
DB2 Version 9.5

for Linux, UNIX, and Windows

Database Security Guide
Updated April, 2009

SC23-5850-02

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Database Security Guide
Updated April, 2009

SC23-5850-02

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 257.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book v

Chapter 1. DB2 security model 1

Authentication 2

Authorization 3

Security considerations when installing and using the

DB2 database manager 4

File permission requirements for the instance and

database directories 6

Authentication details 7

Authentication methods for your server 7

Authentication considerations for remote clients 12

Partitioned database authentication

considerations 13

Kerberos authentication details 13

Maintaining passwords on servers 18

Authorization, privileges, and object ownership . . 18

Authorization IDs in different contexts 23

Instance level authorities 24

Database level authorities 27

Privileges 31

Tasks and required authorizations 36

Granting, revoking and monitoring access . . . 37

Data encryption 45

Configuring Secure Sockets Layer (SSL) support

in a DB2 instance 46

Configuring Secure Sockets Layer (SSL) support

in the DB2 client 48

Auditing DB2 activities 50

Introduction to the DB2 audit facility 50

Audit facility management 66

Chapter 2. Roles 71

Creating and granting membership in roles 72

Role hierarchies 74

Effect of revoking privileges from roles 74

Delegating role maintenance by using the WITH

ADMIN OPTION clause 76

Roles compared to groups 76

Using roles after migrating from IBM Informix

Dynamic Server 78

Chapter 3. Using trusted contexts and

trusted connections 79

Trusted contexts and trusted connections 81

Role membership inheritance through a trusted

context 84

Rules for switching the user ID on an explicit

trusted connection 85

Trusted context problem determination 87

Chapter 4. Label-based access control

(LBAC) 89

LBAC security policies 91

LBAC security label components overview 92

LBAC security label component type: SET . . . 93

LBAC security label component type: ARRAY . . 93

LBAC security label component type: TREE . . 94

LBAC security labels 97

Format for security label values 99

How LBAC security labels are compared 100

LBAC rule sets overview 101

LBAC rule set: DB2LBACRULES 101

LBAC rule exemptions 105

Built-in functions for managing LBAC security

labels 106

Protection of data using LBAC 107

Reading of LBAC protected data 108

Inserting of LBAC protected data 111

Updating of LBAC protected data 113

Deleting or dropping of LBAC protected data . . 118

Removal of LBAC protection from data 121

Chapter 5. Using the system catalog

for security information 123

Retrieving authorization names with granted

privileges 123

Retrieving all names with DBADM authority . . . 124

Retrieving names authorized to access a table . . 124

Retrieving all privileges granted to users 125

Securing the system catalog view 126

Security considerations 128

Chapter 6. Firewall support 133

Screening router firewalls 133

Application proxy firewalls 133

Circuit level firewalls 133

Stateful multi-layer inspection (SMLI) firewalls . . 134

Chapter 7. Security plug-ins 135

Security plug-in library locations 139

Security plug-in naming conventions 139

Security plug-in support for two-part user IDs . . 140

Security plug-in API versioning 142

32-bit and 64-bit considerations for security

plug-ins 142

Security plug-in problem determination 143

Enabling plug-ins 144

Deploying a group retrieval plug-in 144

Deploying a user ID/password plug-in 144

Deploying a GSS-API plug-in 145

Deploying a Kerberos plug-in 146

LDAP-based authentication and group lookup

support 148

Configuring the LDAP plug-in modules . . . 150

Enabling the LDAP plug-in modules 152

Connecting with an LDAP user ID 153

Considerations for group lookup 154

© Copyright IBM Corp. 1993, 2009 iii

Troubleshooting authenticating LDAP users or

retrieving groups 155

Writing security plug-ins 155

How DB2 loads security plug-ins 155

Restrictions for developing security plug-in

libraries 157

Restrictions on security plug-ins 158

Return codes for security plug-ins 160

Error message handling for security plug-ins 163

Calling sequences for the security plug-in APIs 163

Chapter 8. Security plug-in APIs . . . 167

APIs for group retrieval plug-ins 168

db2secDoesGroupExist API - Check if group

exists 169

db2secFreeErrormsg API - Free error message

memory 170

db2secFreeGroupListMemory API - Free group

list memory 170

db2secGetGroupsForUser API - Get list of

groups for user 171

db2secGroupPluginInit API - Initialize group

plug-in 174

db2secPluginTerm - Clean up group plug-in

resources 175

APIs for user ID/password authentication plug-ins 175

db2secClientAuthPluginInit API - Initialize

client authentication plug-in 181

db2secClientAuthPluginTerm API - Clean up

client authentication plug-in resources 182

db2secDoesAuthIDExist - Check if

authentication ID exists 183

db2secFreeInitInfo API - Clean up resources

held by the db2secGenerateInitialCred 184

db2secFreeToken API - Free memory held by

token 184

db2secGenerateInitialCred API - Generate initial

credentials 184

db2secGetAuthIDs API - Get authentication IDs 186

db2secGetDefaultLoginContext API - Get

default login context 188

db2secProcessServerPrincipalName API -

Process service principal name returned from

server 189

db2secRemapUserid API - Remap user ID and

password 190

db2secServerAuthPluginInit - Initialize server

authentication plug-in 192

db2secServerAuthPluginTerm API - Clean up

server authentication plug-in resources 194

db2secValidatePassword API - Validate

password 195

Required APIs and definitions for GSS-API

authentication plug-ins 197

Restrictions for GSS-API authentication plug-ins 198

Chapter 9. Audit facility record

layouts 199

Audit record object types 199

Audit record layout for AUDIT events 200

Audit record layout for CHECKING events . . . 203

CHECKING access approval reasons 205

CHECKING access attempted types 206

Audit record layout for OBJMAINT events . . . 209

Audit record layout for SECMAINT events . . . 211

SECMAINT privileges or authorities 214

Audit record layout for SYSADMIN events . . . 217

Audit record layout for VALIDATE events . . . 219

Audit record layout for CONTEXT events 220

Audit record layout for EXECUTE events 222

Audit events 227

Chapter 10. Working with operating

system security 231

DB2 and Windows security 231

Authentication scenarios 232

Support for global groups (on Windows) . . . 233

User authentication with DB2 on Windows . . 233

Acquiring Windows users’ group information

using an access token 237

Windows platform security considerations for

users 238

Windows LocalSystem account support . . . 239

Extended Windows security using DB2ADMNS

and DB2USERS groups 239

Considerations for Vista: User Access Control

feature 242

DB2 and UNIX security 244

UNIX platform security considerations for users 244

Location of the instance directory 244

DB2 and Linux security 244

Change password support (Linux) 244

Deploying a change password plug-in (Linux) 244

Appendix A. Overview of the DB2

technical information 247

DB2 technical library in hardcopy or PDF format 247

Ordering printed DB2 books 250

Displaying SQL state help from the command line

processor 251

Accessing different versions of the DB2

Information Center 251

Displaying topics in your preferred language in the

DB2 Information Center 251

Updating the DB2 Information Center installed on

your computer or intranet server 252

DB2 tutorials 254

DB2 troubleshooting information 254

Terms and Conditions 254

Appendix B. Notices 257

Index 261

iv Database Security Guide

About this book

The Database Security Guide describes how to use DB2® security features to

implement and manage the level of security you require for your database

installation.

The Database Security Guide provides detailed information about:

v Managing the authentication of users who can access DB2 databases

v Setting up authorization to control user access to database objects and data

© Copyright IBM Corp. 1993, 2009 v

vi Database Security Guide

Chapter 1. DB2 security model

Two modes of security control access to the DB2 database system data and

functions. Access to the DB2 database system is managed by facilities that reside

outside the DB2 database system (authentication), whereas access within the DB2

database system is managed by the database manager (authorization).

Authentication

Authentication is the process by which a system verifies a user’s identity. User

authentication is completed by a security facility outside the DB2 database system,

through an authentication security plug-in module. A default authentication

security plug-in module that relies on operating-system-based authentication is

included when you install the DB2 database system. To provide greater flexibility

in accommodating your specific authentication needs, you can build your own

authentication security plug-in module.

The authentication process produces a DB2 authorization ID. Group membership

information for the user is also acquired during authentication. Default acquisition

of group information relies on an operating-system based group-membership

plug-in module that is included when you install the DB2 database system. If you

prefer, you can acquire group membership information by using a specific

group-membership plug-in module, such as lightweight directory access protocol

(LDAP).

Authorization

After a user is authenticated, the database manager determines if that user is

allowed to access DB2 data or resources. Authorization is the process whereby the

DB2 database manager obtains information about the authenticated user, indicating

which database operations that user can perform, and which data objects that user

can access.

The different sources of permissions available to an authorization ID are as follows:

1. Primary permissions: those granted to the authorization ID directly.

2. Secondary permissions: those granted to the groups and roles in which the

authorization ID is a member.

3. Public permissions: those granted to PUBLIC.

4. Context-sensitive permissions: those granted to a trusted context role.

Authorization can be given to users in the following categories:

v System-level authorization

The system administrator (SYSADM), system control (SYSCTRL), system

maintenance (SYSMAINT), and system monitor (SYSMON) authorities provide

varying degrees of control over instance-level functions. Authorities provide a

way both to group privileges and to control maintenance and utility operations

for instances, databases, and database objects.

v Database-level authorization

© Copyright IBM Corp. 1993, 2009 1

The security administrator (SECADM), and database administrator (DBADM)

authorities provide control within the database. Other database authorities

include LOAD (ability to load data into a table), and CONNECT (ability to

connect to a database).

v Object-level authorization

bject level authorization involves checking privileges when an operation is

performed on an object. For example, to select from a table a user must have

SELECT privilege on a table (as a minimum).

v Content-based authorization

Views provide a way to control which columns or rows of a table specific users

can read. Label-based access control (LBAC) determines which users have read

and write access to individual rows and individual columns.

You can use these features, in conjunction with the DB2 audit facility for

monitoring access, to define and manage the level of security your database

installation requires.

Authentication

Authentication of a user is completed using a security facility outside of the DB2

database system. The security facility can be part of the operating system or a

separate product.

The security facility requires two items to authenticate a user: a user ID and a

password. The user ID identifies the user to the security facility. By supplying the

correct password, information known only to the user and the security facility, the

user’s identity (corresponding to the user ID) is verified.

Note: In non-root installations, operating system-based authentication must be

enabled by running the db2rfe command.

After being authenticated:

v The user must be identified to DB2 using an SQL authorization name or authid.

This name can be the same as the user ID, or a mapped value. For example, on

UNIX® operating systems, when you are using the default security plug-in

module, a DB2 authid is derived by transforming to uppercase letters a UNIX

user ID that follows DB2 naming conventions.

v A list of groups to which the user belongs is obtained. Group membership may

be used when authorizing the user. Groups are security facility entities that must

also map to DB2 authorization names. This mapping is done in a method similar

to that used for user IDs.

The DB2 database manager uses the security facility to authenticate users in one of

two ways:

v A successful security system login is used as evidence of identity, and allows:

– Use of local commands to access local data

– Use of remote connections when the server trusts the client authentication.
v Successful validation of a user ID and password by the security facility is used

as evidence of identity and allows:

– Use of remote connections where the server requires proof of authentication

– Use of operations where the user wants to run a command under an identity

other than the identity used for login.

2 Database Security Guide

Note: On some UNIX systems, the DB2 database manager can log failed password

attempts with the operating system, and detect when a client has exceeded the

number of allowable login tries, as specified by the LOGINRETRIES parameter.

Authorization

Authorization is performed using DB2 facilities. DB2 tables and configuration files

are used to record the permissions associated with each authorization name.

When an authenticated user tries to access data, the authorization name of the

user, those of groups to which the user belongs, and those of roles granted to the

user directly or indirectly through a group or a role, are compared with the

recorded permissions. Based on this comparison, the DB2 server decides whether

to allow the requested access.

The types of permissions recorded are privileges, authority levels, and LBAC

credentials.

A privilege defines a single permission for an authorization name, enabling a user

to create or access database resources. Privileges are stored in the database

catalogs.

Authority levels provide a method of grouping privileges and control over

higher-level database manager maintenance and utility operations.

Database-specific authorities are stored in the database catalogs; system authorities

are associated with group membership, and the group names that are associated

with the authority levels are stored in the database manager configuration file for a

given instance.

LBAC credentials are LBAC security labels and LBAC rule exemptions that allow

access to data protected by label-based access control (LBAC). LBAC credentials

are stored in the database catalogs.

Groups provide a convenient means of performing authorization for a collection of

users without having to grant or revoke privileges for each user individually.

Unless otherwise specified, group authorization names can be used anywhere that

authorization names are used for authorization purposes. In general, group

membership is considered for dynamic SQL and non-database object authorizations

(such as instance level commands and utilities), but is not considered for static

SQL. The exception to this general case occurs when privileges are granted to

PUBLIC: these are considered when static SQL is processed. Specific cases where

group membership does not apply are noted throughout the DB2 documentation,

where applicable.

A role is a database object that groups together one or more privileges and can be

assigned to users, groups, PUBLIC, or other roles by using a GRANT statement or

to a trusted context by using a CREATE TRUSTED CONTEXT or ALTER

TRUSTED CONTEXT statement. A role can be specified for the SESSION_USER

ROLE connection attribute in a workload definition. When you use roles, you

associate access permissions on database objects with the roles. Users that are

members of those roles then have the privileges defined for the role with which to

access database objects.

Roles provide similar functionality as groups; they perform authorization for a

collection of users without having to grant or revoke privileges for each user

individually. One advantage of roles is that they are managed by the DB2 database

Chapter 1. DB2 security model 3

system. The permissions granted to roles are taken into consideration during the

authorization process for views, triggers, materialized query tables (MQTs),

packages and SQL routines, unlike the permissions granted to groups. Permissions

granted to groups are not considered during the authorization process for views,

triggers, MQTs, packages and SQL routines, because the DB2 database system

cannot discover when membership in a group changes, and so it cannot invalidate

the objects, above, if appropriate.

Note: Permissions granted to roles that are granted to groups are not considered

during the authorization process for views, triggers, MQTs, packages and SQL

routines.

During an SQL statement processing, the permissions that the DB2 authorization

model considers are the union of the following permissions:

1. The permissions granted to the primary authorization ID associated with the

SQL statement

2. The permissions granted to the roles granted to the primary authorization ID

associated with the SQL statement

3. The permissions granted to the secondary authorization IDs (groups or roles)

associated with the SQL statement

4. The permissions granted to the roles granted to the secondary authorization

IDs (groups or roles) associated with the SQL statement

5. The permissions granted to PUBLIC, including roles that are granted to

PUBLIC, directly or indirectly through other roles.

6. The permissions granted to the trusted context role, if applicable.

Security considerations when installing and using the DB2 database

manager

Security considerations are important to the DB2 administrator from the moment

the product is installed.

To complete the installation of the DB2 database manager, a user ID, a group

name, and a password are required. The GUI-based DB2 database manager install

program creates default values for different user IDs and the group. Different

defaults are created, depending on whether you are installing on Linux and UNIX

or Windows® platforms:

v On UNIX and Linux® platforms, if you choose to create a DB2 instance in the

instance setup window, the DB2 database install program creates, by default,

different users for the DAS (dasusr), the instance owner (db2inst), and the

fenced user (db2fenc). Optionally, you can specify different user names

The DB2 database install program appends a number from 1-99 to the default

user name, until a user ID that does not already exist can be created. For

example, if the users db2inst1 and db2inst2 already exist, the DB2 database

install program creates the user db2inst3. If a number greater than 10 is used,

the character portion of the name is truncated in the default user ID. For

example, if the user ID db2fenc9 already exists, the DB2 database install

program truncates the c in the user ID, then appends the 10 (db2fen10).

Truncation does not occur when the numeric value is appended to the default

DAS user (for example, dasusr24).

v On Windows platforms, the DB2 database install program creates, by default, the

user db2admin for the DAS user, the instance owner, and fenced users (you can

4 Database Security Guide

specify a different user name during setup, if you want). Unlike Linux and

UNIX platforms, no numeric value is appended to the user ID.

To minimize the risk of a user other than the administrator from learning of the

defaults and using them in an improper fashion within databases and instances,

change the defaults during the install to a new or existing user ID of your choice.

Note: Response file installations do not use default values for user IDs or group

names. These values must be specified in the response file.

Passwords are very important when authenticating users. If no authentication

requirements are set at the operating system level and the database is using the

operating system to authenticate users, users will be allowed to connect. For

example on Linux and UNIX operating systems, undefined passwords are treated

as NULL. In this situation, any user without a defined password will be

considered to have a NULL password. From the operating system’s perspective,

this is a match and the user is validated and able to connect to the database. Use

passwords at the operating system level if you want the operating system to do

the authentication of users for your database.

When working with DB2 Database Partitioning Feature (DPF) on Linux and UNIX

operating system environments, the DB2 database manager by default uses the rsh

utility (remsh on HP-UX) to run some commands on remote nodes. The rsh utility

transmits passwords in clear text over the network, which can be a security

exposure if the DB2 server is not on a secure network. You can use the

DB2RSHCMD registry variable to set the remote shell program to a more secure

alternative that avoids this exposure. One example of a more secure alternative is

ssh. See the DB2RSHCMD registry variable documentation for restrictions on

remote shell configurations.

After installing the DB2 database manager, also review, and change (if required),

the default privileges that have been granted to users. By default, the installation

process grants system administration (SYSADM) privileges to the following users

on each operating system:

Windows environments

A valid DB2 database user name that belongs to the Administrators group.

Linux and UNIX platforms

A valid DB2 database user name that belongs to the primary group of the

instance owner.

SYSADM privileges are the most powerful set of privileges available within the

DB2 database manager. As a result, you might not want all of these users to have

SYSADM privileges by default. The DB2 database manager provides the

administrator with the ability to grant and revoke privileges to groups and

individual user IDs.

By updating the database manager configuration parameter sysadm_group, the

administrator can control which group of users possesses SYSADM privileges. You

must follow the guidelines below to complete the security requirements for both

the DB2 database installation and the subsequent instance and database creation.

Any group defined as the system administration group (by updating sysadm_group)

must exist. The name of this group should allow for easy identification as the

group created for instance owners. User IDs and groups that belong to this group

have system administrator authority for their respective instances.

Chapter 1. DB2 security model 5

The administrator should consider creating an instance owner user ID that is easily

recognized as being associated with a particular instance. This user ID should have

as one of its groups the name of the SYSADM group created above. Another

recommendation is to use this instance-owner user ID only as a member of the

instance owner group and not to use it in any other group. This should control the

proliferation of user IDs and groups that can modify the instance, or any object

within the instance.

The created user ID must be associated with a password to provide authentication

before being permitted entry into the data and databases within the instance. The

recommendation when creating a password is to follow your organization’s

password naming guidelines.

Note: To avoid accidentally deleting or overwriting instance configuration or other

files, administrators should consider using another user account, which does not

belong to the same primary group as the instance owner, for day-to-day

administration tasks that are performed on the server directly.

File permission requirements for the instance and database

directories

The DB2 database system requires that your instance and database directories have

at least the following permissions.

Note: When the instance and database directories are created by the DB2 database

manager, the permissions are accurate and should not be changed.

The minimum permissions of the instance directory and the NODE000x/sqldbdir

directory on UNIX and Linux machines must be: u=rwx and go=rx. The meaning of

the letters is explained in the following table:

 Character Represents:

u User (owner)

g Group

o Other users

r Read

w Write

x Execute

For example, the permissions for the instance, db2inst1, in /home are:

drwxr-xr-x 36 db2inst1 db2grp1 4096 Jun 15 11:13 db2inst1

For the directories containing the databases, each and every directory level up to

and including NODE000x needs the following permissions:

drwxrwxr-x 11 db2inst1 db2grp1 4096 Jun 14 15:53 NODE0000/

For example, if a database is located in /db2/data/db2inst1/db2inst1/NODE0000

then the directories: /db2, /db2/data, /db2/data/db2inst1, /db2/data/db2inst1/
db2inst1 and /db2/data/db2inst1/db2inst1/NODE0000 need drwxrwxr-x.

Within the NODE000x directory, the sqldbdir directory requires the permissions

drwxrwxr-x, for example:

6 Database Security Guide

drwx------ 5 db2inst1 db2grp1 256 Jun 14 14:17 SAMPLE/

drwxr-x--- 7 db2inst1 db2grp1 4096 Jun 14 13:26 SQL00001/

drwxrwxr-x 2 db2inst1 db2grp1 256 Jun 14 13:02 sqldbdir/

CAUTION:

To maintain the security of your files, do not change the permissions on the

DBNAME directories (such as SAMPLE) and the SQLxxxx directories from the

permissions they are assigned when the DB2 database manager creates them.

Authentication details

Authentication methods for your server

Access to an instance or a database first requires that the user be authenticated. The

authentication type for each instance determines how and where a user will be

verified. The authentication type is stored in the configuration file at the server. It

is initially set when the instance is created. There is one authentication type per

instance, which covers access to that database server and all the databases under

its control.

If you intend to access data sources from a federated database, you must consider

data source authentication processing and definitions for federated authentication

types.

Note: You can check the following web site for certification information on the

cryptographic routines used by the DB2 database management system to perform

encryption of the userid and password when using SERVER_ENCRYPT

authentication, and of the userid, password and user data when using

DATA_ENCRYPT authentication: http://www.ibm.com/security/standards/
st_evaluations.shtml.

Switching User on an Explicit Trusted Connection

For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism

used when processing a switch user request that requires authentication is the

same as the mechanism used to originally establish the trusted connection itself.

Therefore, any other negotiated security attributes (for example, encryption

algorithm, encryption keys, and plug-in names) used during the establishment of

the explicit trusted connection are assumed to be the same for any authentication

required for a switch user request on that trusted connection. JAVA applications

allow the authentication method to be changed on a switch user request (by use of

a datasource property).

Because a trusted context object can be defined such that switching user on a

trusted connection does not require authentication, in order to take full advantage

of the switch user on an explicit trusted connection feature, user-written security

plug-ins must be able to:

v Accept a user ID-only token

v Return a valid DB2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of

authentication is in effect.

Authentication types provided

The following authentication types are provided:

Chapter 1. DB2 security model 7

http://www.ibm.com/security/standards/st_evaluations.shtml
http://www.ibm.com/security/standards/st_evaluations.shtml

SERVER

Specifies that authentication occurs on the server through the security

mechanism in effect for that configuration, for example, through a security

plug-in module. The default security mechanism is that if a user ID and

password are specified during the connection or attachment attempt, they

are compared to the valid user ID and password combinations at the

server to determine if the user is permitted to access the instance.

Note: The server code detects whether a connection is local or remote. For

local connections, when authentication is SERVER, a user ID and password

are not required for authentication to be successful.

SERVER_ENCRYPT

Specifies that the server accepts encrypted SERVER authentication schemes.

If the client authentication is not specified, the client is authenticated using

the method selected at the server.

CLIENT

Specifies that authentication occurs on the database partition where the

application is invoked using operating system security. The user ID and

password specified during a connection or attachment attempt are

compared with the valid user ID and password combinations on the client

node to determine if the user ID is permitted access to the instance. No

further authentication will take place on the database server. This is

sometimes called single signon.

 If the user performs a local or client login, the user is known only to that

local client workstation.

If the remote instance has CLIENT authentication, two other parameters

determine the final authentication type: trust_allclnts and trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

When the authentication type of CLIENT has been selected, an additional

option may be selected to protect against clients whose operating

environment has no inherent security.

To protect against unsecured clients, the administrator can select Trusted

Client Authentication by setting the trust_allclnts parameter to NO. This

implies that all trusted platforms can authenticate the user on behalf of the

server. Untrusted clients are authenticated on the Server and must provide

a user ID and password. You use the trust_allclnts configuration parameter

to indicate whether you are trusting clients. The default for this parameter

is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have some

of those clients as those who do not have a native safe security system for

authentication.

You may also want to complete authentication at the server even for

trusted clients. To indicate where to validate trusted clients, you use the

trust_clntauth configuration parameter. The default for this parameter is

CLIENT.

Note: For trusted clients only, if no user ID or password is explicitly

provided when attempting to CONNECT or ATTACH, then validation of

8 Database Security Guide

the user takes place at the client. The trust_clntauth parameter is only used

to determine where to validate the information provided on the USER or

USING clauses.

To protect against all clients except DRDA® clients from DB2 on OS/390®

and z/OS®, DB2 on VM and VSE, and DB2 on System i™, set the

trust_allclnts parameter to DRDAONLY. Only these clients can be trusted to

perform client-side authentication. All other clients must provide a user ID

and password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the above clients

are authenticated: if trust_clntauth is ″client″, authentication takes place at

the client. If trust_clntauth is ″server″, authentication takes place at the

client when no user ID and password are provided and at the server when

a user ID and password are provided.

 Table 1. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

TRUST_

ALLCLNTS

TRUST_

CLNTAUTH

Untrusted

non–

DRDA

Client

Authen-

tication (no

user ID &

password)

Untrusted

non–

DRDA

Client

Authen-

tication

(with user

ID &

password)

Trusted

non–

DRDA

Client

Authen-

tication (no

user ID &

password)

Trusted

non–

DRDA

Client

Authen-

tication

(with user

ID &

password)

DRDA

Client

Authen-

tication (no

user ID &

password)

DRDA

Client

Authen-

tication

(with user

ID &

password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

KERBEROS

Used when both the DB2 client and server are on operating systems that

support the Kerberos security protocol. The Kerberos security protocol

performs authentication as a third party authentication service by using

conventional cryptography to create a shared secret key. This key becomes

a user’s credential and is used to verify the identity of users during all

occasions when local or network services are requested. The key eliminates

the need to pass the user name and password across the network as clear

text. Using the Kerberos security protocol enables the use of a single

sign-on to a remote DB2 database server. The KERBEROS authentication

type is supported on various operating systems, refer to the related

information section for more information.

 Kerberos authentication works as follows:

1. A user logging on to the client machine using a domain account

authenticates to the Kerberos key distribution center (KDC) at the

domain controller. The key distribution center issues a ticket-granting

ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target

principal name, which is the service account name for the DB2 database

server service, to the client. Using the server’s target principal name

and the target-granting ticket, the client requests a service ticket from

Chapter 1. DB2 security model 9

the ticket-granting service (TGS) which also resides at the domain

controller. If both the client’s ticket-granting ticket and the server’s

target principal name are valid, the TGS issues a service ticket to the

client. The principal name recorded in the database directory may be

specified as name/instance@REALM. (This is in addition to

DOMAIN\userID and userID@xxx.xxx.xxx.com formats accepted on

Windows.)

3. The client sends this service ticket to the server using the

communication channel (which may be, as an example, TCP/IP).

4. The server validates the client’s server ticket. If the client’s service

ticket is valid, then the authentication is completed.

It is possible to catalog the databases on the client machine and explicitly

specify the Kerberos authentication type with the server’s target principal

name. In this way, the first phase of the connection can be bypassed.

If a user ID and a password are specified, the client will request the

ticket-granting ticket for that user account and use it for authentication.

KRB_SERVER_ENCRYPT

Specifies that the server accepts KERBEROS authentication or encrypted

SERVER authentication schemes. If the client authentication is KERBEROS,

the client is authenticated using the Kerberos security system. If the client

authentication is SERVER_ENCRYPT, the client is authenticated using a

user ID and encryption password. If the client authentication is not

specified, then the client will use Kerberos if available, otherwise it will use

password encryption. For other client authentication types, an

authentication error is returned. The authentication type of the client

cannot be specified as KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and

servers running on specific operating systems, refer to the related

information section for more information. For Windows operating systems,

both client and server machines must either belong to the same Windows

domain or belong to trusted domains. This authentication type should be

used when the server supports Kerberos and some, but not all, of the client

machines support Kerberos authentication.

DATA_ENCRYPT

The server accepts encrypted SERVER authentication schemes and the

encryption of user data. The authentication works exactly the same way as

that shown with SERVER_ENCRYPT. See that authentication type for more

information.

 The following user data are encrypted when using this authentication type:

v SQL and XQuery statements.

v SQL program variable data.

v Output data from the server processing of an SQL or XQuery statement

and including a description of the data.

v Some or all of the answer set data resulting from a query.

v Large object (LOB) data streaming.

v SQLDA descriptors.

DATA_ENCRYPT_CMP

The server accepts encrypted SERVER authentication schemes and the

encryption of user data. In addition, this authentication type allows

compatibility with down level products not supporting DATA_ENCRYPT

10 Database Security Guide

authentication type. These products are permitted to connect with the

SERVER_ENCRYPT authentication type and without encrypting user data.

Products supporting the new authentication type must use it. This

authentication type is only valid in the server’s database manager

configuration file and is not valid when used on the CATALOG

DATABASE command.

GSSPLUGIN

Specifies that the server uses a GSS-API plug-in to perform authentication.

If the client authentication is not specified, the server returns a list of

server-supported plug-ins, including any Kerberos plug-in that is listed in

the srvcon_gssplugin_list database manager configuration parameter, to the

client. The client selects the first plug-in found in the client plug-in

directory from the list. If the client does not support any plug-in in the list,

the client is authenticated using the Kerberos authentication scheme (if it is

returned). If the client authentication is the GSSPLUGIN authentication

scheme, the client is authenticated using the first supported plug-in in the

list.

GSS_SERVER_ENCRYPT

Specifies that the server accepts plug-in authentication or encrypted server

authentication schemes. If client authentication occurs through a plug-in,

the client is authenticated using the first client-supported plug-in in the list

of server-supported plug-ins.

 If the client authentication is not specified and an implicit connect is being

performed (that is, the client does not supply a user ID and password

when making the connection), the server returns a list of server-supported

plug-ins, the Kerberos authentication scheme (if one of the plug-ins in the

list is Kerberos-based), and the encrypted server authentication scheme.

The client is authenticated using the first supported plug-in found in the

client plug-in directory. If the client does not support any of the plug-ins

that are in the list, the client is authenticated using the Kerberos

authentication scheme. If the client does not support the Kerberos

authentication scheme, the client is authenticated using the encrypted

server authentication scheme, and the connection will fail because of a

missing password. A client supports the Kerberos authentication scheme if

a DB2-supplied Kerberos plug-in exists for the operating system, or a

Kerberos-based plug-in is specified for the srvcon_gssplugin_list database

manager configuration parameter.

If the client authentication is not specified and an explicit connection is

being performed (that is, both the user ID and password are supplied), the

authentication type is equivalent to SERVER_ENCRYPT.

Note:

1. Do not inadvertently lock yourself out of your instance when you are changing

the authentication information, since access to the configuration file itself is

protected by information in the configuration file. The following database

manager configuration file parameters control access to the instance:

v AUTHENTICATION *

v SYSADM_GROUP *

v TRUST_ALLCLNTS

v TRUST_CLNTAUTH

v SYSCTRL_GROUP

v SYSMAINT_GROUP

Chapter 1. DB2 security model 11

* Indicates the two most important parameters, and those most likely to cause a

problem.

There are some things that can be done to ensure this does not happen: If you

do accidentally lock yourself out of the DB2 database system, you have a

fail-safe option available on all platforms that will allow you to override the

usual DB2 database security checks to update the database manager

configuration file using a highly privileged local operating system security user.

This user always has the privilege to update the database manager

configuration file and thereby correct the problem. However, this security

bypass is restricted to a local update of the database manager configuration file.

You cannot use a fail-safe user remotely or for any other DB2 database

command. This special user is identified as follows:

v UNIX platforms: the instance owner

v Windows platform: someone belonging to the local “administrators” group

v Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

Authentication considerations for remote clients

When cataloging a database for remote access, the authentication type can be

specified in the database directory entry.

The authentication type is not required. If it is not specified, the client will default

to SERVER_ENCRYPT. However, if the server does not support

SERVER_ENCRYPT, the client attempts to retry using a value supported by the

server. If the server supports multiple authentication types, the client will not

choose among them, but instead returns an error. The error is returned to ensure

that the correct authentication type is used. In this case, the client must catalog the

database using a supported authentication type. If an authentication type is

specified, authentication can begin immediately provided that value specified

matches that at the server. If a mismatch is detected, DB2 database attempts to

recover. Recovery may result in more flows to reconcile the difference, or in an

error if the DB2 database cannot recover. In the case of a mismatch, the value at

the server is assumed to be correct.

The authentication type DATA_ENCRYPT_CMP is designed to allow clients from a

previous release that does not support data encryption to a server using

SERVER_ENCRYPT authentication instead of DATA_ENCRYPT. This

authentication does not work when the following statements are true:

v The client level is Version 7.2.

v The gateway level is Version 8 FixPak7 or later.

v The server is Version 8 FixPak 7 or later.

When these are all true, the client cannot connect to the server. To allow the

connection, you must either upgrade your client to Version 8, or have your

gateway level at Version 8 FixPak 6 or earlier.

The determination of the authentication type used when connecting is made by

specifying the appropriate authentication type as a database catalog entry at the

gateway. This is true for both DB2® Connect™ scenarios and for clients and servers

in a partitioned database environment where the client has set the DB2NODE

registry variable. You will catalog the authentication type at the catalog partition

with the intent to “hop” to the appropriate partition. In this scenario, the

authentication type cataloged at the gateway is not used because the negotiation is

solely between the client and the server.

12 Database Security Guide

You may have a need to catalog multiple database aliases at the gateway using

different authentication types if they need to have clients that use differing

authentication types. When deciding which authentication type to catalog at a

gateway, you can keep the authentication type the same as that used at the client

and server; or, you can use the NOTSPEC authentication type with the

understanding that NOTSPEC defaults to SERVER.

Partitioned database authentication considerations

In a partitioned database, each partition of the database must have the same set of

users and groups defined. If the definitions are not the same, the user may be

authorized to do different things on different partitions. Consistency across all

partitions is recommended.

Kerberos authentication details

The DB2 database system provides support for the Kerberos authentication

protocol on AIX®, Solaris, Linux IA32 and AMD64, and Windows operating

systems.

The Kerberos support is provided as a GSS-API security plugin named “IBMkrb5”

which is used as both a server and as a client authentication plugin. The library is

placed in the sqllib/security{32|64}/plugin/IBM/{client|server} directories for

UNIX and Linux; and the sqllib/security/plugin/IBM{client|server} directories for

Windows.

Note: For 64-bit Windows, the plugin library is called IBMkrb564.dll. Furthermore,

the actual plugin source code for the UNIX and Linux plugin, IBMkrb5.C, is

available in the sqllib/samples/security/plugins directory.

A good understanding of using and configuring Kerberos is strongly recommended

before attempting to use Kerberos authentication with DB2 database system.

Kerberos description and introduction

Kerberos is a third party network authentication protocol that employs a system of

shared secret keys to securely authenticate a user in an unsecured network

environment. A three-tiered system is used in which encrypted tickets (provided by

a separate server called the Kerberos Key Distribution Center, or KDC for short)

are exchanged between the application server and client rather than a text user ID

and password pair. These encrypted service tickets (called credentials) have a finite

lifetime and are only understood by the client and the server. This reduces the

security risk, even if the ticket is intercepted from the network. Each user, or

principal in Kerberos terms, possesses a private encryption key that is shared with

the KDC. Collectively, the set of principals and computers registered with a KDC

are known as a realm.

A key feature of Kerberos is that it permits a single sign-on environment whereby

a user only needs to verify his identity to the resources within the Kerberos realm

once. When working with DB2 database, this means that a user is able to connect

or attach to a DB2 database server without providing a user ID or password.

Another advantage is that the user ID administration is simplified because a

central repository for principals is used. Finally, Kerberos supports mutual

authentication which allows the client to validate the identity of the server.

Chapter 1. DB2 security model 13

Kerberos set-up

DB2 database system and its support of Kerberos relies upon the Kerberos layer

being installed and configured properly on all machines involved prior to the

involvement of DB2 database. This includes, but is not necessarily limited to, the

following requirements:

1. The client and server machines and principals must belong to the same realm,

or else trusted realms (or trusted domains in the Windows terminology)

2. Creation of appropriate principals

3. Creation of server keytab files, where appropriate

4. All machines involved must have their system clocks synchronized (Kerberos

typically permits a 5 minute time skew, otherwise a preauthentication error

may occur when obtaining credentials).

For details on installing and configuring Kerberos please refer to the

documentation provided with the installed Kerberos product.

The sole concern of DB2 database system will be whether the Kerberos security

context is successfully created based on the credentials provided by the connecting

application (that is, authentication). Other Kerberos features, such as the signing or

encryption of messages, will not be used. Furthermore, whenever available, mutual

authentication will be supported.

The Kerberos prerequisites are as follows:

v For the AIX, Solaris operating environment, and Linux platforms, the IBM®

Network Authentication Service (NAS) Toolkit v1.4 or higher is required. You

can download NAS Toolkits at https://www6.software.ibm.com/dl/dm/dm-
nas-p

v For the Windows platforms, there are no prerequisites.

Kerberos and client principals

The principal may be found in either a 2-part or multi-part format, (that is,

name@REALM or name/instance@REALM). As the “name” part will be used in the

authorization ID (AUTHID) mapping, the name must adhere to the DB2 database

naming rules. This means that the name may be up to 30 characters long and it

must adhere to the existing restrictions on the choice of characters used. (AUTHID

mapping is discussed in a later topic.)

Note: Windows directly associates a Kerberos principal with a domain user. An

implication of this is that Kerberos authentication is not available to Windows

machines that are not associated with a domain or realm. Furthermore, Windows

only supports 2-part names (that is, name@domain).

The principal itself must be capable of obtaining outbound credentials with which

it may request and receive service tickets to the target database. This is normally

accomplished with the kinit command on UNIX or Linux, and is done implicitly at

logon time on Windows.

Kerberos and authorization ID mapping

Unlike operating system user IDs whose scope of existence is normally restricted

to a single machine, Kerberos principals have the ability to be authenticated in

realms other than their own. The potential problem of duplicated principal names

14 Database Security Guide

https://www6.software.ibm.com/dl/dm/dm-nas-p
https://www6.software.ibm.com/dl/dm/dm-nas-p

is avoided by using the realm name to fully qualify the principal. In Kerberos, a

fully qualified principal takes the form name/instance@REALM where the instance

field may actually be multiple instances separated by a “/”, that is,

name/instance1/instance2@REALM, or it may be omitted altogether. The obvious

restriction is that the realm name must be unique within all the realms defined

within a network. The problem for DB2 database is that in order to provide a

simple mapping from the principal to the AUTHID, a one-to-one mapping between

the principal name, that is, the “name” in the fully qualified principal, and the

AUTHID is desirable. A simple mapping is needed as the AUTHID is used as the

default schema in DB2 database and should be easily and logically derived. As a

result, the database administrator needs to be aware of the following potential

problems:

v Principals from different realms but with the same name will be mapped to the

same AUTHID.

v Principals with the same name but different instances will be mapped to the

same AUTHID.

Giving consideration to the above, the following recommendations are made:

v Maintain an unique namespace for the name within all the trusted realms that

will access the DB2 database server

v All principals with the same name, regardless of the instance, should belong to

the same user.

Kerberos and server principals

On UNIX or Linux, the server principal name for the DB2 database instance is

assumed to be <instance name>/<fully qualified hostname>@REALM. This

principal must be able to accept Kerberos security contexts and it must exist before

starting the DB2 database instance since the server name is reported to DB2

database by the plugin at initialization time.

On Windows, the server principal is taken to be the domain account under which

the DB2 database service started. An exception to this is the instance may be

started by the local SYSTEM account, in which case, the server principal name is

reported as host/<hostname>; this is only valid if both the client and server belong

to Windows domains.

Windows does not support greater than 2-part names. This poses a problem when

a Windows client attempts to connect to a UNIX server. As a result, a Kerberos

principal to Windows account mapping may need to be set up in the Windows

domain if interoperability with UNIX Kerberos is required. (Please refer to the

appropriate Microsoft® documentation for relevant instructions.)

You can override the Kerberos server principal name used by the DB2 server on

UNIX and Linux operating systems. Set the DB2_KRB5_PRINCIPAL environment

variable to the desired fully qualified server principal name. The instance must be

restarted because the server principal name is only recognized by the DB2 database

system after db2start is run.

Kerberos keytab files

Every Kerberos service on UNIX or Linux wishing the accept security context

requests must place its credentials in a keytab file. This applies to the principals

used by DB2 database as server principals. Only the default keytab file is searched

Chapter 1. DB2 security model 15

for the server’s key. For instructions on adding a key to the keytab file, please refer

to the documentation provided with the Kerberos product.

There is no concept of a keytab file on Windows and the system automatically

handles storing and acquiring the credentials handle for a principal.

Kerberos and groups

Kerberos is an authentication protocol that does not possess the concept of groups.

As a result, DB2 database relies upon the local operating system to obtain a group

list for the Kerberos principal. For UNIX or Linux, this requires that an equivalent

system account should exist for each principal. For example, for the principal

name@REALM, DB2 database collects group information by querying the local

operating system for all group names to which the operating system user name

belongs. If an operating system user does not exist, then the AUTHID will only

belong to the PUBLIC group. Windows, on the other hand, automatically associates

a domain account to a Kerberos principal and the additional step to create a

separate operating system account is not required.

Enabling Kerberos authentication on the client

The clnt_krb_plugin database manager configuration parameter should be updated

to the name of the Kerberos plugin being used. On the supported platforms this

should be set to IBMkrb5. This parameter will inform DB2 database that it is

capable of using Kerberos for connections and local instance-level actions if the

AUTHENTICATION parameter is set to KERBEROS or KRB_SERVER_ENCRYPT.

Otherwise, no client-side Kerberos support is assumed.

Note: No checks are performed to validate that Kerberos support is available.

Optionally, when cataloging a database on the client, an authentication type may

be specified:

 db2 catalog db testdb at node testnode authentication kerberos target

 principal service/host@REALM

However, if the authentication information is not provided, then the server sends

the client the name of the server principal.

Enabling Kerberos authentication on the server

The srvcon_gssplugin_list database manager configuration parameter should be

updated with the server Kerberos plugin name. Although this parameter may

contain a list of supported plugins, only one Kerberos plugin may be specified.

However, if this field is blank and AUTHENTICATION is set to KERBEROS or

KRB_SERVER_ENCRYPT, the default Kerberos plugin (IBMkrb5) is assumed and

used. Either the AUTHENTICATION or SVRCON_AUTH parameter should be set

to KERBEROS or KRB_SERVER_ENCRYPT if Kerberos authentication is to be used

depending upon whether it is used for everything or just for incoming connections.

Creating a Kerberos plugin

There are several considerations you should consider when creating a Kerberos

plugin:

v Write a Kerberos plugin as a GSS-API plugin with the notable exception that the

plugintype in the function pointer array returned to DB2 database in the

initialization function must be set to DB2SEC_PLUGIN_TYPE_KERBEROS.

16 Database Security Guide

v Under certain conditions, the server principal name may be reported to the

client by the server. As such, the principal name should not be specified in the

GSS_C_NT_HOSTBASED_SERVICE format (service@host), since DRDA

stipulates that the principal name be in the GSS_C_NT_USER_NAME format

(server/host@REALM).

v In a typical situation, the default keytab file may be specified by the

KRB5_KTNAME environment variable. However, as the server plugin will run

within a DB2 database engine process, this environment variable may not be

accessible.

zSeries® and System i compatibility

For connections to zSeries and System i, the database must be cataloged with the

AUTHENTICATION KERBEROS parameter and the TARGET PRINCIPAL

parameter name must be explicitly specified.

Neither zSeries nor System i support mutual authentication.

Windows issues

When you are using Kerberos on Windows platforms, you need to be aware of the

following issues:

v Due to the manner in which Windows detects and reports some errors, the

following conditions result in an unexpected client security plug-in error

(SQL30082N, rc=36):

– Expired account

– Invalid password

– Expired password

– Password change forced by administrator

– Disabled account
Furthermore, in all cases, the DB2 administration log or db2diag.log will indicate

″Logon failed″ or ″Logon denied″.

v If a domain account name is also defined locally, connections explicitly

specifying the domain name and password will fail with the following error: The

Local Security Authority cannot be contacted.

The error is a result of Windows locating the local user first. The solution is to

fully qualify the user in the connection string. For example:

name@DOMAIN.IBM.COM

v Windows accounts cannot include the @ character in their name because the

character is assumed to be the domain separator by the DB2 Kerberos plug-in.

v When interoperating with a non-Windows platform, ensure that all Windows

domain server accounts and all Windows client accounts are configured to use

DES encryption. If the account used to start the DB2 service is not configured to

use DES encryption, the DB2 server will fail to accept Kerberos contexts. In

particular, DB2 will fail with an unexpected server plug-in error, and will log

that the AcceptSecurityContext API returned SEC_I_CONTINUE_NEEDED

(0x00090312L).

To determine if Windows accounts are configured to use DES encryption, look

under Account properties in the Active Directory. A restart might be required if

the account properties are changed.

v If the client and server are both on Windows, then the DB2 service can be

started under the local system account. However, if the client and server are in

Chapter 1. DB2 security model 17

different domains, the connection might fail with an invalid target principal

name error. The workaround is to explicitly catalog the target principal name on

the client using the fully qualified server host name and the fully qualified

domain name, in the following format: host/server hostname@server domain name

For example: host/myhost.domain.ibm.com@DOMAIN.IBM.COM

Otherwise, you must start the DB2 service under a valid domain account.

Maintaining passwords on servers

You might be required to perform password maintenance tasks. Because such tasks

are typically required at the server, and many users are not able or comfortable

working with the server environment, performing these tasks can pose a significant

challenge. DB2 database system provides a way to update and verify passwords

without having to be at the server.

You can assign new passwords when you connect to databases on the following

servers for the indicated (and later) releases: DB2® Universal Database™ Version 8

on AIX and Windows operating systems, DB2 Version 9.1 Fix Pack 3 or later on

Linux operating systems, DB2 for z/OS Version 7, and DB2 for i5/OS® V6R1.

For example, if an error message SQL1404N “Password expired” or SQL30082N

“Security processing failed with reason 1 (PASSWORD EXPIRED)” is received, use

the CONNECT statement to change the password as follows:

CONNECT TO database USER userid USING

 password NEW new_password CONFIRM new_password

The ATTACH command and the Password change dialog of the DB2

Configuration Assistant (CA) can also be used to change the password.

Authorization, privileges, and object ownership

Users (identified by an authorization ID) can successfully execute SQL or XQuery

statements only if they have the authority to perform the specified function. To

create a table, a user must be authorized to create tables; to alter a table, a user

must be authorized to alter the table; and so forth.

There are three forms of authorization, administrative authority, privileges, and LBAC

credentials, discussed below.

The database manager requires that each user be specifically authorized, either

implicitly or explicitly, to use each database function needed to perform a specific

task. Explicit authorities or privileges are granted to the user (GRANTEETYPE of U

in the database catalogs). Implicit authorities or privileges are granted to a group to

which the user belongs (GRANTEETYPE of G in the database catalogs) or to a role

in which the user, the group or another role is a member (GRANTEETYPE of R in

the database catalogs).

Administrative authority

The person or persons holding administrative authority are charged with the task

of controlling the database manager and are responsible for the safety and integrity

of the data. Those with administrative authority levels of SYSADM and DBADM

implicitly have all privileges on all objects except objects pertaining to database

security and control who will have access to the database manager and the extent

of this access.

18 Database Security Guide

Authority levels provide a method of grouping privileges and higher-level database

manager maintenance and utility operations. Database authorities enable users to

perform activities at the database level. A user, group, or role can have one or

more of the following authorities:

v Administrative authority level that operates at the instance level, SYSADM

(system administrator)

The SYSADM authority level provides control over all the resources created and

maintained by the database manager. The system administrator possesses all the

authorities of DBADM, SYSCTRL, SYSMAINT, and SYSMON, and the authority

to grant and revoke DBADM authority and SECADM authority.

The user who has SYSADM authority is responsible both for controlling the

database manager, and for ensuring the safety and integrity of the data.

SYSADM authority provides implicit DBADM authority within a database but

does not provide implicit SECADM authority within a database.

v Administrative authority levels that operate at the database level:

– DBADM (database administrator)

The DBADM authority level applies at the database level and provides

administrative authority over a single database. This database administrator

possesses the privileges required to create objects, issue database commands,

and access table data. The database administrator can also grant and revoke

CONTROL and individual privileges.

– SECADM (security administrator)

The SECADM authority level applies at the database level and is the

authority required to create, alter (where applicable), and drop roles, trusted

contexts, audit policies, security label components, security policies, and

security labels, which are used to protect tables. It is also the authority

required to grant and revoke roles, security labels and exemptions as well as

to grant and revoke the SETSESSIONUSER privilege. A user with the

SECADM authority can transfer the ownership of objects that they do not

own. They can also use the AUDIT statement to associate an audit policy

with a particular database or database object at the server.

The SECADM authority has no inherent privilege to access data stored in

tables and has no other additional inherent privilege. It can only be granted

by a user with SYSADM authority. The SECADM authority can be granted to

a user but cannot be granted to a group, a role or to PUBLIC.
v System control authority levels that operate at the instance level:

– SYSCTRL (system control)

The SYSCTRL authority level provides control over operations that affect

system resources. For example, a user with SYSCTRL authority can create,

update, start, stop, or drop a database. This user can also start or stop an

instance, but cannot access table data. Users with SYSCTRL authority also

have SYSMON authority.

