

start to run. The order in which predictive thresholds are evaluated is as follows.

Note: If you do not define a threshold, its step is skipped. Also, the steps

described might be combined at run time for performance reasons.

1. Check if an ESTIMATEDSQLCOST threshold exists and if so, whether it has

been violated. If you define this threshold in more than one domain, the

threshold is resolved according to the scope resolution rules (see “Activity

threshold scope resolution” on page 60 for more information). The result of this

operation is one value of ESTIMATEDSQLCOST applicable to the activity.

2. Check if an ESTIMATEDSQLCOST threshold exists and if so, whether it has

been violated. If the threshold is violated, the corresponding action is taken. If

applicable, move to the next step.

3. Check if a CONCURRENTWORKLOADACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding

action is taken. If applicable, move to the next step.

4. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding

action is taken. If applicable, move to the next step.

5. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding

action is taken. If applicable, move to the next step.

6. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding

action is taken. If applicable, move to the next step.

7. Check if a CONCURRENTDBCOORDACTIVITIES threshold exists and if so,

whether it has been violated. If the threshold is violated, the corresponding

action is taken. If applicable, move to the next step.

The evaluation order for concurrency thresholds does not follow the hierarchy

used for resolving activity thresholds (see “Activity threshold scope resolution” on

page 60 for more information). The database-level work action set concurrency

thresholds are checked first to avoid the following situation. Assume that the

following thresholds are defined:

v A work action concurrency threshold for LOAD activities is defined with a value

of 1

v The service superclass S1 concurrency limit is set to 10

Also, assume that one LOAD activity is already running in the database (under

any service superclass) and nine activities are already running in service superclass

S1 when a new LOAD activity enters as the 10th activity. If the scope resolution

hierarchy is used for the threshold evaluation, the incoming LOAD activity would

not violate the service class threshold, increasing the concurrency to 10. The LOAD

activity is then evaluated against the work action threshold concurrency limit,

which is violated because a LOAD activity is already running in the database and

the work action threshold concurrency value is only 1. The 10th LOAD activity is

then queued.

The result of this situation is that any new activity arriving into service superclass

S1 is now queued (because the service class concurrency limit is already reached).

The work action threshold queue is affecting the service class, which is not

Chapter 4. Thresholds 67

desirable because activities trying to run in the service class do not necessarily

have a relationship with the work action threshold condition (for example, an

insert operation trying to run in service superclass S1 should not have to wait on a

LOAD activity that is queued because of a work action threshold condition).

Therefore, to avoid this type of situation, the work action concurrency threshold is

checked first. Because the concurrency threshold is checked first, the 10th activity

in the service class (which happens to be a LOAD activity) is blocked at the work

action threshold level before it can attempt to consume one spot in the service

superclass S1.

Reactive threshold considerations

Reactive thresholds are evaluated in a discrete fashion when an activity is

executing. No specific order is used to evaluate the reactive threshold

SQLTEMPSPACE, SQLROWSRETURNED, or ACTIVITYTOTALTIME.

Working with thresholds

Creating a threshold

Create thresholds using the DDL statement CREATE THRESHOLD. You create a

threshold to impose a limit on resource consumption.

To create a threshold, you require DBADM or SYSADM authority.

See the following topics for more information about prerequisites:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

To create a threshold for a work action set, use the CREATE WORK ACTION SET

statement or the ALTER WORK ACTION SET statement with the ADD WORK

ACTION keywords. For more information, see CREATE WORK ACTION SET

statement or ALTER WORK ACTION SET statement.

To create a threshold:

1. Issue the CREATE THRESHOLD statement, specifying one or more of the

following properties for the threshold:

v The name of the threshold.

v The threshold domain. The threshold domain is the database object that the

threshold is both attached to and operates on.

Note: The domain that applies depends on the type of threshold. See

“Threshold summary” on page 57 for more information.
The domain can be one of the following:

– Database

– Service superclass

– Service subclass

– Workload

For more information, see Chapter 4, “Thresholds,” on page 55.

v The enforcement scope for the threshold. The threshold scope is the

enforcement range of the threshold in its domain .

68 Workload Manager Guide and Reference

Note: The enforcement scope that applies depends on the type of threshold.

See “Threshold summary” on page 57 for more information.
The enforcement scope can be one of the following:

– Database

– Database partition

– Workload occurrence

For more information, see Chapter 4, “Thresholds,” on page 55.

v Optional: A value that specifies whether the threshold is enabled or disabled.

By default, the threshold is created as enabled. If you create the threshold as

disabled and want to enable it later, use the ALTER THRESHOLD statement.

For more information, see “Altering a threshold” on page 73.

Note: If you have work action thresholds, enable and disable them using the

ALTER WORK ACTION SET statement.

v The threshold predicate to specify the maximum value for the threshold.

When the maximum value is violated, the action specified for the threshold

is enforced . The thresholds are as follows:

– TOTALDBPARTITIONCONNECTIONS. Specify 0 or a positive integer to

specify the maximum number of concurrent coordinator connections that

can run on a database partition. A value of 0 prevents new coordinator

connections from connecting. The definition domain must be DATABASE,

and its enforcement scope must be PARTITION. For example, to indicate

that five concurrent coordinator connections can run on a database

partition:

TOTALDBPARTITIONCONNECTIONS > 5

Note: This threshold does not apply to users with DBADM authority.

– TOTALSCPARTITIONCONNECTIONS. Specify 0 or a positive integer to

specify the maximum number of concurrent coordinator connections that

can run on a database partition in a service superclass. A value of 0

prevents new connections from joining the service superclass. The

definition domain must be SERVICE SUPERCLASS and the enforcement

scope must be PARTITION. Because this threshold is a queueing

threshold, it takes an optional AND QUEUEDCONNECTIONS keyword.

Valid arguments are as follows:

- AND QUEUEDCONNECTIONS > 0 indicates that coordinator

connections are not queued.

- AND QUEUEDCONNECTIONS > integer indicates the maximum queue

size when the number of coordinator connections is exceeded.

- AND QUEUEDCONNECTIONS UNBOUNDED indicates that there is

no upper limit to the size of the queue. In this situation, the threshold

violated condition is never met.

For example, to indicate that five concurrent coordinator connections can

run on a database partition in a service superclass, and that seven

connections can be queued:

TOTALSCPARTITIONCONNECTSIONS > 5 AND QUEUEDCONNECTIONS > 7

Note: You can use TOTALSCPARTITIONCONNECTIONS to effectively

disable service classes that cannot be manually disabled (for example, the

default user class). Although thresholds do not apply to users with

DBADM authority running in the SYSDEFAULTADMWORKLOAD service

class, a disabled service class is not available to any user.

Chapter 4. Thresholds 69

– CONNECTIONIDLETIME. Specify a positive integer and one of the

following keywords to specify the maximum amount of time that a

connection can remain idle:

- DAY

- DAYS

- HOUR

- HOURS

- MINUTE

- MINUTES

Because the minimum granularity is 5 MINUTES, all values that you

specify are rounded to nearest nonzero multiple of 5 MINUTES. The

definition domain must be DATABASE or SERVICE SUPERCLASS, and

the enforcement scope must be DATABASE. For example, to indicate that

a connection can be idle for 90 minutes, specify:

CONNECTIONIDLETIME > 90 MINUTES

The maximum value that can be specified for this threshold is 2147483400

seconds. Any value specified (using the DAY, HOUR, MINUTE or

SECOND keyword) that is larger than 2147483400 seconds is truncated to

the maximum value.

– CONCURRENTWORKLOADOCCURRENCES. Specify a nonzero positive

integer to specify the maximum number of concurrent workload

occurrences on a database partition. The definition domain must be

WORKLOAD. For example, to indicate that a maximum of eight

occurrences of a workload can concurrently occur on a database partition:

CONCURRENTWORKLOADOCCURRENCES > 8

– CONCURRENTWORKLOADACTIVITIES. Specify a nonzero positive

integer to specify the maximum number of concurrent coordinator and

nested activities on a database partition for a workload occurrence. The

enforcement scope must be WORKLOAD OCCURRENCE. For example, to

indicate that a maximum of 26 activities can execute concurrently on a

database partition for a workload occurrence:

CONCURRENTWORKLOADACTIVITIES > 26

– CONCURRENTDBCOORDACTIVITIES. Specify 0 or a positive integer to

specify the maximum number of concurrent coordinator activities that can

run on the all database partitions in the specified domain. A value of 0

prevents new coordinator activities (including any activity to disable or

alter this threshold) from executing. In this situation, you must use the

SYSDEFAULTADMWORKLOAD workload to disable or alter the

threshold. The definition domain can be DATABASE, SERVICE

SUPERCLASS, or SERVICE SUBCLASS. The enforcement scope must be

DATABASE. Because this threshold is a queueing threshold, it takes an

optional AND QUEUEDACTIVITIES keyword. Valid arguments are as

follows:

- AND QUEUEDACTIVITIES > 0 indicates that coordinator activities are

not queued.

- AND QUEUEDACTIVITIES > integer indicates the maximum queue size

when the number of coordinator activities is exceeded.

- AND QUEUEDACTIVITIES UNBOUNDED indicates that there is no

upper limit to the size of the queue. In this situation, the threshold

violated condition is never met.

70 Workload Manager Guide and Reference

For example, to indicate that 12 concurrent coordinator activities can run

in the specified definition domain and that 9 activities can be queued:

CONCURRENTDBCOORDACTIVITIES > 12 AND QUEUEDACTIVITIES > 9

– ESTIMATEDSQLCOST. Specify a nonzero positive big integer to specify

the maximum optimizer-assigned cost of a coordinator DML activity, or a

DML activity that is invoked by user logic. The definition domain can be

DATABASE, SERVICE SUPERCLASS, or SERVICE SUBCLASS. The

enforcement scope must be DATABASE. For example, to indicate that no

DML activity larger than 1 000 timerons can run in the database, specify:

ESTIMATEDSQLCOST > 1000

– SQLROWSRETURNED. Specify a nonzero positive integer to specify the

maximum number of rows that can be returned to the client application

from the application server. The definition domain can be DATABASE,

SERVICE SUPERCLASS, or SERVICE SUBCLASS. The enforcement scope

must be DATABASE. For example, to indicate that no more than 50 000

rows can be returned, specify:

SQLROWSRETURNED > 50000

– ACTIVITYTOTALTIME. Specify a nonzero positive integer to specify the

maximum amount of time that the activity can execute, including the

amount of time that the activity can be queued. This value is followed by

one of the following duration keywords:

- DAY

- DAYS

- HOUR

- HOURS

- MINUTE

- MINUTES

Because the minimum granularity is 5 MINUTES, all values specified are

rounded to nearest nonzero multiple of 5 MINUTES. The definition

domain can be DATABASE, SERVICE SUPERCLASS, or SERVICE

SUBCLASS. The enforcement scope must be DATABASE. For example, to

specify that the maximum activity time can be two hours, specify:

ACTIVITYTOTALTIME > 2 HOURS

The maximum value that can be specified for this threshold is 2147483400

seconds. Any value specified (using the DAY, HOUR, MINUTE or

SECOND keyword) that is larger than 2147483400 seconds is truncated to

the maximum value.

– SQLTEMPSPACE. Specify a nonzero positive integer to specify the

maximum amount of temporary table space that can be consumed at a

database partition. This value is followed by one of the following space

keywords:

- K (kilobytes)

- M (megabytes)

- G (gigabytes)

The definition domain can be DATABASE, SERVICE SUPERCLASS, or

SERVICE SUBCLASS. The enforcement scope must be DATABASE

PARTITION. For example, to specify that the maximum amount of

temporary table space that can be used on a database partition is 100 MB:

SQLTEMPSPACE > 100 M

Chapter 4. Thresholds 71

v The actions to be taken if the threshold boundary is violated. The actions

consist of a mandatory progress action and an optional collect activity action.

The collect activity action specifies which information should be collected for

the activity that caused the threshold boundary to be violated. Specify an

action only for activity-related thresholds; an action is ignored if you specify

it for non-activity-related thresholds.

– STOP EXECUTION. For the TOTALDBPARTITIONCONNECTIONS and

TOTALSCPARTITIONCONNECTIONS thresholds, the connection is

prevented from being established. For CONNECTIONIDLETIME

thresholds, the connection is closed. For

CONCURRENTWORKLOADOCCURRENCES, the new workload

occurrence is prevented from being created. For all other activity-related

thresholds, the activity that causes the threshold to be violated is stopped.

If a THRESHOLDVIOLATIONS event monitor is active, a record is written

to the event monitor indicating that the threshold was violated.

– CONTINUE. If a THRESHOLDVIOLATIONS event monitor is active, a

record is written to the event monitor indicating that the threshold was

violated. Otherwise no further action is taken.

Note: If a threshold action of CONTINUE is specified for a queuing

threshold, it effectively makes the size of the queue unbounded, regardless

of any hard value specified for the queue size.

– COLLECT ACTIVITY DATA. The information to collect for the activity

event monitor. The default is COLLECT ACTIVITY DATA NONE.

- NONE. No activity information is collected when the activity that

violated the threshold completes execution.

- The location where data is to be collected:

v ON COORDINATOR DATABASE PARTITION. Activity data is only

collected at the coordinator partition for the activity if an ACTIVITIES

event monitor is active on that database partition.

v ON ALL DATABASE PARTITIONS. For predictive thresholds whose

action is CONTINUE only, activity data is collected at all database

partitions where the activity is processed, however activity details or

values are only collected at the coordinator partition. For reactive

thresholds and for any threshold whose action is STOP EXECUTING,

this option has the same effect as ON COORDINATOR DATABASE

PARTITION. Activity data is only collected on those database

partitions that have an active ACTIVITIES event monitor.
- WITHOUT DETAILS. Information about each activity that violates the

threshold is sent to the applicable event monitor when the activity

completes execution. Statement and compilation environment however,

is not sent to the event monitor.

- WITH DETAILS. Statement and compilation environment information is

sent to the applicable event monitor for those activities that have them.

When you request details, you can also specify AND VALUES to have

input data values sent to the applicable event monitor for those

activities that have them.

For example, to send all available information about the activity that

violated a threshold condition (including the statement that caused the

threshold to be violated, the compilation environment and input data

values) to the activity event monitor when the activity completes, use the

following keywords in the CREATE THRESHOLD statement:

COLLECT ACTIVITY DATA ON ALL DATABASE PARTITIONS WITH DETAILS AND VALUES

72 Workload Manager Guide and Reference

2. Commit your changes. When you commit your changes, the threshold is added

to the SYSCAT.THRESHOLDS view.

Altering a threshold

Alter thresholds using the DDL statement ALTER THRESHOLD. You could alter a

threshold if it does not produce the results that you expect.

To alter a threshold, you require DBADM or SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

To alter a threshold for a work action set, use the ALTER WORK ACTION SET

statement with the ADD WORK ACTION keywords. For more information, see

ALTER WORK ACTION SET statement.

To alter a threshold:

1. Specify one or more of the following properties for the threshold on the ALTER

THRESHOLD statement. You can change the following properties. See

“Creating a threshold” on page 68 for an explanation of the supported values

for these properties.

v The new boundary for the threshold predicate.

Note: You cannot alter the threshold type (that is, you cannot change a

TOTALDBPARTITIONCONNECTIONS threshold to a

TOTALSCPARTITIONCONNECTIONS threshold).

v The actions to be taken if the threshold boundary is violated.

v Whether the threshold is enabled or disabled. Activities run under the

applicable thresholds that were enabled when that activity started.
2. Commit your changes. When you commit your changes the threshold is

updated in the SYSCAT.THRESHOLDS view.

Dropping a threshold

Drop a threshold that you no longer require using the DDL statement DROP

THRESHOLD.

To drop a threshold, you require DBADM or SYSADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

Note: If you want to drop a threshold in a work action set, use the ALTER WORK

ACTION SET statement.

To drop a threshold:

1. If the threshold is a queuing threshold, use the ALTER THRESHOLD statement

to disable it.

2. If you disabled a queuing threshold by using an ALTER THRESHOLD

statement, issue a COMMIT statement to commit the change.

3. Use the DROP THRESHOLD statement to drop the threshold.

4. Commit your changes. When you commit your changes the threshold is

removed from the SYSCAT.THRESHOLDS view.

Chapter 4. Thresholds 73

74 Workload Manager Guide and Reference

Chapter 5. Work action sets, work actions, work class sets,

and work classes

Using work action sets, work actions, work class sets, and work classes, you can

classify activities based on what they are in a similar fashion to how you can use

workloads to classify activities based on who submitted them. When you classify

activities based on attributes such as their activity type, you can treat these

activities differently by applying different types of actions to them.

You can classify activities into different work classes and group work classes into

work class sets. Whey you apply a work action set, which can contain work

actions, to a work class set, the work actions in the work action set can be applied

to the work classes in the work class set. Because the objects that classify the

activities (work classes and work class sets) are separate from the objects that

define the actions to be applied to the activities (work actions and work action

sets), the classification objects can be shared among more than one work action set

and work action.

Work classes and work class sets

A work class is a method of categorizing individual database activities based on

attributes of the database activity. Work classes are grouped into work class sets,

which can be shared by different work action sets.

Examples of database activity attributes which can determine which work class an

activity is associated with include: activity type (DDL, DML, LOAD), the estimated

cost (where available), the estimated cardinality (where available), and the schema

(where available).

A work class has the following attributes:

v The work class name, which must be unique in the work class set.

v The database activity attributes, which consist of the following information:

– The type of database activity that falls into this work class.

Using predefined keywords (for example, READ, WRITE, DML, DDL, and

LOAD), you can classify database requests into different categories. Different

types of database activities can be associated with a work class depending on

its work type. For example, the WRITE keyword includes updates, deletes,

inserts, merges, and selects that contain a delete, insert, or update. For more

information, see “Work class work types and SQL statements” on page 81.

– The range information that further categorizes DML or XQuery types of

database activity:

- The type of range to specify (either timeron cost or cardinality). Specifying

a range of values is optional. For example, when you specify a range for a

work class, you can specify that all queries with an estimated cost of less

than 100 timerons be processed differently than other queries.

- The bottom of the range.

- The top of the range.
– The schema of the routine to be called.

When defining a work class, you can use the schema attribute to further

classify CALL statements according to the schema of the procedure being

© Copyright IBM Corp. 2007, 2008 75

called. For example, if you specify SCHEMA1 for the schema of a work class

and the work type is CALL, all CALL statements calling a SCHEMA1

procedure are classified in that work class. If you specify the schema for a

work class type other than CALL or ALL, the error SQL0628N is returned.
v The evaluation order of the work class (or position of the work class in the work

class set).

For more information, see “Evaluation order of work classes in a work class set”

on page 83.

v An automatically generated class identifier that uniquely identifies the work

class.

You can create work classes in two ways:

v Create a new work class set to contain the new work class using the WORK

CLASS keyword of the CREATE WORK CLASS SET statement.

v Add the new work class to an existing work class set using the ADD keyword of

the ALTER WORK CLASS SET statement

You can alter work classes by using the ALTER WORK CLASS keyword of the

ALTER WORK CLASS SET statement.

You can drop work classes from a work class set using the DROP WORK CLASS

keyword of the ALTER WORK CLASS SET statement, or by using the DROP

WORK CLASS SET statement to drop the work class set.

You can view your work classes by querying the SYSCAT.WORKCLASSES view.

You use work class sets to group one or more work classes. A work class set

consists of the following attributes:

v A unique descriptive name for the work class set

v Any comments that you want to supply for the work class set

v Zero or more work classes (although a work class can only exist in a work class

set, a work class set does not have to contain any work classes)

v An automatically generated ID that uniquely identifies the work class set

You create a new work class set using the CREATE WORK CLASS SET statement.

You can create an empty work class set and add work classes later, or you can

create a work class set that contains one or more work classes.

You change an existing work class set in the following ways using the ALTER

WORK CLASS SET statement:

v Add work classes to the work class set.

v Change work class attributes for work classes in the work class set.

v Drop work classes from the work class set.

You cannot change any work class set attributes.

Drop a work class set using the DROP WORK CLASS SET statement.

You can view your work class sets by querying the SYSCAT.WORKCLASSSETS

catalog view.

The following figure shows an example of work classes in a work class set.

76 Workload Manager Guide and Reference

For a work class set to be effective on the system, you must define a work action

set and associate it with the work class set. By using a work action set, you can

associate a work class set to either a service superclass or the database to indicate

what action should be applied to the database activities that fall within the

classification. If you do not create a work action set for the work class set, the data

server ignores the work class set.

Work actions and work action sets

A work action, when used in conjunction with a work class, can be used to help

control specific types of activities. For example, you can apply different work

actions to LOAD activities so that they are processed differently than DML. Work

actions are grouped into work action sets.

A work action consists of the following attributes:

v A user-supplied work action name, which must be unique in the work action

set.

v The work class identifier the work action is to be applied to.

If no work actions are applied to a work class, the data server behaves as

though the work class does not exist. You can define more than one work action

for a work class, but each work action must perform a different action on that

work class.

v The action that is to applied to the database activity that matches the work class.

The valid action type for a work action depends on whether the work action set

that the work action belongs to is applied to a database or a service superclass.

When a work action set is applied to a database (depending on the work classes

that the work actions are associated with), the work action set applies to some or

all activities that enter the database. When a work action set is applied to a

service superclass (depending on the work classes that the work actions are

associated with), that work action set applies to some or all activities that are

run under that service superclass. For example:

– A work action set that is applied to a database can contain threshold work

actions. If an activity gets assigned to a work class that has a threshold work

action defined for it, the threshold is applied to that activity.

Work class set: Large activities

Work class: Large reads
SELECT statements > 1000000 (cardinality)

Work class: Large writes
UPDATE/INSERT/DELETE > 20000 (timerons)

Work class: Load

Figure 14. Example of work classes and a work class set

Chapter 5. Work action sets, work actions, work class sets, and work classes 77

– A work action set that is applied to a service superclass can contain a work

action that maps the activity to a service subclass in the service superclass. If

an activity corresponds to a specific work class in a work class set, and the

work action set has a mapping work action that is defined for that work class,

that activity is mapped to the service subclass specified by the work action.

For a list of the supported actions, see “Work actions and the work action set

domain” on page 83.

v An object that is the target of the specified action.

Depending on the action, the object can be a service subclass that the activity is

mapped to, a threshold that specifies which threshold to apply to the activity, or

null if the action is to prevent execution, one of the collect actions, or count

activity.

v The template describing the histogram that collects statistical information about

the number of microseconds that activities associated with the work class to

which this work action is assigned required to run during a specific interval.

This information is only collected when the work action type is COLLECT

AGGREGATE ACTIVITY DATA (either BASE or EXTENDED). For more

information on histograms and histogram templates, see “Histograms in

workload management” on page 117.

v Whether or not the work action is enabled.

v An automatically generated identifier that identifies the work action.

You can create a work action by using either the WORK ACTION keyword in the

CREATE WORK ACTION SET statement or the ADD keyword in the ALTER

WORK ACTION SET statement. You can alter a work action by using the ALTER

keyword in the ALTER WORK ACTION SET statement. You can remove a work

action from a work action set by using the DROP keyword in the ALTER WORK

ACTION SET statement.

You can view your work actions by querying the SYSCAT.WORKACTIONS view.

A work action set consists of the following attributes:

v A work action set name that is unique in a database.

v The name of the work class set containing the work class that the group of

actions is to apply to.

Because the definitions of the work class sets are separate from the work action

sets defined for them, you can define more than one work action set for a work

class set.

v The object that the work action set is associated with (database or service

superclass).

v The name of the service superclass that the actions and work class set apply to

(for work action sets associated with a service superclass).

v Whether or not the work action set is enabled.

v User comments.

v One or more work actions (a work action set does not have to contain any work

actions).

v An automatically generated ID that uniquely identifies the work action set.

You can create a work action set using the CREATE WORK ACTION SET

statement, alter a work action set using the ALTER WORK ACTION SET

statement, and drop a work action set using the DROP WORK ACTION SET

statement.

78 Workload Manager Guide and Reference

You can view your work action sets by querying the SYSCAT.WORKACTIONSETS

view.

When you create a work action set, you must specify the object that the work

action set is to be applied to. The valid object types are the database or a service

superclass. You must also specify which work class set the work action set is to

work with. This allows you to use the work classes in the work class set to identify

the types of activities that you want to apply the work actions to.

If you set up a workload to map its database activities directly to a service

subclass, the work action set associated with that service superclass is never used

for the activities issued by that workload. In other words, if a workload maps

activities directly to a service subclass, the work action set is bypassed. None of the

work actions in the work action set will be applied to the activities that are

mapped directly to the service subclass.

How work classes, work class sets, work actions, and work action sets

work together and are associated with other DB2 objects

Work classes and work actions work together to apply specific actions to specific

activity types. The best way to describe how this works is through an example.

The following diagram shows a high-level view of how work classes, work class

sets, work actions, and work action sets work together and are associated with

other DB2 objects.

Chapter 5. Work action sets, work actions, work class sets, and work classes 79

In the diagram, some database activities are mapped, through workload WL1,

workload WL3, and the default user workload, SYSDEFAULTUSERWORKLOAD,

to the service superclass SS1. Because work action set WASDB is applied to the

database, any activities that are assigned to the default user workload, the WL1

workload, or the WL3 workload and fall under the WC_DML or WC_LOAD work

classes will have the work actions in the WASDB work action set applied to them.

That is, activities with the DML work type are counted, and activities with the

LOAD work type have activity data collected for them and written to an active

event monitor (if one is available).

The work action set WASSSC1 is applied to the service superclass SS1. Any

activities that are assigned to the default user workload, the WL1 workload, or the

WL3 workload and fall under the WC_DML work class and the WC_LOAD work

class will also have the WA_MAP_DML and WA_MAP_LOAD work actions

applied to them. That is, activities with a work type of LOAD will be mapped to

Service
superclass SS1

Legend

Associated with

Map to

Work action set WASDB

WA_COUNT

WA_COLLECT

Work class set WCS1

Database

Work action set
WASSSC1

Workload
WL1

Workload
WL2

Workload
WL3

Default
workload

Default service subclass

Service subclass SSC3

Service subclass SSC2

Service subclass SSC1

WC_LOAD (LOAD)

WC_DML (DML)

WA_MAP_LOAD

Database
requests WA_MAP_DML

Figure 15. Overview of work action sets and work class sets

80 Workload Manager Guide and Reference

the SSC1 service subclass by the WA_MAP_LOAD work action, and activities with

a work type of DML will be mapped to the SSC2 service subclass by the

WA_MAP_DML work action.

Activities that are assigned to either the WL2 workload or to the default workload

(because their connection attributes do not match any defined workload) are

mapped directly to service subclasses. Specifically, the WL2 workload maps its

activities to the SSC3 service subclass. When a workload maps activities directly to

a service subclass, no work actions are applied to those activities.

Work class work types and SQL statements

A work class has an associated work type. One or more activity types can fall

under a work class type. Before defining a work class, you should understand

what types of activities fall under each type of work class.

The following table shows the type keywords available for work classes and the

SQL statements that correspond to the different keywords. Except for the load

command, all the statements in the table below are intercepted immediately before

execution in the processing of an EXECUTE, EXECUTE IMMEDIATE, or OPEN

request. The load utility, when issued from a client, might issue requests before

starting the actual load operation on the data server.

 Table 13. Work type keywords and associated SQL statements

Work type keyword Applicable SQL statements

READ v All SELECT statements (select into, values

into, full select)

Note: SELECT statements containing a

DELETE, INSERT, or UPDATE are not

included

v All XQuery statements

WRITE v All UPDATE statements (searched,

positioned)

v All DELETE statements (searched,

positioned)

v All INSERT statements (values, subselect)

v All MERGE statements

v All SELECT statements containing a

DELETE, INSERT, or UPDATE statement

CALL CALL statement.

Note: The CALL statement is only classified

under the CALL and ALL work class types.

DML All statements that are classified under the

READ and WRITE work class types

Chapter 5. Work action sets, work actions, work class sets, and work classes 81

Table 13. Work type keywords and associated SQL statements (continued)

Work type keyword Applicable SQL statements

DDL v All ALTER statements

v All CREATE statements

v COMMENT statement

v DECLARE GLOBAL TEMPORARY

TABLE statement

v DROP statement

v FLUSH PACKAGE CACHE statement

v All GRANT statements

v REFRESH TABLE

v All RENAME statements

v All REVOKE statements

v SET INTEGRITY statement

LOAD Load utility

Note: The load utility is only classified

under the LOAD and ALL work class types.

ALL All database activity.

Note: If the action is a threshold, the

database activity that the threshold is

applied to depends on the type of threshold.

For example, if the threshold type is

ESTIMATEDSQLCOST, only DML activity

with an estimated cost (in timerons) is

affected by the threshold.

For more information, see “Example:

Working with a work class defined with the

ALL keyword” on page 152.

The following figure shows a hierarchical view of the work type keywords:

SQL statements that do not fall under any of the available keywords are not

classified, and behave as though no work class and work class set exists. For

example, if the statement is SET SCHEMA and the only work class in the work

class set has a work type of DML, that statement is not classified and no work

action can be applied to it. So, if the action is MAP, the SET SCHEMA activity runs

ALL

DDL LOAD CALLDML

WRITEREAD

Figure 16. Work type keywords

82 Workload Manager Guide and Reference

in the default service subclass (SYSDEFAULTSUBCLASS). If the action is a

threshold, no threshold is applied to the activity.

Evaluation order of work classes in a work class set

A work class set can have multiple work classes that match with a database

activity. To select which work class from a work class set an activity should fall

under, the data server goes through the work classes according to the evaluation

order, stopping at the first work class that matches the activity.

If no matching work class exists, the database activity does not belong to any work

class, and no work action is applied to that activity. Only work classes with work

actions applied to them are considered.

You can affect the evaluation order of work classes in a work class set when you

create or alter a work class set. When you create or alter a work class set, you

determine the position at which a work class is placed in the work class set using

one of the following three methods:

v Specify the absolute position of the work class in the list.

For example, POSITION AT 2. In this situation, the work class is placed in the

second position in the work class set, and the work class that was at the second

position is now the third, the third work class is now the fourth, and so on. If

the position specified for the work class by the CREATE WORK CLASS SET or

ALTER WORK CLASS SET statement is greater than the total number of work

classes in the work class set, the work class is positioned last in the list.

v Use the POSITION BEFORE or POSITION AFTER keyword to specify the

position of the work class relative to work classes already in the work class set.

v Omit the position when creating a work class.

In this situation, the new work class is positioned at the end of the list. The

position you specify for the work class in the work class set list is not

necessarily the actual value of the EVALUATIONORDER column in the

SYSCAT.WORKCLASSES view. The data server automatically assigns the order

value to prevent gaps.

Work classes are processed in the order they are received, which can affect the

evaluation order. For example, assume that you issue the following statement:

ALTER WORK CLASS SET WCS ALTER WORK CLASS C1 POSITION AT 1

ALTER WORK CLASS C2 POSITION AT 1

As a result, the C1 work class has a evaluation order of 2 and the C2 work class

has an evaluation order of 1 because C2 was the last work class processed.

Work actions and the work action set domain

You can define a work action set for either a database or a service superclass. The

type of work actions that can be defined for a work action set depends on the type

of object the work action set is defined for.

If the work action set is defined for a database, the work actions in the work action

set must be one of the following actions:

v A threshold

The actual threshold is specified by the WHEN threshold-type keyword. Multiple

threshold work actions can be applied to a single work class if all the thresholds

Chapter 5. Work action sets, work actions, work class sets, and work classes 83

are of different types. If this action is specified, the threshold is applied to all

database activities associated with the work class.

v PREVENT EXECUTION

If this action is specified, all database activities that match the associated work

class are not allowed to run.

v COLLECT ACTIVITY DATA

If this action is specified, information about the database activities corresponding

to the work class for which this work action is defined are written to the active

ACTIVITIES event monitor when the activities complete execution. See

“Collecting data for individual activities” on page 126 for more information.

v COUNT ACTIVITY

If this action is specified, all database activity that maps to the associated work

class causes the turnstile counter for that work class type to be incremented.

(The turnstile counter for the work class is incremented by 1 each time an

activity is associated with that work class). The COUNT ACTIVITY work action

provides an efficient way to ensure this counter is updated. If no work action is

applied to an activity corresponding to a work class, the work class activity

counter is not incremented. Sometimes the only action you care about is

obtaining a count of activities of a given type. See “Collecting data for

individual activities” on page 126 for more information.

If the work actions in the work action set are not any of these actions, SQL4720N is

returned.

If you are defining a work action set for a service superclass, the work actions in

the work action set must be one of the following actions:

v A mapping action

You can map an activity to any service subclass in the service superclass except

for the default service subclass. You specify the service subclass to map the

activity to using the MAP ACTIVITY TO SERVICE CLASS keyword. Only one

map work action in the work action set can be applied to the same work class.

v PREVENT EXECUTION

Behavior is the same as for the database work action.

v COLLECT ACTIVITY DATA

Behavior is the same as for the database work action.

v COLLECT AGGREGATE ACTIVITY DATA

If this action is specified, aggregate database activity data that corresponds to

the work class for which this work action is defined is collected.

v COUNT ACTIVITY

Behavior is the same as for the database work action.

If the work actions in the work action set are not any of these actions, SQL4720N is

returned.

The following figure shows an example of how the work classes in a work class set

called LARGE ACTIVITIES are to be applied to both the database and a service

superclass. To meet this objective, two work action sets, Database large

activities and Service class large activities are created.

84 Workload Manager Guide and Reference

The work action sets are as follows:

v Database large activities contains:

Work class set: Large activities

Work action set: Database large activities

Work action set: Service class large activities

Database

Service
superclass

Work action: Count activity

Work action: Concurrency threshold for large read
concurrency = 2, queued = 5

Work action: Rows returned threshold for large read
Rows returned > 1000

Work class: Large writes
UPDATE/INSERT/DELETE > 20000

Work class: Large reads
SELECT statements > 1000000

Work class: LOAD

Work action: Prevent execution for large writes

Work action: Map for large reads
Map large reads to SSC1

Work action: Map for LOAD
Map LOAD to SSC2

Legend

Associated with

Service
subclass 1

Service
subclass 2

Map to

Figure 17. Example of work actions, work actions sets, work classes, and work class set

Chapter 5. Work action sets, work actions, work class sets, and work classes 85

– Concurrency threshold for large reads, which allows two large reads to run

concurrently, and five large reads to be queued

– Rows returned threshold for large reads, which prevents large reads from

returning more than 1000 rows

– Count activity for load, which counts the number of times the load utility

runs on the database.
v Service class large activities contains:

– Map for large reads, which maps large reads to service subclass 1

– Map for large writes, which prevents large writes from executing.

– Map for LOAD, which maps loads to service subclass 2

A work action set does not have to contain an action for every work class in the

work class set to which the work action set is applied. In addition, a work class

can have more than one work action applied to it as long as the action types are

different. A work class can have more than one work action applied to it as long as

the threshold types are different.

Thresholds that can be used in work actions

Work action sets that are defined for databases can contain work actions that

specify thresholds.

The following thresholds are supported:

v Aggregate threshold:

– CONCURRENTDBCOORDACTIVITIES
v Activity thresholds:

– SQLTEMPSPACE

– SQLROWSRETURNED

– ACTIVITYTOTALTIME

– ESTIMATEDSQLCOST

Work classifications supported by thresholds

Although any of the threshold types that can be used in work actions can be

associated with any work class, not all types of database activities are supported

for all of those threshold types.

For example, if you create a work class for DDL, then associate that work class

with an ESTIMATEDSQLCOST threshold work action, that threshold will not

apply to any of the requests that are classified under DDL because DDL statements

do not have an estimated cost. If you create a work class for ALL, then associate

that work class with an ESTIMATEDSQLCOST threshold work action, although all

database activities belong to the ALL work class, the threshold will only apply to

the database activities that have an estimated cost.

The following table shows which work class categories are supported by which

threshold types:

 Table 14. Work classification supported by thresholds

“CONCURRENTDBCOORDACTIVITIES

threshold” on page 65

“SQLTEMPSPACE threshold” on

page 58

“SQLROWSRETURNED threshold” on

page 59

“ESTIMATEDSQLCOST

threshold” on page 58

“ACTIVITYTOTALTIME

threshold” on page 60

READ Yes Yes Yes Yes Yes

WRITE Yes Yes Yes Yes Yes

CALL Yes No No (see note) No Yes

86 Workload Manager Guide and Reference

Table 14. Work classification supported by thresholds (continued)

“CONCURRENTDBCOORDACTIVITIES

threshold” on page 65

“SQLTEMPSPACE threshold” on

page 58

“SQLROWSRETURNED threshold” on

page 59

“ESTIMATEDSQLCOST

threshold” on page 58

“ACTIVITYTOTALTIME

threshold” on page 60

DML Yes Yes Yes Yes Yes

DDL Yes No No No Yes

LOAD Yes No No No Yes

ALL Yes Some Some Some Yes

Note: Although the statements in the procedure called may return rows, because

the rows are not returned as a result of the CALL statement they are not controlled

by the SQLROWSRETURNED threshold.

Assignment of activities to work classes

If a work class set, through a work action set, is associated with either a database

or a service superclass, just prior to execution in processing of an execute, execute

immediate, or open request, or just before the execution of the load utility, the

database activity is checked to determine if it matches any of the criteria specified

in the work classes within the work class set.

The work classes are sorted within the work class set, by their evaluation order.

Based on this evaluation order, the database activity is checked against each work

class based on the attributes of the database activity (such as the activity type and

cardinality) until there is a match or the list of work classes in the work class set

has been exhausted.

Assume that the following work classes are in a work class set, and all of the work

classes have a work action applied to them:

v Evaluation order: 1; work class name: MyLoad; work class type: LOAD

v Evaluation order: 2; work class name: SmallRead; work class type: READ; other

attributes: estimated cost < 300 timerons

v Evaluation order: 3; work class name: AllDML; work class type: DML

v Evaluation order: 4; work class name: LargeRead; work class type: READ; other

attributes: estimated cost > 301 timerons

v Evaluation order: 5; work class name: MyDDL; work class type: DDL

If a SELECT statement with an estimated cost of 200 timerons is received, it is

assigned to the SmallRead work class. If a DDL activity (such as CREATE TABLE)

arrives, it is assigned the MyDDL work class. If a SELECT statement with an

estimated cost of 500 timerons arrives, it is assigned to the AllDML work class

because AllDML is positioned before the LargeRead work class. For more

information, see “Example: Working with a work class defined with the ALL

keyword” on page 152.

If a work class does not have a work action applied to it, that work class is

ignored, and no activities are assigned to it. For more information, see “Evaluation

order of work classes in a work class set” on page 83.

Application of work actions to database activities

One, and only one work action set can be applied to either a database or a service

superclass.

When work is submitted to the data server, it is associated with a workload, either

a user-defined workload or the default workload, then mapped to a service class.

Chapter 5. Work action sets, work actions, work class sets, and work classes 87

The following figure shows the process of how a work action is applied to an

activity.

A work action is assigned to an activity as follows:

Processing continues

Is there
a database-level work

action set?

Find a work class set that
is associated with the work
action set

Find a work class that the
request falls under and that
has at least one work action
associated with it

Is this work
class found?

Find all work actions associated
with the work class and apply
the actions to the activity

Is there a service
superclass-level work

action set?
Yes No

No

Yes

No

Yes

No

Has this
service superclass been

checked?
Yes

Activity

Figure 18. Application of a work action to an activity

88 Workload Manager Guide and Reference

1. When an activity is mapped to a service superclass or a service subclass, the

data server checks whether an enabled database-level work action set exists.

2. If an enabled database-level work action set exists, the data server then checks

whether the activity falls under any of the work classes in the work class set

that the database-level work action set is associated with.

3. If the activity falls under a work class work class that has one or more work

actions applied to it, those work actions are applied to the activity.

4. Next, if the activity is mapped by the workload to a service superclass, the data

server checks whether a work action set is applied to the service superclass.

5. If a work action set is applied to the service superclass, the data server then

checks whether the activity falls under any of the work classes in the work

class set that the service superclass-level work action set is associated with.

6. If the activity falls under a work class that has one or more work actions

applied to it, those work actions are applied to the activity.

In the following situations an activity is not affected by a work action set:

v Activities fall in the default system (SYSDEFAULTSYSTEMCLASS) and default

maintenance (SYSDEFAULTMAINTENANCECLASS) service classes.

v Activities are assigned to the default administration workload,

SYSDEFAULTADMWORKLOAD.

v Activities are inside a load operation. The load operation itself does go through

work action set evaluation.

v Child activities of system stored procedures. The only exception is the

SYSPROC.ADMIN_CMD stored procedure. Child activities of

SYSPROC.ADMIN_CMD go through work action set evaluation.

v The work action set is disabled.

v The workload maps the activity directly to a service subclass.

Workload and work action set comparison

Depending on the type of control that you want to maintain over your database

activities, you can use workloads by themselves or both workloads and work

actions to map activities to service classes.

With workloads, requests are identified and assigned to a service class based on

connection attributes. Workloads are the primary method for routing work to a

specific DB2 service class for execution. If you want to further refine how requests

are identified, you can use work classes to classify the activities based on their type

and other activity attributes. For example, you can classify READ activities, WRITE

activities, and LOAD activities into different work classes.

If you use work classes (which are grouped into work class sets), you can use

work actions to exercise control over the different types of activities. For example,

you can use one work action to map a specific type of activity to a service subclass

and use a different work action to apply a control known as a threshold to ensure

that same type of activity does not exceed certain conditions.

Work actions are grouped into work action sets. A single work action set can apply

to activities in the database or to activities in a service superclass (but not both).

Work class sets and work action sets work together. That is, a work class must

exist for categorizing an activity as a specific type of work before a work action

can be applied to it. A work class set can be associated with more than one work

action set, but a work action set can be associated with only one work class set.

Chapter 5. Work action sets, work actions, work class sets, and work classes 89

The following figure shows an example of a workload management

implementation that uses workloads and work action sets. In this figure, assume

that a request is assigned to workload WL_A based on the user ID that submitted

the request. Workload WL_A specifies that the request is to be executed in service

superclass SC_A. Assume that a work class in work class set WCS_1 matches the

type of work that the request that is associated with workload WL_A is going to

perform.

For example, assume that an activity that does not update the catalogs (a READ

activity) enters the system. The database-level work action set WAS_1 (that is

associated with work class set WCS_1) contains a work action that is applied to the

READ work class, and imposes a threshold that states that no more than 500

activities can execute concurrently for the entire database. Assuming that the

request does not exceed the boundaries established by this threshold, the request is

then mapped to service superclass SC_A (by workload WL_A). Here, the request

encounters the service superclass-level work action set WAS_2, which is also

associated with work class set WCS_1, and applies to activities in service

superclass SC_A. This work action set contains a mapping work action, which is

also applied to the READ work class so that all READ activities will be mapped to

service subclass SSC_1a in service superclass SC_A.

A somewhat similar situation occurs with the request that is associated (again,

based on its connection attributes) with workload WL_B. Workload WL_B maps

activities to service superclass SC_B. Assume that the request is for a LOAD

activity and that work class set WCS_2 contains a work class that applies to LOAD

activities. Work class set WCS_2 is associated with the service superclass-level

work action set WAS_3, which applies to activities in service superclass SC_B.

Assume that work action set WAS_3 contains a mapping work action that is

applied to the LOAD work class, so that when the LOAD activity is mapped to

service superclass SC_B by workload WL_B, it will then be mapped by the work

action to service subclass SSC_1b for execution.

90 Workload Manager Guide and Reference

Working with work action sets and work actions

Creating a work action set

To create a work action and a work action set, use the CREATE WORK ACTION

SET statement.

To create a work action set, you require SYSADM or DBADM authority.

Service superclass-level
work action set WAS_3

Map work action

Service
superclass SC_B

Threshold work action

Database-level
work action set WAS_1

Service
superclass SC_A

Default service subclass

Service subclass SSC_1a

Legend

Associated with

Database

Map to

Service superclass-level
work action set WAS_2

Map work action

Work class set WCS_1

Work class (READ)

Work class (WRITE)

Work class set WCS_2

Work class (LOAD)

Database
requests

Workload WL_A

Workload WL_B

Default service subclass

Service subclass SSC_1b

Figure 19. Workloads and work action sets

Chapter 5. Work action sets, work actions, work class sets, and work classes 91

For additional prerequisites, see the following topics:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

When you create a work action set:

v You associate it with a work class set. The work class set must already exist.

v You also associate it with the database or a service superclass. If you are

associating the work action set with a service superclass, the service class must

already exist. You cannot define the work action set for the system service class

(SYSDEFAULTSYSTEMCLASS) or the maintenance service class

(SYSDEFAULTMAINTENANCECLASS).

To create a work action set:

1. Use the CREATE WORK ACTION SET statement with the following options:

v Specify a name for the work action set. The name of the work action set

must be unique in the database.

v Specify the object with which the work action set is associated. You can

specify a database or service superclass. If you specify that the work action

set is associated with a database, none of the work actions in the work action

set can be mapping work actions or collect aggregate actions. If you specify

that the work action set is associated with a service superclass, none of the

work actions in the work action set can be thresholds. For example, to apply

the work action set to the REPORTS service superclass, you would specify:

FOR SERVICE CLASS REPORTS

To apply the work action set to the database, you would specify:

FOR DATABASE

v Specify the work class set with which the work action set is associated. The

work classes in the work class set classify the database activities that the

work actions in the work action set will apply to. For example, to associate

the work action set with the LARGEREADS work class set, you would

specify:

USING WORK CLASS SET LARGEREADS

v Optional: Create one or more work actions for the work action set. For

instructions, see “Creating a work action” on page 94.

v Specify whether the work action set is enabled or disabled. By default, the

work action set is enabled. If the work action set is disabled, the data server

does not consider this work action set (or any work actions in it) when

activities are run.
2. Commit your changes. When you commit your changes the work action set is

added to the SYSCAT.WORKACTIONSETS view.

A new work action set only takes effect in the database after it is committed,

and does not affect any database activities currently running.

Altering a work action set

To add, alter, or drop a work action from a work action set, or to enable or disable

the work action set, use the ALTER WORK ACTION SET statement.

To alter a work action set, you require SYSADM or DBADM authority.

For additional prerequisites, see the following topics:

92 Workload Manager Guide and Reference

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

When you create a work action set to work with a specific work class set, you

cannot change it to work with a different work class set because the work actions

in the work action set have a dependency on the work classes in the work class

set. If you want to change the work class set this work action set is to be applied

to, you must drop and recreate the work action set.

You cannot change which object the work action set applies to because the type of

work actions in the work action set depends on which object (database or service

superclass) the work action set is defined for. If you want to change the which

object the work action set is associated with, you must drop and recreate the work

action set.

To alter a work action set:

1. If you want to add a new work action to the work action set, use the ADD

keyword. For information about the parameters that you can specify when

adding a work action to a work action set, see “Creating a work action” on

page 94

2. If you want to alter an existing work action, use the ALTER keyword. For

information about altering a work action, see “Altering a work action” on page

97.

3. If you want to drop a work action, use the DROP keyword. For information

about dropping a work action from a work action set, see “Dropping a work

action” on page 99.

4. You can enable a work action set that is not currently enabled, and the reverse.

If you disable an enabled work action set, the data server ignores it after you

commit your changes. For more information, see “Disabling a work action set.”

If you enable the work action set, after you commit your changes, the work

action set is applied to the next applicable activity that enters the database.

5. Commit your changes. When you commit your changes, the work action set is

updated in the SYSCAT.WORKACTIONSETS view. The

SYSCAT.WORKACTIONS views is updated for any added, altered, or dropped

work actions.

Disabling a work action set

To disable a work action set, use the DISABLE keyword of the CREATE WORK

ACTION SET statement or the ALTER WORK ACTION SET statement.

To disable a work action set, you require SYSADM or DBADM authority.

At runtime, a disabled work action set is treated as if it does not exist. For

example, assume that you have a work action set called READACTIVITIES that is

associated with a work class set called READCLASSES, and that work action set is

defined for a service superclass called READSERVICECLASS. The SMALLREAD

work action set has a work action in it that remaps all SELECT statements to the

service subclass SMALLREADSERVICECLASS. If the READACTIVITIES work

action set is disabled, all SELECT statements are treated as though the

READACTIVITIES work action set does not exist, and are mapped to the default

service subclass.

To disable a work action set:

Chapter 5. Work action sets, work actions, work class sets, and work classes 93

1. Use one of the following statements, depending on whether you are creating or

altering a work action set:

v Use the CREATE WORK ACTION SET statement to disable the work action

set. For example:

CREATE WORK ACTION SET work-action-set-name ... DISABLE

v Use the ALTER WORK ACTION SET statement. For example:

ALTER WORK ACTION SET work-action-set-name ... DISABLE

2. Commit your changes. When you commit your changes, the work action set is

updated in the SYSCAT.WORKACTIONSETS view.

Dropping a work action set

Use the DROP WORK ACTION SET statement to drop a work action set.

To drop a work action set, you require the SYSADM or DBADM authority.

Dropping a work action set drops the work action set and all work actions in it.

If the work action set contains a CONCURRENTDBCOORDACTIVITIES threshold

work action, that work action must first be disabled before the work action set can

be dropped.