– SYSMAINT (system maintenance)

The SYSMAINT authority level provides the authority required to perform

maintenance operations on all databases associated with an instance. A user

with SYSMAINT authority can update the database configuration, backup a

database or table space, restore an existing database, and monitor a database.

Like SYSCTRL, SYSMAINT does not provide access to table data. Users with

SYSMAINT authority also have SYSMON authority.
v The SYSMON (system monitor) authority level

SYSMON provides the authority required to use the database system monitor. It

operates at the instance level.

Chapter 1. DB2 security model 19

v Database authorities

To perform activities such as creating a table or a routine, or for loading data

into a table, specific database authorities are required. For example, the LOAD

database authority is required for use of the load utility to load data into tables

(a user must also have INSERT privilege on the table).

Figure 1 illustrates the relationship between authorities and their span of control

(database, database manager).

Privileges

Privileges are those activities that a user is allowed to perform. Authorized users

can create objects, have access to objects they own, and can pass on privileges on

their own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is

a special group that consists of all users, including future users. Users that are

members of a group will indirectly take advantage of the privileges granted to the

group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a

user to access that database object, and to grant and revoke privileges to or from

other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,

and packages.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority could grant the CONTROL privilege to that object.

The CONTROL privilege cannot be revoked from the object owner, however, the

object owner can be changed by using the TRANSFER OWNERSHIP statement.

SYSADM

SYSCTRL

Authority levels Instance

CUSTOMER

Database
authorities

EMPLOYEE

Database
authorities

SYSMAINT

SYSMON

Figure 1. Hierarchy of Authorities

20 Database Security Guide

In some situations, the creator of an object automatically obtains the CONTROL

privilege on that object.

Individual privileges: Individual privileges can be granted to allow a user to carry

out specific tasks on specific objects. Users with administrative authority (SYSADM

or DBADM) or the CONTROL privilege can grant and revoke privileges to and

from users.

Individual privileges and database authorities allow a specific function, but do not

include the right to grant the same privileges or authorities to other users. The

right to grant table, view, schema, package, routine, and sequence privileges to

others can be extended to other users through the WITH GRANT OPTION on the

GRANT statement. However, the WITH GRANT OPTION does not allow the

person granting the privilege to revoke the privilege once granted. You must have

SYSADM authority, DBADM authority, or the CONTROL privilege to revoke the

privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute

a package or routine, they do not necessarily require specific privileges on the

objects used in the package or routine. If the package or routine contains static

SQL or XQuery statements, the privileges of the owner of the package are used for

those statements. If the package or routine contains dynamic SQL or XQuery

statements, the authorization ID used for privilege checking depends on the setting

of the DYNAMICRULES bind option of the package issuing the dynamic query

statements, and whether those statements are issued when the package is being

used in the context of a routine.

A user or group can be authorized for any combination of individual privileges or

authorities. When a privilege is associated with an object, that object must exist.

For example, a user cannot be given the SELECT privilege on a table unless that

table has previously been created.

Note: Care must be taken when an authorization name representing a user or a

group is granted authorities and privileges and there is no user, or group created

with that name. At some later time, a user or a group can be created with that

name and automatically receive all of the authorities and privileges associated with

that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The

revoking of a privilege from an authorization name revokes the privilege granted

by all authorization names.

Revoking a privilege from an authorization name does not revoke that same

privilege from any other authorization names that were granted the privilege by

that authorization name. For example, assume that CLAIRE grants SELECT WITH

GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If

CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain

the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly

who has write access and who has read access to individual rows and individual

columns. The security administrator configures the LBAC system by creating

security policies. A security policy describes the criteria used to decide who has

Chapter 1. DB2 security model 21

access to what data. Only one security policy can be used to protect any one table

but different tables can be protected by different security policies.

After creating a security policy, the security administrator creates database objects,

called security labels and exemptions that are part of that policy. A security label

describes a certain set of security criteria. An exemption allows a rule for

comparing security labels not to be enforced for the user who holds the exemption,

when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows

in a table to protect the data held there. Data that is protected by a security label is

called protected data. A security administrator allows users access to protected

data by granting them security labels. When a user tries to access protected data,

that user’s security label is compared to the security label protecting the data. The

protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.

Ownership means the user is authorized to reference the object in any applicable

SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement

must have the required privilege to create objects in the implicitly or explicitly

specified schema. That is, the authorization name must either be the owner of the

schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools

or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of

that object and by default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the

CREATE SCHEMA statement, any other object that is created as part of the

CREATE SCHEMA operation is owned by the authorization ID specified by the

AUTHORIZATION option. Any objects that are created in the schema after the

initial CREATE SCHEMA operation, however, are owned by the authorization ID

associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT

CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table

SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is

granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index

on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY

owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being

created:

v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database

object, and to grant and revoke privileges to or from other users on that object.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority must grant the CONTROL privilege to that

object. The CONTROL privilege cannot be revoked by the object owner.

22 Database Security Guide

v The CONTROL privilege is implicitly granted on newly created views if the

object owner has the CONTROL privilege on all the tables, views, and

nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do

not have a CONTROL privilege associated with them. The object owner does,

however, automatically receive each of the privileges associated with the object

(and can provide these privileges to other users, where supported, by using the

WITH GRANT option of the GRANT statement). In addition, the object owner

can alter, add a comment on, or drop the object. These authorizations are

implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the

owner, and can be revoked from the owner by a user who has SYSADM or

DBADM authority. Certain privileges on the object, such as commenting on a table,

cannot be granted by the owner and cannot be revoked from the owner. Use the

TRANSFER OWNERSHIP statement to move these privileges to another user.

When an object is created, the authorization ID of the statement is the definer of

that object and by default becomes the owner of the object after it is created.

However, when a package is created and the OWNER bind option is specified, the

owner of objects created by the static SQL statements in the package is the value of

the OWNER bind option. In addition, if the AUTHORIZATION clause is specified

on a CREATE SCHEMA statement, the authorization name specified after the

AUTHORIZATION keyword is the owner of the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP

statement to change the ownership of a database object. An administrator can

therefore create an object on behalf of an authorization ID, by creating the object

using the authorization ID as the qualifier, and then using the TRANSFER

OWNERSHIP statement to transfer the ownership that the administrator has on the

object to the authorization ID.

Authorization IDs in different contexts

An authorization ID is used for two purposes: identification and authorization

checking. For example, the session authorization ID is used for initial authorization

checking.

When referring to the use of an authorization ID in a specific context, the reference

to the authorization is qualified to identify the context, as shown below.

Contextual reference to authorization ID

Definition

System authorization ID

The authorization ID used to do any initial authorization checking, such as

checking for CONNECT privilege during CONNECT processing. As part

of the authentication process during CONNECT processing, an

authorization ID compatible with DB2 naming requirements is produced

that represents the external user ID within the DB2 database system. The

system authorization ID represents the user that created the connection.

Use the SYSTEM_USER special register to see the current value of the

system authorization ID. The system authorization ID cannot be changed

for a connection.

Session authorization ID

The authorization ID used for any session authorization checking

subsequent to the initial checks performed during CONNECT processing.

The default value of the session authorization ID is the value of the system

Chapter 1. DB2 security model 23

authorization ID. Use the SESSION_USER special register to see the current

value of the session authorization ID. The USER special register is a

synonym for the SESSION_USER special register. The session authorization

ID can be changed by using the SET SESSION AUTHORIZATION

statement.

Package authorization ID

The authorization ID used to bind a package to the database. This

authorization ID is obtained from the value of the OWNER bind option.

The package authorization ID is sometimes referred to as the package

binder or package owner.

Routine owner authorization ID

The authorization ID listed in the system catalogs as the owner of the SQL

routine that has been invoked.

Routine invoker authorization ID

The authorization ID that is the statement authorization ID for the

statement that invoked an SQL routine.

Statement authorization ID

The authorization ID associated with a specific SQL statement that is to be

used for any authorization requirements as well as for determining object

ownership (where appropriate). It takes its value from the appropriate

source authorization ID, depending on the type of SQL statement:

v Static SQL

The package authorization ID is used.

v Dynamic SQL (from non-routine context)

The table shows which authorization ID is used in each case:

 Value of DYNAMICRULES option for

issuing the package Authorization ID used

RUN Session authorization ID

BIND Package authorization ID

DEFINERUN, INVOKERUN Session authorization ID

DEFINEBIND, INVOKEBIND Package authorization ID

v Dynamic SQL (from routine context)

The table shows which authorization ID is used in each case:

 Value of DYNAMICRULES option for

issuing the package Authorization ID used

DEFINERUN, DEFINEBIND Routine owner authorization ID

INVOKERUN, INVOKEBIND Routine invoker authorization ID

Use the CURRENT_USER special register to see the current value of the

statement authorization ID. The statement authorization ID cannot be

changed directly; it is changed automatically by the DB2 database system

to reflect the nature of each SQL statement.

Instance level authorities

System administration authority (SYSADM)

The SYSADM authority level is the highest level of administrative authority. Users

with SYSADM authority can run utilities, issue database and database manager

24 Database Security Guide

commands, and access any data that is not protected by LBAC in any table in any

database within the database manager instance. It provides the ability to control all

database objects in the instance, including databases, tables, views, indexes,

packages, schemas, servers, aliases, data types, functions, procedures, triggers,

table spaces, database partition groups, buffer pools, and event monitors.

SYSADM authority is assigned to the group specified by the sysadm_group

configuration parameter. Membership in that group is controlled outside the

database manager through the security facility used on your platform.

Only a user with SYSADM authority can perform the following functions:

v Migrate a database

v Change the database manager configuration file (including specifying the groups

having SYSCTRL, SYSMAINT, or SYSMON authority)

v Grant and revoke DBADM authority.

v Grant and revoke SECADM authority

While SYSADM authority does provide all abilities provided by most other

authorities, it does not provide any of the abilities of the SECADM authority. The

abilities provided by the SECADM authority are not provided by any other

authority. SYSADM authority also does not provide access to data that is protected

by LBAC.

Note: When a user with SYSADM authority creates a database, that user is

automatically granted explicit DBADM authority on the database. If the database

creator is removed from the SYSADM group and you want to prevent that user

from accessing that database as a DBADM, you must explicitly revoke the user’s

DBADM authority.

System control authority (SYSCTRL)

SYSCTRL authority is the highest level of system control authority. This authority

provides the ability to perform maintenance and utility operations against the

database manager instance and its databases. These operations can affect system

resources, but they do not allow direct access to data in the databases. System

control authority is designed for users administering a database manager instance

containing sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group

configuration parameter. If a group is specified, membership in that group is

controlled outside the database manager through the security facility used on your

platform.

Only a user with SYSCTRL authority or higher can do the following:

v Update a database, node, or distributed connection services (DCS) directory

v Force users off the system

v Create or drop a database

v Drop, create, or alter a table space

v Restore to a new database.

In addition, a user with SYSCTRL authority can perform the functions of users

with system maintenance authority (SYSMAINT) and system monitor authority

(SYSMON).

Chapter 1. DB2 security model 25

Users with SYSCTRL authority also have the implicit privilege to connect to a

database.

Note: When users with SYSCTRL authority create databases, they are

automatically granted explicit DBADM authority on the database. If the database

creator is removed from the SYSCTRL group, and if you want to also prevent them

from accessing that database as a DBADM, you must explicitly revoke this

DBADM authority.

System maintenance authority (SYSMAINT)

SYSMAINT authority is the second level of system control authority. This authority

provides the ability to perform maintenance and utility operations against the

database manager instance and its databases. These operations can affect system

resources, but they do not allow direct access to data in the databases. System

maintenance authority is designed for users maintaining databases within a

database manager instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group

configuration parameter. If a group is specified, membership in that group is

controlled outside the database manager through the security facility used on your

platform.

Only a user with SYSMAINT or higher system authority can do the following:

v Update database configuration files

v Back up a database or table space

v Restore to an existing database

v Perform roll forward recovery

v Start or stop an instance

v Restore a table space

v Run trace

v Take database system monitor snapshots of a database manager instance or its

databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:

v Query the state of a table space

v Update log history files

v Quiesce a table space

v Reorganize a table

v Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a

database, and can perform the functions of users with system monitor authority

(SYSMON).

System monitor authority (SYSMON)

SYSMON authority provides the ability to take database system monitor snapshots

of a database manager instance or its databases. SYSMON authority is assigned to

the group specified by the sysmon_group configuration parameter. If a group is

specified, membership in that group is controlled outside the database manager

through the security facility used on your platform.

SYSMON authority enables the user to run the following commands:

v GET DATABASE MANAGER MONITOR SWITCHES

26 Database Security Guide

v GET MONITOR SWITCHES

v GET SNAPSHOT

v LIST ACTIVE DATABASES

v LIST APPLICATIONS

v LIST DCS APPLICATIONS

v RESET MONITOR

v UPDATE MONITOR SWITCHES

SYSMON authority enables the user to use the following APIs:

v db2GetSnapshot - Get Snapshot

v db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output

Buffer

v db2MonitorSwitches - Get/Update Monitor Switches

v db2ResetMonitor - Reset Monitor

SYSMON authority enables the user use the following SQL table functions:

v All snapshot table functions without previously running

SYSPROC.SNAP_WRITE_FILE

SYSPROC.SNAP_WRITE_FILE takes a snapshot and saves its content into a file.

If any snapshot table functions are called with null input parameters, the file

content is returned instead of a real-time system snapshot.

Database level authorities

Security administration authority (SECADM)

SECADM (security administrator) authority is the authority required to create, alter

(where applicable), and drop roles, trusted contexts, audit policies, security label

components, security policies and security labels. It is also the authority required

to grant and revoke roles, security labels and exemptions, and the

SETSESSIONUSER privilege. SECADM authority has no inherent privilege to

access data stored in tables.

SECADM authority can only be granted by the system administrator (who holds

SYSADM authority) and can be granted to a user but not to a group or a role. It

gives these and only these abilities:

v Create, alter, comment on, and drop:

– Audit policies

– Security label components

– Security policies

– Trusted contexts
v Create, comment on, and drop:

– Roles

– Security labels
v Grant and revoke:

– Roles

– Exemptions

– Security labels

– SETSESSIONUSER privileges
v Use of the audit system stored procedures and table function:

SYSPROC.AUDIT_ARCHIVE, SYSPROC.AUDIT_LIST_LOGS, and

SYSPROC.AUDIT_DELIM_EXTRACT. These can only be invoked by the security

administrator.

Chapter 1. DB2 security model 27

v Use of the AUDIT statement to associate an audit policy with a particular

database or database object at the server

v Execution of the SQL statement TRANSFER OWNERSHIP on objects not owned

by the authorization ID of the statement

No other authority gives these abilities, not even SYSADM.

The instance owner does not have SECADM authority by default The SYSADM

has the ability to grant other users the SECADM authority. However, the SYSADM

cannot grant himself the SECADM authority. Any member of the

SYSADM_GROUP has SYSADM authority and thus can grant SECADM authority

to any user of their choice.

Database administration authority (DBADM)

DBADM authority is an administrative authority for a specific database and it

allows the user to perform certain actions, and issue database commands on that

database. The DBADM authority allows access to the data in any table in the

database unless that data is protected by LBAC. To access data protected by LBAC

you must have appropriate LBAC credentials.

When DBADM authority is granted, the following database authorities are also

explicitly granted for the same database (and are not automatically revoked if the

DBADM authority is later revoked):

v BINDADD

v CONNECT

v CREATETAB

v CREATE_EXTERNAL_ROUTINE

v CREATE_NOT_FENCED_ROUTINE

v IMPLICIT_SCHEMA

v QUIESCE_CONNECT

v LOAD

Only a user with SYSADM authority can grant or revoke DBADM authority. Users

with DBADM authority can grant privileges on the database to others and can

revoke any privilege from any user regardless of who granted it.

Holding the DBADM, or higher, authority for a database allows a user to perform

these actions on that database:

v Read log files

v Create, activate, and drop event monitors.

A user with DBADM authority for a database or with SYSMAINT authority or

higher can perform these actions on the database:

v Query the state of a table space

v Update log history files

v Quiesce a table space.

v Reorganize a table

v Collect catalog statistics using the RUNSTATS utility.

While DBADM authority does provide some of the same abilities as other

authorities, it does not provide any of the abilities of the SECADM authority. The

abilities provided by the SECADM authority are not provided by any other

authority.

28 Database Security Guide

LOAD authority

Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can use the LOAD command to load data into a table.

Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can LOAD RESTART or LOAD TERMINATE if the previous load operation

is a load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and

DELETE privileges on a table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also

have been granted to that user before the user can LOAD RESTART or LOAD

TERMINATE.

If the exception tables are used as part of a load operation, the user must have

INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,

RUNSTATS, and LIST TABLESPACES commands.

Database authorities

Each database authority allows the authorization ID holding it to perform some

particular type of action on the database as a whole. Database authorities are

different from privileges, which allow a certain action to be taken on a particular

database object, such as a table or an index.

These are the database authorities.

SECADM

Gives the holder the ability to act as a security administrator and create

and drop security objects, grant and revoke authorization or privileges for

security objects and transfer ownership of objects. The security

administrator manages trusted contexts, audit policies, database roles, and

LBAC-protection of data.

DBADM

Gives the holder the authority to act as the database administrator. In

particular it gives the holder all of the other database authorities except for

SECADM.

CONNECT

Allows the holder to connect to the database.

BINDADD

Allows the holder to create new packages in the database.

CREATETAB

Allows the holder to create new tables in the database.

CREATE_EXTERNAL_ROUTINE

Allows the holder to create a procedure for use by applications and other

users of the database.

CREATE_NOT_FENCED_ROUTINE

Allows the holder to create a user-defined function (UDF) or procedure

that is “not fenced”. CREATE_EXTERNAL_ROUTINE is automatically

granted to any user who is granted CREATE_NOT_FENCED_ROUTINE.

Chapter 1. DB2 security model 29

Attention: The database manager does not protect its storage or control

blocks from UDFs or procedures that are “not fenced”. A user with this

authority must, therefore, be very careful to test their UDF extremely well

before registering it as “not fenced”.

IMPLICIT_SCHEMA

Allows any user to create a schema implicitly by creating an object using a

CREATE statement with a schema name that does not already exist.

SYSIBM becomes the owner of the implicitly created schema and PUBLIC

is given the privilege to create objects in this schema.

LOAD

Allows the holder to load data into a table

QUIESCE_CONNECT

Allows the holder to access the database while it is quiesced.

 Only authorization IDs with the SYSADM authority can grant the SECADM and

DBADM authorities. All other authorities can be granted by authorization IDs that

hold SYSADM or DBADM authorities.

When a database is created, the following database authorities are automatically

granted to PUBLIC for the new database:

v CREATETAB

v BINDADD

v CONNECT

v IMPLICIT_SCHEMA

In addition, these privileges are granted:

v USE privilege on USERSPACE1 table space

v SELECT privilege on the system catalog views.

To remove any database authority from PUBLIC, an authorization ID with

DBADM or SYSADM authority must explicitly revoke it.

Implicit schema authority (IMPLICIT_SCHEMA) considerations

When a new database is created, PUBLIC is given IMPLICIT_SCHEMA database

authority. With this authority, any user can create a schema by creating an object

and specifying a schema name that does not already exist. SYSIBM becomes the

owner of the implicitly created schema and PUBLIC is given the privilege to create

objects in this schema.

If control of who can implicitly create schema objects is required for the database,

IMPLICIT_SCHEMA database authority should be revoked from PUBLIC. Once

this is done, there are only three (3) ways that a schema object is created:

v Any user can create a schema using their own authorization name on a CREATE

SCHEMA statement.

v Any user with DBADM authority can explicitly create any schema which does

not already exist, and can optionally specify another user as the owner of the

schema.

v Any user with DBADM authority has IMPLICIT_SCHEMA database authority

(independent of PUBLIC) so that they can implicitly create a schema with any

name at the time they are creating other database objects. SYSIBM becomes the

owner of the implicitly created schema and PUBLIC has the privilege to create

objects in the schema.

30 Database Security Guide

Privileges

Authorization ID privileges

Authorization ID privileges involve actions on authorization IDs. There is currently

only one such privilege: the SETSESSIONUSER privilege.

The SETSESSIONUSER privilege can be granted to a user or to a group and allows

the holder to switch identities to any of the authorization IDs on which the

privilege was granted. The identity switch is made by using the SQL statement

SET SESSION AUTHORIZATION. The SETSESSIONUSER privilege can only be

granted by a user holding SECADM authority.

Note: When you migrate a Version 8 database to Version 9.1, or later, authorization

IDs with explicit DBADM authority on that database are automatically granted

SETSESSIONUSER privilege on PUBLIC. This prevents breaking applications that

rely on authorization IDs with DBADM authority being able to set the session

authorization ID to any authorization ID. This does not happen when the

authorization ID has SYSADM authority but has not been explicitly granted

DBADM.

Schema privileges

Schema privileges are in the object privilege category. Object privileges are shown

in Figure 2 on page 32.

Chapter 1. DB2 security model 31

Schema privileges involve actions on schemas in a database. A user may be

granted any of the following privileges:

v CREATEIN allows the user to create objects within the schema.

v ALTERIN allows the user to alter objects within the schema.

v DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to

others. The objects that are manipulated within the schema object include: tables,

views, indexes, packages, data types, functions, triggers, procedures, and aliases.

Table space privileges

The table space privileges involve actions on the table spaces in a database. A user

may be granted the USE privilege for a table space which then allows them to

create tables within the table space.

The owner of the table space, typically the creator who has SYSADM or SYSCTRL

authority, has the USE privilege and the ability to grant this privilege to others. By

Database
objects

CONTROL
(Tables)

CONTROL
(Indexes)

DELETE
INSERT
SELECT
UPDATE

CONTROL
(Views)

(Table spaces)

USE

(Schema
Owners)

ALTERIN
CREATEIN
DROPIN

(Server)

PASSTHRU

(Sequences)

USAGE

ALTER

CONTROL
(Nicknames)

BIND
EXECUTE

EXECUTE

CONTROL
(Packages)

(Procedures,
functions, methods)

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALTER
DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

Figure 2. Object Privileges

32 Database Security Guide

default, at database creation time the USE privilege for table space USERSPACE1 is

granted to PUBLIC, though this privilege can be revoked.

The USE privilege cannot be used with SYSCATSPACE or any system temporary

table spaces.

Table and view privileges

Table and view privileges involve actions on tables or views in a database.

A user must have CONNECT authority on the database to use any of the

following privileges:

v CONTROL provides the user with all privileges for a table or view including the

ability to drop it, and to grant and revoke individual table privileges. You must

have SYSADM or DBADM authority to grant CONTROL. The creator of a table

automatically receives CONTROL privilege on the table. The creator of a view

automatically receives CONTROL privilege only if they have CONTROL

privilege on all tables, views, and nicknames referenced in the view definition,

or they have SYSADM or DBADM authority.

v ALTER allows the user to modify on a table, for example, to add columns or a

unique constraint to the table. A user with ALTER privilege can also COMMENT

ON a table, or on columns of the table. For information about the possible

modifications that can be performed on a table, see the ALTER TABLE and

COMMENT statements.

v DELETE allows the user to delete rows from a table or view.

v INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index.

v INSERT allows the user to insert a row into a table or view, and to run the

IMPORT utility.

v REFERENCES allows the user to create and drop a foreign key, specifying the

table as the parent in a relationship. The user might have this privilege only on

specific columns.

v SELECT allows the user to retrieve rows from a table or view, to create a view

on a table, and to run the EXPORT utility.

v UPDATE allows the user to change an entry in a table, a view, or for one or

more specific columns in a table or view. The user may have this privilege only

on specific columns.

The privilege to grant these privileges to others may also be granted using the

WITH GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other

privileges on that table are automatically granted WITH GRANT OPTION. If you

subsequently revoke the CONTROL privilege on the table from a user, that user

will still retain the other privileges that were automatically granted. To revoke all

the privileges that are granted with the CONTROL privilege, you must either

explicitly revoke each individual privilege or specify the ALL keyword on the

REVOKE statement, for example:

 REVOKE ALL

 ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and view

privileges.

Chapter 1. DB2 security model 33

Note: Privileges may be granted independently at every level of a table hierarchy.

As a result, a user granted a privilege on a supertable within a hierarchy of typed

tables may also indirectly affect any subtables. However, a user can only operate

directly on a subtable if the necessary privilege is held on that subtable.

The supertable/subtable relationships among the tables in a table hierarchy mean

that operations such as SELECT, UPDATE, and DELETE will affect the rows of the

operation’s target table and all its subtables (if any). This behavior can be called

substitutability. For example, suppose that you have created an Employee table of

type Employee_t with a subtable Manager of type Manager_t. A manager is a

(specialized) kind of employee, as indicated by the type/subtype relationship

between the structured types Employee_t and Manager_t and the corresponding

table/subtable relationship between the tables Employee and Manager. As a result

of this relationship, the SQL query:

 SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees and

managers. Similarly, the update operation:

 UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT

operation even if they do not have an explicit SELECT privilege on Manager.

However, such a user will not be permitted to perform a SELECT operation

directly on the Manager subtable, and will therefore not be able to access any of

the non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an

UPDATE operation on Manager, thereby affecting both regular employees and

managers, even without having the explicit UPDATE privilege on the Manager

table. However, such a user will not be permitted to perform UPDATE operations

directly on the Manager subtable, and will therefore not be able to update

non-inherited columns of the Manager table.

Package privileges

A package is a database object that contains the information needed by the

database manager to access data in the most efficient way for a particular

application program. Package privileges enable a user to create and manipulate

packages.

The user must have CONNECT authority on the database to use any of the

following privileges:

v CONTROL provides the user with the ability to rebind, drop, or execute a

package as well as the ability to extend those privileges to others. The creator of

a package automatically receives this privilege. A user with CONTROL privilege

is granted the BIND and EXECUTE privileges, and can also grant these

privileges to other users by using the GRANT statement. (If a privilege is

granted using WITH GRANT OPTION, a user who receives the BIND or

EXECUTE privilege can, in turn, grant this privilege to other users.) To grant

CONTROL privilege, the user must have SYSADM or DBADM authority.

v BIND privilege on a package allows the user to rebind or bind that package and

to add new package versions of the same package name and creator.

v EXECUTE allows the user to execute or run a package.

34 Database Security Guide

Note: All package privileges apply to all VERSIONs that share the same package

name and creator.

In addition to these package privileges, the BINDADD database privilege allows

users to create new packages or rebind an existing package in the database.

Objects referenced by nicknames need to pass authentication checks at the data

sources containing the objects. In addition, package users must have the

appropriate privileges or authority levels for data source objects at the data source.

It is possible that packages containing nicknames might require additional

authorization steps because DB2 database uses dynamic queries when

communicating with DB2 Family data sources. The authorization ID running the

package at the data source must have the appropriate authority to execute the

package dynamically at that data source.

Index privileges

The creator of an index or an index specification automatically receives CONTROL

privilege on the index. CONTROL privilege on an index is really the ability to

drop the index. To grant CONTROL privilege on an index, a user must have

SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table.

The nickname-level INDEX privilege allows a user to create an index specification

on that nickname.

Sequence privileges

The creator of a sequence automatically receives the USAGE and ALTER privileges

on the sequence. The USAGE privilege is needed to use NEXT VALUE and

PREVIOUS VALUE expressions for the sequence. To allow other users to use the

NEXT VALUE and PREVIOUS VALUE expressions, sequence privileges must be

granted to PUBLIC. This allows all users to use the expressions with the specified

sequence.

ALTER privilege on the sequence allows the user to perform tasks such as

restarting the sequence or changing the increment for future sequence values. The

creator of the sequence can grant the ALTER privilege to other users, and if WITH

GRANT OPTION is used, these users can, in turn, grant these privileges to other

users.

Routine privileges

Execute privileges involve actions on all types of routines such as functions,

procedures, and methods within a database. Once having EXECUTE privilege, a

user can then invoke that routine, create a function that is sourced from that

routine (applies to functions only), and reference the routine in any DDL statement

such as CREATE VIEW or CREATE TRIGGER.

The user who defines the externally stored procedure, function, or method receives

EXECUTE WITH GRANT privilege. If the EXECUTE privilege is granted to

another user via WITH GRANT OPTION, that user can, in turn, grant the

EXECUTE privilege to another user.

Chapter 1. DB2 security model 35

Usage privilege on workloads

To enable use of a workload, the database administrator can grant USAGE

privilege on that workload to a user, a group, or a role using the GRANT USAGE

ON WORKLOAD statement.

When the DB2 database system finds a matching workload, it checks whether the

session user has USAGE privilege on that workload. If the session user does not

have USAGE privilege on that workload, then the DB2 database system searches

for the next matching workload in the ordered list. In other words, the workloads

that the session user does not have USAGE privilege on are treated as if they do

not exist.

The USAGE privilege information is stored in the catalogs and can be viewed

through the SYSCAT.WORKLOADAUTH view.

The USAGE privilege can be revoked using the REVOKE USAGE ON

WORKLOAD statement.

A user with SYSADM or DBADM authority can use any workload that exists in

the catalog as long as the workload matches the connection attributes.

The SYSDEFAULTUSERWORKLOAD workload and the USAGE

privilege

USAGE privilege on SYSDEFAULTUSERWORKLOAD is granted to PUBLIC at

database creation time, if the database is created without the RESTRICT option.

Otherwise, the USAGE privilege must be explicitly granted by a user with

SYSADM or DBADM authority.

If the session user does not have USAGE privilege on any of the workloads,

including SYSDEFAULTUSERWORKLOAD, an SQL error is returned.

The SYSDEFAULTADMWORKLOAD workload and the USAGE privilege

USAGE privilege on SYSDEFAULTADMWORKLOAD cannot be explicitly granted

to any user. Only users who issue the SET WORKLOAD TO

SYSDEFAULTADMWORKLOAD command and whose session authorization ID

has SYSADM or DBADM authority are allowed to use this workload.

The GRANT USAGE ON WORKLOAD and REVOKE USAGE ON WORKLOAD

statements do not have any effect on SYSDEFAULTADMWORKLOAD.

Tasks and required authorizations

Not all organizations divide job responsibilities in the same manner. The following

table lists common job titles, the tasks that usually accompany them, and the

authorities or privileges that are needed to carry out those tasks.

 Table 2. Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Department Administrator Oversees the departmental system;

creates databases

SYSCTRL authority. SYSADM

authority if the department has its

own instance.

Security Administrator Manages security within one or more

database

SECADM authority.

36 Database Security Guide

Table 2. Common Job Titles, Tasks, and Required Authorization (continued)

JOB TITLE TASKS REQUIRED AUTHORIZATION

Database Administrator Designs, develops, operates, and

maintains one or more databases

DBADM and SYSMAINT authority

over one or more databases.

SYSCTRL authority in some cases.

System Operator Monitors the database and carries out

backup functions

SYSMAINT authority.

Application Programmer Develops and tests the database

manager application programs; may

also create tables of test data

BINDADD, BIND on an existing

package, CONNECT and

CREATETAB on one or more

databases, some specific schema

privileges, and a list of privileges on

some tables.

CREATE_EXTERNAL_ROUTINE

may also be required.

User Analyst Defines the data requirements for an

application program by examining

the system catalog views

SELECT on the catalog views;

CONNECT on one or more

databases.

Program End User Executes an application program EXECUTE on the package;

CONNECT on one or more

databases. See the note following this

table.

Information Center Consultant Defines the data requirements for a

query user; provides the data by

creating tables and views and by

granting access to database objects

DBADM authority over one or more

databases.

Query User Issues SQL statements to retrieve,

add, delete, or change data; may save

results as tables

CONNECT on one or more

databases; CREATEIN on the schema

of the tables and views being created;

and, SELECT, INSERT, UPDATE,

DELETE on some tables and views.

Note: If an application program contains dynamic SQL statements, the Program

End User may need other privileges in addition to EXECUTE and CONNECT

(such as SELECT, INSERT, DELETE, and UPDATE).

Granting, revoking and monitoring access

Granting privileges

To grant privileges on most database objects, the user must have SYSADM

authority, DBADM authority, or CONTROL privilege on that object; or, the user

must hold the privilege WITH GRANT OPTION. Privileges can be granted only on

existing objects.

To grant CONTROL privilege to someone else, the user must have SYSADM or

DBADM authority. To grant DBADM authority, the user must have SYSADM

authority.

The GRANT statement allows an authorized user to grant privileges. A privilege

can be granted to one or more authorization names in one statement; or to

PUBLIC, which makes the privileges available to all users. Note that an

authorization name can be either an individual user or a group.

Chapter 1. DB2 security model 37

On operating systems where users and groups exist with the same name, you

should specify whether you are granting the privilege to the user or group. Both

the GRANT and REVOKE statements support the keywords USER and GROUP. If

these optional keywords are not used, the database manager checks the operating

system security facility to determine whether the authorization name identifies a

user or a group. If the authorization name could be both a user and a group, an

error is returned. The following example grants SELECT privileges on the

EMPLOYEE table to the user HERON:

 GRANT SELECT

 ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the

group HERON:

 GRANT SELECT

 ON EMPLOYEE TO GROUP HERON

In the Control Center, you can use the Schema Privileges notebook, the Table Space

Privileges notebook, and the View Privileges notebook to grant and revoke

privileges for these database objects. To open one of these notebooks, follow these

steps:

1. In the Control Center, expand the object tree until you find the folder

containing the objects you want to work with, for example, the Views folder.

2. Click the folder.

Any existing database objects in this folder are displayed in the contents pane.

3. Right-click the object of interest in the contents pane and select Privileges in

the pop-up menu.

The appropriate Privileges notebook opens.

Revoking privileges

The REVOKE statement allows authorized users to revoke privileges previously

granted to other users.

To revoke privileges on database objects, you must have DBADM authority,

SYSADM authority, or CONTROL privilege on that object. Note that holding a

privilege WITH GRANT OPTION is not sufficient to revoke that privilege. To

revoke CONTROL privilege from another user, you must have SYSADM or

DBADM authority. To revoke DBADM authority, you must have SYSADM

authority. Privileges can only be revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege is not able to

revoke a privilege that they granted through their use of the WITH GRANT

OPTION. Also, there is no cascade on the revoke to those who have received

privileges granted by the person being revoked.
If an explicitly granted table (or view) privilege is revoked from a user with

DBADM authority, privileges will not be revoked from other views defined on that

table. This is because the view privileges are available through the DBADM

authority and are not dependent on explicit privileges on the underlying tables.

If a privilege has been granted to both a user and a group with the same name,

you must specify the GROUP or USER keyword when revoking the privilege. The

following example revokes the SELECT privilege on the EMPLOYEE table from the

user HERON:

 REVOKE SELECT

 ON EMPLOYEE FROM USER HERON

38 Database Security Guide

The following example revokes the SELECT privilege on the EMPLOYEE table

from the group HERON:

 REVOKE SELECT

 ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members

of that group. If an individual name has been directly granted a privilege, it will

keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view

created by that user which depends on the revoked table privilege. However, only

the privileges implicitly granted by the system are revoked. If a privilege on the

view was granted directly by another user, the privilege is still held.

If a table privilege is revoked from a user, privileges are also revoked on any view

created by that user which depends on the revoked table privilege. However, only

the privileges implicitly granted by the system are revoked. If a privilege on the

view was granted directly by another user, the privilege is still held.

You may have a situation where you want to GRANT a privilege to a group and

then REVOKE the privilege from just one member of the group. There are only a

couple of ways to do that without receiving the error message SQL0556N:

v You can remove the member from the group; or, create a new group with fewer

members and GRANT the privilege to the new group.

v You can REVOKE the privilege from the group and then GRANT it to individual

users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the

user continues to have the ability to grant privileges to others. When given

CONTROL privilege, the user also receives all other privileges WITH GRANT

OPTION. Once CONTROL is revoked, all of the other privileges remain WITH

GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can

be validated if rebound by a user with appropriate authority. Packages can also be

rebuilt if the privileges are subsequently granted again to the binder of the

application; running the application will trigger a successful implicit rebind. If

privileges are revoked from PUBLIC, all packages bound by users having only

been able to bind based on PUBLIC privileges are invalidated. If DBADM

authority is revoked from a user, all packages bound by that user are invalidated

including those associated with database utilities. Attempting to use a package that

has been marked invalid causes the system to attempt to rebind the package. If

this rebind attempt fails, an error occurs (SQLCODE -727). In this case, the

packages must be explicitly rebound by a user with:

v Authority to rebind the packages

v Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you

lose one or more of these privileges, the trigger or SQL function cannot be used.

Chapter 1. DB2 security model 39

Managing implicit authorizations by creating and dropping

objects

The database manager implicitly grants certain privileges to a user creates a

database object such as a table or a package. Privileges are also granted when

objects are created by users with SYSADM or DBADM authority. Similarly,

privileges are removed when an object is dropped.

When the created object is a table, nickname, index, or package, the user receives

CONTROL privilege on the object. When the object is a view, the CONTROL

privilege for the view is granted implicitly only if the user has CONTROL

privilege for all tables, views, and nicknames referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given

ALTERIN, CREATEIN, and DROPIN privileges WITH GRANT OPTION. An

implicitly created schema has CREATEIN granted to PUBLIC.

Establishing ownership of a package

The BIND and PRECOMPILE commands create or change an application package.

On either one, use the OWNER option to name the owner of the resulting package.

There are simple rules for naming the owner of a package:

v Any user can name themselves as the owner. This is the default if the OWNER

option is not specified.

v An ID with SYSADM or DBADM authority can name any authorization ID as

the owner using the OWNER option.

Not all operating systems that can bind a package using DB2 database products

support the OWNER option.

Implicit privileges through a package

Access to data within a database can be requested by application programs, as well

as by persons engaged in an interactive workstation session. A package contains

statements that allow users to perform a variety of actions on many database

objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC, as well as to

the roles granted to the individuals and to PUBLIC, are used for authorization

checking when static SQL and XQuery statements are bound. Privileges granted

through groups and the roles granted to groups are not used for authorization

checking when static SQL and XQuery statements are bound. The user with a valid

authID who binds a package must either have been explicitly granted all the

privileges required to execute the static SQL or XQuery statements in the package,

or have been implicitly granted the necessary privileges through PUBLIC, the roles

granted to PUBLIC or the roles granted to the user, unless VALIDATE RUN was

specified when binding the package. If VALIDATE RUN was specified at BIND

time, all authorization failures for any static SQL or XQuery statements within this

package will not cause the BIND to fail, and those SQL or XQuery statements are

revalidated at run time. PUBLIC, group, roles, and user privileges are all used

when checking to ensure the user has the appropriate authorization (BIND or

BINDADD privilege) to bind the package.

Packages may include both static and dynamic SQL and XQuery statements. To

process a package with static queries, a user need only have EXECUTE privilege

40 Database Security Guide

on the package. This user can then implicitly obtain the privileges of the package

binder for any static queries in the package but only within the restrictions

imposed by the package.

If the package includes dynamic SQL or XQuery statements, the required privileges

depend on the value that was specified for DYNAMICRULES when the package

was precompiled or bound. For more information, see the topic that describes the

effect of DYNAMICRULES on dynamic queries.

Indirect privileges through a package containing nicknames

When a package contains references to nicknames, authorization processing for

package creators and package users is slightly more complex. When a package

creator successfully binds packages that contain nicknames, the package creator

does not have to pass authentication checking or privilege checking for the tables

and views that the nicknames reference at the data source. However, the package

executor must pass authentication and authorization checking at data sources.

For example, assume that a package creator’s .SQC file contains several SQL or

XQuery statements. One static statement references a local table. Another dynamic

statement references a nickname. When the package is bound, the package

creator’s authid is used to verify privileges for the local table and the nickname,

but no checking is done for the data source objects that the nickname identifies.

When another user executes the package, assuming they have the EXECUTE

privilege for that package, that user does not have to pass any additional privilege

checking for the statement referencing the table. However, for the statement

referencing the nickname, the user executing the package must pass authentication

checking and privilege checking at the data source.

When the .SQC file contains only dynamic SQL and XQuery statements and a

mixture of table and nickname references, DB2 database authorization checking for

local objects and nicknames is similar. Package users must pass privilege checking

for any local objects (tables, views) within the statements and also pass privilege

checking for nickname objects (package users must pass authentication and

privilege checking at the data source containing the objects that the nicknames

identify). In both cases, users of the package must have the EXECUTE privilege.

The ID and password of the package executor is used for all data source

authentication and privilege processing. This information can be changed by

creating a user mapping.

Note: Nicknames cannot be specified in static SQL and XQuery statements. Do not

use the DYNAMICRULES option (set to BIND) with packages containing

nicknames.

It is possible that packages containing nicknames might require additional

authorization steps because DB2 database uses dynamic SQL when communicating

with DB2 Family data sources. The authorization ID running the package at the

data source must have the appropriate authority to execute the package

dynamically at that data source.

Controlling access to data with views

A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:

v Access only to designated columns of the table.

Chapter 1. DB2 security model 41

For users and application programs that require access only to specific columns

of a table, an authorized user can create a view to limit the columns addressed

only to those required.

v Access only to a subset of the rows of the table.

By specifying a WHERE clause in the subquery of a view definition, an

authorized user can limit the rows addressed through a view.

v Access only to a subset of the rows or columns in data source tables or views. If

you are accessing data sources through nicknames, you can create local DB2

database views that reference nicknames. These views can reference nicknames

from one or many data sources.

Note: Because you can create a view that contains nickname references for more

than one data source, your users can access data in multiple data sources from

one view. These views are called multi-location views. Such views are useful when

joining information in columns of sensitive tables across a distributed

environment or when individual users lack the privileges needed at data sources

for specific objects.

To create a view, a user must have SYSADM authority, DBADM authority, or

CONTROL or SELECT privilege for each table, view, or nickname referenced in the

view definition. The user must also be able to create an object in the schema

specified for the view. That is, CREATEIN privilege for an existing schema or

IMPLICIT_SCHEMA authority on the database if the schema does not already

exist.

If you are creating views that reference nicknames, you do not need additional

authority on the data source objects (tables and views) referenced by nicknames in

the view; however, users of the view must have SELECT authority or the

equivalent authorization level for the underlying data source objects when they

access the view.

If your users do not have the proper authority at the data source for underlying

objects (tables and views), you can:

1. Create a data source view over those columns in the data source table that are

OK for the user to access

2. Grant the SELECT privilege on this view to users

3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references

the new nickname.

The following scenario provides a more detailed example of how views can be

used to restrict access to information.

Many people might require access to information in the STAFF table, for different

reasons. For example:

v The personnel department needs to be able to update and look at the entire

table.

This requirement can be easily met by granting SELECT and UPDATE privileges

on the STAFF table to the group PERSONNL:

 GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

v Individual department managers need to look at the salary information for their

employees.

42 Database Security Guide

This requirement can be met by creating a view for each department manager.

For example, the following view can be created for the manager of department

number 51:

 CREATE VIEW EMP051 AS

 SELECT NAME,SALARY,JOB FROM STAFF

 WHERE DEPT=51

 GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view

just like the STAFF table. When accessing the EMP051 view of the STAFF table,

this manager views the following information:

 NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

v All users need to be able to locate other employees. This requirement can be met

by creating a view on the NAME column of the STAFF table and the

LOCATION column of the ORG table, and by joining the two tables on their

respective DEPT and DEPTNUMB columns:

 CREATE VIEW EMPLOCS AS

 SELECT NAME, LOCATION FROM STAFF, ORG

 WHERE STAFF.DEPT=ORG.DEPTNUMB

 GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

 NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O’Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Chapter 1. DB2 security model 43

NAME LOCATION

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Controlling access by users holding SYSADM and DBADM

authority

You may want to monitor or control access to data by users holding SYSADM and

DBADM authorities.

To monitor and control access by system administrators and database

administrators, follow these steps:

1. Create an audit policy that monitors the events you want to capture for users

who hold SYSADM and DBADM authority.

2. Associate this audit policy with the SYSADM authority and the DBADM

authority.

3. Create a role and grant DBADM authority to that role.

4. Define a trusted context and make the role the default role for this trusted

context.

Do not grant membership in the role to any authorization ID explicitly. This

way, the role is available only through this trusted context and a user acquires

DBADM capability only when they are within the confines of the trusted

context.

Note: This option does not protect against users who have SYSADM authority,

because such users have implicit DBADM authority.

5. There are two ways you can control how users access the trusted context:

v Implicit access: Create a unique trusted context for each user. When the user

establishes a regular connection that matches the attributes of the trusted

context, they are implicitly trusted and gain access to the role.

v Explicit access: Create a trusted context using the WITH USE FOR clause to

define all users who can access it. Create an application through which those

users can make database requests. The application establishes an explicit

44 Database Security Guide

trusted connection, and when a user issues a request, the application

switches to that user ID and executes the request as that user on the

database.
6. Create an audit policy that monitors the events you want to capture for users

of the trusted context, and associate it with the trusted context.

7. If you have highly sensitive data, create an audit policy that monitors the

EXECUTE category and associate this policy with the tables containing the

sensitive data that you want to monitor. The EXECUTE category captures all

queries that access these tables, regardless of who issues them.

Note: To explicitly prevent users who hold SYSADM and DBADM authority from

accessing data in tables, consider using the LBAC (label-based access control)

security mechanism on the sensitive tables.

Data encryption

To encrypt data in storage, you can use the encryption and decryption built-in

functions (described here): ENCRYPT, DECRYPT_BIN, DECRYPT_CHAR, and

GETHINT. To encrypt data in transit between clients and DB2 databases, you can

use the DATA_ENCRYPT authentication type, or, the DB2 database system support

of Secure Sockets Layer (SSL).

The ENCRYPT built-in function encrypts data using a password-based encryption

method. These functions also allow you to encapsulate a password hint. The

password hint is embedded in the encrypted data. Once encrypted, the only way

to decrypt the data is by using the correct password. Developers that choose to use

these functions should plan for the management of forgotten passwords and

unusable data.

The result of the ENCRYPT functions is VARCHAR FOR BIT DATA (with a limit of

32631).

Only CHAR, VARCHAR, and FOR BIT DATA can be encrypted.

The DECRYPT_BIN and DECRYPT_CHAR functions decrypt data using

password-based decryption.

DECRYPT_BIN always returns VARCHAR FOR BIT DATA while DECRYPT_CHAR

always returns VARCHAR. Since the first argument may be CHAR FOR BIT DATA

or VARCHAR FOR BIT DATA, there are cases where the result is not the same as

the first argument.

The length of the result depends on the bytes to the next 8 byte boundary. The

length of the result could be the length of the data argument plus 40 plus the

number of bytes to the next 8 byte boundary when the optional hint parameter is

specified. Or, the length of the result could be the length of the data argument plus

8 plus the number of bytes to the next 8 byte boundary when the optional hint

parameter is not specified.

The GETHINT function returns an encapsulated password hint. A password hint is

a phrase that will help data owners remember passwords. For example, the word

“Ocean” can be used as a hint to remember the password ″Pacific″.

The password that is used to encrypt the data is determined in one of two ways:

Chapter 1. DB2 security model 45

v Password Argument. The password is a string that is explicitly passed when the

ENCRYPT function is invoked. The data is encrypted and decrypted with the

given password.

v Encryption password special register. The SET ENCRYPTION PASSWORD

statement encrypts the password value and sends the encrypted password to the

database manager to store in a special register. ENCRYPT, DECRYPT_BIN and

DECRYPT_CHAR functions invoked without a password parameter use the

value in the ENCRYPTION PASSWORD special register. The ENCRYPTION

PASSWORD special register is only stored in encrypted form.

The initial or default value for the special register is an empty string.

Valid lengths for passwords are between 6 and 127 inclusive. Valid lengths for

hints are between 0 and 32 inclusive.

Configuring Secure Sockets Layer (SSL) support in a DB2

instance

The DB2 database system supports SSL, which means that a client application that

uses the IBM Data Server Driver for JDBC and SQLJ can connect to a DB2 database

using an SSL socket. To enable SSL support in a DB2 instance, set the DB2COMM

registry variable to SSL, create a SSL configuration file, and restart the instance.

Before configuring SSL support:

v Ensure that the path to the GSKit libraries appears in the PATH environment

variable on Windows and the LIBPATH, SHLIB_PATH or LD_LIBRARY_PATH

environment variables on Linux and UNIX.

v Ensure that the connection concentrator is not activated. SSL support will not be

enabled in the DB2 instance if connection concentrator is running.

To determine whether connection concentrator is activated, issue the GET

DATABASE MANAGER CONFIGURATION command. If the configuration

parameter MAX_CONNECTIONS is set to a value greater than the value of

MAX_COORDAGENTS, connection concentrator is activated.

SSL is supported for communication between IBM Data Server Driver for JDBC

and SQLJ (type 4 connections) and DB2 database products.

The supported platforms that contain SSL support for the DB2 data server are:

v AIX

v HP-UX on Itanium-based HP Integrity Series systems (IA-64)

v Linux on x86, x64, IA64, 64-bit POWER™ servers, and 64-bit zSeries or System

z9®

v Solaris on x64

v Windows on 32-bit, x64 and Itanium-based systems

The SSL communication will always be in FIPS mode. In order to have SSL

support for DB2 data servers, the IBM Global Security Kit (GSKit) version 7c must

to be installed on the client and server. For Windows AMD64, GSKit 7d is

required. The latest version of the GSKit can be downloaded from the IBM

software download site: https://www14.software.ibm.com/webapp/iwm/web/
reg/pick.do?lang=en_US&source;=swg-dm-db2ldap&S_TACT;=swg-dm-db2ldap

SSL support for DB2 Connect

46 Database Security Guide

https://www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US&source=swg-dm-db2ldap&S_TACT=swg-dm-db2ldap
https://www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US&source=swg-dm-db2ldap&S_TACT=swg-dm-db2ldap

Starting with Version 9.5 Fix Pack 2, if you are using DB2 Connect for System i,

DB2 Connect for System z™, or DB2 Enterprise Server Edition on an intermediate

server computer to connect DB2 clients to a host or System i database, SSL support

is available in any of the following configurations:

v Between the client and the DB2 Connect server

v Between the DB2 Connect server and the server

v Between both the client and the DB2 Connect server and the DB2 Connect server

and the server

Note: For SSL support to be enabled on all paths in the configuration, each client

or server must fulfill all requirements for SSL support. For example, if the DB2

Connect connection concentrator is on, the inbound request to the DB2 Connect

server cannot use SSL. However, the outbound request to the target server can use

SSL.

Configuring SSL support

To configure SSL support in a DB2 instance:

1. Log in as the DB2 instance owner.

2. Create an SSL configuration file:

v Linux and UNIX:INSTHOME/cfg/SSLconfig.ini

v Windows: INSTHOME/SSLconfig.ini

where INSTHOME is the home directory of the instance.

It is recommended that you set the file permission to limit access to the

SSLconfig.ini, as the file might contain sensitive data. For example, limit read

and write authority on the file to members of the SYSADM group if the file

contains the password for KeyStore.

3. Add SSL parameters to the SSL configuration file. The SSLconfig.ini file

contains the SSL parameters that are used to load and start SSL. The list of SSL

parameters are as follows:

 Table 3. SSL parameters in the SSL configuration file

SSL parameter name Description

DB2_SSL_KEYSTORE_FILE Fully qualified file name of the KeyStore

that stores the Server Certificate.

DB2_SSL_KEYSTORE_PW Password of the KeyStore that stores the

Server Certificate.

DB2_SSL_KEYSTORE_LABEL Label for the Server Certificate.

DB2_SSL_LISTENER Service name or port number for the SSL

listener.

Note:

v DB2_SSL_KEYSTORE_PW is nullable and can be omitted if a password is

not needed for the KeyStore file.

v If the DB2_SSL_KEYSTORE_LABEL parameter is omitted, the default server

certificate will be used. If the default server certificate does not exist, SSL

setup will fail.

v The value used for the DB2_SSL_LISTENER parameter must be different

than the value used in the SVCENAME database manager configuration

parameter. An SQL5043N error will occur if you try to start the DB2 instance

and both SSL and TCP/IP are listening on the same port number.

Chapter 1. DB2 security model 47

The following is an example of an SSLconfig.ini file:

DB2_SSL_KEYSTORE_FILE=/home/test1/GSKit/Keystore/key.kdb

DB2_SSL_LISTENER=20397

DB2_SSL_KEYSTORE_PW=aaa111

4. Add the value SSL to the DB2COMM registry variable. For example:

db2set -i db2inst1 DB2COMM=SSL

where db2inst1 is the DB2 instance name. The database manager can support

multiple protocols at the same time. For example, to enable both TCP/IP and

SSL communication protocols:

db2set -i db2inst1 DB2COMM=SSL,TCPIP

5. Restart the DB2 instance. For example:

db2stop

db2start

Configuring Secure Sockets Layer (SSL) support in the DB2

client

Starting with DB2 Version 9.5 Fix Pack 2, Secure Sockets Layer (SSL) is supported

by DB2 database clients.

Before you begin

Before configuring SSL support:

v Ensure that the path to the GSKit libraries appears in the PATH environment

variable on Windows and the LIBPATH, SHLIB_PATH or LD_LIBRARY_PATH

environment variables on Linux and UNIX.

v If both the client and the server are on the same physical machine, GSKit will

need to be installed only once. If the client is being installed in a separate

machine, for C-based clients, GSKit needs to be installed if the clients use SSL to

communicate with the servers. The latest version of the GSKit can be

downloaded from the IBM software download site: https://
www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US
&source;=swg-dm-db2ldap&S_TACT;=swg-dm-db2ldap

About this task

The SSL communication will always be in FIPS mode.

Procedure

To configure SSL support in a DB2 client:

1. Log in as the DB2 instance owner.

2. Create an SSL configuration file:

v Linux and UNIX:INSTHOME/cfg/SSLClientconfig.ini

v Windows: INSTHOME/SSLClientconfig.ini

where INSTHOME is the home directory of the instance.

3. Add SSL parameters to the SSL client configuration file. The SSLClientconfig.ini

file contains the SSL parameters that are used to load and start SSL. The

SSLClientconfig.ini file has the following parameters:

48 Database Security Guide

https://www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US&source=swg-dm-db2ldap&S_TACT=swg-dm-db2ldap
https://www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US&source=swg-dm-db2ldap&S_TACT=swg-dm-db2ldap
https://www14.software.ibm.com/webapp/iwm/web/reg/pick.do?lang=en_US&source=swg-dm-db2ldap&S_TACT=swg-dm-db2ldap

Table 4. SSL parameters in the SSL client configuration file

SSL parameter name Nullable Description

DB2_SSL_KEYSTORE_FILE No Fully qualified file name of

the KeyStore that stores the

Server Certificate.

DB2_SSL_KEYRING

_STASH_FILE

No Fully qualified file name to

the stash file that stores the

password to access the

keystore file in encrypted

format. This provides an

extra level of security in the

client scenario.

Note:

v The stash file in the client should be used to secure the password

information.

v The SSLClientconfig.ini file will point to a single keystore file. This keystore

file will have the certificate extracts from all of the servers. The following

output shows the contents for the client configuration file:

(test1@db2server1) /home/test1/sqllib/cfg $ cat SSLClientconfig.ini

DB2_SSL_KEYSTORE_FILE=/home/test1/GSKit/Keystore/client.kdb

DB2_SSL_KEYRING_STASH_FILE==/home/test1/GSKit/Keystore/client.sth

Example

Catalog

The node catalog information indicates that the particular connection will use SSL.

The SECURITY keyword has a new attribute SSL that specifies the SSL mode. For

CLI applications that do not use cataloging, the connection string will have an

attribute that indicates SSL should be used in the communication. The following

examples demonstrate cataloging a TCPIP node:

catalog TCPIP NODE nodename REMOTE ipaddr SERVER port SECURITY SSL

catalog TCPIP NODE mynode REMOTE 127.0.0.1 SERVER 50001 SECURITY SSL

catalog DATABASE sample AS myssldb AT NODE mynode AUTHENTICATION SERVER

Embedded

This example uses the cataloged databases in the catalog example.

Strcpy(dbAlias,”myssldb”);

 EXEC SQL CONNECT TO :dbAlias USER :user USING :pswd;

CLI

SQLConnect (hdbc, “myssldb”, SQL_NTS, username, SQL_NTS, szAuthStr, SQL_NTS);

db2cli.ini

In addition to the SECURITY=SSL keyword in the connection string, the

SECURITY=SSL keyword can be added to the db2cli.ini. This is a db2cli.ini DSN

entry using SSL

[sampledsn]

database=sampledb

uid=db2inst1

pwd=xxx

Chapter 1. DB2 security model 49

hostname=myhost

protocol=TCPIP

servicename=50001

SECURITY=SSL

SQLConnect

This is an example of SQLConnect using the previous DSN entry in db2cli.ini.

SQLConnect (hdbc, “sampledsn”, SQL_NTS, username, SQL_NTS, szAuthStr, SQL_NTS);

SQLDriverConnect

This is an example of SQLDriverConnect using the SECURITY=SSL keyword.

char * connStr =

"database=sampledb;uid=db2inst1;pwd=xxx;hostname=myhost;protocol=TCPIP;servicename=50001;SECURITY=SSL";

SQLDriverConnect (hdbc, (SQLHWND)NULL, connStr, SQL_NTS, NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

Auditing DB2 activities

Introduction to the DB2 audit facility

To manage access to your sensitive data, you can use a variety of authentication

and access control mechanisms to establish rules and controls for known and

acceptable data access behaviors. But to protect against and discover unknown or

unacceptable behaviors you also need to monitor data access. To assist you in this

task, the DB2 database system provides an audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead

to improvements in the control of data access and the ultimate prevention of

malicious or careless unauthorized access to the data. The monitoring of

application and individual user access, including system administration actions,

can provide a historical record of activity on your database systems.

The DB2 audit facility generates, and allows you to maintain, an audit trail for a

series of predefined database events. The records generated from this facility are

kept in an audit log file. The analysis of these records can reveal usage patterns

which would identify system misuse. Once identified, actions can be taken to

reduce or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the

individual database level, independently recording all instance and database level

activities with separate logs for each. The system administrator (who holds

SYSADM authority at the instance level) can use the db2audit tool to configure

audit at the instance level as well as to control when such audit information is

collected. The system administrator can use the db2audit tool to archive both

instance and database audit logs as well as to extract audit data from archived logs

of either type.

The security administrator (who holds SECADM authority at the database level)

can use audit policies in conjunction with the SQL statement, AUDIT, to configure

and control the audit requirements for an individual database. The security

administrator can use the SYSPROC.AUDIT_ARCHIVE stored procedure, the

SYSPROC.AUDIT_LIST_LOGS table function, and the

SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, to archive audit logs,

locate logs of interest, and extract data into delimited files for analysis.

50 Database Security Guide

When working in a partitioned database environment, many of the auditable

events occur at the database partition at which the user is connected (the

coordinator partition) or at the catalog partition (if they are not the same database

partition). The implication of this is that audit records can be generated by more

than one database partition. Part of each audit record contains information

identifying the coordinator partition and originating partition (the partition where

audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by

use of the db2audit start and db2audit stop commands. When you start

instance-level auditing, the audit facility uses existing audit configuration

information. Since the audit facility is independent of the DB2 database server, it

will remain active even if the instance is stopped. In fact, when the instance is

stopped, an audit record may be generated in the audit log. To start auditing at the

database level, you associate an audit policy with whatever object you want to

audit.

Categories of audit records

There are different categories of audit records that may be generated. In the

following description of the categories of events available for auditing, you should

notice that following the name of each category is a one-word keyword used to

identify the category type. The categories of events available for auditing are:

v Audit (AUDIT). Generates records when audit settings are changed or when the

audit log is accessed.

v Authorization Checking (CHECKING). Generates records during authorization

checking of attempts to access or manipulate DB2 database objects or functions.

v Object Maintenance (OBJMAINT). Generates records when creating or dropping

data objects, and when altering certain objects.

v Security Maintenance (SECMAINT). Generates records when:

– Granting or revoking database privileges or database authorities

– Granting or revoking security labels or exemptions

– Altering the group authorization, role authorization, or override or restrict

attributes of an LBAC security policy

– Granting or revoking the SETSESSIONUSER privilege

– Granting or revoking DBADM or SECADM authorities

– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP,

SYSMAINT_GROUP, or SYSMON_GROUP configuration parameters.
v System Administration (SYSADMIN). Generates records when operations

requiring SYSADM, SYSMAINT, or SYSCTRL authority are performed.

v User Validation (VALIDATE). Generates records when authenticating users or

retrieving system security information.

v Operation Context (CONTEXT). Generates records to show the operation context

when a database operation is performed. This category allows for better

interpretation of the audit log file. When used with the log’s event correlator

field, a group of events can be associated back to a single database operation.

For example, a query statement for dynamic queries, a package identifier for

static queries, or an indicator of the type of operation being performed, such as

CONNECT, can provide needed context when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be

very long and is completely shown within the CONTEXT record. This can make

the CONTEXT record very large.

Chapter 1. DB2 security model 51

v Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the above categories, you can audit failures, successes, or both.

Any operations on the database server may generate several records. The actual

number of records generated in the audit log depends on the number of categories

of events to be recorded as specified by the audit facility configuration. It also

depends on whether successes, failures, or both, are audited. For this reason, it is

important to be selective of the events to audit.

Audit policies

The security administrator can use audit policies to configure the audit system to

gather information only about the data and objects that are needed.

The security administrator can create audit policies to control what is audited

within an individual database. The following objects can have an audit policy

associated with them:

v The whole database

All auditable events that occur within the database are audited according to the

audit policy.

v Tables

All data manipulation language (DML) and XQUERY access to the table

(untyped), MQT (materialized query table), or nickname is audited. Only

EXECUTE category audit events with or without data are generated when the

table is accessed even if the policy indicates that other categories should be

audited.

v Trusted contexts

All auditable events that happen within a trusted connection defined by the

particular trusted context are audited according to the audit policy.

v Authorization IDs representing users, groups, or roles

All auditable events that are initiated by the specified user are audited according

to the audit policy.

All auditable events that are initiated by users that are a member of the group

or role are audited according to the audit policy. Indirect role membership, such

as through other roles or groups, is also included.

You can capture similar data by using the Work Load Management event

monitors by defining a work load for a group and capturing the activity details.

You should be aware that the mapping to workloads can involve attributes in

addition to just the authorization ID, which can cause you to not achieve the

desired granularity in auditing, or if those other attributes are modified,

connections may map to different (possibly unmonitored) workloads. The

auditing solution provides a guarantee that a user, group or role will be audited.

v Authorities (SYSADM, SECADM, DBADM, SYSCTRL, SYSMAINT, SYSMON)

All auditable events that are initiated by a user that holds the specified authority

even if that authority is unnecessary for the event are audited according to the

audit policy. If an audit policy is associated with DBADM authority, any user

with SYSADM authority is also audited according to this policy, because they

are considered to have DBADM authority.

The security administrator can create multiple audit policies. For example, your

company might want a policy for auditing sensitive data and a policy for auditing

the activity of users holding DBADM authority. If multiple audit policies are in

effect for a statement, all events required to be audited by each of the audit

52 Database Security Guide

policies are audited (but audited only once). For example, if the database’s audit

policy requires auditing successful EXECUTE events for a particular table and the

user’s audit policy requires auditing failures of EXECUTE events for that same

table, both successful and failed attempts at accessing that table are audited.

For a specific object, there can only be one audit policy in effect. For example, you

cannot have multiple audit policies associated with the same table at the same

time.

An audit policy cannot be associated with a view or a typed table. Views that

access a table that has an associated audit policy are audited according to the

underlying table’s policy.

The audit policy that applies to a table does not automatically apply to a MQT

based on that table. If you associate an audit policy with a table, associate the

same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and

their associations at the start of the transaction. For example, if the security

administrator associates an audit policy with a user and that user is in a

transaction at the time, the audit policy does not affect any remaining statements

performed within that transaction. Also, changes to an audit policy do not take

effect until they are committed. If the security administrator issues an ALTER

AUDIT POLICY statement, it does not take effect until the statement is committed.

The security administrator uses the CREATE AUDIT POLICY statement to create

an audit policy, and the ALTER AUDIT POLICY statement to modify an audit

policy. These statements can specify:

v The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.

v The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy

with the current database or with a database object, at the current server. Any time

the object is in use, it is audited according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You

cannot drop an audit policy if it is associated with any object. Use the AUDIT

REMOVE statement to remove any remaining association with an object. To add

metadata to an audit policy, the security administrator uses the COMMENT

statement.

Events generated before a full connection has been established

For some events generated during connect and a switch user operation, the only

audit policy information available is the policy that is associated with the database.

These events are shown in the following table:

 Table 5. Connection events

Event

Audit

category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

Chapter 1. DB2 security model 53

Table 5. Connection events (continued)

Event

Audit

category Comment

AUTHENTICATION VALIDATE This includes authentication during both

connect and switch user within a trusted

connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

These events are audited based only on the audit policy associated with the

database and not with audit policies associated with any other object such as a

user, their groups, or authorities. For the CONNECT and AUTHENTICATION

events that occur during connect, the instance-level audit settings are used until

the database is activated. The database is activated either during the first

connection or when the ACTIVATE DATABASE command is issued.

Effect of switching user

If a user is switched within a trusted connection, no remnants of the original user

are left behind. In this case, the audit policies associated with the original user are

no longer considered, and the applicable audit policies are re-evaluated according

to the new user. Any audit policy associated with the trusted connection is still in

effect.

If a SET SESSION USER statement is used, only the session authorization ID is

switched. The audit policy of the authorization ID of the original user (the system

authorization ID) remains in effect and the audit policy of the new user is used as

well. If multiple SET SESSION USER statements are issued within a session, only

the audit policies associated with the original user (the system authorization ID)

and the current user (the session authorization ID) are considered.

Data definition language restrictions

The following data definition language (DDL) statements are called AUDIT

exclusive SQL statements:

v AUDIT

v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY

v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:

v Each statement must be followed by a COMMIT or ROLLBACK.

v These statements cannot be issued within a global transaction, for example an

XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time

across all partitions. If an uncommitted AUDIT exclusive DDL statement is

executing, subsequent AUDIT exclusive DDL statements wait until the current

AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT,

even for the connection that issues the statement.

54 Database Security Guide

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive

information and the company wants to audit any and all SQL access to the data in

that table. The EXECUTE category can be used to track all access to a table; it

audits the SQL statement, and optionally the input data value provided at

execution time for that statement.

There are two steps to track activity on the table. First, the security administrator

creates an audit policy that specifies the EXECUTE category, and then the security

administrator associates that policy with the table:

CREATE AUDIT POLICY SENSITIVEDATAPOLICY

 CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY

COMMIT

Example of auditing any actions by SYSADM or DBADM

In order to complete their security compliance certification, a company must show

that any and all activities within the database by those people holding system

administration (SYSADM) or database administrative (DBADM) authority can be

monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN

categories should be audited. The security administrator creates an audit policy

that audits these two categories. The security administrator can use the AUDIT

statement to associate this audit policy with the SYSADM and DBADM authorities.

Any user that holds either SYSADM or DBADM authority will then have any

auditable events logged. The following example shows how to create such an audit

policy and associate it with the SYSADM and DBADM authorities:

CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,

 SYSADMIN STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY

COMMIT

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database.

The exact individuals using the web applications are unknown. Only the role that

is used is known and that role is used to manage the database authorizations. The

company wants to monitor the actions of anyone who is a member of that role in

order to examine the requests they are submitting to the database and to ensure

that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the

activity of the users for this situation. The first step is to create the appropriate

audit policy and associate it with the roles that are used by the web applications

(in this example, the roles are TELLER and CLERK):

CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA

 STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY

COMMIT

Chapter 1. DB2 security model 55

Storage and analysis of audit logs

The system administrator can configure the path for the active audit log and the

archived audit log using the db2audit configure command. Archiving the audit log

moves the active audit log to an archive directory while the server begins writing

to a new, active audit log. This allows the audit log to be stored offline without

having to extract data from it until necessary. After the security administrator or

system administrator has archived a log, they can extract data from the log into

delimited files. The data in the delimited files can be loaded into DB2 database

tables for analysis.

Configuring the location of the audit logs allows you to place the audit logs on a

large, high-speed disk, with the option of having separate disks for each node in a

database partitioning feature (DPF) installation. In a DPF environment, the path for

the active audit log can be a directory that is unique to each node. Having a

unique directory for each node helps to avoid file contention, because each node is

writing to a different disk.

The default path for the audit logs on Windows operating systems is

instance\security\auditdata and on Linux and UNIX operating systems is

instance/security/auditdata. If you do not want to use the default location, you can

choose different directories (you can create new directories on your system to use

as alternative locations, if they do not already exist). To set the path for the active

audit log location and the archived audit log location, use the db2audit configure

command with the datapath and archivepath parameters, as shown in this

example:

db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the

instance.

Note: If there are multiple instance on the server, then each instance should each

have separate data and archive paths.

The path for active audit logs (datapath) in a DPF environment

In a DPF environment, the same active audit log location (set by the datapath

parameter) must be used on each partition. There are two ways to accomplish this:

1. Use database partition expressions when you specify the datapath parameter.

Using database partition expressions allows the partition number to be

included in the path of the audit log files and results in a different path on

each database partition.

2. Use a shared drive that is the same on all nodes.

You can use database partition expressions anywhere within the value you specify

for the datapath parameter. For example, on a three node system, where the

database partition number is 10, the following command:

db2audit configure datapath ’/pathForNode $N’

creates the following files:

v /pathForNode10

v /pathForNode20

v /pathForNode30

56 Database Security Guide

Note: You cannot use database partition expressions to specify the archive log file

path (archivepath parameter).

Archiving active audit logs

The system administrator can use the db2audit tool to archive both instance and

database audit logs as well as to extract audit data from archived logs of either

type. To archive the active audit log, the security administrator can use the

SYSPROC.AUDIT_ARCHIVE stored procedure. To extract data from the log and

load it into delimited files, the security administrator can use the

SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps a security administrator needs to follow to archive and extract

the audit logs:

1. Schedule an application to perform regular archives of the active audit log

using the stored procedure SYSPROC.AUDIT_ARCHIVE.

2. Determine which archived log files are of interest. Use the

SYSPROC.AUDIT_LIST_LOGS table function to list all of the archived audit

logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT

stored procedure to extract data from the log and load it into delimited files.

4. Load the audit data into DB2 database tables for analysis.

The archived log files do not need to be immediately loaded into tables for

analysis; they can be saved for future analysis. For example, they may only need to

be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the

archive path, or the archive path does not exist, the archive process fails and an

interim log file with the file extension .bk is generated in the audit log data path,

for example, db2audit.instance.log.0.20070508172043640941.bk. After the problem is

resolved (by allocating sufficient disk space in the archive path, or by creating the

archive path) you must move this interim log to the archive path. Then, you can

treat it in the same way as a successfully archived log.

Archiving active audit logs in a DPF environment

In a DPF environment, if the archive command is issued while the instance is

running, the archive process automatically runs on every node. The same

timestamp is used in the archived log file name on all nodes. For example, on a

three node system, where the database partition number is 10, the following

command:

db2audit archive to /auditarchive

creates the following files:

v /auditarchive/db2audit.log.10.timestamp

v /auditarchive/db2audit.log.20.timestamp

v /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control

on which node the archive is run by one of the following methods:

v Use the node option with the db2audit command to perform the archive for the

current node only.

v Use the db2_all command to run the archive on all nodes.

Chapter 1. DB2 security model 57

For example:

db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which nodes the

command is invoked.

Alternatively, you can issue an individual archive command on each node

separately. For example:

v On node 10:

db2audit archive node 10 to /auditarchive

v On node 20:

db2audit archive node 20 to /auditarchive

v On node 30:

db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log

file names are not the same on each node.

Note: It is recommended that the archive path is shared across all nodes, but it is

not required.

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS

table function can only access the archived log files that are visible from the

current (coordinator) node.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs

to create a new audit log every six hours and archive the current audit log to a

WORM drive. The company schedules the following call to the

SYSPROC.AUDIT_ARCHIVE stored procedure to be issued by the security

administrator every six hours. The path to the archived log is the default archive

path, /auditarchive, and the archive runs on all nodes:

CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

As part of their security procedures, the company has identified and defined a

number of suspicious behaviors or disallowed activities that it needs to watch for

in the audit data. They want to extract all the data from the one or more audit

logs, place it in a relational table, and then use SQL queries to look for these

activities. The company has decided on appropriate categories to audit and has

associated the necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored

procedure to extract the archived audit logs for all categories from all nodes that

were created with a timestamp in April 2006, using the default delimiter:

CALL SYSPROC.AUDIT_DELIM_EXTRACT(

 ’’, ’’, ’/auditarchive’, ’db2audit.%.200604%’, ’’)

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored

procedure to extract the archived audit records with success events from the

EXECUTE category and failure events from the CHECKING category, from a file

with the timestamp they are interested in:

CALL SYSPROC.AUDIT_DELIM_EXTRACT(’’, ’’, ’/auditarchive’,

 ’db2audit.%.20060419034937’, ’categories

 execute status success, checking status failure);

58 Database Security Guide

Audit log file names:

The audit log files have names that distinguish whether they are instance-level or

database-level logs and which partition they originate from in a database

partitioning feature (DPF) environment. Archived audit logs have the timestamp of

when the archive command was run appended to their file name.

 Active audit log file names

In a DPF environment, the path for the active audit log can be a directory that is

unique to each partition so that each partition writes to an individual file. In order

to accurately track the origin of audit records, the partition number is included as

part of the audit log file name. For example, on partition 20, the instance level

audit log file name is db2audit.instance.log.20. For a database called testdb in this

instance, the audit log file is db2audit.db.testdb.log.20.

In a non-DPF environment the partition number is considered to be 0 (zero). In

this case, the instance level audit log file name is db2audit.instance.log.0. For a

database called testdb in this instance, the audit log file is db2audit.db.testdb.log.0.

Archived audit log file names

When the active audit log is archived, the current timestamp in the following

format is appended to the filename: YYYYMMDDHHMMSS (where YYYY is the

year, MM is the month, DD is the day, HH is the hour, MM is the minutes, and SS

is the seconds.

The file name format for an archive audit log depends on the level of the audit log:

instance-level archived audit log

The file name of the instance-level archived audit log is:

db2audit.instance.log.partition.YYYYMMDDHHMMSS.

database-level archived audit log

The file name of the database-level archived audit log is:

db2audit.dbdatabase.log.partition.YYYYMMDDHHMMSS.

 In a non-DPF environment, the value for partition is 0 (zero).

The timestamp represents the time that the archive command was run, therefore it

does not always precisely reflect the time of the last record in the log. The archived

audit log file may contain records with timestamps a few seconds later than the

timestamp in the log file name because:

v When the archive command is issued, the audit facility waits for the writing of

any in-process records to complete before creating the archived log file.

v In a multi-machine environment, the system time on a remote machine may not

be synchronized with the machine where the archive command is issued.

In a DPF environment, if the server is running when archive is run, the timestamp

is consistent across partitions and reflects the timestamp generated at the partition

at which the archive was performed.

Creating tables to hold the DB2 audit data:

Before you can work with audit data in database tables, you need to create the

tables to hold the data. You should consider creating these tables in a separate

schema to isolate the data in the tables from unauthorized users.

Chapter 1. DB2 security model 59

v See the CREATE SCHEMA statement for the authorities and privileges that you

require to create a schema.

v See the CREATE TABLE statement for the authorities and privileges that you

require to create a table.

v Decide which table space you want to use to hold the tables. (This topic does

not describe how to create table spaces.)

Note: The format of the tables you need to create to hold the audit data may

change from release to release. New columns may be added or the size of an

existing column may change. The script, db2audit.ddl, creates tables of the correct

format to contain the audit records.

The examples that follow show how to create the tables to hold the records from

the delimited files. If you want, you can create a separate schema to contain these

tables.

If you do not want to use all of the data that is contained in the files, you can omit

columns from the table definitions, or bypass creating certain tables, as required. If

you omit columns from the table definitions, you must modify the commands that

you use to load data into these tables.

1. Issue the db2 command to open a DB2 command window.

2. Optional. Create a schema to hold the tables. For this example, the schema is

called AUDIT:

 CREATE SCHEMA AUDIT

3. Optional. If you created the AUDIT schema, switch to the schema before

creating any tables:

 SET CURRENT SCHEMA = ’AUDIT’

4. Run the script, db2audit.ddl, to create the tables that will contain the audit

records.

The script db2audit.ddl is located in the sqllib/misc directory (sqllib\misc on

Windows). The script assumes that a connection to the database exists and that

an 8K table space is available. The command to run the script is: db2 +o -tf

sqllib/misc/db2audit.ddl The tables that the script creates are: AUDIT,

CHECKING, OBJMAINT, SECMAINT, SYSADMIN, VALIDATE, CONTEXT and

EXECUTE.

5. After you have created the tables, the security administrator can use the

SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, or the system

administrator can use the db2audit extract command, to extract the audit

records from the archived audit log files into delimited files. You can load the

audit data from the delimited files into the database tables you just created.

Loading DB2 audit data into tables:

After you have archived and extracted the audit log file into delimited files, and

you have created the database tables to hold the audit data, you can load the audit

data from the delimited files into the database tables for analysis.

 You use the load utility to load the audit data into the tables. Issue a separate load

command for each table. If you omitted one or more columns from the table

definitions, you must modify the version of the LOAD command that you use to

successfully load the data. Also, if you specified a delimiter character other than

the default when you extracted the audit data, you must also modify the version

of the LOAD command that you use.

60 Database Security Guide

1. Issue the db2 command to open a DB2 command window.

 2. To load the AUDIT table, issue the following command:

 LOAD FROM audit.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.AUDIT

Note: Specify the DELPRIORITYCHAR modifier to ensure proper parsing of

binary data.

Note: Specify the LOBSINFILE option of the LOAD command (due to the

restriction that any inline data for large objects must be limited to 32K). In

some situations, you might also need to use the LOBS FROM option.

Note: When specifying the file name, use the fully qualified path name. For

example, if you have the DB2 database system installed on the C: drive of a

Windows-based computer, you would specify C:\Program

Files\IBM\SQLLIB\instance\security\audit.del as the fully qualified file

name for the audit.del file.

 3. To load the CHECKING table, issue the following command:

 LOAD FROM checking.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.CHECKING

 4. To load the OBJMAINT table, issue the following command:

 LOAD FROM objmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.OBJMAINT

 5. To load the SECMAINT table, issue the following command:

 LOAD FROM secmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.SECMAINT

 6. To load the SYSADMIN table, issue the following command:

 LOAD FROM sysadmin.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.SYSADMIN

 7. To load the VALIDATE table, issue the following command:

 LOAD FROM validate.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.VALIDATE

 8. To load the CONTEXT table, issue the following command:

 LOAD FROM context.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.CONTEXT

 9. To load the EXECUTE table, issue the following command:

 LOAD FROM execute.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE

 INSERT INTO schema.EXECUTE

10. After you finish loading the data into the tables, delete the .del files from the

security/auditdata subdirectory of the sqllib directory.

11. When you have loaded the audit data into the tables, you are ready to select

data from these tables for analysis.

If you have already populated the tables a first time, and want to do so again, use

the INSERT option to have the new table data added to the existing table data. If

you want to have the records from the previous db2audit extract operation

removed from the tables, load the tables again using the REPLACE option.

Audit archive and extract stored procedures:

The security administrator can use the SYSPROC.AUDIT_ARCHIVE and

SYSPROC.AUDIT_DELIM_EXTRACT stored procedures, and the

Chapter 1. DB2 security model 61

SYSPROC.AUDIT_LIST_LOGS table function to archive audit logs and extract data

to delimited files for the database to which the security administrator is currently

connected.

 The security administrator must be connected to a database in order to use these

stored procedures and table function to archive or list that database’s audit logs.

If you copy the archived files to another database system, and you want to use the

stored procedures to access them, ensure that the database name is the same, or

rename the files to include the same database name.

These stored procedures and table function do not archive or list the instance level

audit log. The system administrator must use the db2audit command to archive

and extract the instance level audit log.

The security administrator can use these stored procedures and table function to

perform the following operations:

 Table 6. Audit system stored procedures

Stored procedure and

table function Operation Comments

AUDIT_ARCHIVE Archives the current audit

log.

Takes the archive path as input.

If the archive path is not

supplied, this stored procedure

takes the archive path from the

audit configuration file.

The archive is run on each node,

and a synchronized timestamp

is appended to the name of the

audit log file.

AUDIT_LIST_LOGS Returns a list of the archived

audit logs at the specified

path, for the current

database.

62 Database Security Guide

Table 6. Audit system stored procedures (continued)

Stored procedure and

table function Operation Comments

AUDIT_

 DELIM_EXTRACT

Extracts data from the binary

archived logs and loads it

into delimited files.

The extracted audit records are

placed in a delimited format

suitable for loading into DB2

database tables. The output is

placed in separate files, one for

each category. In addition, the

file auditlobs is created to hold

any large objects that are

included in the audit data. The

file names are:

v audit.del

v checking.del

v objmaint.del

v secmaint.del

v sysadmin.del

v validate.del

v context.del

v execute.del

v auditlobs

If the files already exist, the

output is appended to them.

The auditlobs file is created if

the CONTEXT or EXECUTE

categories are extracted. Only

archived audit logs for the

current database can be

extracted. Only files that are

visible to the coordinator node

are extracted.

Only the instance owner can

delete archived audit logs.

The EXECUTE category for auditing SQL statements

The EXECUTE category allows you to accurately track the SQL statements a user

issues (prior to Version 9.5, you had to use the CONTEXT category to find this

information).

This EXECUTE category captures the SQL statement text as well as the compilation

environment and other values that are needed to replay the statement at a later

date. For example, replaying the statement can show you exactly which rows a

SELECT statement returned. In order to re-run a statement, the database tables

must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static

and dynamic SQL is recorded, as are input parameter markers and host variables.

You can configure the EXECUTE category to be audited with or without input

values.

Note: Global variables are not audited.

Chapter 1. DB2 security model 63

The auditing of EXECUTE events takes place at the completion of the event (for

SELECT statements this is on cursor close). The status that the event completed

with is also stored. Because EXECUTE events are audited at completion,

long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most

authorization checks are performed at prepare time (for example, SELECT

privilege). This means that statements that fail during prepare due to authorization

errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may

be repeated for a given execute record. For the report format generated by the

extraction, each record lists multiple values. For the delimited file format, multiple

rows are used. The first row has an event type of STATEMENT and no values.

Following rows have an event type of DATA, with one row for each data value

associated with the SQL statement. You can use the event correlator and

application ID fields to link STATEMENT and DATA rows together. The columns

Statement Text, Statement Isolation Level, and Compilation Environment

Description are not present in the DATA events.

The statement text and input data values that are audited are converted into the

database code page when they are stored on disk (all audited fields are stored in

the database code page). No error is returned if the code page of the input data is

not compatible with the database code page; the unconverted data will be logged

instead. Because each database has it’s own audit log, databases having different

code pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also

when issued implicitly as part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all

statements that affect which other statements are executed within a unit of work,

are audited. These statements are COMMIT, ROLLBACK, ROLLBACK TO

SAVEPOINT and SAVEPOINT.

Savepoint ID field

You can use the Savepoint ID field to track which statements were affected by a

ROLLBACK TO SAVEPOINT statement. An ordinary DML statement (such as

SELECT, INSERT, and so on) has the current savepoint ID audited. However, for

the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is rolled back to

will be audited instead. Therefore, every statement with a savepoint ID greater

than or equal to that ID will be rolled back, as demonstrated by the following

example. The table shows the sequence of statements run; all events with a

Savepoint ID greater than or equal to 2 will be rolled back. Only the value of 3

(from the first INSERT statement) is inserted into the table T1.

 Table 7. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT

statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

64 Database Security Guide

Table 7. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT

statement (continued)

Statement Savepoint ID

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option

Not all input values are audited when you specify the WITH DATA option. LOB,

LONG, XML and structured type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in

another policy associated with objects involved in the execution of the SQL

statement, then WITH DATA takes precedence and data is audited for that

particular statement. For example, if the audit policy associated with a user

specifies WITHOUT DATA, but the policy associated with a table specifies WITH

DATA, when that user accesses that table, the input data used for the statement is

audited.

You are not able to determine which rows were modified on a positioned-update

or positioned-delete statement. Only the execution of the underlying SELECT

statement is logged, not the individual FETCH. It is not possible from the

EXECUTE record to determine which row the cursor is on when the statement is

issued. When replaying the statement at a later time, it is only possible to issue the

SELECT statement to see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a

company requires that they retain the ability to retroactively go back up to seven

years to analyze the effects of any particular request against certain tables in their

database. To do this, they institute a policy of archiving their weekly backups and

associated log files such that they can reconstitute the database for any chosen

moment in time. They require that the database audit capture sufficient

information about every request made against the database to allow the replay and

analysis of any request against the relevant, restored database. This requirement

covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL

statement is issued, and the steps to archive the audit logs and later to extract and

analyze them.

1. Create an audit policy that audits the EXECUTE category and apply this policy

to the database:

CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA

 STATUS BOTH ERROR TYPE AUDIT

COMMIT

AUDIT DATABASE USING POLICY STATEMENTS

COMMIT

2. Regularly archive the audit log to create an archive copy.

Chapter 1. DB2 security model 65

The following statement should be run by the security administrator on a

regular basis, for example, once a week or once a day, depending on the

amount of data logged. These archived files can be kept for whatever period is

required. The procedure, SYSPROC.AUDIT_ARCHIVE, is called with two input

parameters: the path to the archive directory and -2, to indicate that the archive

should be run on all nodes:

CALL SYSPROC.AUDIT_ARCHIVE(’/auditarchive’, -2)

3. The security administrator uses the SYSPROC.AUDIT_LIST_LOGS table

function to examine all of the available audit logs from April 2006, to determine

which logs may contain the necessary data:

SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’/auditarchive’))

 AS T WHERE FILE LIKE ’db2audit.dbname.log.0.200604%’

FILE

...

db2audit.dbname.log.0.20060418235612

db2audit.dbname.log.0.20060419234937

db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs

should be in one file: db2audit.dbname.log.20060419234937. The timestamp

shows this file was archived at the end of the day for the day the auditors

want to see.

The security administrator uses this filename as input to the

SYSPROC.AUDIT_DELIM_EXTRACT stored procedure to extract the audit data

into delimited files. The audit data in these files can be loaded into DB2

database tables, where it can be analyzed to find the particular statement the

auditors are interested in. Even though the auditors are only interested in a

single SQL statement, multiple statements from the unit of work may need to

be examined in case they have any impact on the statement of interest.

5. In order to replay the statement, the security administrator must take the

following actions:

v Determine the exact statement to be issued from the audit record.

v Determine the user who issued the statement from the audit record.

v Recreate the exact permissions of the user at the time they issued the

statement, including any LBAC protection.

v Reproduce the compilation environment, by using the compilation

environment column in the audit record in combination with the SET

COMPILATION ENVIRONMENT statement.

v Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and

replay of the statement should be done on a second database system. The

security administrator, running as the user who issued the statement, can

reissue the statement as found in the statement text with any input variables

that are provided in the statement value data elements.

Audit facility management

Audit facility behavior

This topic provides background information to help you understand how the

timing of writing audit records to the log can affect database performance; how to

manage errors that occur within the audit facility; and how audit records are

generated in different situations.

66 Database Security Guide

Controlling the timing of writing audit records to the active log

The writing of the audit records to the active log can take place synchronously or

asynchronously with the occurrence of the events causing the generation of those

records. The value of the audit_buf_sz database manager configuration parameter

determines when the writing of audit records is done.

If the value of audit_buf_sz is zero (0), the writing is done synchronously. The event

generating the audit record waits until the record is written to disk. The wait

associated with each record causes the performance of the DB2 database to

decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done

asynchronously. The value of the audit_buf_sz when it is greater than zero is the

number of 4 KB pages used to create an internal buffer. The internal buffer is used

to keep a number of audit records before writing a group of them out to disk. The

statement generating the audit record as a result of an audit event will not wait

until the record is written to disk, and can continue its operation.

In the asynchronous case, it could be possible for audit records to remain in an

unfilled buffer for some time. To prevent this from happening for an extended

period, the database manager forces the writing of the audit records regularly. An

authorized user of the audit facility may also flush the audit buffer with an explicit

request. Also, the buffers are automatically flushed during an archive operation.

There are differences when an error occurs dependent on whether there is

synchronous or asynchronous record writing. In asynchronous mode there may be

some records lost because the audit records are buffered before being written to

disk. In synchronous mode there may be one record lost because the error could

only prevent at most one audit record from being written.

Managing audit facility errors

The setting of the ERRORTYPE audit facility parameter controls how errors are

managed between the DB2 database system and the audit facility. When the audit

facility is active, and the setting of the ERRORTYPE audit facility parameter is

AUDIT, then the audit facility is treated in the same way as any other part of DB2

database. An audit record must be written (to disk in synchronous mode; or to the

audit buffer in asynchronous mode) for an audit event associated with a statement

to be considered successful. Whenever an error is encountered when running in

this mode, a negative SQLCODE is returned to the application for the statement

generating an audit record.

If the error type is set to NORMAL, then any error from db2audit is ignored and the

operation’s SQLCODE is returned.

Audit records generated in different situations

Depending on the API or query statement and the audit settings, none, one, or

several audit records may be generated for a particular event. For example, an SQL

UPDATE statement with a SELECT subquery may result in one audit record

containing the results of the authorization check for UPDATE privilege on a table

and another record containing the results of the authorization check for SELECT

privilege on a table.

Chapter 1. DB2 security model 67

For dynamic data manipulation language (DML) statements, audit records are

generated for all authorization checking at the time that the statement is prepared.

Reuse of those statements by the same user will not be audited again since no

authorization checking takes place at that time. However, if a change has been

made to one of the catalog tables containing privilege information, then in the next

unit of work, the statement privileges for the cached dynamic SQL or XQuery

statements are checked again and one or more new audit records created.

For a package containing only static DML statements, the only auditable event that

could generate an audit record is the authorization check to see if a user has the

privilege to execute that package. The authorization checking and possible audit

record creation required for the static SQL or XQuery statements in the package is

carried out at the time the package is precompiled or bound. The execution of the

static SQL or XQuery statements within the package is auditable using the

EXECUTE category. When a package is bound again either explicitly by the user,

or implicitly by the system, audit records are generated for the authorization

checks required by the static SQL or XQuery statements.

For statements where authorization checking is performed at statement execution

time (for example, data definition language (DDL), GRANT, and REVOKE

statements), audit records are generated whenever these statements are used.

Note: When executing DDL, the section number recorded for all events (except the

context events) in the audit record will be zero (0) no matter what the actual

section number of the statement might have been.

Audit facility tips and techniques

Archiving the audit log

You should archive the audit log on a regular basis. Archiving the audit log moves

the current audit log to an archive directory while the server begins writing to a

new, active audit log. The name of each archived log file includes a timestamp that

helps you identify log files of interest for later analysis.

For long term storage, you may want to zip up groups of archived files.

For archived audit logs that you are no longer interested in, the instance owner can

simply delete the files from the operating system.

Error handling

When you create an audit policy, you should use the error type AUDIT, unless you

are just creating a test audit policy. For example, if the error type is set to AUDIT,

and an error occurs, such as running out of disk space, then an error is returned.

The error condition must be corrected before any more auditable actions can

continue. However, if the error type had been set to NORMAL, the logging would

simply fail and no error is returned to the user. Operation continues as if the error

did not happen.

If a problem occurs during archive, such as running out of disk space in the

archive path, or the archive path does not exist, the archive process fails and an

interim log file with the file extension .bk is generated in the audit log data path,

for example, db2audit.instance.log.0.20070508172043640941.bk. After the problem is

resolved (by allocating sufficient disk space in the archive path, or by creating the

archive path) you must move this interim log to the archive path. Then, you can

treat it in the same way as a successfully archived log.

68 Database Security Guide

DDL statement restrictions

Some data definition language (DDL) statements, called AUDIT exclusive SQL

statements, do not take effect until the next unit of work. Therefore, you are

advised to use a COMMIT statement immediately after each of these statements.

The AUDIT exclusive SQL statements are:

v AUDIT

v CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY

v DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context

being dropped is associated with an audit policy

Table format for holding archived data may change

The security administrator can use the SYSPROC.AUDIT_DEL_EXTRACT stored

procedure, or the system administrator can use the db2audit extract command, to

extract audit records from the archived audit log files into delimited files. You can

load the audit data from the delimited files into DB2 database tables for analysis.

The format of the tables you need to create to hold the audit data may change

from release to release.

Important: The script, db2audit.ddl, creates tables of the correct format to contain

the audit records. You should expect to run db2audit.ddl for each release, as

columns may be added or the size of an existing column may change.

Using CHECKING events

In most cases, when working with CHECKING events, the object type field in the

audit record is the object being checked to see if the required privilege or authority

is held by the user ID attempting to access the object. For example, if a user

attempts to ALTER a table by adding a column, then the CHECKING event audit

record indicates the access attempted was “ALTER” and the object type being

checked was “TABLE” (not the column, because it is table privileges that are

checked).

However, when the checking involves verifying if a database authority exists to

allow a user ID to CREATE or BIND an object, or to delete an object, then

although there is a check against the database, the object type field will specify the

object being created, bound, or dropped (rather than the database itself).

When creating an index on a table, the privilege to create an index is required,

therefore the CHECKING event audit record has an access attempt type of “index”

rather than “create”.

Audit records created for binding a package

When binding a package that already exists, then an OBJMAINT event audit

record is created for the DROP of the package and then another OBJMAINT event

audit record is created for the CREATE of the new copy of the package.

Using CONTEXT event information after ROLLBACK

Data Definition Language (DDL) may generate OBJMAINT or SECMAINT events

that are logged as successful. It is possible however that following the logging of

the event, a subsequent error may cause a ROLLBACK to occur. This would leave

Chapter 1. DB2 security model 69

the object as not created; or the GRANT or REVOKE actions as incomplete. The

use of CONTEXT events becomes important in this case. Such CONTEXT event

audit records, especially the statement that ends the event, indicates the nature of

the completion of the attempted operation.

The load delimiter

When extracting audit records in a delimited format suitable for loading into a

DB2 database table, you should be clear regarding the delimiter used within the

statement text field. This can be done when extracting the delimited file, using:

 db2audit extract delasc delimiter <load delimiter>

The load delimiter can be a single character (such as ″) or a four-byte string

representing a hexadecimal value (such as “0xff”). Examples of valid commands

are:

 db2audit extract delasc

 db2audit extract delasc delimiter !

 db2audit extract delasc delimiter 0xff

If you have used anything other than the default load delimiter as the delimiter

when extracting, you should use the MODIFIED BY option on the LOAD

command. A partial example of the LOAD command with “0xff” used as the

delimiter follows:

 db2 load from context.del of del modified by chardel0xff replace into ...

This will override the default load character string delimiter which is ″ (double

quote).

70 Database Security Guide

Chapter 2. Roles

Roles simplify the administration and management of privileges by offering an

equivalent capability as groups but without the same restrictions. A role is a

database object that groups together one or more privileges and can be assigned to

users, groups, PUBLIC, or other roles by using a GRANT statement, or can be

assigned to a trusted context by using a CREATE TRUSTED CONTEXT or ALTER

TRUSTED CONTEXT statement. A role can be specified for the SESSION_USER

ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a

database system:

v Security administrators can control access to their databases in a way that

mirrors the structure of their organizations (they can create roles in the database

that map directly to the job functions in their organizations).

v Users are granted membership in the roles that reflect their job responsibilities.

As their job responsibilities change, their membership in roles can be easily

granted and revoked.

v The assignment of privileges is simplified. Instead of granting the same set of

privileges to each individual user in a particular job function, the administrator

can grant this set of privileges to a role representing that job function and then

grant that role to each user in that job function.

v A role’s privileges can be updated and all users who have been granted that role

receive the update; the administrator does not need to update the privileges for

every user on an individual basis.

v The privileges and authorities granted to roles are always used when you create

views, triggers, materialized query tables (MQTs), static SQL and SQL routines,

whereas privileges and authorities granted to groups (directly or indirectly) are

not used.

This is because the DB2 database system cannot determine when membership in

a group changes, as the group is managed by third-party software (for example,

the operating system or an LDAP directory). Because roles are managed inside

the database, the DB2 database system can determine when authorization

changes and act accordingly. Roles granted to groups are not considered, due to

the same reason groups are not considered.

v All the roles assigned to a user are enabled when that user establishes a

connection, so all privileges and authorities granted to roles are taken into

account when a user connects. Roles cannot be explicitly enabled or disabled.

v The security administrator can delegate management of a role to others.

All DB2 privileges and authorities that can be granted within a database can be

granted to a role, with the exception of security administrator (SECADM)

authority. For example, a role can be granted any of the following authorities and

privileges:

v DBADM, LOAD, and IMPLICIT_SCHEMA database authorities

v CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD

CREATE_EXTERNAL_ROUTINE, or QUIESCE_CONNECT database authorities

v Any database object privilege (including CONTROL)

© Copyright IBM Corp. 1993, 2009 71

A user’s roles are automatically enabled and considered for authorization when a

user connects to a database; you do not need to activate a role by using the SET

ROLE statement. For example, when you create a view, a materialized query table

(MQT), a trigger, a package, or an SQL routine, the privileges that you gain

through roles apply. However, privileges that you gain through roles granted to

groups of which you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH

ADMIN OPTION clause of the GRANT statement to delegate management of the

role to another user, so that the other user can control the role membership.

Restrictions

There are a few restrictions in the use of roles:

v A role cannot own database objects.

v A role cannot be granted security administrator (SECADM) authority.

v Permissions and roles granted to groups are not considered when you create the

following database objects:

– Packages containing static SQL

– Views

– Materialized query tables (MQT)

– Triggers

– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or

indirectly (such as through a role hierarchy), are considered when creating these

objects.