To drop a work action set:

1. Use the DROP WORK ACTION SET statement.

2. Commit your changes. When you commit your changes the work action set is

removed from the SYSCAT.WORKACTIONSETS view. In addition, all work

actions that were part of the work action set are removed from the

SYSCAT.WORKACTIONS view. If the work action set contains threshold work

actions, the thresholds are removed from the SYSCAT.THRESHOLDS view.

Creating a work action

Use the CREATE WORK ACTION SET statement or the ALTER WORK ACTION

SET statement to create a work action.

To create a work action, you require SYSADM or DBADM authority.

For additional prerequisites, see the following topics:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

When you create a work action:

v You associate a work action with a work class. The work class must already exist

in the work class set that the work action set is applied to.

v If the work action is a threshold, the work action set must be defined for the

database. For the list of supported thresholds for work actions, see “Thresholds

that can be used in work actions” on page 86.

v If you are creating a mapping work action, the work action set must be defined

for a service superclass. The service subclass being mapped to must already exist

in the service superclass this work action set is being defined for. In addition,

you cannot specify the default service subclass.

94 Workload Manager Guide and Reference

v Only one work action of the same type can be applied to the same work class

from the same work action set. Thresholds are the exception. You can apply

more than one threshold to a work class, but each threshold must be of a

different type.

v If you are creating a collect aggregate activity data work action, the work action

set must be defined for a service superclass.

To create a work action:

1. Use the work-action-definition keyword of the CREATE WORK ACTION SET

statement, or the ADD work-action-definition keyword of the ALTER WORK

ACTION SET statement. Specify one or more of the following for the work

action:

v A name for the work action. The name of the work action must be unique

within the work action set.

v The name of the work class to which this work action applies. The work

class must be one of the work classes in the work class set that the work

action set is associated with. For example, to apply this work action to the

work class LARGEDML, you would specify:

ON WORK CLASS LARGEDML

v The action that is to apply to activities that match the work class for this

work action:

– If the work action set is associated with a service superclass, you can

specify the MAP ACTIVITY keyword so that the work action maps

activities to a service subclass in the service superclass. By default,

mapping work actions cause activities that are nested to be mapped to the

same service subclass as its parent. A cursor that has been opened inside a

routine is an example of a nested activity.

For example, if you want the work action to map to the service subclass

SMALLREAD, and you want all nested activities to be mapped to the same

service subclass, you would specify:

MAP ACTIVITY TO SMALLREAD

You could also specify:

MAP ACTIVITY WITH NESTED TO SMALLREAD

If you want the work action to map to the service subclass and to not map

nested activities to this service subclass, you would specify:

MAP ACTIVITY WITHOUT NESTED TO SMALLREAD

If you define the work action as WITHOUT NESTED, nested activities are

handled according to their activity type instead of automatically being

mapped to the same service subclass as the parent activity. For example, if

a CALL activity is mapped to service subclass subsc1, and the routine has

an open cursor inside it, the open cursor might be mapped to a different

service subclass if it falls under another work class that has another

mapping work action applied to it.
v If the work action set is associated with a database, you can specify a WHEN

keyword to indicate a threshold to apply to the activity, and the action to

take if the activity causes the threshold to be violated. You can specify the

following thresholds for a work action:

– CONCURRENTDBCOORDACTIVITIES and its QUEUEDACTIVITIES

keyword.

– SQLTEMPSPACE

– SQLROWSRETURNED

Chapter 5. Work action sets, work actions, work class sets, and work classes 95

– ESTIMATEDSQLCOST

– ACTIVITYTOTALTIME

Note: The maximum value that can be specified for the

ACTIVITYTOTALTIME threshold is 2147483400 seconds. Any value

specified (using the DAY, HOUR, MINUTE or SECOND keyword) that is

larger than 2147483400 seconds is truncated to the maximum value.
If the threshold is violated, you can specify the following actions to be taken:

– Whether activity data is to be collected about the activity that caused the

threshold to be violated. If collected, when the activity completes

execution, the activity data is written to an active activity event monitor.

By default, no data about the activity is collected. If you want to collect

data about this activity, you can collect it from the coordinator partition, a

specific database partition, or from all database partitions. You have the

option of collecting this data with or without details about the statement

and its compilation environment. If you want to collect details about the

statement and compilation environment, you can also specify that the

input data values used in the activity.

– Whether the activity that caused the threshold to be violated is to be

allowed to continue running or not. By default, the activity is stopped.

For example, if you want the work action to check for DML statements that

have a cost over 2 000 timerons, collect the basic data about this activity

when the threshold is violated and continue to run, you would specify:

WHEN ESTIMATEDSQLCOST > 2000 COLLECT ACTIVITY DATA CONTINUE

v To prevent any activities that correspond to the work class defined for this

work action from executing, you can use the PREVENT EXECUTION

keyword.

v To count the number of database activities associated with the work class

without incurring the additional overhead of another action (such as

collecting data or mapping an activity), you can specify the COUNT

ACTIVITY keyword.

v To collect activity data for activities that fall under the work class, specify the

COLLECT ACTIVITY DATA keyword. If collected, when the activity

completes execution, the activity data is written to an active activity event

monitor. By default, no data about the activity is collected. If you want to

collect data about this activity, you can collect it from the coordinator

partition or from all database partitions. If you want to collect activity details

such as the statement and the compilation environment information, you can

do so by specifying the WITH DETAILS keyword. You can also use the AND

VALUES keyword to have input data values (for those activities that have

them) sent to the activity event monitor.

For example, assume that you have a work action set that is applied to a

service superclass. You want to have activity data for all activities that are

assigned to this work action written to the applicable event monitor,

including all aggregate activity information, information about the

compilation environment, and any input data values. You would specify:

COLLECT ACTIVITY DATA ON ALL WITH DETAILS AND VALUES

v To collect aggregate activity data for activities that fall under the work class,

specify the COLLECT AGGREGATE ACTIVITY DATA keyword. If collected,

aggregate activity data is captured and sent to the applicable event monitor.

This information is collected periodically on an interval that is specified by

the wlm_collect_int database configuration parameter.

96 Workload Manager Guide and Reference

For example, assume that you have a work action set that is applied to a

service superclass. You want to have aggregate activity data for all activities

that are assigned to this work action written to the applicable event monitor,

including the base data, the activity data manipulation language (DML)

estimated cost histogram, and the activity DML inter-arrival time histogram.

You would specify

COLLECT AGGREGATE ACTIVITY DATA EXTENDED

v The histogram templates used by a COLLECT AGGREGATE ACTIVITY

DATA work action to describe the histograms created for the corresponding

work class. Specifying the histogram templates used by a work action adds

the corresponding rows in the SYSCAT.HISTOGRAMTEMPLATEUSE, view

which displays the histogram templates referenced by the service class or

work action. For example, if you want to collect interarrival statistics for the

default interarrival histogram template, you would specify:

INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

For more information on histograms and histogram templates, see

“Histograms in workload management” on page 117.

v Whether the work action is enabled or disabled. By default a work action is

created as enabled, but you can specify whether it is enabled or disabled by

using the ENABLE or DISABLE keyword. If the work action is disabled, the

data server does not consider this work action when activities enter the

database or service superclass (depending on the object you created the work

action set for).
2. Commit your changes. When you commit your changes, the work actions is

added to the SYSCAT.WORKACTIONS view. If the work action is a threshold,

the threshold is added to the SYSCAT.THRESHOLDS view.

A new work action only takes effect in the database after it is committed, and

does not affect any database activities currently running.

Altering a work action

If you need to alter a work action, use the ALTER WORK ACTION SET statement.

To alter a work action, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for additional prerequisites.

To alter a work action:

1. Use the ALTER keyword of the ALTER WORK ACTION SET statement to

change one or more of the following characteristics of the work action.

v You can alter the work class to which the work action is applied. The work

class must already exist in the work class set to which the work action set is

applied.

v If the work action maps to a service subclass, you can alter which service

subclass the database activity is to be mapped. You can only change the

mapping to a service subclass in the same service superclass. You cannot

map to the default service subclass. You can also change whether nested

activities in the activity are mapped to the same service subclass or not. For

example, if the work action is currently defined as WITH NESTED, you can

change this to WITHOUT NESTED. This change would cause the nested

activities to be handled according to their activity type instead of

automatically being mapped to the same service subclass as the parent

Chapter 5. Work action sets, work actions, work class sets, and work classes 97

activity. For example, if a CALL statement is mapped to service subclass

SUBSC1, and the routine has an open cursor inside it, the open cursor might

be mapped to a different service subclass if it falls under another work class

that has another mapping work action applied to it.

v You can alter the action type specified for the work action (that is, mapping,

threshold, prevent execution, count activity, collect actions), but you must

alter it to a valid work type. For example, if the work action is to map the

activity to a service subclass, you cannot change the work action to a

threshold, or the reverse. The reason is because, in this example, the work

action set must have been applied to a service superclass in order to have a

mapping action and threshold actions are not valid for work action sets

applied to service superclasses. If you alter the type of a work action that is a

threshold work action or alter the type of work action to a threshold, the

following occurs:

– If the work action was a threshold and has been changed to a

non-threshold, the threshold is removed from the SYSCAT.THRESHOLDS

view.

– If the work action was not a threshold and has been changed to a

threshold, a new threshold will be created in the SYSCAT.THRESHOLDS

view.

Note: If the action is a threshold, you cannot alter the type of threshold to a

different threshold. So, for example, if the work action was an

SQLROWSRETURNED threshold, you cannot change it to a

SQLTEMPSPACE threshold. In addition, you cannot change the work action

type of an enabled CONCURRENTDBCOORDACTIVITIES work action

threshold.

v You can alter the histogram templates used by a COLLECT AGGREGATE

ACTIVITY DATA work action to describe the histograms created for the

corresponding work class. Updating the histogram templates used by a work

action updates the corresponding rows in the

SYSCAT.HISTOGRAMTEMPLATEUSE view, which displays the histogram

templates referenced by the service class or work action. For more

information on histograms and histogram templates, see “Histograms in

workload management” on page 117.

v Whether you want to enable or disable the work action. By default, work

actions are enabled. When enabled, the data server considers the work action

for application against the activity that falls under the work class for the

work action. If the work action is disabled, the data server ignores it.
2. Commit your changes. When you commit your changes, the work action is

updated in the SYSCAT.WORKACTIONS view.

Disabling a work action

You can disable a work action that you do not want applied to a work class. At

runtime, the disabled work action is treated as if it does not exist.

To disable a work action, you require SYSADM or DBADM authority.

To disable a work action:

1. Use one of the following statements, depending on whether you are creating or

altering a work action set:

v Use the DISABLE keyword and the ADD keyword of the CREATE WORK

ACTION SET statement. For example:

98 Workload Manager Guide and Reference

ADD WORK ACTION work-action-name ON WORK CLASS work-class-name ... DISABLE

v Use the DISABLE keyword and the ALTER keyword of the ALTER WORK

ACTION SET statement. For example:

 ALTER WORK ACTION work-action-name ... DISABLE

2. Commit your changes. When you commit your changes, the work action is

updated in the SYSCAT.WORKACTIONS view.

Dropping a work action

If you no longer require a work action, you can drop it from the work action set.

v To drop a work action, you require SYSADM or DBADM authority.

v See Appendix A, “Workload management DDL statement considerations,” on

page 267 for additional prerequisites.

To drop a work action:

1. Use the DROP keyword of the ALTER WORK ACTION SET statement. If you

want to drop a CONCURRENTDBCOORDACTIVITIES threshold work action,

you must disable the work action in one ALTER WORK ACTION SET

operation, commit the change, then drop the threshold in a second ALTER

WORK ACTION SET operation.

2. Commit your changes. When you commit your changes, the work action is

removed from the SYSCAT.WORKACTIONS view. If the work action is a

threshold work action, the threshold is also removed from the

SYSCAT.THRESHOLDS view.

An altered work action set and work action only takes effect in the database

after it is committed, and does not affect any database activities currently

running.

Working with work class sets and work classes

Creating a work class set

To create a work class set, use the CREATE WORK CLASS SET statement.

To create a work class set, you require SYSADM or DBADM authority.

For additional prerequisites, see the following topics:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

To create a work class set:

1. Specify the following properties for the work class set using the CREATE

WORK CLASS SET statement:

v A name for the work class set. The name you specify must be unique in the

database.

v Optional: One or more work classes for the work class set. For more

information, see “Creating a work class” on page 100.
2. Commit your changes. When you commit your changes, the work class set is

added to the SYSCAT.WORKCLASSSETS view.

Chapter 5. Work action sets, work actions, work class sets, and work classes 99

Altering a work class set

You cannot change the work class set attributes after you create a work class set.

However, you can add, alter, and drop work classes in the work class set using the

ALTER WORK CLASS SET statement.

To alter a work class set, you require SYSADM or DBADM authority.

For additional prerequisites, see the following topics:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules
1. If you want to add work class to the work class set, use the ADD keyword. For

information about the keywords that you can specify when adding a work

class, see “Creating a work class.”

2. If you want to alter a work class, use the ALTER keyword. For information

about altering a work class, see “Altering a work class” on page 103.

3. If you want to drop a work class, use the DROP keyword. For information

about dropping a work class from a work class set, see “Dropping a work

class” on page 103. If you want to drop all the work classes from the work

class set, you can drop the work class set itself. For more information, see

“Dropping a work class set.”

4. Commit your changes. When you commit your changes, the

SYSCAT.WORKCLASSES view is updated to show any added, altered, or

dropped work class.

Dropping a work class set

Use the DROP WORK CLASS SET statement to drop a work class set.

To drop a work class set, you require SYSADM or DBADM authority.

You can only drop a work class set if no work action sets are associated with it. If

you want to drop the work class set, you must first drop its dependent work

action sets.

To drop a work class set:

1. Use the DROP WORK CLASS SET statement.

2. Commit your changes. When you commit your changes the work class set is

removed from the SYSCAT.WORKCLASSSETS view. In addition, all work

classes that were part of the work class set are removed from the

SYSCAT.WORKCLASSES view.

Creating a work class

To create a work class, use the CREATE WORK CLASS SET statement or the

ALTER WORK CLASS SET statement.

To create a work class, you require SYSADM or DBADM authority.

For additional prerequisites, see the following topics:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

100 Workload Manager Guide and Reference

To create a work class:

1. Create a work class at the same time you create a new work class set or add

the new work class to an existing work class set:

v To create a new work class that is added to a new work class set, use the

WORK CLASS keyword of the CREATE WORK CLASS SET statement.

v To create a new work class that is added to an existing work class set, use

the ADD WORK CLASS keyword of the ALTER WORK CLASS SET

statement.

Specify one or more of the following properties for the new work class:

v A name for the work class. This name must be unique in the work class set.

v Attributes for the work class. These attributes are used to associate an

activity with the work class:

– The type of work that the work class is to be used for. Use the WORK

TYPE parameter to specify this characteristic.

- READ, which represents non-updating SELECT activities, and all

XQuery activities.

When you specify the READ keyword, you can also specify an optional

for-from-to-clause argument. Use this argument to specify a range for

either the cost of the statement in timerons, or its cardinality (that is, the

number of rows returned). You must specify a numeric value for the

first value. For the second value, you can specify either a numeric

value, or the value UNBOUNDED to indicate that you do not want to

impose an upper limit on either the cost or cardinality of the activity.

You can also specify this argument for the WRITE keyword, the DML

keyword, and the ALL keyword.

For example, to associate SELECT activities that have a cost of 5000

timerons or more with this work class, you would specify:

WORK TYPE READ FOR TIMERONCOST FROM 5000 TO UNBOUNDED

- WRITE, which represents SQL activities that update data in the

database.

For example, to associate data writing activities that update between 50

and 100 rows with this work class, you would specify:

WORK TYPE WRITE FROM 50 TO 100

- CALL, which represents CALL activities.

When you specify the CALL keyword, you can also specify the

ROUTINES IN SCHEMA keyword to indicate that only CALL activities

to routines in a specific schema should be associated with this work

class. For example, if you only want to associate calls to routines in the

ACCOUNTS schema to this work class, you would specify:

WORK TYPE CALL ROUTINES IN SCHEMA ACCOUNTS

- DML, which represents SQL activities covered by both the READ and

WRITE keywords.

For example, to associate all DML activities that have a cost in timerons

from 500 to 1000 with this work class, you would specify:

WORK TYPE DML FOR TIMERONCOST FROM 500 TO 1000

- DDL, which represents the following activities:

v ALTER

v CREATE

v COMMENT

v DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Work action sets, work actions, work class sets, and work classes 101

v DROP

v FLUSH PACKAGE CACHE

v GRANT

v REFRESH TABLE

v RENAME

v REVOKE

v SET INTEGRITY

For example, to associate all DDL activities with this work class, you

would specify:

WORK TYPE DDL

- LOAD, which represents a LOAD activity.

For example, to associate LOAD activities to this work class, you would

specify:

WORK TYPE LOAD

- ALL, which represents all the work types indicated by all the preceding

keywords.

When you specify ALL for a work class type, you can also specify the

ROUTINES IN SCHEMA keyword to indicate that only CALL activities

to routines in a specific schema should be associated with this work

class. You can also specify the for-from-to-clause argument to indicate

that all DML activities that have an estimated timeron cost or

cardinality specified fall into this class. For example, to associate both

DML activities that have a cardinality of 300 to 1500 rows and routines

that are called from the NEWHIRES schema to this work class, you

would specify the following:

WORK TYPE ALL FOR CARDINALITY FROM 300 TO 1500 ROUTINES

IN SCHEMA NEWHIRES

Because this work class has a type of ALL, it would also apply to other

activities that do not have a schema or cardinality, such as LOAD

activities and DDL activities.
– Optional. The position of the work class in the work class set. The

position of the work class in the work class set determines the order in

which the work class is evaluated when classifying an activity to a work

class. When work class assignment occurs, the data server first determines

the work class set associated with the object (either a service superclass or

the database), then selects the first matching work class in the work class

set that has a work action associated with it. Use the POSITION keyword

to specify one of the following:

- LAST. The work class is placed at the end of the list of work classes in

the work class set. For example:

WORK TYPE ... POSITION LAST

- BEFORE work-class-name. The work class is to be created in the work

class set and positioned before the specified work class. For example:

WORK TYPE ... POSITION BEFORE LARGEDDL

- AFTER work-class-name. The work class is to be created in the work class

set and positioned after the specified work class. For example:

WORK TYPE ... POSITION AFTER LARGEDDL

- AT integer. The work class is to be created in the work class set in the

position specified by the integer value. For example:

WORK TYPE ... POSITION AT 3

102 Workload Manager Guide and Reference

2. Commit your changes. When you commit your changes, the work class is

added to the SYSCAT.WORKCLASSES view.

Altering a work class

If you need to alter a work class, use the ALTER WORK CLASS SET statement.

To alter a work class, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for additional prerequisites.

To alter a work class:

1. Use the ALTER keyword of the ALTER WORK CLASS SET statement to change

one or more of the following properties. See “Creating a work class” on page

100 for an explanation of the supported values for these properties.

v The FOR keyword. For example, you can change the value specified for the

FOR keyword from CARDINALITY to TIMERONCOST.

v The FROM from-value TO to-value argument. For example, you can change the

argument from FROM 50 TO 100 to FROM 500 TO 1500.

v The SCHEMA keyword for CALL activities. For example, if the work class

currently does not specify a schema, you can add one. You can also specify

the keyword ALL, so that the work class applies to all CALL statements,

regardless of the schema of the routine. ALL is the default.

v The POSITION keyword. For example, you can move a work class from the

last position to any position by using the AT keyword, or from any position

to the last position by using the LAST keyword.
2. Commit your changes. When you commit your changes, the work class is

updated in the SYSCAT.WORKCLASSES view.

Dropping a work class

If you no longer require a work class, you can drop it from the work class set.

To drop a work class, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for additional prerequisites.

To drop a work class:

1. Use the DROP keyword of the ALTER WORK CLASS SET statement. You

cannot drop a work class if any work action in any work action set associated

with this work class set has a dependency on the work class you want to drop.

In this situation, you must first drop all dependent work actions before

dropping the work class.

2. Commit your changes. When you commit your changes, the work class is

removed from the SYSCAT.WORKCLASSES view.

Chapter 5. Work action sets, work actions, work class sets, and work classes 103

104 Workload Manager Guide and Reference

Part 3. Monitoring and control

© Copyright IBM Corp. 2007, 2008 105

106 Workload Manager Guide and Reference

Chapter 6. Monitoring and control

With workload management features and functionality, you can both monitor and

control the work being executed in the database.

For example, you can perform the following tasks:

v Analyze the workload on your system to help design your initial workload

management configuration.

v Track and investigate the behavior of your system by obtaining the following

types of operational information:

– General monitoring information about the environment

– Information for analyzing system performance degradation

– Information for diagnosing hung activities

– Information for investigating agent contention

– Information for isolating poorly performing queries

Information is available for activities, service classes, workloads, work classes,

threshold queues, and threshold violations.

v Control the environment by canceling queued activities that you expect will

cause problems or cancel running activities that you have diagnosed as

negatively impacting the system.

With the workload management solution, you can troubleshoot more effectively

because you can drill down from the database into service classes and workloads

and into individual activities in the database.

Monitoring data overview

Monitoring data is available from workloads, work classes, service subclasses,

service superclasses, and threshold queues. You can use this data to diagnose and

correct problems and for performance tuning.

The following figure shows the monitoring information that is available for

workloads. You can collect workload statistics and information about activities that

run in the workloads using event monitors. You can access workload statistics and

information about workload occurrences in real time using table functions.

© IBM Corporation 2007, 2008 107

The following figure shows the monitoring information that is available for service

classes. You can collect statistics for service subclasses and service superclasses. For

service subclasses, you can also obtain aggregate activity and request statistics, and

information about activities that run in the service subclass. You can access service

superclass and service subclass statistics and information about agents running in a

particular service class in real time using table functions.

The following figure shows the monitoring information that is available for work

classes. You can collect work class statistics and information about activities that

are associated with a particular work class. You can access work class statistics in

real time using table functions.

SQL using table
functions

Activity
information

Workload
statistics

Workload

Figure 20. Monitoring data that is available for workloads

Service
superclass

SQL using table
functions

Activity
information

Service superclass
statistics

Service
subclass

Service subclass
statistics

Service
subclass

Figure 21. Monitoring data that is available for service classes

108 Workload Manager Guide and Reference

The following figure shows the monitoring information that is available for

thresholds. You can obtain information about threshold violations, the activities

that caused the threshold violations, and queuing statistics (for queueing

thresholds). You can access queueing threshold statistics in real time using table

functions.

Workload management table functions to obtain operational

information

You can use the table functions described in this topic to obtain operational

information.

The workload management table functions are available in the SYSPROC schema.

They are high performance and can return information about the work occurring

in the system with very little impact on currently executing workloads.

SQL using table
functions

Activity
information

Work class
statistics

Service
subclass

Work class

Figure 22. Monitoring data that is available for work classes

Queue statistics

Threshold violation
information

Activity
information

SQL using table
functions

Threshold

Figure 23. Monitoring data that is available for thresholds

Chapter 6. Monitoring and control 109

You can use the following table functions to examine the work occurring on the

system in terms of the service classes, workload occurrences, agents, requests, and

activities. All table functions can return information for either a single database

partition or for all database partitions in a partitioned database environment.

v WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

(service_superclass_name, service_subclass_name, dbpartitionnum). Use this table

function to obtain a list of workload occurrences in a database. A workload

occurrence is a database connection with attributes that match a workload

definition. You can list the workload occurrences for either a specific service

class or for all service classes. For more information about the usage of this table

function, see “Example: Investigating agent usage by service class” on page 171.

v WLM_GET_SERVICE_CLASS_AGENTS(service_superclass_name,

service_subclass_name, app_handle, dbpartitionnum). Use this table function to

obtain the list of agents working in the database. You can list all agents running

in a specific service class or all agents working on behalf of a particular

application. You can also use this table function to determine the state of the

coordinator agent and subagents for applications and determine which requests

each agent in the system is working on. For more information about the usage

of this table function, see “Example: Investigating agent usage by service class”

on page 171.

v WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(app_handle,

dbpartitionnum). Use this table function to obtain a list of the active activities that

are associated with a workload occurrence on a specific database partition (you

can use wildcard characters to span application identifiers and database

partitions). This table function returns information about activities that are

queued, idle, or running. This table function does not return information about

activities that have finished running. For more information about the usage of

this table function, see “Example: Aggregating data using workload management

table functions” on page 160 and “Example: Identifying hung activities” on page

167.

v WLM_GET_ACTIVITY_DETAILS(app_handle, uow_id, activity_id, dbpartitionnum).

Use this table function to obtain detailed information about an activity in

progress, which you identify by the unique combination of the activity identifier,

unit of work identifier, and application identifier. You can use this table function

to analyze information about activities that is returned by the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function. For more

information about the usage of this table function, see “Example: Monitoring

current system behavior at different levels using workload management table

functions” on page 156.

Workload management table functions and snapshot monitor

integration

You can use workload management table functions with the snapshot monitor

table functions when performing problem determination or performance tuning.

The workload management table functions and the snapshot monitor table

functions share the following fields. You can perform joins on these fields to derive

data that you need to perform diagnostic and performance-tuning activities.

 Table 15. Fields shared between the workload management and snapshot monitor table

functions

Workload manager table function field Snapshot monitor table function field

agent_tid agent_pid

110 Workload Manager Guide and Reference

Table 15. Fields shared between the workload management and snapshot monitor table

functions (continued)

Workload manager table function field Snapshot monitor table function field

application_handle agent_id

agent_id_holding_lock

session_auth_id session_auth_id

dbpartitionnum node_number

utility_id utility_id

workload_id workload_id

As an example of a reason to use a join between different table functions, assume

that you want to obtain basic information about all of the utilities running in the

BATCH service superclass. You might issue the following query:

SELECT SUBSTR(UTILITY_TYPE,1,4) TYPE,

 UTILITY_PRIORITY PRIORITY,

 SUBSTR(UTILITY_DESCRIPTION,1,12) AS UTILITY_DESCRIPTION,

 SUBSTR(UTILITY_DBNAME,1,8) AS DBNAME,

 UTILITY_STATE,

 SUBSTR(UTILITY_INVOKER_TYPE,1,7) INVOKER,

 SUBSTR(CHAR(WLM.DBPARTITIONNUM),1,4) PART,

 SUBSTR(CLASSES.PARENTSERVICECLASSNAME,1,19) SUPERCLASS_NAME,

 SUBSTR(CLASSES.SERVICECLASSNAME,1,18) SUBCLASS_NAME

FROM SYSIBMADM.SNAPUTIL SNAP,

 TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2)) WLM,

 SYSCAT.SERVICECLASSES CLASSES

WHERE SNAP.UTILITY_ID = WLM.UTILITY_ID

 AND WLM.SERVICE_CLASS_ID = CLASSES.SERVICECLASSID

 AND CLASSES.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’

 AND CLASSES.PARENTSERVICECLASSNAME = ’BATCH’

ORDER BY WLM.DBPARTITIONNUM;

The output might resemble the following output:

TYPE PRIORITY UTILITY_DESCRIPTION DBNAME UTILITY_STATE INVOKER PART SUPERCLASS_NAME SUBCLASS_NAME

---- ----------- ------------------- -------- ------------- ------- ---- ------------------- ------------------

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 1 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 2 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS

LOAD - OFFLINE LOAD SAMPLE EXECUTE USER 3 BATCH SYSDEFAULTSUBCLASS

Workload management stored procedures

You can use stored procedures for canceling an activity, capturing details about an

activity, and resetting the statistics on workload management objects.

The following stored procedures are available:

v WLM_CANCEL_ACTIVITY(application_handle, uow_id, activity_id). Use this stored

procedure to cancel a running or queued activity. You identify the activity by its

application handle, unit of work identifier, and activity identifier. You can cancel

any type of activity. The application with the canceled activity receives the error

SQL4725N.

v WLM_CAPTURE_ACTIVITY_IN_PROGRESS(application_handle, uow_id,

activity_id). Use this stored procedure to send information about an individual

Chapter 6. Monitoring and control 111

activity that is currently executing to the activities event monitor. This stored

procedure sends the information immediately, rather than waiting until the

activity completes.

Note: If you are using this stored procedure to collect activity information for a

procedure that has INOUT parameters, the INOUT values might be overwritten

by the time that the capture occurs. This situation does not occur if you created

the service class, workload, work action, or predictive threshold for which you

are capturing activity data as COLLECT ACTIVITY WITH DETAILS AND

VALUES, or if you alter the service class, workload, work action, or predictive

threshold and specify the COLLECT ACTIVITY DATA keyword with either the

ON COORDINATOR or ON ALL keyword, and with the WITH DETAILS AND

VALUES keyword.

v WLM_COLLECT_STATS(). Use this stored procedure to collect and reset

statistics for workload management objects. All statistics tracked for service

classes, workloads, threshold queues, and work action sets are sent to the active

statistics event monitor (if one exists) and reset. If there is no active statistics

event monitor, the statistics are only reset, but not collected.

Workload management event monitors

Event monitors collect historical information or capture a set of events for

debugging. By contrast, table functions collect and report point-in-time

information.

You can use the following types of event monitors in a workload management

configuration:

v ACTIVITIES. This type of event monitor captures information about individual

activities. In some situations, you can have the event monitor include statement

information and the data values used for input variables for SQL activities. You

can use the activities collected by the activity event monitor as input into tools

such as db2advis. You can also use an ACTIVITIES event monitor to capture

information for debugging individual activities.

You can collect information about an activity by specifying COLLECT ACTIVITY

DATA for the service class, workload, or work action to which such an activity

belongs or a threshold that might be violated by such an activity. The

information is collected when the activity completes, regardless of whether the

activity completes successfully.

v THRESHOLD VIOLATIONS. This type of event monitor captures information

each time that an activity violates a threshold. The information includes the

identifier, unit of work, and application handle to uniquely identify the activity

that violated the threshold, and the action that was applied to the activity (STOP

EXECUTION or CONTINUE).

If you specify COLLECT ACTIVITY DATA for the threshold and an activity

event monitor is created and active, information is also collected about activities

that violate the threshold, but this information is collected when the activity

ends (either successfully or unsuccessfully).

You can obtain details about a threshold by querying the

SYSCAT.THRESHOLDS view.

v STATISTICS. This type of event monitor captures statistics that are measured

over a set period of time. Compared to statement or activity event monitors, the

STATISTICS event monitor is an inexpensive method of capturing historical

information because this type of event monitor deals with aggregated activity

information instead of individual activities and you can target it to a single

112 Workload Manager Guide and Reference

service class or work class. See “Collecting workload management statistics

using a statistics event monitor” on page 121 for a description of how to send

statistics to the event monitor.

Unlike statement, connection, and transaction event monitors, the activity, statistics,

and threshold violation event monitors do not have event conditions (that is,

conditions specified on the WHERE keyword of the CREATE EVENT MONITOR

statement). Instead, these event monitors rely on the attributes of service classes,

workloads, work classes, and thresholds to determine whether these objects send

their activity information or aggregate information to these monitors.

Typically, event monitors write data to either tables or files. You need to prune

these tables or files periodically because they are not automatically pruned.

You can use the wlmevmon.ddl script in the sqllib/misc directory to create and

enable three event monitors called DB2ACTIVITIES, DB2STATISTICS, and

DB2THRESHOLDVIOLATIONS. If necessary, modify the script to change the table space

or other parameters.

Statistics management

Statistics for workload management objects

Statistics are maintained for workload management objects including service

classes, work classes, workloads, and threshold queues. These statistics reside in

memory and can be viewed in real-time using workload management statistics

table functions, or the statistics can be collected and sent to a statistics event

monitor where they can be viewed later for historical analysis.

When statistics are sent to the event monitor, the values in memory are reset to

prevent duplicate data from being collected on subsequent collection intervals.

Because the workload management statistics table functions report the current

in-memory values, following a collection they report the reset values. The

workload management table functions report only a subset of the statistics. To

view the full set of statistics, you must collect the statistics and send them to a

statistics event monitor.

The following statistics are maintained on the given objects on each database

partition, regardless of the value of the COLLECT AGGREGATE ACTIVITY DATA

or the COLLECT AGGREGATE REQUEST DATA option specified for those objects

when they are created or altered.

v Threshold queues:

– Queue assignments total (queue_assignments_total). Use this statistic to

determine whether excessive queuing is occurring, or whether the right

number of activities are being queued (that is, whether the concurrency

threshold is too restrictive or not restrictive enough).

– Queue size top (queue_size_top). Use this statistic to help determine the

maximum queue size and to identify whether the queue size is sufficient.

– Queue time total (queue_time_total). Use this statistic to determine how

much time activities are spending in the queue and whether that time is

excessive.
v Service subclasses:

Chapter 6. Monitoring and control 113

– Concurrent activity top (concurrent_act_top). Use this statistic to determine

the highest concurrency of activities (including nested activities) reached on a

database partition for a service class in the time interval for which the statistic

is collected.

– Coordinator activities completed total (coord_act_completed_total). Use this

statistic to determine how much work is being performed in a service class.

– Coordinator activities aborted total (coord_act_aborted_total). Use this

statistic, which measures the unsuccessful completion of activities, to

determine how healthy the system is. Activities can be aborted because of

cancellation, errors, or reactive thresholds.

– Coordinator activities rejected total (coord_act_rejected_total). Use this

statistic, which measures the rejection of activities, to obtain an indication of

the usefulness of the rejection policy. Activities are counted as rejected when

they violate a predictive threshold that has an action of STOP EXECUTION or

when they are prevented from executing by a work action.

– Number of active requests (num_requests_active). Use this statistic to

determine the number of requests that are currently executing in a service

class.
v Service superclasses:

– Concurrent connection top (concurrent_connection_top). Use this statistic to

tune a connection concurrency threshold.
v Workloads:

– Workload occurrences completed total (wlo_completed_total). Use this

statistic to determine how many occurrences of a workload complete in a

specific period of time.

– Concurrent workload occurrences top (concurrent_wlo_top). Use this statistic

to identify the maximum number of concurrent workload occurrences and to

help set or tune a workload occurrence concurrency threshold if the number

of concurrently executing workload occurrences is too high (that is, too many

applications that are associated with the same workload definition are

running on the system at the same time).

– Concurrent activity top (concurrent_act_top). Use this statistic to tune the

CONCURRENTWORKLOADACTIVITIES threshold.

– Coordinator activities completed total (coord_act_completed_total). Use this

statistic, which measures the rate of successful completion of activities, to

obtain an indication of the health of the system.

– Coordinator activities aborted total (coord_act_aborted_total). Use this

statistic, which measures the unsuccessful completion of activities, to

determine how healthy the system is. Activities can be aborted due to

cancellation, errors, or reactive thresholds.

– Coordinator activities rejected total (coord_act_rejected_total). Use this

statistic, which measures the rate of rejection of activities, to determine the

usefulness of a rejection policy. Activities are counted as rejected when they

violate a predictive threshold that has an action of STOP EXECUTION or

when they are prevented from executing by a work action.

– Workload occurrences completed total (wlo_completed_total). Use this

statistic to determine how many occurrences of a workload complete in a

specific period of time.
v Work class (through a work action):

– Activities total (act_total). Use this statistic to determine the effectiveness of

the work action set and determine the relative percentages of the types of

activities on the system.

114 Workload Manager Guide and Reference

When you set the value of the COLLECT AGGREGATE REQUEST DATA option

for a service subclass to BASE, the following statistics are maintained for the

service subclass:

v Request execution time histogram. The execution time for requests is collected in

a histogram for each database partition and for all requests. The request

execution time approximates the effort spent by agents working on activities

(which are composed of one or more requests). Use this information to

understand where work is being performed and whether the distribution of

work across partitions is uniform. (For example, coordinator activity counts

might show that most activities originate on one database partition, but as part

of processing the activities, the coordinator agent might be sending requests to

another database partition that performs most of the work.) The request

execution time histogram can be useful in determining the size of requests sent

to a database partition (that is, whether the work that is sent to the database

partition consists of mostly small requests or mostly large requests or whether

there is no specific distribution).

v Request execution time average (request_exec_time_avg). Use this statistic to

quickly understand the average amount of time that is spent processing each

request on a database partition and to help tune the histogram template for the

corresponding request execution time histogram.

When you set the value of the COLLECT AGGREGATE ACTIVITY DATA option to

BASE for a service subclass or a work class (through a work action), the following

statistics are collected or histograms are generated for each database partition for

the corresponding service class or work class. Use the averages to quickly

understand where activities are spending most of their time (for example, queued

or executing) and the response time (lifetime). You can also use the averages to

tune the histogram templates. That is you can compare a true average with the

average computed from a histogram, and if the average from the histogram

deviates from the true average, consider altering the histogram template for the

corresponding histogram, using a set of bin values that are more appropriate for

your data.

v Average coordinator activity lifetime (coord_act_lifetime_avg). Use this statistic

to determine the arithmetic mean of the lifetime for non-nested coordinator

activities associated with a service class or a work class.

v Average coordinator activity execution time (coord_act_exec_time_avg). Use this

statistic to determine the arithmetic mean of execution time for non-nested

coordinator activities associated with a service class or a work class

v Average coordinator activity queue time (coord_act_queue_time_avg). Use this

statistic to determine the arithmetic mean of the queue time for non-nested

coordinator activities associated with a service class or a work class.

v Cost estimate top (cost_estimate_top). Use this statistic to tune estimated cost

thresholds.

v Estimated rows returned top (rows_returned_top). Use the information to tune

the actual rows returned thresholds.

v Temporary table space top (temp_tablespace_top). Use this statistic to tune

temporary table space usage thresholds. This statistic is monitored only if you

define a threshold for temporary table space usage.

v Activity lifetime histogram. This histogram collects the time duration between

the activity arrival and end time for non-nested coordinator activities. Use this

histogram to obtain a view of overall system performance. If the activity is a

routine that leaves a cursor open after it ends, the lifetime histogram does not

count the lifetime of the cursor toward the lifetime of the routine that is the

parent of the cursor.

Chapter 6. Monitoring and control 115

v Activity execution time histogram. This histogram collects the execution time for

non-nested coordinator activities. Use this histogram to measure the impact of

changes to the system that affect execution time. The execution time is calculated

as follows:

– For cursors, the execution time is the combined time for the open cursor

request, any fetches, and the close cursor request. Time when the cursor is

idle is not counted towards the execution time.

– For routines, the execution time is from the start to the end of the routine

invocation. If any cursors are left open by the routine after it ends, the

lifetimes of these cursors are not counted towards the routine execution time.

– For all other activities, the execution time is the difference between the

activity lifetime and the time that the activity spends queued.
v Activity queue time histogram. This histogram collects the amount of time that

non-nested coordinator activities spend queued. Use this histogram to measure

the impact of queueing thresholds on activities.

When you set the value of the COLLECT AGGREGATE ACTIVITY DATA option to

EXTENDED for a service subclass or a work class, the following system statistics

are collected or histograms are generated for each database partition for the

corresponding service class or work class (through a work action). Use the

averages to quickly understand the average rate of arrival of activities (arrival rate

is the inverse of inter-arrival time) and the expense of activities (estimated cost).

You can also use the averages to tune the histogram templates. That is you can

compare a true average with the average computed from a histogram, and if the

average from the histogram deviates from the true average, consider altering the

histogram template for the corresponding histogram, using a set of bin values that

are more appropriate for your data.

Note: EXTENDED statistics are useful for more detailed performance modelling.

See “Workload management performance modelling” on page 129.

v Non-nested coordinator activity inter-arrival time average

(coord_act_interarrival_time_avg). Use this statistic to determine the arithmetic

mean of the time between the arrival of one coordinator activity at nesting level

0 that is associated with this service class or work class and the next coordinator

activity to arrive. The average is computed since the last statistics reset.

v Coordinator activity estimated cost average (coord_act_est_cost_avg). Use this

statistic to determine the arithmetic mean of the estimated costs of coordinator

DML activities at nesting level 0 that are associated with this service subclass or

work class since the last statistics reset.

v Activity inter-arrival time histogram. This histogram collects the inter-arrival

time for non-nested coordinator activities. Use this histogram to obtain the

inter-arrival time distribution for non-nested coordinator activities. This data is

useful for modelling your system or for inputting into performance-modeling

applications.

v Activity estimated cost histogram. This histogram collects the estimated cost for

non-nested coordinator activities. Use this histogram to obtain an approximate

service time distribution. This data is useful for modelling your system or for

inputting into performance-modelling applications.

The following table provides a quick reference of which statistics are collected for

each workload management object. Some statistics are always collected for each

object. Other statistics are only collected when a particular COLLECT

116 Workload Manager Guide and Reference

AGGREGATE option is specified. For aggregate activity statistics, if COLLECT

AGGREGATE ACTIVITY DATA EXTENDED is specified, all the BASE aggregate

activity statistics are also collected.

 Table 16. Statistics collected for each workload management object

Object type Statistic collected by default

Statistics collected when you specify

COLLECT AGGREGATE ACTIVITY

DATA BASE

Statistics collected when you specify

COLLECT AGGREGATE ACTIVITY

DATA EXTENDED

Statistics collected when you specify

COLLECT AGGREGATE REQUEST

DATA BASE

Threshold queue

v queue_assignments_total

v queue_size_top

v queue_time_total

N/A N/A N/A

Service subclass

v coord_act_completed_total

v coord_act_rejected_total

v coord_act_aborted_total

v concurrent_act_top

v num_requests_active

v cost_estimate_top

v rows_returned_top

v temp_tablespace_top

v coord_act_lifetime_top

v request_exec_time_avg

v coord_act_lifetime_avg

v coord_act_exec_time_avg

v coord_act_queue_time_avg

v Activity lifetime histogram

v Activity execution time histogram

v Activity queue time histogram

v Request execution time histogram

v coord_act_est_cost_avg

v coord_act_interarrival_time_avg

v Activity inter-arrival time histogram

v Activity estimated cost histogram

v request_exec_time_avg

v Request execution time histogram

Service superclass

v concurrent_connection_top

N/A N/A

Workload

v concurrent_wlo_top

v concurrent_act_top

v coord_act_completed_total

v coord_act_rejected_total

v coord_act_aborted_total

v wlo_completed_total

N/A N/A

Work class (through a work action)

v act_total v cost_estimate_top

v rows_returned_top

v temp_tablespace_top

v coord_act_lifetime_top

v coord_act_lifetime_avg

v coord_act_exec_time_avg

v coord_act_queue_time_avg

v Activity lifetime histogram

v Activity execution time histogram

v Activity queue time histogram

v coord_act_est_cost_avg

v coord_act_interarrival_time_avg

v Activity inter-arrival time histogram

v Activity estimated cost histogram

Histograms in workload management

A histogram is a collection of bins, which are containers for collecting discrete

ranges of data. Histograms are useful for a variety of workload analysis and

performance tuning tasks.

DB2 workload management histograms have 41 bins. The number of bins is fixed.

The 40th bin contains the highest defined value for the histogram, while the 41st

bin is for values that are beyond the highest defined value. The following figure

shows a histogram of activity lifetimes plotted to a bar chart:

Chapter 6. Monitoring and control 117

The plotted activity lifetime histogram corresponds to the following data. Each

count represents the number of activities whose lifetime (in milliseconds) fell

within the range of the low bin value to the high bin values. For example, 156

activities had a lifetime in the range 68 milliseconds to 103 milliseconds.

 Low Bin High Bin Count

 0 1 0

 1 2 0

 2 3 0

 3 5 0

 5 8 0

 8 12 0

 12 19 0

 19 29 10

 29 44 15

 44 68 45

 68 103 156

 103 158 65

 158 241 23

 241 369 0

 369 562 0

 562 858 0

 858 1309 0

 1309 1997 0

 1997 3046 0

 3046 4647 0

 4647 7089 0

 7089 10813 0

 10813 16493 0

 16493 25157 0

 25157 38373 0

 38373 58532 0

 58532 89280 0

 89280 136181 0

 136181 207720 0

 207720 316840 0

 316840 483283 3

 483283 737162 0

 737162 1124409 0

 1124409 1715085 0

 1715085 2616055 0

180

6

4

2

0

6

4

2

0

1 0

1 0

1 0

1 0

80

0

0

0

1 3 19 44 10
3

24
1

56
2

13
09

30
46

70
89

16
49

3

38
37

3

89
28

0

20
77

20

48
32

83

11
24

40
9

26
16

05
5

60
86

52
9

14
16

09
508

Figure 24. Histogram plotted to a bar chart

118 Workload Manager Guide and Reference

2616055 3990325 0

 3990325 6086529 0

 6086529 9283913 0

 9283913 14160950 0

14160950 21600000 0

21600000 Infinity 0

You can use histograms for a number of different purposes. For example, you can

use them to see the distribution of values, use them to identify outlying values, or

use them to compute averages and standard deviations. See “Example: Tuning a

workload management configuration when capacity planning information is

unavailable” on page 173 and “Example: Computing averages and a standard

deviation from histograms in a workload management configuration” on page 161

for examples of how to use histograms to better understand and characterize your

workload.

In a partitioned database environment, histograms are collected on each database

partition. Histogram bins have the same values on all database partitions. You can

use the bins to analyze information on a per partition basis. You can also combine

the histograms from all database partitions by adding the counts in the

corresponding bins into a single histogram to obtain a global view of the data,

which you can then use for tasks such as calculating the global average and

standard deviation from the global histogram.

Histograms are available for service subclasses and work classes (through work

actions). Histograms are collected for these objects when you specify one of the

COLLECT AGGREGATE ACTIVITY DATA clauses when creating or altering the

object. For work classes, histograms are collected if a COLLECT AGGREGATE

ACTIVITY DATA work action is applied to the work class. The following

histograms are available:

v Non-nested coordinator activity lifetime (when you specify AGGREGATE

ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for the

service subclass or for a work action applied to the work class).

v Non-nested coordinator activity execution time (when you specify AGGREGATE

ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for the

service subclass or for a work action applied to the work class).

v Non-nested coordinator activity queue time (when you specify AGGREGATE

ACTIVITY DATA BASE or AGGREGATE ACTIVITY DATA EXTENDED for the

service subclass or for a work action applied to the work class).

v Request execution time (when you specify AGGREGATE REQUEST DATA BASE

for the service class). This histogram does not apply to work classes.

v Non-nested activity inter-arrival time histogram (when you specify

AGGREGATE ACTIVITY DATA EXTENDED for the service subclass or for a

work action applied to the work class).

v Non-nested DML activity estimated cost (when you specify AGGREGATE

ACTIVITY DATA EXTENDED for the service subclass or for a work action

applied to the work class).

All activity-related histograms collect activities that complete, abort, or are rejected.

You can optionally specify a histogram template that describes the high bin values

for each of the histograms that are collected for an object. Histogram templates are

used to determine the high bin values for a histogram. Histogram templates are

Chapter 6. Monitoring and control 119

unitless objects that specify what a particular histogram should look like (unitless

meaning that there is no predefined measurement unit assigned to the histogram

template).

You apply a histogram template by using the appropriate HISTOGRAM

TEMPLATE keyword when creating or altering service subclasses or work actions.

If you do not specify a histogram template, the default template

SYSDEFAULTHISTOGRAM is used. If AGGREGATE ACTIVITY DATA collection is

not enabled for an object, the histogram template is ignored.

You can create a histogram template by using the CREATE HISTOGRAM

TEMPLATE statement and specifying the maximum high bin value. All other bins

are automatically defined as exponentially increasing values that approach the high

bin value. For example, to create a histogram template with a high bin value of

3 000 000, you would issue a statement such as the following one:

CREATE HISTOGRAM TEMPLATE TEMPLATE1 HIGH BIN VALUE 3000000

This statement creates a histogram template with the following bin values:

Low Bin High Bin

 0 1

 1 2

 2 3

 3 4

 4 6

 6 9

 9 13

 13 19

 19 28

 28 41

 41 60

 60 87

 87 127

 127 184

 184 268

 268 389

 389 565

 565 821

 821 1192

 1192 1732

 1732 2514

 2514 3651

 3651 5300

 5300 7696

 7696 11173

 11173 16222

 16222 23553

 23553 34196

 34196 49649

 49649 72084

 72084 104657

 104657 151948

 151948 220609

 220609 320297

 320297 465030

 465030 675163

 675163 980250

 980250 1423197

1423197 2066299

2066299 3000000

3000000 Infinity

120 Workload Manager Guide and Reference

You can then use this histogram template for an existing histogram. For example,

to use the TEMPLATE1 histogram template for the activity lifetime histogram of

service subclass MYSUBCLASS under the service superclass MYSUPERCLASS,

issue a statement such as the following one:

ALTER SERVICE CLASS MYSUBCLASS UNDER MYSUPERCLASS

ACTIVITY LIFETIME HISTOGRAM TEMPLATE TEMPLATE1

After you commit the ALTER SERVICE CLASS statement, the activity lifetime

histogram that is collected for this service subclass has high bin values that are

determined by the TEMPLATE1 histogram template instead of using the default

high bin values from the SYSDEFAULTHISTOGRAM histogram template.

Note: If you change a service class to use a different histogram template or change

a histogram template, the change does not take effect until a statistics reset occurs.

You can drop a histogram template by using the DROP HISTOGRAM TEMPLATE

statement.

You can view the histogram templates by querying the

SYSCAT.HISTOGRAMTEMPLATES view and the corresponding histogram

template high bin values by querying the SYSCAT.HISTOGRAMTEMPLATEBINS

view (the low bin value is always the high bin value from the preceding bin, or 0

for the first bin).