Creating and granting membership in roles

The security administrator holds the authority to create, drop, grant, revoke, and

comment on a role. The security administrator uses the GRANT (Role) statement to

grant membership in a role to an authorization ID and uses the REVOKE (Role)

statement to revoke membership in a role from an authorization ID.

The security administrator can delegate the management of membership in a role

to an authorization ID by granting the authorization ID membership in the role

with the WITH ADMIN OPTION. The WITH ADMIN OPTION clause of the

GRANT (Role) statement gives another user the ability to:

v Grant roles to others.

v Revoke roles from others.

v Comment on the role.

The WITH ADMIN OPTION clause does not give the ability to:

v Drop the role.

v Revoke the WITH ADMIN OPTION for a role from an authorization ID.

v Grant WITH ADMIN OPTION to someone else (if you do not hold SECADM

authority).

After the security administrator has created a role, the database administrator can

use the GRANT statement to assign authorities and privileges to the role. All DB2

privileges and authorities that can be granted within a database can be granted to

72 Database Security Guide

a role with the exception of SECADM authority. Instance level authorities, such as

SYSADM authority, cannot be assigned to a role.

The security administrator, or any user who the security administrator has granted

membership in a role with WITH ADMIN OPTION can use the GRANT (Role)

statement to grant membership in that role to other users, groups, PUBLIC or

roles. A user may have been granted membership in a role with WITH ADMIN

OPTION either directly, or indirectly through PUBLIC, a group or a role.

All the roles assigned to a user are enabled when that user establishes a session.

All the privileges and authorities associated with a user’s roles are taken into

account when the DB2 database system checks for authorization. Some database

systems use the SET ROLE statement to activate a particular role. The DB2

database system supports SET ROLE to provide compatibility with other products

using the SET ROLE statement. In a DB2 database system, the SET ROLE

statement checks whether the session user is a member of the role and returns an

error if they are not.

To revoke a user’s membership in a role, the security administrator, or a user who

holds WITH ADMIN OPTION privilege on the role, uses the REVOKE (Role)

statement.

Example

A role has a certain set of privileges and a user who is granted membership in this

role inherits those privileges. This inheritance of privileges eliminates managing

individual privileges when reassigning the privileges of one user to another user.

The only operations required when using roles is to revoke membership in the role

from one user and grant membership in the role to the other user.

For example, the employees BOB and ALICE, working in department DEV, have

the privilege to SELECT on the tables SERVER, CLIENT and TOOLS. One day,

management decides to move them to a new department, QA, and the database

administrator has to revoke their privilege to select on tables SERVER, CLIENT

and TOOLS. Department DEV later hires a new employee, TOM, and the database

administrator has to grant SELECT privilege on tables SERVER, CLIENT and

TOOLS to TOM.

When using roles, the following steps occur:

1. The security administrator creates a role, DEVELOPER:

CREATE ROLE DEVELOPER

2. The database administrator (who holds DBADM authority) grants SELECT on

tables SERVER, CLIENT, and TOOLS to role DEVELOPER:

GRANT SELECT ON TABLE SERVER TO ROLE DEVELOPER

GRANT SELECT ON TABLE CLIENT TO ROLE DEVELOPER

GRANT SELECT ON TABLE TOOLS TO ROLE DEVELOPER

3. The security administrator grants the role DEVELOPER to the users in

department DEV, BOB and ALICE:

GRANT ROLE DEVELOPER TO USER BOB, USER ALICE

4. When BOB and ALICE leave department DEV, the security administrator

revokes the role DEVELOPER from users BOB and ALICE:

REVOKE ROLE DEVELOPER FROM USER BOB, USER ALICE

5. When TOM is hired in department DEV, the security administrator grants the

role DEVELOPER to user TOM:

Chapter 2. Roles 73

GRANT ROLE DEVELOPER TO USER TOM

Role hierarchies

A role hierarchy is formed when one role is granted membership in another role.

A role contains another role when the other role is granted to the first role. The

other role inherits all of the privileges of the first role. For example, if the role

DOCTOR is granted to the role SURGEON, then SURGEON is said to contain

DOCTOR. The role SURGEON inherits all the privileges of role DOCTOR.

Cycles in role hierarchies are not allowed. A cycle occurs if a role is granted in

circular way such that one role is granted to another role and that other role is

granted to the original role. For example, the role DOCTOR is granted to role

SURGEON, and then the role SURGEON is granted back to the role DOCTOR. If

you create a cycle in a role hierarchy, an error is returned (SQLSTATE 428GF).

Example of building a role hierarchy

The following example shows how to build a role hierarchy to represent the

medical levels in a hospital.

Consider the following roles: DOCTOR, SPECIALIST, and SURGEON. A role

hierarchy is built by granting a role to another role, but without creating cycles.

The role DOCTOR is granted to role SPECIALIST, and role SPECIALIST is granted

to role SURGEON.

Granting role SURGEON to role DOCTOR would create a cycle and is not allowed.

The security administrator runs the following SQL statements to build the role

hierarchy:

CREATE ROLE DOCTOR

CREATE ROLE SPECIALIST

CREATE ROLE SURGEON

GRANT ROLE DOCTOR TO ROLE SPECIALIST

GRANT ROLE SPECIALIST TO ROLE SURGEON

Effect of revoking privileges from roles

When privileges are revoked, this can sometimes cause dependent database objects,

such as views, packages or triggers, to become invalid or inoperative.

The following examples show what happens to a database object when some

privileges are revoked from an authorization identifier and privileges are held

through a role or through different means.

Example of revoking privileges from roles

1. The security administrator creates the role DEVELOPER and grants the user

BOB membership in this role:

CREATE ROLE DEVELOPER

GRANT ROLE DEVELOPER TO USER BOB

2. User ALICE creates a table, WORKITEM:

CREATE TABLE WORKITEM (x int)

74 Database Security Guide

3. The database administrator grants SELECT and INSERT privileges on table

WORKITEM to PUBLIC and also to the role DEVELOPER:

GRANT SELECT ON TABLE ALICE.WORKITEM TO PUBLIC

GRANT INSERT ON TABLE ALICE.WORKITEM TO PUBLIC

GRANT SELECT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER

GRANT INSERT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER

4. User BOB creates a view, PROJECT, that uses the table WORKITEM, and a

package, PKG1, that depends on the table WORKITEM:

CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM

PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1

5. If the database administrator revokes SELECT privilege on table

ALICE.WORKITEM from PUBLIC, then the view BOB.PROJECT remains

operative and package PKG1 remains valid because the view definer, BOB, still

holds the privileges required through his membership in the role DEVELOPER:

REVOKE SELECT ON TABLE ALICE.WORKITEM FROM PUBLIC

6. If the database administrator revokes SELECT privilege on table

ALICE.WORKITEM from the role DEVELOPER, the view BOB.PROJECT

becomes inoperative and package PKG1 becomes invalid because the view and

package definer, BOB, does not hold the required privileges through other

means:

REVOKE SELECT ON TABLE ALICE.WORKITEM FROM ROLE DEVELOPER

Example of revoking DBADM authority

In this example, the role DEVELOPER holds DBADM authority and is granted to

user BOB.

1. The security administrator creates the role DEVELOPER:

CREATE ROLE DEVELOPER

2. The system administrator grants DBADM authority to the role DEVELOPER:

GRANT DBADM ON DATABASE TO ROLE DEVELOPER

3. The security administrator grants user BOB membership in this role:

GRANT ROLE DEVELOPER TO USER BOB

4. User ALICE creates a table, WORKITEM:

CREATE TABLE WORKITEM (x int)

5. User BOB creates a view PROJECT that uses table WORKITEM, a package

PKG1 that depends on table WORKITEM, and a trigger, TRG1, that also

depends on table WORKITEM:

CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM

PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1

CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

 FOR EACH STATEMENT MODE DB2SQL

 INSERT INTO ALICE.WORKITEM VALUES (1)

6. The security administrator revokes the role DEVELOPER from user BOB:

REVOKE ROLE DEVELOPER FROM USER BOB

Revoking the role DEVELOPER causes the user BOB to lose DBADM authority

because the role that held that authority was revoked. The view, package, and

trigger are affected as follows:

v View BOB. PROJECT is still valid.

v Package PKG1 becomes invalid.

v Trigger BOB.TRG1 is still valid.

Chapter 2. Roles 75

View BOB.PROJECT and trigger BOB.TRG1 are usable while package PKG1 is

not usable. View and trigger objects created by an authorization ID holding

DBADM authority are not affected when DBADM authority is lost.

Delegating role maintenance by using the WITH ADMIN OPTION clause

Using the WITH ADMIN OPTION clause of the GRANT (Role) SQL statement, a

security administrator can delegate the management and control of membership in

a role to someone else. The WITH ADMIN OPTION clause gives another user the

authority to grant membership in the role to other users, to revoke membership in

the role from other members of the role, and to comment on a role, but not to drop

the role.

The WITH ADMIN OPTION clause does not give another user the authority to

grant WITH ADMIN OPTION on a role to another user. It also does not give the

authority to revoke WITH ADMIN OPTION for a role from another authorization

ID.

Example demonstrating use of the WITH ADMIN OPTION clause

1. A security administrator creates the role, DEVELOPER, and grants the new role

to user BOB using the WITH ADMIN OPTION clause:

CREATE ROLE DEVELOPER

GRANT ROLE DEVELOPER TO USER BOB WITH ADMIN OPTION

2. User BOB can grant membership in the role to and revoke membership from

the role from other users, for example, ALICE:

GRANT ROLE DEVELOPER TO USER ALICE

REVOKE ROLE DEVELOPER FROM USER ALICE

3. User BOB cannot drop the role or grant WITH ADMIN OPTION to another

user (only a security administrator can perform these two operations). These

commands issued by BOB will fail:

DROP ROLE DEVELOPER - FAILURE!

 - only a security administrator is allowed to drop the role

GRANT ROLE DEVELOPER TO USER ALICE WITH ADMIN OPTION - FAILURE!

 - only a security administrator can grant WITH ADMIN OPTION

4. User BOB cannot revoke role administration privileges (conferred by WITH

ADMIN OPTION) from users for role DEVELOPER, because he does not have

security administrator (SECADM) authority. When BOB issues the following

command, it fails:

REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER SANJAY - FAILURE!

5. A security administrator is allowed to revoke the role administration privileges

for role DEVELOPER (conferred by WITH ADMIN OPTION) from user BOB ,

and user BOB still has the role DEVELOPER granted:

REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER BOB

Alternatively, if a security administrator simply revokes the role DEVELOPER

from user BOB, then BOB loses all the privileges he received by being a

member of the role DEVELOPER and the authority on the role he received

through the WITH ADMIN OPTION clause:

REVOKE ROLE DEVELOPER FROM USER BOB

Roles compared to groups

Privileges and authorities granted to groups are not considered when creating

views, materialized query tables (MQTs), SQL routines, triggers, and packages

containing static SQL. Avoid this restriction by using roles instead of groups.

76 Database Security Guide

Roles allow users to create database objects using their privileges acquired through

roles, which are controlled by the DB2 database system. Groups and users are

controlled externally from the DB2 database system, for example, by an operating

system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume there are three groups, DEVELOPER_G, TESTER_G and SALES_G. The

users BOB, ALICE, and TOM are members of these groups, as shown in the

following table:

 Table 8. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER and SALES

to be used instead of the groups.

CREATE ROLE DEVELOPER

CREATE ROLE TESTER

CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting

the membership of users in groups was the system administrator’s

responsibility):

GRANT ROLE DEVELOPER TO USER BOB

GRANT ROLE TESTER TO USER ALICE, USER TOM

GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or

authorities as were held by the groups, for example:

GRANT <privilege> ON <object> TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups,

as well as ask the system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a

role

This example shows that user BOB can successfully create a trigger, TRG1, when

he holds the necessary privilege through the role DEVELOPER.

1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE’s table is granted to role DEVELOPER by the

database administrator.

GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

3. User BOB successfully creates the trigger, TRG1, because he is a member of the

role, DEVELOPER.

CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM

 FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Chapter 2. Roles 77

Using roles after migrating from IBM Informix Dynamic Server

If you have migrated from IBM Informix® Dynamic Server to the DB2 database

system and are using roles there are a few things you need to be aware of.

The Informix Dynamic Server (IDS) SQL statement, GRANT ROLE, provides the

clause WITH GRANT OPTION. The DB2 database system GRANT ROLE

statement provides the clause WITH ADMIN OPTION (this conforms to the SQL

standard) that provides the same functionality. During an IDS to DB2 database

system migration, after the dbschema tool generates CREATE ROLE and GRANT

ROLE statements, the dbschema tool replaces any occurrences of WITH GRANT

OPTION with WITH ADMIN OPTION.

In an IDS database system, the SET ROLE statement activates a particular role. The

DB2 database system supports the SET ROLE statement, but only to provide

compatibility with other products using that SQL statement. The SET ROLE

statement checks whether the session user is a member of the role and returns an

error if they are not.

Example dbschema output

Assume that an IDS database contains the roles DEVELOPER, TESTER and SALES.

Users BOB, ALICE, and TOM have different roles granted to each of them; the role

DEVELOPER is granted to BOB, the role TESTER granted to ALICE, and the roles

TESTER and SALES granted to TOM. To migrate to the DB2 database system, use

the dbschema tool to generate the CREATE ROLE and GRANT ROLE statements

for the database:

CREATE ROLE DEVELOPER

CREATE ROLE TESTER

CREATE ROLE SALES

GRANT DEVELOPER TO BOB

GRANT TESTER TO ALICE, TOM

GRANT SALES TO TOM

You must create the database in the DB2 database system, and then you can run

the above statements in that database to recreate the roles and assignment of the

roles.

78 Database Security Guide

Chapter 3. Using trusted contexts and trusted connections

You can establish an explicit trusted connection by making a request within an

application when a connection to a DB2 database is established. The security

administrator must have previously defined a trusted context, using the CREATE

TRUSTED CONTEXT statement, with attributes matching those of the connection

you are establishing (see Step 1, later).

The API you use to request an explicit trusted connection when you establish a

connection depends on the type of application you are using (see the table in Step

2).

After you have established an explicit trusted connection, the application can

switch the user ID of the connection to a different user ID using the appropriate

API for the type of application (see the table in Step 3).

1. The security administrator defines a trusted context in the server by using the

CREATE TRUSTED CONTEXT statement. For example:

CREATE TRUSTED CONTEXT MYTCX

 BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

 ENABLE

2. To establish a trusted connection, use one of the following APIs in your

application:

 Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection,

getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the

following APIs in your application:

 Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords:

TrustedContextSystemUserID and

TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user

ID, depending on the definition of the trusted context object associated with the

explicit trusted connection. For example, suppose that the security

administrator creates the following trusted context object:

© Copyright IBM Corp. 1993, 2009 79

CREATE TRUSTED CONTEXT CTX1

 BASED UPON CONNECTION USING SYSTEM AUTHID USER1

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

 WITH USE FOR USER2 WITH AUTHENTICATION,

 USER3 WITHOUT AUTHENTICATION

 ENABLE

Further, suppose that an explicit trusted connection is established. A request to

switch the user ID on the trusted connection to USER3 without providing

authentication information is allowed because USER3 is defined as a user of

trusted context CTX1 for whom authentication is not required. However, a

request to switch the user ID on the trusted connection to USER2 without

providing authentication information will fail because USER2 is defined as a

user of trusted context CTX1 for whom authentication information must be

provided.

Example of establishing an explicit trusted connection and

switching the user

In the following example, a middle-tier server needs to issue some database

requests on behalf of an end-user, but does not have access to the end-user’s

credentials to establish a database connection on behalf of that end-user.

You can create a trusted context object on the database server that allows the

middle-tier server to establish an explicit trusted connection to the database. After

establishing an explicit trusted connection, the middle-tier server can switch the

current user ID of the connection to a new user ID without the need to

authenticate the new user ID at the database server. The following CLI code

snippet demonstrates how to establish a trusted connection using the trusted

context, MYTCX, defined in Step 1, earlier, and how to switch the user on the

trusted connection without authentication.

int main(int argc, char *argv[])

{

 SQLHANDLE henv; /* environment handle */

 SQLHANDLE hdbc1; /* connection handle */

 char origUserid[10] = "newton";

 char password[10] = "test";

 char switchUserid[10] = "zurbie";

 char dbName[10] = "testdb";

// Allocate the handles

SQLAllocHandle(SQL_HANDLE_ENV, &henv);

SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute

SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,

SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection

SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,

password, SQL_NTS);

//Perform some work under user ID "newton"

.

 // Commit the work

SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Switch the user ID on the trusted connection

SQLSetConnectAttr(hdbc1,

SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,

80 Database Security Guide

SQL_IS_POINTER

);

//Perform new work using user ID "zurbie"

.

//Commit the work

SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database

SQLDisconnect(hdbc1);

 return 0;

} /* end of main */

When does the user ID actually get switched?

After the command to switch the user on the trusted connection is issued, the

switch user request is not performed until the next statement is sent to the server.

This is demonstrated by the following example where the list applications

command shows the original user ID until the next statement is issued.

1. Establish an explicit trusted connection with USERID1.

2. Issue the switch user command, such as getDB2Connection for USERID2.

3. Run db2 list applications. It still shows that USERID1 is connected.

4. Issue a statement on the trusted connection, such as executeQuery("values

current sqlid"), to perform the switch user request at the server.

5. Run db2 list applications again. It now shows that USERID2 is connected.

Trusted contexts and trusted connections

A trusted context is a database object that defines a trust relationship for a

connection between the database and an external entity such as an application

server.

The trust relationship is based upon the following set of attributes:

v System authorization ID: Represents the user that establishes a database

connection

v IP address (or domain name): Represents the host from which a database

connection is established

v Data stream encryption: Represents the encryption setting (if any) for the data

communication between the database server and the database client

When a user establishes a database connection, the DB2 database system checks

whether the connection matches the definition of a trusted context object in the

database. When a match occurs, the database connection is said to be trusted.

A trusted connection allows the initiator of this trusted connection to acquire

additional capabilities that may not be available outside the scope of the trusted

connection. The additional capabilities vary depending on whether the trusted

connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:

v Switch the current user ID on the connection to a different user ID with or

without authentication

v Acquire additional privileges via the role inheritance feature of trusted contexts

Chapter 3. Using trusted contexts and trusted connections 81

An implicit trusted connection is a trusted connection that is not explicitly

requested; the implicit trusted connection results from a normal connection request

rather than an explicit trusted connection request. No application code changes are

needed to obtain an implicit connection. Also, whether you obtain an implicit

trusted connection or not has no effect on the connect return code (when you

request an explicit trusted connection, the connect return code indicates whether

the request succeeds or not). The initiator of an implicit trusted connection can

only acquire additional privileges via the role inheritance feature of trusted

contexts; they cannot switch the user ID.

How using trusted contexts enhances security

The three-tiered application model extends the standard two-tiered client and

server model by placing a middle tier between the client application and the

database server. It has gained great popularity in recent years particularly with the

emergence of web-based technologies and the Java™ 2 Enterprise Edition (J2EE)

platform. An example of a software product that supports the three-tier application

model is IBM WebSphere Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating

the users running the client applications and for managing the interactions with

the database server. Traditionally, all the interactions with the database server

occur through a database connection established by the middle tier using a

combination of a user ID and a credential that identify that middle tier to the

database server. In other words, the database server uses the database privileges

associated with the middle tier’s user ID for all authorization checking and

auditing that must occur for any database access, including access performed by

the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions

with the database server (for example, a user request) occur under the middle

tier’s authorization ID raises several security concerns, which can be summarized

as follows:

v Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the

database for access control purposes.

v Diminished user accountability

Accountability through auditing is a basic principle in database security. Not

knowing the user’s identity makes it difficult to distinguish the transactions

performed by the middle tier for its own purpose from those performed by the

middle tier on behalf of a user.

v Over granting of privileges to the middle tier’s authorization ID

The middle tier’s authorization ID must have all the privileges necessary to

execute all the requests from all the users. This has the security issue of enabling

users who do not need access to certain information to obtain access anyway.

v Weakened security

In addition to the privilege issue raised in the previous point, the current

approach requires that the authorization ID used by the middle tier to connect

must be granted privileges on all resources that might be accessed by user

requests. If that middle-tier authorization ID is ever compromised, then all those

resources will be exposed.

v ″Spill over″ between users of the same connection

Changes by a previous user can affect the current user.

82 Database Security Guide

Clearly, there is a need for a mechanism whereby the actual user’s identity and

database privileges are used for database requests performed by the middle tier on

behalf of that user. The most straightforward approach of achieving this goal

would be for the middle-tier to establish a new connection using the user’s ID and

password, and then direct the user’s requests through that connection. Although

simple, this approach suffers from several drawbacks which include the following:

v Inapplicability for certain middle tiers. Many middle-tier servers do not have

the user authentication credentials needed to establish a connection.

v Performance overhead. There is an obvious performance overhead associated

with creating a new physical connection and re-authenticating the user at the

database server.

v Maintenance overhead. In situations where you are not using a centralized

security set up or are not using single sign-on, there is maintenance overhead in

having two user definitions (one on the middle tier and one at the server). This

requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator

can create a trusted context object in the database that defines a trust relationship

between the database and the middle-tier. The middle-tier can then establish an

explicit trusted connection to the database, which gives the middle tier the ability

to switch the current user ID on the connection to a different user ID, with or

without authentication. In addition to solving the end-user identity assertion

problem, trusted contexts offer another advantage. This is the ability to control

when a privilege is made available to a database user. The lack of control on when

privileges are available to a user can weaken overall security. For example,

privileges may be used for purposes other than they were originally intended. The

security administrator can assign one or more privileges to a role and assign that

role to a trusted context object. Only trusted database connections (explicit or

implicit) that match the definition of that trusted context can take advantage of the

privileges associated with that role.

Enhancing performance

When you use trusted connections, you can maximize performance because of the

following advantages:

v No new connection is established when the current user ID of the connection is

switched.

v If the trusted context definition does not require authentication of the user ID to

switch to, then the overhead associated with authenticating a new user at the

database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1

 BASED UPON CONNECTION USING SYSTEM AUTHID USER2

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

 DEFAULT ROLE managerRole

 ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the DB2

database system returns a warning (SQLSTATE 01679, SQLCODE +20360) to

indicate that a trusted connection could not be established, and that user user1

simply got a non-trusted connection. However, if user user2 requests a trusted

connection from IP address 192.0.2.1, the request is honored because the connection

attributes are satisfied by the trusted context CTX1. Now that use user2 has

Chapter 3. Using trusted contexts and trusted connections 83

established a trusted connection, he or she can now acquire all the privileges and

authorities associated with the trusted context role managerRole. These privileges

and authorities may not be available to user user2 outside the scope of this trusted

connection

Role membership inheritance through a trusted context

The current user of a trusted connection can acquire additional privileges through

the automatic inheritance of a role through the trusted context, if this was specified

by the security administrator as part of the relevant trusted context definition.

A role can be inherited by all users of the trusted connection by default. The

security administrator can also use the trusted context definition to specify a role

for specific users to inherit.

The active roles that a session authorization ID can hold while on a trusted

connection are:

v The roles of which the session authorization ID is normally considered a

member, plus

v Either the trusted context default role or the trusted context user-specific role, if

they are defined

Note:

v If you configure user authentication using a custom security plugin that is built

such that the system authorization ID and the session authorization ID produced

by this security plugin upon a successful connection are different from each

other, then a trusted contexts role cannot be inherited through that connection,

even if it is a trusted connection.

v Trusted context privileges acquired through a role are effective only for dynamic

DML operations. They are not effective for:

– DDL operations

– Non-dynamic SQL (operations involving static SQL statements such as BIND,

REBIND, implicit rebind, incremental bind, and so on)

Acquiring trusted context user-specific privileges

The security administrator can use the trusted context definition to associate roles

with a trusted context so that:

v All users of the trusted connection can inherit a specified role by default

v Specific users of the trusted connection can inherit a specified role

When the user on a trusted connection is switched to a new authorization ID and a

trusted context user-specific role exists for this new authorization ID, the

user-specific role overrides the trusted context default role, if one exists, as

demonstrated in the example.

Example of creating a trusted context that assigns a default role

and a user-specific role

Suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1

 BASED UPON CONNECTION USING SYSTEM AUTHID USER1

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

84 Database Security Guide

WITH USE FOR USER2 WITH AUTHENTICATION,

 USER3 WITHOUT AUTHENTICATION

 DEFAULT ROLE AUDITOR

 ENABLE

When USER1 establishes a trusted connection, the privileges granted to the role

AUDITOR are inherited by this authorization ID. Similarly, these same privileges

are also inherited by USER3 when the current authorization ID on the trusted

connection is switched to his or her user ID. (If the user ID of the connection is

switched to USER2 at some point, then USER2 would also inherit the trusted

context default role, AUDITOR.) The security administrator may choose to have

USER3 inherit a different role than the trusted context default role. They can do so

by assigning a specific role to this user as follows:

CREATE TRUSTED CONTEXT CTX1

 BASED UPON CONNECTION USING SYSTEM AUTHID USER1

 ATTRIBUTES (ADDRESS ’192.0.2.1’)

 WITH USE FOR USER2 WITH AUTHENTICATION,

 USER3 WITHOUT AUTHENTICATION ROLE OTHER_ROLE

 DEFAULT ROLE AUDITOR

 ENABLE

When the current user ID on the trusted connection is switched to USER3, this

user no longer inherits the trusted context default role. Rather, they inherit the

specific role, OTHER_ROLE, assigned to him or her by the security administrator.

Rules for switching the user ID on an explicit trusted connection

On an explicit trusted connection, you can switch the user ID of the connection to

a different user ID. Certain rules apply.

 1. If the switch request is not made from an explicit trusted connection, and the

switch request is sent to the server for processing, the connection is shut

down and an error message is returned (SQLSTATE 08001, SQLCODE -30082

with reason code 41).

 2. If the switch request is not made on a transaction boundary, the transaction is

rolled back, and the switch request is sent to the server for processing, the

connection is put into an unconnected state and an error message is returned

(SQLSTATE 58009, SQLCODE -30020).

 3. If the switch request is made from within a stored procedure, an error

message is returned (SQLCODE -30090, reason code 29), indicating this is an

illegal operation in this environment. The connection state is maintained and

the connection is not placed into an unconnected state. Subsequent requests

may be processed.

 4. If the switch request is delivered to the server on an instance attach (rather

than a database connection), the attachment is shut down and an error

message is returned (SQLCODE -30005).

 5. If the switch request is made with an authorization ID that is not allowed on

the trusted connection, error (SQLSTATE 42517, SQLCODE -20361) is returned,

and the connection is put in an unconnected state.

 6. If the switch request is made with an authorization ID that is allowed on the

trusted connection WITH AUTHENTICATION, but the appropriate

authentication token is not provided, error (SQLSTATE 42517, SQLCODE

-20361) is returned, and the connection is put in an unconnected state.

 7. If the trusted context object associated with the trusted connection is disabled,

and a switch request for that trusted connection is made, error (SQLSTATE

42517, SQLCODE -20361) is returned, and the connection is put in an

unconnected state.

Chapter 3. Using trusted contexts and trusted connections 85

In this case, the only switch user request that is accepted is one that specifies

the user ID that established the trusted connection or the NULL user ID. If a

switch to the user ID that established the trusted connection is made, this user

ID does not inherit any trusted context role (neither the trusted context default

role nor the trusted context user-specific role).

 8. If the system authorization ID attribute of the trusted context object associated

with the trusted connection is changed, and a switch request for that trusted

connection is made, error (SQLSTATE 42517, SQLCODE -20361) is returned,

and the connection is put in an unconnected state.

In this case, the only switch user request that is accepted is one that specifies

the user ID that established the trusted connection or the NULL user ID. If a

switch to the user ID that established the trusted connection is made, this user

ID does not inherit any trusted context role (neither the trusted context default

role nor the trusted context user-specific role).

 9. If the trusted context object associated with the trusted connection is dropped,

and a switch request for that trusted connection is made, error (SQLSTATE

42517, SQLCODE -20361) is returned, and the connection is put in an

unconnected state.

In this case, the only switch user request that is accepted is one that specifies

the user ID that established the trusted connection or the NULL user ID. If a

switch to the user ID that established the trusted connection is made, this user

ID does not inherit any trusted context role (neither the trusted context default

role nor the trusted context user-specific role).

10. If the switch request is made with a user ID allowed on the trusted

connection, but that user ID does not hold CONNECT privilege on the

database, the connection is put in an unconnected state and an error message

is returned (SQLSTATE 08004, SQLCODE -1060).

11. If the trusted context system authorization ID appears in the WITH USE FOR

clause, the DB2 database system honors the authentication setting for the

system authorization ID on switch user request to switch back to the system

authorization ID. If the trusted context system authorization ID does not

appear in the WITH USE FOR clause, then a switch user request to switch

back to the system authorization ID is always allowed even without

authentication.

Note: When the connection is put in the unconnected state, the only requests that

are accepted and do not result in returning the error ″The application state is in

error. A database connection does not exist.″ (SQLCODE -900) are:

v A switch user request

v A COMMIT or ROLLBACK statement

v A DISCONNECT, CONNECT RESET or CONNECT request

Note: When the user ID on the trusted connection is switched to a new user ID,

all traces of the connection environment under the old user are gone. In other

words, the switching of user IDs results in an environment that is identical to a

new connection environment. For example, if the old user ID on the connection

had any temporary tables or WITH HOLD cursors open, these objects are

completely lost when the user ID on that connection is switched to a new user ID.

86 Database Security Guide

Trusted context problem determination

An explicit trusted connection is a connection that is successfully established by a

specific, explicit request for a trusted connection. When you request an explicit

trusted connection and you do not qualify for one, you get a regular connection

and a warning (+20360). To determine why a user could not establish a trusted

connection, the security administrator needs to look at the trusted context

definition in the system catalogs and at the connection attributes.

In particular, the IP address from which the connection is established, the

encryption level of the data stream or network, and the system authorization ID

making the connection. The -application option of the db2pd utility returns this

information, as well as the following additional information:

v Connection Trust Type: Indicates whether the connection is trusted or not. When

the connection is trusted, this also indicates whether this is an explicit trusted

connection or an implicit trusted connection.

v Trusted Context name: The name of the trusted context associated with the

trusted connection.

v Role Inherited: The role inherited through the trusted connection.

The following are the most common causes of failing to obtain an explicit trusted

connection:

v The client application is not using TCP/IP to communicate with the DB2 server.

TCP/IP is the only supported protocol for a client application to communicate

with the DB2 server that can be used to establish a trusted connection (explicit

or implicit).

v The database server authentication type is set to CLIENT.

v The database server does not have an enabled trusted context object. The

definition of the trusted context object must explicitly state ENABLE in order for

that trusted context to be considered for matching the attributes of an incoming

connection.

v The trusted context objects on the database server do not match the trust

attributes that are presented. For example, one of the following situations may

apply:

– The system authorization ID of the connection does not match any trusted

context object system authorization ID.

– The IP address from which the connection originated does not match any IP

address in the trusted context object considered for the connection.

– The data stream encryption used by the connection does not match the value

of the ENCRYPTION attribute in the trusted context object considered for the

connection.

You can use the db2pd tool to find out the IP address from which the connection

is established, the encryption level of the data stream or network used by the

connection, and the system authorization ID making the connection. You can

consult the SYSCAT.CONTEXTS and SYSCAT.CONTEXTATTRIBUTES catalog

views to find out the definition of a particular trusted context object, such as its

system authorization ID, its set of allowed IP addresses and the value of its

ENCRYPTION attribute.

The following are the most common causes of a switch user failure:

v The user ID to switch to does not have CONNECT privileges on the database. In

this case, SQL1060N is returned.

Chapter 3. Using trusted contexts and trusted connections 87

v The user ID to switch to, or PUBLIC, is not defined in the WITH USE FOR

clause of the trusted context object associated with the explicit trusted

connection.

v Switching the user is allowed with authentication, but the user presents no

credentials or the wrong credentials.

v A switch-user request is not made on a transaction boundary.

v The trusted context that is associated with a trusted connection has been

disabled, dropped, or altered. In this case, only switching to the user ID that

established the trusted connection is allowed.

88 Database Security Guide

Chapter 4. Label-based access control (LBAC)

Label-based access control (LBAC) greatly increases the control you have over who

can access your data. LBAC lets you decide exactly who has write access and who

has read access to individual rows and individual columns.

What LBAC does

The LBAC capability is very configurable and can be tailored to match your

particular security environment. All LBAC configuration is performed by a security

administrator, which is a user that has been granted the SECADM authority by the

system administrator.

A security administrator configures the LBAC system by creating security label

components. A security label component is a database object that represents a

criterion you want to use to determine if a user should access a piece of data. For

example, the criterion can be whether the user is in a certain department, or

whether they are working on a certain project. A security policy describes the

criteria that will be used to decide who has access to what data. A security policy

contains one or more security label components. Only one security policy can be

used to protect any one table but different tables can be protected by different

security policies.

After creating a security policy, a security administrator creates objects, called

security labels that are part of that policy. Security labels contain security label

components. Exactly what makes up a security label is determined by the security

policy and can be configured to represent the criteria that your organization uses

to decide who should have access to particular data items. If you decide, for

instance, that you want to look at a person’s position in the company and what

projects they are part of to decide what data they should see, then you can

configure your security labels so that each label can include that information.

LBAC is flexible enough to let you set up anything from very complicated criteria,

to a very simple system where each label represents either a ″high″ or a ″low″ level

of trust.

Once created, a security label can be associated with individual columns and rows

in a table to protect the data held there. Data that is protected by a security label is

called protected data. A security administrator allows users access to protected data

by granting them security labels. When a user tries to access protected data, that

user’s security label is compared to the security label protecting the data. The

protecting label will block some security labels and not block others.

A user, a role, or a group is allowed to hold security labels for multiple security

policies at once. For any given security policy, however, a use, a role, or a group

can hold at most one label for read access and one label for write access.

A security administrator can also grant exemptions to users. An exemption allows

you to access protected data that your security labels might otherwise prevent you

from accessing. Together your security labels and exemptions are called your LBAC

credentials.

If you try to access a protected column that your LBAC credentials do not allow

you to access then the access will fail and you will get an error message.

© Copyright IBM Corp. 1993, 2009 89

If you try to read protected rows that your LBAC credentials do not allow you to

read then DB2 acts as if those rows do not exist. Those rows cannot be selected as

part of any SQL statement that you run, including SELECT, UPDATE, or DELETE.

Even the aggregate functions ignore rows that your LBAC credentials do not allow

you to read. The COUNT(*) function, for example, will return a count only of the

rows that you have read access to.

Views and LBAC

You can define a view on a protected table the same way you can define one on a

non-protected table. When such a view is accessed the LBAC protection on the

underlying table is enforced. The LBAC credentials used are those of the session

authorization ID. Two users accessing the same view might see different rows

depending on their LBAC credentials.

Referential integrity constraints and LBAC

The following rules explain how LBAC rules are enforced in the presence of

referential integrity constraints:

v Rule 1: The LBAC read access rules are NOT applied for internally generated

scans of child tables. This is to avoid having orphan children.

v Rule 2: The LBAC read access rules are NOT applied for internally generated

scans of parent tables

v Rule 3: The LBAC write rules are applied when a CASCADE operation is

performed on child tables. For example, If a user deletes a parent, but cannot

delete any of the children because of an LBAC write rule violation, then the

delete should be rolled-back and an error raised.

Storage overhead when using LBAC

When you use LBAC to protect a table at the row level, the additional storage cost

is the cost of the row security label column. This cost depends on the type of

security label chosen. For example, if you create a security policy with two

components to protect a table, a security label from that security policy will occupy

16 bytes (8 bytes for each component). Because the row security label column is

treated as a not nullable VARCHAR column, the total cost in this case would be 20

bytes per row. In general, the total cost per row is (N*8 + 4) bytes where N is the

number of components in the security policy protecting the table.

When you use LBAC to protect a table at the column level, the column security

label is meta-data (that is, it is stored together with the column’s meta-data in the

SYSCOLUMNS catalog table). This meta-data is simply the ID of the security label

protecting the column. The user table does not incur any storage overhead in this

case.

What LBAC does not do

v LBAC will never allow access to data that is forbidden by discretionary access

control.

Example: If you do not have permission to read from a table then you will not

be allowed to read data from that table--even the rows and columns to which

LBAC would otherwise allow you access.

v Your LBAC credentials only limit your access to protected data. They have no

effect on your access to unprotected data.

90 Database Security Guide

v LBAC credentials are not checked when you drop a table or a database, even if

the table or database contains protected data.

v LBAC credentials are not checked when you back up your data. If you can run a

backup on a table, which rows are backed up is not limited in any way by the

LBAC protection on the data. Also, data on the backup media is not protected

by LBAC. Only data in the database is protected.

v LBAC cannot be used to protect any of the following types of tables:

– A materialized query table (MQT)

– A table that a materialized query table (MQT) depends on

– A staging table

– A table that a staging table depends on

– A typed table
v LBAC protection cannot be applied to a nickname.

LBAC tutorial

A tutorial leading you through the basics of using LBAC is available online. The

tutorial is part of the IBM developerWorks® web site (http://www.ibm.com/
developerworks/db2) and is called DB2 Label-Based Access Control, a practical

guide.

LBAC security policies

The security administrator uses a security policy to define criteria that determine

who has write access and who has read access to individual rows and individual

columns of tables.

A security policy includes this information:

v What security label components are used in the security labels that are part of

the policy

v What rules are used when comparing those security label components

v Which of certain optional behaviors are used when accessing data protected by

the policy

v What additional security labels and exemptions are to be considered when

enforcing access to data protected by the security policy. For example, the option

to consider or not to consider security labels granted to roles and groups is

controlled through the security policy.

Every protected table must have one and only one security policy associated with

it. Rows and columns in that table can only be protected with security labels that

are part of that security policy and all access of protected data follows the rules of

that policy. You can have multiple security policies in a single database but you

cannot have more than one security policy protecting any given table.

Creating a security policy

You must be a security administrator to create a security policy. You create a

security policy with the SQL statement CREATE SECURITY POLICY. The security

label components listed in a security policy must be created before the CREATE

SECURITY POLICY statement is executed. The order in which the components are

listed when a security policy is created does not indicate any sort of precedence or

other relationship among the components but it is important to know the order

when creating security labels with built-in functions like SECLABEL.

Chapter 4. Label-Based Access Control (LBAC) 91

http://www.ibm.com/developerworks/db2
http://www.ibm.com/developerworks/db2
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0605wong-i.html

From the security policy you have created, you can create security labels to protect

your data.

Altering a security policy

A security administrator can use the ALTER SECURITY POLICY statement to

modify a security policy.

Dropping a security policy

You must be a security administrator to drop a security policy. You drop a security

policy using the SQL statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

LBAC security label components overview

A security label component is a database object that is part of label-based access

control (LBAC). You use security label components to model your organization’s

security structure.

A security label component can represent any criteria that you might use to decide

if a user should have access to a given piece of data. Typical examples of such

criteria include:

v How well trusted the user is

v What department the user is in

v Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they

can access, you could create a component named dept and define elements for that

component that name the various departments in your company. You would then

include the component dept in your security policy.

An element of a security label component is one particular ″setting″ that is allowed

for that component.

Example: A security label component that represents a level of trust might have

the four elements: Top Secret, Secret, Classified, and Unclassified.

Creating a security label component

You must be a security administrator to create a security label component. You

create security label components with the SQL statement CREATE SECURITY

LABEL COMPONENT.

When you create a security label component you must provide:

v A name for the component

v What type of component it is (ARRAY, TREE, or SET)

v A complete list of allowed elements

v For types ARRAY and TREE you must describe how each element fits into the

structure of the component

92 Database Security Guide

After creating your security label components, you can create a security policy

based on these components. From this security policy, you can create security

labels to protect your data.

Types of components

There are three types of security label components:

v TREE: Each element represents a node in a tree structure

v ARRAY: Each element represents a point on a linear scale

v SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to

each other. For example, if you are creating a component to describe one or more

departments in a company you would probably want to use a component type of

TREE because most business structures are in the form of a tree. If you are creating

a component to represent the level of trust that a person has, you would probably

use a component of type ARRAY because for any two levels of trust, one will

always be higher than the other.

The details of each type, including detailed descriptions of the relationships that

the elements can have with each other, are described in their own section.

Altering security label components

The security administrator can use the ALTER SECURITY LABEL COMPONENT

statement to modify a security label component.

Dropping a security label component

You must be a security administrator to drop a security label component. You drop

a security label component with the SQL statement DROP.

LBAC security label component type: SET

SET is one type of security label component that can be used in a label-based

access control (LBAC) security policy.

Components of type SET are unordered lists of elements. The only comparison that

can be made for elements of this type of component is whether or not a given

element is in the list.

LBAC security label component type: ARRAY

ARRAY is one type of security label component.

In the ARRAY type of component the order in which the elements are listed when

the component is created defines a scale with the first element listed being the

highest value and the last being the lowest.

Example: If the component mycomp is defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp

 ARRAY [’Top Secret’, ’Secret’, ’Employee’, ’Public’]

Then the elements are treated as if they are organized in a structure like this:

Chapter 4. Label-Based Access Control (LBAC) 93

In a component of type ARRAY, the elements can have these sorts of relationships

to each other:

Higher than

Element A is higher than element B if element A is listed earlier in the

ARRAY clause than element B.

Lower than

Element A is lower than element B if element A is listed later in the

ARRAY clause than element B

LBAC security label component type: TREE

TREE is one type of security label component that can be used in a label-based

access control (LBAC) security policy.

In the TREE type of component the elements are treated as if they are arranged in

a tree structure. When you specify an element that is part of a component of type

TREE you must also specify which other element it is under. The one exception is

the first element which must be specified as being the ROOT of the tree. This

allows you to organize the elements in a tree structure.

Example: If the component mycomp is defined this way:

CREATE SECURITY LABEL COMPONENT mycomp

TREE (

 ’Corporate’ ROOT,

 ’Publishing’ UNDER ’Corporate’,

 ’Software’ UNDER ’Corporate’,

 ’Development’ UNDER ’Software’,

 ’Sales’ UNDER ’Software’,

 ’Support’ UNDER ’Software’

 ’Business Sales’ UNDER ’Sales’

 ’Home Sales’ UNDER ’Sales’

)

Then the elements are treated as if they are organized in a tree structure like this:

Secret

Employee

Top Secret

Public

Highest

Lowest

94 Database Security Guide

In a component of type TREE, the elements can have these types of relationships to

each other:

Parent Element A is a parent of element B if element B is UNDER element A.

Example: This diagram shows the parent of the Business Sales element:

Child Element A is a child of element B if element A is UNDER element B.

Example: This diagram shows the children of the Software element:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 4. Label-Based Access Control (LBAC) 95

Sibling

Two elements are siblings of each other if they have the same parent.

Example: This diagram shows the siblings of the Development element:

Ancestor

Element A is an ancestor of element B if it is the parent of B, or if it is the

parent of the parent of B, and so on. The root element is an ancestor of all

other elements in the tree.

Example: This diagram shows the ancestors of the Home Sales element:

Publishing Software

Business
Sales

Home Sales

Corporate

SalesDevelopment Support

Publishing Software

Development

Business
Sales

Home Sales

Corporate

Sales Support

96 Database Security Guide

Descendent

Element A is a descendent of element B if it is the child of B, or if it is the

child of a child of B, and so on.

Example: This diagram shows the descendents of the Software element:

LBAC security labels

In label-based access control (LBAC) a security label is a database object that

describes a certain set of security criteria. Security labels are applied to data in

order to protect the data. They are granted to users to allow them to access

protected data.

When a user tries to access protected data, their security label is compared to the

security label that is protecting the data. The protecting security label will block

some security labels and not block others. If a user’s security label is blocked then

the user cannot access the data.

Every security label is part of exactly one security policy and includes one value

for each component in that security policy. A value in the context of a security label

component is a list of zero or more of the elements allowed by that component.

Publishing

Development Support

Business
Sales

Home Sales

Sales

Software

Corporate

Publishing Software

Corporate

SalesDevelopment Support

Business
Sales

Home Sales

Chapter 4. Label-Based Access Control (LBAC) 97

Values for ARRAY type components can contain zero or one element, values for

other types can have zero or more elements. A value that does not include any

elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources,

Sales, and Shipping then these are some of the valid values for that component:

v Human Resources (or any of the elements by itself)

v Human Resources, Shipping (or any other combination of the elements as long

as no element is included more than once)

v An empty value

Whether a particular security label will block another is determined by the values

of each component in the labels and the LBAC rule set that is specified in the

security policy of the table. The details of how the comparison is made are given

in the topic that discusses how LBAC security labels are compared.

When security labels are converted to a text string they use the format described in

the topic that discusses the format for security label values.

Creating security labels

You must be a security administrator to create a security label. You create a

security label with the SQL statement CREATE SECURITY LABEL. When you

create a security label you provide:

v A name for the label

v The security policy that the label is part of

v Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty

value. A security label must have at least one non-empty value.

Altering security labels

Security labels cannot be altered. The only way to change a security label is to

drop it and re-create it. However, the components of a security label can be

modified by a security administrator (using the ALTER SECURITY LABEL

COMPONENT statement).

Dropping security labels

You must be a security administrator to drop a security label. You drop a security

label with the SQL statement DROP. You cannot drop a security label that is being

used to protect data anywhere in the database or that is currently held by one or

more users.

Granting security labels

You must be a security administrator to grant a security label to a user, a group, or

a role. You grant a security label with the SQL statement GRANT SECURITY

LABEL. When you grant a security label you can grant it for read access, for write

access, or for both read and write access. A user, a group, or a role cannot hold

more than one security label from the same security policy for the same type of

access.

98 Database Security Guide

Revoking security labels

You must be a security administrator to revoke a security label from a user, group,

or role. To revoke a security label, use the SQL statement REVOKE SECURITY

LABEL.

Data types compatible with security labels

Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data

conversion is supported between SYSPROC.DB2SECURITYLABEL and

VARCHAR(128) FOR BIT DATA.

Determining the security labels held by users

You can use the following query to determine the security labels that are held by

users:

SELECT A.grantee, B.secpolicyname, c.seclabelname

FROM syscat.securitylabelaccess A, syscat.securitypolicies B, syscat.securitylabels C

WHERE A.seclabelid = C.seclabelid and B.secpolicyid = C.secpolicyid

Format for security label values

Sometimes the values in a security label are represented in the form of a character

string, for example when using the built-in function SECLABEL. When

representing the values in a security label as a string this format is used.

v The values of the components are listed from left to right in the same order that

the components are listed in the CREATE SECURITY POLICY statement for the

security policy

v An element is represented by the name of that element

v Elements for different components are separated by a colon (:)

v If more than one element are given for the same component the elements are

enclosed in parentheses (()) and are separated by a comma (,)

v Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three

components in this order: Level, Department, and Projects. The security label has

these values:

 Table 9. Example values for a security label

Component Values

Level Secret

Department Empty value

Projects v Epsilon 37

v Megaphone

v Cloverleaf

This security label values look like this as a string:

’Secret:():(Epsilon 37,Megaphone,Cloverleaf)’

Chapter 4. Label-Based Access Control (LBAC) 99

How LBAC security labels are compared

When you try to access data protected by label-based access control (LBAC), your

LBAC credentials are compared to one or more security labels to see if the access is

blocked. Your LBAC credentials are any security labels you hold plus any

exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials

can be compared to a single security label for read access or your LBAC credentials

compared to a single security label for write access. Updating and deleting are

treated as being a read followed by a write. When an operation requires multiple

comparisons to be made, each is made separately.

Which of your security labels is used

Even though you might hold multiple security labels only one is compared to the

protecting security label. The label used is the one that meets these criteria:

v It is part of the security policy that is protecting the table being accessed.

v It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security

label is assumed that has empty values for all components.

How the comparison is made

Security labels are compared component by component. If a security label does not

have a value for one of the components then an empty value is assumed. As each

component is examined, the appropriate rules of the LBAC rule set are used to

decide if the elements in your value for that component should be blocked by the

elements in the value for the same component in the protecting label. If any of

your values are blocked then your LBAC credentials are blocked by the protecting

security label.

The LBAC rule set used in the comparison is designated in the security policy. To

find out what the rules are and when each one is used, see the description of that

rule set.

How exemptions affect comparisons

If you hold an exemption for the rule that is being used to compare two values

then that comparison is not done and the protecting value is assumed not to block

the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two

components. One component is of type ARRAY and the other is of type TREE. The

user has been granted an exemption on the rule DB2LBACREADTREE, which is

the rule used for read access when comparing values of components of type TREE.

If the user attempts to read protected data then whatever value the user has for the

TREE component, even if it is an empty value, will not block access because that

rule is not used. Whether the user can read the data depends entirely on the values

of the ARRAY component of the labels.

100 Database Security Guide

LBAC rule sets overview

An LBAC rule set is a predefined set of rules that are used when comparing

security labels. When the values of a two security labels are being compared, one

or more of the rules in the rule set will be used to determine if one value blocks

another.

Each LBAC rule set is identified by a unique name. When you create a security

policy you must specify the LBAC rule set that will be used with that policy. Any

comparison of security labels that are part of that policy will use that LBAC rule

set.

Each rule in a rule set is also identified by a unique name. You use the name of a

rule when you are granting an exemption on that rule.

How many rules are in a set and when each rule is used can vary from rule set to

rule set.

There is currently only one supported LBAC rule set. The name of that rule set is

DB2LBACRULES.

LBAC rule set: DB2LBACRULES

The DB2LBACRULES LBAC rule set provides a traditional set of rules for

comparing the values of security label components. It protects from both write-up

and write-down.

What are write-up and write down?

Write-up and write-down apply only to components of type ARRAY and only to

write access. Write up occurs when the value protecting data that you are writing

to is higher than your value. Write-down is when the value protecting the data is

lower than yours. By default neither write-up nor write-down is allowed, meaning

that you can only write data that is protected by the same value that you have.

When comparing two values for the same component, which rules are used

depends on the type of the component (ARRAY, SET, or TREE) and what type of

access is being attempted (read, or write). This table lists the rules, tells when each

is used, and describes how the rule determines if access is blocked.

 Table 10. Summary of the DB2LBACRULES rules

Rule name

Used when

comparing the

values of this

type of

component

Used when

attempting

this type of

access Access is blocked when this condition is met

DB2LBACREADARRAY ARRAY Read The user’s value is lower than the protecting value.

DB2LBACREADSET SET Read There are one or more protecting values that the user

does not hold.

DB2LBACREADTREE TREE Read None of the user’s values is equal to or an ancestor of

one of the protecting values.

DB2LBACWRITEARRAY ARRAY Write The user’s value is higher than the protecting value or

lower than the protecting value.1

DB2LBACWRITESET SET Write There are one or more protecting values that the user

does not hold.

Chapter 4. Label-Based Access Control (LBAC) 101

Table 10. Summary of the DB2LBACRULES rules (continued)

Rule name

Used when

comparing the

values of this

type of

component

Used when

attempting

this type of

access Access is blocked when this condition is met

DB2LBACWRITETREE TREE Write None of the user’s values is equal to or an ancestor of

one of the protecting values.

Note:

1. The DB2LBACWRITEARRAY rule can be thought of as being two different

rules combined. One prevents writing to data that is higher than your level

(write-up) and the other prevents writing to data that is lower than your level

(write-down). When granting an exemption to this rule you can exempt the

user from either of these rules or from both.

How the rules handle empty values

All rules treat empty values the same way. An empty value blocks no other values

and is blocked by any non-empty value.

DB2LBACREADSET and DB2LBACWRITESET examples

These examples are valid for a user trying to read or trying to write protected data.

They assume that the values are for a component of type SET that has these

elements: one two three four

 Table 11. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User’s value Protecting value Access blocked?

’one’ ’one’ Not blocked. The values are the same.

’(one,two,three)’ ’one’ Not blocked. The user’s value contains

the element ’one’.

’(one,two)’ ’(one,two,four)’ Blocked. The element ’four’ is in the

protecting value but not in the user’s

value.

’()’ ’one’ Blocked. An empty value is blocked

by any non-empty value.

’one’ ’()’ Not blocked. No value is blocked by

an empty value.

’()’ ’()’ Not blocked. No value is blocked by

an empty value.

DB2LBACREADTREE and DB2LBACWRITETREE

These examples are valid for both read access and write access. They assume that

the values are for a component of type TREE that was defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp

TREE (

 ’Corporate’ ROOT,

 ’Publishing’ UNDER ’Corporate’,

 ’Software’ UNDER ’Corporate’,

 ’Development’ UNDER ’Software’,

 ’Sales’ UNDER ’Software’,

102 Database Security Guide

’Support’ UNDER ’Software’

 ’Business Sales’ UNDER ’Sales’

 ’Home Sales’ UNDER ’Sales’

)

This means the elements are in this arrangement:

 Table 12. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE

rules.

User’s value Protecting value Access blocked?

’(Support,Sales)’ ’Development’ Blocked. The element

’Development’ is not one of the

user’s values and neither

’Support’ nor ’Sales’ is an

ancestor of ’Development’.

’(Development,Software)’ ’(Business Sales,Publishing)’ Not blocked. The element

’Software’ is an ancestor of

’Business Sales’.

’(Publishing,Sales)’ ’(Publishing,Support)’ Not blocked. The element

’Publishing’ is in both sets of

values.

’Corporate’ ’Development’ Not blocked. The root value is

an ancestor of all other values.

’()’ ’Sales’ Blocked. An empty value is

blocked by any non-empty

value.

’Home Sales’ ’()’ Not blocked. No value is

blocked by an empty value.

’()’ ’()’ Not blocked. No value is

blocked by an empty value.

DB2LBACREADARRAY examples

These examples are for read access only. They assume that the values are for a

component of type ARRAY that includes these elements in this arrangement:

Publishing Software

Development Support

Business
Sales

Home Sales

Sales

Corporate

Chapter 4. Label-Based Access Control (LBAC) 103

Table 13. Examples of applying the DB2LBACREADARRAY rule.

User’s value Protecting value Read access blocked?

’Secret’ ’Employee’ Not blocked. The element ’Secret’ is higher

than the element ’Employee’.

’Secret’ ’Secret’ Not blocked. The values are the same.

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher

than the element ’Secret’.

’()’ ’Public’ Blocked. An empty value is blocked by any

non-empty value.

’Public’ ’()’ Not blocked. No value is blocked by an

empty value.

’()’ ’()’ Not blocked. No value is blocked by an

empty value.

DB2LBACWRITEARRAY examples

These examples are for write access only. They assume that the values are for a

component of type ARRAY that includes these elements in this arrangement:

Secret

Employee

Top Secret

Public

Highest

Lowest

Secret

Employee

Top Secret

Public

Highest

Lowest

104 Database Security Guide

Table 14. Examples of applying the DB2LBACWRITEARRAY rule.

User’s value Protecting value Write access blocked?

’Secret’ ’Employee’ Blocked. The element ’Employee’ is lower

than the element ’Secret’.

’Secret’ ’Secret’ Not blocked. The values are the same.

’Secret’ ’Top Secret’ Blocked. The element ’Top Secret’ is higher

than the element ’Secret’.

’()’ ’Public’ Blocked. An empty value is blocked by any

non-empty value.

’Public’ ’()’ Not blocked. No value is blocked by an

empty value.

’()’ ’()’ Not blocked. No value is blocked by an

empty value.

LBAC rule exemptions

When you hold an LBAC rule exemption on a particular rule of a particular

security policy, that rule is not enforced when you try to access data protected by

that security policy.

An exemption has no effect when comparing security labels of any security policy

other than the one for which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1 and T2 is

protected by security policy P2. Both security policies have one component. The

component of each is of type ARRAY. T1 and T2 each contain only one row of

data. The security label that you hold for read access under security policy P1 does

not allow you access to the row in T1. The security label that you hold for read

access under security policy P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under P1. You can

now read the row from T1 but not the row from T2 because T2 is protected by a

different security policy and you do not hold an exemption to the

DB2LBACREADARRAY rule in that policy.

You can hold multiple exemptions. If you hold an exemption to every rule used by

a security policy then you will have complete access to all data protected by that

security policy.

Granting LBAC rule exemptions

You must be a security administrator to grant an LBAC rule exemption. To grant

an LBAC rule exemption, use the SQL statement GRANT EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:

v The rule or rules that the exemption is for

v The security policy that the exemption is for

v The user, group, or role to which you are granting the exemption

Chapter 4. Label-Based Access Control (LBAC) 105

Important: LBAC rule exemptions provide very powerful access. Do not grant

them without careful consideration.

Revoking LBAC rule exemptions

You must be a security administrator to revoke an LBAC rule exemption. To

revoke an LBAC rule exemption, use the SQL statement REVOKE EXEMPTION

ON RULE.

Determining the rule exemptions held by users

You can use the following query to determine the rule exemptions that are held by

users:

SELECT A.grantee, A.accessrulename, B.secpolicyname

FROM syscat.securitypolicyexemptions A, syscat.securitypolicies B

WHERE A.secpolicyid = B.secpolicyid

Built-in functions for managing LBAC security labels

The built-in functions SECLABEL, SECLABEL_BY_NAME, and

SECLABEL_TO_CHAR are provided for managing label-based access control

(LBAC) security labels.

Each is described briefly here and in detail in the SQL Reference

SECLABEL

This built-in function is used to build a security label by specifying a security

policy and values for each of the components in the label. The returned value has

a data type of DB2SECURITYLABEL and is a security label that is part of the

indicated security policy and has the indicated values for the components. It is not

necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of

DB2SECURITYLABEL and the second has a data type of INTEGER. T1 is protected

by security policy P1, which has three security label components: level,

departments, and groups. If UNCLASSIFIED is an element of the component level,

ALPHA and SIGMA are both elements of the component departments, and G2 is

an element of the component groups then a security label could be inserted like

this:

INSERT INTO T1 VALUES

 (SECLABEL(’P1’, ’UNCLASSIFIED:(ALPHA,SIGMA):G2’), 22)

SECLABEL_BY_NAME

This built-in function accepts the name of a security policy and the name of a

security label that is part of that security policy. It then returns the indicated

security label as a DB2SECURITYLABEL. You must use this function when

inserting an existing security label into a column that has a data type of

DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of

DB2SECURITYLABEL and the second has a data type of INTEGER. The security

label named L1 is part of security policy P1. This SQL inserts the security label:

INSERT INTO T1 VALUES (SECLABEL_BY_NAME(’P1’, ’L1’), 22)

106 Database Security Guide

This SQL statement does not work:

INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

SECLABEL_TO_CHAR

This built-in function returns a string representation of the values that make up a

security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is

protected by security policy P1, which has three security label components: level,

departments, and groups. There is one row in T1 and the value in column C1 that

has these elements for each of the components:

 Component Elements

level SECRET

departments DELTA and SIGMA

groups G3

A user that has LBAC credentials that allow reading the row executes this SQL

statement:

SELECT SECLABEL_TO_CHAR(’P1’, C1) AS C1 FROM T1

The output looks like this:

C1

’SECRET:(DELTA,SIGMA):G3’

Protection of data using LBAC

Label-based access control (LBAC) can be used to protect rows of data, columns of

data, or both. Data in a table can only be protected by security labels that are part

of the security policy protecting the table. Data protection, including adding a

security policy, can be done when creating the table or later by altering the table.

You can add a security policy to a table and protect data in that table as part of the

same CREATE TABLE or ALTER TABLE statement.

As a general rule you are not allowed to protect data in such a way that your

current LBAC credentials do not allow you to write to that data.

Adding a security policy to a table

You can add a security policy to a table when you create the table by using the

SECURITY POLICY clause of the CREATE TABLE statement. You can add a

security policy to an existing table by using the ADD SECURITY POLICY clause of

the ALTER TABLE statement. You do not need to have SECADM authority or have

LBAC credentials to add a security policy to a table.

Security policies cannot be added to types of tables that cannot be protected by

LBAC. See the overview of LBAC for a list of table types that cannot be protected

by LBAC.

No more than one security policy can be added to any table.

Chapter 4. Label-Based Access Control (LBAC) 107

Protecting rows

You can allow protected rows in a new table by including a column with a data

type of DB2SECURITYLABEL when you create the table. The CREATE TABLE

statement must also add a security policy to the table. You do not need to have

SECADM authority or have any LBAC credentials to create such a table.

You can allow protected rows in an existing table by adding a column that has a

data type of DB2SECURITYLABEL. To add such a column, either the table must

already be protected by a security policy or the ALTER TABLE statement that adds

the column must also add a security policy to the table. When the column is

added, the security label you hold for write access is used to protect all existing

rows. If you do not hold a security label for write access that is part of the security

policy protecting the table then you cannot add a column that has a data type of

DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new

row of data by storing a security label in that column. The details of how this

works are described in the topics about inserting and updating LBAC protected

data. You must have LBAC credentials to insert rows into a table that has a column

of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and

cannot be changed to any other data type.

Protecting columns

You can protect a column when you create the table by using the SECURED WITH

column option of the CREATE TABLE statement. You can add protection to an

existing column by using the SECURED WITH option in an ALTER TABLE

statement.

To protect a column with a particular security label you must have LBAC

credentials that allow you to write to data protected by that security label. You do

not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security

policy protecting the table. You cannot protect columns in a table that has no

security policy. You are allowed to protect a table with a security policy and

protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be

protected by no more than one security label.

Reading of LBAC protected data

When you try to read data protected by label-based access control (LBAC), your

LBAC credentials for reading are compared to the security label that is protecting

the data. If the protecting label does not block your credentials you are allowed to

read the data.

In the case of a protected column the protecting security label is defined in the

schema of the table. The protecting security label for that column is the same for

every row in the table. In the case of a protected row the protecting security label

is stored in the row in a column of type DB2SECURITYLABEL. It can be different

for every row in the table.

108 Database Security Guide

The details of how your LBAC credentials are compared to a security label are

given in the topic about how LBAC security labels are compared.

Reading protected columns

When you try to read from a protected column your LBAC credentials are

compared with the security label protecting the column. Based on this comparison

access will either be blocked or allowed. If access is blocked then an error is

returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read,

causes the entire statement to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the security

label L1. The column C2 is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow access to

security label L1 but not to L2. If Jyoti issues the following SQL statement, the

statement will fail:

SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause as part of

the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:

SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti’s LBAC

credentials allow her to read that column.

Reading protected rows

If you do not have LBAC credentials that allow you to read a row it is as if that

row does not exist for you.

When you read protected rows, only those rows to which your LBAC credentials

allow read access are returned. This is true even if the column of type

DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a

table that has protected rows. For example, two users executing the statement

SELECT COUNT(*) FROM T1 may get different results if T1 has protected rows and

the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL

statements like UPDATE, and DELETE. If you do not have LBAC credentials that

allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column ROWSECURITYLABEL has a

data type of DB2SECURITYLABEL.

Chapter 4. Label-Based Access Control (LBAC) 109

Table 15. Example values in table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data that is

protected by security label L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:

SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error messages or

warning are returned.

Dan’s view of table T1 is this:

 Table 16. Example values in view of table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read access is

blocked by their security labels. Dan cannot delete or update these rows. They will

also not be included in any aggregate functions. For Dan it is as if those rows do

not exist.

Dan issues this SQL statement:

SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can be read by

the user Dan.

Reading protected rows that contain protected columns

Column access is checked before row access. If your LBAC credentials for read

access are blocked by the security label protecting one of the columns you are

selecting then the entire statement fails. If not, the statement continues and only

the rows protected by security labels to which your LBAC credentials allow read

access are returned.

Example

The column LASTNAME of table T1 is protected with the security label L1. The

column DEPTNO is protected with security label L2. The column

ROWSECURITYLABEL has a data type of DB2SECURITYLABEL. T1, including the

data, looks like this:

110 Database Security Guide

Table 17. Example values in table T1

 LASTNAME

Protected by L1

 DEPTNO

Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data protected

by security label L1 but not L2 or L3.

Sakari issues this SQL statement:

SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*) which

includes the column DEPTNO. The column DEPTNO is protected by security label

L2, which Sakari’s LBAC credentials do not allow her to read.

Sakari next issues this SQL statement:

SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to read so

the statement continues. Only one row is returned, however, because each of the

other rows is protected by security label L2 or L3.

 Table 18. Example output from query on table T1

LASTNAME ROWSECURITYLABEL

Miller L1

Inserting of LBAC protected data

Inserting to protected columns

When you try to explicitly insert data to a protected column your LBAC

credentials for writing are compared with the security label protecting that column.

Based on this comparison access will either be blocked or allowed.

The details of how two security labels are compared are given in the topic about

how LBAC security labels are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the

insert fails and an error is returned.

If you are inserting a row but do not provide a value for a protected column then

a default value is inserted if one is available. This happens even if your LBAC

credentials do not allow write access to that column. A default is available in the

following cases:

v The column was declared with the WITH DEFAULT option

v The column is a generated column

v The column has a default value that is given through a BEFORE trigger

Chapter 4. Label-Based Access Control (LBAC) 111

v The column has a data type of DB2SECURITYLABEL, in which case security

label that you hold for write access is the default value

Inserting to protected rows

When you insert a new row into a table with protected rows, you do not have to

provide a value for the column that is of type DB2SECURITYLABEL. If you do not

provide a value for that column, the column is automatically populated with the

security label you have been granted for write access. If you have not been granted

a security label for write access, an error is returned and the insert fails.

By using built-in functions like SECLABEL, you can explicitly provide a security

label to be inserted in a column of type DB2SECURITYLABEL. The provided

security label is only used, however, if your LBAC credentials would allow you to

write to data that is protected with the security label you are trying to insert.

If you provide a security label that you would not be able to write, then what

happens depends on the security policy that is protecting the table. If the security

policy has the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option,

then the insert fails and an error is returned. If the security policy does not have

the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it

instead has the OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option,

then the security label you provide is ignored and if you hold a security label for

write access, it is used instead. If you do not hold a security label for write access,

an error is returned.

Examples

Table T1 is protected by a security policy named P1 that was created without the

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option. Table T1 has

two columns but no rows. The columns are LASTNAME and LABEL. The column

LABEL has a data type of DB2SECURITYLABEL.

User Joe holds a security label L2 for write access. Assume that the security label

L2 allows him to write to data protected by security label L2 but not to data

protected by security labels L1 or L3.

Joe issues the following SQL statement:

INSERT INTO T1 (LASTNAME, DEPTNO) VALUES (’Rjaibi’, 11)

Because no security label was included in the INSERT statement, Joe’s security

label for write access is inserted into the LABEL row.

Table T1 now looks like this:

 Table 19. Values in the example table T1 after first INSERT statement

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security

label to be inserted into the column LABEL:

INSERT INTO T1 VALUES (’Miller’, SECLABEL_BY_NAME(’P1’, ’L1’))

112 Database Security Guide

The SECLABEL_BY_NAME function in the statement returns a security label that

is part of security policy P1 and is named L1. Joe is not allowed to write to data

that is protected with L1 so he is not allowed to insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option the security label that Joe holds

for writing is inserted instead. No error or message is returned.

The table now looks like this:

 Table 20. Values in example table T1 after second INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL option then the insert would have

failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new

LBAC credentials allow him to write to data that is protected with security labels

L1 and L2. The security label granted to Joe for write access does not change, it is

still L2.

Joe issues the following SQL statement:

INSERT INTO T1 VALUES (’Bird’, SECLABEL_BY_NAME(’P1’, ’L1’))

Because of his new LBAC credentials Joe is able to write to data that is protected

by the security label L1. The insertion of L1 is therefore allowed. The table now

looks like this:

 Table 21. Values in example table T1 after third INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

Updating of LBAC protected data

Your LBAC credentials must allow you write access to data before you can update

it. In the case of updating a protected row, your LBAC credentials must also allow

read access to the row.

Updating protected columns

When you try to update data in a protected column, your LBAC credentials are

compared to the security label protecting the column. The comparison made is for

write access. If write access is blocked then an error is returned and the statement

fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are

given in the topic about how LBAC security labels are compared.

Chapter 4. Label-Based Access Control (LBAC) 113

Example:

Assume there is a table T1 in which column DEPTNO is protected by a security

label L2 and column PAYSCALE is protected by a security label L3. T1, including

its data, looks like this:

 Table 22. Table T1

EMPNO LASTNAME

 DEPTNO

Protected by

L2

 PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

User Lhakpa has no LBAC credentials. He issues this SQL statement:

UPDATE T1 SET EMPNO = 4

 WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any protected

columns. T1 now looks like this:

 Table 23. Table T1 After Update

EMPNO LASTNAME

 DEPTNO

Protected by

L2

 PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:

UPDATE T1 SET DEPTNO = 55

 WHERE LASTNAME = "Miller"

This statement fails and an error is returned because DEPTNO is protected and

Lhakpa has no LBAC credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access

summarized in the following table. The details of what those credentials are and

what elements are in the security labels are not important for this example.

 Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:

UPDATE T1 SET DEPTNO = 55

 WHERE LASTNAME = "Miller"

114 Database Security Guide

This time the statement executes without error because Lhakpa’s LBAC credentials

allow him to write to data protected by the security label that is protecting the

column DEPTNO. It does not matter that he is not able to read from that same

column. The data in T1 now looks like this:

 Table 24. Table T1 After Second Update

EMPNO LASTNAME

 DEPTNO

Protected by

L2

 PAYSCALE

Protected by

L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:

UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4

 WHERE LASTNAME = "Bird"

The column PAYSCALE is protected by the security label L3 and Lhakpa’s LBAC

credentials do not allow him to write to it. Because Lhakpa is unable to write to

the column, the update fails and no data is changed.

Updating protected rows

If your LBAC credentials do not allow you to read a row, then it is as if that row

does not exist for you so there is no way for you to update that row. For rows that

you are able to read, you must also be able to write to the row in order to update

it.

When you try to update a row, your LBAC credentials for writing are compared to

the security label protecting the row. If write access is blocked, the update fails and

an error is returned. If write access is not blocked, then the update continues.

The update that is performed is done the same way as an update to a

non-protected row except for the treatment of the column that has a data type of

DB2SECURITYLABEL. If you do not explicitly set the value of that column, it is

automatically set to the security label that you hold for write access. If you do not

have a security label for write access, an error is returned and the statement fails.

If the update explicitly sets the column that has a data type of

DB2SECURITYLABEL, then your LBAC credentials are checked again. If the

update you are trying to perform would create a row that your current LBAC

credentials would not allow you to write to, then what happens depends on the

security policy that is protecting the table. If the security policy has the RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL option, then the update fails and

an error is returned. If the security policy does not have the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option or if it instead has the

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, then the

security label you provide is ignored and if you hold a security label for write

access, it is used instead. If you do not hold a security label for write access, an

error is returned.

Example:

Chapter 4. Label-Based Access Control (LBAC) 115

Assume that table T1 is protected by a security policy named P1 and has a column

named LABEL that has a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

 Table 25. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and write data

protected by the security labels L0 and L1 but not data protected by any other

security labels. The security label she holds for both read and write is L0. The

details of her full credentials and of what elements are in the labels are not

important for this example.

Jenni issues this SQL statement:

SELECT * FROM T1

Jenni sees only one row in the table:

 Table 26. Jenni’s SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

The rows protected by labels L2 and L3 are not included in the result set because

Jenni’s LBAC credentials do not allow her to read those rows. For Jenni it is as if

those rows do not exist.

Jenni issues these SQL statements:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;

SELECT * FROM T1;

The result set returned by the query looks like this:

 Table 27. Jenni’s UPDATE & SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

 Table 28. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The second

and third rows are not readable by Jenni so they are not selected for update by the

statement even though they meet the condition in the WHERE clause.

116 Database Security Guide

Notice that the value of the LABEL column in the updated row has changed even

though that column was not explicitly set in the UPDATE statement. The column

was set to the security label that Jenni held for writing.

Now Jenni is granted LBAC credentials that allow her to read data protected by

any security label. Her LBAC credentials for writing do not change. She is still

only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is able to

read those rows, so they are selected for update by the statement. She is not,

however, able to write to them because they are protected by security labels L2

and L3. The update does not occur and an error is returned.

Jenni now issues this SQL statement:

UPDATE T1

 SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME(’P1’, ’L2’)

 WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the security label

named L2. Jenni is trying to explicitly set the security label protecting the first row.

Jenni’s LBAC credentials allow her to read the first row, so it is selected for update.

Her LBAC credentials allow her to write to rows protected by the security label L0

so she is allowed to update the row. Her LBAC credentials would not, however,

allow her to write to a row protected by the security label L2, so she is not allowed

to set the column LABEL to that value. The statement fails and an error is

returned. No columns in the row are updated.

Jenni now issues this SQL statement:

UPDATE T1 SET LABEL = SECLABEL_BY_NAME(’P1’, ’L1’) WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row protected by

the security label L1.

T1 now looks like this:

 Table 29. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

Updating protected rows that contain protected columns

If you try to update protected columns in a table with protected rows then your

LBAC credentials must allow writing to of all of the protected columns affected by

the update, otherwise the update fails and an error is returned. This is as described

in section about updating protected columns, earlier. If you are allowed to update

all of the protected columns affected by the update you will still only be able to

update rows that your LBAC credentials allow you to both read from and write to.

This is as described in the section about updating protected rows, earlier. The

Chapter 4. Label-Based Access Control (LBAC) 117

handling of a column with a data type of DB2SECURITYLABEL is the same

whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected

column then your LBAC credentials must allow you to write to that column or you

cannot update any of the rows in the table.

Deleting or dropping of LBAC protected data

If your LBAC credentials do not allow you to read a row then it is as if that row

does not exist for you so there is no way for you to delete it. To delete a row that

you are able to read, your LBAC credentials must also allow you to write to the

row. To delete any row in a table that has protected columns you must have LBAC

credentials that allow you to write to all protected columns in the table.

Deleting protected rows

When you try to delete a row, your LBAC credentials for writing are compared to

the security label protecting the row. If the protecting security label blocks write

access by your LBAC credentials, the DELETE statement fails, an error is returned,

and no rows are deleted.

Example

Protected table T1 has these rows:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Pat has LBAC credentials such that her access is as summarized

in this table:

 Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of her LBAC credentials and of the security labels are

unimportant for this example.

Pat issues the following SQL statement:

SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

118 Database Security Guide

LASTNAME DEPTNO LABEL

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have read

access to that row. It is as if that row does not exist for Pat.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are protected

by L2. So even though she can read the rows she cannot delete them. The DELETE

statement fails and no rows are deleted.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller in the

LASTNAME column. That is the only row selected by the statement. The row with

Fielding in the LASTNAME column is not selected because Pat’s LBAC credentials

do not allow her to read that row. That row is never considered for the delete so

no error occurs.

The actual rows of the table now look like this:

 LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Deleting rows that have protected columns

To delete any row in a table that has protected columns you must have LBAC

credentials that allow you to write to all protected columns in the table. If there is

any row in the table that your LBAC credentials do not allow you to write to then

the delete will fail and an error will be returned.

If the table has both protected columns and protected rows then to delete a

particular row you must have LBAC credentials that allow you to write to every

protected column in the table and also to read from and write to the row that you

want to delete.

Example

In protected table T1, the column DEPTNO is protected by the security label L2. T1

contains these rows:

LASTNAME

 DEPTNO

Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Chapter 4. Label-Based Access Control (LBAC) 119

LASTNAME

 DEPTNO

Protected by L2 LABEL

Bird 55 L2

Fielding 77 L3

Assume that user Benny has LBAC credentials that allow him the access

summarized in this table:

 Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are

unimportant for this example.

Benny issues the following SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the column

DEPTNO.

Now Benny’s LBAC credentials are changed so that he has access as summarized

in this table:

 Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:

DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete continues.

The delete statement selects only the row that has a value of Miller in the

LASTNAME column. The row that has a value of Fielding in the LASTNAME

column is not selected because Benny’s LBAC credentials do not allow him to read

that row. Because the row is not selected for deletion by the statement it does not

matter that Benny is unable to write to the row.

The one row selected is protected by the security label L1. Benny’s LBAC

credentials allow him to write to data protected by L1 so the delete is successful.

The actual rows in table T1 now look like this:

LASTNAME

 DEPTNO

Protected by L2 LABEL

Rjaibi 55 L2

120 Database Security Guide

LASTNAME

 DEPTNO

Protected by L2 LABEL

Bird 55 L2

Fielding 77 L3

Dropping protected data

You cannot drop a column that is protected by a security label unless your LBAC

credentials allow you to write to that column.

A column with a data type of DB2SECURITYLABEL cannot be dropped from a

table. To remove it you must first drop the security policy from the table. When

you drop the security policy the table is no longer protected with LBAC and the

data type of the column is automatically changed from DB2SECURITYLABEL to

VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or

databases that contain protected data. If you would normally have permission to

drop a table or a database you do not need any LBAC credentials to do so, even if

the database contains protected data.

Removal of LBAC protection from data

You must have SECADM authority to remove the security policy from a table. To

remove the security policy from a table you use the DROP SECURITY POLICY

clause of the ALTER TABLE statement. This also automatically removes protection

from all rows and all columns of the table.

Removing protection from rows

In a table that has protected rows every row must be protected by a security label.

There is no way to remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by

removing the security policy from the table.

Removing protection from columns

Protection of a column can be removed using the DROP COLUMN SECURITY

clause of the SQL statement ALTER TABLE. To remove the protection from a

column you must have LBAC credentials that allow you to read from and write to

that column in addition to the normal privileges and authorities needed to alter a

table.

Chapter 4. Label-Based Access Control (LBAC) 121

122 Database Security Guide

Chapter 5. Using the system catalog for security information

Information about each database is automatically maintained in a set of views

called the system catalog, which is created when the database is created. This

system catalog describes tables, columns, indexes, programs, privileges, and other

objects.

The following views and table functions list information about privileges held by

users, identities of users granting privileges, and object ownership:

SYSCAT.DBAUTH

Lists the database privileges

SYSCAT.TABAUTH

Lists the table and view privileges

SYSCAT.COLAUTH

Lists the column privileges

SYSCAT.PACKAGEAUTH

Lists the package privileges

SYSCAT.INDEXAUTH

Lists the index privileges

SYSCAT.SCHEMAAUTH

Lists the schema privileges

SYSCAT.PASSTHRUAUTH

Lists the server privilege

SYSCAT.ROUTINEAUTH

Lists the routine (functions, methods, and stored procedures) privileges

SYSCAT.SURROGATEAUTHIDS

Lists the authorization IDs for which another authorization ID can act as a

surrogate.

 Privileges granted to users by the system will have SYSIBM as the grantor.

SYSADM, SYSMAINT SYSCTRL, and SYSMON are not listed in the system

catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users

with SYSADM and DBADM authorities can grant and revoke SELECT privilege on

the system catalog views.

Retrieving authorization names with granted privileges

You can use the PRIVILEGES and other administrative views to retrieve

information about the authorization names that have been granted privileges in a

database.

For example, the following query retrieves all explicit privileges and the

authorization IDs to which they were granted, plus other information, from the

PRIVILEGES administrative view:

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE FROM SYSIBMADM.PRIVILEGES

© Copyright IBM Corp. 1993, 2009 123

The following query uses the AUTHORIZATIONIDS administrative view to find

all the authorization IDs that have been granted privileges or authorities, and to

show their types:

SELECT AUTHID, AUTHIDTYPE FROM SYSIBMADM.AUTHORIZATIONIDS

You can also use the SYSIBMADM.OBJECTOWNERS administrative view and the

SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to find

security-related information.

Prior to Version 9.1, no single system catalog view contained information about all

privileges. For releases earlier than version 9.1, the following statement retrieves all

authorization names with privileges:

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’DATABASE’ FROM SYSCAT.DBAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’TABLE ’ FROM SYSCAT.TABAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’PACKAGE ’ FROM SYSCAT.PACKAGEAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’INDEX ’ FROM SYSCAT.INDEXAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’COLUMN ’ FROM SYSCAT.COLAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SCHEMA ’ FROM SYSCAT.SCHEMAAUTH

 UNION

 SELECT DISTINCT GRANTEE, GRANTEETYPE, ’SERVER ’ FROM SYSCAT.PASSTHRUAUTH

 ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of

user and group names defined in the system security facility. You can then identify

those authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the

authorization name is defined at the remote client only and not on your database

server machine.

Retrieving all names with DBADM authority

The following statement retrieves all authorization names that have been directly

granted DBADM authority:

 SELECT DISTINCT GRANTEE, GRANTEETYPE FROM SYSCAT.DBAUTH

 WHERE DBADMAUTH = ’Y’

Note: This query does not return information about authorization names that

acquired DBADM authority implicitly by having SYSADM authority.

Retrieving names authorized to access a table

You can use the PRIVILEGES and other administrative views to retrieve

information about the authorization names that have been granted privileges in a

database.

The following statement retrieves all authorization names (and their types) that are

directly authorized to access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT AUTHID, AUTHIDTYPE FROM SYSIBMADM.PRIVILEGES

 WHERE OBJECTNAME = ’EMPLOYEE’ AND OBJECTSCHEMA = ’JAMES’

For releases earlier than Version 9.1, the following query retrieves the same

information:

124 Database Security Guide

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

 WHERE TABNAME = ’EMPLOYEE’

 AND TABSCHEMA = ’JAMES’

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

 WHERE TABNAME = ’EMPLOYEE’

 AND TABSCHEMA = ’JAMES’

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue

the following statement:

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

 WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND

 (CONTROLAUTH = ’Y’ OR

 UPDATEAUTH IN (’G’,’Y’))

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

 WHERE DBADMAUTH = ’Y’

 UNION

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

 WHERE TABNAME = ’EMPLOYEE’ AND TABSCHEMA = ’JAMES’ AND

 PRIVTYPE = ’U’

This retrieves any authorization names with DBADM authority, as well as those

names to which CONTROL or UPDATE privileges have been directly granted.

However, it will not return the authorization names of users who only hold

SYSADM authority.

Remember that some of the authorization names may be groups, not just

individual users.

Retrieving all privileges granted to users

By making queries on the system catalog views, users can retrieve a list of the

privileges they hold and a list of the privileges they have granted to other users.

You can use the PRIVILEGES and other administrative views to retrieve

information about the authorization names that have been granted privileges in a

database. For example, the following query retrieves all the privileges granted to

the current session authorization ID:

SELECT * FROM SYSIBMADM.PRIVILEGES

 WHERE AUTHID = SESSION_USER AND AUTHIDTYPE = ’U’

The keyword SESSION_USER in this statement is a special register that is equal to

the value of the current user’s authorization name.

For releases earlier than Version 9.1, the following examples provide similar

information. For example, the following statement retrieves a list of the database

privileges that have been directly granted to the individual authorization name

JAMES:

 SELECT * FROM SYSCAT.DBAUTH

 WHERE GRANTEE = ’JAMES’ AND GRANTEETYPE = ’U’

The following statement retrieves a list of the table privileges that were directly

granted by the user JAMES:

 SELECT * FROM SYSCAT.TABAUTH

 WHERE GRANTOR = ’JAMES’

Chapter 5. Using the system catalog for security information 125

The following statement retrieves a list of the individual column privileges that

were directly granted by the user JAMES:

 SELECT * FROM SYSCAT.COLAUTH

 WHERE GRANTOR = ’JAMES’

Securing the system catalog view

Because the system catalog views describe every object in the database, if you have

sensitive data, you might want to restrict their access.

You can use the CREATE DATABASE ... RESTRICTIVE command to create a

database in which no privileges are automatically granted to PUBLIC. In this case,

none of the following normal default grant actions occur:

v CREATETAB

v BINDADD

v CONNECT

v IMPLSCHEMA

v EXECUTE with GRANT on all procedures in schema SQLJ

v EXECUTE with GRANT on all functions and procedures in schema SYSPROC

v BIND on all packages created in the NULLID schema

v EXECUTE on all packages created in the NULLID schema

v CREATEIN on schema SQLJ

v CREATEIN on schema NULLID

v USE on table space USERSPACE1

v SELECT access to the SYSIBM catalog tables

v SELECT access to the SYSCAT catalog views

v SELECT access to the SYSIBMADM administrative views

v SELECT access to the SYSSTAT catalog views

v UPDATE access to the SYSSTAT catalog views

If you have created a database using the RESTRICTIVE option, and you want to

check that the permissions granted to PUBLIC are limited, you can issue the

following query to verify which schemas PUBLIC can access:

SELECT DISTINCT OBJECTSCHEMA FROM SYSIBMADM.PRIVILEGES WHERE AUTHID=’PUBLIC’

OBJECTSCHEMA

SYSFUN

SYSIBM

SYSPROC

To see what access PUBLIC still has to SYSIBM, you can issue the following query

to check what privileges are granted on SYSIBM. The results show that only

EXECUTE on certain procedures and functions is granted.

SELECT * FROM SYSIBMADM.PRIVILEGES WHERE OBJECTSCHEMA = ’SYSIBM’

AUTHID AUTHIDTYPE PRIVILEGE GRANTABLE OBJECTNAME OBJECTSCHEMA OBJECTTYPE

---------... ---------- ---------- --------- ---------------... ------------... ----------

PUBLIC G EXECUTE N SQL060207192129400 SYSPROC FUNCTION

PUBLIC G EXECUTE N SQL060207192129700 SYSPROC FUNCTION

PUBLIC G EXECUTE N SQL060207192129701 SYSPROC

...

PUBLIC G EXECUTE Y TABLES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y TABLEPRIVILEGES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y STATISTICS SYSIBM PROCEDURE

126 Database Security Guide

PUBLIC G EXECUTE Y SPECIALCOLUMNS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PROCEDURES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PROCEDURECOLS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y PRIMARYKEYS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y FOREIGNKEYS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y COLUMNS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y COLPRIVILEGES SYSIBM PROCEDURE

PUBLIC G EXECUTE Y UDTS SYSIBM PROCEDURE

PUBLIC G EXECUTE Y GETTYPEINFO SYSIBM PROCEDURE

PUBLIC G EXECUTE Y SQLCAMESSAGE SYSIBM PROCEDURE

PUBLIC G EXECUTE Y SQLCAMESSAGECCSID SYSIBM PROCEDURE

Note: The SYSIBMADM.PRIVILEGES administrative view is available starting

with Version 9.1 of the DB2 database manager.

For releases earlier than Version 9.1 of the DB2 database manager, during database

creation, SELECT privilege on the system catalog views is granted to PUBLIC. In

most cases, this does not present any security problems. For very sensitive data,

however, it may be inappropriate, as these tables describe every object in the

database. If this is the case, consider revoking the SELECT privilege from PUBLIC;

then grant the SELECT privilege as required to specific users. Granting and

revoking SELECT on the system catalog views is done in the same way as for any

view, but you must have either SYSADM or DBADM authority to do this.

At a minimum, if you don’t want any user to be able to know what objects other

users have access to, you should consider restricting access to the following catalog

and administrative views:

v SYSCAT.COLAUTH

v SYSCAT.DBAUTH

v SYSCAT.INDEXAUTH

v SYSCAT.PACKAGEAUTH

v SYSCAT.PASSTHRUAUTH

v SYSCAT.ROUTINEAUTH

v SYSCAT.SCHEMAAUTH

v SYSCAT.SECURITYLABELACCESS

v SYSCAT.SECURITYPOLICYEXEMPTIONS

v SYSCAT.SEQUENCEAUTH

v SYSCAT.SURROGATEAUTHIDS

v SYSCAT.TABAUTH

v SYSCAT.TBSPACEAUTH

v SYSCAT.XSROBJECTAUTH

v SYSIBMADM.AUTHORIZATIONIDS

v SYSIBMADM.OBJECTOWNERS

v SYSIBMADM.PRIVILEGES

This would prevent information on user privileges from becoming available to

everyone with access to the database.

You should also examine the columns for which statistics are gathered. Some of the

statistics recorded in the system catalog contain data values which could be

sensitive information in your environment. If these statistics contain sensitive data,

you may wish to revoke SELECT privilege from PUBLIC for the

SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

Chapter 5. Using the system catalog for security information 127

If you wish to limit access to the system catalog views, you could define views to

let each authorization name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of

every table on which a user’s authorization name has been directly granted

SELECT privilege:

 CREATE VIEW MYSELECTS AS

 SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH

 WHERE GRANTEETYPE = ’U’

 AND GRANTEE = USER

 AND SELECTAUTH = ’Y’

The keyword USER in this statement is equal to the value of the current session

authorization name.

The following statement makes the view available to every authorization name:

 GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the view and base table by

issuing the following two statements:

 REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

 REVOKE SELECT ON TABLE SYSIBM.SYSTABAUTH FROM PUBLIC

Security considerations

To successfully manage security, you need to be aware of indirect ways that users

can gain access to data. Also, you need to be aware of the default privileges to

certain system tables that are granted when a database is created.

Gaining access to data through indirect means

The following are indirect means through which users can gain access to data they

might not be authorized for:

v Catalog views: The DB2 database system catalog views store metadata and

statistics about database objects. Users with SELECT access to the catalog views

can gain some knowledge about data that they might not be qualified for. For

better security, make sure that only qualified users have access to the catalog

views.

Note: In DB2 Universal Database Version 8, or earlier, SELECT access on the

catalog views was granted to PUBLIC by default. In DB2 Version 9.1, or later,

database systems, users can choose whether SELECT access to the catalog views

is granted to PUBLIC or not by using the new RESTRICTIVE option on the

CREATE DATABASE command.

v Visual explain: Visual explain shows the access plan chosen by the query

optimizer for a particular query. The visual explain information also includes

statistics about columns referenced in the query. These statistics can reveal

information about a table’s contents.

v Explain snapshot: The explain snapshot is compressed information that is

collected when an SQL or XQuery statement is explained. It is stored as a binary

large object (BLOB) in the EXPLAIN_STATEMENT table, and contains column

statistics that can reveal information about table data. For better security, access

to the explain tables should be granted to qualified users only.

v Log reader functions: A user authorized to run a function that reads the logs

can gain access to data they might not be authorized for if they are able to

128 Database Security Guide

understand the format of a log record. These functions read the logs:

 Function Authority needed in order to execute the function

db2ReadLog SYSADM or DBADM

db2ReadLogNoConn None.

v Replication: When you replicate data, even the protected data is reproduced at

the target location. For better security, make sure that the target location is at

least as secure as the source location.

v Exception tables: When you specify an exception table while loading data into a

table, users with access to the exception table can gain information that they

might not be authorized for. For better security, only grant access to the

exception table to authorized users and drop the exception table as soon as you

are done with it.

v Backup table space or database: Users with the authority to run the backup

command can take a backup of a database or a table space, including any

protected data, and restore the data somewhere else. The backup can include

data that the user might not otherwise have access to.

The backup command can be executed by users with SYSADM, SYSCTRL, or

SYSMAINT authority.

v Set session authorization: In DB2 Universal Database Version 8, or earlier, a

user with DBADM authority could use the SET SESSION AUTHORIZATION

SQL statement to set the session authorization ID to any database user. In DB2

Version 9.1, or later, database systems a user must be explicitly authorized

through the GRANT SETSESSIONUSER statement before they can set the

session authorization ID.

When migrating an existing Version 8 database to a DB2 Version 9.1, or later,

database system, however, a user with existing explicit DBADM authority (for

example, granted in SYSCAT.DBAUTH) will keep the ability to set the session

authorization to any database user. This is allowed so that existing applications

will continue to work. Being able to set the session authorization potentially

allows access to all protected data. For more restrictive security, you can

override this setting by executing the REVOKE SETSESSIONUSER SQL

statement.

v Statement and deadlock monitoring: As part of the deadlock monitoring

activity of DB2 database management systems, values associated with parameter

markers are written to the monitoring output when the WITH VALUES clause is

specified. A user with access to the monitoring output can gain access to

information for which they might not be authorized.

v Traces: A trace can contain table data. A user with access to such a trace can

gain access to information that they might not be authorized for.

v Dump files: To help in debugging certain problems, DB2 database products

might generate memory dump files in the sqllib\db2dump directory. These

memory dump files might contain table data. If they do, users with access to the

files can gain access to information that they might not be authorized for. For

better security you should limit access to the sqllib\db2dump directory.

v db2dart: The db2dart tool examines a database and reports any architectural

errors that it finds. The tool can access table data and DB2 does not enforce

access control for that access. A user with the authority to run the db2dart tool

or with access to the db2dart output can gain access to information that they

might not be authorized for.

Chapter 5. Using the system catalog for security information 129

v REOPT bind option: When the REOPT bind option is specified, explain

snapshot information for each reoptimizable incremental bind SQL statement is

placed in the explain tables at run time. The explain will also show input data

values.

v db2cat: The db2cat tool is used to dump a table’s packed descriptor. The table’s

packed descriptor contains statistics that can reveal information about a table’s

contents. A user who runs the db2cat tool or has access to the output can gain

access to information that they might not be authorized for.

Default privileges granted upon creating a database

The following are the default privileges to certain system tables that are granted

when a database is created:

1. SYSIBM.SYSDBAUTH

v The database creator is granted the following privileges:

– DBADM

– CREATETAB

– CREATEROLE

– BINDADD

– CONNECT

– NOFENCE

– IMPLSCHEMA

– LOAD

– EXTERNALROUTINE

– QUIESCECONNECT
v The special group PUBLIC is granted the following privileges:

– CREATETAB

– BINDADD

– CONNECT

– IMPLSCHEMA
2. SYSIBM.SYSTABAUTH

v The special group PUBLIC is granted the following privileges:

– SELECT on all SYSCAT and SYSIBM tables

– SELECT and UPDATE on all SYSSTAT tables
3. SYSIBM.SYSROUTINEAUTH

v The special group PUBLIC is granted the following privileges:

– EXECUTE with GRANT on all procedures in schema

– SQLJ EXECUTE with GRANT on all functions and procedures in schema

SYSFUN

– EXECUTE with GRANT on all functions and procedures in schema

SYSPROC

– EXECUTE on all table functions in schema SYSIBM

– EXECUTE on all other procedures in schema SYSIBM
4. SYSIBM.SYSPACKAGEAUTH

v The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema

– BIND with GRANT on all packages created in the NULLID schema

130 Database Security Guide

– EXECUTE with GRANT on all packages created in the NULLID schema

–

v The special group PUBLIC is granted the following privileges:

– BIND on all packages created in the NULLID schema

– EXECUTE on all packages created in the NULLID schema
5. SYSIBM.SCHEMAAUTH

v The special group PUBLIC is granted the following privileges:

– CREATEIN on schema SQLJ

– CREATE IN on schema NULLID
6. SYSIBM.TBSPACEAUTH

v The special group PUBLIC is granted the following privileges:

– USE on table space USERSPACE1

Chapter 5. Using the system catalog for security information 131

132 Database Security Guide

Chapter 6. Firewall support

A firewall is a set of related programs, located at a network gateway server, that are

used to prevent unauthorized access to a system or network.

There are four types of firewalls:

1. Network level, packet-filter, or screening router firewalls

2. Classical application level proxy firewalls

3. Circuit level or transparent proxy firewalls

4. Stateful multi-layer inspection (SMLI) firewalls

There are existing firewall products that incorporate one of the firewall types listed

above. There are many other firewall products that incorporate some combination

of the above types.

Screening router firewalls

The screening router firewall is also known as a network level or packet-filter

firewall. Such a firewall works by screening incoming packets by protocol

attributes. The protocol attributes screened may include source or destination

address, type of protocol, source or destination port, or some other

protocol-specific attributes.

For all firewall solutions (except SOCKS), you need to ensure that all the ports

used by DB2 database are open for incoming and outgoing packets. DB2 database

uses port 523 for the DB2 Administration Server (DAS), which is used by the DB2

database tools. Determine the ports used by all your server instances by using the

services file to map the service name in the server database manager configuration

file to its port number.

Application proxy firewalls

A proxy or proxy server is a technique that acts as an intermediary between a Web

client and a Web server. A proxy firewall acts as a gateway for requests arriving

from clients.

When client requests are received at the firewall, the final server destination

address is determined by the proxy software. The application proxy translates the

address, performs additional access control checking and logging as necessary, and

connects to the server on behalf of the client.

The DB2 Connect product on a firewall machine can act as a proxy to the

destination server. Also, a DB2 database server on the firewall, acting as a hop

server to the final destination server, acts like an application proxy.

Circuit level firewalls

The circuit level firewall is also known as a transparent proxy firewall.

A transparent proxy firewall does not modify the request or response beyond what

is required for proxy authentication and identification. An example of a transparent

proxy firewall is SOCKS.

© Copyright IBM Corp. 1993, 2009 133

The DB2 database system supports SOCKS Version 4.

Stateful multi-layer inspection (SMLI) firewalls

The stateful multi-layer inspection (SMLI) firewall uses a sophisticated form of

packet-filtering that examines all seven layers of the Open System Interconnection

(OSI) model.

Each packet is examined and compared against known states of friendly packets.

While screening router firewalls only examine the packet header, SMLI firewalls

examine the entire packet including the data.

134 Database Security Guide

Chapter 7. Security plug-ins

Authentication for the DB2 database system is done using security plug-ins. A

security plug-in is a dynamically-loadable library that provides authentication

security services.

The DB2 database system provides the following types of plug-ins:

v Group retrieval plug-in: retrieves group membership information for a given

user.

v Client authentication plug-in: manages authentication on a DB2 client.

v Server authentication plug-in: manages authentication on a DB2 server.

DB2 supports two mechanisms for plug-in authentication:

User ID/password authentication

This involves authentication using a user ID and password. The following

authentication types are implemented using user ID/password

authentication plug-ins:

 - CLIENT

 - SERVER

 - SERVER_ENCRYPT

 - DATA_ENCRYPT

 - DATA_ENCRYPT_CMP

These authentication types determine how and where authentication of a

user occurs. The authentication type used depends on the authentication

type specified by the authentication database manager configuration

parameter. If the SRVCON_AUTH parameter is specified it takes

precedence over AUTHENTICATION when dealing with connect or attach

operations.