Collecting workload management statistics using a statistics

event monitor

Statistics for workload management objects can be sent to a statistics event monitor

for historical analysis.

You can use statistics to understand the behavior of your system over time (for

example, what is the average lifetime of activities, how much time do activities

spend queued, what is the distribution of large compared to small activities, and

so on), set thresholds (for example, find the upper boundary for concurrent

activities), and detect problems (for example, detect whether the average lifetime

that users are experiencing is higher than normal). See “Statistics for workload

management objects” on page 113 for a description of which statistics are collected

for each workload management object.

You can automatically send workload management statistics to an event monitor

on a fixed interval of time, or you can manually send statistics to an event monitor

at any point in time.

To automatically collect workload management statistics on a fixed time interval:

1. Use the CREATE EVENT MONITOR statement to create a STATISTICS event

monitor. For example, you could issue the following statement:

CREATE EVENT MONITOR STATS1 FOR STATISTICS WRITE TO TABLE

2. Use the COMMIT statement to commit your changes.

3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the

AUTOSTART default for the STATISTICS event monitor to have it activated the

next time that the database is activated. However, only one event monitor of

the STATISTICS type can be active on a database partition at one time. If you

want to define multiple STATISTICS event monitors, you should not use the

AUTOSTART option.

Chapter 6. Monitoring and control 121

4. Use the COMMIT statement to commit your changes.

5. Optional: Enable the collection of additional statistics. By default, only a

minimal set of statistics is collected for each workload management object. See

“Statistics for workload management objects” on page 113 for details on which

statistics are collected by default for each object. Specify the collection of

aggregate activity data for service subclasses and work classes using the

COLLECT AGGREGATE ACTIVITY DATA keyword on the ALTER SERVICE

CLASS and ALTER WORK ACTION SET statements. Specify the collection of

aggregate request data for service subclasses using the COLLECT AGGREGATE

REQUEST DATA keyword on the ALTER SERVICE CLASS statement. COMMIT

any changes.

6. Specify a collection interval by updating the database configuration parameter

wlm_collect_int. The wlm_collect_int parameter specifies an interval of time in

minutes. Every interval, the in-memory copy of the workload management

statistics for all workload management objects is written to the active statistics

event monitor and the in-memory statistics are reset. In a partitioned database

environment, the wlm_collect_int parameter must be updated on the catalog

partition. This parameter can be updated dynamically. For example:

CONNECT TO database alias

UPDATE DATABASE CONFIGURATION USING WLM_COLLECT_INT 5 IMMEDIATE

After you perform the preceding steps, workload management statistics are written

to the statistics event monitor every wlm_collect_int minutes. Each record written

to the statistics event monitor has a STATISTICS_TIMESTAMP value and a

LAST_WLM_RESET value. The interval of time from LAST_WLM_RESET to

STATISTICS_TIMESTAMP defines the collection interval (that is, interval of time

over which the statistics in that record were collected).

If the wlm_collect_int parameter is set to a nonzero value and there is no active

statistics event monitor, the in-memory workload management statistics are still

reset every wlm_collect_int minutes, but statistics are not collected. The data will

be lost. For this reason, it is not recommended that you specify a nonzero

wlm_collect_int value without activating a statistics event monitor.

If the wlm_collect_int parameter is set to 0 (the default) statistics are not sent to

the statistics event monitor automatically. You can manually send statistics to the

statistics event monitor for later historical analysis by using the

WLM_COLLECT_STATS stored procedure. When this procedure is invoked, it

performs the same actions that occur with an automatic statistics collection

interval. That is, the in-memory statistics are sent to the statistics event monitor

and the in-memory statistics are reset. If there is no active statistics event monitor,

the in-memory values are reset, but data is not collected. If you only want to reset

statistics, you can invoke the WLM_COLLECT_STATS procedure while there is no

active statistics event monitor.

Manual collection of statistics does not interfere with the automatic collection of

statistics. For example, assume that you have wlm_collect_int set to 60. Statistics

are sent to the statistics event monitor every hour. Now assume that the last time

the statistics were collected was 5:30 AM. You can invoke the

WLM_COLLECT_STATS procedure at 5:55 AM, which sends the in-memory values

of the statistics to the event monitor and resets the statistics. The next automatic

statistics collection still occurs at 6:30 AM, one hour after the last automated

collection. The collection interval is not affected by any manual collection and

resetting of statistics that occurs during the interval.

122 Workload Manager Guide and Reference

Note: The workload management statistics table functions report the current

values of the in-memory statistics. If you have automatic workload management

statistics collection enabled, these values are reset periodically on the interval

defined by the wlm_collect_int database configuration parameter. When looking at

the statistics reported by the table functions, you should always consider the

LAST_RESET column. This column indicates the last time the in-memory statistics

were reset. If the time interval between the last reset time to the current time is not

sufficiently large, there may not be enough data to draw any meaningful

conclusions.

Note: If you are using automatic collection of workload management statistics, you

need to prune your event monitor files or tables periodically. The event monitor

does not automatically prune the data that is collected, and the automatic

collection will fill your files or tables over time.

Note: When a database is deactivated, the in-memory statistics are reset.

Deactivating the database does not send statistics to the statistics event monitor. If

you do not want to lose the statistics accumulated since the last collection because

of a deactivation, you should manually invoke the WLM_COLLECT_STATS

procedure before deactivating the database.

Note: The WLM_COLLECT_STATS procedure resets statistics differently than the

RESET MONITOR command. The RESET MONITOR command resets the values of

snapshot monitor elements by storing their present values. After the RESET

MONITOR command has been issued, snapshot processing reports the delta

between these values and the current values. In contrast, the reset caused by the

WLM_COLLECT_STATS procedure does not store any values, but instead resets all

of the statistics counters themselves for each applicable workload management

object.

Also, with the RESET MONITOR command, each process (attachment) has its own

private view of the monitor data. If one user performs a reset, other users are

unaffected. By contrast, a reset of the workload manager statistics applies to all

users.

Workload management table functions to obtain statistics

You can use the table functions described in this topic to obtain statistics about

workload management objects.

The workload management table functions are available in the SYSPROC schema.

They are high performance and can return information about the work occurring

in the system with very little impact on currently executing workloads.

You can use statistics for a number of different purposes, such as verifying

whether changes to the workload management configuration have had the

expected effect. For example, if you create a new work class to classify READ

activities, you might want to verify that READ activities are being classified under

the new work class. You can also use table functions to quickly recognize certain

problems with the system. For example, you can use table functions to determine

an acceptable value for the average activity lifetime and recognize when this value

exceeds its usual range, possibly indicating a problem that requires further

investigation.

All statistics table functions return the statistics that accumulated since the last

time that the statistics were reset.

Chapter 6. Monitoring and control 123

For the dbpartitionnum variable, you can specify -2 to indicate that you want to

collect data from all database partitions or -1 to indicate that you want to collect

data only from the database partition to which the application that issued the table

function call is connected (that is, the coordinator partition). If you call these table

functions from application programs, you should use the

SQLM_CURRENT_NODE and SQLM_ALL_NODE constants in the sqlmon.h

header file to avoid using -1 and -2 as literals.

v WLM_GET_SERVICE_SUPERCLASS_STATS(service_superclass_name,

dbpartitionnum). Use this table function to obtain information about the

concurrent connection high watermark that was calculated since the last statistics

reset. You can use wildcard characters to span service superclasses and database

partitions.

v WLM_GET_SERVICE_SUBCLASS_STATS(service_superclass_name,

service_subclass_name, dbpartitionnum). Use this table function to obtain

summarized statistics such as the number of activities and average execution

time calculated since the last statistics reset. You can obtain this information for

multiple service subclasses across one or more database partitions. You can use

wildcard characters to span service superclasses, service subclasses, and database

partitions. For more information about the usage of this table function, see

“Example: Obtaining point-in-time statistics from service classes” on page 159,

“Example: Aggregating data using workload management table functions” on

page 160, “Example: Analyzing a service class–related system slowdown” on

page 163, and “Example: Investigating a workload-related system slowdown” on

page 165.

v WLM_GET_WORKLOAD_STATS(workload_name, dbpartitionnum). Use this table

function to obtain summarized statistics for one or all workloads and database

partitions. You can use wildcard characters to span workload names and

database partitions. The statistics returned include information about completed

activities and high watermark information that were computed since the

statistics reset. For more information about the usage of this table function, see

“Example: Investigating a workload-related system slowdown” on page 165.

v WLM_GET_WORK_ACTION_SET_STATS(work_action_set_name, dbpartitionnum).

Use this table function to obtain summarized statistics for one or more work

action sets across one or more database partitions. The statistics returned include

information about how many activities were assigned to each work class since

the last statistics reset. For information about the usage of this table function, see

“Example: Analyzing workloads by activity type” on page 166.

v WLM_GET_QUEUE_STATS (threshold_predicate, threshold_domain, threshold_name,

threshold_id). Use this table function to obtain information about threshold

queues. This information tells you how many activities are currently queued and

the last time that an activity left a queue. Statistical information is also included,

such as the average time that an activity spent in the queue and the high

watermark for the queue size. You can use this information when determining

whether a specific queue is becoming a bottleneck in the system (that is,

activities are spending too much time in this queue).

Resetting statistics on workload management objects

This topic describes how to reset statistics for workload management objects.

Four events will reset the in-memory statistics stored for each workload

management object. (For a description of the statistics maintained for each object,

see “Statistics for workload management objects” on page 113.)

124 Workload Manager Guide and Reference

v The WLM_COLLECT_STATS stored procedure is invoked. See “Collecting

workload management statistics using a statistics event monitor” on page 121

for details.

v The automatic workload management statistics collection and reset process

controlled by the wlm_collect_int database configuration parameter causes a

collection and reset. See “Collecting workload management statistics using a

statistics event monitor” on page 121 for details.

v The database is reactivated. Every time the database is activated on a database

partition, the statistics for all workload management objects on that database

partition are reset.

v The object for which the statistics are maintained is modified and the change is

committed. For example if a service subclass is altered, when the ALTER is

committed, the in-memory statistics for that service subclass are reset.

You can determine the last time the statistics were reset for a given workload

management object using the statistics table functions and looking at timestamp in

the LAST_RESET column. For example, to see the last time the statistics were reset

for the service subclass SYSDEFAULTSUBCLASS under the

SYSDEFAULTUSERCLASS service superclass, you could issue a query such as:

SELECT LAST_RESET FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’SYSDEFAULTUSERCLASS’,

’SYSDEFAULTSUBCLASS’, -2)) AS T

All statistics table functions return the statistics that accumulated since the last

time that the statistics were reset. A statistics reset occurs when a database is

activated or reactivated, when you alter a workload management object (only the

statistics for that object are reset), and when you call the WLM_COLLECT_STATS

stored procedure. Statistics are also reset automatically according to the time

period defined by the wlm_collect_int database configuration parameter, if you set

this parameter to a nonzero value.

The period of time specified by wlm_collect_int is unaffected by a statistics reset

that occurs during the interval specified by the configuration parameter. For

example, if you run the WLM_COLLECT_STATS table function 5 minutes after the

start of a 20-minute interval specified bywlm_collect_int, the interval still expires

15 minutes later. The statistics collection and reset that occur do not delay the

occurrence of the next statistics collection and reset by 5 minutes.

If you change a service class to use a different histogram template or change a

histogram template, the change does not take effect until a statistics reset occurs.

If you invoke the WLM_COLLECT_STATS table function to collect and reset

statistics at the same time that another collection and reset is in progress (for

example, if the invocation of the table function overlaps with the periodic

collection and reset interval caused by wlm_collect_int or if another user invokes

WLM_COLLECT_STATS at the same time), the collection and reset request from

WLM_COLLECT_STATS is ignored, and warning SQL1632W is returned.

Monitoring threshold violations

When a workload management threshold is violated, a threshold violation record

is written to the active THRESHOLD VIOLATIONS event monitor, if one exists.

The threshold violation record includes the following information:

v A description of the threshold that was violated (the identifier, maximum value,

and so on).

Chapter 6. Monitoring and control 125

v An identification of the activity that violated the threshold, including the

identifier of the application that submitted the activity, the unique activity

identifier, and the unit of work identifier.

v The time that the threshold was violated.

v The action that was taken. The action indicates whether the activity that violated

the threshold was allowed to continue or was stopped. If the activity was

stopped, the application that submitted the activity will have received an

SQL4712N error.

You can optionally have detailed activity information (including statement text)

written to an active activity event monitor if the threshold violation is caused by

an activity. The activity information is written when the activity completes, not

when the threshold is violated. Specify that activity information should be

collected when a threshold is violated by using the COLLECT ACTIVITY DATA

keyword on either the CREATE or ALTER threshold or work action set statements.

To monitor threshold violations:

1. Use the CREATE EVENT MONITOR statement to create an event monitor of

type THRESHOLD VIOLATIONS. For example:

CREATE EVENT MONITOR VIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE

2. Use the COMMIT statement to commit your changes.

3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the

AUTOSTART default for the THRESHOLD VIOLATIONS event monitor to

have it activated the next time that the database is activated. However, only

one event monitor of the THRESHOLD VIOLATIONS type can be active on a

database partition at one time. If you want to define multiple THRESHOLD

VIOLATIONS event monitors, you should not use the AUTOSTART option.

4. Use the COMMIT statement to commit your changes.

Note: If you create any thresholds, you should create and activate a threshold

violations event monitor so you can monitor any threshold violations that

occur. A threshold violations event monitor does not have any impact unless

thresholds are violated.

Collecting data for individual activities

You can use an ACTIVITIES event monitor to collect data for individual activities

that run in your system. The data collected includes items such as statement text

and compilation environment, and can be used to investigate and diagnose

problems, and as input to other tools (for example, the Design Advisor).

You can collect information about individual activities for service subclasses,

workloads, work classes (through work actions), and threshold violations. You

enable activity collection using the COLLECT ACTIVITY DATA keyword of the

CREATE and ALTER statements for these workload management objects. When an

activity completes, information about the activity is sent to the active ACTIVITIES

event monitor if:

v The activity was submitted by an application that is mapped to a workload for

which COLLECT ACTIVITY DATA is specified, or:

– The activity runs in a service subclass for which COLLECT ACTIVITY DATA

is specified, or

– The activity has a COLLECT ACTIVITY DATA work action applied to it, or

126 Workload Manager Guide and Reference

– The activity violates a threshold that was defined with the COLLECT

ACTIVITY DATA action

The COLLECT ACTIVITY DATA keyword also controls the amount of information

that is sent to the ACTIVITIES event monitor. If the keyword specifies WITH

DETAILS, statement information (such as statement text) is collected. If the

keyword specifies WITH DETAILS AND VALUES, data values are collected as

well.

An activity might have multiple COLLECT ACTIVITY DATA keywords applied to

it. For example, the activity might run in a service subclass for which COLLECT

ACTIVITY DATA is specified, and while executing it might violate a threshold that

has the COLLECT ACTIVITY DATA action. In this situation, the activity is only

collected once. The COLLECT keyword that specifies the largest amount of

information to be collected is applied to the activity. For example, if both

COLLECT ACTIVITY DATA WITHOUT DETAILS and COLLECT ACTIVITY DATA

WITH DETAILS are applied to an activity, the activity is collected with detailed

information.

To enable collection of activities for a given workload management object:

1. Use the CREATE EVENT MONITOR statement to create an ACTIVITIES event

monitor.

2. Use the COMMIT statement to commit your changes.

3. Use the SET EVENT MONITOR STATE statement to activate the event monitor.

Instead of using the SET EVENT MONITOR STATE statement, you can use the

AUTOSTART default for the ACTIVITIES event monitor to have it activated the

next time that the database is activated. However, only one event monitor of

the ACTIVITIES type can be active on a database partition at one time. If you

want to define multiple ACTIVITIES event monitors, you should not use the

AUTOSTART option.

4. Use the COMMIT statement to commit your changes.

5. Identify the objects for which you want to collect activities by using the ALTER

SERVICE CLASS, ALTER WORK ACTION SET, ALTER THRESHOLD, or

ALTER WORKLOAD statement and specify the COLLECT ACTIVITY DATA

keywords.

6. Use the COMMIT statement to commit your changes.

Note: Individual activity collection is more expensive than workload management

statistics collection. You should try to set up activity collection to collect as few

activities as possible. For example, if you need to investigate activities submitted

by a specific application, you could isolate that application by creating a workload

or service class specifically for that application, and only enable activity collection

for that workload or service class.

You might not always know in advance that you will want to capture an activity.

For example, you might have a query that is taking a long time to run and you

want to collect information about it for later analysis. In this situation, it is too late

to specify the COLLECT ACTIVITY DATA keyword on the workload management

objects, because the activity has already entered the system. In this situation, you

can use the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure. The

WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure sends information

about an executing activity to the active ACTIVITIES event monitor. You identify

the activity to be collected using the application handle, unit of work identifier,

Chapter 6. Monitoring and control 127

and activity identifier. Information about the activity is immediately be sent to the

ACTIVITIES event monitor when the procedure is invoked: you do not need to

wait for the activity to complete.

If you are using the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure

to collect activity information for a procedure that has INOUT parameters, the

INOUT values might be overwritten by the time that the capture occurs. This

situation does not occur if the activity is collected as a result of the COLLECT

ACTIVITY DATA WITH DETAILS AND VALUES keyword on a service subclass,

workload, work action, or predictive threshold.

Importing activity information into the Design Advisor

You can import activities collected by an activity event monitor into the Design

Advisor to help you make decisions about the database objects accessed by these

activities.

Activities imported into the design advisor must have been collected using the

COLLECT ACTIVITY DATA WITH DETAILS or COLLECT ACTIVITY DATA

WITH DETAILS AND VALUES options. The COLLECT ACTIVITY DATA

WITHOUT DETAILS option is not sufficient, it will not capture the statement text

which is required by the Design Advisor.

To import activity information from the activity event monitor tables into the

Design Advisor, run the db2advis command with the -wlm parameter, followed by

additional parameters:

1. The activity event monitor name

2. Optional: the workload or service class name

3. Optional: the start time and end time

For example, to import information about all the activities collected by the

DB2ACTIVITIES event monitor in the SAMPLE database, use the following

command:

db2advis -d SAMPLE -wlm DB2ACTIVITIES

Note: You can only import information from activity event monitor tables through

the Design Advisor command line interface.

Cancelling activities

If an activity is consuming too many resources, or is hung, you may want to cancel

it. Cancelling an activity is a gentler approach than forcing the application that

submitted the activity. A cancelled activity returns SQL4725N to the user, but does

not end the connection or affect any other activities of that user. Forcing the

application ends both the connection and activities of that user.

You can only explicitly cancel an activity if a coordinator activity is currently

working on a request for the activity. If you cancel an activity in the IDLE state

(that is, no requests are being processed), the activity is placed in the

CANCEL_PENDING state and is cancelled on the next request that is received. For

example, if you attempt to cancel a CURSOR activity between fetches, the

SQL4725N error is not returned to the user until the next fetch after the cancel.

All user activities are cancellable, including the load utility and stored procedures.

128 Workload Manager Guide and Reference

To cancel an activity:

1. Identify the activity that you want to cancel. You can use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to

identify the activities running in an application. You can also use the

WLM_GET_ACTIVITY_DETAILS table function to view additional details about

a particular activity if the information in

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES is not sufficient to

identify the work that the activities are performing.

2. Cancel the activity using the WLM_CANCEL_ACTIVITY stored procedure. The

stored procedure takes the following arguments: application_handle, uow_id, and

activity_id. For an example of how to use this stored procedure, see “Example:

Identifying hung activities” on page 167.

Guidelines for capturing information about and investigating a rogue

activity

This topic provides guidelines for capturing information about, and investigating, a

rogue activity.

First establish a set of criteria for what you would consider a rogue activity. For

example:

v An activity in that runs in a service class for activities with a low estimated cost,

and runs for more that 1 hour

v An activity that returns an unusually large number of rows

v An activity that consumes an unusually high amount of temporary table space

Then create thresholds that describe these criteria and contain a COLLECT

ACTIVITY DATA WITH DETAILS action. When the threshold is violated,

information about the activity that violated the threshold is sent to the active

ACTIVITIES event monitor when the activity completes.

For example, to collect information about any database activity that runs for more

than 3 hours, create a threshold like the following threshold:

CREATE THRESHOLD LONGRUNNINGACTIVITIES FOR DATABASE ACTIVITIES ENFORCEMENT DATABASE

WHEN ACTIVITYTOTALTIME > 3 HOURS COLLECT ACTIVITY DATA WITH DETAILS CONTINUE

You can then analyze the information that is written to the event monitor. DML

activities also have their statement text and compilation environment information

written to the event monitor, so you can run DB2 explain on them to further

investigate the performance of the activity.

Workload management performance modelling

The workload on your system can be modelled as a set of activities that arrive at

the system at a rate governed by an arrival rate distribution for activities (often

measured as its inverse, the inter-arrival time distribution) and the amount of time

activities spend executing in the system following a service time distribution.

Inter-arrival time is the time between the arrival of one activity and the arrival of

the next activity. Service time is the time that an activity spends executing on the

system. For example, if you submit a query at time 0 seconds, it spends 2 seconds

in a queue, and it finishes at time 5 seconds, the service time is 5 - 2 = 3 seconds.

Service time assumes no other work executing on the system (that is, it is not the

observed execution time, but rather the time it would take to execute the activity

Chapter 6. Monitoring and control 129

in isolation). The service time distribution can be approximated for DML activities

using the estimated cost in timerons, which considers both CPU and I/O time for

an activity.

You can build a workload model for your system by measuring the inter-arrival

time distribution and the service time distribution of the activities on the system.

Inter-arrival time distributions and approximate service time distributions (using

estimated cost) can be obtained by using extended aggregate activity statistics for

service subclasses or work classes (using work actions) and a statistics event

monitor. These statistics are not collected by default. See “Statistics for workload

management objects” on page 113 for more information.

Working with histograms

Creating a histogram template

Use the CREATE HISTOGRAM TEMPLATE statement to create a histogram

template. Histogram templates are used by service subclasses and work actions to

define the bin values for the statistics that are maintained using histograms.

To create a histogram template, you require SYSADM or DBADM authority.

See the following topics for more information about prerequisites:

v Appendix A, “Workload management DDL statement considerations,” on page

267

v Naming rules

Some DB2 service subclass, work class activity, and request statistics are collected

using histograms. All histograms have a set number of bins, and each bin

represents a range in which activities or requests are counted. The type of units

used for the bins depends on the type of histogram that you create. The histogram

template describes the high value of the second-to-last bin in the histogram, which

affects the values of all of the bins in the histogram. For more information on

histograms, see “Histograms in workload management” on page 117.

To create a histogram template:

1. Issue the CREATE HISTOGRAM TEMPLATE statement, specifying the name of

the histogram template that you want to create and a value for the HIGH BIN

VALUE keyword to set the top value for the second-to-last bin.

2. Commit your changes. When you commit your changes, the histogram is

added to the SYSCAT.HISTOGRAMTEMPLATES view and the bins are added

to the SYSCAT.HISTOGRAMTEMPLATEBINS view.

Altering a histogram template

Use the ALTER HISTOGRAM TEMPLATE statement to alter an existing histogram

template. Histogram templates are used by service subclasses and work actions to

define the bin values for the statistics that are maintained using histograms.

You require SYSADM or DBADM authority to alter a histogram template.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

130 Workload Manager Guide and Reference

Some DB2 service subclass, work class activity, and request statistics are collected

using histograms. All histograms have a set number of bins, and each bin

represents a range in which activities or requests are counted. The type of units

used for the bins depends on the type of histogram that you create. The histogram

template describes the high value of the second-to-last bin in the histogram, which

affects the values of all of the bins in the histogram. For more information on

histograms, see “Histograms in workload management” on page 117.

To alter a histogram template:

1. Issue the ALTER HISTOGRAM TEMPLATE statement, specifying the name of

the histogram template that you want to alter and a value for the HIGH BIN

VALUE parameter to alter the top value for the second-to-last bin.

2. Commit your changes. When you commit your changes the high bin value for

the histogram is updated in the SYSCAT.HISTOGRAMTEMPLATEBINS view.

The change does not take effect until the next time the workload management

statistics are reset. See “Resetting statistics on workload management objects”

on page 124 for more information.

3. Optional: Run the WLM_COLLECT_STATS stored procedure to collect and

reset the statistics so that the new histogram template is used immediately.

Dropping a histogram template

You can drop a histogram template if you no longer require it.

To drop a histogram template, you require SYSADM or DBADM authority.

See Appendix A, “Workload management DDL statement considerations,” on page

267 for more information about prerequisites.

You cannot drop the SYSDEFAULTHISTOGRAM histogram template.

You cannot drop a histogram template if it is being referenced by a service subclass

or a work action. You can view the service subclasses and work actions that

reference a histogram template by querying the

SYSCAT.HISTOGRAMTEMPLATESUSE view.

To drop a histogram template:

1. Use the DROP HISTOGRAM TEMPLATE statement.

2. Commit your changes. When you commit your changes the histogram is

removed from the SYSCAT.HISTOGRAMTEMPLATES view, and its bins are

removed from the SYSCAT.HISTOGRAMTEMPLATEBINS view.

Chapter 6. Monitoring and control 131

132 Workload Manager Guide and Reference

Part 4. Examples

© Copyright IBM Corp. 2007, 2008 133

134 Workload Manager Guide and Reference

Chapter 7. Workload management examples

Example: Using service classes

The following example shows how to use service classes to control database

workload.

This example occurs in the fictitious International Beer Emporium. International

Beer Emporium is a medium-sized business made up of five major departments:

Sales, Accounting, Engineering, Testing and Production. All five departments share

the same product catalog database.

Initial implementation of the workload management solution

The product catalog database runs well most of the time. However, sometimes

users complain that their applications cannot connect to the database because the

maximum number of connections has been exceeded. After migrating to DB2

Version 9.5, Bob, the database administrator, decides to try service classes. Bob

wants to know the usage patterns of the product catalog database by each of the

five departments and figure out why his database runs out of connections

occasionally. Following are the steps Bob follows to set up the service classes:

1. First, Bob creates service superclasses for each of the departments (the default

service subclass is also automatically created for each service superclass):

v SALES is created for the Sales department:

CREATE SERVICE CLASS SALES

v ACCOUNTING is created for the Accounting department:

CREATE SERVICE CLASS ACCOUNTING

v ENGINEERING is created for the Engineering department:

CREATE SERVICE CLASS ENGINEERING

v TESTING is created for the Testing department:

 CREATE SERVICE CLASS TESTING

v PRODUCTION is created for the Production department:

CREATE SERVICE CLASS PRODUCTION

2. Bob creates session user groups with appropriate authorization IDs for each of

the departments:

v A session user group is created with the authorization ID SALESGRP. This

group includes the authorization IDs of all users in the Sales department.

v A session user group is created with the authorization ID ACCTNGRP. This

group includes the authorization IDs of all users in the Accounting

department.

v A session user group is created with the authorization ID ENGINGRP. This

group includes the authorization IDs of all users in the Engineering

department.

v A session user group is created with the authorization ID TESTGRP. This

group includes the authorization IDs of all users in the Testing department.

v A session user group is created with the authorization ID PRODGRP. This

group includes the authorization IDs of all users in the Production

department.

© Copyright IBM Corp. 2007, 2008 135

3. Bob creates workloads to map connections from each group to the associated

service class:

v Workload WL_SALES is created with its session user group set to

SALESGRP. WL_SALES maps its connections to the service superclass

SALES:

CREATE WORKLOAD WL_SALES SESSION_USER GROUP (’SALESGRP’)

SERVICE CLASS SALES

v Workload WL_ACCOUNTING is created with its session user group set to

ACCTNGRP. WL_ACCOUNTING maps its connections to the service

superclass ACCOUNTING:

CREATE WORKLOAD WL_ACCOUNTING SESSION_USER GROUP (’ACCTNGRP’)

SERVICE CLASS ACCOUNTING

v Workload WL_ENGINEERING is created with its session user group set to

ENGINGRP. WL_ENGINEERING maps its connections to service class

ENGINEERING:

CREATE WORKLOAD WL_ENGINEERING SESSION_USER GROUP (’ENGINGRP’)

SERVICE CLASS ENGINEERING

v Workload WL_TEST is created with its session user group set to TESTGRP.

WL_TEST maps its connections to service class TESTING:

CREATE WORKLOAD WL_TEST SESSION_USER GROUP (’TESTGRP’)

SERVICE CLASS TESTING

v Workload WL_PRODUCTION is created with its session user group set to

PRODGRP. WL_PRODUCTION maps its connections to service class

PRODUCTION:

CREATE WORKLOAD WL_PRODUCTION SESSION_USER GROUP (’PRODGRP’)

SERVICE CLASS PRODUCTION

Bob uses the default service class and workload settings. He wants to observe the

database usage patterns before placing any controls on the service classes. The

resulting service superclass definitions are as follows:

 Table 17. Service class definitions

Service class

SALES

ACCOUNTING

ENGINEERING

TESTING

PRODUCTION

SYSDEFAULTUSERCLASS

SYSDEFAULTMAINTENANCECLASS

SYSDEFAULTSYSTEMCLASS

With the workload management solution implemented as described above, work

from each department is routed to its own service superclass. Work from

departments not specifically accounted for is mapped to the

SYSDEFAULTUSERCLASS default service superclass. Using this configuration, Bob

can monitor the work in each of the service classes to determine the database

usage pattern of the departments.

136 Workload Manager Guide and Reference

First refinement of the workload management implementation

Following the most recent connection spike, Bob queries service superclass

statistics using the WLM_GET_SERVICE_SUPERCLASS_STATS table function and

examines the connection high-water mark value for each service superclass. Bob

discovers that the connection high-water mark for all departments except Testing is

close to 100. However, the statistic for the Testing department shows that at one

time, the test team established over 800 connections

Once a month, the Testing department performs its monthly intensive product

testing. At this time, the department establishes up to 1000 concurrent connections.

Because the database manager configuration parameter max_connections is set to

1000, the Testing department uses most of the available connections to the

database. When the system has 1000 connections, all subsequent connections are

rejected.

Because of memory constraints on the system, the max_connections and

maxagents configuration values cannot be increased on the data server to allow for

more connections.

To prevent the Testing department from using all the connections, Bob decides to

limit the number of connections from the Testing department and ensure that each

of the other four departments can obtain sufficient connections to the database to

meet their business objectives.

The other four departments ordinarily do not require more than 150 concurrent

connections each. In addition, Bob also notices that the default user, default

maintenance, and default system service superclasses rarely contain any

connections, so he decides that 100 connections should be sufficient for these

default service superclasses. After 700 connections (600 for the four departments

and 100 for the default classes) are allocated from the max_connections pool of

1 000 available connections, 300 connections are available for the Testing

department. By limiting the Testing department to a maximum of 300 connections,

users from other departments should not have their connection requests rejected.

To limit the Testing group to a maximum of 300 concurrent connections, Bob

creates a MAXSERVICECLASSCONNECTIONS threshold of 300 for the TESTING

service class.

CREATE THRESHOLD MAXSERVICECLASSCONNECTIONS FOR SERVICE CLASS TESTING ACTIVITIES

ENFORCEMENT DATABASE PARTITION

WHEN TOTALSCPARTITIONCONNECTIONS > 300 STOP EXECUTION

After implementing this change, the workload management configuration is as

follows:

 Table 18. Configuration after adding threshold for the TESTING service superclass

Service class

MAXSERVICECLASSCONNECTIONS

threshold

SALES N/A

ACCOUNTING N/A

ENGINEERING N/A

TESTING 300

PRODUCTION N/A

SYSDEFAULTUSERCLASS N/A

Chapter 7. Workload management examples 137

Table 18. Configuration after adding threshold for the TESTING service

superclass (continued)

Service class

MAXSERVICECLASSCONNECTIONS

threshold

SYSDEFAULTMAINTENANCECLASS N/A

Because the TESTING service class can contain a maximum of only 300 concurrent

connections, all connection requests above this threshold are rejected. A

MAXSERVICECLASSCONNECTIONS threshold is not applied on the other service

classes, so these service classes share the remaining 700 available connections to

the data server. Because there is no contention for connections among these service

classes, Bob does not place connection thresholds on them.

Second refinement of the workload management implementation

Although connections from the Sales, Accounting, Engineering, and Production

departments are no longer being rejected, users from these departments still

complain about poor performance when the Testing department performs intensive

product testing. Bob examines the queries that the Testing department runs during

its product test cycle and discovers that the queries contain complicated joins that

involve large amounts of data. These queries generate considerable prefetch

activity, which prevents connections from other departments having their prefetch

requests processed. Bob decides to lower the prefetch priority of the connections

from the Testing department and alters the TESTING service class to set its

prefetch priority to LOW:

ALTER SERVICE CLASS TESTING PREFETCH PRIORITY LOW

The workload management configuration is as follows:

 Table 19. Configuration after changing prefetch priority for the TESTING service superclass

Service class

MAXSERVICECLASSCONNECTIONS

threshold Prefetch priority

SALES N/A DEFAULT

ACCOUNTING N/A DEFAULT

ENGINEERING N/A DEFAULT

TESTING 300 LOW

PRODUCTION N/A DEFAULT

SYSDEFAULTUSERCLASS N/A DEFAULT

SYSDEFAULTMAINTENANCECLASS N/A DEFAULT

Setting the prefetch priority of the TESTING service class to LOW causes prefetch

requests from connections issued from the Testing department to be serviced only

after all prefetch requests from the other departments are processed. This change

increases the query throughput of the other departments and decreases the

throughput of the Testing department during its product testing phase.

Third refinement of the workload management implementation

After the prefetch problem is resolved, the Engineering department tells Bob that it

needs a few connections for an experimental application called Brewmeister.

Because the application is experimental, Bob wants to ensure that it does not

138 Workload Manager Guide and Reference

consume too many database connections and that queries from the application will

not compete for prefetchers when the system is busy. To accomplish these

objectives, he creates a new service subclass under the ENGINEERING service

superclass for the experimental application and a workload to map connections

from the application to the new service subclass. Bob updates the service class and

workloads as follows:

v Service subclass EXPERIMENT is created under the service superclass

ENGINEERING:

CREATE SERVICE CLASS EXPERIMENT UNDER ENGINEERING

v Threshold MAXSERVICECLASSCONNECTIONS of 50 is created for the service

subclass EXPERIMENT:

CREATE THRESHOLD MAXSERVICECLASSCONNECTIONS FOR SERVICE CLASS EXPERIMENT

UNDER ENGINEERING ACTIVITIES

ENFORCEMENT DATABASE WHEN TOTALDBPARTITIONCONNECTIONS > 50 STOP EXECUTION

v Workload WL_EXPERIMENT is created to map connections from the application

BREWMEISTER to the service subclass EXPERIMENT:

CREATE WORKLOAD WL_EXPERIMENT APPLNAME (’BREWMEISTER’) SERVICE CLASS EXPERIMENT

UNDER ENGINEERING

v The prefetch priority for the EXPERIMENT service subclass is set to LOW:

ALTER SERVICE CLASS EXPERIMENT UNDER ENGINEERING PREFETCH PRIORITY LOW

The workload management configuration is as follows:

 Table 20. Configuration with EXPERIMENT service subclass

Service class

MAXSERVICECLASSCONNECTIONS

threshold Prefetch priority

SALES N/A DEFAULT

ACCOUNTING N/A DEFAULT

ENGINEERING N/A DEFAULT

EXPERIMENT 50 LOW

TESTING 300 LOW

PRODUCTION N/A DEFAULT

SYSDEFAULTUSERCLASS N/A DEFAULT

SYSDEFAULTMAINTENANCECLASS N/A DEFAULT

With this configuration, the BREWMEISTER application can only maintain 50

concurrent connections to the database. In addition, prefetch requests from this

application are sent to the low priority prefetch queue. The Engineering

department can now safely experiment with the application, knowing that it

cannot accidentally overwhelm the database system.

Example: Workload assignment

At the beginning of the first unit of work after a database connection is

established, the data server assigns the connection to a workload by evaluating the

connection attributes of each workload that is enabled. Workload reevaluation

occurs at the beginning of each unit of work if the value of a connection attribute

or the workload definition itself changes during the unit of work.

The following figure shows a workload assignment. Users in the Marketing group

who submit queries through AppA are assigned to the APPAQUERIES workload.

Chapter 7. Workload management examples 139

They are not assigned to the PAYROLL workload, even though PAYROLL is

positioned before APPAQUERIES, because the definition of workload PAYROLL

specifies the SESSION_USER GROUP keyword as Finance. Users in the Finance

group who submit queries through AppA are assigned to the FINANCE workload.

They are not assigned to the PAYROLL workload, even though it is more specific

and specifies both AppA and Finance in its definition, because the FINANCE

workload is positioned before the PAYROLL workload. Users in the Marketing

group who submit queries through AppB are assigned to the

SYSDEFAULTUSERWORKLOAD workload, because none of the connection

attributes specified in the FINANCE, PAYROLL, or APPAQUERIES workload

definitions match the AppB application or Marketing group.

�1�In the preceding figure, the CREATE WORKLOAD statements are as follows:

CREATE WORKLOAD PAYROLL APPLNAME (’AppA’) SESSION_USER GROUP (’FINANCE’)

SERVICE CLASS SC1

CREATE WORKLOAD APPAQUERIES APPLNAME(’AppA’) POSITION LAST

SERVICE CLASS SC2

CREATE WORKLOAD FINANCE SESSION_USER GROUP (’FINANCE’) SERVICE CLASS SC1

POSITION BEFORE PAYROLL

In a three-tier client/server environment, the database connection is established by

the application server that is working on behalf of the clients. The application

server can use the sqleseti (set client information) API to pass client information to

the DB2 data server; otherwise, only the information from the application server is

Finance
group

Database

AppA AppA AppB

SYSCAT.WORKLOADS

Workload occurrence
of FINANCE

Workload occurrence of
SYSDEFAULTUSERWORKLOAD

Workload occurrence
of APPAQUERIES

FINANCE
PAYROLL
APPAQUERIES
SYSDEFAULTUSERWORKLOAD
SYSDEFAULTADMWORKLOAD

1

Marketing
group

Figure 25. Example of workload assignment

140 Workload Manager Guide and Reference

passed, and that information is likely to be the same for all client requests that are

routed through this application server. When the data server assigns units of work

from different clients to different workloads (and to different service classes), the

data server uses the client information attributes (that is, the client user ID, client

application name, client workstation name, and client accounting string) as criteria

for associating a unit of work with a workload.

The following figure shows an example of a three-tier environment where queries

are submitted by different user applications, (marketing.exe, auditing.exe, and

reporting.exe), through an application server that establishes a connection to the

database using the session user APPUSER. Three workloads are defined: one for

queries submitted by marketing.exe, one for queries submitted by reporting.exe,

and one for the rest of the queries. As shown in the figure, to assign queries

submitted by marketing.exe to the MARKETING workload, the application server

calls the sqleseti API to set the value of the CURRENT CLIENT_APPLNAME

special register to marketing.exe. Similarly, to assign queries submitted by

reporting.exe to the REPORTING workload, the server calls sqleseti to set the

value of the CURRENT CLIENT_APPLNAME special register to reporting.exe.

Note that in the figure, when the server calls sqleseti to set the CURRENT

CLIENT_USERID special register to Lidia (with nothing else changing; that is, the

client application name is still set to reporting.exe), no workload reassignment

occurs because there is no workload defined specifically with the CURRENT

CLIENT_USERID set to Lidia.

Chapter 7. Workload management examples 141

The following statements are used to define the workloads specified in box �1� in

the previous figure:

CREATE WORKLOAD MARKETING SESSION_USER (’APPUSER’)

CURRENT CLIENT_APPLNAME (’marketing.exe’) SERVICE CLASS SC2

POSITION AT 1

CREATE WORKLOAD REPORTING SESSION USER (’APPUSER’)

CURRENT CLIENT_APPLNAME (’reporting.exe’) SERVICE CLASS SC4

1

Application
server

Database

SYSCAT.WORKLOADS

MARKETING
REPORTING
APPSERVER
SYSDEFAULTUSERWORKLOAD
SYSDEFAULTADMWORKLOAD

Connect

marketing.exe audit.exereporting.exe

CONNECT TO SAMPLE
USER APPUSER USING …

Set client application name to marketing.exe
Query 1
Query 2
Set client application name to reporting.exe
COMMIT

Query 3
Query 4
COMMIT

Query 5
Set client user ID to Lidia
Query 6
COMMIT

Query 7
Query 8
Query 9
…

Occurrence of
MARKETING

Occurrence of
REPORTING

Figure 26. Example of workload assignment in a three-tier environment

142 Workload Manager Guide and Reference

POSITION AFTER MARKETING

CREATE WORKLOAD APPSERV SESSION_USER (’APPUSER’)

SERVICE CLASS SC1

Example: Workload assignment when workload attributes have single

values

The example in this topic shows how the data server performs workload

assignment. In this example, only one value is specified for each workload

connection attribute.

Assume that the following workloads exist in the catalog:

 Table 21. Workloads in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

 CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 REPORTS AppA

2 INVENTORY

REPORT

AppB LYNN ACCOUNTING TELEMKTR

3 SALES REPORT AppC KATE KATE SALESREP

4 AUDIT REPORT AppB ACCOUNTING FINANALYST

5 EXPENSE

REPORT

AppA TIM EXPENSE

APPROVER

6 AUDIT RESULT LYNN LYNN Audit Group

Assume that a database connection with the following attributes is established:

 Table 22. Database connection attributes

APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

 CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

AppA TIM TIM FINANCE FINANALYST,

EXPENSE

APPROVER

NULL NULL NULL Business account

When the first unit of work is submitted, the data server checks each workload in

the catalog, starting with the first workload in the list, and processes the

workloads in ascending order until it finds a workload with matching attributes.

When a matching workload is found, the unit of work runs under an occurrence of

that workload. When determining which workload to assign the connection to, the

data server compares the connection attributes in deterministic order.

The data server first checks the REPORTS workload for a match. The REPORTS

workload is first in the list.

 Table 23. REPORTS workload in the catalog

Evaluation

order

Workload

name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

 CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 REPORTS AppA

The data server checks the connection attributes in the following deterministic

order:

1. APPLNAME. The value of APPLNAME, AppA, for the database connection

matches the value of APPLNAME for the REPORTS workload.

2. SYSTEM_USER, which is not set in the workload definition. Any value

(including a null value) is considered a match.

3. SESSION_USER, which is not set in the workload definition. Any value is

considered a match.

Chapter 7. Workload management examples 143

4. SESSION_USER GROUP, which is not set in the workload definition. Any value

is considered a match.

5. SESSION_USER ROLE, which is not set in the workload definition. Any value

is considered a match.

6. CURRENT CLIENT_USERID, which is not set in the workload definition. Any

value is considered a match.

7. CURRENT CLIENT_APPLNAME, which is not set in the workload definition.

Any value is considered a match.

8. CURRENT CLIENT_WRKSTNNAME, which is not set in the workload

definition. Any value is considered a match.

9. CURRENT CLIENT_ACCTNG, which is not set in the workload definition. Any

value is considered a match.

In this situation, because of the explicit and implicit matches between the

connection attributes of the REPORTS workload and the information passed on the

connection, the data server selects the REPORTS workload as a potential match.

After selecting a workload, the data server then checks whether the session user

has the USAGE privilege on the workload. Assuming that the session user TIM has

the USAGE privilege on the REPORTS workload, that workload is used for the

connection. If, however, TIM does not possess the USAGE privilege on the

REPORTS workload, the data server continues by checking the

INVENTORYREPORT workload for a match.

Assume that you want TIM to be assigned to the EXPENSEREPORT workload

because that workload has additional connection attributes specified. In this

situation, you would alter the evaluation order of the workloads to position

EXPENSEREPORT before REPORTS in the workload list:

ALTER WORKLOAD EXPENSEREPORT POSITION AT 1

You could also use the following SQL statement to achieve the same result:

ALTER WORKLOAD EXPENSEREPORT BEFORE REPORTS

To ensure that the ALTER WORKLOAD statement takes effect, you must

immediately issue a COMMIT statement after the ALTER WORKLOAD statement.

The effect of the ALTER WORKLOAD statement on the catalog is as follows:

 Table 24. Workloads in the catalog after repositioning the EXPENSEREPORT workload

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

 CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 EXPENSE

REPORT

AppA TIM EXPENSE

APPROVER

2 REPORTS AppA

3 INVENTORY

REPORT

AppB LYNN ACCOUNTING TELEMKTR

4 SALES REPORT AppC KATE KATE SALESREP

5 AUDIT REPORT AppB ACCOUNTING FINANALYST

6 AUDIT RESULT LYNN LYNN Audit Group

If TIM does not already have the USAGE privilege on the EXPENSEREPORT

workload, you must issue the following statements (the COMMIT statement

ensures that the GRANT statement takes effect):

GRANT USAGE ON WORKLOAD EXPENSEREPORT TO USER TIM

COMMIT

At the beginning of the next unit of work, workload reassignment occurs, and the

data server assigns the connection from TIM to the EXPENSEREPORT workload.

144 Workload Manager Guide and Reference

In addition, new units of work submitted by other connections that have the same

attributes are also associated with the EXPENSEREPORT workload.

Example: Workload assignment for a unit of work when multiple

workloads exist

The example in this topic shows how the data server performs workload

evaluation to assign the connection to an existing workload.

Assume that the following workloads are defined in the catalog:

 Table 25. Workloads in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 EXPENSE REPORT AppB TIM EXPENSE

APPROVER

2 REPORTS AppB

3 INVENTORYREPORT AppA LYNN ACCOUNTING TELEMKTR

4 SALES REPORT AppC KATE KATE SALESREP

5 AUDIT REPORT AppA ACCOUNTING FINANALYST

6 AUDIT RESULT LYNN LYNN Audit Group

Suppose that a database connection with the following attributes is established:

 Table 26. Database connection attributes

APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

AppA LYNN LYNN ACCOUNTING FINANALYST,

SALESREP

LYNN NULL wrkstn2 Audit group

When the first unit of work is submitted, the data server checks each workload in

the catalog in ascending evaluation order and stops when it finds a workload

whose connection attributes match those supplied by the connection. When it

checks the workloads, the data server compares the connection attributes in

deterministic order.

First, the data server checks the EXPENSEREPORT workload:

 Table 27. EXPENSEREPORT workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 EXPENSEREPORT AppB TIM EXPENSE

APPROVER

Because the APPLNAME attribute in the workload definition is AppB but the

APPLNAME attribute passed by the connection is AppA, no match is possible. The

data server proceeds to the REPORTS workload, which is second in the list:

 Table 28. REPORTS workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

2 REPORTS AppB

Again, the APPLNAME attribute in the workload definition is AppB, which does

not match AppA. The data server proceeds to the third workload in the list,

INVENTORYREPORT:

Chapter 7. Workload management examples 145

Table 29. INVENTORYREPORT workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

3 INVENTORYREPORT AppA LYNN ACCOUNTING TELEMKTR

The data server checks for a match between the submitted connection attributes

and the INVENTORYREPORT workload. The attributes are checked in the

following order:

1. APPLNAME. Both the workload definition and the connection have a value of

AppA, so a match occurs.

2. SYSTEM_USER. Both the workload definition and the connection have a value

of LYNN, so a match occurs.

3. SESSION_USER. The connection passed a value of LYNN. Because the

SESSION_USER attribute is not set for the workload, any value, including a

null value, that is passed by the connection matches.

4. SESSION_USER GROUP. Both the workload definition and the connection have

a value of ACCOUNTING, so a match occurs.

5. SESSION_USER ROLE. The workload definition specifies the value TELEMKTR,

but the connection supplied the values of FINANALYST and SALESREP. No match

occurs for this attribute.

The data server stops trying to match the INVENTORYREPORT workload and the

connection attributes and proceeds to the fourth workload in the list,

SALESREPORT:

 Table 30. SALESREPORT workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

4 SALESREPORT AppC KATE KATE SALESREP

Because the APPLNAME of the SALESREPORT workload definition is AppC, no

match occurs with the connection (which passed a value of AppA for APPLNAME).

The data server then proceeds to the fifth workload in the list, AUDITREPORT:

 Table 31. AUDITREPORT workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

5 AUDITREPORT AppA ACCOUNTING FINANALYST

The data server compares the attributes of the AUDITREPORT workload and the

connection in the deterministic order:

1. APPLNAME. Both the workload definition and the connection have a value of

AppA, so a match occurs.

2. SYSTEM_USER. The connection passed a value of LYNN. Because the

SYSTEM_USER attribute is not set for the workload, any value passed by the

connection matches.

3. SESSION_USER. The connection passed a value of LYNN. Because the

SESSION_USER attribute is not set for the workload, any value passed by the

connection matches.

4. SESSION_USER GROUP. Both the workload and the connection have a value of

ACCOUNTING for this attribute, so a match occurs.

5. SESSION_USER ROLE. Both the workload and the connection have a value of

FINANALYST for this attribute, so a match occurs.

146 Workload Manager Guide and Reference

6. CURRENT CLIENT_USERID. Because the CURRENT CLIENT_USERID

attribute is not set for the workload, any value passed by the connection

matches.

7. CURRENT CLIENT_APPLNAME. Because the CURRENT

CLIENT_APPLNAME attribute is not set for the workload, any value passed

by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT

CLIENT_WRKSTNNAME attribute is not set for the workload, any value

passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Because the CURRENT CLIENT_ACCTNG

attribute is not set for the workload, any value passed by the connection

matches.

After processing all the connection attributes and finding a matching workload, the

data server checks whether the session user has the USAGE privilege on the

workload. Assume that LYNN does not have the USAGE privilege on the

AUDITREPORT workload. In this situation, although all of the connection

attributes match, this workload is not associated with the connection. The data

server proceeds to the sixth workload in the evaluation list, AUDITRESULT:

 Table 32. AUDITRESULT workload in the catalog

Evaluation

order

Workload

name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURRENT

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

6 AUDITRESULT LYNN LYNN Audit Group

The data server compares the attributes of the AUDITRESULT workload and the

connection in the deterministic order:

1. APPLNAME. Because the APPLNAME attribute is not set for the workload,

any value passed by the connection matches.

2. SYSTEM_USER. Because the SYSTEM_USER attribute is not set for the

workload, any value passed by the connection matches.

3. SESSION_USER. Both the workload and the connection have a value of LYNN

for this attribute, so a match occurs.

4. SESSION_USER GROUP. Because the SESSION_USER GROUP attribute is not

set for the workload, any value passed by the connection matches.

5. SESSION_USER ROLE. Because the SESSION_USER ROLE attribute is not set

for the workload, any value passed by the connection matches.

6. CURRENT CLIENT_USERID. Both the workload and the connection have a

value of LYNN for this attribute, so a match occurs.

7. CURRENT CLIENT_APPLNAME. Because the CURRENT

CLIENT_APPLNAME attribute is not set for the workload, any value passed

by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT

CLIENT_WRKSTNNAME attribute is not set for the workload, any value

passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Both the workload and the connection have a

value of Audit Group for this attribute, so a match occurs.

After processing all of the connection attributes and finding a matching workload,

the data server checks whether the session user has the USAGE privilege on the

workload. In this situation, assume that the session user LYNN has the USAGE

Chapter 7. Workload management examples 147

privilege on the AUDITRESULT workload. Because all of the connection attributes

match and the session user has the USAGE privilege, the connection is assigned to

the AUDITRESULT workload.

Example: Workload assignment when workload attributes have

multiple values

The example in this topic shows how the data server performs workload

assignment. In this example, some of the workload definitions allow more than

one value for a connection attribute.

Assume that the following workloads are defined in the catalog:

 Table 33. Workloads in the catalog

Evaluation

order

Workload

name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURREN

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 ITEMINQ KYLE,

GEORGE

RETAIL, SALES

2 DAILY TRANS

REPORT

AppC KYLE, CAROL SALES,

ACCOUNTING

3 SALES

SUMMARY

AppA, AppB ACCOUNTANT,

FINANALYST

Assume that a database connection with the following attributes is established:

 Table 34. Database connection attributes

APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURREN

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

AppC LINDA KYLE SALES ACCOUNTANT LINDA NULL NULL Business Account

When the first unit of work is submitted, the data server checks each workload in

the catalog in ascending evaluation order and stops when it finds a workload

whose connection attributes match those supplied by the connection. When it

checks the workloads, the data server compares the connection attributes in

deterministic order.

First, the data server checks the ITEMINQ workload:

 Table 35. ITEMINQ workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURREN

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

1 ITEMINQ KYLE, GEORGE RETAIL, SALES

The data server checks for a match between the submitted connection attributes

and the ITEMINQ workload. The attributes are checked in the following order:

1. APPLNAME. Because the APPLNAME attribute is not set for the workload,

any value, including a null value, that is passed by the connection matches.

2. SYSTEM_USER. The connection passed a value of LINDA. However, the

ITEMNO workload values are KYLE and GEORGE. No match occurs for this

attribute.

The data server stops trying to match the ITEMNO workload and the connection

and proceeds to the second workload in the list, DAILYTRANSREPORT:

148 Workload Manager Guide and Reference

Table 36. DAILYTRANSREPORT workload in the catalog

Evaluation

order Workload name APPLNAME

SYSTEM

_USER

SESSION

_USER

SESSION

_USER

GROUP

SESSION

_USER

ROLE

CURRENT

CLIENT

_USERID

CURRENT

CLIENT

_APPLNAME

CURREN

CLIENT

_WRKSTNNAME

CURRENT

CLIENT

_ACCTNG

2 DAILYTRANSREPORT AppC KYLE,

CAROL

SALES,

ACCOUNTING

The data server compares the attributes of the DAILYTRANSREPORT workload

and the connection in deterministic order:

1. APPLNAME. Both the workload definition and the connection have a value of

AppC, so a match occurs.

2. SYSTEM_USER. Because the SYSTEM_USER attribute is not set for the

workload, any value, including a null value, that is passed by the connection

matches.

3. SESSION_USER. The SESSION_USER value passed on the connection is KYLE,

which is a match with one of the workload SESSION_USER values. If the

connection had passed CAROL, this would also be a match because both KYLE

and CAROL are specified as part of the DAILYTRANSREPORT workload

definition.

4. SESSION_USER GROUP. The SESSION_USER GROUP value passed on the

connection is SALES, which matches the SALES value specified for the workload

SESSION_USER GROUP attribute. If the connection had passed ACCOUNTING,

this would also be a match because both SALES and ACCOUNTING are specified in

the workload definition.

5. SESSION_USER ROLE. Because the SESSION_USER ROLE attribute is not set

for the workload, any value passed by the connection matches.

6. CURRENT CLIENT_USERID. Because the CURRENT CLIENT_USERID

attribute is not set for the workload, any value passed by the connection

matches.

7. CURRENT CLIENT_APPLNAME. Because the CURRENT

CLIENT_APPLNAME attribute is not set for the workload, any value passed

by the connection matches.

8. CURRENT CLIENT_WRKSTNNAME. Because the CURRENT

CLIENT_WRKSTNNAME attribute is not set for the workload, any value

passed by the connection matches.

9. CURRENT CLIENT_ACCTNG. Because the CURRENT

CLIENT_WRKSTNNAME attribute is not set for the workload, any value

passed by the connection matches.

After processing all of the connection attributes and finding a matching workload

for the connection, the data server checks whether the session user has the USAGE

privilege on the workload. In this situation, assume that the session user KYLE has

the USAGE privilege on the DAILYTRANSREPORT workload. Because all

connection attributes match and the session user has the USAGE privilege, the

connection is assigned to the DAILYTRANSREPORT workload.

Example: Using thresholds

You can use thresholds for a variety of purposes. In the scenario in this topic,

thresholds are used to control the number of large jobs running, allow for different

execution times for different applications, and control the behavior of an

application that is in development.

One way of setting up a workload management solution is to divide and manage

the database resources across the various departments in a company. For example,

Chapter 7. Workload management examples 149

assume that the sales department runs two main reports, which consist of the

monthly and yearly sales. Assume also that the human resources department runs

a payroll application every other week and that the development team is working

on a new type of report at the request of the management team.

In this situation, you create a workload definition for each one of these

applications to map the application to its applicable service superclass. The

database catalogs therefore contains the following workload definitions:

v MonthlySales, mapping to the service superclass Sales

v YearlySales, mapping to the service superclass Sales

v Payroll, mapping to the service superclass Human Resources

v NewReport, mapping to the service superclass Development

Threshold on the number of large jobs

Because the YearlySales report is very large, you do not want to have more than

one occurrence of this application running in the database at any time. You

therefore create a threshold to set the maximum number of concurrent occurrences

of this workload to 1.

You can achieve a similar solution by associating the YearlySales application with a

service subclass YearlySalesReports (under the Sales service superclass) and setting

the maximum concurrency threshold to a value of 1 for the service subclass.

In either situation, you can set the threshold action to STOP EXECUTION to

prevent more than one occurrence of the workload from executing. You can also

collect activity information if you want additional information about the conditions

when the threshold is violated.

Threshold on activity lifetimes

Because all applications are expected to complete running in an hour or less, you

create a threshold with a database domain, disallowing any activity from running

longer than 1 hour. The only exception to this rule is the yearly report, which can

take up to 5 hours to complete. Therefore, you create a new service subclass under

the Sales service superclass and call it YearlySalesReports. You then map the

YearlySales workload to this service subclass, create an activity total time threshold

of 5 hours, and associate this threshold with the service subclass. The new value of

5 hours now applies to the YearlySalesReports service subclass, although the global

value of 1 hour applies elsewhere in the database.

Threshold on the number of coordinator and nested activities

The NewReport application makes heavy use of stored procedures and

user-defined functions and is not fully debugged yet, so it tends to generate large

numbers of activities that impact the rest of the system. After consulting with the

developer, you learn that this new report is not supposed to generate more than 20

activities in total, so you define a threshold of type workload activities on the

NewReport workload and set it to 20. Initially, you set the threshold action to

STOP EXECUTION and COLLECT ALL to stop any unwanted side effect of the

application starting large numbers of activities and to help the developer identify

any problems.

When the application becomes more stable, it enters its optimization phase. During

the phase, the developer tries to reduce the number of activities generated by the

150 Workload Manager Guide and Reference

application from between 15 and 20 to 15. At this time, you alter the threshold by

changing its upper boundary value to 15 and the threshold action to CONTINUE.

This threshold definition helps identify and address situations in which the

number of generated activities exceeds 15 but the increased stability of the

application does not require that its execution be stopped.

Example: CONCURRENTWORKLOADOCCURRENCES,

TOTALDBPARTITIONCONNECTIONS, and

TOTALSCPARTITIONCONNECTIONS thresholds

The example in this topic shows how the

CONCURRENTWORKLOADOCCURRENCES,

TOTALDBPARTITIONCONNECTIONS, and

TOTALSCPARTITIONCONNECTIONS aggregate thresholds interact.

Assume that a database connection is established on database partition 1. The

TOTALDBPARTITIONCONNECTIONS threshold is evaluated once to decide

whether this connection is allowed to connect to the database. When the evaluation

of this threshold is successful, TOTALDBPARTITIONCONNECTIONS is never

evaluated again for the same connection, which is now in the database. The

connection switches between workload A and B several times because the relevant

connection attributes were changed. Each time that the connection switches

workloads, it also potentially moves to a different service class. When an

occurrence of either workload is started, the

CONCURRENTWORKLOADOCCURRENCES threshold is evaluated. If this

threshold is not violated, the connection then joins the corresponding service class,

at which point the last threshold, TOTALSCPARTITIONCONNECTIONS, is

evaluated. At this point the connection might be queued before entering the service

class, before it can issue any work.

Example: Using a work class set to manage specific types of activities

The following example shows how to use a work class set to manage CALL and

DML activities.

Assume that you have a large number of applications running on your NONAME

database each day and lately a few performance issues have been occurring. To

deal with some of these issues, you decide that you need to be able to control the

number of large queries (that is, any query that has an estimated cost of greater

than 9999 timerons or an estimated cardinality of greater than 9999 rows) that can

run simultaneously on the database. You also want to be informed when the

number of CALL statements that call any routine in the MYSCHEMA schema is

greater than 5.

To control the number of large queries and CALL statements that can run on the

database, you would do the following:

1. Create a MYWORKCLASSSET work class set that contains three work classes:

one for queries with a large estimated cost, one for queries with a large

estimated cardinality, and one for CALL statements that call procedures in the

MYSCHEMA schema. For example:

CREATE WORK CLASS SET MYWORKCLASSSET

 (WORK CLASS LARGEESTIMATEDCOST WORK TYPE DML

FOR TIMERONCOST FROM 10000 TO UNBOUNDED,

Chapter 7. Workload management examples 151

WORK CLASS LARGECARDINALITY WORK TYPE DML

FOR CARDINALITY FROM 10000 TO UNBOUNDED,

WORK CLASS CALLSTATEMENTS WORK TYPE CALL ROUTINES IN SCHEMA MYSCHEMA)

2. Create a DATABASEACTIONS work action set that contains three work actions

that are to be applied to the work classes in the MYWORKCLASSSET work

class set at the database level

CREATE WORK ACTION SET DATABASEACTIONS FOR DATABASE

USING WORK CLASS SET LARGEQUERIES

(WORK ACTION ONECONCURRENTQUERY ON WORK CLASS LARGEESTIMATEDCOST

WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 1 STOP EXECUTION,

WORK ACTION TWOCONCURRENTQUERIES ON WORK CLASS LARGECARDINALITY

WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 3 STOP EXECUTION,

WORK ACTION FIVECALLS ON WORK CLASS CALLSTATEMENTS

WHEN CONCURRENTDBCOORDACTIVITIES > 5 COLLECT ACTIVITY DATA CONTINUE)

In addition, several large administrative applications run daily against the

database, and you want these applications to run in one resource pool. To

accomplish this goal, you would create a service superclass called ADMINAPPS for

these applications. For each application, you would create a workload to map it to

the ADMINAPPS service superclass.

Because it is important that the queries (SELECT statements) run quickly, you

decide to create a service subclass called SELECTS in the ADMINAPPS service

superclass for these queries.

To map the SELECT and XQuery statements to the SELECTS service subclass:

1. Create a SELECTDML work class set that contains a work class for all SELECT

statements that do not update the database:

CREATE WORK CLASS SET SELECTDML (WORK CLASS SELECTCLASS WORK TYPE READ)

2. Create an ADMINAPPSACTIONS work action set. This work action set

contains a work action that is to be applied to the work class in work class set

SELECTDML at the service superclass level

CREATE WORK ACTION SET ADMINAPPSACTIONS FOR SERVICE CLASS ADMINAPPS

USING WORK CLASS SET SELECTDML

(WORK ACTION MAPSELECTS ON WORK CLASS SELECTCLASS MAP ACTIVITY TO SELECTS)

Example: Working with a work class defined with the ALL keyword

This example shows how to work with a work class defined as ALL, which

potentially covers all recognized activities in the database.

When a work class with the type of ALL is used with a mapping work action, all

recognized database activity is mapped to the service subclass specified in the

work action. If a work class with the work type of ALL is used with a threshold

work action, the threshold type determines which database activities the threshold

applies to. Consider the following example.

Assume that you create a work class set called Example with the following work

classes. The evaluation order of the work class is as follows:

1. SMALLDML, which is for all DML-type SQL that has an estimated cost of less

than 1000 timerons.

2. LOADUTIL, which is for the load utility.

3. DDLACTIVITY, which is for all DDL activity

4. ALLACTIVITY, which is for all database activity

152 Workload Manager Guide and Reference

ALLACTIVITY is the last work class evaluated, and covers database activities that

do not correspond to the first three work classes.

The DDL for creating this work class set is:

CREATE WORK CLASS SET EXAMPLE

(WORK CLASS SMALLDML WORK TYPE DML FOR TIMERONCOST FROM 0 TO 999,

WORK CLASS LOADUTIL WORK TYPE LOAD, WORK CLASS DDLACTIVITY WORK TYPE DDL,

WORK CLASS ALLACTIVITY WORK TYPE ALL)

Assume that you have a service superclass called EXAMPLESERVICECLASS, and

it has two service subclasses called SMALLACTIVITY and OTHERACTIVITY. You

want to set up the system so that all small database activities run in the

SMALLACTIVITY service subclass, and all other recognized database activities,

except for the load utility, run in the OTHERACTIVITY service subclass. You do

not want to remap the load utility to any other service subclass, but instead want it

to run in the default service subclass.

To accomplish these goals, you would set up a work action set,

SERVICECLASSACTIONS for the EXAMPLESERVICECLASS service superclass.

The SERVICECLASSACTIONS work action set would contain the following work

actions.

 Table 37. SERVICECLASSACTIONS work action set

Work action Work class applied to Action

MAPDML SMALLDML Maps to the

SMALLACTIVITY service

subclass

MAPOTHER ALLACTIVITY Maps to the

OTHERACTIVITY service

subclass

COUNTLOAD LOADUTIL Counts the number of LOAD

activities

The DDL to create this work action set is:

CREATE WORK ACTION SET SERVICECLASSACTIONS FOR SERVICE CLASS EXAMPLESERVICECLASS

USING WORK CLASS SET EXAMPLE

(WORK ACTION MAPDML ON WORK CLASS SMALLDML MAP ACTIVITY TO SMALLACTIVITY,

WORK ACTION MAPOTHER ON WORK CLASS ALLACTIVITY MAP ACTIVITY TO OTHERACTIVITY,

WORK ACTION COUNTLOAD ON WORK CLASS LOADUTIL COUNT ACTIVITY)

Using this configuration, all small DML runs under the SMALLACTIVITY service

subclass. The COUNTLOAD work action is applied to the LOADUTIL work class,

which runs under the default service subclass. All other recognized database

activities run under the OTHERACTIVITY service subclass. If no work action were

applied to the LOADUTIL work class, LOAD activities would fall under the

ALLACTIVITY work class and have the MAPOTHER work action applied to them

(when a work class does not have a work action applied to it, no activity is

classified under that work class).

Note: If the ALLACTIVITY work class were at the top of the evaluation order, all

recognized activities would be mapped to the OTHERACTIVITY service subclass.

Now assume that you want to define a work action set for the database and apply

thresholds that control what is allowed to run concurrently on the system. You

Chapter 7. Workload management examples 153

could create a work action set called DATABASEACTIONS that contains the

following work actions. The DML for creating this work action set is:

CREATE WORK ACTION SET DATABASEACTIONS FOR DATABASE USING WORK CLASS SET EXAMPLE

(WORK ACTION CONCURRENTSMALLDML ON WORK CLASS SMALLDML

WHEN CONCURRENTDBCOORDACTIVITIES > 1000 AND QUEUEDACTIVITIES > 10000

COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION CONCURRENTLOAD ON WORK CLASS LOADUTIL

WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 10

COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION CONCURRENTOTHER ON WORK CLASS ALLACTIVITY

WHEN CONCURRENTDBCOORDACTIVITIES > 100 AND QUEUEDACTIVITIES > 100

COLLECT ACTIVITY DATA STOP EXECUTION,

WORK ACTION MAXCOSTALLOWED ON WORK CLASS ALLACTIVITY

WHEN ESTIMATEDSQLCOST > 1000000 COLLECT ACTIVITY DATA STOP EXECUTION)

 Table 38. DATABASEACTIONS work action set

Work action Work class applied to Threshold type and value Action

CONCURRENTSMALLDML SMALLDML Concurrency up to 1000

statements; queue up to

10 000 statements

v Stop execution

v Collect activity data

CONCURRENTLOAD LOADUTIL Concurrency up to 2

occurrences; queue up to

10 occurrences

v Stop execution

v Collect activity data

CONCURRENTOTHER ALLACTIVITY Concurrency up to 100

activities; queue up to 100

activities

v Stop execution

v Collect activity data

MAXCOSTALLOWED ALLACTIVITY Estimated SQL cost up to

1 000 000 timerons

v Stop execution

v Collect activity data

When these work actions are applied, up to 1000 small DML-type SQL statements

(because of the SMALLDML work class) can run at a time, and up to 10 000 of

these statements can be queued. Only two occurrences of the load utility can run at

a time, and up to 10 occurrences can be queued. Only 100 activities that are not

LOAD and are not small DML are allowed to run at a time, and only 100 of these

activities can be queued at a time. In all situations, if the queued threshold is

violated, the database activity is not allowed to run and an error message is

returned.

In addition, the MAXCOSTALLOWED work action is applied to the

ALLACTIVITY work class. This means that a database activity with an estimated

cost (that is, DML and XQueries statements) of more than 1 000 000 timerons is

not allowed to run. Although the MAXCOSTALLOWED work action is applied to

the ALLACTIVITY work class, this work action only affects database activities that

have an estimated cost greater than 1 000 000 timerons. This work action does not

affect activities that do not have an estimated cost, such as DDL.

Example: Using a work action set and database threshold

This example shows different approaches to using work action sets and thresholds

to control the resources consumed by DB2 activities. Before creating workload

management objects, you need to understand how they are used.

Assume that you have a work class set called ALLSQL, and it contains the

following work classes in this order:

154 Workload Manager Guide and Reference

1. SMALLDML, which is for all DML-type SQL statement that have an estimated

cost of less than 1 000 timerons

2. MEDDML, which is for all DML-type SQL statements that have an estimated

cost between 1 000 and 20 000 timerons

3. LARGEDML, which is for all DML-type SQL statements that have an estimated

cost greater than 20 000 timerons

4. ALLDDL, which is for all DDL-type SQL statements

5. ALLACTIVITY, which is for all database activity

These work classes already have work actions, such as COUNT ACTIVITY,

COLLECT, and thresholds (that are not ACTIVITYTOTALTIME thresholds) applied

to them.

Assume that you want to allow large DML activities to run for no longer than 5

hours. All other SQL can take no longer than 30 minutes to run. The following two

examples show possible methods for accomplishing this objective.

Method 1

One method is to set up a work action with the ACTIVITYTOTALTIME threshold

specified for each work class as follows:

 Table 39. ACTIVITYTOTALTIME threshold specified for each work class

Work action Work class applied to Threshold type and value Actions

SMALLDMLTIMEALLOWED SMALLDML ACTIVITYTOTALTIME <

31 MINUTES

v Stop execution

v Collect activity data

MEDDMLTIMEALLOWED MEDDML ACTIVITYTOTALTIME <

31 MINUTES

v Stop execution

v Collect activity data

LARGEDMLTIMEALLOWED LARGEDML ACTIVITYTOTALTIME < 5

HOURS

v Stop execution

v Collect activity data

ALLDDLTIMEALLOWED ALLDDL ACTIVITYTOTALTIME <

31 minutes

v Stop execution

v Collect activity data

ALLACTIVITYTIMEALLOWED ALLACTIVITY ACTIVITYTOTALTIME <

31 minutes

v Stop execution

v Collect activity data

Method 2

Another method might be to use only one work class, LARGEDML, then create a

work action set for the database that has one work action,

LARGEDMLTIMEALLOWED, applied to the work class.

 Table 40. LARGEDMLTIMEALLOWED work action applied to the LARGEDML work class

Work action Work class applied to Threshold type and value Action

LARGEDMLTIMEALLOWED LARGEDML ACTIVITYTOTALTIME < 5

HOURS

v Stop execution

v Collect activity data

You would then apply an ACTIVITYTOTALTIME threshold of less than 31

MINUTES to the database. Using this method, only those activities that correspond

to the LARGEDML work class have the 5 hour threshold applied to them. Other

Chapter 7. Workload management examples 155

activities do not get classified and will have the ACTIVITYTOTALTIME database

time threshold of less than 31 minutes applied to them.

Example: Using work action sets to determine the types of work being

run

Using work class sets, work classes, work action sets, work actions, and some of

the workload management monitoring features, you can determine the different

types of work running on your system, and the distribution of the work.

To accomplish this task, first create a work class set that contains work classes for

the different types of work you are interested in. For example, if you want to know

how many READ activities, WRITE activities, DDL activities, and LOAD activities

are running on your system, you would create a work class set, ACTIVITYTYPES,

as in the following example:

CREATE WORK CLASS SET ACTIVITYTYPES

(WORK CLASS READWC WORK TYPE READ,

WORK CLASS WRITEWC WORK TYPE WRITE,

WORK CLASS DDLWC WORK TYPE DDL,

WORK CLASS LOADWC WORK TYPE LOAD)

Next, you would create a database-level work action set, COUNTACTIONS, to

apply to the ACTIVITYTYPES work class set. The work action set would contain a

COUNT ACTIVITY work action for each work class in the ACTIVITYTYPES work

class set, as in the following example:

CREATE WORK ACTION SET COUNTACTIONS FOR DATABASE USING WORK CLASS SET ACTIVITYTYPES

(WORK ACTION COUNTREAD ON WORK CLASSREADWC COUNT ACTIVITY,

WORK ACTION COUNTWRITE ON WORK CLASS WRITEWC COUNT ACTIVITY,

WORK ACTION COUNTDDL ON WORK CLASS DDLWC COUNT ACTIVITY,

WORK ACTION COUNTLOAD ON WORK CLASS LOADWC COUNT ACTIVITY)

After a sufficient amount of time has passed, you can determine the number of

each type of activity that has run by using the

WLM_GET_WORK_ACTION_SET_STATS table function:

SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

LAST_RESET,

SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,

SUBSTR(CHAR(ACT_TOTAL),1,14) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(CAST(NULL AS VARCHAR(128)), -2))

AS WASSTATS WHERE WORK_ACTION_SET_NAME = ’COUNTACTIONS’

ORDER BY WORK_CLASS_NAME, PART

Example: Monitoring current system behavior at different levels using

workload management table functions

The workload management facility provides a variety of table functions that you

can use to obtain data about your workload management configuration.

Installing DB2 Version 9.5 creates a set of default workloads and service classes.

Before deciding how to implement your own workload management solution, you

can use the table functions to observe work being performed in the system in

terms of the default workload occurrences, service classes, and activities.

You can start by obtaining the list of workload occurrences in a service class. To do

this, use the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table

156 Workload Manager Guide and Reference

function. In the following example, an empty string is passed for

service_superclass_name and service_subclass_name, and -2 (a wildcard character) is

passed for dbpartitionnum:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(COORD_PARTITION_NUM),1,4) AS COORDPART,

 SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,

 SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,

 SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCINFO

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART, APPHNDL, WORKLOAD_NAME, WLO_ID

Assume that the system has four database partitions and that there are two

applications performing activities on the database when you issue the query. The

results would resemble the following ones:

SUPERCLASS_NAME SUBCLASS_NAME PART COORDPART APPHNDL WORKLOAD_NAME WLO_ID

------------------- ------------------ ---- --------- ------- -----------------------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 1 SYSDEFAULTUSERWORKLOAD 1

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 2 SYSDEFAULTUSERWORKLOAD 2

The results indicate that both workload occurrences were assigned to the

SYSDEFAULTUSERWORKLOAD workload. The results also show that both

workload occurrences were assigned to the SYSDEFAULTSUBCLASS service

subclass in the SYSDEFAULTUSERCLASS service superclass and that both

workload occurrences are from the same coordinator partition (partition 0).

Next, you can also use the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function again

to determine the connection attributes of the two workload occurrences:

SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,

 SUBSTR(CHAR(WORKLOAD_NAME),1,22) AS WORKLOAD_NAME,

 SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID,

 SUBSTR(CHAR(SYSTEM_AUTH_ID),1,9) AS SYSAUTHID,

 SUBSTR(CHAR(APPLICATION_NAME),1,15) AS APPLNAME

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, 0)) AS SCINFO

ORDER BY APPHNDL, WORKLOAD_NAME, WLO_ID

APPHNDL WORKLOAD_NAME WLO_ID SYSAUTHID APPLNAME

------- ---------------------- ------ --------- ---------------

1 SYSDEFAULTUSERWORKLOAD 1 LYNN accountspay

2 SYSDEFAULTUSERWORKLOAD 2 KATE businessobjects

Then, you can use the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

table function to show the current activities of one of the workload occurrences:

SELECT SUBSTR(CHAR(COORD_PARTITION_NUM),1,5) AS COORD,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,

 SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,

 SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,

 SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

 SUBSTR(ACTIVITY_TYPE,1,9) AS ACTTYPE,

 SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS

ORDER BY PART, UOWID, ACTID

COORD PART UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING

----- ---- ----- ----- -------- -------- -------- -------

0 0 1 3 - - CALL 0

0 0 1 5 1 3 READ_DML 1

Chapter 7. Workload management examples 157

0 1 1 5 - - READ_DML 1

0 2 1 5 - - READ_DML 1

0 3 1 5 - - READ_DML 1

The query results show that workload occurrence 1 is running two activities. One

activity is a stored procedure (indicated by the activity type of CALL), and the

other activity is a DML activity that performs a read (for example, a SELECT

statement). The DML activity is nested in the stored procedure call. You can tell

that the DML activity is nested because the parent unit of work identifier and

parent activity identifier of the DML activity match the unit of work identifier and

the activity identifier of the CALL activity. You can also tell that the DML activity

is executing on database partitions 0, 1, 2, and 3. The parent identifier information

is available only on the coordinator partition.

You can obtain more information about an individual activity that is currently

running by using the WLM_GET_ACTIVITY_DETAILS table function. This table

function returns activity information as name-value pairs for each database

partition. In the following example, the table function only shows an 11-member

subset of the name-value pairs for each database partition. For a complete list of

name-value pairs, see WLM_GET_ACTIVITY_DETAILS table function.

SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(NAME, 1, 20) AS NAME,

 SUBSTR(VALUE, 1, 30) AS VALUE

FROM TABLE(WLM_GET_ACTIVITY_DETAILS(1, 1, 5, -2)) AS ACTDETAIL

WHERE NAME IN (’APPLICATION_HANDLE’,

 ’COORD_PARTITION_NUM’,

 ’LOCAL_START_TIME’,

 ’UOW_ID’,

 ’ACTIVITY_ID’,

 ’PARENT_UOW_ID’,

 ’PARENT_ACTIVITY_ID’,

 ’ACTIVITY_TYPE’,

 ’NESTING_LEVEL’,

 ’INVOCATION_ID’,

 ’ROUTINE_ID’)

ORDER BY PART

PART NAME VALUE

---- -------------------- ------------------------------

0 APPLICATION_HANDLE 1

0 COORD_PARTITION_NUM 0

0 UOW_ID 1

0 ACTIVITY_ID 5

0 PARENT_UOW_ID 1

0 PARENT_ACTIVITY_ID 3

0 ACTIVITY_TYPE READ_DML

0 NESTING_LEVEL 0

0 INVOCATION_ID 1

0 ROUTINE_ID 0

0 LOCAL_START_TIME 2005-11-25-18.52.49.343000

1 APPLICATION_HANDLE 1

1 COORD_PARTITION_NUM 0

1 UOW_ID 1

1 ACTIVITY_ID 5

1 PARENT_UOW_ID -

1 PARENT_ACTIVITY_ID -

1 ACTIVITY_TYPE READ_DML

1 NESTING_LEVEL 0

1 INVOCATION_ID 1

1 ROUTINE_ID 0

1 LOCAL_START_TIME 2005-11-25-18.52.49.598000

158 Workload Manager Guide and Reference

The three table functions mentioned previously provide a high-level description of

work that is running in the system. The information that these table functions

provide regarding the status of the work is limited to an activity state such as

EXECUTING. If you want to probe further to discover what exactly is occurring in

a service class at a point in time, you can run the

WLM_GET_SERVICE_CLASS_AGENTS table function.

In the following example, WLM_GET_SERVICE_CLASS_AGENTS is called by

passing 1 for application_handle and -2 (a wildcard character) for dbpartitionnum:

SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,

 SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,

 SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,

 SUBSTR(REQUEST_TYPE,1,14) AS REQTYPE,

 SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,

 SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 1, -2)) AS SCDETAILS

ORDER BY APPHANDLE, PART, AGENT_TID

APPHANDLE PART AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID

--------- ---- --------- ----------- ---------- --------------------------

1 0 3 COORDINATOR ACTIVE FETCH 1 5

1 0 4 PDBSUBAGENT ACTIVE SUBSECTION:1 1 5

1 1 2 PDBSUBAGENT ACTIVE SUBSECTION:2 1 5

The results show a coordinator agent and a subagent on database partition 0 and a

subagent on database partition 1 operating on behalf of an activity with a unit of

work identifier of 1 and an activity identifier of 5. The coordinator agent

information indicates that the request is a fetch request.

Example: Obtaining point-in-time statistics from service classes

Every activity is mapped to a service class before being executed. You can monitor

the system by using the service class statistics table functions and querying all of

the service classes on all of the database partitions to obtain point-in-time statistics.

You can use the following statement to obtain service class statistics, such as the

average activity lifetime. Passing an empty string for an argument for the

WLM_GET_SERVICE_SUBCLASS_STATS table function means that the result is

not to be restricted by that argument. The value of the last argument,

dbpartitionnum, is -2 (a wildcard character), which means that data from all

database partitions is to be returned.

Note: Lifetime information is only returned for those service classes that are

defined with COLLECT AGGREGATE ACTIVITY DATA.
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME,

 CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3)) AS STDDEVLIFETIME,

 SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

SUPERCLASS_NAME SUBCLASS_NAME PART AVGLIFETIME STDDEVLIFETIME LAST_RESET

------------------- ------------------ ---- ----------- -------------- ----------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 691.242 34.322 2006-07-24-11.44

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 644.740 22.124 2006-07-24-11.44

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 612.431 43.347 2006-07-24-11.44

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 593.451 28.329 2006-07-24-11.44

Chapter 7. Workload management examples 159

You can also use the WLM_GET_SERVICE_SUBCLASS_STATS table function to

obtain the high watermark for the concurrency of coordinator activities that run in

the service class on each database partition:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CONCURRENT_ACT_TOP AS ACTHIGHWATERMARK

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

SUPERCLASS_NAME SUBCLASS_NAME PART ACTHIGHWATERMARK

------------------- ------------------ ---- ----------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0

By reviewing the average lifetime and number of completed activities, you can use

the output of the WLM_GET_SERVICE_SUBCLASS_STATS table function to obtain

a rolled-up view of the workload on each database partition in the database.

Significant variations in the high watermarks and averages returned by a table

function might indicate a change in the workload on the system.

Example: Aggregating data using workload management table

functions

You can perform various aggregations on table data in a workload management

configuration to monitor the system and identify potential problems.

The following are examples of data aggregation that you can perform to identify

problems.

Identifying increases in average query lifetimes because queries

are spending too much time in the queue

You can identify a situation in which the average query lifetime increases because

queries are spending too much time in the queue by showing the average time in

the queue for coordinator activities for each service class, across the whole system.

Following is an example that shows the percentage of time that the average query

spends queued for coordinator activities for each service class, summed across all

database partitions:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 CASE WHEN (SUM(COORD_ACT_COMPLETED_TOTAL) = 0) THEN

 0

 ELSE

 SUM(COORD_ACT_QUEUE_TIME_AVG * COORD_ACT_COMPLETED_TOTAL) /

 SUM(COORD_ACT_COMPLETED_TOTAL)

 END AS AVG_QUEUE_TIME,

 CASE WHEN (SUM(COORD_ACT_COMPLETED_TOTAL) = 0) THEN

 0

 ELSE

 SUM(COORD_ACT_LIFETIME_AVG * COORD_ACT_COMPLETED_TOTAL) /

 SUM(COORD_ACT_COMPLETED_TOTAL)

 END AS AVG_LIFE_TIME,

 CASE WHEN (SUM(COORD_ACT_COMPLETED_TOTAL) = 0) THEN

 0

 ELSE CASE WHEN

 (CAST(SUM(COORD_ACT_LIFETIME_AVG * COORD_ACT_COMPLETED_TOTAL) /

160 Workload Manager Guide and Reference

SUM(COORD_ACT_COMPLETED_TOTAL) AS INTEGER) = 0) THEN

 0

 ELSE

 100 * (SUM(COORD_ACT_QUEUE_TIME_AVG * COORD_ACT_COMPLETED_TOTAL) /

 SUM(COORD_ACT_COMPLETED_TOTAL)) /

 (SUM(COORD_ACT_LIFETIME_AVG * COORD_ACT_COMPLETED_TOTAL) /

 SUM(COORD_ACT_COMPLETED_TOTAL))

 END

 END AS PERCENT_TIME_QUEUED

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS STATS

GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

ORDER BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME AVG_QUEUE_TIME AVG_LIFE_TIME PERCENT_TIME_QUEUED

------------------- ------------------ ------------------------ ------------------------ ------------------------

SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS +0.00000000000000E+000 +0.00000000000000E+000 +0.00000000000000E+000

SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS +0.00000000000000E+000 +0.00000000000000E+000 +0.00000000000000E+000

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS +2.32860100000000E+005 +8.23421424000000E+005 +2.82800000000000E-001

The results show that the percentage of time that the average activity spends in the

queue is about 28%. If previous experience with the system and workload indicates

that this is too high or too low, making adjustments to your thresholds can have an

impact on the percentage of time spent queuing.

Identifying sudden increases in the number of queries running in

a workload

Assume that you have a workload called WL1. You can identify a situation in

which a large number of queries are running in the workload by showing the total

number of executing non-nested coordinator activities for the workload across the

whole system:

SELECT SUBSTR(WORKLOAD_NAME,1,22) AS WLNAME,

COUNT(*) AS TOTAL_EXE_ACT

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS APPS,

TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(APPS.APPLICATION_HANDLE, -2)) AS APPACTS

WHERE WORKLOAD_NAME = ’WL1’ AND

APPS.DBPARTITIONNUM = APPS.COORD_PARTITION_NUM AND

ACTIVITY_STATE = ’EXECUTING’ AND

NESTING_LEVEL = 0

GROUP BY WORKLOAD_NAME

WLNAME TOTAL_EXE_ACT

-------------------- -------------

WL1 5

Example: Computing averages and a standard deviation from

histograms in a workload management configuration

One use for histograms is for obtaining the standard deviation for activity

lifetimes. The example in this topic shows how bins are used for the calculation of

this statistic.

A calculation of the average lifetime for each activity is a useful piece of

information. However, the average alone does not accurately describe the user

experience. If the variability in activity lifetime is large, the users whom you are

supporting might see queries run fast at some times (which is fine) and slow at

others (which might not be acceptable). When you define a goal for activity

lifetimes, not only is the average lifetime of the activities important but also the

standard deviation of the activity lifetime. You need to both understand and

control variability to ensure that your users actually experience the observed

average.

Chapter 7. Workload management examples 161

In a workload management configuration, statistics are collected on each database

partition. The following example shows how to obtain the average activity lifetime

for a single database partition.

Suppose that you have a single-partition environment and histogram with the

following bins. There are more bins in the real histograms, but this example is

limited to eight bins to make the example simpler.

Bin 1 - 0 to 2 seconds

Bin 2 - 2 to 4 seconds

Bin 3 - 4 to 8 seconds

Bin 4 - 8 to 16 seconds

Bin 5 - 16 to 32 seconds

Bin 6 - 32 to 64 seconds

Bin 7 - 64 to 128 seconds

Bin 8 - 128 seconds to infinity

You can compute an approximation of the average by assuming that the average

response time for a query that falls into a bin with the range x to y is (x + y)/2.

You can then multiply this number by the number of queries that fell into the bin,

sum across all bins, then divide the sum by the total count. For the preceding

example, assume that the average response time for each bin is:

Bin 1 average lifetime = (0+2)/2 = 1

Bin 2 average lifetime = (2+4)/2 = 3

Bin 3 average lifetime = (4+8)/2 = 6

Bin 4 average lifetime = (8+16)/2 = 12

Bin 5 average lifetime = (16+32)/2 = 24

Bin 6 average lifetime = (32+64)/2 = 48

Bin 7 average lifetime = (64+128)/2 = 96

Assume that the following histogram was collected during the measurement

period:

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

count count count count count count count count

 20 30 80 10 5 3 2 0

To calculate average lifetime, bin 8 must be empty. Bin 8 only exists to let you

know when you need to change the upper boundary of your range. For this

reason, you must specify the upper bound for the range.

You can approximate the average lifetime for database partition 1 as follows:

average lifetime = (20 x 1 + 30 x 3 + 80 x 6 + 10 x 12 + 5 x 24 + 3 x 48 + 2 x 96) / 150

 = (20 + 90 + 480 + 120 + 120 + 144 + 192) / 150

 = 1166 / 150

 = 7.77 seconds

You can approximate the lifetime standard deviation as follows:

Standard deviation = [(20 x (1 - 7.77)2 + 30 x (3 - 7.77)2 + ...) / 150]1/2

For partitioned database environments, averages and standard deviations can be

computed by first computing a combined histogram across all database partitions

by adding the counts of each bin across the database partitions.

For example, assume that the database has two partitions, the histogram bin sizes

are as described above, and the histogram has the following data:

Database Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

partition count count count count count count count count

 1 20 30 80 10 5 3 2 0

 2 1 5 20 20 4 0 0 0

162 Workload Manager Guide and Reference

Because the bin sizes are the same across all database partitions, the overall

histogram is easy to compute:

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

count count count count count count count count

 21 35 100 30 9 3 2 0

From the combined histogram, you can calculate the overall lifetime average and

standard deviation in a similar way to how they were computed for a

single-partition environment:

Average lifetime = (21 x 1 + 35 x 3 + 100 x 6 + 30 x 12 + 9 x 24 + 3 x 48 + 2 x 96) / 200

 = (21 + 105 + 600 + 360 + 216 + 144 + 192) / 200

 = 1638 / 200

 = 8.19 seconds

Standard deviation = [(21 x (1 – 8.19)2 + 35 x (3 - 7.77)2 + ...) / 200]1/2

Example: Analyzing a service class–related system slowdown

If you notice a system slowdown (for example, some applications take much

longer than expected to complete) and are unsure whether the problem is related

to the configuration of the service classes, you can use table function data to

investigate and, if necessary, correct the problem.

First, obtain a high-level overview of what is occurring in the service classes. This

high-level overview should include the average activity lifetime, the number of

activities that completed normally rather than abnormally,and the high watermark

for concurrent coordinator activities in the system. To obtain this information, you

can create a general query with aggregation across service classes and database

partitions by using the data obtained from the table function

WLM_GET_SERVICE_CLASS_STATS. Set the first and second arguments to empty

strings and the third argument to -2 (a wildcard character) to indicate that data is

to be gathered for all service classes on all database partitions. Your query might

resemble the following one:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS ACTSCOMPLETED,

 SUBSTR(CHAR(SUM(COORD_ACT_ABORTED_TOTAL)),1,11) AS ACTSABORTED,

 SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS ACTSHW,

 CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0

 ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)

 / SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))

 AS ACTAVGLIFETIME

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS (’’, ’’, -2)) AS SCSTATS

GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

ORDER BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME

------------------- ------------------ ------------- ----------- ------ --------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 8 0 1 3.750

BI_APPS SYSDEFAULTSUBCLASS 4 0 1 14.230

BATCH SYSDEFAULTSUBCLASS 1 0 1 25.600

Assume that on previous occasions, the query reported the following results:

SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME

------------------- ------------------ ------------- ----------- ------ --------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 8 0 1 3.750

BI_APPS SYSDEFAULTSUBCLASS 4 0 1 5.230

BATCH SYSDEFAULTSUBCLASS 1 0 1 25.600

Chapter 7. Workload management examples 163

The data returned by this query might be sufficient to show that the slowdown is

occurring in the BI_APPS service class because its average activity lifetime is

significantly higher than usual. This situation could indicate that the available

resources for that particular service class are becoming exhausted.

If the averages for the service classes for all database partitions do not isolate the

problem, consider analyzing average values for each database partition.

Aggregating the average for each database partition into a global average can hide

large discrepancies between database partitions. In this situation, the assumption is

that every database partition is being used as a coordinator partition. If this

assumption is incorrect, the average lifetime computed at non-coordinator

partitions is zero.

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME PART AVGLIFETIME

------------------- ------------------ ---- -----------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 3.425

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 2.752

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 8.230

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0.593

In this example, database partition 2 might be receiving more work than usual

because its average activity lifetimes are much higher than those of the other

database partitions.

Many different situations can cause a system slowdown. Use the following

principles to make the best use of the information provided by the workload

management table functions:

v Address large numbers of locking conflicts at the level of the application logic

and environment (isolation level and so on).

v If the service class is running close to its threshold levels (the number of

concurrent requests and so on), you might need to increase the thresholds.

v If the resources allotted to a service class are becoming exhausted, the mapping

to the operating system service classes might be the cause of the problem (that

is, the operating system service class corresponding to the service class is not

getting enough CPU, I/O bandwidth, and other resources).

v Higher numbers of activities than expected might be running in the service class,

which might be consuming more resources than normal. Check the number of

completed activities to determine whether the amount of work being done in the

service class is reasonable.

v Activities might be spending more time in queues if more activities are being

submitted than expected and concurrency thresholds are defined. Check whether

the average queue time for activities has increased by the same amount as the

average lifetime. If they have increased by the same amount, the queues are

behaving as expected; however, if the lifetime is unacceptable, consider

allocating more resources to the service class and reducing the concurrency

threshold.

164 Workload Manager Guide and Reference

Example: Investigating a workload-related system slowdown

If you notice a system slowdown (for example, some applications take much

longer to complete than expected) and are unsure whether the problem is related

to the configuration of the workloads, you can use table function data to

investigate and, if necessary, correct the problem.

First, create a query that aggregates data across service classes and database

partitions using data from the WLM_GET_SERVICE_SUBCLASS_STATS table

function. Set the first and second arguments to empty strings and the third

argument to -2 (a wildcard character) to indicate that data is to be gathered for all

service classes on all database partitions.

Your query might resemble the following one:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(SUM(COORD_ACT_COMPLETED_TOTAL)),1,13) AS ACTSCOMPLETED,

 SUBSTR(CHAR(SUM(COORD_ACT_ABORTED_TOTAL)),1,11) AS ACTSABORTED,

 SUBSTR(CHAR(MAX(CONCURRENT_ACT_TOP)),1,6) AS ACTSHW,

 CAST(CASE WHEN SUM(COORD_ACT_COMPLETED_TOTAL) = 0 THEN 0

 ELSE SUM(COORD_ACT_COMPLETED_TOTAL * COORD_ACT_LIFETIME_AVG)

 / SUM(COORD_ACT_COMPLETED_TOTAL) END / 1000 AS DECIMAL(9,3))

 AS ACTAVGLIFETIME

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’’, ’’, -2)) AS SCSTATS

GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME ACTSCOMPLETED ACTSABORTED ACTSHW ACTAVGLIFETIME

------------------- ------------------ ------------- ----------- ------ --------------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 20 0 1 3.750

SUP1 SUB1 40 0 8 7.223

In the preceding example data, the SUB1 service subclass in the SUP1 service

superclass is running more simultaneous activities than usual. To investigate

further, you might want to examine the statistics for workloads that map to this

service class. Your query might resemble the following one:

SELECT SUBSTR(WLSTATS.WORKLOAD_NAME,1,22) AS WL_NAME,

 SUBSTR(CHAR(WLSTATS.DBPARTITIONNUM),1,4) AS PART,

 CONCURRENT_WLO_TOP AS WLO_HIGH_WTRMRK,

 CONCURRENT_WLO_ACT_TOP AS WLO_ACT_HIGH_WTRMRK

FROM TABLE(WLM_GET_WORKLOAD_STATS(’’, -2)) AS WLSTATS,

 TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(’’, ’’, -2)) AS SCWLOS

WHERE WLSTATS.WORKLOAD_NAME = SCWLOS.WORKLOAD_NAME

AND SCWLOS.SERVICE_SUPERCLASS_NAME = ’SUP1’

AND SCWLOS.SERVICE_SUBCLASS_NAME = ’SUB1’

ORDER BY WL_NAME, PART;

WL_NAME PART WLO_HIGH_WTRMRK WLO_ACT_HIGH_WTRMRK

---------------------- ---- --------------- -------------------

LYNNSALES 0 2 8

LYNNSALES 1 0 0

SYSDEFAULTUSERWORKLOAD 0 1 1

SYSDEFAULTUSERWORKLOAD 1 0 0

The output shows that an application in the LYNNSALES workload submitted 8

activities concurrently. Consider adding a threshold to restrict concurrency of

coordinator activities for each workload occurrence.

Chapter 7. Workload management examples 165

Example: Analyzing workloads by activity type

You can use workload management table functions to examine the workloads in

your environment according to the types of activities being run.

In some situations, you might be interested in the behavior of a certain type of

activities, such as LOAD activities. For example, you can observe how many

LOAD activities are currently in the system as follows:

SELECT COUNT(*)

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(CAST(NULL AS BIGINT), -2))

AS ACTS

WHERE ACTIVITY_TYPE = ’LOAD’

You can obtain a count of how many activities of a specific type have been

submitted since the last reset of the workload management statistics by using the

WLM_GET_WORK_ACTION_SET_STATS table function, as shown in the following

example. Assume that the READCLASS and LOADCLASS work classes exist for

activities of type READ and activities of type LOAD (a work action must also exist

for each work class; otherwise activities are not classified in the work class). The *

represents all activities that do not fall into the READCLASS or LOADCLASS work

class.

SELECT SUBSTR(WORK_ACTION_SET_NAME,1,18) AS WORK_ACTION_SET_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,

 LAST_RESET,

 SUBSTR(CHAR(ACT_TOTAL),1,14) AS TOTAL_ACTS

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS(’’, -2)) AS WASSTATS

ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, PART

WORK_ACTION_SET_NAME PART WORK_CLASS_NAME LAST_RESET TOTAL_ACTS

-------------------- ---- --------------- -------------------------- ----------

AdminActionSet 0 ReadClass 2005-11-25-18.52.49.343000 8

AdminActionSet 1 ReadClass 2005-11-25-18.52.50.478000 0

AdminActionSet 0 LoadClass 2005-11-25-18.52.49.343000 2

AdminActionSet 1 LoadClass 2005-11-25-18.52.50.478000 0

AdminActionSet 0 * 2005-11-25-18.52.50.478000 0

AdminActionSet 1 * 2005-11-25-18.52.50.478000 0

You can view the average lifetime of LOAD activities by creating a work action set

to map LOAD activities to a specific service subclass. For example, suppose you

map LOAD activities to the service subclass LOADSERVICECLASS under the

service superclass MYSUPERCLASS. Then, you can query the

WLM_GET_SERVICE_CLASS_STATS table function:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3)) AS AVGLIFETIME

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(’MYSUPERCLASS’, ’LOADSERVICECLASS’, -2))

AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

SUPERCLASS_NAME SUBCLASS_NAME PART AVGLIFETIME

------------------- ------------------ ---- ----------------------

SYSDEFAULTUSERCLASS LOADSERVICECLASS 0 4691.242

SYSDEFAULTUSERCLASS LOADSERVICECLASS 1 4644.740

SYSDEFAULTUSERCLASS LOADSERVICECLASS 2 4612.431

SYSDEFAULTUSERCLASS LOADSERVICECLASS 3 4593.451

166 Workload Manager Guide and Reference

Example: Identifying hung activities

Workload management table functions simplify the task of identifying a specific

activity inside the data server and, if necessary, canceling it without having to end

the entire application.