GSS-API authentication

GSS-API is formally known as Generic Security Service Application Program

Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version

2: C-Bindings (IETF RFC2744). Kerberos authentication is also implemented

using GSS-API. The following authentication types are implemented using

GSS-API authentication plug-ins:

 - KERBEROS

 - GSSPLUGIN

 - KRB_SERVER_ENCRYPT

 - GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both

GSS-API authentication and user ID/password authentication; however,

GSS-API authentication is the preferred authentication type.

Note: Authentication types determine how and where a user is authenticated. To

use a particular authentication type, update the authentication database manager

configuration parameter.

Each of the plug-ins can be used independently or in conjunction with one or more

of the other plug-ins. For example, you might only use a server authentication

© Copyright IBM Corp. 1993, 2009 135

plug-in and assume the DB2 defaults for client and group authentication.

Alternatively, you might have only a group or client authentication plug-in. The

only situation where both a client and server plug-in are required is for GSS-API

authentication plug-ins.

The default behavior is to use a user ID/password plug-in that implements an

operating-system-level mechanism for authentication. In previous releases, the

default behavior is to directly use operating-system-level authentication without a

plug-in implementation. Client-side Kerberos support is available on Solaris, AIX,

Windows, and Linux operating systems. For Windows platforms, Kerberos support

is enabled by default.

DB2 database systems include sets of plug-ins for group retrieval, user

ID/password authentication, and for Kerberos authentication. With the security

plug-in architecture you can customize DB2 client and server authentication

behavior by either developing your own plug-ins, or buying plug-ins from a third

party.

Deployment of security plug-ins on DB2 clients

DB2 clients can support one group plug-in, one user ID/password authentication

plug-in, and will negotiate with the DB2 server for a particular GSS-API plug-in.

This negotiation consists of a scan by the client of the DB2 server’s list of

implemented GSS-API plug-ins for the first authentication plug-in name that

matches an authentication plug-in implemented on the client. The server’s list of

plug-ins is specified in the srvcon_gssplugin_list database manager configuration

parameter value, which contains the names of all of the plug-ins that are

implemented on the server. The following figure portrays the security plug-in

infrastructure on a DB2 client.

Deployment of security plug-ins on DB2 servers

DB2 servers can support one group plug-in, one user ID/password authentication

plug-in, and multiple GSS-API plug-ins. The multiple GSS-API plug-ins are

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Client

Security layer

Plug-in interface

Figure 3. Deploying Security Plug-ins on DB2 Clients

136 Database Security Guide

specified in the srvcon_gssplugin_list database manager configuration parameter

value as a list. Only one GSS-API plug-in in this list can be a Kerberos plug-in.

In addition to server-side security plug-ins, you might also need to deploy client

authorization plug-ins on your database server. When you run instance-level

operations like db2start and db2trc, the DB2 database manager performs

authorization checking for these operations using client authentication plug-ins.

Therefore, you should install the client authentication plug-in that corresponds to

the server plug-in that is specified by the authentication database manager

configuration parameter. There is a main distinction between authentication and

srvcon_auth. Specifically, they could be set to different values to cause one

mechanism to be used to authenticate database connections and another

mechanism to be used for local authorization. The most common usage is

srvcon_auth set as GSSPLUGIN and authentication set as SERVER. If you do not use

client authentication plug-ins on the database server, instance level operations such

as db2start will fail. For example, if the authentication type is SERVER and no

user-supplied client plug-in is used, the DB2 database system will use the

IBM-shipped default client operating-system plug-in. The following figure portrays

the security plug-in infrastructure on a DB2 server.

Note: The integrity of your DB2 database system installation can be compromised

if the deployment of security plug-ins are not adequately coded, reviewed, and

tested. The DB2 database system takes precaution against many common types of

failures, but it cannot guarantee complete integrity when user-written security

plug-ins are deployed.

Enabling security plug-ins

The system administrator can specify the names of the plug-ins to use for each

authentication mechanism by updating certain plug-in-related database manager

configuration parameters. If these parameters are null, they will default to the

DB2-supplied plug-ins for group retrieval, user ID/password management, or

Kerberos (if authentication is set to Kerberos -- on the server). DB2 does not

provide a default GSS-API plug-in. Therefore, if system administrators specify an

authentication type of GSSPLUGIN in authentication parameter, they must also

User ID/password
client plug-in

Kerberos GSS-API
client plug-in

GSS-API
client plug-in

Group plug-in

DB2 Server

Security layer

Plug-in interface

User ID/password
server plug-in

Kerberos GSS-API
server plug-in

GSS-API
server plug-in

Figure 4. Deploying Security Plug-ins on DB2 Servers

Chapter 7. Security plug-ins 137

specify a GSS-API authentication plug-in in srvcon_gssplugin_list.

How DB2 loads security plug-ins

All of the supported plug-ins identified by the database manager configuration

parameters are loaded when the database manager starts.

The DB2 client will load a plug-in appropriate for the security mechanism

negotiated with the server during connect or attach operations. It is possible that a

client application can cause multiple security plug-ins to be concurrently loaded

and used. This situation can occur, for example, in a threaded program that has

concurrent connections to different databases from different instances.

Actions other than connect or attach operations require authorization (such as

updating the database manager configuration, starting and stopping the database

manager, turning DB2 trace on and off) as well. For such actions, the DB2 client

program will load a plug-in specified in another database manager configuration

parameter. If authentication is set to GSSPLUGIN, DB2 database manager will use

the plug-in specified by local_gssplugin. If authentication is set to KERBEROS, DB2

database manager will use the plug-in specified by clnt_krb_plugin. Otherwise, DB2

database manager will use the plug-in specified by clnt_pw_plugin.

Security plug-ins APIs can be called from either an IPv4 platform or an IPv6

platform. An IPv4 address is a 32-bit address which has a readable form a.b.c.d,

where each of a-d represents a decimal number from 0-255. An IPv6 address is a

128 bit address of the form a:b:c:d:e:f:g:h, where each of a-h represents 4 hex digits.

Developing security plug-ins

If you are developing a security plug-in, you need to implement the standard

authentication functions that DB2 database manager will use. If you are using your

own customized security plug-in, you can use a user ID of up to 255 characters on

a connect statement issued through the CLP or a dynamic SQL statement. For the

available types of plug-ins, the functionality you will need to implement is as

follows:

Group retrieval

Gets the list of groups to which a user belongs.

User ID/password authentication

v Identifies the default security context (client only).

v Validates and optionally changes a password.

v Determines if a given string represents a valid user (server only).

v Modifies the user ID or password provided on the client before it is sent

to the server (client only).

v Returns the DB2 authorization ID associated with a given user.

GSS-API authentication

v Implements the required GSS-API functions.

v Identifies the default security context (client only).

v Generates initial credentials based on a user ID and password and

optionally changes password (client only).

v Creates and accepts security tickets.

v Returns the DB2 authorization ID associated with a given GSS-API

security context.

138 Database Security Guide

Security plug-in library locations

After you acquire your security plug-ins (either by developing them yourself, or

purchasing them from a third party), copy them to specific locations on your

database server.

DB2 clients looks for client-side user authentication plug-ins in the following

directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/client

v UNIX 64-bit: $DB2PATH/security64/plugin/client

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\client

Note: On Windows-based platforms, the subdirectories instance name and client are

not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for server-side user authentication plug-ins in the

following directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/server

v UNIX 64-bit: $DB2PATH/security64/plugin/server

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\server

Note: On Windows-based platforms, the subdirectories instance name and server are

not created automatically. The instance owner has to manually create them.

The DB2 database manager looks for group plug-ins in the following directory:

v UNIX 32-bit: $DB2PATH/security32/plugin/group

v UNIX 64-bit: $DB2PATH/security64/plugin/group

v WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\group

Note: On Windows-based platforms, the subdirectories instance name and group are

not created automatically. The instance owner has to manually create them.

Security plug-in naming conventions

Security plug-in libraries must have a platform-specific file name extension.

Security plug-in libraries written in C or C++ must have a platform-specific file

name extension:

v Windows: .dll

v AIX: .a or .so, and if both extensions exist, .a extension is used.

v Linux, HP IPF and Solaris: .so

v HPUX on PA-RISC: .sl or .so, and if both extensions exist, .sl extension is

used.

Note: Users can also develop security plug-ins with the DB2 Universal JDBC

Driver.

For example, assume you have a security plug-in library called MyPlugin. For each

supported operating system, the appropriate library file name follows:

v Windows 32-bit: MyPlugin.dll

v Windows 64-bit: MyPlugin64.dll

v AIX 32 or 64-bit: MyPlugin.a or MyPlugin.so

v SUN 32 or 64-bit, Linux 32 or 64 bit, HP 32 or 64 bit on IPF: MyPlugin.so

Chapter 7. Security plug-ins 139

v HP-UX 32 or 64-bit on PA-RISC: MyPlugin.sl or MyPlugin.so

Note: The suffix ″64″ is only required on the library name for 64-bit Windows

security plug-ins.

When you update the database manager configuration with the name of a security

plug-in, use the full name of the library without the ″64″ suffix and omit both the

file extension and any qualified path portion of the name. Regardless of the

operating system, a security plug-in library called MyPlugin would be registered as

follows:

UPDATE DBM CFG USING CLNT_PW_PLUGIN MyPlugin

The security plug-in name is case sensitive, and must exactly match the library

name. DB2 database systems use the value from the relevant database manager

configuration parameter to assemble the library path, and then uses the library

path to load the security plug-in library.

To avoid security plug-in name conflicts, you should name the plug-in using the

authentication method used, and an identifying symbol of the firm that wrote the

plug-in. For instance, if the company Foo, Inc. wrote a plug-in implementing the

authentication method FOOsomemethod, the plug-in could have a name like

FOOsomemethod.dll.

The maximum length of a plug-in name (not including the file extension and the

″64″ suffix) is limited to 32 bytes. There is no maximum number of plug-ins

supported by the database server, but the maximum length of the

comma-separated list of plug-ins in the database manager configuration is 255

bytes. Two defines located in the include file sqlenv.h identifies these two limits:

#define SQL_PLUGIN_NAME_SZ 32 /* plug-in name */

#define SQL_SRVCON_GSSPLUGIN_LIST_SZ 255 /* GSS API plug-in list */

The security plug-in library files must have the following file permissions:

v Owned by the instance owner.

v Readable by all users on the system.

v Executable by all users on the system.

Security plug-in support for two-part user IDs

The DB2 database manager on Windows supports the use of two-part user IDs,

and the mapping of two-part user IDs to two-part authorization IDs.

For example, consider a Windows operating system two-part user ID composed of

a domain and user ID such as: MEDWAY\pieter. In this example, MEDWAY is a domain

and pieter is the user name. In DB2 database systems, you can specify whether

this two-part user ID should be mapped to either a one-part authorization ID or a

two-part authorization ID.

The mapping of a two-part user ID to a two-part authorization ID is supported,

but is not the default behavior. By default, both one-part user IDs and two-part

user IDs map to one-part authorization IDs. The mapping of a two-part user ID to

a two-part authorization ID is supported, but is not the default behavior.

The default mapping of a two-part user ID to a one-part user ID allows a user to

connect to the database using:

db2 connect to db user MEDWAY\pieter using pw

140 Database Security Guide

In this situation, if the default behavior is used, the user ID MEDWAY\pieter is

resolved to the authorization ID PIETER. If the support for mapping a two-part

user ID to a two-part authorization ID is enabled, the authorization ID would be

MEDWAY\PIETER.

To enable DB2 to map two-part user IDs to two-part authorization IDs, DB2

supplies two sets of authentication plug-ins:

v One set exclusively maps a one-part user ID to a one-part authorization ID and

maps a two-part user-ID to a one-part authorization ID.

v Another set maps both one-part user ID or two-part user ID to a two-part

authorization ID.

If a user name in your work environment can be mapped to multiple accounts

defined in different locations (such as local account, domain account, and trusted

domain accounts), you can specify the plug-ins that enable two-part authorization

ID mapping.

It is important to note that a one-part authorization ID, such as, PIETER and a

two-part authorization ID that combines a domain and a user ID like

MEDWAY\pieter are functionally distinct authorization IDs. The set of privileges

associated with one of these authorization IDs can be completely distinct from the

set of privileges associated with the other authorization ID. Care should be taken

when working with one-part and two-part authorization IDs.

The following table identifies the kinds of plug-ins supplied by DB2 database

systems, and the plug-in names for the specific authentication implementations.

 Table 30. DB2 security plug-ins

Authentication type

Name of one-part user ID

plug-in

Name of two-part user ID

plug-in

User ID/password (client) IBMOSauthclient IBMOSauthclientTwoPart

User ID/password (server) IBMOSauthserver IBMOSauthserverTwoPart

Kerberos IBMkrb5 IBMkrb5TwoPart

Note: On Windows 64-bit platforms, the characters ″64″ are appended to the

plug-in names listed here.

When you specify an authentication type that requires a user ID/password or

Kerberos plug-in, the plug-ins that are listed in the ″Name of one-part user ID

plug-in″ column in the previous table are used by default.

To map a two-part user ID to a two-part authorization ID, you must specify that

the two-part plug-in, which is not the default plug-in, be used. Security plug-ins

are specified at the instance level by setting the security related database manager

configuration parameters as follows:

For server authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For client authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

Chapter 7. Security plug-ins 141

v srvcon_pw_plugin to IBMOSauthserverTwoPart

v clnt_pw_plugin to IBMOSauthclientTwoPart

For Kerberos authentication that maps two-part user IDs to two-part authorization

IDs, you must set:

v srvcon_gssplugin_list to IBMOSkrb5TwoPart

v clnt_krb_plugin to IBMkrb5TwoPart

The security plug-in libraries accept two-part user IDs specified in a Microsoft

Windows Security Account Manager compatible format. For example, in the

format: domain\user ID. Both the domain and user ID information will be used by

the DB2 authentication and authorization processes at connection time.

You should consider implementing the two-part plug-ins when creating new

databases to avoid conflicts with one-part authorization IDs in existing databases.

New databases that use two-part authorization IDs must be created in a separate

instance from databases that use single-part authorization IDs.

Security plug-in API versioning

The DB2 database system supports version numbering of the security plug-in APIs.

These version numbers are integers starting with 1 for DB2 UDB, Version 8.2.

The version number that DB2 passes to the security plug-in APIs is the highest

version number of the API that DB2 can support, and corresponds to the version

number of the structure. If the plug-in can support a higher API version, it must

return function pointers for the version that DB2 has requested. If the plug-in only

supports a lower version of the API, the plug-in should fill in function pointers for

the lower version. In either situation, the security plug-in APIs should return the

version number for the API it is supporting in the version field of the functions

structure.

For DB2, the version numbers of the security plug-ins will only change when

necessary (for example, when there are changes to the parameters of the APIs).

Version numbers will not automatically change with DB2 release numbers.

32-bit and 64-bit considerations for security plug-ins

In general, a 32-bit DB2 instance uses the 32-bit security plug-in and a 64-bit DB2

instance uses the 64-bit security plug-in. However, on a 64-bit instance, DB2

supports 32-bit applications, which require the 32-bit plug-in library.

A database instance where both the 32-bit and the 64-bit applications can run is

known as a hybrid instance. If you have a hybrid instance and intend to run 32-bit

applications, ensure that the required 32-bit security plug-ins are available in the

32-bit plug-in directory. For 64-bit DB2 instances on Linux and UNIX operating

systems, excluding Linux on IPF, the directories security32 and security64

appear. For a 64-bit DB2 instance on Windows on X64 or IPF, both 32-bit and 64-bit

security plug-ins are located in the same directory, but 64-bit plug-in names have a

suffix, ″64″.

If you want to migrate from a 32-bit instance to a 64-bit instance, you should

obtain versions of your security plug-ins that are recompiled for 64-bit.

142 Database Security Guide

If you acquired your security plug-ins from a vendor that does not supply 64-bit

plug-in libraries, you can implement a 64-bit stub that executes a 32-bit application.

In this situation, the security plug-in is an external program rather than a library.

Security plug-in problem determination

Problems with security plug-ins are reported in two ways: through SQL errors and

through the administration notification log.

Following are the SQLCODE values related to security plug-ins:

v SQLCODE -1365 is returned when a plug-in error occurs during db2start or

db2stop.

v SQLCODE -1366 is returned whenever there is a local authorization problem.

v SQLCODE -30082 is returned for all connection-related plug-in errors.

The administration notification log is a good resource for debugging and

administrating security plug-ins. To see the administration notification log on

UNIX, check sqllib/db2dump/instance name.nfy. To see the administration

notification log on Windows operating systems, use the Event Viewer tool. The

Event Viewer tool can be found by navigating from the Windows operating system

″Start″ button to Settings -> Control Panel -> Administrative Tools -> Event

Viewer. Following are the administration notification log values related to security

plug-ins:

v 13000 indicates that a call to a GSS-API security plug-in API failed with an error,

and returned an optional error message.

SQLT_ADMIN_GSS_API_ERROR (13000)

Plug-in "plug-in name" received error code "error code" from

GSS API "gss api name" with the error message "error message"

v 13001 indicates that a call to a DB2 security plug-in API failed with an error, and

returned an optional error message.

SQLT_ADMIN_PLUGIN_API_ERROR(13001)

Plug-in "plug-in name" received error code "error code" from DB2

security plug-in API "gss api name" with the error message

"error message"

v 13002 indicates that DB2 failed to unload a plug-in.

SQLT_ADMIN_PLUGIN_UNLOAD_ERROR (13002)

Unable to unload plug-in "plug-in name". No further action required.

v 13003 indicates a bad principal name.

SQLT_ADMIN_INVALID_PRIN_NAME (13003)

The principal name "principal name" used for "plug-in name"

is invalid. Fix the principal name.

v 13004 indicates that the plug-in name is not valid. Path separators (On UNIX ″/″

and on Windows ″\″) are not allowed in the plug-in name.

SQLT_ADMIN_INVALID_PLGN_NAME (13004)

The plug-in name "plug-in name" is invalid. Fix the plug-in name.

v 13005 indicates that the security plug-in failed to load. Ensure the plug-in is in

the correct directory and that the appropriate database manager configuration

parameters are updated.

SQLT_ADMIN_PLUGIN_LOAD_ERROR (13005)

Unable to load plug-in "plug-in name". Verify the plug-in existence and

directory where it is located is correct.

v 13006 indicates that an unexpected error was encountered by a security plug-in.

Gather all the db2support information, if possible capture a db2trc, and then call

IBM support for further assistance.

Chapter 7. Security plug-ins 143

SQLT_ADMIN_PLUGIN_UNEXP_ERROR (13006)

Plug-in encountered unexpected error. Contact IBM Support for further assistance.

Note: If you are using security plug-ins on a Windows 64-bit database server and

are seeing a load error for a security plug-in, see the topics about 32-bit and 64-bit

considerations and security plug-in naming conventions. The 64-bit plug-in library

requires the suffix ″64″ on the library name, but the entry in the security plug-in

database manager configuration parameters should not indicate this suffix.

Enabling plug-ins

Deploying a group retrieval plug-in

To customize the DB2 security system’s group retrieval behavior, you can develop

your own group retrieval plug-in or buy one from a third party.

After you acquire a group retrieval plug-in that is suitable for your database

management system, you can deploy it.

v To deploy a group retrieval plug-in on the database server, perform the

following steps:

1. Copy the group retrieval plug-in library into the server’s group plug-in

directory.

2. Update the database manager configuration parameter group_plugin with the

name of the plug-in.
v To deploy a group retrieval plug-in on database clients, perform the following

steps:

1. Copy the group retrieval plug-in library in the client’s group plug-in

directory.

2. On the database client, update the database manager configuration

parameter group_plugin with the name of the plug-in.

Deploying a user ID/password plug-in

To customize the DB2 security system’s user ID/password authentication behavior,

you can develop your own user ID/password authentication plug-ins or buy one

from a third party.

Depending on their intended usage, all user ID-password based authentication

plug-ins must be placed in either the client plug-in directory or the server plug-in

directory. If a plug-in is placed in the client plug-in directory, it will be used both

for local authorization checking and for validating the client when it attempts to

connect with the server. If the plug-in is placed in the server plug-in directory, it

will be used for handling incoming connections to the server and for checking

whether an authorization ID exists and is valid whenever the GRANT statement is

issued without specifying either the keyword USER or GROUP. In most situations,

user ID/password authentication requires only a server-side plug-in. It is possible,

though generally deemed less useful, to have only a client user ID/password

plug-in. It is possible, though quite unusual to require matching user ID/password

plug-ins on both the client and the server.

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

144 Database Security Guide

After you acquire user ID/password authentication plug-ins that are suitable for

your database management system, you can deploy them.

v To deploy a user ID/password authentication plug-in on the database server,

perform the following steps on the database server:

1. Copy the user ID/password authentication plug-in library in the server

plug-in directory.

2. Update the database manager configuration parameter srvcon_pw_plugin with

the name of the server plug-in. This plug-in is used by the server when it is

handling CONNECT and ATTACH requests.

3. Either:

– Set the database manager configuration parameter srvcon_auth to the

CLIENT, SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or

DATA_ENCRYPT_CMP authentication type. Or:

– Set the database manager configuration parameter srvcon_auth to

NOT_SPECIFIED and set authentication to CLIENT, SERVER,

SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP

authentication type.
v To deploy a user ID/password authentication plug-in on database clients,

perform the following steps on each client:

1. Copy the user ID/password authentication plug-in library in the client

plug-in directory.

2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the client plug-in. This plug-in is loaded and called regardless of

where the authentication is being done, not only when the database

configuration parameter, authentication is set to CLIENT.
v For local authorization on a client, server, or gateway using a user ID/password

authentication plug-in, perform the following steps on each client, server, or

gateway:

1. Copy the user ID/password authentication plug-in library in the client

plug-in directory on the client, server, or gateway.

2. Update the database manager configuration parameter clnt_pw_plugin with

the name of the plug-in.

3. Set the authentication database manager configuration parameter to CLIENT,

SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

Deploying a GSS-API plug-in

To customize the DB2 security system’s authentication behavior, you can develop

your own authentication plug-ins using the GSS-API, or buy one from a third

party.

In the case of plug-in types other than Kerberos, you must have matching plug-in

names on the client and the server along with the same plug-in type. The plug-ins

on the client and server need not be from the same vendor, but they must generate

and consume compatible GSS-API tokens. Any combination of Kerberos plug-ins

deployed on the client and the server is acceptable since Kerberos plug-ins are

standardized. However, different implementations of less standardized GSS-API

mechanisms, such as x.509 certificates, might only be partially compatible with

DB2 database systems. Depending on their intended usage, all GSS-API

authentication plug-ins must be placed in either the client plug-in directory or the

server plug-in directory. If a plug-in is placed in the client plug-in directory, it will

be used for local authorization checking and when a client attempts to connect

with the server. If the plug-in is placed in the server plug-in directory, it will be

Chapter 7. Security plug-ins 145

used for handling incoming connections to the server and for checking whether an

authorization ID exists and is valid whenever the GRANT statement is issued

without specifying either the keyword USER or GROUP.

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

After you acquire GSS-API authentication plug-ins that are suitable for your

database management system, you can deploy them.

v To deploy a GSS-API authentication plug-in on the database server, perform the

following steps on the server:

1. Copy the GSS-API authentication plug-in library in the server plug-in

directory. You can copy numerous GSS-API plug-ins into this directory.

2. Update the database manager configuration parameter srvcon_gssplugin_list

with an ordered, comma-delimited list of the names of the plug-ins installed

in the GSS-API plug-in directory.

3. Either:

– Setting the database manager configuration parameter srvcon_auth to

GSSPLUGIN or GSS_SERVER_ENCRYPT is a way to enable the server to

use GSSAPI PLUGIN authentication method. Or:

– Setting the database manager configuration parameter srvcon_auth to

NOT_SPECIFIED and setting authentication to GSSPLUGIN or

GSS_SERVER_ENCRYPT is a way to enable the server to use GSSAPI

PLUGIN authentication method.
v To deploy a GSS-API authentication plug-in on database clients, perform the

following steps on each client:

1. Copy the GSS-API authentication plug-in library in the client plug-in

directory. You can copy numerous GSS-API plug-ins into this directory. The

client selects a GSS-API plug-in for authentication during a CONNECT or

ATTACH operation by picking the first GSS-API plug-in contained in the

server’s plug-in list that is available on the client.

2. Optional: Catalog the databases that the client will access, indicating that the

client will only accept a GSS-API authentication plug-in as the authentication

mechanism. For example:

CATALOG DB testdb AT NODE testnode AUTHENTICATION GSSPLUGIN

v For local authorization on a client, server, or gateway using a GSS-API

authentication plug-in, perform the following steps:

1. Copy the GSS-API authentication plug-in library in the client plug-in

directory on the client, server, or gateway.

2. Update the database manager configuration parameter local_gssplugin with

the name of the plug-in.

3. Set the authentication database manager configuration parameter to

GSSPLUGIN, or GSS_SERVER_ENCRYPT.

Deploying a Kerberos plug-in

To customize the DB2 security system’s Kerberos authentication behavior, you can

develop your own Kerberos authentication plug-ins or buy one from a third party.

Note that the Kerberos security plug-in will not support IPv6.

146 Database Security Guide

Note: You must stop the DB2 server or any applications using the plug-ins before

you deploy a new version of an existing plug-in. Undefined behavior including

traps will occur if a process is still using a plug-in when a new version (with the

same name) is copied over it. This restriction is not in effect when you deploy a

plugin for the first time or when the plug-in is not in use.

After you acquire Kerberos authentication plug-ins that are suitable for your

database management system, you can deploy them.

v To deploy a Kerberos authentication plug-in on the database server, perform the

following steps on the server:

1. Copy the Kerberos authentication plug-in library in the server plug-in

directory.

2. Update the database manager configuration parameter

srvcon_gssplugin_list, which is presented as an ordered, comma delimited

list, to include the Kerberos server plug-in name. Only one plug-in in this list

can be a Kerberos plug-in. If this list is blank and authentication is set to

KERBEROS or KRB_SVR_ENCRYPT, the default DB2 Kerberos plug-in:

IBMkrb5 will be used.

3. If necessary, set the srvcon_auth database manager configuration parameter

to override the current authentication type. If the srvcon_auth database

manager configuration parameter is not set, the DB2 database manager uses

the value of the authentication configuration parameter. If the authentication

configuration parameter is currently set to any of the following

authentication types, you can deploy and use a Kerberos plug-in:

– KERBEROS

– KRB_SERVER_ENCRYPT

– GSSPLUGIN

– GSS_SERVER_ENCRYPT

If you need to override the current authentication type, set the srvcon_auth

configuration parameter to one of the following authentication types:

– KERBEROS

– KRB_SERVER_ENCRYPT

– GSSPLUGIN

– GSS_SERVER_ENCRYPT
v To deploy a Kerberos authentication plug-in on database clients, perform the

following steps on each client:

1. Copy the Kerberos authentication plug-in library in the client plug-in

directory.

2. Update the database manager configuration parameter clnt_krb_plugin with

the name of the Kerberos plug-in. If clnt_krb_plugin is blank, DB2 assumes

that the client cannot use Kerberos authentication. This setting is only

appropriate when the server cannot support plug-ins. If both the server and

the client support security plug-ins, the default server plug-in, IBMkrb5

would be used over the client value of clnt_krb_plugin. For local

authorization on a client, server, or gateway using a Kerberos authentication

plug-in, perform the following steps:

a. Copy the Kerberos authentication plug-in library in the client plug-in

directory on the client, server, or gateway.

b. Update the database manager configuration parameter clnt_krb_plugin

with the name of the plug-in.

Chapter 7. Security plug-ins 147

c. Set the authentication database manager configuration parameter to

KERBEROS, or KRB_SERVER_ENCRYPT.
3. Optional: Catalog the databases that the client will access, indicating that the

client will only use a Kerberos authentication plug-in. For example:

CATALOG DB testdb AT NODE testnode AUTHENTICATION KERBEROS

 TARGET PRINCIPAL service/host@REALM

Note: For platforms supporting Kerberos, the IBMkrb5 library will be present in the

client plug-in directory. DB2 will recognize this library as a valid GSS-API plug-in,

because Kerberos plug-ins are implemented using GSS-API plug-in.

LDAP-based authentication and group lookup support

The DB2 database manager and DB2 Connect support LDAP-based authentication

and group lookup functionality through the use of LDAP security plug-in modules.

Starting with Fix Pack 4, transparent LDAP authentication now allows you to

utilize LDAP-based authentication on AIX, without having to first configure the

DB2 environment using the DB2 LDAP security plug-ins.

LDAP-based authentication support has been enhanced on the AIX operating

system. LDAP now enables central management of user authentication and group

membership using transparent LDAP authentication. You can configure DB2

instances to authenticate users and acquire their groups through the operating

system. The AIX operating system will, in turn, perform the authentication through

an LDAP server. To enable transparent LDAP authentication, set the DB2AUTH

registry variable to OSAUTHDB.

The second option for implementing LDAP-based authentication through the

LDAP security plug-ins. LDAP security plug-in modules allow the DB2 database

manager to authenticate users defined in an LDAP directory, removing the

requirement that users and groups be defined to the operating system. Supported

operating systems are:

v AIX

v HP-UX on Itanium-based HP Integrity Series systems (IA-64)

v Linux on IA32, x64, or zSeries hardware

v Solaris

v Windows

Compiled binary plug-in modules for these supported platforms are found under

the appropriate directory (for example, aix64, win32, and so on).

Supported LDAP servers for use with security plug-in modules are:

v IBM Lotus® Domino® LDAP Server, Version 7.0, and later

v IBM Tivoli® Directory Server (ITDS) Version 5.2, 6.0, and later

v Microsoft Active Directory (MSAD) Version 2000, 2003, and later

v Novell eDirectory, Version 8.7, and later

v OpenLDAP server, Version 2.3.32, and later

v Sun Java System Directory Server Enterprise Edition, Version 5.2, and later

v z/OS Integrated Security Services LDAP Server Version V1R6, and later

Note: When you use the LDAP plugin modules, all users associated with the

database must be defined on the LDAP server. This includes both the DB2 instance

owner ID as well as the fenced user. (These users are typically defined in the

148 Database Security Guide

operating system, but must also be defined in LDAP.) Similarly, if you use the

LDAP group plug-in module, any groups required for authorization must be

defined on the LDAP server. This includes the SYSADM, SYSMAINT, SYSCTRL

and SYSMON groups defined in the database manager configuration.

DB2 security plug-in modules are available for server-side authentication,

client-side authentication and group lookup, described later. Depending on your

specific environment, you may need to use one, two or all three types of plug-in.

To use DB2 security plug-in modules, follow these steps:

1. Decide if you need server, client, or group plug-in modules, or a combination

of these modules.

2. Configure the plug-in modules by setting values in the IBM LDAP security

plug-in configuration file (default name is IBMLDAPSecurity.ini). You will need

to consult with your LDAP administrator to determine appropriate values.

3. Enable the plug-in modules.

4. Test connecting with various LDAP User IDs.

Server authentication plugin

The server authentication plug-in module performs server validation of user IDs

and passwords supplied by clients on CONNECT statements and ATTACH

commands. It also provides a way to map LDAP user IDs to DB2 authorization

IDs, if required. The server plug-in module is generally required if you want users

to authenticate to the DB2 database manager using their LDAP user ID and

password.

Client authentication plug-in

The client authentication plug-in module is used where user ID and password

validation occurs on the client system; that is, where the DB2 server is configured

with srvcon_auth or authentication settings of CLIENT. The client validates any

user IDs and passwords supplied on CONNECT statements or ATTACH

commands, and sends the user ID to the DB2 server. Note that CLIENT

authentication is difficult to secure, and not generally recommended.

The client authentication plug-in module may also be required if the local

operating system user IDs on the database server are different from the DB2

authorization IDs associated with those users. You can use the client-side plugin to

map local operating system user IDs to DB2 authorization IDs prior to performing

authorization checks for local commands on the database server, such as

for:db2start.

Group lookup plug-in

The group lookup plug-in module retrieves group membership information from

the LDAP server for a particular user. It is required if you want to use LDAP to

store your group definitions. The most common scenario is where:

v All users and groups are defined in the LDAP server

v Any users defined locally on the database server are also defined with the same

user ID on the LDAP server (including the instance owner and the fenced user)

v Password validation occurs on the DB2 server (that is, an authentication or

srvcon_auth value of SERVER, SERVER_ENCRYPT or DATA_ENCRYPT is set in

the server DBM configuration file).

Chapter 7. Security plug-ins 149

It is generally sufficient to install only the server authentication plug-in module

and the group lookup plug-in module on the server. DB2 clients typically do not

need to have the LDAP plug-in module installed.

It is possible to use only the LDAP group lookup plug-in module in combination

with some other form of authentication plug-in (such as Kerberos). In this case, the

LDAP group lookup plug-in module will be provided the DB2 authorization IDs

associated with a user. The plug-in module searches the LDAP directory for a user

with a matching AUTHID_ATTRIBUTE, then retrieves the groups associated with

that user object.

Configuring the LDAP plug-in modules

To configure the LDAP plug-in modules, you need to update your IBM LDAP

security plug-in configuration file to suit your environment. In most cases, you will

need to consult with your LDAP administrator to determine the appropriate

configuration values.

The default name and location for the IBM LDAP security plug-in configuration

file is:

v On UNIX: INSTHOME/sqllib/cfg/IBMLDAPSecurity.ini

v On Windows: %DB2PATH%\cfg\IBMLDAPSecurity.ini

Optionally, you can specify the location of this file using the

DB2LDAPSecurityConfig environment variable. On Windows, you should set

DB2LDAPSecurityConfig in the global system environment, to ensure it is picked

up by the DB2 service.

The following tables provide information to help you determine appropriate

configuration values.

 Table 31. Server-related values

Parameter Description

LDAP_HOST The name of your LDAP server(s).

This is a space separated list of LDAP server host names

or IP addresses, with an optional port number for each one.

For example: host1[:port] [host2:[port2] ...]

The default port number is 389, or 636 if SSL is enabled.

ENABLE_SSL To enable SSL support, set ENABLE_SSL to TRUE (you must have

the GSKit installed). This is an optional parameter; it defaults to

FALSE (no SSL support).

SSL_KEYFILE The path for the SSL keyring.

A keyfile is only required if your LDAP server is using a

certificate that is not automatically trusted by your GSKit

installation.

For example:SSL_KEYFILE = /home/db2inst1/IBMLDAPSecurity.kdb

SSL_PW The SSL keyring password. For example: SSL_PW = keyfile-password

 Table 32. User-related values

Parameter Description

USER_

 OBJECTCLASS

The LDAP object class used for users.

Generally, set USER_OBJECTCLASS to inetOrgPerson (the user

for Microsoft Active Directory)

For example: USER_OBJECTCLASS = inetOrgPerson

150 Database Security Guide

Table 32. User-related values (continued)

Parameter Description

USER_BASEDN The LDAP base DN to use when searching for users.

If not specified, user searches start at the root of the

LDAP directory. Some LDAP servers require that you

specify a value for this parameter.

For example: USER_BASEDN = o=ibm

USERID_

 ATTRIBUTE

The LDAP user attribute that represents the user ID.

The USERID_ATTRIBUTE attribute is combined with the

USER_OBJECTCLASS and USER_BASEDN (if specified)

to construct an LDAP search filter when a user issues a

DB2 CONNECT statement with an unqualified user ID.

For example, if USERID_ATTRIBUTE = uid, then issuing

this statement:

 db2 connect to MYDB user bob using bobpass

results in the following search filter:

&(objectClass=inetOrgPerson)(uid=bob)

AUTHID_

 ATTRIBUTE

The LDAP user attribute that represents the DB2 authorization ID.

Usually this is the same as the USERID_ATTRIBUTE.

For example: AUTHID_ATTRIBUTE = uid

 Table 33. Group-related values

Parameter Description

GROUP_

 OBJECTCLASS

The LDAP object class used for groups.

Generally this is groupOfNames or groupOfUniqueNames

(for Microsoft Active Directory, it is group)

For example: GROUP_OBJECTCLASS = groupOfNames

GROUP_BASEDN The LDAP base DN to use when searching for groups

If not specified, group searches start at the root of the

LDAP directory. Some LDAP servers require that you

specify a value for this parameter.

For example: GROUP_BASEDN = o=ibm

GROUPNAME_

 ATTRIBUTE

The LDAP group attribute that represents the name of the

group.

For example: GROUPNAME_ATTRIBUTE = cn

GROUP_LOOKUP_

 METHOD

Determines the method used to find the group memberships for a

user. Possible values are:

v SEARCH_BY_DN Indicates to search for groups that list the user

as a member. Membership is indicated by the group attribute

defined as GROUP_LOOKUP_ATTRIBUTE (typically, member or

uniqueMember).

v USER_ATTRIBUTE In this case, a user’s groups are listed as

attributes of the user object itself. This setting indicates to search

for the user attribute defined as GROUP_LOOKUP_ATTRIBUTE

to get the user’s groups (typically memberOf for Microsoft Active

Directory or ibm-allGroups for IBM Tivoli Directory Server).
For example:GROUP_LOOKUP_METHOD = SEARCH_BY_DN

GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

GROUP_LOOKUP_

 ATTRIBUTE

Name of the attribute used to determine group membership, as

described for GROUP_LOOKUP_METHOD.

 For example:

GROUP_LOOKUP_ATTRIBUTE = member

GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

Chapter 7. Security plug-ins 151

Table 33. Group-related values (continued)

Parameter Description

NESTED_GROUPS If NESTED_GROUPS is TRUE, the DB2 database manager

recursively searches for group membership by attempting to look

up the group memberships for every group that is found.

 Cycles (such as A belongs to B, and B belongs to A) are

handled correctly.

This parameter is optional, and defaults to FALSE.

 Table 34. Miscellaneous values

Parameter Description

SEARCH_DN,

SEARCH_PW

If your LDAP server does not support anonymous access, or if

anonymous access is not sufficient when searching for users or groups,

then you can optionally define a DN and password that will be used to

perform searches.

 For example:

SEARCH_DN = cn=root

SEARCH_PW = rootpassword

DEBUG Set DEBUG to TRUE to write extra information to db2diag.log to aid in

debugging LDAP related issues.

 Most of the additional information is logged at

DIAGLEVEL 4 (INFO).

DEBUG defaults to false.

Enabling the LDAP plug-in modules

Compiled binary LDAP plug-in modules are found in your DB2 instance directory.

The following tables show where the LDAP plug-in modules are located on your

DB2 instance.

 Table 35. For 64-bit UNIX and Linux operating systems

Plug-in

module type Location

server /sqllib/security64/plugin/IBM/server

client /sqllib/security64/plugin/IBM/client

group /sqllib/security64/plugin/IBM/group

 Table 36. For 32-bit UNIX and Linux operating systems

Plug-in

module type Location

server /sqllib/security32/plugin/IBM/server

client /sqllib/security32/plugin/IBM/client

group /sqllib/security32/plugin/IBM/group

152 Database Security Guide

Table 37. For Windows operating systems (both 64-bit and 32-bit)

Plug-in

module type Location

server %DB2PATH%\security\plugin\IBM\instance-name\server

client %DB2PATH%\security\plugin\IBM\instance-name\client

group %DB2PATH%\security\plugin\IBM\instance-name\group

Note: 64-bit Windows plug-in modules include the digits 64 in the file name.

Use the DB2 command line processor to update the database manager

configuration to enable the plug-in modules that you require:

v For the server plug-in module:

UPDATE DBM CFG USING SRVCON_PW_PLUGIN IBMLDAPauthserver

v For the client plug-in module:

UPDATE DBM CFG USING CLNT_PW_PLUGIN IBMLDAPauthclient

v For the group plug-in module:

UPDATE DBM CFG USING GROUP_PLUGIN IBMLDAPgroups

Terminate all running DB2 command line processor backend processes, by using

the db2 terminate command, and then stop and restart the instance by using the

db2stop and db2start commands.

Connecting with an LDAP user ID

Once the LDAP security plug-ins have been configured in a DB2 instance, a user

can connect to the databases using a variety of different user strings.

The location of an object within an LDAP directory is defined by its distinguished

name (DN). A DN is typically a multi-part name that reflects some sort of

hierarchy, for example:

cn=John Smith, ou=Sales, o=WidgetCorp

A user’s user ID is defined by an attribute associated with the user object (typically

the uid attribute). It may be a simple string (such as jsmith), or look like an email

address (such as jsmith@sales.widgetcorp.com), that reflects part of the

organizational hierarchy.

A user’s DB2 authorization ID is the name associated with that user within the DB2

database.

In the past, users were typically defined in the server’s host operating system, and

the user ID and authorization ID were the same (though the authorization ID is

usually in uppercase). The DB2 LDAP plug-in modules give you the ability to

associate different attributes of the LDAP user object with the user ID and the

authorization ID. In most cases, the user ID and authorization ID can be the same

string, and you can use the same attribute name for both the USERID_ATTRIBUTE

and the AUTHID_ATTRIBUTE. However, if in your environment the user ID

attribute typically contains extra information that you do not want to carry over to

the authorization ID, you can configure a different AUTHID_ATTRIBUTE in the

plug-in initialization file. The value of the AUTHID_ATTRIBUTE attribute is

retrieved from the server and used as the internal DB2 representation of the user.

Chapter 7. Security plug-ins 153

For example, if your LDAP user IDs look like email addresses (such as

jsmith@sales.widgetcorp.com), but you would rather use just the user portion

(jsmith) as the DB2 authorization ID, then you can:

1. Associate a new attribute containing the shorter name with all user objects on

your LDAP server

2. Configure the AUTHID_ATTRIBUTE with the name of this new attribute

Users are then able to connect to a DB2 database by specifying their full LDAP

user ID and password, for example:

db2 connect to MYDB user ’jsmith@sales.widgetcorp.com’ using ’pswd’

But internally, the DB2 database manager refers to the user using the short name

retrieved using the AUTHID_ATTRIBUTE (jsmith in this case).

After an LDAP plug-in module has been enabled and configured, a user can

connect to a DB2 database using a variety of different strings:

v A full DN. For example:

connect to MYDB user ’cn=John Smith, ou=Sales, o=WidgetCorp’

v A partial DN, provided that a search of the LDAP directory using the partial DN

and the appropriate search base DN (if defined) results in exactly one match. For

example:

connect to MYDB user ’cn=John Smith’ connect to MYDB user uid=jsmith

v A simple string (containing no equals signs). The string is qualified with the

USERID_ATTRIBUTE and treated as a partial DN. For example:

connect to MYDB user jsmith

Note: Any string supplied on a CONNECT statement or ATTACH command must

be delimited with single quotes if it contains spaces or special characters.

Considerations for group lookup

Group membership information is typically represented on an LDAP server either

as an attribute of the user object, or as an attribute of the group object:

v As an attribute of the user object

Each user object has an attribute called GROUP_LOOKUP_ATTRIBUTE that you

can query to retrieve all of the group membership for that user.

v As an attribute of the group object

Each group object has an attribute, also called GROUP_LOOKUP_ATTRIBUTE,

that you can use to list all the user objects that are members of the group. You

can enumerate the groups for a particular user by searching for all groups that

list the user object as a member.

Many LDAP servers can be configured in either of these ways, and some support

both methods at the same time. Consult with your LDAP administrator to

determine how your LDAP server is configured.

When configuring the LDAP plug-in modules, you can use the

GROUP_LOOKUP_METHOD parameter to specify how group lookup should be

performed:

v If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the user

object to find group membership, set GROUP_LOOKUP_METHOD =

USER_ATTRIBUTE

154 Database Security Guide

v If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the group

object to find group membership, set GROUP_LOOKUP_METHOD =

SEARCH_BY_DN

Many LDAP servers use the GROUP_LOOKUP_ATTRIBUTE attribute of the group

object to determine membership. They can be configured as shown in this example:

GROUP_LOOKUP_METHOD = SEARCH_BY_DN

GROUP_LOOKUP_ATTRIBUTE = groupOfNames

Microsoft Active Directory typically stores group membership as a user attribute,

and could be configured as shown in this example:

GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

GROUP_LOOKUP_ATTRIBUTE = memberOf

The IBM Tivoli Directory Server supports both methods at the same time. To query

the group membership for a user you can make use of the special user attribute

ibm-allGroups, as shown in this example:

GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

Other LDAP servers may offer similar special attributes to aid in retrieving group

membership. In general, retrieving membership through a user attribute is faster

than searching for groups that list the user as a member.

Troubleshooting authenticating LDAP users or retrieving

groups

If you encounter problems authenticating LDAP users or retrieving their groups,

the DB2 diagnostic log, db2diag.log, and administration log are a good source of

information to aid in troubleshooting.

The LDAP plug-in modules typically log LDAP return codes, search filters, and

other useful data when a failure occurs. If you enable the DEBUG option in the

LDAP plug-in configuration file, the plug-in modules will log even more

information in db2diag.log. While this may be an aid in troubleshooting, it is not

recommended for extended use on production systems due to the overhead

associated with writing all of the extra data to a single file.

Ensure that the diaglevel configuration parameter in the database manager is set

to 4 so that all messages from the LDAP plug-in modules will be captured.

Writing security plug-ins

How DB2 loads security plug-ins

Each plug-in library must contain an initialization function with a specific name

determined by the plug-in type:

v Server side authentication plug-in: db2secServerAuthPluginInit()

v Client side authentication plug-in: db2secClientAuthPluginInit()

v Group plug-in: db2secGroupPluginInit()

This function is known as the plug-in initialization function. The plug-in

initialization function initializes the specified plug-in and provides DB2 with

information that it requires to call the plug-in’s functions. The plug-in initialization

function accepts the following parameters:

Chapter 7. Security plug-ins 155

v The highest version number of the function pointer structure that the DB2

instance invoking the plugin can support

v A pointer to a structure containing pointers to all the APIs requiring

implementation

v A pointer to a function that adds log messages to the db2diag.log file

v A pointer to an error message string

v The length of the error message

The following is a function signature for the initialization function of a group

retrieval plug-in:

 SQL_API_RC SQL_API_FN db2secGroupPluginInit(

 db2int32 version,

 void *group_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

Note: If the plug-in library is compiled as C++, all functions must be declared

with: extern "C". DB2 relies on the underlying operating system dynamic loader

to handle the C++ constructors and destructors used inside of a C++ user-written

plug-in library.

The initialization function is the only function in the plug-in library that uses a

prescribed function name. The other plug-in functions are referenced through

function pointers returned from the initialization function. Server plug-ins are

loaded when the DB2 server starts. Client plug-ins are loaded when required on

the client. Immediately after DB2 loads a plug-in library, it will resolve the location

of this initialization function and call it. The specific task of this function is as

follows:

v Cast the functions pointer to a pointer to an appropriate functions structure

v Fill in the pointers to the other functions in the library

v Fill in the version number of the function pointer structure being returned

DB2 can potentially call the plug-in initialization function more than once. This

situation can occur when an application dynamically loads the DB2 client library,

unloads it, and reloads it again, then performs authentication functions from a

plug-in both before and after reloading. In this situation, the plug-in library might

not be unloaded and then re-loaded; however, this behavior varies depending on

the operating system.

Another example of DB2 issuing multiple calls to a plug-in initialization function

occurs during the execution of stored procedures or federated system calls, where

the database server can itself act as a client. If the client and server plug-ins on the

database server are in the same file, DB2 could call the plug-in initialization

function twice.

If the plug-in detects that db2secGroupPluginInit is called more than once, it

should handle this event as if it was directed to terminate and reinitialize the

plug-in library. As such, the plug-in initialization function should do the entire

cleanup tasks that a call to db2secPluginTerm would do before returning the set of

function pointers again.

On a DB2 server running on a UNIX or Linux-based operating system, DB2 can

potentially load and initialize plug-in libraries more than once in different

processes.

156 Database Security Guide

Restrictions for developing security plug-in libraries

Following are the restrictions for developing plug-in libraries.

C-linkage

Plug-in libraries must be linked with C-linkage. Header files providing the

prototypes, data structures needed to implement the plug-ins, and error

code definitions are provided for C/C++ only. Functions that DB2 will

resolve at load time must be declared with extern ″C″ if the plug-in library

is compiled as C++.

.NET common language runtime is not supported

The .NET common language runtime (CLR) is not supported for compiling

and linking source code for plug-in libraries.

Signal handlers

Plug-in libraries must not install signal handlers or change the signal mask,

because this will interfere with DB2’s signal handlers. Interfering with the

DB2 signal handlers could seriously interfere with DB2’s ability to report

and recover from errors, including traps in the plug-in code itself. Plug-in

libraries should also never throw C++ exceptions, as this can also interfere

with DB2’s error handling.

Thread-safe

Plug-in libraries must be thread-safe and re-entrant. The plug-in

initialization function is the only API that is not required to be re-entrant.

The plug-in initialization function could potentially be called multiple

times from different processes; in which case, the plug-in will cleanup all

used resources and reinitialize itself.