Identifying a hung activity

Following is an example of identifying a hung query. Assume that a user from the

Sales department who is running the SalesReport application complains that the

application is hung.

After identifying the application handle, use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to look up

all activities currently running in this application. For example, if the application

handle is 1, your query might resemble the following one:

SELECT SUBSTR(CHAR(COORD_PARTITION_NUM),1,5) AS COORD,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,

SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,

SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,

SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

SUBSTR(ACTIVITY_TYPE,1,8) AS ACTTYPE,

SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS

ORDER BY PART, UOWID, ACTID

COORD PART UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING

----- ---- ----- ----- -------- -------- -------- -------

 0 0 2 3 - - CALL 0

 0 0 2 5 2 3 READ_DML 1

The activity is identified as having a unit of work ID of 2 and an activity ID of 5.

You can then use the WLM_GET_SERVICE_CLASS_AGENTS table function to

discover what the agents that work on this activity are doing:

SELECT APPLICATION_HANDLE,

UOW_ID,

ACTIVITY_ID,

SUBSTR(REQUEST_TYPE,1,8) AS REQUEST_TYPE,

SUBSTR(EVENT_TYPE,1,8) AS EVENT_TYPE,

SUBSTR(EVENT_OBJECT,1,8) AS EVENT_OBJECT

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’,

CAST(NULL AS BIGINT),

-2)) AS AGENTS

WHERE APPLICATION_HANDLE = 1

AND UOW_ID = 2

AND ACTIVITY_ID = 5

For example, the activity might be queued, executing, or waiting on a lock. If the

activity were queued, the result would be:

APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT

------------------ ------ ----------- ------------ ---------- ------------

 1 2 5 OPEN WAIT WLM_QUEUE

If the activity were executing, the result would be:

APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT

------------------ ------ ----------- ------------ ---------- ------------

 1 2 5 OPEN PROCESS REQUEST

If the activity were waiting on a lock, the result would be:

Chapter 7. Workload management examples 167

APPLICATION_HANDLE UOW_ID ACTIVITY_ID REQUEST_TYPE EVENT_TYPE EVENT_OBJECT

------------------ ------ ----------- ------------ ---------- ------------

 1 2 5 OPEN ACQUIRE LOCK

When you know what the activity is doing, you can proceed appropriately:

v If the activity is queued, if the user indicates that the query is taking so long

that they no longer care about the results, or you think the query is consuming

too many resources, you can cancel it.

v If the activity is important and it is queued, consider cancelling some other less

important work that is currently running (reducing the concurrency so that

activities leave queue), or maybe the user will be satisfied to know that work is

not hung and is just waiting for chance to run.

v If the activity is waiting for a lock, you can use the snapshot monitor to

investigate which locks the application is waiting for.

v If the activity is waiting for a lock held by lower priority activity, consider

cancelling that activity.

You might also find it useful to know the DML statement that activity 5 is running.

Assuming that you have an active activities event monitor, you can run the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure to capture information

about the DML statement and other information about activity 5 while it is

running. Unlike the statement event monitor, the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure allows you to capture

information about a specific query, as opposed to every statement running at the

time. You can also obtain the statement text, truncated to the first 1024 characters,

by using WLM_GET_ACTIVITY_DETAILS.

If you decide that you must cancel the activity, you can use the

WLM_CANCEL_ACTIVITY routine to cancel the activity without having to end

the application that issued it:

CALL WLM_CANCEL_ACTIVITY (1, 2, 5)

The application that issued the activity receives an SQL4725N error. Any

application that handles negative SQL codes is able to handle this SQL code.

Identifying an activity hang caused by lock contention

Assume that you have a situation in which a user is complaining about a hung

application. Also assume that you have either the application name or the

authorization ID of the hung application. With this information, you can use the

LIST APPLICATIONS command to obtain the application handle. Assuming that

application handle returned by the LIST APPLICATIONS command is 2, you can

use the WLM_GET_SERVICE_CLASS_AGENTS table function to determine which

agents are working on this activity. Your query might resemble the following one:

SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,

 SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,

 SUBSTR(EVENT_OBJECT,1,11) AS EVENTOBJECT,

 SUBSTR(REQUEST_TYPE,1,7) AS REQTYPE,

 SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,

 SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, 2, -2)) AS SCDETAILS

ORDER BY APPHANDLE, PART, AGENT_TID

APPHANDLE PART AGENT_TID AGENTTYPE EVENTOBJECT REQTYPE UOW_ID ACT_ID

168 Workload Manager Guide and Reference

--------- ---- --------- ----------- ----------- ------- ------ ------

2 0 1 COORDINATOR REQUEST OPEN 2 1

2 1 3 SUBAGENT LOCK - 2 1

The results indicate that agent 1 is waiting on a remote response. Looking at the

agent on the remote partition that is working on the same activity, the

EVENTOBJECT field indicates that the agent is waiting to obtain a lock.

The next step is to determine who owns the lock. You can obtain this information

by turning on the monitor switches and using the snapshot monitor table function,

as shown in the following example:

SELECT AGENT_ID AS WAITING_FOR_LOCK,

 SUBSTR(APPL_ID_HOLDING_LK,1,40) AS HOLDING_LOCK,

 CAST(LOCK_MODE_REQUESTED AS SMALLINT) AS WANTED,

 CAST(LOCK_MODE AS SMALLINT) AS HELD

FROM TABLE(SNAPSHOT_LOCKWAIT(’SAMPLE’,-1)) AS SLW

WAITING_FOR_LOCK HOLDING_LOCK WANTED HELD

-------------------- -- ------ ------

 2 *LOCAL.DB2.060131021547 9 5

You can also determine the lock owner by using the following sequence of

commands:

db2pd -db database alias -locks

db2pd –db database alias -transactions

If you want to cancel the hung activity, you can use the

WLM_CANCEL_ACTIVITY procedure. If the successful completion of the hung

application is more important than the successful completion of the lock-owning

application, you can force the lock-owning application.

Example: Capturing information about an activity for later analysis

You can use workload management tools to capture information about an activity

for later analysis.

Assume that you have a stored procedure called MYSCHEMA.MYSLOWSTP and

that it is running more slowly than usual. You begin to receive complaints about

this situation and decide to investigate the cause of the slowdown. If investigating

while the stored procedure is running is impractical, you can capture information

about the stored procedure activity and any activities nested in it.

Assuming that you have an active activities event monitor called DB2ACTIVITIES,

you can create a work class for CALL statements that apply to the schema of the

MYSCHEMA.MYSLOWSTP stored procedure. Then you can create a work action

to map the CALL activity and all nested activities to a service class that has

activity collection enabled. The CALL activity, and any activities nested in it, are

sent to the event monitor. Following are examples of the DDL required to create

the workload management objects:

CREATE SERVICE CLASS SC1;

CREATE WORKLOAD WL1 APPLNAME (’DB2BP’) SERVICE CLASS SC1;

CREATE SERVICE CLASS PROBLEMQUERIESSC UNDER SC1 COLLECT ACTIVITY DATA ON COORDINATOR WITH DETAILS;

CREATE WORK CLASS SET PROBLEMQUERIES

(WORK CLASS CALLSTATEMENTS WORK TYPE CALL ROUTINES IN SCHEMA MYSCHEMA);

CREATE WORK ACTION SET DATABASEACTIONS FOR SERVICE CLASS SC1 USING WORK CLASS SET PROBLEMQUERIES

(WORK ACTION CAPTURECALL ON WORK CLASS CALLSTATEMENTS MAP ACTIVITY WITH NESTED TO PROBLEMQUERIESSC);

Chapter 7. Workload management examples 169

After the MYSCHEMA.MYSLOWSTP stored procedure runs, you can issue the

following query to obtain the application handle, the unit of work identifier, and

the activity identifier for the activity:

SELECT AGENT_ID,

 UOW_ID,

 ACTIVITY_ID

FROM ACTIVITY_DB2ACTIVITIES

WHERE SC_WORK_ACTION_SET_ID = (SELECT ACTIONSETID

 FROM SYSCAT.WORKACTIONSETS

 WHERE ACTIONSETNAME = ’DATABASEACTIONS’)

AND SC_WORK_CLASS_ID = (SELECT WORKCLASSID

 FROM SYSCAT.WORKCLASSES

 WHERE WORKCLASSNAME = ’CALLSTATEMENTS’

 AND WORKCLASSSETID =

 (SELECT WORKCLASSSETID FROM SYSCAT.WORKACTIONSETS WHERE ACTIONSETNAME

 = ’DATABASEACTIONS’));

Assuming that the captured activity has an application handle of 1, a unit of work

identifier of 2, and an activity identifier of 3, the following results are generated:

AGENT_ID UOW_ID ACTIVITY_ID

===================== =========== ===========

 1 2 3

Using this information, you can issue the following query against the

ACTIVITY_DB2ACTIVITIES and the ACTIVITYSTMT_DB2ACTIVITIES tables to

determine where the activity spent its time:

WITH RAH (LEVEL, APPL_ID, PARENT_UOW_ID, PARENT_ACTIVITY_ID,

 UOW_ID, ACTIVITY_ID, STMT_TEXT, TIME_CREATED, TIME_COMPLETED) AS

 (SELECT 1, ROOT.APPL_ID, ROOT.PARENT_UOW_ID,

 ROOT.PARENT_ACTIVITY_ID, ROOT.UOW_ID, ROOT.ACTIVITY_ID,

 ROOTSTMT.STMT_TEXT, ROOT.TIME_CREATED, ROOT.TIME_COMPLETED

 FROM ACTIVITY_DB2ACTIVITIES ROOT, ACTIVITYSTMT_DB2ACTIVITIES ROOTSTMT

 WHERE ROOT.APPL_ID = ROOTSTMT.APPL_ID AND ROOT.AGENT_ID = 1

 AND ROOT.UOW_ID = ROOTSTMT.UOW_ID AND ROOT.UOW_ID = 2

 AND ROOT.ACTIVITY_ID = ROOTSTMT.ACTIVITY_ID AND ROOT.ACTIVITY_ID = 3

 UNION ALL

 SELECT PARENT.LEVEL +1, CHILD.APPL_ID, CHILD.PARENT_UOW_ID,

 CHILD.PARENT_ACTIVITY_ID, CHILD.UOW_ID,

 CHILD.ACTIVITY_ID, CHILDSTMT.STMT_TEXT, CHILD.TIME_CREATED,

 CHILD.TIME_COMPLETED

 FROM RAH PARENT, ACTIVITY_DB2ACTIVITIES CHILD,

 ACTIVITYSTMT_DB2ACTIVITIES CHILDSTMT

 WHERE PARENT.APPL_ID = CHILD.APPL_ID AND

 CHILD.APPL_ID = CHILDSTMT.APPL_ID AND

 PARENT.UOW_ID = CHILD.PARENT_UOW_ID AND

 CHILD.UOW_ID = CHILDSTMT.UOW_ID AND

 PARENT.ACTIVITY_ID = CHILD.PARENT_ACTIVITY_ID AND

 CHILD.ACTIVITY_ID = CHILDSTMT.ACTIVITY_ID AND

 PARENT.LEVEL < 64

)

SELECT UOW_ID, ACTIVITY_ID, SUBSTR(STMT_TEXT,1,40),

 TIMESTAMPDIFF(2, CHAR(TIME_COMPLETED - TIME_CREATED)) AS

 LIFE_TIME

FROM RAH

 ORDER BY UOW_ID, ACTIVITY_ID;

The results would resemble the following ones:

UOW_ID ACTIVITY_ID STMT_TEXT LIFE_TIME

====== =========== =================================== =============

2 3 CALL SLOWPROC 1000

2 4 SELECT COUNT(*) FROM ORG 1

2 5 SELECT * FROM MYHUGETABLE 999

170 Workload Manager Guide and Reference

The results indicate that the stored procedure is spending most of its time querying

the MYHUGETABLE table. Your next step is to investigate what changes to the

MYHUGETABLE table might cause queries running against it to slow down.

When many stored procedures run simultaneously, greater overhead is incurred

when performing the analysis. To solve this problem, you can create a workload

and service class for running a stored procedure that is issued by a specific

authorization identifier, a specific application, or both. You can then use the

preceding method to analyze the behavior of the stored procedure.

Example: Investigating agent usage by service class

The workload management solution provides the

WLM_GET_SERVICE_CLASS_AGENTS table function, which you can use to

determine the relative distribution of agents among service classes.

Situations can arise in which a data server resource, such as an agent, is

overutilized by a group of users or an application. For example, assume that a

group of users is using almost all of the available agents and that a user from

outside this group voices a concern about that to you.

The first step to take is to determine how many agents are working for each

service class. You might use a query such as the following one:

SELECT SUBSTR(AGENTS.SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(AGENTS.SERVICE_SUBCLASS_NAME,1,19) AS SUBCLASS_NAME,

 COUNT(*) AS AGENT_COUNT

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(’’, ’’, CAST(NULL AS BIGINT), -2)) AS AGENTS

WHERE AGENT_STATE = ’ACTIVE’

GROUP BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

ORDER BY SERVICE_SUPERCLASS_NAME, SERVICE_SUBCLASS_NAME

SUPERCLASS_NAME SUBCLASS_NAME AGENT_COUNT

------------------- ------------------- -----------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 7

TEST SYSDEFAULTSUBCLASS 20

If you conclude that a particular service class is using more than its fair share of

agents, you can take actions to restrict the number of activities allowed for a

workload or a service class. Alternatively, you can restrict the number of

connections for a service class.

Example: Tuning a workload management configuration when capacity

planning data is available

If you performed capacity planning, you should have information about the types

of users and their expected response times. You can use this information to

construct, determine the effectiveness of, and tune your workload management

configuration.

Assume that you performed capacity planning and that the data in the following

table represents the results of this exercise for work types and response time goals:

 Table 41. Results of capacity planning

Type of work Application Goal Importance Expected throughput

Order entry orderentryapp.exe Obtain an average

response time < 1

second

High 10 000 (both inserts

and updates) per day

Chapter 7. Workload management examples 171

Table 41. Results of capacity planning (continued)

Type of work Application Goal Importance Expected throughput

Business intelligence

queries

businessobjects.exe Obtain an average

response time < 10

seconds

High 100 queries per day

Batch processing batchapp.exe Maximize throughput Low 5000 updates per day

Other All other applications Best effort Low 100 activities per day

Based on the data in the preceding table, you might create three service classes

(ORDER_ENTRY_SC, BI_QUERIES_SC, and BATCH_SC) and three workloads

(ORDER_ENTRY_WL, BI_QUERIES_WL, and BATCH_WL) to assign work to the

service classes. After creating the service classes and workloads, you might create a

statistics event monitor to collect aggregate activity information, such as the

activity lifetime histogram for each service class. Assume that the data in the

following table compares the average daily count of activities in each service class

(computed from the activity lifetime histogram) with the volumes that were

predicted in the capacity planning exercise:

 Table 42. Activities each day

Service class Predicted activities per day Actual activities per day

ORDER_ENTRY_SC 10 000 9700

BI_QUERIES_SC 100 115

BATCH_SC 5000 5412

SYSDEFAULTUSERCLASS 100 85

The observed data indicates that the capacity planning estimates were accurate.

The data in the following table compares the average activity lifetimes (obtained

from the activity lifetime histogram) with the response time goals determined

during capacity planning and shows that activities in the BI_QUERIES_SC service

class are not meeting their response time objectives.

 Table 43. Response times

Service class Response time goal Actual average lifetime

ORDER_ENTRY_SC < 1 second 0.8 seconds

BI_QUERIES_SC < 10 seconds 30 seconds

BATCH_SC 2 seconds

SYSDEFAULTUSERCLASS 10 minutes

Using the workload management interfaces, you can use different approaches

when addressing the problem of the business intelligence queries not meeting their

response time goals:

v Limiting the concurrency of lower-importance service classes

v Allowing the operating system workload manager to provide less CPU resource

to less-important service classes

v Modifying the agent and I/O prefetcher priorities for the service classes

v Using any combination of the previous three approaches

Assume that CPU is the resource that is causing the business intelligence queries to

fail to meet their goals. Also assume that you use the operating system workload

172 Workload Manager Guide and Reference

manager to give the SYSDEFAULTUSERCLASS service class less CPU resources

than other service classes. You can then capture aggregate activity information over

a period of days to observe whether the changes to the CPU allocation provide the

results that you expect. The data in the following table shows another comparison

between response time goals and actual average lifetimes computed from the

histograms after you made the operating system workload manager changes. All

service classes are now meeting their response time objectives and, because of the

CPU reallocation, activities in the SYSDEFAULTUSERCLASS service class have had

their response times doubled.

 Table 44. Response times after reconfiguration

Service class Response time goal Actual average lifetime

ORDER_ENTRY_SC < 1 second 0.6 seconds

BI_QUERIES_SC < 10 seconds 9.5 seconds

BATCH_SC 1.5 seconds

SYSDEFAULTUSERCLASS 20 minutes

Example: Tuning a workload management configuration when capacity

planning information is unavailable

You can use the workload management tools to help design, monitor, and tune a

workload management configuration even if you do not have capacity analysis

data to use for designing the configuration.

Assume that you do not initially know which workloads and service classes to

create because either you do not have full knowledge of the workload on the

system or you do not yet know which workloads are required for stable execution

results. Also assume that you know that some applications have response time

requirements but that you do not yet know how many other applications are

competing for resources with such time-critical applications. You can use the

workload management monitoring capabilities to determine this.

To set up a workload management configuration using monitoring data as the

foundation:

1. Classify those applications that you know are important. You must isolate these

applications and give them an appropriate portion of the system resources.

2. For the rest of the workload, collect statistics for the largest activities in the

workload because these activities have the greatest impact on a per-activity

basis on the system.

3. Analyze the activity information that you collected in step 2.

4. Repeat steps 1 through 3 on that portion of the workload that is still

unclassified. Repeat this step until you know that the remaining unclassified

work is not worth classification.

The sections that follow provide information about how to perform these steps.

Step 1. Isolate those applications that are known to be important

and give them an appropriate portion of resources

Assume that you have two important business intelligence applications, BI1 and

BI2 and that you need to minimize the response times for these applications. You

Chapter 7. Workload management examples 173

can create workloads for these two applications and map them to a service class

called MOSTIMPORTANT for which you can assign system resources.

On the AIX operating system, you use the AIX Workload Manager to create a

service class called MOSTIMPORTANT, and give this service class a guaranteed set

of resources.

On the DB2 data server, you create the required service classes and workloads:

CREATE SERVICE CLASS MOSTIMPORTANT OUTBOUND CORRELATOR ’MOSTIMPORTANT’

CREATE WORKLOAD BI1WORKLOAD APPLNAME (’BI1’) SERVICE CLASS MOSTIMPORTANT

CREATE WORKLOAD BI2WORKLOAD APPLNAME (’BI2’) SERVICE CLASS MOSTIMPORTANT

For the purposes of this example, assume that even after you account for the

known applications, a significant portion of the system workload is unaccounted

for. You therefore need to better understand and possibly control this workload.

Step 2. For the remaining unclassified workload, collect statistics

for the largest activities in the workload

A long-running activity has a greater individual impact on the system than a

short-running activity has because the long-running activity occupies system

resources for a longer period of time. However, collecting information about a

long-running activity imposes no greater overhead than would be imposed by

collecting information on a short-running activity. As a result, the best way to

collect information on the largest proportion of the workload is to collect

information on the longest-running activities first.

Start collecting activity information by first deciding on an activity lifetime above

which you collect activity information. You can simplify this task by choosing a

portion of the unclassified activities to be collected, such as 30%, and then

observing the activity lifetime histogram for these activities. Allow the system to

run so that the in-memory statistics are updated, then run the

WLM_COLLECT_STATS procedure to send the statistics to an active statistics

event monitor.

Use the following query to obtain the activity lifetime histogram for the

SYSDEFAULTUSERCLASS service class as a table that represents the proportion of

the total activities that fell into each lifetime range. This query is written assuming

that the database is not partitioned.

WITH TOTAL AS (

SELECT PARENTSERVICECLASSNAME,

 SERVICECLASSNAME,

 HIST.HISTOGRAM_TYPE,

 SUM(NUMBER_IN_BIN) AS NUMBER_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS AS HIST,

 SYSCAT.SERVICECLASSES SC

WHERE

 HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID

 AND HIST.TOP >= 0

 AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’

 AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’

 AND HIST.HISTOGRAM_TYPE = ’COORDACTLIFETIME’

GROUP BY PARENTSERVICECLASSNAME, SERVICECLASSNAME, HISTOGRAM_TYPE)

SELECT CAST(CAST(TOP AS DOUBLE) / 60000 AS DECIMAL(14,3)) AS TOP_IN_MINUTES,

 CAST(100 * CAST(SUM(HIST.NUMBER_IN_BIN) AS DOUBLE) / TOTAL.NUMBER_IN_BIN AS DECIMAL(4,2))

 AS PERCENT_IN_BIN

FROM HISTOGRAMBIN_DB2STATISTICS AS HIST,

 SYSCAT.SERVICECLASSES SC,

 TOTAL

174 Workload Manager Guide and Reference

WHERE HIST.SERVICE_CLASS_ID = SC.SERVICECLASSID

 AND HIST.TOP >= 0

 AND SC.PARENTSERVICECLASSNAME = ’SYSDEFAULTUSERCLASS’

 AND SC.SERVICECLASSNAME = ’SYSDEFAULTSUBCLASS’

 AND HIST.HISTOGRAM_TYPE = ’COORDACTLIFETIME’

 AND TOTAL.PARENTSERVICECLASSNAME = SC.PARENTSERVICECLASSNAME

 AND TOTAL.SERVICECLASSNAME = SC.SERVICECLASSNAME

 AND TOTAL.HISTOGRAM_TYPE = HIST.HISTOGRAM_TYPE

GROUP BY TOP, SC.PARENTSERVICECLASSNAME, SC.SERVICECLASSNAME, HIST.HISTOGRAM_TYPE, TOTAL.NUMBER_IN_BIN;

TOP_IN_MINUTES PERCENT_IN_BIN

---------------- --------------

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.000 0.00

 0.001 0.00

 0.001 0.00

 0.002 0.00

 0.004 0.00

 0.006 0.00

 0.009 0.00

 0.014 0.00

 0.021 0.00

 0.033 0.00

 0.050 0.00

 0.077 0.00

 0.118 0.00

 0.180 0.00

 0.274 0.00

 0.419 0.00

 0.639 0.00

 0.975 0.00

 1.488 0.00

 2.269 0.00

 3.462 0.00

 5.280 0.00

 8.054 0.00

 12.286 0.00

 18.740 0.00

 28.584 10.00

 43.600 15.00

 66.505 45.00

 101.442 23.00

 154.731 5.00

 236.015 2.00

 360.000 0.00

The following figure shows the results of the preceding query plotted as a graph:

Chapter 7. Workload management examples 175

In this example, 30% of the activities fall into the 101 minutes or greater lifetime

range. To capture information about these activities, create an activity lifetime

threshold of 100 minutes with the CONTINUE and COLLECT ACTIVITY DATA

options as shown in the following example. If this threshold is violated, activity

information is sent to an active activities event monitor.

CREATE THRESHOLD COLLECTLONGESTRUNNING30PERCENT

FOR SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

ACTIVITIES ENFORCEMENT DATABASE ENABLE

WHEN ACTIVITYTOTALTIME > 100 MINUTES COLLECT ACTIVITY DATA CONTINUE

Allow the system to run so that data is collected.

Assuming that the overhead of collecting information on 30% of the

longest-running activities is acceptable, you can allow the data collection to

continue for a few hours or a few days. You can use the collected data to

determine which users and applications produce the longest running of the 30% of

the DML activities that are still unclassified. These activities might include some

that are time critical. You might uncover some surprises, such as low-priority

applications that run significant numbers of large activities. When you finish

collecting and analyzing the data, you can drop the threshold.

Step 3. Analyze the information about activities collected in the

previous step

You can analyze the information you collected about activities in the previous step

according to the application that submitted them. You might specify the following

query:

SELECT SUBSTR (APPL_NAME, 1,16) APPLICATION_NAME,

 AVG(TIMESTAMPDIFF(4, CHAR(TIME_COMPLETED – TIME_CREATED)))

 AS AVG_LIFETIME_MINUTES

 COUNT(*) AS ACTIVITY_COUNT

FROM ACTIVITY_DB2ACTIVITIES

GROUP BY APPL_NAME

0

Range of lifetimes (minutes)

P
er

ce
n

ta
g

e
o

f
to

ta
l a

ct
iv

it
ie

s

100 300200 400

50

45

40

35

30

25

20

15

10

5

0

Figure 27. Activity lifetime histogram of unclassified activities

176 Workload Manager Guide and Reference

ORDER BY APPL_NAME

APPLICATION_NAME AVG_LIFETIME_MINUTES ACTIVITY_COUNT

================ ==================== ==============

MOSTLYSMALL1 120 21

MOSTLYSMALL2 110 15

UNIMPORTANTAPP 150 10213

An analysis of the activities according to the submitting application shows that a

large number of the longest-running activities were submitted by the

UNIMPORTANTAPP application, which is a relatively unimportant application. You can

use a workload to isolate this application from the other unclassified applications

and map it to a service class called BESTEFFORT, which receives resources only

when all other activities have their resource needs met.

According to the preceding results, the remaining applications in the default

service class appear to submit few large activities. You might find it worthwhile to

repeat the process of collecting activities executing in the default service class

without restricting the collection to long-running activities.

Step 4. Repeat steps 1 to 3 on that portion of the workload that

is still unclassified until the remaining unclassified work is not

worth classification

Now that you have the two important applications running in the

MOSTIMPORTANT service class and the unimportant application running in the

BESTEFFORT service class, much less work is running in the default user service

class. In this situation, it might be inexpensive to collect information about every

activity in this service class. Alternatively, you might not need to further subdivide

the work and can stop here. Assume that you want to collect information about the

remaining activities, in case the remaining workload contains surprises. You can

accomplish this task by setting COLLECT ACTIVITY DATA for the default user

service class and creating an activities event monitor:

ALTER SERVICE CLASS SYSDEFAULTSUBCLASS UNDER SYSDEFAULTUSERCLASS

COLLECT ACTIVITY DATA ON COORDINATOR WITHOUT DETAILS

Allow the system to run so that data is collected. You can analyze the results as in

step 3.

SELECT SUBSTR (APPL_NAME,1,16) APPLICATION_NAME,

 AVG(TIMESTAMPDIFF(4, CHAR(TIME_COMPLETED – TIME_CREATED)))

 AS AVG_LIFETIME_MINUTES

 COUNT(*) AS ACTIVITY_COUNT

FROM ACTIVITY_DB2ACTIVITIES

GROUP BY APPL_NAME

ORDER BY APPL_NAME

APPLICATION_NAME AVG_LIFETIME_MINUTES ACTIVITY_COUNT

================ ==================== ==============

MOSTLYSMALL1 5 1501

MOSTLYSMALL2 7 124

ONLYSMALL 2 10123

The results show that the ONLYSMALL application produces the majority of the

unclassified activities. Because this application was not included in the results

when you collected information about the largest activities, you can assume that

ONLYSMALL did not produce any large queries during the period of data

collection.

Chapter 7. Workload management examples 177

Example: Identifying activities with low estimated cost and high

runtime

The following example shows how you can use work classes, work action sets,

thresholds, and activity collection to identify activities that have a low estimated

cost but a high runtime. This situation could indicate that the estimated cost (in

timerons) is inaccurate because of out-of-date table and index statistics.

The first step is to create a work class set with a work class that will be used to

identify activities with a low estimated cost. For example:

CREATE WORK CLASS SET WCS1

(WORK CLASS SMALLDML WORK TYPE DML FOR TIMERONCOST FROM 0 TO 500)

Then, you would create a database work action set with a work action that applies

an activity-total-time threshold to the SMALLDML work class. The threshold

action is CONTINUE and the COLLECT ACTIVITY DATA option is specified so

that an activity that violates the threshold is sent to the activities event monitor on

completion:

CREATE WORK ACTION SET WAS1 FOR DATABASE USING WORK CLASS SET WCS1

(WORK ACTION WA1 ON WORK CLASS SMALLDML WHEN ACTIVITYTOTALTIME > 15 MINUTES

COLLECT ACTIVITY DATA WITH DETAILS CONTINUE)

Finally, you would create and activate a threshold violations event monitor and an

activities event monitor:

CREATE EVENT MONITOR THVIOLATIONS FOR THRESHOLD VIOLATIONS WRITE TO TABLE

SET EVENT MONITOR THVIOLATIONS STATE 1

CREATE EVENT MONITOR DB2ACTIVITIES FOR ACTIVITIES WRITE TO TABLE

SET EVENT MONITOR DB2ACTIVITIES STATE 1

Now when a DML activity with an estimated cost of less than 500 timerons runs

for greater than 15 minutes, a threshold violation record is written to the

THVIOLATIONS event monitor (indicating that the total time threshold was

violated), and details about the DML activity are collected when the activity

completes and sent to the DB2ACTIVITIES event monitor. You can use the

information collected about the activity in the DB2ACTIVITIES event monitor to

investigate further. For example, you can run the EXPLAIN statement on the query

and examine the access plan. You should also consider the system load and

queuing at the time the activity was collected, as a long lifetime can be a result of

insufficient system resources or the activity being queued. The long lifetime does

not necessarily indicate out-of-date statistics.

178 Workload Manager Guide and Reference

Part 5. Reference

© Copyright IBM Corp. 2007, 2008 179

180 Workload Manager Guide and Reference

Chapter 8. Procedures and table functions

WLM_CANCEL_ACTIVITY - Cancel an activity

This procedure cancels a given activity. If the cancel takes place, an error message

will be returned to the application that submitted the activity that was cancelled.

Syntax

�� WLM_CANCEL_ACTIVITY (application_handle , uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

application_handle

An input argument of type BIGINT that specifies the application handle whose

activity is to be cancelled. If the argument is null, no activity will be found and

an SQL4702N with SQLSTATE 5U035 is returned.

uow_id

An input argument of type INTEGER that specifies the unit of work ID of the

activity that is to be cancelled. If the argument is null, no activity will be found

and an SQL4702N with SQLSTATE 5U035 is returned.

activity_id

An input argument of type INTEGER that specifies the activity ID which

uniquely identifies the activity within the unit of work that is to be cancelled.

If the argument is null, no activity will be found and an SQL4702N with

SQLSTATE 5U035 is returned.

Authorization

EXECUTE privilege on the WLM_CANCEL_ACTIVITY procedure.

Example

An administrator can use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to find the

application handle, unit of work ID and activity ID of an activity. To cancel an

activity with application handle 1, unit of work ID 2 and activity ID 3:

 CALL WLM_CANCEL_ACTIVITY(1, 2, 3)

Usage notes

v If no activity can be found, an SQL4702N with SQLSTATE 5U035 is returned.

v If the activity cannot be cancelled because it not in the correct state (not

initialized), an SQL4703N (reason code 1) with SQLSTATE 5U016 is returned.

v If the activity is successfully cancelled, an SQL4725N with SQLSTATE 57014 is

returned to the cancelled application.

v If, at the time of the cancel, the coordinator is processing a request for a different

activity or is idle, the activity is placed into CANCEL_PENDING state and will

be cancelled when the coordinator processes the next request for the activity.

© Copyright IBM Corp. 2007, 2008 181

WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity

information for activities event monitor

This procedure causes information on a given activity to be gathered and written

to the active activities event monitor. When applied to an activity that has child

activities, this procedure recursively generates a record for each child activity all

the way down to the lowest level. This information is collected and sent at the

instant this procedure is called. It does not wait until the activity completes

execution. The record of the activity in the event monitor is marked as a partial

record.

Syntax

�� WLM_CAPTURE_ACTIVITY_IN_PROGRESS (application_handle , �

� uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

application_handle

An input argument of type BIGINT that specifies the application handle whose

activity is to be captured. If the argument is null, no activity will be found and

an SQL4702N with SQLSTATE 5U035 is returned.

uow_id

An input argument of type INTEGER that specifies the unit of work ID of the

activity that is to be captured. If the argument is null, no activity will be found

and an SQL4702N with SQLSTATE 5U035 is returned.

activity_id

An input argument of type INTEGER that specifies the activity ID which

uniquely identifies the activity within the unit of work that is to be captured. If

the argument is null, no activity will be found and an SQL4702N with

SQLSTATE 5U035 is returned.

Authorization

EXECUTE privilege on the WLM_CAPTURE_ACTIVITY_IN_PROGRESS

procedure.

Example

A particular procedure MYSCHEMA.MYSLOWSTP might be running more slowly

than usual. A user complains and the administrator wants to investigate the cause

of the slowdown. Investigating while the stored procedure is executing can be

impractical, so the administrator has the ability to capture the stored procedure

activity and any of the activities nested within it.

Assuming that an event monitor for DB2 activities named DB2ACTIVITIES exists

and has been activated, the administrator can use the

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES function to obtain the

application handle, unit of work ID and activity ID for the call of this stored

procedure. Assuming that the activity is identified by an application handle of 1, a

182 Workload Manager Guide and Reference

unit of work ID of 2 and an activity ID of 3, the administrator can now issue the

call to WLM_CAPTURE_ACTIVITY_IN_PROGRESS as follows:

 CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(1,2,3)

Once the procedure has completed, for an activity event monitor named

DB2ACTIVITIES, the administrator can use the following table function to find out

where the activity spent its time:

 CREATE FUNCTION SHOWCAPTUREDACTIVITY(APPHNDL BIGINT,

 UOWID INTEGER,

 ACTIVITYID INTEGER)

 RETURNS TABLE (UOW_ID INTEGER, ACTIVITY_ID INTEGER, STMT_TEXT VARCHAR(40),

 LIFE_TIME DOUBLE)

 LANGUAGE SQL

 READS SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN WITH RAH (LEVEL, APPL_ID, PARENT_UOW_ID, PARENT_ACTIVITY_ID,

 UOW_ID, ACTIVITY_ID, STMT_TEXT, ACT_EXEC_TIME) AS

 (SELECT 1, ROOT.APPL_ID, ROOT.PARENT_UOW_ID,

 ROOT.PARENT_ACTIVITY_ID, ROOT.UOW_ID, ROOT.ACTIVITY_ID,

 ROOTSTMT.STMT_TEXT, ACT_EXEC_TIME

 FROM ACTIVITY_DB2ACTIVITIES ROOT, ACTIVITYSTMT_DB2ACTIVITIES ROOTSTMT

 WHERE ROOT.APPL_ID = ROOTSTMT.APPL_ID AND ROOT.AGENT_ID = APPHNDL

 AND ROOT.UOW_ID = ROOTSTMT.UOW_ID AND ROOT.UOW_ID = UOWID

 AND ROOT.ACTIVITY_ID = ROOTSTMT.ACTIVITY_ID AND ROOT.ACTIVITY_ID = ACTIVITYID

 UNION ALL

 SELECT PARENT.LEVEL +1, CHILD.APPL_ID, CHILD.PARENT_UOW_ID,

 CHILD.PARENT_ACTIVITY_ID, CHILD.UOW_ID,

 CHILD.ACTIVITY_ID, CHILDSTMT.STMT_TEXT, CHILD.ACT_EXEC_TIME

 FROM RAH PARENT, ACTIVITY_DB2ACTIVITIES CHILD,

 ACTIVITYSTMT_DB2ACTIVITIES CHILDSTMT

 WHERE PARENT.APPL_ID = CHILD.APPL_ID AND

 CHILD.APPL_ID = CHILDSTMT.APPL_ID AND

 PARENT.UOW_ID = CHILD.PARENT_UOW_ID AND

 CHILD.UOW_ID = CHILDSTMT.UOW_ID AND

 PARENT.ACTIVITY_ID = CHILD.PARENT_ACTIVITY_ID AND

 CHILD.ACTIVITY_ID = CHILDSTMT.ACTIVITY_ID AND

 PARENT.LEVEL < 64

)

SELECT UOW_ID, ACTIVITY_ID, SUBSTR(STMT_TEXT,1,40),

 ACT_EXEC_TIME AS

 LIFE_TIME

FROM RAH

An example of a query to use the table function is:

 SELECT * FROM TABLE(SHOWCAPTUREDACTIVITY(1, 2, 3))

 AS ACTS ORDER BY UOW_ID, ACTIVITY_ID

Usage notes

If there is no active activities event monitor, an SQL1633W with SQLSTATE 01H53

is returned.

If you are using this procedure to collect activity information, input data values

will not be collected.

Chapter 8. Procedures and table functions 183

WLM_COLLECT_STATS - Collect and reset workload management

statistics

This procedure causes statistics for service classes, workloads, work classes and

threshold queues to be gathered and written to the statistics event monitor. The

statistics for service classes, workloads, work classes and threshold queues are also

reset. If there is no active statistics event monitor, then the statistics are only reset.

Syntax

�� WLM_COLLECT_STATS () ��

The schema is SYSPROC.

Authorization

EXECUTE privilege on the WLM_COLLECT_STATS procedure.

Examples

Example 1: Call WLM_COLLECT_STATS to collect and reset statistics.

 CALL WLM_COLLECT_STATS()

The following is an example of output from this query.

 Return Status = 0

Example 2: Call WLM_COLLECT_STATS to collect and reset statistics while another

call is in progress.

 CALL WLM_COLLECT_STATS()

The following is an example of output from this query.

 SQL1632W The collect and reset statistics request was ignored because

 another collect and reset statistics request is already in progress.

Usage notes

The WLM_COLLECT_STATS procedure is used to manually collect statistics. It

performs the same collect (send statistics to the active statistics event monitor) and

reset operations that occur automatically on the interval defined by the

WLM_COLLECT_INT database configuration parameter. If the procedure is

invoked at the same time as another collect and reset request is in progress (for

example, the procedure is invoked at same time as another invocation of the

procedure is running, or at the same time an automated collection occurs) a

warning, SQL1632W with SQLSTATE 01H53 is returned and the request is ignored.

The WLM_COLLECT_STATS procedure only starts the collection and reset process.

It might return before the process has completed, that is, the procedure might

return to the caller before all statistics have been written to the active statistics

event monitor. Depending on how quickly the statistics collection and reset occurs,

the call to the WLM_COLLECT_STATS procedure (which is itself an activity and

will be counted in activity statistics) might be counted in either the prior collection

interval or the new collection interval that has just started.

184 Workload Manager Guide and Reference

WLM_GET_ACTIVITY_DETAILS - Return detailed information about a

specific activity

This function returns detailed information about a specific activity identified by its

application handle, unit of work ID and activity ID.

Syntax

�� WLM_GET_ACTIVITY_DETAILS (application_handle , uow_id , �

� activity_id , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

application_handle

An input argument of type BIGINT that specifies a valid application handle. If

the argument is null, no rows are returned from this function. If the argument

is null, an SQL171N error is returned.

uow_id

An input argument of type INTEGER that specifies a valid unit of work

identifier unique within the application. If the argument is null, no rows are

returned from this function. If the argument is null, an SQL171N error is

returned.

activity_id

An input argument of type INTEGER that specifies a valid activity ID unique

within the unit of work. If the argument is null, no rows are returned from this

function. If the argument is null, an SQL171N error is returned.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If a null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_ACTIVITY_DETAILS function.

Example

Detailed information about an individual activity can be obtained by using the

WLM_GET_ACTIVITY_DETAILS table function. This table function returns activity

information as name-value pairs for each partition. This example is restricted to

showing only an eleven member subset of the name-value pairs for each partition

for an activity identified by an application handle of 1, a unit of work ID of 1 and

an activity ID of 5. For a complete list of name-value pairs, see Table 46 on page

187 and Table 47 on page 189.

 SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(NAME, 1, 20) AS NAME,

 SUBSTR(VALUE, 1, 30) AS VALUE

 FROM TABLE(WLM_GET_ACTIVITY_DETAILS(1, 1, 5, -2)) AS ACTDETAIL

 WHERE NAME IN (’APPLICATION_HANDLE’,

 ’COORD_PARTITION_NUM’,

Chapter 8. Procedures and table functions 185

’LOCAL_START_TIME’,

 ’UOW_ID’,

 ’ACTIVITY_ID’,

 ’PARENT_UOW_ID’,

 ’PARENT_ACTIVITY_ID’,

 ’ACTIVITY_TYPE’,

 ’NESTING_LEVEL’,

 ’INVOCATION_ID’,

 ’ROUTINE_ID’)

 ORDER BY PART

The following is an example of output from this query.

PART NAME VALUE

---- -------------------- ------------------------------

0 APPLICATION_HANDLE 1

0 COORD_PARTITION_NUM 0

0 LOCAL_START_TIME 2005-11-25-18.52.49.343000

0 UOW_ID 1

0 ACTIVITY_ID 5

0 PARENT_UOW_ID 1

0 PARENT_ACTIVITY_ID 3

0 ACTIVITY_TYPE READ_DML

0 NESTING_LEVEL 0

0 INVOCATION_ID 1

0 ROUTINE_ID 0

1 APPLICATION_HANDLE 1

1 COORD_PARTITION_NUM 0

1 LOCAL_START_TIME 2005-11-25-18.52.49.598000

1 UOW_ID 1

1 ACTIVITY_ID 5

1 PARENT_UOW_ID

1 PARENT_ACTIVITY_ID

1 ACTIVITY_TYPE READ_DML

1 NESTING_LEVEL 0

1 INVOCATION_ID 1

1 ROUTINE_ID 0

Usage note

An ACTIVITY_STATE of QUEUED means that the coordinator activity has made a

RPC to the catalog partition to obtain threshold tickets and has not yet received a

response. Seeing this state might indicate that the activity has been queued by

WLM or, over short periods of time, might just indicate that the activity is in the

process of obtaining its tickets. To obtain a more accurate picture of whether or not

the activity is really being queued, one can determine which agent is working on

the activity (using the WLM_GET_SERVICE_CLASS_AGENTS table function) and

find out whether this agent’s event_object at the catalog partition has a value of

WLM_QUEUE.

Information returned

 Table 45. Information returned for WLM_GET_ACTIVITY_DETAILS

Column Name Data Type Description

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

NAME VARCHAR(256) Element name. See Table 46 on page 187 and Table 47 on

page 189 for possible values.

VALUE VARCHAR(1024) Element values. See Table 46 on page 187 and Table 47

on page 189 for possible values.

186 Workload Manager Guide and Reference

Table 46. Elements returned

Element Name Description

APPLICATION_HANDLE A system-wide unique ID for the application. On a

single-partitioned database, this identifier consists of a 16

bit counter. On a multi-partitioned database, this

identifier consists of the coordinating partition number

concatenated with a 16 bit counter. In addition, this

identifier will be the same on every partition where the

application may make a secondary connection.

COORD_PARTITION_NUM The coordinator partition of the activity.

UOW_ID Unique unit of work identifier within an application.

Refers to the original unit of work this activity started in.

ACTIVITY_ID Unique activity identifier within an application.

PARENT_UOW_ID Unique unit of work identifier within an application.

Refers to the original unit of work this activity’s parent

activity started in. Returns an empty string if the activity

has no parent activity or when at a remote partition.

PARENT_ACTIVITY_ID Unique activity identifier within a unit of work for the

parent of the activity whose ID is ACTIVITY_ID. Returns

an empty string if the activity has no parent activity.

ACTIVITY_STATE Possible values include:

v CANCEL_PENDING

v EXECUTING

v IDLE

v INITIALIZING

v QP_CANCEL_PENDING

v QP_QUEUED

v QUEUED

v TERMINATING

v UNKNOWN

ACTIVITY_TYPE Possible values include:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

NESTING_LEVEL This represents the nesting level of this activity. Nesting

level is the depth to which this activity is nested within

its top-most parent activity.

INVOCATION_ID This distinguishes one particular invocation of this

activity from others at the same nesting level. Returns

zero if the activity is not nested.

ROUTINE_ID Routine unique identifier. Returns zero if the activity is

not part of a routine.

UTILITY_ID If the activity is a utility, this is its utility ID. Otherwise,

this field is 0.

SERVICE_CLASS_ID Unique identifier of the service class to which this

activity belongs.

Chapter 8. Procedures and table functions 187

Table 46. Elements returned (continued)

Element Name Description

DATABASE_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that

has been applied to the database, this column contains

the ID of the work action set. This column contains 0 if

the activity has not been mapped to a work action set

that has been applied to the database.

DATABASE_WORK_CLASS_ID If this activity has been mapped to a work action set that

has been applied to the database, this column contains

the ID of the work class of this activity. This column

contains 0 if the activity has not been mapped to a work

action set that has been applied to the database.

SERVICE_CLASS_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that

has been applied to a service class, this column contains

the ID of the work action set. This column contains 0 if

the activity has not been mapped to a work action set

that has been applied to a service class.

SERVICE_CLASS_WORK_CLASS_ID If this activity has been mapped to a work action set that

has been applied to a service class, this column contains

the ID of the work class of this activity. This column

contains 0 if the activity has not been mapped to a work

action set that has been applied to a service class.

ENTRY_TIME The time that this activity arrived into the system.

LOCAL_START_TIME The time that this activity began doing work on the

partition. It is in local time. This field can be an empty

string when an activity has entered the system but is in a

queue and has not started executing.

LAST_REFERENCE_TIME Every time a request occurs in this activity, this field is

updated.

PACKAGE_NAME If the activity is a SQL statement, this represents the

name of its package.

PACKAGE_SCHEMA If the activity is a SQL statement, this represents the

schema name of its package.

PACKAGE_VERSION_ID If the activity is a SQL statement, this represents the

version of its package.

SECTION_NUMBER If the activity is a SQL statement, this represents its

section number.

STMT_PKG_CACHE_ID Statement package cache identifier.

STMT_TEXT If the activity is dynamic SQL or it is static SQL for

which the statement text is available, this field contains

the first 1024 characters of the statement text. It is an

empty string otherwise.

EFFECTIVE_ISOLATION The effective isolation level for this activity.

EFFECTIVE_LOCK_TIMEOUT The effective lock timeout value for this activity.

EFFECTIVE_QUERY_DEGREE The effective value of query degree for this activity.

QUERY_COST_ESTIMATE Estimated cost, in timerons, for a query, as determined

by the SQL compiler.

188 Workload Manager Guide and Reference

Table 46. Elements returned (continued)

Element Name Description

ROWS_FETCHED This is the number of rows read from the table. This

reports only those values for the database partition for

which this record is recorded. On DPF systems, these

values may not reflect the correct totals for the whole

activity. When the statement monitor switch is not

turned on, this element is not collected and -1 is written

instead.

ROWS_MODIFIED This is the number of rows inserted, updated, or deleted.

This reports only those values for the database partition

for which this record is recorded. On DPF systems, these

values may not reflect the correct totals for the whole

activity. When the statement monitor switch is not

turned on, this element is not collected and -1 is written

instead.

SYSTEM_CPU_TIME The total system CPU time (in seconds and

microseconds) used by the database manager agent

process, the unit of work, or the statement. When either

the statement monitor switch or the timestamp switch is

not turned on, this element is not collected and -1 is

written instead.

USER_CPU_TIME The total user CPU time (in seconds and microseconds)

used by the database manager agent process, the unit of

work, or the statement. When either the statement

monitor switch or the timestamp switch is not turned on,

this element is not collected and -1 is written instead.

QP_QUERY_ID The query ID assigned to this activity by Query Patroller

if the activity is a query. A query ID of 0 indicates that

Query Patroller did not assign a query ID to this activity.

The following are returned only if the corresponding thresholds apply to the

activity.

 Table 47. Elements returned if applicable

Element Name Description

CONCURRENTWORKLOADACTIVITIES_THRESHOLD_ID The ID of the threshold.

CONCURRENTWORKLOADACTIVITIES_THRESHOLD_VALUE The value that, when exceeded, will

trigger the threshold.

CONCURRENTWORKLOADACTIVITIES_THRESHOLD_VIOLATED Yes indicates that this activity violated

the threshold. No indicates that this

activity has not violated the threshold.

CONCURRENTDBCOORDACTIVITIES_DB_THRESHOLD_ID The ID of the threshold.

CONCURRENTDBCOORDACTIVITIES_DB_THRESHOLD_VALUE The value that, when exceeded, will

trigger the threshold.

CONCURRENTDBCOORDACTIVITIES_DB_THRESHOLD_QUEUED Whether the activity was queued by this

threshold.

CONCURRENTDBCOORDACTIVITIES_DB_THRESHOLD_VIOLATED ’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET

_THRESHOLD_ID

The ID of the threshold.

Chapter 8. Procedures and table functions 189

Table 47. Elements returned if applicable (continued)

Element Name Description

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET

_THRESHOLD_VALUE

The value that, when exceeded, will

trigger the threshold.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET

_THRESHOLD_QUEUED

’Yes’ indicates that the activity was

queued by this threshold. ’No’ indicates

that the activity was not queued.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET

_THRESHOLD_VIOLATED

’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS

_THRESHOLD_ID

The ID of the threshold.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS

_THRESHOLD_VALUE

The value that, when exceeded, will

trigger the threshold.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS

_THRESHOLD_QUEUED

’Yes’ indicates that the activity was

queued by this threshold. ’No’ indicates

that the activity was not queued.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS

_THRESHOLD_VIOLATED

’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS

_THRESHOLD_ID

The ID of the threshold.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS

_THRESHOLD_VALUE

The value that, when exceeded, will

trigger the threshold.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS

_THRESHOLD_QUEUED

Whether the activity was queued by this

threshold.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS

_THRESHOLD_VIOLATED

’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

ESTIMATEDSQLCOST_THRESHOLD_ID The ID of the threshold.

ESTIMATEDSQLCOST_THRESHOLD_VALUE The value that, when exceeded, will

trigger the threshold.

ESTIMATEDSQLCOST_THRESHOLD_VIOLATED ’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

SQLTEMPSPACE_THRESHOLD_ID The ID of the threshold.

SQLTEMPSPACE_THRESHOLD_VALUE The value that, when exceeded, will

trigger the threshold.

SQLTEMPSPACE_THRESHOLD_VIOLATED ’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

SQLROWSRETURNED_THRESHOLD_ID The ID of the threshold.

SQLROWSRETURNED_THRESHOLD_VALUE The value that, when exceeded, will

trigger the threshold.

SQLROWSRETURNED_THRESHOLD_VIOLATED ’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

ACTIVITYTOTALTIME_THRESHOLD_ID The ID of the threshold.

190 Workload Manager Guide and Reference

Table 47. Elements returned if applicable (continued)

Element Name Description

ACTIVITYTOTALTIME_THRESHOLD_VALUE A timestamp that is computed by

adding the ACTIVITYTOTALTIME

threshold duration to the activity entry

time. If the activity is still executing

when this timestamp is reached, the

threshold will be violated.

ACTIVITYTOTALTIME_THRESHOLD_VIOLATED ’Yes’ indicates that the threshold has

been violated. ’No’ indicates that the

threshold has not yet been violated.

WLM_GET_QUEUE_STATS table function - Return threshold queue

statistics

This function returns basic statistics for one or more threshold queues.

This function returns one row of statistics for each threshold queue. Statistics are

returned for queues on all active partitions.

Syntax

�� WLM_GET_QUEUE_STATS (threshold_predicate , threshold_domain , �

� threshold_name , threshold_id) ��

The schema is SYSPROC.

Table function parameters

threshold_predicate

An input argument of type VARCHAR(27) that specifies a valid threshold

predicate. The possible values are:

v CONCDBC: concurrent database coordinator activities threshold

v DBCONN: total database partition connections threshold

v SCCONN: total service class partition connections threshold

v NULL or an empty string: data is returned for all possible threshold

predicates. The threshold_predicate values match those of the

THRESHOLDPREDICATE column in the SYSCAT.THRESHOLDS view.

threshold_domain

An input argument of type VARCHAR(18) that specifies a valid threshold

domain. The possible values are:

v DB: database

v SB: service subclass

v SP: service superclass

v WA: work action set

v NULL or an empty string: data is returned for all possible threshold

domains. The threshold_domain values match those of the DOMAIN column

in the SYSCAT.THRESHOLDS view.

Chapter 8. Procedures and table functions 191

threshold_name

An input argument of type VARCHAR(128) that specifies a valid threshold

name. If the argument is null or an empty string, data is returned for all

thresholds that meet the other criteria. The threshold_name values match those

of the THRESHOLDNAME column in the SYSCAT.THRESHOLDS view.

threshold_id

An input argument of type INTEGER that specifies a valid threshold ID. If the

argument is null or -1, data is returned for all thresholds that meet the other

criteria. The threshold_id values match those of the THRESHOLDID column in

the SYSCAT.THRESHOLDS view.

Authorization

EXECUTE privilege on the WLM_GET_QUEUE_STATS function.

Example

To see all the basic statistics for all the queues on the system, across all partitions:

 SELECT substr(THRESHOLD_NAME, 1, 6) THRESHNAME,

 THRESHOLD_PREDICATE,

 THRESHOLD_DOMAIN,

 DBPARTITIONNUM PART,

 QUEUE_SIZE_TOP,

 QUEUE_TIME_TOTAL,

 QUEUE_ASSIGNMENTS_TOTAL QUEUE_ASSIGN

 FROM table(WLM_GET_QUEUE_STATS(’’, ’’, ’’, -1)) as QSTATS

The following is an example of output from this query.

THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN ...

---------- --------------------------- ------------------ ...

LIMIT1 CONCDBC DB ...

LIMIT2 SCCONN SP ...

LIMIT3 DBCONN DB ...

Output from this query (continued).

... PART QUEUE_SIZE_TOP QUEUE_TIME_TOTAL QUEUE_ASSIGN

... ---- -------------- ---------------- ------------

... 0 12 1238540 734

... 0 4 741249 24

... 0 7 412785 128

Usage note

No aggregation across queues (on a partition), or across partitions (for a queue or

more) is performed, however this type of aggregation can be achieved using SQL

queries as shown in the example above.

192 Workload Manager Guide and Reference

Information returned

 Table 48. Information returned for WLM_GET_QUEUE_STATS

Column Name Data Type Description

THRESHOLD_PREDICATE VARCHAR(27) Threshold predicate of the threshold

responsible for this queue. The

possible values are:

v CONCDBC: concurrent database

coordinator activities threshold

v DBCONN: total database partition

connections threshold

v SCCONN: total service class

partition connections threshold

The threshold predicate values match

those of the THRESHOLDPREDICATE

column in the SYSCAT.THRESHOLDS

view.

THRESHOLD_DOMAIN VARCHAR(18) Domain of the threshold responsible

for this queue. The possible values are:

v DB: database

v SB: service subclass

v SP: service superclass

v WA: work action set

The threshold domain values match

those of the DOMAIN column in the

SYSCAT.THRESHOLDS view.

THRESHOLD_NAME VARCHAR(128) The unique name of the threshold

responsible for this queue. The

threshold name value matches that of

the THRESHOLDNAME column in the

SYSCAT.THRESHOLDS view.

THRESHOLD_ID INTEGER The unique ID of the threshold

responsible for this queue. The

threshold ID value matches that of the

THRESHOLDID column in the

SYSCAT.THRESHOLDS view.

DBPARTITIONNUM SMALLINT Partition number from which this

record was collected.

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass that is

the domain for the threshold

responsible for this queue. Null if the

domain of the threshold is not a

service superclass or service subclass.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass that is

the domain for the threshold

responsible for this queue. Null if the

domain of the threshold is not a

service subclass.

WORK_ACTION_SET_NAME VARCHAR(128) Name of the work action set that is the

domain for the threshold responsible

for this queue. Null if the domain of

the threshold is not a work action set.

Chapter 8. Procedures and table functions 193

Table 48. Information returned for WLM_GET_QUEUE_STATS (continued)

Column Name Data Type Description

WORK_CLASS_NAME VARCHAR(128) Name of the work class whose work

action belongs to the work action set

that is the domain for the threshold

responsible for this queue. Null if the

domain of the threshold is not a work

action set.

WORKLOAD_NAME VARCHAR(128) Name of the workload that is the

domain for the threshold responsible

for this queue. Null if the domain of

the threshold is not a workload.

LAST_RESET TIMESTAMP Time when statistics were last reset.

There are four events that can occur

that will trigger a reset of statistics,

which will update this timestamp:

v The WLM_COLLECT_STATS

procedure is called.

v The periodic collection and reset

process controlled by the

WLM_COLLECT_INT configuration

parameter causes a collection and

reset.

v The database is reactivated.

v The threshold for which queue

statistics are being reported was

modified and the change was

committed.

The LAST_RESET timestamp is in local

time.

QUEUE_SIZE_TOP INTEGER Highest number of connections or

activities in the queue that has been

reached since the last reset.

QUEUE_TIME_TOTAL BIGINT Sum of the times spent in the queue

for all connections or activities placed

in this queue since the last reset. Units

are milliseconds.

QUEUE_ASSIGNMENTS_TOTAL BIGINT Number of connections or activities

that were assigned to this queue since

the last reset.

QUEUE_SIZE_CURRENT INTEGER Number of connections or activities in

the queue.

QUEUE_TIME_LATEST BIGINT Time spent in the queue by the last

connection or activity to leave the

queue. This is measured in

milliseconds.

QUEUE_EXIT_TIME_LATEST TIMESTAMP Time that the last connection or

activity left the queue.

THRESHOLD_CURRENT_CONCURRENCY INTEGER Number of connections or activities

that are currently executing according

to the threshold.

194 Workload Manager Guide and Reference

Table 48. Information returned for WLM_GET_QUEUE_STATS (continued)

Column Name Data Type Description

THRESHOLD_MAX_CONCURRENCY INTEGER Maximum number of connections or

activities that the threshold allows to

be concurrently executing.

WLM_GET_SERVICE_CLASS_AGENTS - List agents executing in a

service class

This function returns the list of agents, fenced mode processes (db2fmps) and

system entities on the given partition that are executing in the given service class

or on behalf of the given application. The system entities are non-agent threads

and processes, such as page cleaners and prefetchers.

Syntax

�� WLM_GET_SERVICE_CLASS_AGENTS (service_superclass_name , �

� service_subclass_name , application_handle , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name

An input argument of type VARCHAR(128) that specifies a valid service

superclass name in the same database as the one currently connected to when

calling this function. If the argument is null or an empty string, data is

retrieved for all the superclasses in the database for which the other

parameters match.

service_subclass_name

An input argument of type VARCHAR(128) that refers to a specific subclass

within a superclass. If the argument is null or an empty string, data is

retrieved for all the subclasses in the database for which the other parameters

match.

application_handle

An input argument of type BIGINT that specifies the application handle for

which agent information should be returned. If the argument is null, data is

retrieved for all applications in the database for which the other parameters

match. An application handle of 0 will return the system entities only.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If a null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_CLASS_AGENTS function.

Chapter 8. Procedures and table functions 195

Example

Return a list of agents that are associated with application handle 1 for all database

partitions. The application handle could have been determined using the LIST

APPLICATIONS command or the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.

 SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,

 SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,

 SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,

 SUBSTR(REQUEST_TYPE,1,12) AS REQTYPE,

 SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,

 SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

 FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(CAST(NULL AS VARCHAR(128)),

 CAST(NULL AS VARCHAR(128)), 1, -2)) AS SCDETAILS

 ORDER BY APPHANDLE, PART, AGENT_TID

The following is an example of output from this query.

APPHANDLE PART AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID

--------- ---- --------- ----------- ---------- -------------- ------ ------

1 0 3 COORDINATOR ACTIVE FETCH 1 5

1 0 4 SUBAGENT ACTIVE SUBSECTION:1 1 5

1 1 2 SUBAGENT ACTIVE SUBSECTION:2 1 5

Here we see a coordinator agent and a subagent on partition 0 as well as a

subagent on partition 1 operating on behalf of an activity with UOW id 1 and

activity id 5. The coordinator agent tells us that the request is a fetch request.

Usage note

The parameters have the effect of being ANDed together. That is, if one were to

specify conflicting records such as a service superclass SUP_A and subclass SUB_B

such that SUB_B is not a subclass of SUP_A, no rows would be returned.

Information returned

 Table 49. Information returned by WLM_GET_SERVICE_CLASS_AGENTS

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this record was

collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this record was

collected.

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application. On a

single-partitioned database, this identifier consists of a 16 bit

counter. On a multi-partitioned database, this identifier

consists of the coordinating partition number concatenated

with a 16 bit counter. In addition, this identifier will be the

same on every partition where the application may make a

secondary connection.

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

ENTITY VARCHAR(32) If the type of entity in this row is an agent, this field shows

″db2agent″. If the type of entity in this row is a fenced mode

process, this field shows ″db2fmp (pid)″ where pid is the

process ID of the fenced mode process. Otherwise, the name

of the system entity is shown.

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record was collected.

196 Workload Manager Guide and Reference

Table 49. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column Name Data Type Description

WORKLOAD_OCCURRENCE_ID INTEGER The ID of the workload occurrence. This does not uniquely

identify the workload occurrence unless it is coupled with

the coordinator database partition number and the workload

name. Alternatively, the application handle can be used

instead of the coordinator database partition number.

UOW_ID INTEGER Unique unit of work identifier within an application. Refers

to the original unit of work this activity started in.

ACTIVITY_ID INTEGER Unique activity identifier within a unit of work.

PARENT_UOW_ID INTEGER Unique unit of work identifier within an application. Refers

to the original unit of work this activity’s parent activity

started in. Returns null if this activity has no parent.

PARENT_ACTIVITY_ID INTEGER Unique activity identifier within a unit of work for the

parent of the activity whose ID is activity_id. Returns null if

this activity has no parent.

AGENT_TID BIGINT Thread ID of the agent or system entity. If this ID is

unavailable, this field is null.

AGENT_TYPE VARCHAR(32) Coordinator or subagent. If coordinator, the agent ID may

change in concentrator environments. The agent types are

represented by:

v COORDINATOR

v OTHER

v PDBSUBAGENT

v SMPSUBAGENT

SMP_COORDINATOR INTEGER Whether or not the agent is an smp coordinator: 1 for yes

and 0 for no.

AGENT_SUBTYPE VARCHAR(32) Possible subtypes include:

v DSS

v OTHER

v RPC

v SMP

AGENT_STATE VARCHAR(32) Whether an agent is associated or active. The possible values

are:

v ACTIVE

v ASSOCIATED

EVENT_TYPE VARCHAR(32) The type of event last processed by this agent. The possible

values are:

v ACQUIRE

v PROCESS

v WAIT

Chapter 8. Procedures and table functions 197

Table 49. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column Name Data Type Description

EVENT_OBJECT VARCHAR(32) The object of the event last processed by this agent. The

possible values are:

v COMPRESSION_DICTIONARY_BUILD

v IMPLICIT_REBIND

v INDEX_RECREATE

v LOCK

v LOCK_ESCALATION

v QP_QUEUE

v REMOTE_REQUEST

v REQUEST

v ROUTINE

v WLM_QUEUE

EVENT_STATE VARCHAR(32) The state of the event last processed by this agent. The

possible values are:

v EXECUTING

v IDLE

REQUEST_ID VARCHAR(64) Unique only in combination with application_handle. This

can be used for distinguishing between having one request

take a long time versus having multiple requests. For

examples, distinguishing multiple fetches from one long

fetch.

REQUEST_TYPE VARCHAR(32) The type of request. The possible values are:

v For coordinator agents:

– CLOSE

– COMMIT

– COMPILE

– DESCRIBE

– EXCSQLSET

– EXECIMMD

– EXECUTE

– FETCH

– INTERNAL <number>

– OPEN

– PREPARE

– REBIND

– REDISTRIBUTE

– REORG

– ROLLBACK

– RUNSTATS

v For subagents (DSS and SMP):

– displays the subsection number in the form

″SUBSECTION:<subsection number>″ if the subsection

number is non-zero. Otherwise, returns NULL.

198 Workload Manager Guide and Reference

Table 49. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column Name Data Type Description

REQUEST_TYPE (continued) VARCHAR(32) v For subagents (RPC):

– ABP

– CATALOG

– INTERNAL

– REORG

– RUNSTATS

– WLM

v For subagents (OTHER):

– ABP

– APP_RBSVPT

– APP_RELSVPT

– BACKUP

– CLOSE

– EXTERNAL_RBSVPT

– EVMON

– FORCE

– FORCE_ALL

– INTERNAL <number>

– INTERRUPT

– NOOP: if there is no request

– QP

– REDISTRIBUTE

– STMT_RBSVPT

– STOP_USING

– UPDATE_DBM_CFG

– WLM

If the request type is one of the internal types, the value is

displayed as ’INTERNAL’ followed by the actual value of

the internal constant.

NESTING_LEVEL INTEGER This represents the nesting level of the activity whose ID is

activity_id. Nesting level is the depth to which this activity

is nested within its top-most parent activity.

INVOCATION_ID INTEGER This distinguishes one particular invocation of an activity

from others at the same nesting level.

ROUTINE_ID INTEGER Routine unique identifier. Null if not part of a routine.

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES - List of

workload occurrences

This function returns the list of all workload occurrences executing in a given

service class on a particular partition. A workload occurrence is a specific database

connection whose attributes match with the definition of a workload and hence is

associated with or assigned to the workload.

Chapter 8. Procedures and table functions 199

Syntax

�� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name

An input argument of type VARCHAR(128) that specifies a valid service

superclass name in the currently connected database. If the argument is null or

an empty string, the data is retrieved for all the superclasses in the database

for which the other parameters match.

service_subclass_name

An input argument of type VARCHAR(128) that specifies a valid service

superclass name in the currently connected database. If the argument is null or

an empty string, the data is retrieved for all the subclasses in the database for

which the other parameters match.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database. Indicate -1 for the

current database partition, or -2 for all database partitions. If the null value is

specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function.

Example

If an administrator would like to see what workload occurrences are running on

the system as a whole, the

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function can be

called with a null value or an empty string for service_superclass_name and

service_subclass_name, and -2 for dbpartitionnum.

 SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(COORD_PARTITION_NUM),1,4) AS COORDPART,

 SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,

 SUBSTR(WORKLOAD_NAME,1,22) AS WORKLOAD_NAME,

 SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

 FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

 (CAST(NULL AS VARCHAR(128)), CAST(NULL AS VARCHAR(128)), -2))

 AS SCINFO

 ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART, APPHNDL,

 WORKLOAD_NAME, WLO_ID

Assuming that the system has four database partitions and is running two

workloads at this time, the above query would produce a result like the following:

SUPERCLASS_NAME SUBCLASS_NAME PART COORDPART ...

------------------- ------------------ ---- --------- ...

SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 0 ...

SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 0 ...

200 Workload Manager Guide and Reference

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...

Output from this query (continued).

... APPHNDL WORKLOAD_NAME WLO_ID

... ------- ---------------------- ------

... - - -

... - - -

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

Usage note

The parameters have the effect of being ANDed together. That is, if one were to

specify conflicting records such as a service superclass SUP_A and subclass SUB_B

such that SUB_B is not a subclass of SUP_A, no rows would be returned.

Note: Statistics reported for the workload occurrence (for example

coord_act_completed_total) are reset at the beginning of each unit of work when

they are combined with the corresponding workload statistics.

Information returned

 Table 50. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this

record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this

record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was

collected.

COORD_PARTITION_NUM SMALLINT Partition number of the coordinator partition of

the given workload occurrence.

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application.

On a single-partitioned database, this identifier

consists of a 16 bit counter. On a

multi-partitioned database, this identifier

consists of the coordinating partition number

concatenated with a 16 bit counter. In addition,

this identifier will be the same on every

partition where the application may make a

secondary connection.

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record

was collected.

Chapter 8. Procedures and table functions 201

Table 50. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (continued)

Column Name Data Type Description

WORKLOAD_OCCURRENCE_ID INTEGER The ID of the workload occurrence. This does

not uniquely identify the workload occurrence

unless it is coupled with the coordinator

database partition number and the workload

name. Alternatively, the application handle can

be used instead of the coordinator database

partition number.

WORKLOAD_OCCURRENCE_STATE VARCHAR(32) Possible values include:

v DECOUPLED - Workload occurrence does not

have a coordinator agent assigned

(concentrator case).

v DISCONNECTPEND - Workload occurrence

is disconnecting from the database

v FORCED - Workload occurrence has been

forced.

v INTERRUPTED - Workload occurrence has

been interrupted.

v QUEUED - Workload occurrence coordinator

agent is queued by Query Patroller or a

workload management queuing threshold. In

a database partitioning feature (DPF)

environment, this state may indicate that the

coordinator agent has made an RPC to the

catalog partition to obtain threshold tickets

and has not yet received a response.

v TRANSIENT - Workload occurrence has not

yet been mapped to a service superclass.

v UOWEXEC - Workload occurrence is

processing a request.

v UOWWAIT - Workload occurrence is waiting

for a request from the client.

UOW_ID INTEGER Unique unit of work identifier within an

application. Refers to the original unit of work

this workload occurrence started in.

SYSTEM_AUTH_ID VARCHAR(128) System authorization ID under which the

workload occurrence was injected into the

system.

SESSION_AUTH_ID VARCHAR(128) Session authorization ID under which the

workload occurrence was injected into the

system.

APPLICATION_NAME VARCHAR(128) The name of the application that created this

workload occurrence.

CLIENT_WRKSTNNAME VARCHAR(255) The current value of the

CLIENT_WRKSTNNAME special register for

this workload occurrence.

CLIENT_ACCTNG VARCHAR(255) The current value of the CLIENT_ACCTNG

special register for this workload occurrence.

CLIENT_USER VARCHAR(255) The current value of the CLIENT_USER special

register for this workload occurrence.

CLIENT_APPLNAME VARCHAR(255) The current value of the CLIENT_APPLNAME

special register for this workload occurrence.

202 Workload Manager Guide and Reference

Table 50. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (continued)

Column Name Data Type Description

COORD_ACT_COMPLETED_TOTAL INTEGER The number of coordinator activities at any

nesting level completed so far in the current

unit of work of this workload occurrence. This

statistic is updated every time an activity in this

workload occurrence completes and is reset at

the beginning of each unit of work.

COORD_ACT_ABORTED_TOTAL INTEGER The number of coordinator activities aborted so

far in the current unit of work of this workload

occurrence. This statistic is updated every time

an activity in this workload occurrence is

aborted and is reset at the beginning of each

unit of work.

COORD_ACT_REJECTED_TOTAL INTEGER The number of coordinator activities rejected so

far in the current unit of work of this workload

occurrence. Activities are counted as rejected

when they are prevented from executing by

either a prevent execution work action, or a

predictive threshold. This statistic is updated

every time an activity in this workload

occurrence is rejected and is reset at the

beginning of each unit of work.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at any

nesting level in either executing (which includes

idle and waiting) or queued state that has been

reached for this workload occurrence in the

current unit of work. This statistic is reset at the

beginning of each unit of work.

WLM_GET_SERVICE_SUBCLASS_STATS - Return statistics of service

subclasses

This function returns basic statistics of one or more service subclasses.

Syntax

�� WLM_GET_SERVICE_SUBCLASS_STATS (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name

An input argument of type VARCHAR(128) that specifies a valid service

superclass name in the same database as the one currently connected to when

calling this function. If the argument is null or an empty string, the data is

retrieved for all the superclasses in the database.

service_subclass_name

An input argument of type VARCHAR(128) that specifies a valid service

subclass name in the same database as the one currently connected to when

Chapter 8. Procedures and table functions 203

calling this function. If the argument is null or an empty string, the data is

retrieved for all the subclasses in the database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_SUBCLASS_STATS function.

Examples

Example 1: Since every activity has to be mapped to a DB2 Service Class prior to

being executed, the global state of the system can be regularly monitored using the

service class statistics table functions and querying all the service classes on all the

partitions (note that passing a null value for an argument is saying to not restrict

the result by that argument, except for the last argument, dbpartitionnum, where

-2 means that data from all database partitions are to be returned). The following

statement returns service class statistics such as average activity lifetime and

standard deviation in seconds:

 SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3))

 AS AVGLIFETIME,

 CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3))

 AS STDDEVLIFETIME,

 SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

 FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),

 CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

 ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

The following is an example of output from this query.

SUPERCLASS_NAME SUBCLASS_NAME PART ...

------------------- ------------------ ---- ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 ...

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 ...

Output from this query (continued).

... AVGLIFETIME STDDEVLIFETIME LAST_RESET

... ----------- -------------- ----------------

... 691.242 34.322 2006-07-24-11.44

... 644.740 22.124 2006-07-24-11.44

... 612.431 43.347 2006-07-24-11.44

... 593.451 28.329 2006-07-24-11.44

Example 2: The same table function can also give the highest value for average

concurrency of coordinator activities running in the service class on each partition.

 SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

 SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CONCURRENT_ACT_TOP AS ACTTOP,

 CONCURRENT_WLO_TOP AS CONNTOP

204 Workload Manager Guide and Reference

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),

 CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

 ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

The following is an example of output from this query.

SUPERCLASS_NAME SUBCLASS_NAME PART ACTTOP CONNTOP

------------------- ------------------ ---- --------- ---------

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10 7

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 0

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 0

SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 0

The output of this table function will give the administrator a good high level view

of the ″load″ on each partition for a specific database by checking the average

execution times and numbers of activities. Any significant variations of the high

level gauges returned by these table functions may indicate a change in the load

on the system.

Usage notes

Some statistics will only be returned if the COLLECT AGGREGATE ACTIVITY

DATA and COLLECT AGGREGATE REQUEST DATA settings for the

corresponding service subclass are set to a value other than NONE.

The WLM_GET_SERVICE_SUBCLASS_STATS table function returns one row of

data per service subclass and per partition. No aggregation across service classes

(on a partition), or across partitions (for a service class or more) is performed.

However, aggregation can be achieved through SQL queries as shown in the

examples above.

The parameters have the effect of being ANDed together. That is, if one were to

specify conflicting records such as a superclass name SUPA and subclass name

SUBB such that SUBB is not a subclass of SUPA, no rows would be returned.

Information returned

 Table 51. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which

this record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this

record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was

collected.

Chapter 8. Procedures and table functions 205

Table 51. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

LAST_RESET TIMESTAMP Time when statistics were last reset. There are

four events that can occur that will trigger a

reset of statistics, which will update this

timestamp:

v The WLM_COLLECT_STATS procedure is

called.

v The periodic collection and reset process

controlled by the WLM_COLLECT_INT

configuration parameter causes a collection

and reset.

v The database is reactivated.

v The service subclass for which statistics are

being reported was modified and the

change was committed.

The LAST_RESET timestamp is in local time.

COORD_ACT_COMPLETED_TOTAL BIGINT The total number of coordinator activities that

users have submitted since the last reset and

completed successfully. This count is updated

as each activity completes.

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities that

users have submitted since the last reset and

completed with errors. This count is updated

as each activity aborts.

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities that

users have submitted since the last reset and

were rejected prior to execution instead of

being allowed to execute. Activities are

counted as rejected when they are prevented

from executing by either a prevent execution

work action, or a predictive threshold. This

count is updated as each activity gets

rejected.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at

any nesting level in either executing (which

includes idle and waiting) or queued state

that has been reached for this service

subclass.

COORD_ACT_LIFETIME_TOP BIGINT High watermark for coordinator activity

lifetime, counted at all nesting levels. Null

when COLLECT AGGREGATE ACTIVITY

DATA of service class is NONE. Units are

milliseconds.

COORD_ACT_LIFETIME_AVG DOUBLE Arithmetic mean of lifetime for coordinator

activities at nesting level 0 associated with

this service subclass since the last reset. If the

internally tracked average has overflowed,

the value -2 is returned. Null when

COLLECT AGGREGATE ACTIVITY DATA of

service class is NONE. Units are milliseconds.

206 Workload Manager Guide and Reference

Table 51. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for coordinator

activities at nesting level 0 associated with

this service subclass since the last reset. Null

when COLLECT AGGREGATE ACTIVITY

DATA of service class is NONE. Units are

milliseconds. This standard deviation is

computed from the coordinator activity

lifetime histogram and may be inaccurate if

the histogram has not been properly sized to

fit the data. The value of -1 will be returned if

any values fall into the last histogram bin.

COORD_ACT_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for

coordinator activities at nesting level 0

associated with this service subclass since the

last reset. If the internally tracked average has

overflowed, the value -2 is returned. Null

when COLLECT AGGREGATE ACTIVITY

DATA of service class is NONE. Units are

milliseconds.

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for

coordinator activities at nesting level 0

associated with this service subclass since the

last reset. Units are milliseconds. This

standard deviation is computed from the

coordinator activity executetime histogram

and might be inaccurate if the histogram has

not been properly sized to fit the data. The

value of -1 will be returned if any values fall

into the last histogram bin.

COORD_ACT_QUEUE_TIME_AVG DOUBLE Arithmetic mean of the queue time for

coordinator activities at nesting level 0

associated with this service subclass since the

last reset. If the internally tracked average has

overflowed, the value -2 is returned. Null

when COLLECT AGGREGATE ACTIVITY

DATA of service class is NONE. Units are

milliseconds.

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for

coordinator activities at nesting level 0

associated with this service subclass since the

last reset. Null when COLLECT

AGGREGATE ACTIVITY DATA of service

class is NONE. Units are milliseconds. This

standard deviation is computed from the

coordinator activity queuetime histogram and

may be inaccurate if the histogram has not

been properly sized to fit the data. The value

of -1 will be returned if any values fall into

the last histogram bin.

NUM_REQUESTS_ACTIVE BIGINT The number of requests that are executing in

the service subclass at the time this table

function is executed.

Chapter 8. Procedures and table functions 207

Table 51. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

NUM_REQUESTS_TOTAL BIGINT The number of requests to finish executing in

this service subclass since the last reset. This

applies to any request regardless of its

membership in an activity. If COLLECT

AGGREGATE REQUEST DATA on this

service subclass is set to NONE, the value of

this column is NULL.

REQUEST_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for

requests associated with this service subclass

since the last reset. Units are milliseconds. If

the internally tracked average has

overflowed, the value -2 is returned. If

COLLECT AGGREGATE REQUEST DATA on

this service class is set to NONE, the value of

this column is NULL.

REQUEST_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for

requests associated with this service subclass

since the last reset. Units are milliseconds. If

COLLECT AGGREGATE REQUEST DATA on

this service class is set to NONE, the value of

this column is NULL. This standard deviation

is computed from the request executetime

histogram and may be inaccurate if the

histogram has not been properly sized to fit

the data. The value of -1 will be returned if

any values fall into the last histogram bin.

REQUEST_EXEC_TIME__TOTAL BIGINT Sum of the execution times for requests

associated with this service subclass since the

last reset. Units are milliseconds. If COLLECT

AGGREGATE REQUEST DATA on this

service class is set to NONE, the value of this

column is NULL.

WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics of

service superclasses

This function returns basic statistics of one or more service superclasses.

Syntax

�� WLM_GET_SERVICE_SUPERCLASS_STATS (service_superclass_name , �

� dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name

An input argument of type VARCHAR(128) that specifies a valid service

superclass name in the same database as the one currently connected to when

208 Workload Manager Guide and Reference

calling this function. If the argument is null or an empty string, the data is

retrieved for all the superclasses in the database.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_SUPERCLASS_STATS function.

Example

To see all the basic statistics for all the service superclasses on the system, across

all database partitions:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME, 1, 26) SERVICE_SUPERCLASS_NAME,

 DBPARTITIONNUM,

 LAST_RESET,

 CONCURRENT_CONNECTION_TOP CONCURRENT_CONN_TOP

FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS(’’, -2)) as SCSTATS

The following is an example of output from this query.

SERVICE_SUPERCLASS_NAME DBPARTITIONNUM ...

-------------------------- -------------- ...

SYSDEFAULTSYSTEMCLASS 0 ...

SYSDEFAULTMAINTENANCECLASS 0 ...

SYSDEFAULTUSERCLASS 0 ...

Output from this query (continued).

... LAST_RESET CONCURRENT_CONN_TOP

... -------------------------- -------------------

... 2006-09-05-09.38.44.396788 0

... 2006-09-05-09.38.44.396795 0

... 2006-09-05-09.38.44.396796 1

Usage note

The WLM_GET_SERVICE_SUPERCLASS_STATS table function returns one row of

data per service superclass and per partition. No aggregation across service

superclasses (on a partition), or across partitions (for a service superclass or more)

is performed. However, aggregation can be achieved through SQL queries as

shown in the example above.

Information returned

 Table 52. Information returned for WLM_GET_SERVICE_SUPERCLASS_STATS

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this

record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was

collected.

Chapter 8. Procedures and table functions 209

Table 52. Information returned for WLM_GET_SERVICE_SUPERCLASS_STATS (continued)

Column Name Data Type Description

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four

events that can occur that will trigger a reset of

statistics, which will update this timestamp:

v The WLM_COLLECT_STATS procedure is

called.

v The periodic collection and reset process

controlled by the WLM_COLLECT_INT

configuration parameter causes a collection and

reset.

v The database is reactivated.

v The service superclass for which statistics are

being reported was modified and the change

was committed.

The LAST_RESET timestamp is in local time.

CONCURRENT_CONNECTION_TOP INTEGER Highest number of concurrent coordinator

connections that has been reached in this class

since the last reset.

WLM_GET_WORK_ACTION_SET_STATS - Return work action set

statistics

This function returns the statistics for a work action set.

Syntax

�� WLM_GET_WORK_ACTION_SET_STATS (work_action_set_name , �

� dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

work_action_set_name

An input argument of type VARCHAR(128) that specifies the specific work

action set to return statistics for. If the argument is null or an empty string,

statistics are returned for all work action sets.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORK_ACTION_SET_STATS function.

210 Workload Manager Guide and Reference

Example

Assume that there are three work classes, ReadClass, WriteClass, and LoadClass.

There is a work action associated with ReadClass and a work action associated

with LoadClass, but there is no work action associated with WriteClass. On

partition 0, there are 8 activities currently executing (or queued) in the ReadClass,

4 activities currently executing (or queued) in the WriteClass, 2 activities currently

executing (or queued) in the LoadClass, and 3 activities currently executing (or

queued) that have not been assigned to any work class. Because there is no work

action associated with the WriteClass work class, the 4 activities to which it applies

are counted in the artificial “*” class along with the 3 activities that were not

assigned to any work class.

 SELECT SUBSTR(WORK_ACTION_SET_NAME,1,18) AS WORK_ACTION_SET_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,

 LAST_RESET,

 SUBSTR(CHAR(WLO_ACT_TOTAL),1,14) AS TOTAL_WLO_ACTS

 FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS

 (CAST(NULL AS VARCHAR(128)), -2)) AS WASSTATS

 ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, PART

The following in an example of output from this query.

WORK_ACTION_SET_NAME PART WORK_CLASS_NAME LAST_RESET TOTAL_WLO_ACTS

-------------------- ---- --------------- -------------------------- --------------

AdminActionSet 0 ReadClass 2005-11-25-18.52.49.343000 8

AdminActionSet 1 ReadClass 2005-11-25-18.52.50.478000 0

AdminActionSet 0 LoadClass 2005-11-25-18.52.49.343000 2

AdminActionSet 1 LoadClass 2005-11-25-18.52.50.478000 0

AdminActionSet 0 * 2005-11-25-18.52.49.343000 7

AdminActionSet 1 * 2005-11-25-18.52.50.478000 0

Information returned

 Table 53. Information returned for WLM_GET_WORK_ACTION_SET_STATS

Column Name Data Type Description

WORK_ACTION_SET_NAME VARCHAR(128) The name of the work action set.

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four events

that can occur that will trigger a reset of statistics, which

will update this timestamp:

v The WLM_COLLECT_STATS procedure is called.

v The periodic collection and reset process controlled by

the WLM_COLLECT_INT configuration parameter

causes a collection and reset.

v The database is reactivated.

v The work action set for which statistics are being

reported was modified and the change was committed.

The LAST_RESET timestamp is in local time.

WORK_CLASS_NAME VARCHAR(128) The name of the work class related to the given work

action set. There must be a work action associated with

this work class for it to appear in this table. “*” represents

an artificial work class created to count all those activities

that did not belong to the other work classes for which

the user associated one or more work actions.

Chapter 8. Procedures and table functions 211

Table 53. Information returned for WLM_GET_WORK_ACTION_SET_STATS (continued)

Column Name Data Type Description

ACT_TOTAL BIGINT The number of activities of any nesting level that were

assigned to the work class given by

WORK_CLASS_NAME.

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES - Return a list of

activities

This function returns the list of all activities that were submitted through the given

application on the specified partition and have not yet completed.

Syntax

�� WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (application_handle , �

� dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

application_handle

An input argument of type BIGINT that specifies an application handle for

which a list of activities is returned. If the argument is null, the data is

retrieved for all the applications in the database for which the other parameters

match.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If the nullvalue is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

function.

Example

Once an application handle is identified, it is possible to look up all the activities

currently running in this application. For example, suppose an administrator

wishes to list the activities of an application whose application handle, determined

using the list applications command, was found to be 1:

 SELECT SUBSTR(CHAR(COORD_PARTITION_NUM),1,5) AS COORD,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,

 SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,

 SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,

 SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

 ACTIVITY_TYPE AS ACTTYPE,

 SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

 FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS

 ORDER BY PART, UOWID, ACTID

212 Workload Manager Guide and Reference

The following is an example of output from this query.

COORD PART UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING

----- ---- ----- ----- -------- -------- -------- -------

0 0 2 3 - - CALL 0

0 0 2 5 2 3 READ_DML 1

Information returned

 Table 54. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

Column Name Data Type Description

APPLICATION_HANDLE BIGINT A system-wide unique ID for the

application. On a single-partitioned

database, this identifier consists of a 16 bit

counter. On a multi-partitioned database,

this identifier consists of the coordinating

partition number concatenated with a 16 bit

counter. In addition, this identifier will be

the same on every partition where the

application may make a secondary

connection.

DBPARTITIONNUM SMALLINT Partition number from which this record

was collected.

COORD_PARTITION_NUM SMALLINT The coordinator partition of the activity.

LOCAL_START_TIME TIMESTAMP The time that this activity began doing work

on the partition. It is in local time. This field

can be null when an activity has entered the

system but is in a queue and has not started

executing.

UOW_ID INTEGER Unique unit of work identifier within an

application. Refers to the original unit of

work that the activity started in.

ACTIVITY_ID INTEGER Unique activity ID within a unit of work.

PARENT_UOW_ID INTEGER Unique unit of work identifier within an

application. Refers to the original unit of

work that the activity’s parent activity

started in. Returns null if the activity has no

parent activity or at remote partition.

PARENT_ACTIVITY_ID INTEGER Unique activity identifier within a unit of

work for the parent of the activity whose ID

is ACTIVITY_ID. Returns null if the activity

has no parent activity or at remote partition.

Chapter 8. Procedures and table functions 213

Table 54. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column Name Data Type Description

ACTIVITY_STATE VARCHAR(32) Possible values are:

v CANCEL_PENDING - Activity was

cancelled when there was no agent

actively working on a request for the

activity. The next time a request is

submitted as part of the activity, the

activity will be cancelled and the user

who submitted the activity will receive an

SQL4725N error.

v EXECUTING - Agents are actively

working on a request for the activity.

v IDLE - There is no agent actively

processing a request for the activity.

v INITIALIZING - Activity has been

submitted, but has not yet started

executing. During the initializing state,

predictive thresholds are applied to the

activity to determine whether or not the

activity will be allowed to execute.

v QP_CANCEL_PENDING - Same as the

CANCEL_PENDING state, but the activity

was cancelled by query patroller rather

than by the WLM_CANCEL_ACTIVITY

procedure.

v QP_QUEUED - Activity is queued by

Query Patroller.

v QUEUED - Activity is queued by a

workload management queuing threshold.

In a database partitioning feature (DPF)

environment, this state might mean that

the coordinator agent has made an RPC to

the catalog partition to obtain threshold

tickets and has not yet received a

response. Seeing this state might indicate

that the activity has been queued by a

workload management queuing threshold

or, over short periods of time, can just

indicate that the activity is in the process

of obtaining its tickets. To obtain a more

accurate picture of whether or not the

activity is really being queued, one can

determine which agent is working on the

activity and find out whether this agent’s

EVENT_OBJECT at the catalog partition

has a value of WLM_QUEUE.

v TERMINATING - Activity has completed

execution and is being removed from the

system.

214 Workload Manager Guide and Reference

Table 54. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column Name Data Type Description

ACTIVITY_TYPE VARCHAR(32) Possible values are:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

Refer to “Work class work types and SQL

statements” in Workload Manager Guide and

Reference for a description of the different

types of SQL statements that are associated

with each activity type.

NESTING_LEVEL INTEGER This represents the nesting level of this

activity. Nesting level is the depth to which

this activity is nested within its top-most

parent activity.

INVOCATION_ID INTEGER This distinguishes one particular invocation

of this activity from others at the same

nesting level.

ROUTINE_ID INTEGER Routine unique identifier.

UTILITY_ID INTEGER If the activity is a utility, this is its utility ID.

Otherwise, this field is null.

SERVICE_CLASS_ID INTEGER Unique identifier of the service class to

which this activity belongs.

DATABASE_WORK_ACTION_SET_ID INTEGER If this activity has been categorized into a

work class of database scope, this column

contains the ID of the work class set of

which this work class is a member. This

column contains null if the activity has not

been categorized into a work class of

database scope.

DATABASE_WORK_CLASS_ID INTEGER If this activity has been categorized into a

work class of database scope, this column

contains the ID of the work class. This

column contains null if the activity has not

been categorized into a work class of

database scope.

SERVICE_CLASS_WORK_ACTION_SET_ID INTEGER If this activity has been categorized into a

work class of service class scope, this

column contains the ID of the work action

set associated with the work class set to

which the work class belongs. This column

contains null if the activity has not been

categorized into a work class of service class

scope.

Chapter 8. Procedures and table functions 215

Table 54. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column Name Data Type Description

SERVICE_CLASS_WORK_CLASS_ID INTEGER If this activity has been categorized into a

work class of service class scope, this

column contains the ID of the work class

assigned to this activity. This column

contains null if the activity has not been

categorized into a work class of service class

scope.

WLM_GET_WORKLOAD_STATS - Return workload statistics

This function returns workload statistics for every combination of workload name

and database partition number.

Syntax

�� WLM_GET_WORKLOAD_STATS (workload_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

workload_name

An input augment of type VARCHAR(128) that specifies a specific workload

for which the statistics are to be returned. If the argument is NULL or an

empty string, statistics are returned for all workloads.

dbpartitionnum

An input argument of type INTEGER that specifies a valid partition number in

the same instance as the currently connected database when calling this

function. Specify a -1 for the current database partition, or -2 for all database

partitions. If a null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORKLOAD_STATS function.

Example

An administrator may want to look at the statistics for workloads. She could do so

using the following query:

 SELECT SUBSTR(WORKLOAD_NAME,1,22) AS WL_DEF_NAME,

 SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,

 CONCURRENT_WLO_TOP AS WLO_TOP,

 CONCURRENT_WLO_ACT_TOP AS WLO_ACT_TOP

 FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))

 AS WLSTATS

 ORDER BY WL_DEF_NAME, PART

The following is an example of output from this query.

WL_DEF_NAME PART WLO_TOP WLO_ACT_TOP

---------------------- ---- --------------- -------------------

MYUSERWORKLOAD 0 2 8

216 Workload Manager Guide and Reference

MYUSERWORKLOAD 1 0 0

SYSDEFAULTUSERWORKLOAD 0 1 1

SYSDEFAULTUSERWORKLOAD 1 0 0

Here we see that on partition 0, the highest number of concurrent occurrences of

the MYUSERWORKLOAD workload was 2 and that the highest number of

concurrent activities in either of these workload occurrences was 8.

Usage note

This function returns one row for every combination of workload name and

database partition number. No aggregation across workloads or across partitions or

across service classes is performed. However, aggregation can be achieved through

SQL queries.

Information returned

 Table 55. Information returned by WLM_GET_WORKLOAD_STATS

Column Name Data Type Description

WORKLOAD_NAME BIGINT Name of the workload from which this record was

collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was

collected

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four

events that can occur that will trigger a reset of

statistics, which will update this timestamp:

v The WLM_COLLECT_STATS procedure is called.

v The periodic collection and reset process controlled

by the WLM_COLLECT_INT configuration

parameter causes a collection and reset.

v The database is reactivated.

v The workload for which statistics are being

reported was modified and the change was

committed.

The LAST_RESET timestamp is in local time.

CONCURRENT_WLO_TOP INTEGER Highest number of concurrent occurrences of the

given workload on this partition since the last reset.

CONCURRENT_WLO_ACT_TOP INTEGER Highest number of concurrent activities (including

both coordinator and nested) in either executing

(which includes idle and waiting) or queued state that

has been reached in any occurrence of this workload

since last reset. Updated by each workload occurrence

at the end of its unit of work.

COORD_ACT_COMPLETED_TOTAL BIGINT The total number of coordinator activities at any

nesting level assigned to any occurrence of this

workload that completed since the last reset. Updated

by each workload occurrence at the end of its unit of

work.

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities at any

nesting level assigned to any occurrence of this

workload that were aborted prior to completion since

the last reset. Updated by each workload occurrence

at the end of its unit of work.

Chapter 8. Procedures and table functions 217

Table 55. Information returned by WLM_GET_WORKLOAD_STATS (continued)

Column Name Data Type Description

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities at any

nesting level assigned to any occurrence of this

workload that were rejected prior to execution since

the last reset. Updated by each workload occurrence

at the end of its unit of work. Activities are counted

as rejected when they are prevented from executing

by either a prevent execution work action, or a

predictive threshold. Note that unlike the column of

the same name in the

WLM_GET_SERVICE_SUBCLASS_STATS function,

this also counts rejections that occur before an activity

can be assigned to a service class. An example of such

a rejection occurs when an activity violates the

ConcurrentWorkloadOccurrences threshold.

WLO_COMPLETED_TOTAL BIGINT The number of workload occurrences to complete

since last reset.

218 Workload Manager Guide and Reference

Chapter 9. Monitor elements

Workload management monitor elements

The following monitor elements provide information about activities, threshold

violations, and workload management statistics.

activate_timestamp - Activate timestamp monitor element

The time when an event monitor was activated.

Element identifier

activate_timestamp

Element type

timestamp

 Table 56. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activity event_activity -

Activity event_activitystmt -

Activity event_activityvals -

Threshold Violations event_thresholdviolations -

Usage

Use this element to correlate information returned by the above event types.

activity_collected - Activity collected monitor element

This element indicates whether or not activity event monitor records are to be

collected for a violated threshold.

Element identifier

activity_collected

Element type

information

 Table 57. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine whether to expect an activity event for the activity

that violated the threshold to be written to the activity event monitor.

When an activity finishes or aborts and the activity event monitor is active at the

time, if the value of this monitor element is ‘Y’, the activity that violated this

threshold will be collected. If the value of this monitor element is ‘N’, it will not be

collected.

© Copyright IBM Corp. 2007, 2008 219

activity_id - Activity ID monitor element

Counter which uniquely identifies an activity for an application within a given

unit of work. Used with appl_id and uow_id in an activities event monitor record,

this monitor element uniquely identifies an activity that has been collected. Used

with appl_id and uow_id in a threshold violations event monitor record, this

monitor element uniquely identifies an activity that has violated a threshold.

Element identifier

activity_id

Element type

information

 Table 58. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Activities event_activitystmt -

Activities event_activityvals -

Threshold violations event_thresholdviolations -

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity.

You can also use this element with uow_id and agent_id monitor elements to

uniquely identify an activity.

activity_secondary_id - Activity secondary ID monitor element

The value for this element is incremented each time an activity record is written

for the same activity. For example, if an activity record is written once as a result

of having called the WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure and a

second time when the activity ends, the element would have a value of 0 for the

first record and 1 for the second record.

Element identifier

activity_secondary_id

Element type

information

 Table 59. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Activities event_activitystmt -

Activities event_activityvals -

Usage

Use this element with activity_id, uow_id, and appl_id monitor elements to

uniquely identify activity records when information about the same activity has

been written to the activities event monitor multiple times.

220 Workload Manager Guide and Reference

For example, information about an activity would be sent to the activities event

monitor twice in the following case:

v the WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure was used to

capture information about the activity while it was running

v information about the activity was collected when the activity completed,

because the COLLECT ACTIVITY DATA clause was specified on the service

class with which the activity is associated

activity_type - Activity type monitor element

The type of the activity to which this activity record applies.

Element identifier

activity_type

Element type

information

 Table 60. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

The possible values are:

v LOAD

v READ_DML

v WRITE_DML

v DDL

v CALL

v OTHER

At remote partitions, the value of this monitor element is always OTHER.

act_exec_time - Activity execution time monitor element

Time spent executing at this partition, in microseconds. For cursors, the execution

time is the combined time for the open, the fetches, and the close. The time when

the cursor is idle is not counted towards execution time. For routines, execution

time is the start to end of routine invocation. The lifetimes of any cursors left open

by routine (to return a result set) after the routine finishes are not counted towards

the routine execution time. For all other activities, execution time is the difference

between start time and stop time. In all cases, execution time does not include time

spent initializing or queued.

Element identifier

act_exec_time

Element type

time

 Table 61. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Chapter 9. Monitor elements 221

Usage

This element can be used alone to know the elapsed time spent executing the

activity by DB2 on each partition. This element can also be used together with

time_started and time_completed monitor elements on the coordinator partition to

compute the idle time for cursor activities. You can use the following formula:

Cursor idle time = (time_completed - time_started) - act_exec_time

act_total - Activities total monitor element

Total number of activities at any nesting level that had work actions corresponding

to the specified work class applied to them since the last reset.

Element identifier

act_total

Element type

counter

 Table 62. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats -

Usage

Every time an activity has one or more work actions associated with a work class

applied to it, a counter for the work class is updated. This counter is exposed

using the act_total monitor element. The counter can be used to judge the

effectiveness of the work action set (for example, how many activities have a

actions applied). It can also be used to understand the different types of activities

on the system.

arm_correlator - Application response measurement correlator

monitor element

Identifier of a transaction in the Application Response Measurement (ARM)

standard.