Exit handlers and overriding standard C library and operating system calls

Plug-in libraries should not override standard C library or operating

system calls. Plug-in libraries should also not install exit handlers or

pthread_atfork handlers. The use of exit handlers is not recommended

because they could be unloaded before the program exits.

Library dependencies

On Linux or UNIX, the processes that load the plug-in libraries can be

setuid or setgid, which means that they will not be able to rely on the

$LD_LIBRARY_PATH, $SHLIB_PATH, or $LIBPATH environment variables to find

dependent libraries. Therefore, plug-in libraries should not depend on

additional libraries, unless any dependant libraries are accessible through

other methods, such as the following:

v By being in /lib or /usr/lib

v By having the directories they reside in being specified OS-wide (such as

in the ld.so.conf file on Linux)

v By being specified in the RPATH in the plug-in library itself

This restriction is not applicable to Windows operating systems.

Symbol collisions

When possible, plug-in libraries should be compiled and linked with any

available options that reduce the likelihood of symbol collisions, such as

those that reduce unbound external symbolic references. For example, use

of the ″-Bsymbolic″ linker option on HP, Solaris, and Linux can help

prevent problems related to symbol collisions. However, for plug-ins

written on AIX, do not use the "-brtl" linker option explicitly or

implicitly.

Chapter 7. Security plug-ins 157

32-bit and 64-bit applications

32-bit applications must use 32-bit plug-ins. 64-bit applications must use

64-bit plug-ins. Refer to the topic about 32-bit and 64-bit considerations for

more details.

Text strings

Input text strings are not guaranteed to be null-terminated, and output

strings are not required to be null-terminated. Instead, integer lengths are

given for all input strings, and pointers to integers are given for lengths to

be returned.

Passing authorization ID parameters

An authorization ID (authid) parameter that DB2 passes into a plug-in (an

input authid parameter) will contain an upper-case authid, with padded

blanks removed. An authid parameter that a plug-in returns to DB2 (an

output authid parameter) does not require any special treatment, but DB2

will fold the authid to upper-case and pad it with blanks according to the

internal DB2 standard.

Size limits for parameters

The plug-in APIs use the following as length limits for parameters:

#define DB2SEC_MAX_AUTHID_LENGTH 255

#define DB2SEC_MAX_USERID_LENGTH 255

#define DB2SEC_MAX_USERNAMESPACE_LENGTH 255

#define DB2SEC_MAX_PASSWORD_LENGTH 255

#define DB2SEC_MAX_DBNAME_LENGTH 128

A particular plug-in implementation may require or enforce smaller

maximum lengths for the authorization IDs, user IDs, and passwords. In

particular, the operating system authentication plug-ins supplied with DB2

database systems are restricted to the maximum user, group and

namespace length limits enforced by the operating system for cases where

the operating system limits are lower than those stated above.

Security plug-in library extensions in AIX

On AIX systems, security plug-in libraries can have a file name extension

of .a or .so. The mechanism used to load the plug-in library depends on

which extension is used:

v Plug-in libraries with a file name extension of .a are assumed to be

archives containing shared object members. These members must be

named shr.o (32-bit) or shr64.o (64-bit). A single archive can contain both

the 32-bit and 64-bit members, allowing it to be deployed on both types

of platforms.

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp

 ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so are assumed to be

dynamically loadable shared objects. Such an object is either 32-bit or

64-bit, depending on the compiler and linker options used when it was

built. For example, to build a 32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always

assumed to be dynamically loadable shared objects.

Restrictions on security plug-ins

The following are restrictions on the use of security plug-ins:

158 Database Security Guide

DB2 database family support restrictions

You cannot use a GSS-API plug-in to authenticate connections between DB2 clients

on Linux, UNIX, and Windows and another DB2 family servers such as DB2 for

z/OS. You also cannot authenticate connections from another DB2 database family

product, acting as a client, to a DB2 server on Linux, UNIX, or Windows.

If you use a DB2 client on Linux, UNIX, or Windows to connect to other DB2

database family servers, you can use client-side user ID/password plug-ins (such

as the IBM-shipped operating system authentication plug-in), or you can write

your own user ID/password plug-in. You can also use the built-in Kerberos

plug-ins, or implement your own.

With a DB2 client on Linux, UNIX, or Windows, you should not catalog a database

using the GSSPLUGIN authentication type.

Restrictions on the AUTHID identifier. Version 9.5, and later, of the DB2 database

system allows you to have an 128-byte authorization ID, but when the

authorization ID is interpreted as an operating system user ID or group name, the

operating system naming restrictions apply (for example, a limitation to 8 or 30

character user IDs and 30 character group names). Therefore, while you can grant

an 128-byte authorization ID, it is not possible to connect as a user that has that

authorization ID. If you write your own security plugin, you should be able to

take full advantage of the extended sizes for the authorization ID. For example,

you can give your security plugin a 30-byte user ID and it can return an 128-byte

authorization ID during authentication that you are able to connect with.

WebSphere® Federation Server support restrictions

DB2 II does not support the use of delegated credentials from a GSS_API plug-in

to establish outbound connections to data sources. Connections to data sources

must continue to use the CREATE USER MAPPING command.

Database Administration Server support restrictions

The DB2 Administration Server (DAS) does not support security plug-ins. The DAS

only supports the operating system authentication mechanism.

Security plug-in problem and restriction for DB2 clients

(Windows)

When developing security plug-ins that will be deployed in DB2 clients on

Windows operating systems, do not unload any auxiliary libraries in the plug-in

termination function. This restriction applies to all types of client security plug-ins,

including group, user ID and password, Kerberos, and GSS-API plug-ins. Since

these termination APIs such as db2secPluginTerm, db2secClientAuthPluginTerm

and db2secServerAuthPluginTerm are not called on any Windows platform, you

need to do the appropriate resource cleanup.

This restriction is related to cleanup issues associated with the unloading of DLLs

on Windows.

Loading plug-in libraries on AIX with extension of .a or .so

On AIX, security plug-in libraries can have a file name extension of .a or .so. The

mechanism used to load the plug-in library depends on which extension is used:

Chapter 7. Security plug-ins 159

v Plug-in libraries with a file name extension of .a

Plug-in libraries with file name extensions of .a are assumed to be archives

containing shared object members. These members must be named shr.o (32-bit)

or shr64.o (64-bit). A single archive can contain both the 32-bit and 64-bit

members, allowing it to be deployed on both types of platforms.

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp

 ar rv MyPlugin.a shr.o

v Plug-in libraries with a file name extension of .so

Plug-in libraries with file name extensions of .so are assumed to be dynamically

loadable shared objects. Such an object is either 32-bit or 64-bit, depending on

the compiler and linker options used when it was built. For example, to build a

32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to

be dynamically loadable shared objects.

GSS-API security plug-ins do not support message encryption

and signing

Message encryption and signing is not available in GSS-API security plug-ins.

Return codes for security plug-ins

All security plug-in APIs must return an integer value to indicate the success or

failure of the execution of the API. A return code value of 0 indicates that the API

ran successfully. All negative return codes, with the exception of -3, -4, and -5,

indicate that the API encountered an error.

All negative return codes returned from the security-plug-in APIs are mapped to

SQLCODE -1365, SQLCODE -1366, or SQLCODE -30082, with the exception of

return codes with the -3, -4, or -5. The values -3, -4, and -5 are used to indicate

whether or not an authorization ID represents a valid user or group.

All the security plug-in API return codes are defined in db2secPlugin.h, which can

be found in the DB2 include directory: SQLLIB/include.

Details regarding all of the security plug-in return codes are presented in the

following table:

 Table 38. Security plug-in return codes

Return

code

Define value Meaning Applicable APIs

0 DB2SEC_PLUGIN_OK The plug-in API executed

successfully.

All

-1

 DB2SEC_PLUGIN_UNKNOWNERROR

The plug-in API encountered an

unexpected error.

All

-2 DB2SEC_PLUGIN_BADUSER The user ID passed in as input is

not defined.

 db2secGenerateInitialCred

db2secValidatePassword

db2secRemapUserid

db2secGetGroupsForUser

160 Database Security Guide

Table 38. Security plug-in return codes (continued)

Return

code

Define value Meaning Applicable APIs

-3

 DB2SEC_PLUGIN

_INVALIDUSERORGROUP

No such user or group.

 db2secDoesAuthIDExist

db2secDoesGroupExist

-4

 DB2SEC_PLUGIN

_USERSTATUSNOTKNOWN

Unknown user status. This is not

treated as an error by DB2; it is

used by a GRANT statement to

determine if an authid represents

a user or an operating system

group.

db2secDoesAuthIDExist

-5

 DB2SEC_PLUGIN

_GROUPSTATUSNOTKNOWN

Unknown group status. This is

not treated as an error by DB2; it

is used by a GRANT statement to

determine if an authid represents

a user or an operating system

group.

db2secDoesGroupExist

-6 DB2SEC_PLUGIN_UID_EXPIRED User ID expired.

 db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-7 DB2SEC_PLUGIN_PWD_EXPIRED Password expired.

 db2secValidatePassword

db2GetGroupsForUser

db2secGenerateInitialCred

-8 DB2SEC_PLUGIN_USER_REVOKED User revoked.

 db2secValidatePassword

db2GetGroupsForUser

-9

 DB2SEC_PLUGIN

_USER_SUSPENDED

User suspended.

 db2secValidatePassword

db2GetGroupsForUser

-10 DB2SEC_PLUGIN_BADPWD Bad password.

 db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-11

 DB2SEC_PLUGIN

_BAD_NEWPASSWORD

Bad new password.

 db2secValidatePassword

db2secRemapUserid

-12

 DB2SEC_PLUGIN

_CHANGEPASSWORD

_NOTSUPPORTED

Change password not supported.

 db2secValidatePassword

db2secRemapUserid

db2secGenerateInitialCred

-13 DB2SEC_PLUGIN_NOMEM Plug-in attempt to allocate

memory failed due to insufficient

memory.

All

-14 DB2SEC_PLUGIN_DISKERROR Plug-in encountered a disk error. All

-15 DB2SEC_PLUGIN_NOPERM Plug-in attempt to access a file

failed because of wrong

permissions on the file.

All

-16 DB2SEC_PLUGIN_NETWORKERROR Plug-in encountered a network

error.

All

Chapter 7. Security plug-ins 161

Table 38. Security plug-in return codes (continued)

Return

code

Define value Meaning Applicable APIs

-17

 DB2SEC_PLUGIN

_CANTLOADLIBRARY

Plug-in is unable to load a

required library.

 db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-18

 DB2SEC_PLUGIN_CANT

_OPEN_FILE

Plug-in is unable to open and

read a file for a reason other than

missing file or inadequate file

permissions.

All

-19 DB2SEC_PLUGIN_FILENOTFOUND Plug-in is unable to open and

read a file, because the file is

missing from the file system.

All

-20

 DB2SEC_PLUGIN

_CONNECTION_DISALLOWED

The plug-in is refusing the

connection because of the

restriction on which database is

allowed to connect, or the

TCP/IP address cannot connect

to a specific database.

All server-side plug-in APIs.

-21 DB2SEC_PLUGIN_NO_CRED GSS API plug-in only: initial

client credential is missing.

 db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-22 DB2SEC_PLUGIN_CRED_EXPIRED GSS API plug-in only: client

credential has expired.

 db2secGetDefaultLoginContext

db2secServerAuthPluginInit

-23

 DB2SEC_PLUGIN

_BAD_PRINCIPAL_NAME

GSS API plug-in only: the

principal name is invalid.

db2secProcessServer

PrincipalName

-24

 DB2SEC_PLUGIN

_NO_CON_DETAILS

This return code is returned by

the db2secGetConDetails callback

(for example, from DB2 to the

plug-in) to indicate that DB2 is

unable to determine the client’s

TCP/IP address.

db2secGetConDetails

-25

 DB2SEC_PLUGIN

_BAD_INPUT_PARAMETERS

Some parameters are not valid or

are missing when plug-in API is

called.

All

-26

 DB2SEC_PLUGIN

_INCOMPATIBLE_VER

The version of the APIs reported

by the plug-in is not compatible

with DB2.

 db2secGroupPluginInit

db2secClientAuthPluginInit

db2secServerAuthPluginInit

-27 DB2SEC_PLUGIN_PROCESS_LIMIT Insufficient resources are

available for the plug-in to create

a new process.

All

-28 DB2SEC_PLUGIN_NO_LICENSES The plug-in encountered a user

license problem. A possibility

exists that the underlying

mechanism license has reached

the limit.

All

162 Database Security Guide

Error message handling for security plug-ins

When an error occurs in a security plug-in API, the API can return an ASCII text

string in the errormsg field to provide a more specific description of the problem

than the return code.

For example, the errormsg string can contain "File /home/db2inst1/mypasswd.txt

does not exist." DB2 will write this entire string into the DB2 administration

notification log, and will also include a truncated version as a token in some SQL

messages. Because tokens in SQL messages can only be of limited length, these

messages should be kept short, and important variable portions of these messages

should appear at the front of the string. To aid in debugging, consider adding the

name of the security plug-in to the error message.

For non-urgent errors, such as password expired errors, the errormsg string will

only be dumped when the DIAGLEVEL database manager configuration parameter

is set at 4.

The memory for these error messages must be allocated by the security plug-in.

Therefore, the plug-ins must also provide an API to free this memory:

db2secFreeErrormsg.

The errormsg field will only be checked by DB2 if an API returns a non-zero value.

Therefore, the plug-in should not allocate memory for this returned error message

if there is no error.

At initialization time a message logging function pointer, logMessage_fn, is passed

to the group, client, and server plug-ins. The plug-ins can use the function to log

any debugging information to db2diag.log. For example:

 // Log an message indicate init successful

 (*(logMessage_fn))(DB2SEC_LOG_CRITICAL,

 "db2secGroupPluginInit successful",

 strlen("db2secGroupPluginInit successful"));

For more details about each parameter for the db2secLogMessage function, refer to

the initialization API for each of the plug-in types.

Calling sequences for the security plug-in APIs

These are the main scenarios in which the DB2 database manager will call security

plug-in APIs:

v On a client for a database connection (implicit and explicit)

– CLIENT

– Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT)

– GSSAPI and Kerberos
v On a client, server, or gateway for local authorization

v On a server for a database connection

v On a server for a grant statement

v On a server to get a list of groups to which an authorization ID belongs

Note: The DB2 database servers treat database actions requiring local

authorizations, such as db2start, db2stop, and db2trc like client applications.

Chapter 7. Security plug-ins 163

For each of these operations, the sequence with which the DB2 database manager

calls the security plug-in APIs is different. Following are the sequences of APIs

called by the DB2 database manager for each of these scenarios.

CLIENT - implicit

When the user-configured authentication type is CLIENT, the DB2 client

application will call the following security plug-in APIs:

v db2secGetDefaultLoginContext();

v db2secValidatePassword();

v db2secFreetoken();

For an implicit authentication, that is, when you connect without

specifying a particular user ID or password, the db2secValidatePassword

API is called if you are using a user ID/password plug-in. This API

permits plug-in developers to prohibit implicit authentication if necessary.

CLIENT - explicit

On an explicit authentication, that is, when you connect to a database in

which both the user ID and password are specified, if the authentication

database manager configuration parameter is set to CLIENT the DB2 client

application will call the following security plug-in APIs multiple times if

the implementation requires it:

v db2secRemapUserid();

v db2secValidatePassword();

v db2secFreeToken();

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - implicit

On an implicit authentication, when the client and server have negotiated

user ID/password authentication (for instance, when the srvcon_auth

parameter at the server is set to SERVER; SERVER_ENCRYPT,

DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will

call the following security plug-in APIs:

v db2secGetDefaultLoginContext();

v db2secFreeToken();

Server based (SERVER, SERVER_ENCRYPT, DATA_ENCRYPT) - explicit

On an explicit authentication, when the client and server have negotiated

userid/password authentication (for instance, when the srvcon_auth

parameter at the server is set to SERVER; SERVER_ENCRYPT,

DATA_ENCRYPT, or DATA_ENCRYPT_CMP), the client application will

call the following security plug-in APIs:

v db2secRemapUserid();

GSSAPI and Kerberos - implicit

On an implicit authentication, when the client and server have negotiated

GSS-API or Kerberos authentication (for instance, when the srvcon_auth

parameter at the server is set to KERBEROS; KRB_SERVER_ENCRYPT,

GSSPLUGIN, or GSS_SERVER_ENCRYPT), the client application will call

the following security plug-in APIs. (The call to gss_init_sec_context() will

use GSS_C_NO_CREDENTIAL as the input credential.)

v db2secGetDefaultLoginContext();

v db2secProcessServerPrincipalName();

v gss_init_sec_context();

v gss_release_buffer();

v gss_release_name();

164 Database Security Guide

v gss_delete_sec_context();

v db2secFreeToken();

With multi-flow GSS-API support, gss_init_sec_context() can be called

multiple times if the implementation requires it.

GSSAPI and Kerberos - explicit

If the negotiated authentication type is GSS-API or Kerberos, the client

application will call the following security plug-in APIs for GSS-API

plug-ins in the following sequence. These APIs are used for both implicit

and explicit authentication unless otherwise stated.

v db2secProcessServerPrincipalName();

v db2secGenerateInitialCred(); (For explicit authentication only)

v gss_init_sec_context();

v gss_release_buffer ();

v gss_release_name();

v gss_release_cred();

v db2secFreeInitInfo();

v gss_delete_sec_context();

v db2secFreeToken();

The API gss_init_sec_context() may be called multiple times if a mutual

authentication token is returned from the server and the implementation

requires it.

On a client, server, or gateway for local authorization

For a local authorization, the DB2 command being used will call the

following security plug-in APIs:

v db2secGetDefaultLoginContext();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

These APIs will be called for both user ID/password and GSS-API

authentication mechanisms.

On a server for a database connection

For a database connection on the database server, the DB2 agent process or

thread will call the following security plug-in APIs for the user

ID/password authentication mechanism:

v db2secValidatePassword(); Only if the authentication database

configuration parameter is not CLIENT

v db2secGetAuthIDs();

v db2secGetGroupsForUser();

v db2secFreeToken();

v db2secFreeGroupList();

For a CONNECT to a database, the DB2 agent process or thread will call

the following security plug-in APIs for the GSS-API authentication

mechanism:

v gss_accept_sec_context();

v gss_release_buffer();

v db2secGetAuthIDs();

v db2secGetGroupsForUser();

Chapter 7. Security plug-ins 165

v gss_delete_sec_context();

v db2secFreeGroupListMemory();

On a server for a GRANT statement

For a GRANT statement that does not specify the USER or GROUP

keyword, (for example, ″GRANT CONNECT ON DATABASE TO user1″), the DB2

agent process or thread must be able to determine if user1 is a user, a

group, or both. Therefore, the DB2 agent process or thread will call the

following security plug-in APIs:

v db2secDoesGroupExist();

v db2secDoesAuthIDExist();

On a server to get a list of groups to which an authid belongs

From your database server, when you need to get a list of groups to which

an authorization ID belongs, the DB2 agent process or thread will call the

following security plug-in API with only the authorization ID as input:

v db2secGetGroupsForUser();

There will be no token from other security plug-ins.

166 Database Security Guide

Chapter 8. Security plug-in APIs

To enable you to customize the DB2 database system authentication and group

membership lookup behavior, the DB2 database system provides APIs that you can

use to modify existing plug-in modules or build new security plug-in modules.

When you develop a security plug-in module, you need to implement the standard

authentication or group membership lookup functions that the DB2 database

manager will invoke. For the three available types of plug-in modules, the

functionality you need to implement is as follows:

Group retrieval

Retrieves group membership information for a given user and determines

if a given string represents a valid group name.

User ID/password authentication

Authentication that identifies the default security context (client only),

validates and optionally changes a password, determines if a given string

represents a valid user (server only), modifies the user ID or password

provided on the client before it is sent to the server (client only), returns

the DB2 authorization ID associated with a given user.

GSS-API authentication

Authentication that implements the required GSS-API functions, identifies

the default security context (client side only), generates initial credentials

based on user ID and password, and optionally changes password (client

side only), creates and accepts security tickets, and returns the DB2

authorization ID associated with a given GSS-API security context.

The following are the definitions for terminology used in the descriptions of the

plug-in APIs.

Plug-in

A dynamically loadable library that DB2 will load to access user-written

authentication or group membership lookup functions.

Implicit authentication

A connection to a database without specifying a user ID or a password.

Explicit authentication

A connection to a database in which both the user ID and password are

specified.

Authid

An internal ID representing an individual or group to which authorities

and privileges within the database are granted. Internally, a DB2 authid is

folded to upper-case and is a minimum of 8 characters (blank padded to 8

characters). Currently, DB2 requires authids, user IDs, passwords, group

names, namespaces, and domain names that can be represented in 7-bit

ASCII.

Local authorization

Authorization that is local to the server or client that implements it, that

checks if a user is authorized to perform an action (other than connecting

to the database), such as starting and stopping the database manager,

turning DB2 trace on and off, or updating the database manager

configuration.

© Copyright IBM Corp. 1993, 2009 167

Namespace

A collection or grouping of users within which individual user identifiers

must be unique. Common examples include Windows domains and

Kerberos Realms. For example, within the Windows domain

″usa.company.com″ all user names must be unique. For example,

″user1@usa.company.com″. The same user ID in another domain, as in the

case of ″user1@canada.company.com″, however refers to a different person.

A fully qualified user identifier includes a user ID and namespace pair; for

example, ″user@domain.name″ or ″domain\user″.

Input Indicates that DB2 will fill in the value for the security plug-in API

parameter.

Output

Indicates that the security plug-in API will fill in the value for the API

parameter.

APIs for group retrieval plug-ins

For the group retrieval plug-in module, you need to implement the following APIs:

v db2secGroupPluginInit

Note: The db2secGroupPluginInit API takes as input a pointer, *logMessage_fn,

to an API with the following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

The db2secLogMessage API allows the plug-in to log messages to db2diag.log

for debugging or informational purposes. This API is provided by the DB2

database system, so you need not implement it.

v db2secPluginTerm

v db2secGetGroupsForUser

v db2secDoesGroupExist

v db2secFreeGroupListMemory

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secGroupPluginInit. This

API will take a void * parameter, which should be cast to the type:

typedef struct db2secGroupFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetGroupsForUser)

(

const char *authid,

db2int32 authidlen,

const char *userid,

db2int32 useridlen,

const char *usernamespace,

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

const void *token,

db2int32 tokentype,

168 Database Security Guide

db2int32 location,

const char *authpluginname,

db2int32 authpluginnamelen,

void **grouplist,

db2int32 *numgroups,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secDoesGroupExist)

(

const char *groupname,

db2int32 groupnamelen,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeGroupListMemory)

(

void *ptr,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *msgtobefree

);

SQL_API_RC (SQL_API_FN * db2secPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

} db2secGroupFunctions_1;

The db2secGroupPluginInit API assigns the addresses for the rest of the

externally available functions.

Note: The _1 indicates that this is the structure corresponding to version 1 of the

API. Subsequent interface versions will have the extension _2, _3, and so on.

db2secDoesGroupExist API - Check if group exists

Determines if an authid represents a group.

If the groupname exists, the API must be able to return the value

DB2SEC_PLUGIN_OK, to indicate success. It must also be able to return the value

DB2SEC_PLUGIN_INVALIDUSERORGROUP if the group name is not valid. It is

permissible for the API to return the value

DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN if it is impossible to determine if

the input is a valid group. If an invalid group

(DB2SEC_PLUGIN_INVALIDUSERORGROUP) or group not known

(DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN) value is returned, DB2 might

not be able to determine whether the authid is a group or user when issuing the

GRANT statement without the keywords USER and GROUP, which would result

in the error SQLCODE -569, SQLSTATE 56092 being returned to the user.

Chapter 8. Security plug-in APIs 169

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secDoesGroupExist)

 (const char *groupname,

 db2int32 groupnamelen,

 char **errormsg,

 db2int32 *errormsglen);

db2secDoesGroupExist API parameters

groupname

Input. An authid, upper-cased, with no trailing blanks.

groupnamelen

Input. Length in bytes of the groupname parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secDoesGroupExist API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secFreeErrormsg API - Free error message memory

Frees the memory used to hold an error message from a previous API call. This is

the only API that does not return an error message. If this API returns an error,

DB2 will log it and continue.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeErrormsg)

 (char *errormsg);

db2secFreeErrormsg API parameters

msgtofree

Input. A pointer to the error message allocated from a previous API call.

db2secFreeGroupListMemory API - Free group list memory

Frees the memory used to hold the list of groups from a previous call to

db2secGetGroupsForUser API.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeGroupListMemory)

 (void *ptr,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeGroupListMemory API parameters

ptr Input. Pointer to the memory to be freed.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeGroupListMemory API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in the errormsg parameter.

170 Database Security Guide

db2secGetGroupsForUser API - Get list of groups for user

Returns the list of groups to which a user belongs.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetGroupsForUser)

 (const char *authid,

 db2int32 authidlen,

 const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void *token,

 db2int32 tokentype,

 db2int32 location,

 const char *authpluginname,

 db2int32 authpluginnamelen,

 void **grouplist,

 db2int32 *numgroups,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetGroupsForUser API parameters

authid Input. This parameter value is an SQL authid, which means that DB2

converts it to an uppercase character string with no trailing blanks. DB2

will always provide a non-null value for the authid parameter. The API

must be able to return a list of groups to which the authid belongs without

depending on the other input parameters. It is permissible to return a

shortened or empty list if this cannot be determined.

 If a user does not exist, the API must return the return code

DB2SEC_PLUGIN_BADUSER. DB2 does not treat the case of a user not

existing as an error, since it is permissible for an authid to not have any

groups associated with it. For example, the db2secGetAuthids API can

return an authid that does not exist on the operating system. The authid is

not associated with any groups, however, it can still be assigned privileges

directly.

If the API cannot return a complete list of groups using only the authid,

then there will be some restrictions on certain SQL functions related to

group support. For a list of possible problem scenarios, refer to the Usage

notes section in this topic.

authidlen

Input. Length in bytes of the authid parameter value. The DB2 database

manager always provides a non-zero value for the authidlen parameter.

userid Input. This is the user ID corresponding to the authid. When this API is

called on the server in a non-connect scenario, this parameter will not be

filled by DB2.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained. When the

user ID is not available, this parameter will not be filled by the DB2

database manager.

Chapter 8. Security plug-in APIs 171

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. The type of namespace. Valid values for the usernamespacetype

parameter (defined in db2secPlugin.h) are:

v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username

style like domain\myname

v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username

style like myname@domain.ibm.com

Currently, the DB2 database system only supports the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not

available, the usernamespacetype parameter is set to the value

DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

dbname

Input. Name of the database being connected to. This parameter can be

NULL in a non-connect scenario.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL in a non-connect scenario.

token Input. A pointer to data provided by the authentication plug-in. It is not

used by DB2. It provides the plug-in writer with the ability to coordinate

user and group information. This parameter might not be provided in all

cases (for example, in a non-connect scenario), in which case it will be

NULL. If the authentication plug-in used is GSS-API based, the token will

be set to the GSS-API context handle (gss_ctx_id_t).

tokentype

Input. Indicates the type of data provided by the authentication plug-in. If

the authentication plug-in used is GSS-API based, the token will be set to

the GSS-API context handle (gss_ctx_id_t). If the authentication plug-in

used is user ID/password based, it will be a generic type. Valid values for

the tokentype parameter (defined in db2secPlugin.h) are:

v DB2SEC_GENERIC: Indicates that the token is from a user ID/password

based plug-in.

v DB2SEC_GSSAPI_CTX_HANDLE: Indicates that the token is from a GSS-API

(including Kerberos) based plug-in.

location

Input. Indicates whether DB2 is calling this API on the client side or server

side. Valid values for the location parameter (defined in db2secPlugin.h)

are:

v DB2SEC_SERVER_SIDE: The API is to be called on the database server.

v DB2SEC_CLIENT_SIDE: The API is to be called on a client.

authpluginname

Input. Name of the authentication plug-in that provided the data in the

token. The db2secGetGroupsForUser API might use this information in

determining the correct group memberships. This parameter might not be

filled by DB2 if the authid is not authenticated (for example, if the authid

does not match the current connected user).

authpluginnamelen

Input. Length in bytes of the authpluginname parameter value.

172 Database Security Guide

grouplist

Output. List of groups to which the user belongs. The list of groups must

be returned as a pointer to a section of memory allocated by the plug-in

containing concatenated varchars (a varchar is a character array in which

the first byte indicates the number of bytes following it). The length is an

unsigned char (1 byte) and that limits the maximum length of a

groupname to 255 characters. For example, ″\006GROUP1\
007MYGROUP\008MYGROUP3″. Each group name should be a valid DB2

authid. The memory for this array must be allocated by the plug-in. The

plug-in must therefore provide an API, such as the

db2secFreeGroupListMemory API that DB2 will call to free the memory.

numgroups

Output. The number of groups contained in the grouplist parameter.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetGroupsForUser API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

Usage notes

The following is a list of scenarios when problems can occur if an incomplete

group list is returned by this API to DB2:

v Embedded SQL application with DYNAMICRULES BIND (or DEFINEDBIND or

INVOKEDBIND if the packages are running as a standalone application). DB2

checks for SYSADM membership and the application will fail if it is dependent

on the implicit DBADM authority granted by being a member of the SYSADM

group.

v Alternate authorization is provided in CREATE SCHEMA statement. Group

lookup will be performed against the AUTHORIZATION NAME parameter if

there are nested CREATE statements in the CREATE SCHEMA statement.

v Embedded SQL applications with DYNAMICRULES DEFINERUN/
DEFINEBIND and the packages are running in a routine context. DB2 checks for

SYSADM membership of the routine definer and the application will fail if it is

dependent on the implicit DBADM authority granted by being a member of the

SYSADM group.

v Processing a jar file in an MPP environment. In an MPP environment, the jar

processing request is sent from the coordinator node with the session authid.

The catalog node received the requests and process the jar files based on the

privilege of the session authid (the user executing the jar processing requests).

– Install jar file. The session authid needs to have one of the following rights:

SYSADM, DBADM, or CREATEIN (implicit or explicit on the jar schema). The

operation will fail if the above rights are granted to group containing the

session authid, but not explicitly to the session authid or if only SYSADM is

held, since SYSADM membership is determined by membership in the group

defined by a database configuration parameter.

– Remove jar file. The session authid needs to have one of the following rights

rights: SYSADM, DBADM, or DROPIN (implicit or explicit on the jar

schema), or is the definer of the jar file. The operation will fail if the above

rights are granted to group containing the session authid, but not explicitly to

the session authid, and if the session authid is not the definer of the jar file or

Chapter 8. Security plug-in APIs 173

if only SYSADM is held since SYSADM membership is determined by

membership in the group defined by a database configuration parameter.

– Replace jar file. This is same as removing the jar file, followed by installing

the jar file. Both of the above apply.
v Regenerate views. This is triggered by the ALTER TABLE, ALTER COLUMN,

SET DATA TYPE VARCHAR/VARGRAPHIC statements, or during migration.

The DB2 database manager checks for SYSADM membership of the view

definer. The application will fail if it is dependent on the implicit DBADM

authority granted by being a member of the SYSADM group.

v When SET SESSION_USER statement is issued. Subsequent DB2 operations are

run under the context of the authid specified by this statement. These operations

will fail if the privileges required are owned by one of the SESSION_USER’s

group is not explicitly granted to the SESSION_USER authid.

db2secGroupPluginInit API - Initialize group plug-in

Initialization API, for the group-retrieval plug-in, that the DB2 database manager

calls immediately after loading the plug-in.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secGroupPluginInit

 (db2int32 version,

 void *group_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

db2secGroupPluginInit API parameters

version

Input. The highest version of the API supported by the instance loading

that plugin. The value DB2SEC_API_VERSION (in db2secPlugin.h)

contains the latest version number of the API that the DB2 database

manager currently supports.

group_fns

Output. A pointer to the db2secGroupFunctions_<version_number> (also

known as group_functions_<version_number>) structure. The

db2secGroupFunctions_<version_number> structure contains pointers to

the APIs implemented for the group-retrieval plug-in. In future, there

might be different versions of the APIs (for example,

db2secGroupFunctions_<version_number>), so the group_fns parameter is

cast as a pointer to the db2secGroupFunctions_<version_number> structure

corresponding to the version the plug-in has implemented. The first

parameter of the group_functions_<version_number> structure tells DB2

the version of the APIs that the plug-in has implemented. Note: The

casting is done only if the DB2 version is higher or equal to the version of

the APIs that the plug-in has implemented. The version number represents

the version of the APIs implemented by the plugin, and the pluginType

should be set to DB2SEC_PLUGIN_TYPE_GROUP.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database system. The db2secGroupPluginInit API can call the

db2secLogMessage API to log messages to db2diag.log for debugging or

informational purposes. The first parameter (level) of db2secLogMessage

API specifies the type of diagnostic errors that will be recorded in the

db2diag.log file and the last two parameters respectively are the message

174 Database Security Guide

string and its length. The valid values for the first parameter of

dbesecLogMessage API (defined in db2secPlugin.h) are:

v DB2SEC_LOG_NONE: (0) No logging

v DB2SEC_LOG_CRITICAL: (1) Severe Error encountered

v DB2SEC_LOG_ERROR: (2) Error encountered

v DB2SEC_LOG_WARNING: (3) Warning

v DB2SEC_LOG_INFO: (4) Informational

The message text will show up in the diag.log only if the value of the

’level’ parameter of the db2secLogMessage API is less than or equal to the

diaglevel database manager configuration parameter. So for example, if

you use the DB2SEC_LOG_INFO value, the message text will only show up in

the db2diag.log if the diaglevel database manager configuration parameter

is set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGroupPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secPluginTerm - Clean up group plug-in resources

Frees resources used by the group-retrieval plug-in.

This API is called by the DB2 database manager just before it unloads the

group-retrieval plug-in. It should be implemented in a manner that it does a

proper cleanup of any resources the plug-in library holds, for instance, free any

memory allocated by the plug-in, close files that are still open, and close network

connections. The plug-in is responsible for keeping track of these resources in

order to free them. This API is not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

db2secPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secPluginTerm API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

APIs for user ID/password authentication plug-ins

For the user ID/password plug-in module, you need to implement the following

client-side APIs:

v db2secClientAuthPluginInit

Chapter 8. Security plug-in APIs 175

Note: The db2secClientAuthPluginInit API takes as input a pointer,

*logMessage_fn, to an API with the following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

The db2secLogMessage API allows the plug-in to log messages to db2diag.log

for debugging or informational purposes. This API is provided by the DB2

database system, so you need not implement it.

v db2secClientAuthPluginTerm

v db2secGenerateInitialCred (Only used for gssapi)

v db2secRemapUserid (Optional)

v db2secGetDefaultLoginContext

v db2secValidatePassword

v db2secProcessServerPrincipalName (This is only for GSS-API)

v db2secFreeToken (Functions to free memory held by the DLL)

v db2secFreeErrormsg

v db2secFreeInitInfo

v The only API that must be resolvable externally is db2secClientAuthPluginInit.

This API will take a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordClientAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)

(

char authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32 *authidlen,

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

db2int32 useridtype,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

void **token,

char **errormsg,

db2int32 *errormsglen

);

/* Optional */

SQL_API_RC (SQL_API_FN * db2secRemapUserid)

(

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

char password[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32 *passwordlen,

char newpassword[DB2SEC_MAX_PASSWORD_LENGTH],

db2int32 *newpasswordlen,

const char *dbname,

db2int32 dbnamelen,

char **errormsg,

db2int32 *errormsglen

176 Database Security Guide

);

SQL_API_RC (SQL_API_FN * db2secValidatePassword)

(

const char *userid,

db2int32 useridlen,

const char *usernamespace,

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *password,

db2int32 passwordlen,

const char *newpassword,

db2int32 newpasswordlen,

const char *dbname,

db2int32 dbnamelen,

db2Uint32 connection_details,

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeToken)

(

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *errormsg

);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

}

or

typedef struct db2secGssapiClientAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)

(

char authid[DB2SEC_MAX_AUTHID_LENGTH],

db2int32 *authidlen,

char userid[DB2SEC_MAX_USERID_LENGTH],

db2int32 *useridlen,

db2int32 useridtype,

char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

db2int32 *usernamespacelen,

db2int32 *usernamespacetype,

const char *dbname,

db2int32 dbnamelen,

void **token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secProcessServerPrincipalName)

(

const void *data,

Chapter 8. Security plug-in APIs 177

gss_name_t *gssName,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secGenerateInitialCred)

(

const char *userid,

db2int32 useridlen,

const char *usernamespace,

db2int32 usernamespacelen,

db2int32 usernamespacetype,

const char *password,

db2int32 passwordlen,

const char *newpassword,

db2int32 newpasswordlen,

const char *dbname,

db2int32 dbnamelen,

gss_cred_id_t *pGSSCredHandle,

void **initInfo,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeToken)

(

void *token,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)

(

char *errormsg

);

SQL_API_RC (SQL_API_FN * db2secFreeInitInfo)

(

void *initInfo,

char **errormsg,

db2int32 *errormsglen

);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)

(

char **errormsg,

db2int32 *errormsglen

);

/* GSS-API specific functions -- refer to db2secPlugin.h

 for parameter list*/

 OM_uint32 (SQL_API_FN * gss_init_sec_context)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);

 OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

 }

You should use the db2secUseridPasswordClientAuthFunctions_1 structure if

you are writing an user ID/password plug-in. If you are writing a GSS-API

(including Kerberos) plug-in, you should use the

db2secGssapiClientAuthFunctions_1 structure.

178 Database Security Guide

For the user ID/password plug-in library, you will need to implement the

following server-side APIs:

v db2secServerAuthPluginInit

The db2secServerAuthPluginInit API takes as input a pointer, *logMessage_fn, to

the db2secLogMessage API, and a pointer, *getConDetails_fn, to the

db2secGetConDetails API with the following prototypes:

SQL_API_RC (SQL_API_FN db2secLogMessage)

(

db2int32 level,

void *data,

db2int32 length

);

SQL_API_RC (SQL_API_FN db2secGetConDetails)

(

db2int32 conDetailsVersion,

const void *pConDetails

);

The db2secLogMessage API allows the plug-in to log messages to db2diag.log

for debugging or informational purposes. The db2secGetConDetails API allows

the plug-in to obtain details about the client that is trying to attempt to have a

database connection. Both the db2secLogMessage API and db2secGetConDetails

API are provided by the DB2 database system, so you do not need to implement

them. The db2secGetConDetails API in turn, takes as its second

parameter,pConDetails, a pointer to one of the following structures:

db2sec_con_details_1:

typedef struct db2sec_con_details_1

{

 db2int32 clientProtocol;

 db2Uint32 clientIPAddress;

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

} db2sec_con_details_1;

db2sec_con_details_2:

typedef struct db2sec_con_details_2

{

 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */

 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

} db2sec_con_details_2;

db2sec_con_details_3:

typedef struct db2sec_con_details_3

{

 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */

 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */

 db2Uint32 connect_info_bitmap;

 db2int32 dbnameLen;

 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];

 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */

 db2Uint32 clientPlatform; /* SQLM_PLATFORM_* from sqlmon.h */

 db2Uint32 _reserved[16];

} db2sec_con_details_3;

Chapter 8. Security plug-in APIs 179

The possible values for conDetailsVersion are

DB2SEC_CON_DETAILS_VERSION_1, DB2SEC_CON_DETAILS_VERSION_2,

and DB2SEC_CON_DETAILS_VERSION_3 representing the version of the API.

Note: While using db2sec_con_details_1, db2sec_con_details_2, or

db2sec_con_details_3, consider the following:

– Existing plugins that are using the db2sec_con_details_1 structure and the

DB2SEC_CON_DETAILS_VERSION_1 value will continue to work as they did

with Version 8.2 when calling the db2GetConDetails API. If this API is called

on an IPv4 platform, the client IP address is returned in the clientIPAddress

field of the structure. If this API is called on an IPv6 platform,a value of 0 is

returned in the clientIPAddress field. To retrieve the client IP address on an

IPv6 platform, the security plug-in code should be changed to use either the

db2sec_con_details_2 structure and the DB2SEC_CON_DETAILS_VERSION_2

value, or the db2sec_con_details_3 structure and the

DB2SEC_CON_DETAILS_VERSION_3 value .

– New plugins should use the db2sec_con_details_3 structure and the

DB2SEC_CON_DETAILS_VERSION_3 value. If the db2secGetConDetails API

is called on an IPv4 platform, the client IP address is returned in the

clientIPAddress field of the db2sec_con_details_3 structure and if the API is

called on an IPv6 platform the client IP address is returned in the

clientIP6Address field of the db2sec_con_details_3 structure. The clientProtocol

field of the connection details structure will be set to one of

SQL_PROTOCOL_TCPIP (IPv4, with v1 of the structure),

SQL_PROTOCOL_TCPIP4 (IPv4, with v2 of the structure) or

SQL_PROTOCOL_TCPIP6 (IPv6, with v2 or v3 of the structure).

– The structure db2sec_con_details_3 is identical to the structure

db2sec_con_details_2 except that it contains an additional field (clientPlatform)

that identifies the client platform type (as reported by the communication

layer) using platform type constants defined in sqlmon.h, such as

SQLM_PLATFORM_AIX.
v db2secServerAuthPluginTerm

v db2secValidatePassword

v db2secGetAuthIDs

v db2secDoesAuthIDExist

v db2secFreeToken

v db2secFreeErrormsg

v The only API that must be resolvable externally is db2secServerAuthPluginInit.

This API will take a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordServerAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

 /* parameter lists left blank for readability

 see above for parameters */

SQL_API_RC (SQL_API_FN * db2secValidatePassword)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);

SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeToken)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

} userid_password_server_auth_functions;

or

180 Database Security Guide

typedef struct db2secGssapiServerAuthFunctions_1

{

db2int32 version;

db2int32 plugintype;

gss_buffer_desc serverPrincipalName;

gss_cred_id_t ServerCredHandle;

SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);

SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);

SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

/* GSS-API specific functions

refer to db2secPlugin.h for parameter list*/

OM_uint32 (SQL_API_FN * gss_accept_sec_context)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_display_name)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);

OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

} gssapi_server_auth_functions;

You should use the db2secUseridPasswordServerAuthFunctions_1 structure if

you are writing an user ID/password plug-in. If you are writing a GSS-API

(including Kerberos) plug-in, you should use the

db2secGssapiServerAuthFunctions_1 structure.

db2secClientAuthPluginInit API - Initialize client authentication

plug-in

Initialization API, for the client authentication plug-in, that the DB2 database

manager calls immediately after loading the plug-in.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secClientAuthPluginInit

 (db2int32 version,

 void *client_fns,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

db2secClientAuthPluginInit API parameters

version

Input. The highest version number of the API that the DB2 database

manager currently supports. The DB2SEC_API_VERSION value (in

db2secPlugin.h) contains the latest version number of the API that DB2

currently supports.

client_fns

Output. A pointer to memory provided by the DB2 database manager for a

db2secGssapiClientAuthFunctions_<version_number> structure (also

known as gssapi_client_auth_functions_<version_number>), if GSS-API

authentication is used, or a

db2secUseridPasswordClientAuthFunctions_<version_number> structure

(also known as

userid_password_client_auth_functions_<version_number>), if

userid/password authentication is used. The

db2secGssapiClientAuthFunctions_<version_number> structure and

db2secUseridPasswordClientAuthFunctions_<version_number> structure

respectively contain pointers to the APIs implemented for the GSS-API

Chapter 8. Security plug-in APIs 181

authentication plug-in and userid/password authentication plug-in. In

future versions of DB2, there might be different versions of the APIs, so the

client_fns parameter is cast as a pointer to the

gssapi_client_auth_functions_<version_number> structure corresponding to

the version the plug-in has implemented.

 The first parameter of the gssapi_client_auth_functions_<version_number>

structure or the userid_password_client_auth_functions_<version_number>

structure tells the DB2 database manager the version of the APIs that the

plug-in has implemented.

Note: The casting is done only if the DB2 version is higher or equal to the

version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or

userid_password_server_auth_functions_<version_number> structure, the

plugintype parameter should be set to one of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.

Other values can be defined in future versions of the API.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database manager. The db2secClientAuthPluginInit API can call

the db2secLogMessage API to log messages to db2diag.log for debugging

or informational purposes. The first parameter (level) of db2secLogMessage

API specifies the type of diagnostic errors that will be recorded in the

db2diag.log file and the last two parameters respectively are the message

string and its length. The valid values for the first parameter of

dbesecLogMessage API (defined in db2secPlugin.h) are:

v DB2SEC_LOG_NONE (0) No logging

v DB2SEC_LOG_CRITICAL (1) Severe Error encountered

v DB2SEC_LOG_ERROR (2) Error encountered

v DB2SEC_LOG_WARNING (3) Warning

v DB2SEC_LOG_INFO (4) Informational

The message text will show up in db2diag.log only if the value of the

’level’ parameter of the db2secLogMessage API is less than or equal to the

diaglevel database manager configuration parameter. For example, if you

use the DB2SEC_LOG_INFO value, the message text will only appear in

db2diag.log if the diaglevel database manager configuration parameter is

set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secClientAuthPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secClientAuthPluginTerm API - Clean up client

authentication plug-in resources

Frees resources used by the client authentication plug-in.

182 Database Security Guide

This API is called by the DB2 database manager just before it unloads the client

authentication plug-in. It should be implemented in a manner that it does a proper

cleanup of any resources the plug-in library holds, for instance, free any memory

allocated by the plug-in, close files that are still open, and close network

connections. The plug-in is responsible for keeping track of these resources in

order to free them. This API is not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secClientAuthPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

db2secClientAuthPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secClientAuthPluginTerm API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secDoesAuthIDExist - Check if authentication ID exists

Determines if the authid represents an individual user (for example, whether the

API can map the authid to an external user ID).

The API should return the value DB2SEC_PLUGIN_OK if it is successful - the

authid is valid, DB2SEC_PLUGIN_INVALID_USERORGROUP if it is not valid, or

DB2SEC_PLUGIN_USERSTATUSNOTKNOWN if the authid existence cannot be

determined.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secDoesAuthIDExist)

 (const char *authid,

 db2int32 authidlen,

 char **errormsg,

 db2int32 *errormsglen);

db2secDoesAuthIDExist API parameters

authid Input. The authid to validate. This is upper-cased, with no trailing blanks.

authidlen

Input. Length in bytes of the authid parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secDoesAuthIDExist API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length of the error

message string in errormsg parameter.

Chapter 8. Security plug-in APIs 183

db2secFreeInitInfo API - Clean up resources held by the

db2secGenerateInitialCred

Frees any resources allocated by the db2secGenerateInitialCred API. This can

include, for example, handles to underlying mechanism contexts or a credential

cache created for the GSS-API credential cache.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeInitInfo)

 (void *initinfo,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeInitInfo API parameters

initinfo

Input. A pointer to data that is not known to the DB2 database manager.

The plug-in can use this memory to maintain a list of resources that are

allocated in the process of generating the credential handle. These

resources are freed by calling this API.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeInitInfo API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secFreeToken API - Free memory held by token

Frees the memory held by a token. This API is called by the DB2 database

manager when it no longer needs the memory held by the token parameter.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secFreeToken)

 (void *token,

 char **errormsg,

 db2int32 *errormsglen);

db2secFreeToken API parameters

token Input. Pointer to the memory to be freed.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secFreeToken API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGenerateInitialCred API - Generate initial credentials

Obtains the initial GSS-API credentials based on the user ID and password that are

passed in. For Kerberos, this is the ticket-granting ticket (TGT). The credential

handle that is returned in pGSSCredHandle parameter is the handle that is used

with the gss_init_sec_context API and must be either an INITIATE or BOTH

credential. The db2secGenerateInitialCred API is only called when a user ID, and

184 Database Security Guide

possibly a password are supplied. Otherwise, the DB2 database manager specifies

the value GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to

signify that the default credential obtained from the current login context is to be

used.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *password,

 db2int32 passwordlen,

 const char *newpassword,

 db2int32 newpasswordlen,

 const char *dbname,

 db2int32 dbnamelen,

 gss_cred_id_t *pGSSCredHandle,

 void **InitInfo,

 char **errormsg,

 db2int32 *errormsglen);

db2secGenerateInitialCred API parameters

userid Input. The user ID whose password is to be verified on the database

server.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. The type of namespace.

password

Input. The password to be verified.

passwordlen

Input. Length in bytes of the password parameter value.

newpassword

Input. A new password if the password is to be changed. If no change is

requested, the newpassword parameter is set to NULL. If it is not NULL,

the API should validate the old password before setting the password to its

new value. The API does not have to honour a request to change the

password, but if it does not, it should immediately return with the return

value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without

validating the old password.

newpasswordlen

Input. Length in bytes of the newpassword parameter value.

dbname

Input. The name of the database being connected to. The API is free to

ignore this parameter, or the API can return the value

Chapter 8. Security plug-in APIs 185

DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of

restricting access to certain databases to users who otherwise have valid

passwords.

dbnamelen

Input. Length in bytes of the dbname parameter value.

pGSSCredHandle

Output. Pointer to the GSS-API credential handle.