Element identifier

arm_correlator

Element type

information

 Table 63. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used to link an activity collected by the activities event

monitor to the applications associated with the activity, if such applications also

support the Application Response Measurement (ARM) standard.

bin_id - Histogram bin identifier monitor element

The identifier of a histogram bin. The bin_id is unique within a histogram.

222 Workload Manager Guide and Reference

Element identifier

bin_id

Element type

information

 Table 64. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element to distinguish bins within the same histogram.

bottom - Histogram bin bottom monitor element

The exclusive bottom end of the range of a histogram bin. The value of this

monitor element is also the top inclusive end of the range of the previous

histogram bin, if there is one.

Element identifier

bottom

Element type

information

 Table 65. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element with the corresponding top element to determine the range of a

bin within a histogram.

concurrent_act_top - Concurrent activity top monitor element

The high watermark for the concurrent activities (at any nesting level) in a service

subclass since the last reset.

Element identifier

concurrent_act_top

Element type

watermark

 Table 66. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this element to know the highest concurrency of activities (including nested

activities) reached on a partition for a service subclass in the time interval

collected.

Chapter 9. Monitor elements 223

concurrent_connection_top - Concurrent connection top

monitor element

High watermark for concurrent coordinator connections in this service class since

the last reset. This field has the same value in every subclass of the same

superclass.

Element identifier

concurrent_connection_top

Element type

watermark

 Table 67. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

This element may be useful in determining where to place thresholds on

connection concurrency by showing where the current high watermark is. It is also

useful for verifying that such a threshold is configured correctly and doing its job.

concurrent_wlo_act_top - Concurrent WLO activity top

monitor element

High watermark for concurrent activities (at any nesting level) of any occurrence of

this workload since the last reset.

Element identifier

concurrent_wlo_act_top

Element type

watermark

 Table 68. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Usage

Use this element to know the highest number of concurrent activities reached on a

partition for any occurrence of this workload in the time interval collected.

concurrent_wlo_top - Concurrent workload occurrences top

monitor element

The high watermark for the concurrent occurrences of a workload since the last

reset.

Element identifier

concurrent_wlo_top

Element type

watermark

224 Workload Manager Guide and Reference

Table 69. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Usage

Use this element to know the highest concurrency of workload occurrences reached

on a partition for a workload in the time interval collected.

coord_act_aborted_total - Coordinator activities aborted total

monitor element

The total number of coordinator activities at any nesting level that completed with

errors since the last reset. For service classes, the value is updated when the

activity completes. For workloads, the value is updated by each workload

occurrence at the end of its unit of work.

Element identifier

coord_act_aborted_total

Element type

counter

 Table 70. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Usage

Use this element to understand if activities on the system are completing

successfully. Activities may be aborted due to cancellation, errors or reactive

thresholds.

coord_act_completed_total - Coordinator activities completed

total monitor element

The total number of coordinator activities at any nesting level that completed

successfully since the last reset. For service classes, the value is updated when the

activity completes. For workloads, the value is updated by each workload

occurrence at the end of its unit of work.

Element identifier

coord_act_completed_total

Element type

counter

 Table 71. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Statistics event_scstats -

Chapter 9. Monitor elements 225

Usage

This element can be used to determine the throughput of activities in the system or

to aid in calculating average activity lifetime across multiple partitions.

coord_act_lifetime_top - Coordinator activity lifetime top

monitor element

High watermark for coordinator activity lifetime, counted at all nesting levels.

Units are milliseconds. For service classes, this monitor element returns -1 when

COLLECT AGGREGATE ACTIVITY DATA for the service class is set to NONE. For

work classes, this monitor element returns -1 if no COLLECT AGGREGATE

ACTIVITY DATA work action is specified for the work class.

Element identifier

coord_act_lifetime_top

Element type

watermark

 Table 72. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats -

Statistics event_scstats -

Usage

This element can be used to help determine whether or not thresholds on activity

lifetime are being effective and can also help to determine how to configure such

thresholds.

coord_act_rejected_total - Coordinator activities rejected total

monitor element

The total number of coordinator activities at any nesting level that were rejected

instead of being allowed to execute since the last reset. This counter is updated

when an activity is prevented from executing by either a predictive threshold or a

prevent execution work action. For service classes, the value is updated when the

activity completes. For workloads, the value is updated by each workload

occurrence at the end of its unit of work.

Element identifier

coord_act_rejected_total

Element type

counter

 Table 73. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

226 Workload Manager Guide and Reference

Usage

This element can be used to help determine whether or not predictive thresholds

and work actions that prevent execution are being effective and whether or not

they are too restrictive.

coord_partition_num - Coordinator partition number monitor

element

The partition number of the coordinator partition of this activity.

Element identifier

coord_partition_num

Element type

information

 Table 74. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Threshold violations event_thresholdviolations -

Usage

This element allows the coordinator partition to be identified for activities that

have records on partitions other than the coordinator.

cost_estimate_top - Cost estimate top monitor element

The high watermark for the estimated cost of DML activities at all nesting levels in

a service subclass or work class. For service subclasses, this monitor element

returns -1 when COLLECT AGGREGATE ACTIVITY DATA for the service subclass

is set to NONE. For work classes, this monitor elements returns -1 if no COLLECT

AGGREGATE ACTIVITY DATA work action is specified for the work class.

Element identifier

cost_estimate_top

Element type

watermark

 Table 75. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this element to determine the highest DML activity estimated cost reached on

a partition for a service class or work class in the time interval collected.

coord_act_lifetime_avg - Coordinator activity lifetime average

monitor element

Arithmetic mean of lifetime for coordinator activities at nesting level 0 associated

with this service subclass or work class since the last reset. If the internally tracked

Chapter 9. Monitor elements 227

average has overflowed, the value -2 is returned. For service subclasses, this

monitor element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for

the service subclass is set to NONE. For work classes, this monitor elements

returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work action is specified

for the work class. Units are milliseconds.

Element identifier

coord_act_lifetime_avg

Element type

information

 Table 76. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this statistic to determine the arithmetic mean of the lifetime for coordinator

activities associated with a service subclass or work class that completed or

aborted.

This statistic can also be used to determine whether or not the histogram template

used for the activity lifetime histogram is appropriate. Compute the average

activity lifetime from the activity lifetime histogram. Compare the computed

average with this monitor element. If the computed average deviates from the true

average reported by this monitor element, consider altering the histogram template

for the activity lifetime histogram, using a set of bin values that are more

appropriate for your data.

coord_act_queue_time_avg - Coordinator activity queue time

average monitor element

Arithmetic mean of queue time for coordinator activities at nesting level 0

associated with this service subclass or work class since the last reset. If the

internally tracked average has overflowed, the value -2 is returned. For service

subclasses, this monitor element returns -1 when COLLECT AGGREGATE

ACTIVITY DATA for the service subclass is set to NONE. For work classes, this

monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work

action is specified for the work class. Units are milliseconds. 0 associated with this

service subclass that completed or aborted since the last reset. Returns -1 when

COLLECT AGGREGATE ACTIVITY DATA of service class is NONE. Units are

milliseconds.

Element identifier

coord_act_queue_time_avg

Element type

information

 Table 77. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

228 Workload Manager Guide and Reference

Usage

Use this statistic to determine the arithmetic mean of the queue time for

coordinator activities associated with a service subclass or work class that

completed or aborted.

This statistic can also be used to determine whether or not the histogram template

used for the activity queue time histogram is appropriate. Compute the average

activity queue time from the activity queue time histogram. Compare the

computed average with this monitor element. If the computed average deviates

from the true average reported by this monitor element, consider altering the

histogram template for the activity queue time histogram, using a set of bin values

that are more appropriate for your data.

coord_act_exec_time_avg - Coordinator activities execution

time average monitor element

Arithmetic mean of execution times for coordinator activities at nesting level 0

associated with this service subclass or work class since the last reset. If the

internally tracked average has overflowed, the value -2 is returned. For service

subclasses, this monitor element returns -1 when COLLECT AGGREGATE

ACTIVITY DATA for the service subclass is set to NONE. For work classes, this

monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY DATA work

action is specified for the work class. Units are milliseconds.

Element identifier

coord_act_exec_time_avg

Element type

information

 Table 78. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this statistic to determine the arithmetic mean of execution time for

coordinator activities associated with a service subclass or work class that

completed or aborted.

This average can also be used to determine whether or not the histogram template

used for the activity execution time histogram is appropriate. Compute the average

activity execution time from the activity execution time histogram. Compare the

computed average with this monitor element. If the computed average deviates

from the true average reported by this monitor element, consider altering the

histogram template for the activity execution time histogram, using a set of bin

values that are more appropriate for your data.

request_exec_time_avg - Request execution time average

monitor element

Arithmetic mean of the execution times for requests associated with this service

subclass since the last reset. If the internally tracked average has overflowed, the

Chapter 9. Monitor elements 229

value -2 is returned. This monitor element returns -1 when COLLECT

AGGREGATE REQUEST DATA for the service subclass is set to NONE. Units are

milliseconds.

Element identifier

request_exec_time_avg

Element type

information

 Table 79. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Usage

Use this statistic to quickly understand the average amount of time that is spent

processing each request on a database partition in this service subclass.

This average can also be used to determine whether or not the histogram template

used for the request execution time histogram is appropriate. Compute the average

request execution time from the request execution time histogram. Compare the

computed average with this monitor element. If the computed average deviates

from the true average reported by this monitor element, consider altering the

histogram template for the request execution time histogram, using a set of bin

values that are more appropriate for your data.

coord_act_est_cost_avg - Coordinator activity estimated cost

average monitor element

Arithmetic mean of the estimated costs for coordinator DML activities at nesting

level 0 associated with this service subclass or work class since the last reset. If the

internally tracked average has overflowed, the value -2 is returned. For service

subclasses, this monitor element returns -1 when COLLECT AGGREGATE

ACTIVITY DATA for the service subclass is set to NONE or BASE. For work

classes, this monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY

DATA EXTENDED work action is specified for the work class. Units are

milliseconds.

Element identifier

coord_act_est_cost_avg

Element type

information

 Table 80. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this statistic to determine the arithmetic mean of the estimated costs of

coordinator DML activities at nesting level 0 that are associated this service

subclass or work class that completed or aborted since the last statistics reset.

230 Workload Manager Guide and Reference

This average can also be used to determine whether or not the histogram template

used for the activity estimated cost histogram is appropriate. Compute the average

activity estimated cost from the activity estimated cost histogram. Compare the

computed average with this monitor element. If the computed average deviates

from the true average reported by this monitor element, consider altering the

histogram template for the activity estimated cost histogram, using a set of bin

values that are more appropriate for your data.

coord_act_interarrival_time_avg - Coordinator activity arrival

time average monitor element

Arithmetic mean of the time between arrivals of coordinator activities at nesting

level 0 associated with this service subclass or work class since the last reset. If the

internally tracked average has overflowed, the value -2 is returned. For service

subclasses, this monitor element returns -1 when COLLECT AGGREGATE

ACTIVITY DATA for the service subclass is set to NONE or BASE. For work

classes, this monitor elements returns -1 if no COLLECT AGGREGATE ACTIVITY

DATA EXTENDED work action is specified for the work class. Units are

milliseconds.

Element identifier

coord_act_interarrival_time_avg

Element type

information

 Table 81. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this statistic to determine the arithmetic mean between arrivals of coordinator

activities at nesting level 0 associated with this service subclass or work class.

The inter-arrival time can be used to determine arrival rate, which is the inverse of

inter-arrival time. This average can also be used to determine whether or not the

histogram template used for the activity inter-arrival time histogram is appropriate.

Compute the average activity inter-arrival time from the activity inter-arrival time

histogram. Compare the computed average with this monitor element. If the

computed average deviates from the true average reported by this monitor

element, consider altering the histogram template for the activity inter-arrival time

histogram, using a set of bin values that are more appropriate for your data.

db_work_action_set_id - Database work action set ID monitor

element

If this activity has been categorized into a work class of database scope, this

monitor element shows the ID of the work action set associated with the work

class set to which the work class belongs. Otherwise, this monitor element shows

the value of 0.

Element identifier

db_work_action_set_id

Chapter 9. Monitor elements 231

Element type

information

 Table 82. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used with the db_work_class_id element to uniquely identify

the database work class of the activity, if one exists.

db_work_class_id - Database work class ID monitor element

If this activity has been categorized into a work class of database scope, this

monitor element displays the ID of the work class. Otherwise, this monitor element

displays the value of 0.

Element identifier

db_work_class_id

Element type

information

 Table 83. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used with the db_work_action_set_id element to uniquely

identify the database work class of the activity, if one exists.

histogram_type - Histogram type monitor element

The type of the histogram, in string format.

There are six histogram types.

CoordActQueueTime

A histogram the time non-nested activities spend queued (for example, in a

threshold queue), measured on the coordinator partition.

CoordActExecTime

A histogram of the time non-nested activities spend executing at the

coordinator partition. Execution time does not include time spent

initializing or queued. For cursors, execution time includes only the time

spent on open, fetch and close requests.

CoordActLifetime

A histogram of the elapsed lifetime of non-nested activities, measured on

the coordinator partition from the time when an activity enters the system

until the activity completes execution. Lifetime includes time the activity

spends initializing, queued and executing.

CoordActInterArrivalTime

A histogram of the time interval between the arrival of non-nested

coordinator activities.

232 Workload Manager Guide and Reference

CoordActEstCost

A histogram of the estimated cost of non-nested DML activities.

ReqExecTime

A histogram of request execution times. Includes all requests on both

coordinator and non-coordinator partitions including those requests not

associated with an activity.

Element identifier

histogram_type

Element type

information

 Table 84. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element to identify the type of histogram. Several histograms can belong

to the same statistics record, but only one of each type.

last_wlm_reset - Time of last reset monitor element

This element, in the form of a local timestamp, shows the time at which the last

statistics event record of this type was created.

Element identifier

last_wlm_reset

Element type

information

 Table 85. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Statistics event_wcstats -

Statistics event_qstats -

Usage

Use the wlm_last_reset and statistics_timestamp monitor elements to determine a

period of time over which the statistics in an event monitor statistics record were

collected. The collection interval begins at the wlm_last_reset time and ends at

statistics_timestamp.

num_threshold_violations - Number of threshold violations

monitor element

The number of threshold violations that have taken place in this database since it

was last activated.

Element identifier

num_threshold_violations

Chapter 9. Monitor elements 233

Element type

counter

 Table 86. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Database dbase Basic

For snapshot monitoring, this counter can be reset.

 Table 87. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Database event_db -

Usage

This element can be used to help determine whether or not thresholds are effective

for this particular application or whether the threshold violations are excessive.

number_in_bin - Number in bin monitor element

This element holds the count of the number of activities or requests that fall within

the histogram bin.

Element identifier

number_in_bin

Element type

information

 Table 88. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element to represent the height of a bin in the histogram.

parent_activity_id - Parent activity ID monitor element

The unique ID of the activity’s parent activity within the parent activity’s unit of

work. If there is no parent activity, the value of this monitor element is 0.

Element identifier

parent_activity_id

Element type

information

 Table 89. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element along with the parent_uow_id element and appl_id element to

uniquely identify the parent activity of the activity described in this activity record.

234 Workload Manager Guide and Reference

parent_uow_id - Parent unit of work ID monitor element

The unique unit of work identifier within an application handle. The ID of the unit

of work in which the activity’s parent activity originates. If there is no parent

activity, the value is 0.

Element identifier

parent_uow_id

Element type

information

 Table 90. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element along with the parent_activity_id element and appl_id element to

uniquely identify the parent activity of the activity described in this activity record.

prep_time - Preparation time monitor element

Time in milliseconds required to prepare an SQL statement if the activity is an SQL

statement.

Element identifier

prep_time

Element type

time

 Table 91. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used to identify how much of the activity’s total lifetime was

spent preparing the SQL statement, if this was an SQL activity.

queue_assignments_total - Queue assignments total monitor

element

The number of connections or activities that were assigned to this threshold queue

since the last reset.

Element identifier

queue_assignments_total

Element type

counter

 Table 92. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Chapter 9. Monitor elements 235

Usage

This element can be used to determine the number of activities or connections that

were queued in this particular queue in a given period of time determined by the

statistics collection interval. This can help to determine the effectiveness of queuing

thresholds.

queue_size_top - Queue size top monitor element

Highest queue size that has been reached since the last reset.

Element identifier

queue_size_top

Element type

watermark

 Table 93. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

Use this element to gauge the effectiveness of queuing thresholds and to detect

when queuing is excessive.

queue_time_total - Queue time total monitor element

Sum of the times spent in the queue for all connections or activities placed in this

queue since the last reset. Units are milliseconds.

Element identifier

queue_time_total

Element type

counter

 Table 94. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

Use this element to gauge the effectiveness of queuing thresholds and to detect

when queuing is excessive.

rows_fetched - Rows fetched monitor element

The number of rows read from the table.

This monitor element is an alias of the rows_read monitor element.

Note: This monitor element reports only the values for the database partition for

which this information is recorded. On DPF systems, these values may not reflect

the correct totals for the whole activity.

Element identifier

rows_fetched

236 Workload Manager Guide and Reference

Element type

counter

 Table 95. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Statement

Usage

See the rows_read monitor element for details.

rows_modified - Rows modified monitor element

The number of rows inserted, updated, or deleted.

This monitor element is an alias of the rows_written monitor element.

Note: This monitor element reports only the values for the database partition for

which this record is recorded. On DPF systems, these values may not reflect the

correct totals for the whole activity.

Element identifier

rows_modified

Element type

counter

 Table 96. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity Statement

Usage

See the rows_written monitor element for details.

rows_returned - Rows returned monitor element

The number of rows that have been selected and returned to the application. This

element has a value of 0 for partial activity records (for example, if an activity is

collected while it is still executing or when a full activity record could not be

written to the event monitor due to memory limitations).

This monitor element is an alias of the fetch_count monitor element.

Element identifier

rows_returned

Element type

counter

 Table 97. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Chapter 9. Monitor elements 237

Usage

This element can be used to help determine thresholds for rows returned to the

application or can be used to verify that such a threshold is configured correctly

and doing its job.

rows_returned_top - Actual rows returned top monitor element

The high watermark for the actual rows returned of DML activities at all nesting

levels in a service class or work class. For service classes, this monitor element

returns -1 when COLLECT AGGREGATE ACTIVITY DATA for the service class is

set to NONE. For work classes, this monitor element returns -1 if no COLLECT

AGGREGATE ACTIVITY DATA work action is specified for the work class.

Element identifier

rows_returned_top

Element type

watermark

 Table 98. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this element to know the highest DML activity actual rows returned reached

on a partition for a service class or work class in the time interval collected.

sc_work_action_set_id - Service class work action set ID

monitor element

If this activity has been categorized into a work class of service class scope, this

monitor element displays the ID of the work action set associated with the work

class set to which the work class belongs. Otherwise, this monitor element displays

the value of 0.

Element identifier

sc_work_action_set_id

Element type

information

 Table 99. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used with the sc_work_class_id element to uniquely identify

the service class work class of the activity, if one exists.

238 Workload Manager Guide and Reference

sc_work_class_id - Service class work class ID monitor

element

If this activity has been categorized into a work class of service class scope, this

monitor element displays the ID of the work class assigned to this activity.

Otherwise, this monitor element displays the value of 0.

Element identifier

sc_work_class_id

Element type

information

 Table 100. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

This element can be used with the sc_work_action_set_id element to uniquely

identify the service class work class of the activity, if one exists.

section_env - Section environment monitor element

A handle that gives details of an activity’s section.

Element identifier

section_env

Element type

information

 Table 101. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activitystmt -

Usage

This element is to be used with future IBM® tools for extracting section

information for the activity described in this record

service_class_id - Service class ID monitor element

Unique ID of the service class. Can be used for doing joins with the histogrambins

table.

Element identifier

service_class_id

Element type

information

 Table 102. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Statistics event_scstats -

Chapter 9. Monitor elements 239

Usage

Use this element with the statistics_timestamp and partition_number monitor

elements to link histogram bin records with service class statistics records.

service_subclass_name - Service subclass name monitor

element

The name of the service subclass to which this activity record or statistics record

applies.

Element identifier

service_subclass_name

Element type

information

 Table 103. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Statistics event_scstats -

Statistics event_qstats -

Usage

Use this element in conjunction with other activity elements for analysis of the

behavior of an activity or with other statistics elements for analysis of a service

class or threshold queue.

service_superclass_name - Service superclass name monitor

element

The name of the service superclass to which this activity record or statistics record

applies.

Element identifier

service_superclass_name

Element type

information

 Table 104. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Statistics event_scstats -

Statistics event_qstats -

Usage

Use this element in conjunction with other activity elements for analysis of the

behavior of an activity or with other statistics elements for analysis of a service

class or threshold queue.

240 Workload Manager Guide and Reference

statistics_timestamp - Statistics timestamp monitor element

The time at which this statistics record was generated.

Element identifier

statistics_timestamp

Element type

information

 Table 105. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wlstats -

Statistics event_wcstats -

Statistics event_qstats -

Statistics event_histogrambin -

Usage

Use this element to determine when this statistics record was generated.

Use this element along with the last_wlm_reset element to identify the time

interval over which the statistics in this statistics record were generated.

This monitor element can also be used to group together all statistics records that

were generated for the same collection interval.

temp_tablespace_top - Temporary table space top monitor

element

The high watermark for the temporary table space usage of DML activities at all

nesting levels in a service class or work class. For service classes, this monitor

element returns -1 when COLLECT AGGREGATE ACTIVITY DATA for the service

class is set to NONE. For work classes, this monitor elements returns -1 if no

COLLECT AGGREGATE ACTIVITY DATA work action is specified for the work

class.

Element identifier

temp_tablespace_top

Element type

watermark

 Table 106. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_scstats -

Statistics event_wcstats -

Usage

Use this element to determine the highest DML activity system temporary table

space usage reached on a partition for a service class or work class in the time

interval collected.

Chapter 9. Monitor elements 241

This element is only updated by activities that have a temporary table space

threshold applied to them. If no temporary table space threshold is applied to an

activity, a value of 0 is returned. If aggregate activity data collection is not enabled

for the service class or work class, a value of -1 is returned.

threshold_action - Threshold action monitor element

The action of the threshold to which this threshold violation record applies.

Possible values include Stop and Continue.

Element identifier

threshold_action

Element type

information

 Table 107. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine whether the activity that violated the threshold was

stopped when the violation occurred or was allowed to continue executing. If the

activity was stopped, the application that submitted the activity will have received

an SQL4712N error.

threshold_domain - Threshold domain monitor element

The domain of the threshold responsible for this queue.

Possible values are

v Database

v Work Action Set

v Service Superclass

v Service Subclass

v Workload

Element identifier

threshold_domain

Element type

information

 Table 108. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

This element can be used for distinguishing the queue statistics of thresholds that

have the same predicate but different domains.

242 Workload Manager Guide and Reference

threshold_maxvalue - Threshold maximum value monitor

element

For non-queuing thresholds, this monitor element represents the value that was

exceeded to cause this threshold violation. For queuing thresholds, this monitor

element represents the level of concurrency that caused the queuing. The level of

concurrency that caused the violation of the queuing threshold is the sum of

threshold_maxvalue and threshold_queuesize monitor elements.

Element identifier

threshold_maxvalue

Element type

information

 Table 109. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

For activity thresholds, this element provides a historical record of what the

threshold’s maximum value was at the time the threshold was violated. This is

useful when the threshold’s maximum value has changed since the time of the

violation and the old value is no longer available from the SYSCAT.THRESHOLDS

view.

threshold_name - Threshold name monitor element

The unique name of the threshold responsible for this queue.

Element identifier

threshold_name

Element type

information

 Table 110. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Usage

Use this element to uniquely identify the queuing threshold whose statistics this

record represents.

threshold_predicate - Threshold predicate monitor element

Identifies the type of threshold that was violated or for which statistics were

collected.

Element identifier

threshold_predicate

Element type

information

Chapter 9. Monitor elements 243

Table 111. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Statistics event_qstats -

Usage

Use this monitor element in conjunction with other statistics or threshold violation

monitor elements for analysis of a threshold violation.

threshold_queuesize - Threshold queue size monitor element

The size of the queue for a queuing threshold. An attempt to exceed this size

causes a threshold violation. For a non-queuing threshold, this value is 0.

Element identifier

threshold_queuesize

Element type

information

 Table 112. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Usage

Use this element to determine the number of activities or connections in the queue

for this threshold at the time the threshold was violated.

thresholdid - Threshold ID monitor element

Identifies the threshold to which a threshold violation record applies or for which

queue statistics were collected.

Element identifier

thresholdid

Element type

information

 Table 113. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Statistics event_qstats -

Usage

Use this monitor element in conjunction with other activity history monitor

elements for analysis of a threshold queue or for analysis of the activity that

violated a threshold.

244 Workload Manager Guide and Reference

time_completed - Time completed monitor element

The time at which the activity described by this activity record finished executing.

This element is a local timestamp.

This field has a value of ″0000-00-00-00.00.00.000000″ when a full activity record

could not be written to a table event monitor due to memory limitations or if the

activity was captured while it was in progress.

Element identifier

time_completed

Element type

information

 Table 114. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity.

time_created - Time created monitor element

The time at which a user submitted the activity described by this activity record.

This element is a local timestamp.

Element identifier

time_created

Element type

information

 Table 115. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity.

time_of_violation - Time of violation monitor element

The time at which the threshold violation described in this threshold violation

record occurred. This element is a local timestamp.

Element identifier

time_of_violation

Element type

information

 Table 116. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Threshold violations event_thresholdviolations -

Chapter 9. Monitor elements 245

Usage

Use this element in conjunction with other threshold violations monitor elements

for analysis of a threshold violation.

time_started - Time started monitor element

The time at which the activity described by this activity record began executing.

This element is a local timestamp.

Element identifier

time_started

Element type

information

 Table 117. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity.

top - Histogram bin top monitor element

The inclusive top end of the range of a histogram bin. The value of this monitor

element is also the bottom exclusive end of the range of the next histogram bin.

Element identifier

top

Element type

information

 Table 118. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Usage

Use this element with the corresponding bottom element to determine the range of

a bin within a histogram.

uow_id - Unit of work ID monitor element

The unit of work ID to which this activity record applies. The unit of work ID is

unique within an application handle.

Element identifier

uow_id

Element type

information

246 Workload Manager Guide and Reference

Table 119. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Activities event_activitystmt -

Activities event_activityvals -

Threshold violations event_thresholdviolations -

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity.

You can also use this element with the activity_id and appl_id monitor elements

to uniquely identify an activity.

wlo_completed_total - Workload occurrences completed total

monitor element

The number of workload occurrences to complete since last reset.

Element identifier

wlo_completed_total

Element type

counter

 Table 120. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Usage

Use this element to determine how many occurrences of a given workload are

driving work into the system.

work_action_set_id - Work action set ID monitor element

The ID of the work action set to which this statistics record applies.

Element identifier

work_action_set_id

Element type

information

 Table 121. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_histogrambin -

Statistics event_wcstats -

Chapter 9. Monitor elements 247

Usage

Use this element in conjunction with other activity history elements for analysis of

the behavior of an activity or with other statistics elements for analysis of a work

class.

work_action_set_name - Work action set name monitor

element

The name of the work action set to which the statistics shown as part of this event

are associated.

Element identifier

work_action_set_name

Element type

information

 Table 122. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Statistics event_wcstats -

Usage

Use this element along with the work_class_name element to uniquely identify the

work class whose statistics are being shown in this record or to uniquely identify

the work class which is the domain of the threshold queue whose statistics are

shown in this record.

work_class_id - Work class ID monitor element

The identifier of the work class to which this statistics record applies.

Element identifier

work_class_id

Element type

information

 Table 123. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wcstats -

Statistics event_histogrambin -

Usage

Use this element in conjunction with other statistics elements for analysis of a

work class.

work_class_name - Work class name monitor element

The name of the work class to which the statistics shown as part of this event are

associated.

Element identifier

work_class_name

248 Workload Manager Guide and Reference

Element type

information

 Table 124. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_qstats -

Statistics event_wcstats -

Usage

Use this element along with the work_action_set_name element to uniquely

identify the work class whose statistics are being shown in this record or to

uniquely identify the work class which is the domain of the threshold queue

whose statistics are shown in this record.

workload_id - Workload ID monitor element

The ID of the workload to which this activity, application, or workload statistics

record belongs.

Element identifier

workload_id

Element type

information

 Table 125. Snapshot Monitoring Information

Snapshot Level Logical Data Grouping Monitor Switch

Application appl_info Basic

 Table 126. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Activities event_activity -

Usage

Use this ID to uniquely identify the workload to which this activity, application, or

workload statistics record belongs.

workload_name - Workload name monitor element

Name of the workload to which this statistics record applies.

Element identifier

workload_name

Element type

information

 Table 127. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Statistics event_wlstats -

Chapter 9. Monitor elements 249

Usage

Use this element in conjunction with other statistics elements for analysis of a

workload.

workload_occurrence_id - Workload occurrence identifier

monitor element

The ID of the workload occurrence to which this activity belongs.

Element identifier

workload_occurrence_id

Element type

 Table 128. Event Monitoring Information

Event Type Logical Data Grouping Monitor Switch

Activities event_activity -

Usage

Use this to identify the workload occurrence that submitted the activity.

250 Workload Manager Guide and Reference

Chapter 10. Commands

SET WORKLOAD command

Specifies the workload to which the database connection is to be assigned. This

command can be issued prior to connecting to a database or it can be used to

reassign the current connection once the connection has been established. If the

connection has been established, the workload reassignment will be performed at

the beginning of the next unit of work.

Authorization

None

Required connection

None

Command syntax

��

SET WORKLOAD TO
 AUTOMATIC

SYSDEFAULTADMWORKLOAD

��

Command parameters

AUTOMATIC

Specifies that the database connection will be assigned to a workload chosen

by the workload evaluation that is performed automatically by the server.

SYSDEFAULTADMWORKLOAD

Specifies that the database connection will be assigned to the

SYSDEFAULTADMWORKLOAD, allowing users with dbadm or sysadm

authority to bypass the normal workload evaluation.

Examples

To assign the connection to the SYSDEFAULTADMWORKLOAD:

SET WORKLOAD TO SYSDEFAULTADMWORKLOAD

To reset the workload assignment so that it uses the workload that is chosen by the

workload evaluation performed by the server:

SET WORKLOAD TO AUTOMATIC

Usage notes

If the session authorization ID of the database connection does not have dbadm or

sysadm authority, the connection cannot be assigned to the

SYSDEFAULTADMWORKLOAD and an error will be returned. If the SET

WORKLOAD TO SYSDEFAULTADMWORKLOAD command is issued prior to

connecting to a database, the error will be returned after the database connection

has been established, at the beginning of the first unit of work. If the command is

issued when the database connection has been established, the error will be

© Copyright IBM Corp. 2007, 2008 251

returned at the beginning of the next unit of work, when the workload

reassignment is supposed to take place.

252 Workload Manager Guide and Reference

Chapter 11. Configuration parameters

wlm_collect_int - Workload management collection interval

configuration parameter

This parameter specifies a collect and reset interval, in minutes, for workload

management (WLM) statistics.

Every x wlm_collect_int minutes, (where x is the value of the wlm_collect_int

parameter) all workload management statistics are collected and sent to any active

statistics event monitor; then the statistics are reset. If an active event monitor

exists, depending on how it was created, the statistics are written either to file or

to a table. If it does not exist, the statistics are only reset and not collected.

The collect and reset process is initiated from the catalog partition. The

wlm_collect_int parameter must be specified on the catalog partition. It is not used

on other partitions.

Configuration type

Database

Parameter type

Configurable online

Default [range]

0 [0 (no collection performed), 5 - 32 767]

The workload management statistics collected by a statistics event monitor can be

used to monitor both short term and long term system behavior. A small interval

can be used to obtain both short term and long term system behavior because the

results can be merged together to obtain long term behavior. However, having to

manually merge the results from different intervals complicates the analysis. If it’s

not required, a small interval unnecessarily increases the overhead. Therefore,

reduce the interval to capture shorter term behavior, and increase the interval to

reduce overhead when only analysis of long term behavior is sufficient.

The interval needs to be customized per database, not for each SQL request, or

command invocation, or application. There are no other configuration parameters

that need to be considered.

Note: All WLM statistics table functions return statistics that have been

accumulated since the last time the statistics were reset. The statistics will be reset

regularly on the interval specified by this configuration parameter.

© Copyright IBM Corp. 2007, 2008 253

254 Workload Manager Guide and Reference

Chapter 12. Catalog views

SYSCAT.HISTOGRAMTEMPLATEBINS

Each row represents a histogram template bin.

 Table 129. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

BINID INTEGER Identifier for the histogram template bin.

BINUPPERVALUE BIGINT The upper value for a single bin in the

histogram template.

SYSCAT.HISTOGRAMTEMPLATES

Each row represents a histogram template.

 Table 130. SYSCAT.HISTOGRAMTEMPLATES Catalog View

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

TEMPLATENAME VARCHAR (128) Name of the histogram template.

CREATE_TIME TIMESTAMP Time at which the histogram template was

created.

ALTER_TIME TIMESTAMP Time at which the histogram template was

last altered.

NUMBINS INTEGER Number of bins in the histogram template,

including the last bin that has an unbounded

top value.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.HISTOGRAMTEMPLATEUSE

Each row represents a relationship between a workload management object that

can use histogram templates and a histogram template.

 Table 131. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

© Copyright IBM Corp. 2007, 2008 255

Table 131. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View (continued)

Column Name Data Type Nullable Description

HISTOGRAMTYPE CHAR (1) The type of information collected by

histograms based on this template.

v C = Activity estimated cost histogram

v E = Activity execution time histogram

v I = Activity interarrival time histogram

v L = Activity life time histogram

v Q = Activity queue time histogram

v R = Request execution time histogram

OBJECTTYPE CHAR (1) The type of WLM object.

v b = Service class

v k = Work action

OBJECTID INTEGER Identifier of the WLM object.

SERVICECLASSNAME VARCHAR (128) Y Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the parent service class.

WORKACTIONNAME VARCHAR (128) Y Name of the work action.

WORKACTIONSETNAME VARCHAR (128) Y Name of the work action set.

SYSCAT.SERVICECLASSES

Each row represents a service class.

 Table 132. SYSCAT.SERVICECLASSES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Service class name of the parent service

superclass.

SERVICECLASSID SMALLINT Identifier for the service class.

PARENTID SMALLINT Identifier for the parent service class for this

service class. 0 if this service class is a super

service class.

CREATE_TIME TIMESTAMP Time when the service class was created.

ALTER_TIME TIMESTAMP Time when the service class was last altered.

ENABLED CHAR (1) State of the service class.

v N = Disabled

v Y = Enabled

AGENTPRIORITY SMALLINT Thread priority of the agents in the service

class relative to the normal priority of DB2

threads.

v -20 to 20 (Linux and UNIX)

v -6 to 6 (Windows®)

v -32768 = not set

256 Workload Manager Guide and Reference

Table 132. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

PREFETCHPRIORITY CHAR (1) Prefetch priority of the agents in the service

class.

v H = High

v L = Low

v M = Medium

v Blank = not set

INBOUNDCORRELATOR VARCHAR (128) Y For future use.

OUTBOUNDCORRELATOR VARCHAR (128) Y String used to associate the service class with

an operating system workload manager

service class.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should

be captured for the service class by the

applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity

data

v N = None

COLLECTAGGREQDATA CHAR (1) Specifies what aggregate activity data should

be captured for the service class by the

applicable event monitor.

v B = Collect base aggregate request data

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v D = Activity data with details

v N = None

v V = Activity data with details and values

v W = Activity data without details

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.THRESHOLDS

Each row represents a threshold.

 Table 133. SYSCAT.THRESHOLDS Catalog View

Column Name Data Type Nullable Description

THRESHOLDNAME VARCHAR (128) Name of the threshold.

THRESHOLDID INTEGER Identifier for the threshold.

ORIGIN CHAR (1) Origin of the threshold.

v U = Threshold was created by a user

v W = Threshold was created through a

work action set

Chapter 12. Catalog views 257

Table 133. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

THRESHOLDCLASS CHAR (1) Classification of the threshold.

v A = Aggregate threshold

v C = Activity threshold

THRESHOLDPREDICATE VARCHAR (128) Type of the threshold. Possible values are:

v CONCDBC

v CONCWCN

v CONCWOC

v CONNIDLETIME

v DBCONN

v ESTSQLCOST

v ROWSRET

v SCCONN

v TEMPSPACE

v TOTALTIMECONCDBC

THRESHOLDPREDICATEID SMALLINT Identifier for the threshold predicate.

DOMAIN CHAR (2) Domain of the threshold.

v DB = Database

v SB = Service subclass

v SP = Service superclass

v WA = Work action set

v WD = Workload definition

DOMAINID INTEGER Identifier for the object with which the

threshold is associated. This can be a service

class, work action or workload unique ID. If

this is a database threshold, this value is 0.

ENFORCEMENT CHAR (1) Scope of enforcement for the threshold.

v D = Database

v P = Database partition

v W = Workload occurrence

QUEUEING CHAR (1) v N = The threshold is not queueing

v Y = The threshold is queueing

MAXVALUE BIGINT Upper bound specified by the threshold.

QUEUESIZE INTEGER If QUEUEING is ’Y’, the size of the queue. -1

otherwise.

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v A = Activity data without details

v D = Activity data with details

v N = None

v V = Activity data with details and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

258 Workload Manager Guide and Reference

Table 133. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

EXECUTION CHAR (1) Indicates whether or not execution continues

after the threshold has been exceeded.

v C = Execution continues

v S = Execution stops

ENABLED CHAR (1) v N = This threshold is disabled.

v Y = This threshold is enabled.

CREATE_TIME TIMESTAMP Time at which the threshold was created.

ALTER_TIME TIMESTAMP Time at which the threshold was last altered.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKACTIONS

Each row represents a work action that is defined for a work action set.

 Table 134. SYSCAT.WORKACTIONS Catalog View

Column Name Data Type Nullable Description

ACTIONNAME VARCHAR (128) Name of the work action.

ACTIONID INTEGER Identifier for the work action.

ACTIONSETNAME VARCHAR (128) Y Name of the work action set.

ACTIONSETID INTEGER Identifier of the work action set to which this

work action belongs. This column refers to

the ACTIONSETID column in the

SYSCAT.WORKACTIONSETS view.

WORKCLASSNAME VARCHAR (128) Y Name of the work class.

WORKCLASSID INTEGER Identifier of the work class. This column

refers to the WORKCLASSID column in the

SYSCAT.WORKCLASSES view.

CREATE_TIME TIMESTAMP Time at which the work action was created.

ALTER_TIME TIMESTAMP Time at which the work action was last

altered.

ENABLED CHAR (1) v N = This work action is disabled.

v Y = This work action is enabled.

Chapter 12. Catalog views 259

Table 134. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ACTIONTYPE CHAR (1) The action type that will be performed on

each DB2 activity that matches the work

class attributes specified in the work class

under the matching scope. For this column

description, OBJECTTYPE refers to column

OBJECTTYPE in

SYSCAT.WORKACTIONSETS.

v B - Collect basic aggregate activity data.

This action type can only be specified if

the OBJECTTYPE is ’b’ (service class).

v C - Allow the execution of any DB2

activity that falls under the work class

with which this work action is associated

to run and increment the counter for the

work class.

v D - Collect activity data with details at the

database partition of the coordinator of the

activity.

v E - Collect extended aggregate activity

data. This action type can only be

specified if the OBJECTTYPE is ’b’ (service

class).

v M - Map to a service subclass. This action

type can only be specified if the

OBJECTTYPE is ’b’ (service class).

v P - Prevent the execution of any DB2

activity that falls under the work class

with which this work action is associated.

v T - The action will be in the form of a

threshold. This action type can only be

specified if the OBJECTTYPE is ’f’

(threshold).

v U - Map all activities that have a nesting

level of zero and all activities nested

under this activity to a service subclass.

This action type can only be specified if

the OBJECTTYPE is ’b’ (service class).

ACTIONTYPE (cont’d) v V - Collect activity data with details and

values at the database partition of the

coordinator of the activity.

v W - Collect activity data without details at

the database partition of the coordinator of

the activity.

v X - Collect activity data with details at the

database partition of the coordinator of the

activity and collect activity data at all

database partitions.

v Y - Collect activity data with details and

values at the database partition of the

coordinator of the activity and collect

activity data at all database partitions.

v Z - Collect activity data without details at

all database partitions.

260 Workload Manager Guide and Reference

Table 134. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

REFOBJECTID INTEGER Y If ACTIONTYPE is ’M’ (map) or ’N’ (map

nested), this value is set to the ID of the

service subclass to which the DB2 activity is

mapped. If ACTIONTYPE is ’T’ (threshold),

this value is set to the ID of the threshold to

be used. For all other actions, this value is

NULL.

REFOBJECTTYPE VARCHAR (30) If the ACTIONTYPE is ’M’ or ’N’, this value

is set to ’SERVICE CLASS’; if the

ACTIONTYPE is ’T’, this value is

’THRESHOLD’; null value otherwise.

SYSCAT.WORKACTIONSETS

Each row represents a work action set.

 Table 135. SYSCAT.WORKACTIONSETS Catalog View

Column Name Data Type Nullable Description

ACTIONSETNAME VARCHAR (128) Name of the work action set.

ACTIONSETID INTEGER Identifier for the work action set.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSSETID INTEGER The identifier of the work class set that is to

be mapped to the object specified by the

OBJECTID. This column refers to

WORKCLASSSETID in the

SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work action set was

created.

ALTER_TIME TIMESTAMP Time at which the work action set was last

altered.

ENABLED CHAR (1) v N = This work action set is disabled.

v Y = This work action set is enabled.

OBJECTTYPE CHAR (1) v b = Service superclass

v Blank = Database

OBJECTNAME VARCHAR (128) Y Name of the service class.

OBJECTID INTEGER The identifier of the object to which the

work class set (specified by the

WORKCLASSSETID) is mapped. If the

OBJECTTYPE is blank, the OBJECTID is -1.

If the OBJECTTYPE is ’b’, the OBJECTID is

the ID of the service superclass.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKCLASSES

Each row represents a work class defined for a work class set.

Chapter 12. Catalog views 261

Table 136. SYSCAT.WORKCLASSES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set to which this

work class belongs. This column refers to the

WORKCLASSSETID column in the

SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work class was created.

ALTER_TIME TIMESTAMP Time at which the work class was last

altered.

WORKTYPE SMALLINT The type of DB2 activity.

v 1 = ALL

v 2 = READ

v 3 = WRITE

v 4 = CALL

v 5 = DML

v 6 = DDL

v 7 = LOAD

RANGEUNITS CHAR (1) The units to use for the bottom and top

range.

v C = Cardinality

v T = Timerons

v Blank = Not applicable

FROMVALUE DOUBLE Y The low value of the range in the units

specified by the RANGEUNITS. Null value

when RANGEUNITS is blank.

TOVALUE DOUBLE Y The high value of the range in the units

specified by the RANGEUNITS. Null value

when RANGEUNITS is blank. -1 value is

used to indicate no upper bound.

ROUTINESCHEMA VARCHAR (128) Y Schema name of the procedures that are

called from the CALL statement. Null value

when WORKTYPE is not 4 (CALL) or 1

(ALL).

EVALUATIONORDER SMALLINT Uniquely identifies the evaluation order used

for choosing a work class within a work

class set.

SYSCAT.WORKCLASSSETS

Each row represents a work class set.

 Table 137. SYSCAT.WORKCLASSSETS Catalog View

Column Name Data Type Nullable Description

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSSETID INTEGER Identifier for the work class set.

262 Workload Manager Guide and Reference

Table 137. SYSCAT.WORKCLASSSETS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time at which the work class set was

created.

ALTER_TIME TIMESTAMP Time at which the work class set was last

altered.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKLOADAUTH

Each row represents a user, group, or role that has been granted USAGE privilege

on a workload.

 Table 138. SYSCAT.WORKLOADAUTH Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v U = Grantee is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

USAGEAUTH CHAR (1) Indicates whether grantee holds USAGE

privilege on the workload.

v N = Not held

v Y = Held

SYSCAT.WORKLOADCONNATTR

Each row represents a connection attribute in the definition of a workload.

 Table 139. SYSCAT.WORKLOADCONNATTR Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

CONNATTRTYPE VARCHAR (30) Type of the connection attribute.

v 1 = APPLNAME

v 2 = SYSTEM_USER

v 3 = SESSION_USER

v 4 = SESSION_USER GROUP

v 5 = SESSION_USER ROLE

v 6 = CURRENT CLIENT_USERID

v 7 = CURRENT CLIENT_APPLNAME

v 8 = CURRENT CLIENT_WRKSTNNAME

v 9 = CURRENT CLIENT_ACCTNG

Chapter 12. Catalog views 263

Table 139. SYSCAT.WORKLOADCONNATTR Catalog View (continued)

Column Name Data Type Nullable Description

CONNATTRVALUE VARCHAR (1000) Value of the connection attribute.

SYSCAT.WORKLOADS

Each row represents a workload.

 Table 140. SYSCAT.WORKLOADS Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

EVALUATIONORDER SMALLINT Evaluation order used for choosing a

workload.

CREATE_TIME TIMESTAMP Time at which the workload was created.

ALTER_TIME TIMESTAMP Time at which the workload was last altered.

ENABLED CHAR (1) v N = This workload is disabled.

v Y = This workload is enabled.

ALLOWACCESS CHAR (1) v N = A UOW associated with this

workload will be rejected.

v Y = A unit of work (UOW) associated with

this workload can access the database.

SERVICECLASSNAME VARCHAR (128) Name of the service subclass to which a unit

of work (associated with this workload) is

assigned.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the service superclass to which a

unit of work (associated with this workload)

is assigned.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should

be captured for the workload by the

applicable event monitor.

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v D = Activity data with details

v N = None

v V = Activity data with details and

valuesApplies when the COLLECT

column is set to ’C’

v W = Activity data without details

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

EXTERNALNAME VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or null.

264 Workload Manager Guide and Reference

Part 6. Appendixes

© Copyright IBM Corp. 2007, 2008 265

266 Workload Manager Guide and Reference

Appendix A. Workload management DDL statement

considerations

DB2 workload management DDL statements consist of the CREATE, ALTER, and

DROP statements you use to work with service classes, workloads, work class sets,

work action sets, thresholds, and histograms.

The workload management DDL statements are as follows:

v CREATE WORKLOAD, ALTER WORKLOAD, and DROP WORKLOAD

v GRANT USAGE ON WORKLOAD and REVOKE USAGE ON WORKLOAD

v CREATE SERVICE CLASS, ALTER SERVICE CLASS, and DROP SERVICE

CLASS

v CREATE WORK CLASS SET, ALTER WORK CLASS SET, and DROP WORK

CLASS SET

v CREATE WORK ACTION SET, ALTER WORK ACTION SET, and DROP WORK

ACTION SET

v CREATE THRESHOLD, ALTER THRESHOLD, and DROP THRESHOLD

v CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, and

DROP HISTOGRAM TEMPLATE

Workload management DDL statements differ from other DB2 DDL statements:

v Only one uncommitted workload management DDL statement is allowed at a

time across all database partitions. If an uncommitted workload management

DDL statement exists, subsequent workload management DDL statements wait

until the uncommitted workload management DDL statement is either

committed or rolled back. Workload management DDL statements are processed

in the order in which they are issued.

v Every workload management DDL statement must be followed by a COMMIT

or ROLLBACK statement.

v A workload management DDL statement cannot be issued in an XA transaction.

After a connection issues a workload management DDL statement, the same

connection must issue a COMMIT or ROLLBACK statement immediately after

the workload management DDL statement. With XA transactions, it is possible

for multiple connections to join a transaction, and any of the connections can

commit or roll back the transaction. In this situation, it is impossible to ensure

that the workload management environment would be correctly implemented.

v DB2 for z/OS® does not recognize DB2 Database for Linux, UNIX, and Windows

workload management DDL statements.

Many database objects have owners, and these owners have authority to alter the

objects that they own. Unlike most objects, workload management objects do not

have owners, because this could cause unpredictable problems. For example, if a

resource allocation setting is changed for a service class, the change affects not only

the service class itself but also other service classes of the same tier. For example,

assume that a service superclass has two user-defined service subclasses: A and B,

and that each service subclass has a different owner. Initially, the prefetch priority

setting is medium for the default service subclass and for the two service

subclasses A and B. If the owner of service subclass A were to change its prefetch

priority to high and many prefetch requests come from this service subclass,

connections to service subclass B and the default subclass would be starved for

© IBM Corporation 2007, 2008 267

prefetcher services and the performance of activities running in these service

subclasses might suffer. For reasons such as this, DB2 workload management

objects do not have owners.

268 Workload Manager Guide and Reference

Appendix B. Integration of DB2 workload management and

the AIX Workload Manager

When DB2 workload management is used in conjunction with the AIX Workload

Manager, additional capabilities are available. The AIX Workload Manager can be

used to control the amount of CPU allocated to each service class.

Options include setting a minimum, maximum, or relative proportion share of

CPU for each service class. Mapping between DB2 service classes and AIX

Workload Manager service classes is specified in the definition of the DB2 service

class using the OUTBOUND CORRELATOR option of the CREATE SERVICE

CLASS or the ALTER SERVICE CLASS statement. DB2 service classes are the sole

point of integration between DB2 workload management and the AIX Workload

Manager.

This topic describes:

v Recommended mappings between DB2 service classes and AIX Workload

Manager service classes

v Instructions for defining the mappings between DB2 service classes and AIX

Workload Manager service classes

v Setting CPU controls on the AIX Workload Manager service classes

Recommended mappings between DB2 service classes and AIX

Workload Manager service classes

You can map DB2 service classes to the AIX Workload Manager service classes in

any way you want. However, you should try to start with a 1:1 mapping of DB2

service classes to the AIX Workload Manager service classes. A 1:1 mapping is a

good starting point because activities in a DB2 service class should have more or

less the same performance goal. The most direct way to meet that goal is to adjust

the AIX resources allocated to that AIX Workload Manager service class. By having

a 1:1 mapping between a DB2 service class and an AIX Workload Manager service

class, you can adjust the AIX resources for each service class individually.

The following figure shows the integration of the DB2 workload manager with the

AIX Workload Manager. Note the 1:1 mapping between each DB2 service class and

AIX Workload Manager service class at the service superclass and service subclass

levels.

© IBM Corporation 2007, 2008 269

When a DB2 environment consists of a single database in a single DB2 instance,

like the example portrayed in the previous figure, it is possible to map directly

between DB2 service classes and AIX Workload Manager service classes. Each DB2

service superclass can have a corresponding AIX Workload Manager service

superclass and each DB2 service subclass can map to a corresponding AIX service

subclass.

The following figure shows that, in situations where the DB2 environment consists

of multiple databases and DB2 instances, four levels are candidates for resource

control.

Data serverUser requests

System requests

Service superclass 1

Requests

Requests

Requests

Requests

Requests

Requests

Workload B

Workload C

Workload D

Default user
workload

Workload A

AIX WLM service classes

_DB2_SUPERCLASS1

_DB2_DEF_USER

_DB2_DEF _SYSTEM

_DB2_SUBCLASSA

_DB2_SUBCLASSB

Default user
class

Default system
class

Service
subclass B

Service
subclass A

Maintenance requests

Requests _DB2_DEF _MAINTDefault maintenance
class

Figure 28. Integration of the DB2 workload manager with the AIX Workload Manager

270 Workload Manager Guide and Reference

Because the AIX Workload Manager supports a two-level hierarchy, that is

superclass and subclass, only two levels of a DB2 environment can be mapped to

AIX Workload Manager service classes at any time. Some sample configurations

follow.

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 1

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 2

DB2 Instance

Figure 29. Resource control levels in a DB2 environment

Appendix B. Integration of DB2 workload management and the AIX Workload Manager 271

The following figure shows one way to achieve the 1:1 mapping in the case with

multiple databases, each with superclasses. Here, each database has its own AIX

Workload Manager superclass and each DB2 service superclass is mapped to an

AIX Workload Manager subclass.

An alternative configuration is to map each DB2 service superclass to its own AIX

Workload Manager superclass, which results in four superclasses in this example.

In this situation, the database level of resource control is represented explicitly in

the AIX Workload Manager service class definitions.

Service superclass A

Service superclass B

Database 1

Service superclass A

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Superclass A

Superclass A

Superclass B

Superclass B

Figure 30. DB2 service classes mapped to AIX service classes (with DB2 service superclasses only)

272 Workload Manager Guide and Reference

The following figure shows one way to achieve the 1:1 mapping in the situation

where you have multiple databases, each with service superclasses and service

subclasses. Here, each database is mapped to an AIX superclass and each DB2

service subclass is mapped to an AIX Workload Manager subclass. The DB2 service

superclass is not shown explicitly in the AIX Workload Manager service class

definitions.

Appendix B. Integration of DB2 workload management and the AIX Workload Manager 273

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 1

Service subclass 1

Service subclass 2

Service superclass A

Service subclass 1

Service subclass 2

Service superclass B

Database 2

DB2 Instance

Database 1

DB2 instance

Database 2

AIX workload manager classes

Other application 1

Other application 2

Subclass 1

Subclass 1

Subclass 1

Subclass 2

Subclass 2

Subclass 1

Subclass 2

Subclass 2

Figure 31. DB2 service classes mapped to AIX Workload Manager classes (with DB2 service subclasses)

274 Workload Manager Guide and Reference

Defining mappings between DB2 service classes and AIX

Workload Manager service classes

Mapping between DB2 service classes and AIX Workload Manager service classes

is specified for the DB2 service class using the OUTBOUND CORRELATOR

keyword of the CREATE SERVICE CLASS or the ALTER SERVICE CLASS

statements.

The steps for setting up the AIX Workload Manager service classes with the DB2

data server are:

1. Create the DB2 service superclasses and service subclasses, and specify the

OUTBOUND CORRELATOR tags.

2. Create the corresponding AIX service classes.

3. Create the associated AIX Workload Manager rules files to contain the DB2

workload management to AIX Workload Manager mappings using the

OUTBOUND CORRELATOR tags under the tag columns.

4. Start the AIX Workload Manager.

5. If required, set this AIX Workload Manager configuration as active.

The following points explain how the AIX Workload Manager handles work from

the DB2 data server given the change in DB2 Version 9.5 from a process model to a

threaded model on UNIX and Linux. When a thread joins a DB2 service class, the

DB2 data server calls the appropriate AIX Workload Manager API to associate the

thread to the corresponding AIX service class. The DB2 data server sends the

thread’s target AIX service class to the AIX Workload Manager by passing it the

application tag set in the OUTBOUND CORRELATOR parameter.

You must ensure that the AIX Workload Manager is properly installed, configured,

and active. If the DB2 data server cannot communicate with the AIX Workload

Manager, a message is logged to the db2diag.log and DB2 administrator log. The

database activity continues.

The DB2 data server cannot detect whether the OUTBOUND CORRELATOR value

that it passes to the AIX Workload Manager is recognized by the AIX Workload

Manager. You must verify that the value specified for the DB2 service class

matches the application tags that map DB2 threads to the AIX service classes. If the

OUTBOUND CORRELATOR value is not recognized by the AIX Workload

Manager, the database activity continues to execute.

Other points to note are:

v DB2 service classes cannot work with the AIX Workload Manager inheritance

feature. Inheritance is the default setting for an AIX service class; inheritance

must be explicitly disabled by setting the inheritance attribute to NO. AIX

Workload Manager inheritance forces all child threads and processes to map to

the same class as the parent thread or process. If inheritance is enabled, the DB2

workload manager cannot change the AIX workload management class of a

thread using tagging. This restriction makes any integration of the DB2

workload manager and the AIX Workload Manager unusable. The DB2 data

server cannot detect whether AIX Workload Manager inheritance is enabled and

does not issue an error message if inheritance is enabled.

v DB2 service classes are not compatible with the AIX Workload Manager manual

assignment feature. With the manual assignment feature, users can manually

assign a process to a specific AIX Workload Manager class. By manually

Appendix B. Integration of DB2 workload management and the AIX Workload Manager 275

assigning the DB2 process, all threads in the process are assigned to a target AIX

Workload Manager class, the DB2 service class mapping logic is defeated and

results are not predictable.

v AIX 5.3.H or later is required.

For more information on the AIX Workload Manager, see the AIX Information

Center at http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp

Setting CPU controls on the AIX Workload Manager service

classes

The AIX Workload Manager can be used to control the amount of CPU allocated to

each service class. Options include setting a minimum, maximum, or relative

proportion share of CPU for each service class.

When integrating the AIX Workload Manager with DB2 workload management,

only CPU allocation control is supported. You should not set memory and I/O

settings for the AIX service classes. DB2 database-level memory is shared among

all agents from different DB2 service classes, so you cannot divide memory

allocation between different service classes. AIX-level I/O control does not support

the new DB2 engine threaded model. To control I/O, you can use the prefetcher

priority attribute of a DB2 service class to differentiate I/O priorities between

different DB2 service classes.

If you use AIX to control the amount of CPU allocated to a service class, do not

also change the agent priority setting for that DB2 service class. Use only one of

these mechanisms to govern the access to CPU resources. You cannot set both the

AGENT PRIORITY and the OUTBOUND CORRELATOR value for a service class.

See “CPU priority and DB2 service classes” on page 30 for more information.

AIX Workload Manager settings should be consistent on all physical computers

that participate in an instance. For example, if the resource setting for an AIX

service class is set high on one computer, the same setting should be used for that

AIX service class on all other computers. If the resource usage settings are

inconsistent across computers, requests running in the same AIX service class will

exhibit different performance levels on different database partitions. This situation

can lead to poor overall throughput for connections in an AIX service class.

276 Workload Manager Guide and Reference

Appendix C. Processing of stored procedures in a workload

management solution

Each invocation of a stored procedure is processed as one activity. All database

activities issued by the stored procedure are processed as child activities of the

stored procedure. If a mapping work action is applied to a stored procedure,

depending on its configuration, child activities of a stored procedure can run in the

same service subclass or different service subclasses than the parent activity.

Activity concurrency thresholds are applied to the stored procedure itself and its

child activities. If the execution of the stored procedure is queued, none of its child

activities can proceed. However, when a stored procedure starts running, child

activities might be queued.

For stored procedures that run in fenced mode, you can see the process ID and

thread ID of the processes or threads of the stored procedure using the

WLM_GET_SERVICE_CLASS_AGENTS table function.

© IBM Corporation 2007, 2008 277

278 Workload Manager Guide and Reference

Appendix D. Naming rules

Rules exist for the naming of all objects, users and groups. Some of these rules are

specific to the platform you are working on.

For example, there is a rule regarding the use of upper and lowercase letters in a

name.

v On UNIX platforms, names must be in lowercase.

v On Windows platforms, names can be in upper, lower, and mixed-case.

Unless otherwise specified, all names can include the following characters:

v A through Z. When used in most names, characters A through Z are converted

from lowercase to uppercase.

v 0 through 9.

v ! % () { } . – ^ ~ _ (underscore) @, #, $, and space.

v \ (backslash).

Names cannot begin with a number or with the underscore character.

Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.

There are other special characters that might work separately depending on your

operating system and where you are working with the DB2 database. However,

while they might work, there is no guarantee that they will work. It is not

recommended that you use these other special characters when naming objects in

your database.

User and group names also need to follow the rules forced on specific operation

systems by the related systems. For example, on Linux and UNIX platforms,

allowed characters for user names and primary group names must be lowercase a

through z, 0 through 9, and _ (underscore) for names not starting with 0 through 9.

Lengths must be less than or equal to the lengths listed in: SQL and XML limits.

You also need to consider object naming rules, naming rules in an NLS

environment, and naming rules in a Unicode environment.

Restrictions on the AUTHID identifier: Version 9.5, and later, of the DB2 database

system allows you to have an 128-byte authorization ID, but when the

authorization ID is interpreted as an operating system user ID or group name, the

operating system naming restrictions apply (for example, a limitation to 8 or 30

character user IDs and 30 character group names). Therefore, while you can grant

an 128-byte authorization ID, it is not possible to connect as a user that has that

authorization ID. If you write your own security plugin, you should be able to

take full advantage of the extended sizes for the authorization ID. For example,

you can give your security plugin a 30-byte user ID and it can return an 128-byte

authorization ID during authentication that you are able to connect with.

© IBM Corporation 2007, 2008 279

280 Workload Manager Guide and Reference

Appendix E. Roles

Roles simplify the administration and management of privileges by offering an

equivalent capability as groups but without the same restrictions. A role is a

database object that groups together one or more privileges and can be assigned to

users, groups, PUBLIC, or other roles by using a GRANT statement, or can be

assigned to a trusted context by using a CREATE TRUSTED CONTEXT or ALTER

TRUSTED CONTEXT statement. A role can be specified for the SESSION_USER

ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a

database system:

v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database

that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.

As their job responsibilities change, their membership in roles can be easily

granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of

privileges to each individual user in a particular job function, the administrator

can grant this set of privileges to a role representing that job function and then

grant that role to each user in that job function.

v A role’s privileges can be updated and all users who have been granted that role

receive the update; the administrator does not need to update the privileges for

every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create

views, triggers, materialized query tables (MQTs), static SQL and SQL routines,

whereas privileges and authorities granted to groups (directly or indirectly) are

not used.

This is because the DB2 database system cannot determine when membership in

a group changes, as the group is managed by third-party software (for example,

the operating system or an LDAP directory). Because roles are managed inside

the database, the DB2 database system can determine when authorization

changes and act accordingly. Roles granted to groups are not considered, due to

the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a

connection, so all privileges and authorities granted to roles are taken into

account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be

granted to a role, with the exception of security administrator (SECADM)

authority. For example, a role can be granted any of the following authorities and

privileges:

v DBADM, LOAD, and IMPLICIT_SCHEMA database authorities

v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities

v Any database object privilege (including CONTROL)

© IBM Corporation 2007, 2008 281

A user’s roles are automatically enabled and considered for authorization when a

user connects to a database; you do not need to activate a role by using the SET

ROLE statement. For example, when you create a view, a materialized query table

(MQT), a trigger, a package, or an SQL routine, the privileges that you gain

through roles apply. However, privileges that you gain through roles granted to

groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH

ADMIN OPTION clause of the GRANT statement to delegate management of the

role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:

v A role cannot own database objects.

v A role cannot be granted security administrator (SECADM) authority.

v Permissions and roles granted to groups are not considered when you create the

following database objects:

– Packages containing static SQL

– Views

– Materialized query tables (MQT)

– Triggers

– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or

indirectly (such as through a role hierarchy), are considered when creating these

objects.

282 Workload Manager Guide and Reference

Appendix F. Trusted contexts and trusted connections

A trusted context is a database object that defines a trust relationship for a

connection between the database and an external entity such as an application

server.

The trust relationship is based upon the following set of attributes:

v System authorization ID: Represents the user that establishes a database

connection

v IP address (or domain name): Represents the host from which a database

connection is established

v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks

whether the connection matches the definition of a trusted context object in the

database. When a match occurs, the database connection is said to be trusted.

A trusted connection allows the initiator of this trusted connection to acquire

additional capabilities that may not be available outside the scope of the trusted

connection. The additional capabilities vary depending on whether the trusted

connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:

v Switch the current user ID on the connection to a different user ID with or

without authentication

v Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly

requested; the implicit trusted connection results from a normal connection request

rather than an explicit trusted connection request. No application code changes are

needed to obtain an implicit connection. Also, whether you obtain an implicit

trusted connection or not has no effect on the connect return code (when you

request an explicit trusted connection, the connect return code indicates whether

the request succeeds or not). The initiator of an implicit trusted connection can

only acquire additional privileges via the role inheritance feature of trusted

contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and

server model by placing a middle tier between the client application and the

database server. It has gained great popularity in recent years particularly with the

emergence of web-based technologies and the Java™ 2 Enterprise Edition (J2EE)

platform. An example of a software product that supports the three-tier application

model is IBM WebSphere Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating

the users running the client applications and for managing the interactions with

the database server. Traditionally, all the interactions with the database server

occur through a database connection established by the middle tier using a

combination of a user ID and a credential that identify that middle tier to the

database server. In other words, the database server uses the database privileges

© Copyright IBM Corp. 2007, 2008 283

associated with the middle tier’s user ID for all authorization checking and

auditing that must occur for any database access, including access performed by

the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions

with the database server (for example, a user request) occur under the middle

tier’s authorization ID raises several security concerns, which can be summarized

as follows:

v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the

database for access control purposes.

v Diminished user accountability

Accountability through auditing is a basic principle in database security. Not

knowing the user’s identity makes it difficult to distinguish the transactions

performed by the middle tier for its own purpose from those performed by the

middle tier on behalf of a user.

v Over granting of privileges to the middle tier’s authorization ID

The middle tier’s authorization ID must have all the privileges necessary to

execute all the requests from all the users. This has the security issue of enabling

users who do not need access to certain information to obtain access anyway.

v Weakened security

In addition to the privilege issue raised in the previous point, the current

approach requires that the authorization ID used by the middle tier to connect

must be granted privileges on all resources that might be accessed by user

requests. If that middle-tier authorization ID is ever compromised, then all those

resources will be exposed.

v ″Spill over″ between users of the same connection

Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user’s identity and

database privileges are used for database requests performed by the middle tier on

behalf of that user. The most straightforward approach of achieving this goal

would be for the middle-tier to establish a new connection using the user’s ID and

password, and then direct the user’s requests through that connection. Although

simple, this approach suffers from several drawbacks which include the following:

v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.

v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the

database server.

v Maintenance overhead. In situations where you are not using a centralized

security set up or are not using single sign-on, there is maintenance overhead in

having two user definitions (one on the middle tier and one at the server). This

requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator

can create a trusted context object in the database that defines a trust relationship

between the database and the middle-tier. The middle-tier can then establish an

explicit trusted connection to the database, which gives the middle tier the ability

to switch the current user ID on the connection to a different user ID, with or

without authentication. In addition to solving the end-user identity assertion

problem, trusted contexts offer another advantage. This is the ability to control

when a privilege is made available to a database user. The lack of control on when

privileges are available to a user can weaken overall security. For example,

284 Workload Manager Guide and Reference

privileges may be used for purposes other than they were originally intended. The

security administrator can assign one or more privileges to a role and assign that

role to a trusted context object. Only trusted database connections (explicit or

implicit) that match the definition of that trusted context can take advantage of the

privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the

following advantages:

v No new connection is established when the current user ID of the connection is

switched.

v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the

database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1

 BASED UPON CONNECTION USING SYSTEM AUTHID USER2

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

 DEFAULT ROLE managerRole

 ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2

database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to

indicate that a trusted connection could not be established, and that user user1

simply got a non-trusted connection. However, if user user2 requests a trusted

connection from IP address 192.0.2.1, the request is honored because the connection

attributes are satisfied by the trusted context CTX1. Now that use user2 has

established a trusted connection, he or she can now acquire all the privileges and

authorities associated with the trusted context role managerRole. These privileges

and authorities may not be available to user user2 outside the scope of this trusted

connection

Appendix F. Trusted contexts and trusted connections 285

286 Workload Manager Guide and Reference

Appendix G. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2008 287

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 141. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-01 Yes

Administrative Routines and

Views

SC23-5843-01 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-01 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-01 Yes

Command Reference SC23-5846-01 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-01 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-01 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-01 Yes

Database Security Guide SC23-5850-01 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-01 Yes

Developing Embedded SQL

Applications

SC23-5852-01 Yes

Developing Java Applications SC23-5853-01 Yes

Developing Perl and PHP

Applications

SC23-5854-01 No

Developing User-defined Routines

(SQL and External)

SC23-5855-01 Yes

Getting Started with Database

Application Development

GC23-5856-01 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-01 Yes

Internationalization Guide SC23-5858-01 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-01 Yes

Net Search Extender

Administration and User’s Guide

SC23-8509-01 Yes

Partitioning and Clustering Guide SC23-5860-01 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-01 No

288 Workload Manager Guide and Reference

Table 141. DB2 technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Servers

GC23-5864-01 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-01 Yes

SQL Reference, Volume 1 SC23-5861-01 Yes

SQL Reference, Volume 2 SC23-5862-01 Yes

System Monitor Guide and

Reference

SC23-5865-01 Yes

Troubleshooting Guide GI11-7857-01 No

Tuning Database Performance SC23-5867-01 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-01 Yes

Workload Manager Guide and

Reference

SC23-5870-01 Yes

pureXML Guide SC23-5871-01 Yes

XQuery Reference SC23-5872-01 No

 Table 142. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-01 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-01 Yes

DB2 Connect User’s Guide SC23-5841-01 Yes

 Table 143. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix G. Overview of the DB2 technical information 289

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 287.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

290 Workload Manager Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix G. Overview of the DB2 technical information 291

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to obtain and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

292 Workload Manager Guide and Reference

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix G. Overview of the DB2 technical information 293

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

294 Workload Manager Guide and Reference

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix G. Overview of the DB2 technical information 295

296 Workload Manager Guide and Reference

Appendix H. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2008 297

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

298 Workload Manager Guide and Reference

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States, other countries, or both.

 pureXML Redbooks

z/OS developerWorks

ibm.com DB2

IBM AIX

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Windows is a registered trademark of Microsoft Corporation in the United

States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix H. Notices 299

300 Workload Manager Guide and Reference

Index

A
activation time

last_wlm_reset monitor element 233

activities
analysis example 166

application of work actions to 87

assignment to work classes 87

cancelling 128

cancelling example 167

cancelling with WLM_CANCEL_ACTIVITY 111

capturing details with

WLM_CAPTURE_ACTIVITY_IN_PROGRESS 111

capturing for later analysis example 169

collecting data about 126

identifying hung activities
overview 167

importing information into the Design Advisor 128

low estimated cost and high runtime 178

mapping to service classes 26

monitor elements
act_total 222

activity_collected 219

activity_id 220

activity_secondary_id 220

activity_type 221

coord_act_aborted_total 225

coord_act_completed_total 225

coord_act_rejected_total 226

overviewnested 18

rogue 129

states in service class 31

activity event monitor 15

activity thresholds
definition 56

ACTIVITYTOTALTIME activity threshold 60

agents
investigating usage by service class 171

priority of and service classes 30

aggregate thresholds
definition 56

aggregating data 160

AIX Workload Manager
CPU priority 30

allowing workload to access database 49

APIs
sqleseti

workload assignment 139

assignment of connections to workloads 42

AUTHID identifier
restrictions 279

B
bins

purpose 161

books
printed

ordering 290

C
CALL statement

classification by schema 75

catalog views
HISTOGRAMTEMPLATEBINS 255

HISTOGRAMTEMPLATES 255

HISTOGRAMTEMPLATEUSE 255

SERVICECLASSES 256

THRESHOLDS 257

WORKACTIONS 259

WORKACTIONSETS 261

WORKCLASSES 261

WORKCLASSSETS 262

WORKLOADAUTH 263

WORKLOADCONNATTR 263

WORKLOADS 264

commands
SET WORKLOAD 46, 251

CONCURRENTDBCOORDACTIVITIES aggregate

threshold 65

CONCURRENTWORKLOADACTIVITIES aggregate

threshold 63

CONCURRENTWORKLOADOCCURRENCES aggregate

threshold 63

configuration parameters
wlm_collect_int configuration parameter 253

connection attributes
mapping unit of work to a workload 39

CONNECTIONIDLETIME activity threshold 57

connections
assigning to default administration workload 46

assignment
workload connection attributes with multiple

values 148

assignment to workload 42

mapping to workloads
example 143

states in service class 31

transient 62

creating
service classes 32

threshold 68

workload 47

D
data

aggregation 160

Data Definition Language (DDL)
statements

workload management 267

database objects
roles 281

workload management 267

DB2 Information Center
languages 291

updating 292

versions 291

viewing in different languages 291

© Copyright IBM Corp. 2007, 2008 301

default maintenance service superclass
overview 25

default system service superclass
overview 25

default user service superclass
overview 25

default workloads 44

Design Advisor
importing activity information 128

documentation
overview 287

PDF 287

printed 287

terms and conditions of use 294

dropping
histogram templates 131

service classes 36

thresholds 73

work action sets 94

work class sets 100

workloads 53

E
enforcement scopes

thresholds 55

ESTIMATEDSQLCOST activity threshold 58

evaluation order
thresholds 66

workloads 42

event monitors
activity data 126

threshold violations 125

types 15

workload management
monitor types 112

statistics collection 121

examples
mapping connections to workloads 143

service classes 135

work action set and threshold 154

work class defined with ALL keyword 152

work class set management of activities 151

F
functions

table functions
WLM_GET_ACTIVITY_DETAILS 185

WLM_GET_QUEUE_STATS 191

WLM_GET_SERVICE_CLASS_

WORKLOAD_OCCURRENCESWLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES 199

WLM_GET_SERVICE_CLASS_AGENTS 195

WLM_GET_SERVICE_SUBCLASS_STATS 203

WLM_GET_SERVICE_SUPERCLASS_STATS 208

WLM_GET_WORK_ACTION_SET_STATS 210

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIESWLM_GET_WORKLOAD_

OCCURRENCE_ACTIVITIES 212

WLM_GET_WORKLOAD_STATS 216

G
granting

USAGE privilege on workload 52

H
help

configuring language 291

SQL statements 290

histogram templates
altering 124, 130

creating 130

dropping 131

histograms
example 161

monitor elements
histogram_type 232

number_in_bin 234

top 246

overview 117

I
identifiers

monitor elements
arm_correlator 222

bin_id 223

db_work_action_set_id 231

db_work_class_id 232

parent_activity_id 234

parent_uow_id 235

sc_work_action_set_id 238

sc_work_class_id 239

service_class_id 239

work_action_set_id 247

work_class_id 248

integration of DB2 and operating system workload

management 269

M
monitor elements

activation time
last_wlm_reset 233

activities
act_total 222

activity_collected 219

activity_id 220

activity_secondary_id 220

activity_type 221

coord_act_aborted_total 225

coord_act_completed_total 225

coord_act_rejected_total 226

coord_act_est_cost_avg 230

coord_act_exec_time_avg 229

coord_act_interarrival_time_avg 231

coord_act_lifetime_avg 228

coord_act_queue_time_avg 228

executing
act_exec_time 221

histograms
histogram_type 232

number_in_bin 234

top 246

identifiers
arm_correlator 222

bin_id 223

db_work_action_set_id 231

db_work_class_id 232

parent_activity_id 234

parent_uow_id 235

302 Workload Manager Guide and Reference

monitor elements (continued)
identifiers (continued)

sc_work_action_set_id 238

sc_work_class_id 239

service_class_id 239

work_action_set_id 247

work_class_id 248

names
service_subclass_name 240

service_superclass_name 240

work_action_set_name 248

work_class_name 248

partitions
coord_partition_num 227

queries
queue_assignments_total 235

queue_size_top 236

queue_time_total 236

ranges
bottom 223

request_exec_time_avg 230

rows
rows_fetched 236

rows_modified 237

rows_returned 237

section_env 239

thresholds
num_threshold_violations 233

threshold_action 242

threshold_domain 242

threshold_maxvalue 243

threshold_name 243

threshold_predicate 243

threshold_queuesize 244

thresholdid 244

time
prep_time 235

time_completed 245

time_created 245

time_of_violation 245

time_started 246

timestamps
activate_timestamp 219

statistics_timestamp 241

units of work (UOW)
uow_id 246

watermarks
concurrent_act_top 223

concurrent_connection_top 224

concurrent_wlo_act_top 224

concurrent_wlo_top 224

coord_act_lifetime_top 226

cost_estimate_top 227

rows_returned_top 238

temp_tablespace_top 241

Workload management
overview 219

workloads
wlo_completed_total 247

workload_id 249

workload_name 249

workload_occurrence_id 250

monitoring
entities not tracked by service class 32

historical 15

overview 107

real-time 13

monitoring data, overview 107

N
names

monitor elements
service_subclass_name 240

service_superclass_name 240

work_action_set_name 248

work_class_name 248

naming rules
restrictions 279

notices 297

O
operating systems

integrating DB2 workload management 269

ordering DB2 books 290

ownership
workload management objects 267

P
partitioned database environments

coord_partition_num monitor element 227

performance
workload management

examples 171, 173

performance modeling 129

prefetch priorities
service classes 30

privileges
roles 281

problem determination
information available 294

tutorials 294

procedures
WLM_CANCEL_ACTIVITY 181

WLM_CAPTURE_ACTIVITY_IN_PROGRESS 182

WLM_COLLECT_STATS 184

Q
queries

monitor elements
queue_assignments_total 235

queue_size_top 236

queue_time_total 236

queueing thresholds
overview 55

queues
prefetch 30

R
ranges

monitor elements
bottom 223

recognized activities 18

restrictions
naming rules 279

revoking
USAGE privilege on workload 53

roles 281

Index 303

routines
WLM_CANCEL_ACTIVITY

example of cancelling activity 167

rows
monitor elements

rows_fetched 236

rows_modified 237

rows_returned 237

rows_returned_top 238

S
schemas

classification of CALL statement 75

scripts
WLMEVMON.DDL 112

security
using trusted contexts 283

service classes
agent priority 30

altering 34

changes occur at statistics reset 124

analyzing system slowdown, example 163

connection statesactivity status 31

creating 32

dropping 36

entities not tracked by 32

example 135

mapping of activities 26

overview 23

point-in-time statistics, obtaining 159

prefetch priority 30

service subclasses
default 25

service superclasses
default 25

superclass and subclass hierarchy 23

service subclasses
altering 34

creating 32

dropping 36

monitoring data, overview 107

service superclasses
altering 34

creating 32

dropping 36

monitoring data, overview 107

SET WORKLOAD command 46, 251

snapshot monitor
using to supplement table functions 110

SQL statements
displaying help 290

mapping to work types 81

sqleseti API
workload assignment 139

SQLROWSRETURNED activity threshold 59

SQLTEMPSPACE activity threshold 59

statistics
collection for workload management 121

resetting with WLM_COLLECT_STATS 111

workload management objects 113

statistics event monitor 15

stored procedures
processed as one activity 277

WLM_CANCEL_ACTIVITY 111

WLM_CAPTURE_ACTIVITY_IN_PROGRESS 111

WLM_COLLECT_STATS 111

SYSDEFAULTMAINTENANCECLASS (default maintenance

service superclass)
overview 25

SYSDEFAULTSYSTEMCLASS (default system service

superclasss)
overview 25

SYSDEFAULTUSERCLASS (default user service superclass)
overview 25

T
table functions

aggregating data 160

example of using 14

monitoring at different levels 156

snapshot monitor 110

WLM_COLLECT_STATS 124

WLM_GET_ACTIVITY_DETAILS 109

WLM_GET_QUEUE_STATS 123, 191

WLM_GET_SERVICE_CLASS_AGENTS 109, 171

WLM_GET_SERVICE_CLASS_STATS
analyzing system slowdown, example 163

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES 109

hung activity, identifying 167

WLM_GET_SERVICE_SUBCLASS_STATS 123, 159

analyzing system slowdown, example 165

WLM_GET_SERVICE_SUPERCLASS_STATS 123

WLM_GET_WORK_ACTION_SET_STATS 123

analysis of activities, example 166

obtaining count of activities, example 166

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES 109

WLM_GET_WORKLOAD_STATS 123

table spaces
SQLTEMPSPACE threshold 59

terms and conditions
use of publications 294

threshold violations event monitor 15

thresholds
action 55

activity 56

ACTIVITYTOTALTIME 60

aggregate 56

altering 73

application to stored procedure 277

CONCURRENTDBCOORDACTIVITIES 65

CONCURRENTWORKLOADACTIVITIES 63

CONCURRENTWORKLOADOCCURRENCES 63

CONCURRENTWORKLOADOCCURRENCES,

TOTALDBPARTITIONCONNECTIONS, and

TOTALSCPARTITIONCONNECTIONS used

together 151

CONNECTIONIDLETIME 57

creating 68

definition 56

domain 55

dropping 73

enforcement scope 55

ESTIMATEDSQLCOST 58

evaluation order 66

example 154

monitor elements
num_threshold_violations 233

threshold_action 242

threshold_domain 242

threshold_maxvalue 243

threshold_name 243

threshold_predicate 243

304 Workload Manager Guide and Reference

thresholds (continued)
monitor elements (continued)

threshold_queuesize 244

thresholdid 244

monitoring violations 125

predictive 55

purpose 55

queueing 55

reactive 55

scope resolution of activity 61

SQLROWSRETURNED 59

SQLTEMPSPACE 59

summary 57

supported in work actions 86

supported work classifications 86

TOTALDBPARTITIONCONNECTIONS 61

TOTALSCPARTITIONCONNECTIONS 62

usage example 149

time
monitor elements

prep_time 235

time_completed 245

time_created 245

time_of_violation 245

time_started 246

timestamps
monitor elements

activate_timestamp 219

statistics_timestamp 241

TOTALDBPARTITIONCONNECTIONS aggregate

threshold 61

TOTALSCPARTITIONCONNECTIONS aggregate

threshold 62

troubleshooting
online information 294

tutorials 294

trusted connections 283

trusted contexts 283

tutorials
problem determination 294

troubleshooting 294

Visual Explain 293

types
event monitors 112

U
units of work (UOW)

assignment to default workload 44

mapping to workload 39

matching to workload
example 145

monitor elements
uow_id 246

unrecognized activities 18

updates
DB2 Information Center 292

V
Visual Explain

tutorial 293

W
watermark monitor elements

concurrent_act_top 223

concurrent_connection_top 224

concurrent_wlo_act_top 224

concurrent_wlo_top 224

coord_act_lifetime_top 226

cost_estimate_top 227

rows_returned_top 238

watermarks
monitor elements

temp_tablespace_top 241

WLM_CANCEL_ACTIVITY procedure 181

WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure 182

wlm_collect_int database configuration parameter
description 253

WLM_COLLECT_STATS procedure
description 184

resetting in-memory statistics 124

WLM_GET_ACTIVITY_DETAILS table function
description 185

overview 109

WLM_GET_QUEUE_STATS table function
description 191

overview 123

WLM_GET_SERVICE_CLASS_AGENTS table function
description 195

investigating agent usage by service class (scenario) 171

overview 109

WLM_GET_SERVICE_CLASS_STATS table function
analyzing system slowdown (example) 163

WLM_GET_SERVICE_CLASS_WORKLOAD _OCCURRENCES

table function
examples

aggregating data 160

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

table function
description 199

examples
identifying hung activities 167

overview 109

WLM_GET_SERVICE_SUBCLASS_STATS table function
description 203

examples
aggregating data 160

analyzing system slowdown 165

overview 123

WLM_GET_SERVICE_SUPERCLASS_STATS table function
description 208

overview 123

WLM_GET_WORK_ACTION_SET_STATS table function
analyzing workload by activity type (example) 166

description 210

overview 123

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table

function
aggregating data (example) 160

description 212

overview 109

WLM_GET_WORKLOAD_STATS table function
description 216

overview 123

work action sets
altering 92

creating 91

disabling 93

domain and allowed work actions 83

Index 305

work action sets (continued)
dropping 94

examples
association with other objects 79

determining types of work being run 156

using work action set and database threshold 154

overview 77

purpose 75

work actions specifying thresholds 86

work actions
altering 97

assigning to database activities 87

association with other objects (example) 79

creating 94

disabling 98

dropping 99

purpose 75

thresholds supported 86

work action sets 83

work class sets
altering 100

association with other objects (example) 79

creating 99

dropping 100

managing CALL and DML activities (example) 151

overview 75

purpose 75

work class evaluation order 83

work classes
altering 103

assigning activities 87

creating 100

dropping 103

evaluation order 83

examples
association with other objects 79

defined with ALL keyword 152

overview 7

purpose 75

supported thresholds 86

work type mapping to SQL statements 81

workload management
activities

analyzing workloads by activity type (example) 166

assignment of work actions 87

assignment to work classes 87

canceling 128

capturing information for analysis (example) 169

collecting data 126

identifying activities with low estimated costs and high

runtimes (example) 178

identifying hung activities (example) 167

importing information into Design Advisor 128

mapping to service classes 26

overview 18

rogue 129

agents
investigating usage by service class (example) 171

priority for service classes 30

AIX Workload Manager integration 269

concepts 3

connections
assigment to workloads 42

states in service classes 31

DDL statements 267

event monitors
overview 15, 112

workload management (continued)
histogram templates

altering 130

creating 130

dropping 131

histograms
computing averages and standard deviation

(example) 161

description 117

identification phase 5

management stage 8

monitor elements 219

monitoring
data 107

event monitors 15

monitoring system behavior at different levels

(example) 156

overview 107

real-time 13

monitoring stage 12

object ownership 267

performance modeling 129

sample application 18

service classes
altering 34

analyzing system slowdown (example) 163

creating 32

dropping 36

entities not tracked 32

example 135

obtaining point-in-time statistics (example) 159

overview 23

prefetch priorities 30

SET WORKLOAD command 251

stages 3

statistics
collecting using statistics event monitor 121

overview 113

resetting 124

stored procedure processing 277

table functions
aggregating data (example) 160

obtaining operational information 109

obtaining statistics 123

understanding what is running on data server

(example) 14

using with snapshot monitor table functions 110

thresholds
activity 56

ACTIVITYTOTALTIME 60

aggregate 56

altering 73

CONCURRENTDBCOORDACTIVITIES 65

CONCURRENTWORKLOADACTIVITIES 63

CONCURRENTWORKLOADOCCURRENCES 63

CONNECTIONIDLETIME 57

creating 68

dropping 73

ESTIMATEDSQLCOST 58

evaluation order 66

managing database resources across departments

(example) 149

monitoring violations 125

overview 55

scope resolution 61

SQLROWSRETURNED 59

SQLTEMPSPACE 59

306 Workload Manager Guide and Reference

workload management (continued)
thresholds (continued)

summary 57

TOTALDBPARTITIONCONNECTIONS 61

TOTALSCPARTITIONCONNECTIONS 62

using CONCURRENTWORKLOADOCCURRENCES,

TOTALDBPARTITIONCONNECTIONS, and

TOTALSCPARTITIONCONNECTIONS

(example) 151

using work action set and database threshold

(example) 154

tuning
with capacity planning data (example) 171

without capacity planning data (example) 173

unit of work
workload assignment when multiple workloads exist

(example) 145

USAGE privilege on workloads
granting 52

revoking 53

work action sets
altering 92

creating 91

determining types of work being run (example) 156

disabling 93

dropping 94

overview 77

using with database threshold (example) 154

work actions
altering 97

assignment to database activities 87

creating 94

defining for work action set 83

disabling 98

dropping 99

supported thresholds 86

work class sets
altering 100

creating 99

dropping 100

managing CALL and DML activities (example) 151

overview 75

work classes
altering 103

classification of CALL statement by schema 75

creating 100

defined with the ALL keyword (example) 152

dropping 103

evaluation order 83

overview 7

work type mapping to SQL statements 81

workloads
allowing database access 49

altering 48

analyzing system slowdown (example) 165

assignment (example) 139

assignment when multiple workloads exist

(example) 145

assignment when workload attributes have multiple

values (example) 148

connection assignment to the default administration

workload 46

connection attributes for mapping 39

creating 47

default 44

disabling 51

disallowing database access 50

workload management (continued)
workloads (continued)

dropping 53

enabling 50

overview 6, 39

workloads
allowing database access 49

altering 48

assignment 42

assignment examples 139

connection assignment to the default administration

workload 46

connection attributes for mapping 39

creating 47

default 44

disabling 51

disallowing database access 50

dropping 53

enabling 50

evaluation order 42

examples
analyzing system slowdown 165

assignment when multiple workloads exist 145

assignment when workload attributes have multiple

values 148

assignment when workload attributes have single

values 143

monitor elements
wlo_completed_total 247

workload_id 249

workload_name 249

workload_occurrence_id 250

monitoring data 107

overview 6, 39

position in workload list 42

USAGE privilege
granting 52

revoking 53

work action set comparison 89

Index 307

308 Workload Manager Guide and Reference

����

Printed in USA

SC23-5870-01

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

W
or

kl
oa

d
M

an
ag

er

Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	About this book
	Part 1. Introduction
	Chapter 1. Introduction to workload management concepts
	Stages of workload management
	Identification stage of workload management
	Workloads
	Work classes

	Management stage of workload management
	Monitoring stage of workload management
	Realtime monitoring
	Example: Using workload management table functions
	Historical monitoring

	Activities
	Workload management sample application

	Part 2. Identification and management
	Chapter 2. Service classes
	Default service superclasses and subclasses
	Activity-to-service class mapping
	CPU priority and DB2 service classes
	Service class prefetch priority
	States of connections and activities in a service class
	System-level entities not tracked by service classes
	Working with service classes
	Creating a service class
	Altering a service class
	Dropping a service class

	Chapter 3. Workloads
	Workload assignment
	Default workloads
	Assigning a connection to the default administration workload
	Working with workloads
	Creating a workload
	Altering a workload
	Allowing occurrences of a workload to access the database
	Disallowing occurrences of a workload from accessing the database
	Enabling a workload
	Disabling a workload
	Granting the USAGE privilege on a workload
	Revoking the USAGE privilege on a workload
	Dropping a workload

	Chapter 4. Thresholds
	Activity and aggregate thresholds
	Threshold summary
	Activity thresholds
	CONNECTIONIDLETIME threshold
	ESTIMATEDSQLCOST threshold
	SQLTEMPSPACE threshold
	SQLROWSRETURNED threshold
	ACTIVITYTOTALTIME threshold
	Activity threshold scope resolution

	Aggregate thresholds
	TOTALDBPARTITIONCONNECTIONS threshold
	TOTALSCPARTITIONCONNECTIONS threshold
	CONCURRENTWORKLOADOCCURRENCES threshold
	CONCURRENTWORKLOADACTIVITIES threshold
	CONCURRENTDBCOORDACTIVITIES threshold

	Threshold evaluation order
	Working with thresholds
	Creating a threshold
	Altering a threshold
	Dropping a threshold

	Chapter 5. Work action sets, work actions, work class sets, and work classes
	Work classes and work class sets
	Work actions and work action sets
	How work classes, work class sets, work actions, and work action sets work together and are associated with other DB2 objects
	Work class work types and SQL statements
	Evaluation order of work classes in a work class set
	Work actions and the work action set domain
	Thresholds that can be used in work actions
	Work classifications supported by thresholds
	Assignment of activities to work classes
	Application of work actions to database activities
	Workload and work action set comparison
	Working with work action sets and work actions
	Creating a work action set
	Altering a work action set
	Disabling a work action set
	Dropping a work action set
	Creating a work action
	Altering a work action
	Disabling a work action
	Dropping a work action

	Working with work class sets and work classes
	Creating a work class set
	Altering a work class set
	Dropping a work class set
	Creating a work class
	Altering a work class
	Dropping a work class

	Part 3. Monitoring and control
	Chapter 6. Monitoring and control
	Monitoring data overview
	Workload management table functions to obtain operational information
	Workload management table functions and snapshot monitor integration
	Workload management stored procedures
	Workload management event monitors
	Statistics management
	Statistics for workload management objects
	Histograms in workload management
	Collecting workload management statistics using a statistics event monitor
	Workload management table functions to obtain statistics
	Resetting statistics on workload management objects

	Monitoring threshold violations
	Collecting data for individual activities
	Importing activity information into the Design Advisor
	Cancelling activities
	Guidelines for capturing information about and investigating a rogue activity
	Workload management performance modelling
	Working with histograms
	Creating a histogram template
	Altering a histogram template
	Dropping a histogram template

	Part 4. Examples
	Chapter 7. Workload management examples
	Example: Using service classes
	Example: Workload assignment
	Example: Workload assignment when workload attributes have single values
	Example: Workload assignment for a unit of work when multiple workloads exist
	Example: Workload assignment when workload attributes have multiple values
	Example: Using thresholds
	Example: CONCURRENTWORKLOADOCCURRENCES, TOTALDBPARTITIONCONNECTIONS, and TOTALSCPARTITIONCONNECTIONS thresholds
	Example: Using a work class set to manage specific types of activities
	Example: Working with a work class defined with the ALL keyword
	Example: Using a work action set and database threshold
	Example: Using work action sets to determine the types of work being run
	Example: Monitoring current system behavior at different levels using workload management table functions
	Example: Obtaining point-in-time statistics from service classes
	Example: Aggregating data using workload management table functions
	Example: Computing averages and a standard deviation from histograms in a workload management configuration
	Example: Analyzing a service class–related system slowdown
	Example: Investigating a workload-related system slowdown
	Example: Analyzing workloads by activity type
	Example: Identifying hung activities
	Example: Capturing information about an activity for later analysis
	Example: Investigating agent usage by service class
	Example: Tuning a workload management configuration when capacity planning data is available
	Example: Tuning a workload management configuration when capacity planning information is unavailable
	Example: Identifying activities with low estimated cost and high runtime

	Part 5. Reference
	Chapter 8. Procedures and table functions
	WLM_CANCEL_ACTIVITY - Cancel an activity
	WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity information for activities event monitor
	WLM_COLLECT_STATS - Collect and reset workload management statistics
	WLM_GET_ACTIVITY_DETAILS - Return detailed information about a specific activity
	WLM_GET_QUEUE_STATS table function - Return threshold queue statistics
	WLM_GET_SERVICE_CLASS_AGENTS - List agents executing in a service class
	WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES - List of workload occurrences
	WLM_GET_SERVICE_SUBCLASS_STATS - Return statistics of service subclasses
	WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics of service superclasses
	WLM_GET_WORK_ACTION_SET_STATS - Return work action set statistics
	WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES - Return a list of activities
	WLM_GET_WORKLOAD_STATS - Return workload statistics

	Chapter 9. Monitor elements
	Workload management monitor elements
	activate_timestamp - Activate timestamp monitor element
	activity_collected - Activity collected monitor element
	activity_id - Activity ID monitor element
	activity_secondary_id - Activity secondary ID monitor element
	activity_type - Activity type monitor element
	act_exec_time - Activity execution time monitor element
	act_total - Activities total monitor element
	arm_correlator - Application response measurement correlator monitor element
	bin_id - Histogram bin identifier monitor element
	bottom - Histogram bin bottom monitor element
	concurrent_act_top - Concurrent activity top monitor element
	concurrent_connection_top - Concurrent connection top monitor element
	concurrent_wlo_act_top - Concurrent WLO activity top monitor element
	concurrent_wlo_top - Concurrent workload occurrences top monitor element
	coord_act_aborted_total - Coordinator activities aborted total monitor element
	coord_act_completed_total - Coordinator activities completed total monitor element
	coord_act_lifetime_top - Coordinator activity lifetime top monitor element
	coord_act_rejected_total - Coordinator activities rejected total monitor element
	coord_partition_num - Coordinator partition number monitor element
	cost_estimate_top - Cost estimate top monitor element
	coord_act_lifetime_avg - Coordinator activity lifetime average monitor element
	coord_act_queue_time_avg - Coordinator activity queue time average monitor element
	coord_act_exec_time_avg - Coordinator activities execution time average monitor element
	request_exec_time_avg - Request execution time average monitor element
	coord_act_est_cost_avg - Coordinator activity estimated cost average monitor element
	coord_act_interarrival_time_avg - Coordinator activity arrival time average monitor element
	db_work_action_set_id - Database work action set ID monitor element
	db_work_class_id - Database work class ID monitor element
	histogram_type - Histogram type monitor element
	last_wlm_reset - Time of last reset monitor element
	num_threshold_violations - Number of threshold violations monitor element
	number_in_bin - Number in bin monitor element
	parent_activity_id - Parent activity ID monitor element
	parent_uow_id - Parent unit of work ID monitor element
	prep_time - Preparation time monitor element
	queue_assignments_total - Queue assignments total monitor element
	queue_size_top - Queue size top monitor element
	queue_time_total - Queue time total monitor element
	rows_fetched - Rows fetched monitor element
	rows_modified - Rows modified monitor element
	rows_returned - Rows returned monitor element
	rows_returned_top - Actual rows returned top monitor element
	sc_work_action_set_id - Service class work action set ID monitor element
	sc_work_class_id - Service class work class ID monitor element
	section_env - Section environment monitor element
	service_class_id - Service class ID monitor element
	service_subclass_name - Service subclass name monitor element
	service_superclass_name - Service superclass name monitor element
	statistics_timestamp - Statistics timestamp monitor element
	temp_tablespace_top - Temporary table space top monitor element
	threshold_action - Threshold action monitor element
	threshold_domain - Threshold domain monitor element
	threshold_maxvalue - Threshold maximum value monitor element
	threshold_name - Threshold name monitor element
	threshold_predicate - Threshold predicate monitor element
	threshold_queuesize - Threshold queue size monitor element
	thresholdid - Threshold ID monitor element
	time_completed - Time completed monitor element
	time_created - Time created monitor element
	time_of_violation - Time of violation monitor element
	time_started - Time started monitor element
	top - Histogram bin top monitor element
	uow_id - Unit of work ID monitor element
	wlo_completed_total - Workload occurrences completed total monitor element
	work_action_set_id - Work action set ID monitor element
	work_action_set_name - Work action set name monitor element
	work_class_id - Work class ID monitor element
	work_class_name - Work class name monitor element
	workload_id - Workload ID monitor element
	workload_name - Workload name monitor element
	workload_occurrence_id - Workload occurrence identifier monitor element

	Chapter 10. Commands
	SET WORKLOAD command

	Chapter 11. Configuration parameters
	wlm_collect_int - Workload management collection interval configuration parameter

	Chapter 12. Catalog views
	SYSCAT.HISTOGRAMTEMPLATEBINS
	SYSCAT.HISTOGRAMTEMPLATES
	SYSCAT.HISTOGRAMTEMPLATEUSE
	SYSCAT.SERVICECLASSES
	SYSCAT.THRESHOLDS
	SYSCAT.WORKACTIONS
	SYSCAT.WORKACTIONSETS
	SYSCAT.WORKCLASSES
	SYSCAT.WORKCLASSSETS
	SYSCAT.WORKLOADAUTH
	SYSCAT.WORKLOADCONNATTR
	SYSCAT.WORKLOADS

	Part 6. Appendixes
	Appendix A. Workload management DDL statement considerations
	Appendix B. Integration of DB2 workload management and the AIX Workload Manager
	Appendix C. Processing of stored procedures in a workload management solution
	Appendix D. Naming rules
	Appendix E. Roles
	Appendix F. Trusted contexts and trusted connections
	Appendix G. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix H. Notices
	Index