InitInfo

Output. A pointer to data that is not known to DB2. The plug-in can use

this memory to maintain a list of resources that are allocated in the process

of generating the credential handle. The DB2 database manager calls the

db2secFreeInitInfo API at the end of the authentication process, at which

point these resources are freed. If the db2secGenerateInitialCred API does

not need to maintain such a list, then it should return NULL.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return

value indicates a bad user ID or password. An error message should only

be returned if there is an internal error in the API that prevented it from

completing properly.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGetAuthIDs API - Get authentication IDs

Returns an SQL authid for an authenticated user. This API is called during

database connections for both user ID/password and GSS-API authentication

methods.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetAuthIDs)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void **token,

 char SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *SystemAuthIDlen,

 char InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *InitialSessionAuthIDlen,

 char username[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *usernamelen,

 db2int32 *initsessionidtype,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetAuthIDs API parameters

userid Input. The authenticated user. This is usually not used for GSS-API

authentication unless a trusted context is defined to permit switch user

186 Database Security Guide

operations without authentication. In those situations, the user name

provided for the switch user request is passed in this parameter.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

usernamespacetype

Input. Namespacetype value. currently, the only supported namespace type

value is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a

username style like domain\myname).

dbname

Input. The name of the database being connected to. The API can ignore

this, or it can return differing authids when the same user connects to

different databases. This parameter can be NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL.

token Input or output. Data that the plug-in might pass to the

db2secGetGroupsForUser API. For GSS-API, this is a context handle

(gss_ctx_id_t). Ordinarily, token is an input-only parameter and its value is

taken from the db2secValidatePassword API. It can also be an output

parameter when authentication is done on the client and therefore

db2secValidatePassword API is not called. In environments where a trusted

context is defined that allows switch user operations without

authentication, the db2secGetAuthIDs API must be able to accommodate

receiving a NULL value for this token parameter and be able to derive a

system authorization ID based on the userid and useridlen input

parameters above.

SystemAuthID

Output. The system authorization ID that corresponds to the ID of the

authenticated user. The size is 255 bytes, but the DB2 database manager

currently uses only up to (and including) 30 bytes.

SystemAuthIDlen

Output. Length in bytes of the SystemAuthID parameter value.

InitialSessionAuthID

Output. Authid used for this connection session. This is usually the same

as the SystemAuthID parameter but can be different in some situations, for

instance, when issuing a SET SESSION AUTHORIZATION statement. The

size is 255 bytes, but the DB2 database manager currently uses only up to

(and including) 30 bytes.

InitialSessionAuthIDlen

Output. Length in bytes of the InitialSessionAuthID parameter value.

username

Output. A username corresponding to the authenticated user and authid.

This will only be used for auditing and will be logged in the ″User ID″

field in the audit record for CONNECT statement. If the API does not fill

in the username parameter, the DB2 database manager copies it from the

userid.

Chapter 8. Security plug-in APIs 187

usernamelen

Output. Length in bytes of the username parameter value.

initsessionidtype

Output. Session authid type indicating whether or not the

InitialSessionAuthid parameter is a role or an authid. The API should

return one of the following values (defined in db2secPlugin.h):

v DB2SEC_ID_TYPE_AUTHID (0)

v DB2SEC_ID_TYPE_ROLE (1)

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetAuthIDs API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secGetDefaultLoginContext API - Get default login context

Determines the user associated with the default login context, in other words,

determines the DB2 authid of the user invoking a DB2 command without explicitly

specifying a user ID (either an implicit authentication to a database, or a local

authorization). This API must return both an authid and a user ID.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secGetDefaultLoginContext)

 (char authid[DB2SEC_MAX_AUTHID_LENGTH],

 db2int32 *authidlen,

 char userid[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *useridlen,

 db2int32 useridtype,

 char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

 db2int32 *usernamespacelen,

 db2int32 *usernamespacetype,

 const char *dbname,

 db2int32 dbnamelen,

 void **token,

 char **errormsg,

 db2int32 *errormsglen);

db2secGetDefaultLoginContext API parameters

authid Output. The parameter in which the authid should be returned. The

returned value must conform to DB2 authid naming rules, or the user will

not be authorized to perform the requested action.

authidlen

Output. Length in bytes of the authid parameter value.

userid Output. The parameter in which the user ID associated with the default

login context should be returned.

useridlen

Output. Length in bytes of the userid parameter value.

useridtype

Input. Indicates if the real or effective user ID of the process is being

specified. On Windows, only the real user ID exists. On UNIX and Linux,

the real user ID and effective user ID can be different if the uid user ID for

188 Database Security Guide

the application is different than the ID of the user executing the process.

Valid values for the userid parameter (defined in db2secPlugin.h) are:

DB2SEC_PLUGIN_REAL_USER_NAME

Indicates that the real user ID is being specified.

DB2SEC_PLUGIN_EFFECTIVE_USER_NAME

Indicates that the effective user ID is being specified.

Note: Some plug-in implementations might not distinguish

between the real and effective userid. In particular, a plug-in that

does not use the UNIX or Linux identity of the user to establish

the DB2 authorization ID can safely ignore this distinction.

usernamespace

Output. The namespace of the user ID.

usernamespacelen

Output. Length in bytes of the usernamespace parameter value. Under the

limitation that the usernamespacetype parameter must be set to the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h),

the maximum length currently supported is 15 bytes.

usernamespacetype

Output. Namespacetype value. Currently, the only supported namespace

type is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a

username style like domain\myname).

dbname

Input. Contains the name of the database being connected to, if this call is

being used in the context of a database connection. For local authorization

actions or instance attachments, this parameter is set to NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value.

token Output. This is a pointer to data allocated by the plug-in that it might pass

to subsequent authentication calls in the plug-in, or possibly to the group

retrieval plug-in. The structure of this data is determined by the plug-in

writer.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secGetDefaultLoginContext API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secProcessServerPrincipalName API - Process service

principal name returned from server

Processes the service principal name returned from the server and returns the

principal name in the gss_name_t internal format to be used with the

gss_init_sec_context API. The db2secProcessServerPrincipalName API also

processes the service principal name cataloged with the database directory when

Kerberos authentication is used. Ordinarily, this conversion uses the

gss_import_name API. After the context is established, the gss_name_t object is

freed through the call to gss_release_name API. The

db2secProcessServerPrincipalName API returns the value DB2SEC_PLUGIN_OK if

Chapter 8. Security plug-in APIs 189

gssName parameter points to a valid GSS name; a

DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME error code is returned if the principal

name is invalid.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secProcessServerPrincipalName)

 (const char *name,

 db2int32 namelen,

 gss_name_t *gssName,

 char **errormsg,

 db2int32 *errormsglen);

db2secProcessServerPrincipalName API parameters

name Input. Text name of the service principal in GSS_C_NT_USER_NAME

format; for example, service/host@REALM.

namelen

Input. Length in bytes of the name parameter value.

gssName

Output. Pointer to the output service principal name in the GSS-API

internal format.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secProcessServerPrincipalName API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secRemapUserid API - Remap user ID and password

This API is called by the DB2 database manager on the client side to remap a

given user ID and password (and possibly new password and usernamespace) to

values different from those given at connect time. The DB2 database manager only

calls this API if a user ID and a password are supplied at connect time. This

prevents a plug-in from remapping a user ID by itself to a user ID/password pair.

This API is optional and is not called if it is not provided or implemented by the

security plug-in.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secRemapUserid)

 (char userid[DB2SEC_MAX_USERID_LENGTH],

 db2int32 *useridlen,

 char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],

 db2int32 *usernamespacelen,

 db2int32 *usernamespacetype,

 char password[DB2SEC_MAX_PASSWORD_LENGTH],

 db2int32 *passwordlen,

 char newpasswd[DB2SEC_MAX_PASSWORD_LENGTH],

 db2int32 *newpasswdlen,

 const char *dbname,

 db2int32 dbnamelen,

 char **errormsg,

 db2int32 *errormsglen);

db2secRemapUserid API parameters

userid Input or output. The user ID to be remapped. If there is an input user ID

190 Database Security Guide

value, then the API must provide an output user ID value that can be the

same or different from the input user ID value. If there is no input user ID

value, then the API should not return an output user ID value.

useridlen

Input or output. Length in bytes of the userid parameter value.

usernamespace

Input or output. The namespace of the user ID. This value can optionally

be remapped. If no input parameter value is specified, but an output value

is returned, then the usernamespace will only be used by the DB2 database

manager for CLIENT type authentication and is disregarded for other

authentication types.

usernamespacelen

Input or output. Length in bytes of the usernamespace parameter value.

Under the limitation that the usernamespacetype parameter must be set to

the value DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in

db2secPlugin.h), the maximum length currently supported is 15 bytes.

usernamespacetype

Input or output. Old and new namespacetype value. Currently, the only

supported namespace type value is

DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username

style like domain\myname).

password

Input or output. As an input, it is the password that is to be remapped. As

an output it is the remapped password. If an input value is specified for

this parameter, the API must be able to return an output value that differs

from the input value. If no input value is specified, the API must not

return an output password value.

passwordlen

Input or output. Length in bytes of the password parameter value.

newpasswd

Input or output. As an input, it is the new password that is to be set. As

an output it is the confirmed new password.

Note: This is the new password that is passed by the DB2 database

manager into the newpassword parameter of the db2secValidatePassword

API on the client or the server (depending on the value of the

authentication database manager configuration parameter). If a new

password was passed as input, then the API must be able to return an

output value and it can be a different new password. If there is no new

password passed in as input, then the API should not return an output

new password.

newpasswdlen

Input or output. Length in bytes of the newpasswd parameter value.

dbname

Input. Name of the database to which the client is connecting.

dbnamelen

Input. Length in bytes of the dbname parameter value.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

Chapter 8. Security plug-in APIs 191

by the plug-in that can be returned in this parameter if the

db2secRemapUserid API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secServerAuthPluginInit - Initialize server authentication

plug-in

Initialization API, for the server authentication plug-in, that the DB2 database

manager calls immediately after loading the plug-in. In the case of GSS-API, the

plug-in is responsible for filling in the server’s principal name in the

serverPrincipalName parameter inside the gssapi_server_auth_functions structure

at initialization time and providing the server’s credential handle in the

serverCredHandle parameter inside the gssapi_server_auth_functions structure.

The freeing of the memory allocated to hold the principal name and the credential

handle must be done by the db2secServerAuthPluginTerm API by calling the

gss_release_name and gss_release_cred APIs.

API and data structure syntax

SQL_API_RC SQL_API_FN db2secServerAuthPluginInit

 (db2int32 version,

 void *server_fns,

 db2secGetConDetails *getConDetails_fn,

 db2secLogMessage *logMessage_fn,

 char **errormsg,

 db2int32 *errormsglen);

db2secServerAuthPluginInit API parameters

version

Input. The highest version number of the API that the DB2 database

manager currently supports. The DB2SEC_API_VERSION value (in

db2secPlugin.h) contains the latest version number of the API that the DB2

database manager currently supports.

server_fns

Output. A pointer to memory provided by the DB2 database manager for a

db2secGssapiServerAuthFunctions_<version_number> structure (also

known as gssapi_server_auth_functions_<version_number>), if GSS-API

authentication is used, or a

db2secUseridPasswordServerAuthFunctions_<version_number> structure

(also known as

userid_password_server_auth_functions_<version_number>), if

userid/password authentication is used. The

db2secGssapiServerAuthFunctions_<version_number> structure and

db2secUseridPasswordServerAuthFunctions_<version_number> structure

respectively contain pointers to the APIs implemented for the GSS-API

authentication plug-in and userid/password authentication plug-in.

 The server_fns parameter is cast as a pointer to the

gssapi_server_auth_functions_<version_number> structure corresponding

to the version the plug-in has implemented. The first parameter of the

gssapi_server_auth_functions_<version_number> structure or the

userid_password_server_auth_functions_<version_number> structure tells

theDB2 database manager the version of the APIs that the plug-in has

implemented.

192 Database Security Guide

Note: The casting is done only if the DB2 version is higher or equal to the

version of the APIs that the plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or

userid_password_server_auth_functions_<version_number> structure, the

plugintype parameter should be set to one of

DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,

DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS.

Other values can be defined in future versions of the API.

getConDetails_fn

Input. Pointer to the db2secGetConDetails API, which is implemented by

DB2. The db2secServerAuthPluginInit API can call the

db2secGetConDetails API in any one of the other authentication APIs to

obtain details related to the database connection. These details include

information about the communication mechanism associated with the

connection (such as the IP address, in the case of TCP/IP), which the

plug-in writer might need to reference when making authentication

decisions. For example, the plug-in could disallow a connection for a

particular user, unless that user is connecting from a particular IP address.

The use of the db2secGetConDetails API is optional.

 If the db2secGetConDetails API is called in a situation not involving a

database connection, it returns the value

DB2SEC_PLUGIN_NO_CON_DETAILS, otherwise, it returns 0 on success.

The db2secGetConDetails API takes two input parameters; pConDetails,

which is a pointer to the db2sec_con_details_<version_number> structure,

and conDetailsVersion, which is a version number indicating which

db2sec_con_details structure to use. Possible values are

DB2SEC_CON_DETAILS_VERSION_1 when db2sec_con_details1 is used or

DB2SEC_CON_DETAILS_VERSION_2 when db2sec_con_details2. The

recommended version number to use is

DB2SEC_CON_DETAILS_VERSION_2.

Upon a successful return, the db2sec_con_details structure (either

db2sec_con_details1 or db2sec_con_details2) will contain the following

information:

v The protocol used for the connection to the server. The listing of protocol

definitions can be found in the file sqlenv.h (located in the include

directory) (SQL_PROTOCOL_*). This information is filled out in the

clientProtocol parameter.

v The TCP/IP address of the inbound connect to the server if the

clientProtocol is SQL_PROTOCOL_TCPIP or SQL_PROTOCOL_TCPIP4.

This information is filled out in the clientIPAddress parameter.

v The database name the client is attempting to connect to. This will not

be set for instance attachments. This information is filled out in the

dbname and dbnameLen parameters.

v A connection information bit-map that contains the same details as

documented in the connection_details parameter of the

db2secValidatePassword API. This information is filled out in the

connect_info_bitmap parameter.

v The TCP/IP address of the inbound connect to the server if the

clientProtocol is SQL_PROTOCOL_TCPIP6. This information is filled out

in the clientIP6Address parameter and it is only available if

DB2SEC_CON_DETAILS_VERSION_2 is used for db2secGetConDetails

API call.

Chapter 8. Security plug-in APIs 193

logMessage_fn

 Input. A pointer to the db2secLogMessage API, which is implemented by

the DB2 database manager. The db2secClientAuthPluginInit API can call

the db2secLogMessage API to log messages to db2diag.log for debugging

or informational purposes. The first parameter (level) of db2secLogMessage

API specifies the type of diagnostic errors that will be recorded in the

db2diag.log file and the last two parameters respectively are the message

string and its length. The valid values for the first parameter of

dbesecLogMessage API (defined in db2secPlugin.h) are:

DB2SEC_LOG_NONE (0)

No logging

DB2SEC_LOG_CRITICAL (1)

Severe Error encountered

DB2SEC_LOG_ERROR (2)

Error encountered

DB2SEC_LOG_WARNING (3)

Warning

DB2SEC_LOG_INFO (4)

Informational

The message text will show up in db2diag.log only if the value of the

’level’ parameter of the db2secLogMessage API is less than or equal to the

diaglevel database manager configuration parameter.

So for example, if you use the DB2SEC_LOG_INFO value, the message text

will only show up in the db2diag.log if the diaglevel database manager

configuration parameter is set to 4.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secServerAuthPluginInit API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secServerAuthPluginTerm API - Clean up server

authentication plug-in resources

Frees resources used by the server authentication plug-in. This API is called by the

DB2 database manager just before it unloads the server authentication plug-in. It

should be implemented in a manner that it does a proper cleanup of any resources

the plug-in library holds, for instance, free any memory allocated by the plug-in,

close files that are still open, and close network connections. The plug-in is

responsible for keeping track of these resources in order to free them. This API is

not called on any Windows platform.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secServerAuthPluginTerm)

 (char **errormsg,

 db2int32 *errormsglen);

194 Database Security Guide

db2secServerAuthPluginTerm API parameters

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secServerAuthPluginTerm API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

db2secValidatePassword API - Validate password

Provides a method for performing user ID and password style authentication

during a database connect operation.

Note: When the API is run on the client side, the API code is run with the

privileges of the user executing the CONNECT statement. This API will only be

called on the client side if the authentication configuration parameter is set to

CLIENT.

When the API is run on the server side, the API code is run with the privileges of

the instance owner.

The plug-in writer should take the above into consideration if authentication

requires special privileges (such as root level system access on UNIX).

This API must return the value DB2SEC_PLUGIN_OK (success) if the password is

valid, or an error code such as DB2SEC_PLUGIN_BADPWD if the password is

invalid.

API and data structure syntax

 SQL_API_RC (SQL_API_FN *db2secValidatePassword)

 (const char *userid,

 db2int32 useridlen,

 const char *usernamespace,

 db2int32 usernamespacelen,

 db2int32 usernamespacetype,

 const char *password,

 db2int32 passwordlen,

 const char *newpasswd,

 db2int32 newpasswdlen,

 const char *dbname,

 db2int32 dbnamelen,

 db2Uint32 connection_details,

 void **token,

 char **errormsg,

 db2int32 *errormsglen);

db2secValidatePassword API parameters

userid Input. The user ID whose password is to be verified.

useridlen

Input. Length in bytes of the userid parameter value.

usernamespace

Input. The namespace from which the user ID was obtained.

usernamespacelen

Input. Length in bytes of the usernamespace parameter value.

Chapter 8. Security plug-in APIs 195

usernamespacetype

Input. The type of namespace. Valid values for the usernamespacetype

parameter (defined in db2secPlugin.h) are:

v DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like

domain\myname

v DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the DB2 database system only supports the value

DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not

available, the usernamespacetype parameter is set to the value

DB2SEC_USER_NAMESPACE_UNDEFINED (defined in db2secPlugin.h).

password

Input. The password to be verified.

passwordlen

Input. Length in bytes of the password parameter value.

newpasswd

Input. A new password, if the password is to be changed. If no change is

requested, this parameter is set to NULL. If this parameter is not NULL,

the API should validate the old password before changing it to the new

password. The API does not have to fulfill a request to change the

password, but if it does not, it should immediately return with the return

value DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without

validating the old password.

newpasswdlen

Input. Length in bytes of the newpasswd parameter value.

dbname

Input. The name of the database being connected to. The API is free to

ignore the dbname parameter, or it can return the value

DB2SEC_PLUGIN_CONNECTIONREFUSED if it has a policy of restricting

access to certain databases to users who otherwise have valid passwords.

This parameter can be NULL.

dbnamelen

Input. Length in bytes of the dbname parameter value. This parameter is

set to 0 if dbname parameter is NULL.

connection_details

Input. A 32-bit parameter of which 3 bits are currently used to store the

following information:

v The rightmost bit indicates whether the source of the user ID is the

default from the db2secGetDefaultLoginContext API, or was explicitly

provided during the connect.

v The second-from-right bit indicates whether the connection is local

(using Inter Process Communication (IPC) or a connect from one of the

nodes in the db2nodes.cfg in the partitioned database environment), or

remote (through a network or loopback). This gives the API the ability

to decide whether clients on the same machine can connect to the DB2

server without a password. Due to the default operating-system-based

user ID/password plugin, local connections are permitted without a

password from clients on the same machine (assuming the user has

connect privileges).

v The third-from-right bit indicates whether the DB2 database manager is

calling the API from the server side or client side.

196 Database Security Guide

The bit values are defined in db2secPlugin.h:

v DB2SEC_USERID_FROM_OS (0x00000001) Indicates that the user ID is

obtained from OS and not explicitly given on the connect statement.

v DB2SEC_CONNECTION_ISLOCAL (0x00000002) Indicates a local connection.

v DB2SEC_VALIDATING_ON_SERVER_SIDE (0x0000004) Indicates whether the

DB2 database manager is calling from the server side or client side to

validate password. If this bit value is set, then the DB2 database

manager is calling from server side; otherwise, it is calling from the

client side.

The DB2 database system default behavior for an implicit authentication is

to allow the connection without any password validation. However,

plug-in developers have the option to disallow implicit authentication by

returning a DB2SEC_PLUGIN_BADPASSWORD error.

token Input. A pointer to data which can be passed as a parameter to subsequent

API calls during the current connection. Possible APIs that might be called

include db2secGetAuthIDs API and db2secGetGroupsForUser API.

errormsg

Output. A pointer to the address of an ASCII error message string allocated

by the plug-in that can be returned in this parameter if the

db2secValidatePassword API execution is not successful.

errormsglen

Output. A pointer to an integer that indicates the length in bytes of the

error message string in errormsg parameter.

Required APIs and definitions for GSS-API authentication plug-ins

Following is a complete list of GSS-APIs required for the DB2 security plug-in

interface.

The supported APIs follow these specifications: Generic Security Service Application

Program Interface, Version 2 (IETF RFC2743) and Generic Security Service API Version

2: C-Bindings (IETF RFC2744). Before implementing a GSS-API based plug-in, you

should have a complete understanding of these specifications.

 Table 39. Required APIs and Definitions for GSS-API authentication plug-ins

Name Description

Client-side APIs gss_init_sec_context Initiate a security context with a peer application.

Server-side APIs gss_accept_sec_context Accept a security context initiated by a peer application.

Server-side APIs gss_display_name Convert an internal format name to text.

Common APIs gss_delete_sec_context Delete an established security context.

Common APIs gss_display_status Obtain the text error message associated with a GSS-API

status code.

Common APIs gss_release_buffer Delete a buffer.

Common APIs gss_release_cred Release local data structures associated with a GSS-API

credential.

Common APIs gss_release_name Delete internal format name.

Required

definitions

GSS_C_DELEG_FLAG Requests delegation.

Required

definitions

GSS_C_EMPTY_BUFFER Signifies that the gss_buffer_desc does not contain any

data.

Chapter 8. Security plug-in APIs 197

Table 39. Required APIs and Definitions for GSS-API authentication plug-ins (continued)

Name Description

Required

definitions

GSS_C_GSS_CODE Indicates a GSS major status code.

Required

definitions

GSS_C_INDEFINITE Indicates that the mechanism does not support context

expiration.

Required

definitions

GSS_C_MECH_CODE Indicates a GSS minor status code.

Required

definitions

GSS_C_MUTUAL_FLAG Mutual authentication requested.

Required

definitions

GSS_C_NO_BUFFER Signifies that the gss_buffer_t variable does not point to

a valid gss_buffer_desc structure.

Required

definitions

GSS_C_NO_CHANNEL_BINDINGS No communication channel bindings.

Required

definitions

GSS_C_NO_CONTEXT Signifies that the gss_ctx_id_t variable does not point to

a valid context.

Required

definitions

GSS_C_NO_CREDENTIAL Signifies that gss_cred_id_t variable does not point to a

valid credential handle.

Required

definitions

GSS_C_NO_NAME Signifies that the gss_name_t variable does not point to a

valid internal name.

Required

definitions

GSS_C_NO_OID Use default authentication mechanism.

Required

definitions

GSS_C_NULL_OID_SET Use default mechanism.

Required

definitions

GSS_S_COMPLETE API completed successfully.

Required

definitions

GSS_S_CONTINUE_NEEDED Processing is not complete and the API must be called

again with the reply token received from the peer.

Restrictions for GSS-API authentication plug-ins

The following is a list of restrictions for GSS-API authentication plug-ins.

v The default security mechanism is always assumed; therefore, there is no OID

consideration.

v The only GSS services requested in gss_init_sec_context() are mutual

authentication and delegation. The DB2 database manager always requests a

ticket for delegation, but does not use that ticket to generate a new ticket.

v Only the default context time is requested.

v Context tokens from gss_delete_sec_context() are not sent from the client to

the server and vice-versa.

v Anonymity is not supported.

v Channel binding is not supported

v If the initial credentials expire, the DB2 database manager does not automatically

renew them.

v The GSS-API specification stipulates that even if gss_init_sec_context() or

gss_accept_sec_context() fail, either function must return a token to send to

the peer. However, because of DRDA limitations, the DB2 database manager

only sends a token if gss_init_sec_context() fails and generates a token on the

first call.

198 Database Security Guide

Chapter 9. Audit facility record layouts

When an audit record is extracted from the audit log, each record has one of the

formats shown in the following tables. Each table is preceded by a sample record.

The description of each item in the record is shown one row at a time in the

associated table. Each item is shown in the table in the same order as it is output

in the delimited file after the extract operation.

Note:

1. Not all fields in the sample records will have values.

2. Some fields such as “Access Attempted” are stored in the delimited ASCII

format as bit maps. In this flat report file, however, these fields appear as a set

of strings representing the bit map values.

Audit record object types

The following table shows for each audit record object type whether it can

generate CHECKING, OBJMAINT, and SECMAINT events.

 Table 40. Audit Record Object Types Based on Audit Events

Object type CHECKING events OBJMAINT events SECMAINT events

ACCESS_RULE X

ALIAS X X

ALL X

AUDIT_POLICY X X

BUFFERPOOL X X

CHECK_CONSTRAINT X

DATABASE X X

DATA TYPE X

EVENT_MONITOR X X

FOREIGN_KEY X

FUNCTION X X X

FUNCTION MAPPING X X

GLOBAL_VARIABLE X X X

HISTOGRAM TEMPLATE X X

INDEX X X X

INDEX EXTENSION X

INSTANCE X

JAR_FILE X

METHOD_BODY X X X

NICKNAME X X X

NODEGROUP X X

NONE X X X

OPTIMIZATION PROFILE X

© Copyright IBM Corp. 1993, 2009 199

Table 40. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

PACKAGE X X X

PACKAGE CACHE X

PRIMARY_KEY X

REOPT_VALUES X

ROLE X X X

SCHEMA X X X

SECURITY LABEL X X

SECURITY LABEL COMPONENT X

SECURITY POLICY X X

SEQUENCE X X

SERVER X X X

SERVER OPTION X X

SERVICE CLASS X X

STORED_PROCEDURE X X X

SUMMARY TABLES X X X

TABLE X X X

TABLESPACE X X X

THRESHOLD X X

TRIGGER X

TRUSTED CONTEXT X X X

TYPE MAPPING X X

TYPE&TRANSFORM X X

UNIQUE_CONSTRAINT X

USER MAPPING X X

VIEW X X X

WORK ACTION SET X X

WORK CLASS SET X X

WORKLOAD X X X

WRAPPER X X

XSR object X X X

Audit record layout for AUDIT events

The following table shows the layout of the audit record for AUDIT events.

Sample audit record:

timestamp=2007-04-10-08.29.52.000001;

category=AUDIT;

audit event=START;

event correlator=0;

event status=0;

200 Database Security Guide

userid=newton;

authid=NEWTON;

application id=*LOCAL_APPLICATION;

application name=db2audit.exe;

 Table 41. Audit Record Layout for AUDIT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the AUDIT

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section SMALLINT Section number in package being used at the time the audit event

occurred

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

Chapter 9. Audit facility record layouts 201

Table 41. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Policy Name VARCHAR(128) The audit policy name.

Policy Association

Object Type

CHAR(1) The type of the object that the audit policy is associated with.

Possible values include:

v N = Nickname

v S = MQT

v T = Table (untyped)

v i = Authorization ID

v g= Authority

v x = Trusted context

v blank = Database

Policy Association

Subobject Type

CHAR(1) The type of sub-object that the audit policy is associated with. If the

Object Type is ? (authorization id), then possible values are:

v U = User

v G = Group

v R = Role

Policy Association

Object Name

VARCHAR(128) The name of the object that the audit policy is associated with.

Policy Association

Object Schema

VARCHAR(128) The schema name of the object that the audit policy is associated

with. This is NULL if the Policy Association Object Type identifies

an object to which a schema does not apply.

Audit Status CHAR(1) The status of the AUDIT category in an audit policy. Possible values

are:

v B-Both

v F-Failure

v N-None

v S-Success

Checking Status CHAR(1) The status of the CHECKING category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

Context Status CHAR(1) The status of the CONTEXT category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

202 Database Security Guide

Table 41. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Execute Status CHAR(1) The status of the EXECUTE category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

Execute With Data CHAR(1) The WITH DATA option of the EXECUTE category in the audit

policy. Possible values are:

v Y-WITH DATA

v N-WITHOUT DATA

Objmaint Status CHAR(1) The status of the OBJMAINT category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

Secmaint Status CHAR(1) The status of the SECMAINT category in an audit policy. See Audit

Status field for possible values.

Sysadmin Status CHAR(1) The status of the SYSADMIN category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

Validate Status CHAR(1) The status of the VALIDATE category in an audit policy. Possible

values are:

v B-Both

v F-Failure

v N-None

v S-Success

Error Type CHAR(8) The error type in an audit policy. Possible values are: AUDIT and

NORMAL.

Data Path VARCHAR(1024) The path to the active audit logs specified on the db2audit

configure command.

Archive Path VARCHAR(1024) The path to the archived audit logs specified on the db2audit

configure command

Audit record layout for CHECKING events

The format of the audit record for CHECKING events is shown in the following

table.

Sample audit record:

timestamp=1998-06-24-08.42.11.622984;

category=CHECKING;

audit event=CHECKING_OBJECT;

event correlator=2;

event status=0;

Chapter 9. Audit facility record layouts 203

database=FOO;

userid=boss;

authid=BOSS;

application id=*LOCAL.newton.980624124210;

application name=testapp;

package schema=NULLID;

package name=SYSSH200;

package section=0;

object schema=GSTAGER;

object name=NONE;

object type=REOPT_VALUES;

access approval reason=DBADM;

access attempted=STORE;

 Table 42. Audit record layout for CHECKING events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CHECKING

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

Access Approval

Reason

CHAR(18) Indicates the reason why access was approved for this audit event.

Possible values include: those shown in the topic titled “List of

possible CHECKING access approval reasons”.

204 Database Security Guide

Table 42. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Access Attempted CHAR(18) Indicates the type of access that was attempted. Possible values

include: those shown in the topic titled “List of possible

CHECKING access attempted types”.

Package Version VARCHAR (64) Version of the package in use at the time that the audit event

occurred.

Checked

Authorization ID

VARCHAR(128) Authorization ID is checked when it is different than the

authorization ID at the time of the audit event. For example, this

can be the target owner in a TRANSFER OWNERSHIP statement.

When the audit event is SWITCH_USER, this field represents the

authorization ID that is switched to.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

CHECKING access approval reasons

The following list shows the possible CHECKING access approval reasons.

0x0000000000000001 ACCESS DENIED

Access is not approved; rather, it was denied.

0x0000000000000002 SYSADM

Access is approved; the application or user has SYSADM authority.

0x0000000000000004 SYSCTRL

Access is approved; the application or user has SYSCTRL authority.

0x0000000000000008 SYSMAINT

Access is approved; the application or user has SYSMAINT authority.

0x0000000000000010 DBADM

Access is approved; the application or user has DBADM authority.

0x0000000000000020 DATABASE PRIVILEGE

Access is approved; the application or user has an explicit privilege on the

database.

Chapter 9. Audit facility record layouts 205

0x0000000000000040 OBJECT PRIVILEGE

Access is approved; the application or user has a privilege on the object or

function.

0x0000000000000080 DEFINER

Access is approved; the application or user is the definer of the object or

function.

0x0000000000000100 OWNER

Access is approved; the application or user is the owner of the object or

function.

0x0000000000000200 CONTROL

Access is approved; the application or user has CONTROL privilege on the

object or function.

0x0000000000000400 BIND

Access is approved; the application or user has bind privilege on the

package.

0x0000000000000800 SYSQUIESCE

Access is approved; if the instance or database is in quiesce mode, the

application or user may connect or attach.

0x0000000000001000 SYSMON

Access is approved; the application or user has SYSMON authority.

0x0000000000002000 SECADM

Access is approved; the application or user has SECADM authority.

0x0000000000004000 SETSESSIONUSER

Access is approved; the application or user has SETSESSIONUSER

authority.

0x0000000000008000 TRUSTED_CONTEXT_MATCH

Connection attributes matched the attributes of a unique trusted context

defined at the DB2 server.

0x0000000000010000 TRUSTED_CONTEXT_USE

Access is approved to use a trusted context.

CHECKING access attempted types

The following list shows the possible CHECKING access attempted types.

If Audit Event is CHECKING_TRANSFER, then the audit entry reflects that a

privilege is held or not.

0x0000000000000001 CONTROL

Attempt to verify if CONTROL privilege is held.

0x0000000000000002 ALTER

Attempt to alter an object or to verify if ALTER privilege is held if Audit

Event is CHECKING_TRANSFER.

0x0000000000000004 DELETE

Attempt to delete an object or to verify if DELETE privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000000008 INDEX

Attempt to use an index or to verify if INDEX privilege is held if Audit

Event is CHECKING_TRANSFER.

206 Database Security Guide

0x0000000000000010 INSERT

Attempt to insert into an object or to verify if INSERT privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000000020 SELECT

Attempt to query a table or view or to verify if SELECT privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000000040 UPDATE

Attempt to update data in an object or to verify if UPDATE privilege is

held if Audit Event is CHECKING_TRANSFER.

0x0000000000000080 REFERENCE

Attempt to establish referential constraints between objects or to verify if

REFERENCE privilege is held if Audit Event is CHECKING_TRANSFER.

0x0000000000000100 CREATE

Attempt to create an object.

0x0000000000000200 DROP

Attempt to drop an object.

0x0000000000000400 CREATEIN

Attempt to create an object within another schema.

0x0000000000000800 DROPIN

Attempt to drop an object found within another schema.

0x0000000000001000 ALTERIN

Attempt to alter or modify an object found within another schema.

0x0000000000002000 EXECUTE

Attempt to execute or run an application or to invoke a routine, create a

function sourced from the routine (applies to functions only), or reference a

routine in any DDL statement or to verify if EXECUTE privilege is held if

Audit Event is CHECKING_TRANSFER.

0x0000000000004000 BIND

Attempt to bind or prepare an application.

0x0000000000008000 SET EVENT MONITOR

Attempt to set event monitor switches.

0x0000000000010000 SET CONSTRAINTS

Attempt to set constraints on an object.

0x0000000000020000 COMMENT ON

Attempt to create comments on an object.

0x0000000000040000 GRANT

Attempt to grant privileges or roles on an object to another authorization

ID.

0x0000000000080000 REVOKE

Attempt to revoke privileges or roles from an object from an authorization

ID.

0x0000000000100000 LOCK

Attempt to lock an object.

0x0000000000200000 RENAME

Attempt to rename an object.

0x0000000000400000 CONNECT

Attempt to connect to an object.

Chapter 9. Audit facility record layouts 207

0x0000000000800000 Member of SYS Group

Attempt to access or use a member of the SYS group.

0x0000000001000000 Access All

Attempt to execute a statement with all required privileges on objects held

(only used for DBADM/SYSADM).

0x0000000002000000 Drop All

Attempt to drop multiple objects.

0x0000000004000000 LOAD

Attempt to load a table in a table space.

0x0000000008000000 USE

Attempt to create a table in a table space or to verify if USE privilege is

held if Audit Event is CHECKING_TRANSFER.

0x0000000010000000 SET SESSION_USER

Attempt to execute the SET SESSION_USER statement.

0x0000000020000000 FLUSH

Attempt to execute the FLUSH statement.

0x0000000040000000 STORE

Attempt to view the values of a re-optimized statement in the

EXPLAIN_PREDICATE table.

0x0000000400000000 TRANSFER

Attempt to transfer an object.

0x0000000800000000 ALTER_WITH_GRANT

Attempt to verify if ALTER with GRANT privilege is held.

0x0000001000000000 DELETE_WITH_GRANT

Attempt to verify if DELETE with GRANT privilege is held.

0x0000002000000000 INDEX_WITH_GRANT

Attempt to verify if INDEX with GRANT privilege is held

0x0000004000000000 INSERT_WITH_GRANT

Attempt to verify if INSERT with GRANT privilege is held.

0x0000008000000000 SELECT_WITH_GRANT

Attempt to verify if SELECT with GRANT privilege is held.

0x0000010000000000 UPDATE_WITH_GRANT

Attempt to verify if UPDATE with GRANT privilege is held.

0x0000020000000000 REFERENCE_WITH_GRANT

Attempt to verify if REFERENCE with GRANT privilege is held.

0x0000040000000000 USAGE

Attempt to use a sequence or an XSR object or to verify if USAGE

privilege is held if Audit Event is CHECKING_TRANSFER.

0x0000080000000000 SET ROLE

Attempt to set a role.

0x0000100000000000 EXPLICIT_TRUSTED_CONNECTION

Attempt to establish an explicit trusted connection.

0x0000200000000000 IMPLICIT_TRUSTED_CONNECTION

Attempt to establish an implicit trusted connection.

0x0000400000000000 READ

Attempt to read a global variable.

208 Database Security Guide

0x0000800000000000 WRITE

Attempt to write a global variable.

0x0001000000000000 SWITCH_USER

Attempt to switch a user ID on an explicit trusted connection.

0x0002000000000000 AUDIT_USING

Attempt to associate an audit policy with an object.

0x0004000000000000 AUDIT_REPLACE

Attempt to replace an audit policy association with an object.

0x0008000000000000 AUDIT_REMOVE

Attempt to remove an audit policy association with an object.

0x0010000000000000 AUDIT_ARCHIVE

Attempt to archive the audit log.

0x0020000000000000 AUDIT_EXTRACT

Attempt to extract the audit log.

0x0040000000000000 AUDIT_LIST_LOGS

Attempt to list the audit logs.

Audit record layout for OBJMAINT events

The format of the audit record for OBJMAINT events is shown in the following

table.

Sample audit record:

timestamp=1998-06-24-08.42.41.957524;

category=OBJMAINT;

audit event=CREATE_OBJECT;

event correlator=3;

event status=0;

database=FOO;

userid=boss;

authid=BOSS;

application id=*LOCAL.newton.980624124210;

application name=testapp;

package schema=NULLID;

package name=SQLC28A1;

package section=0;

object schema=BOSS;

object name=AUDIT;

object type=TABLE;

 Table 43. Audit Record Layout for OBJMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the OBJMAINT

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Chapter 9. Audit facility record layouts 209

Table 43. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(256) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Security Policy Name VARCHAR(128) The name of the security policy if the object type is TABLE and that

table is associated with a security policy.

Alter Action VARCHAR(32) Specific Alter operation

Possible values include:

v ADD_PROTECTED_COLUMN

v ADD_COLUMN_PROTECTION

v DROP_COLUMN_PROTECTION

v ADD_ROW_PROTECTION

v ADD_SECURITY_POLICY

v ADD_ELEMENT

v ADD COMPONENT

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Protected Column

Name

VARCHAR(128) If the Alter Action is ADD_COLUMN_PROTECTION or

DROP_COLUMN_PROTECTION this is the name of the affected

column.

Column Security

Label

VARCHAR(128) The security label protecting the column specified in the field

Column Name.

210 Database Security Guide

Table 43. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Security Label

Column Name

VARCHAR(128) Name of the column containing the security label protecting the

row.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record layout for SECMAINT events

The format of the audit record for SECMAINT events is shown in the following

table.

Sample audit record:

timestamp=1998-06-24-11.57.45.188101;

category=SECMAINT;

audit event=GRANT;

event correlator=4;

event status=0;

database=FOO;

userid=boss;

authid=BOSS;

application id=*LOCAL.boss.980624155728;

application name=db2bp;

package schema=NULLID;

package name=SQLC28A1;

package section=0;

object schema=BOSS;

object name=T1;

object type=TABLE;

grantor=BOSS;

grantee=WORKER;

grantee type=USER;

privilege=SELECT;

 Table 44. Audit Record Layout for SECMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Chapter 9. Audit facility record layouts 211

Table 44. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Category CHAR(8) Category of audit event. Possible values are:

 SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SECMAINT

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains the

security policy name associated with the rule. The name of the rule

is stored in the field Object Name.

If the object type field is SECURITY_LABEL, then this field contains

the name of the security policy that the security label is part of. The

name of the security label is stored in the field Object Name.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Represents a role name when the audit event is any of

ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE,

ALTER_DEFAULT_ROLE, ADD_USER, DROP_USER,

ALTER_USER_ADD_ROLE, ALTER_USER_DROP_ROLE, or

ALTER_USER_AUTHENTICATION

If the object type field is ACCESS_RULE then this field contains the

name of the rule. The security policy name associated with the rule

is stored in the field Object Schema.

If the object type field is SECURITY_LABEL, then this field contains

the name of the security label. The name of the security policy that

it is part of is stored in the field Object Schema.

212 Database Security Guide

Table 44. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible

values include: those shown in the topic titled “Audit record object

types”.

The value is ROLE when the audit event is any of

ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE,

ALTER_DEFAULT_ROLE, ADD_USER, DROP_USER,

ALTER_USER_ADD_ROLE, ALTER_USER_DROP_ROLE, or

ALTER_USER_AUTHENTICATION

Grantor VARCHAR(128) The ID of the grantor or the revoker of the privilege or authority.

Grantee VARCHAR(128) Grantee ID for which a privilege or authority was granted or

revoked.

Represents a trusted context object when the audit event is any of

ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE,

ALTER_DEFAULT_ROLE, ADD_USER, DROP_USER,

ALTER_USER_ADD_ROLE, ALTER_USER_DROP_ROLE, or

ALTER_USER_AUTHENTICATION

Grantee Type VARCHAR(32) Type of the grantee that was granted to or revoked from. Possible

values include: USER, GROUP, ROLE, AMBIGUOUS, or is

TRUSTED_CONTEXT when the audit event is any of:

ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE,

ALTER_DEFAULT_ROLE, ADD_USER, DROP_USER,

ALTER_USER_ADD_ROLE, ALTER_USER_DROP_ROLE, or

ALTER_USER_AUTHENTICATION

Privilege or Authority CHAR(18) Indicates the type of privilege or authority granted or revoked.

Possible values include: those shown in the topic titled “List of

possible SECMAINT privileges or authorities”.

The value is ROLE MEMBERSHIP when the audit event is any of

ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE,

ALTER_DEFAULT_ROLE, ADD_USER, DROP_USER,

ALTER_USER_ADD_ROLE, ALTER_USER_DROP_ROLE, or

ALTER_USER_AUTHENTICATION

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Access Type VARCHAR(32) The access type for which a security label is granted.

Possible values:

v READ

v WRITE

v ALL

The access type for which a security policy is altered. Possible

values:

v USE GROUP AUTHORIZATIONS

v IGNORE GROUP AUTHORIZATIONS

v USE ROLE AUTHORIZATIONS

v IGNORE ROLE AUTHORIZATIONS

v OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

v RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Assumable Authid VARCHAR(128) When the privilege granted is a SETSESSIONUSER privilege this is

the authorization ID that the grantee is allowed to set as the session

user.

Chapter 9. Audit facility record layouts 213

Table 44. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Grantor Type VARCHAR(32) Type of the grantor. Possible values include: USER.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context User VARCHAR(128) Identifies a trusted context user when the audit event is

ADD_USER or DROP_USER.

Trusted Context User

Authentication

INTEGER Specifies the authentication setting for a trusted context user when

the audit event is ADD_USER, DROP_USER or

ALTER_USER_AUTHENTICATION

1 : Authentication is required

0 : Authentication is not required

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

SECMAINT privileges or authorities

The following list shows the possible SECMAINT privileges or authorities.

0x0000000000000001 Control Table

Control privilege granted or revoked on or from a table or view.

0x0000000000000002 ALTER

Privilege granted or revoked to alter a table or sequence.

0x0000000000000004 ALTER with GRANT

Privilege granted or revoked to alter a table or sequence with granting of

privileges allowed.

0x0000000000000008 DELETE TABLE

Privilege granted or revoked to drop a table or view.

0x0000000000000010 DELETE TABLE with GRANT

Privilege granted or revoked to drop a table with granting of privileges

allowed.

0x0000000000000020 Table Index

Privilege granted or revoked on or from an index.

214 Database Security Guide

0x0000000000000040 Table Index with GRANT

Privilege granted or revoked on or from an index with granting of

privileges allowed.

0x0000000000000080 Table INSERT

Privilege granted or revoked on or from an insert on a table or view.

0x0000000000000100 Table INSERT with GRANT

Privilege granted or revoked on or from an insert on a table with granting

of privileges allowed.

0x0000000000000200 Table SELECT

Privilege granted or revoked on or from a select on a table.

0x0000000000000400 Table SELECT with GRANT

Privilege granted or revoked on or from a select on a table with granting

of privileges allowed.

0x0000000000000800 Table UPDATE

Privilege granted or revoked on or from an update on a table or view.

0x0000000000001000 Table UPDATE with GRANT

Privilege granted or revoked on or from an update on a table or view with

granting of privileges allowed.

0x0000000000002000 Table REFERENCE

Privilege granted or revoked on or from a reference on a table.

0x0000000000004000 Table REFERENCE with GRANT

Privilege granted or revoked on or from a reference on a table with

granting of privileges allowed.

0x0000000000020000 CREATEIN Schema

CREATEIN privilege granted or revoked on or from a schema.

0x0000000000040000 CREATEIN Schema with GRANT

CREATEIN privilege granted or revoked on or from a schema with

granting of privileges allowed.

0x0000000000080000 DROPIN Schema

DROPIN privilege granted or revoked on or from a schema.

0x0000000000100000 DROPIN Schema with GRANT

DROPIN privilege granted or revoked on or from a schema with granting

of privileges allowed.

0x0000000000200000 ALTERIN Schema

ALTERIN privilege granted or revoked on or from a schema.

0x0000000000400000 ALTERIN Schema with GRANT

ALTERIN privilege granted or revoked on or from a schema with granting

of privileges allowed.

0x0000000000800000 DBADM Authority

DBADM authority granted or revoked.

0x0000000001000000 CREATETAB Authority

Createtab authority granted or revoked.

0x0000000002000000 BINDADD Authority

Bindadd authority granted or revoked.

0x0000000004000000 CONNECT Authority

CONNECT authority granted or revoked.

Chapter 9. Audit facility record layouts 215

0x0000000008000000 Create not fenced Authority

Create not fenced authority granted or revoked.

0x0000000010000000 Implicit Schema Authority

Implicit schema authority granted or revoked.

0x0000000020000000 Server PASSTHRU

Privilege granted or revoked to use the pass-through facility with this

server (federated database data source).

0x0000000040000000 ESTABLISH TRUSTED CONNECTION

Trusted connection was created

0x0000000100000000 Table Space USE

Privilege granted or revoked to create a table in a table space.

0x0000000200000000 Table Space USE with GRANT

Privilege granted or revoked to create a table in a table space with granting

of privileges allowed.

0x0000000400000000 Column UPDATE

Privilege granted or revoked on or from an update on one or more specific

columns of a table.

0x0000000800000000 Column UPDATE with GRANT

Privilege granted or revoked on or from an update on one or more specific

columns of a table with granting of privileges allowed.

0x0000001000000000 Column REFERENCE

Privilege granted or revoked on or from a reference on one or more

specific columns of a table.

0x0000002000000000 Column REFERENCE with GRANT

Privilege granted or revoked on or from a reference on one or more

specific columns of a table with granting of privileges allowed.

0x0000004000000000 LOAD Authority

LOAD authority granted or revoked.

0x0000008000000000 Package BIND

BIND privilege granted or revoked on or from a package.

0x0000010000000000 Package BIND with GRANT

BIND privilege granted or revoked on or from a package with granting of

privileges allowed.

0x0000020000000000 EXECUTE

EXECUTE privilege granted or revoked on or from a package or a routine.

0x0000040000000000 EXECUTE with GRANT

EXECUTE privilege granted or revoked on or from a package or a routine

with granting of privileges allowed.

0x0000080000000000 EXECUTE IN SCHEMA

EXECUTE privilege granted or revoked for all routines in a schema.

0x0000100000000000 EXECUTE IN SCHEMA with GRANT

EXECUTE privilege granted or revoked for all routines in a schema with

granting of privileges allowed.

0x0000200000000000 EXECUTE IN TYPE

EXECUTE privilege granted or revoked for all routines in a type.

216 Database Security Guide

0x0000400000000000 EXECUTE IN TYPE with GRANT

EXECUTE privilege granted or revoked for all routines in a type with

granting of privileges allowed.

0x000080000000000 CREATE EXTERNAL ROUTINE

CREATE EXTERNAL ROUTINE privilege granted or revoked.

0x0001000000000000 QUIESCE_CONNECT

QUIESCE_CONNECT privilege granted or revoked.

0x0004000000000000 SECADM Authority

SECADM authority granted or revoked

0x0008000000000000 USAGE Authority

USAGE privilege granted or revoked on or from a sequence

0x0010000000000000 USAGE with GRANT Authority

USAGE privilege granted or revoked on or from a sequence with granting

of privileges allowed.

0x0020000000000000 WITH ADMIN Option

WITH ADMIN Option is granted or revoked to or from a role.

0x0040000000000000 SETSESSIONUSER Privilege

SETSESSIONUSER granted or revoked

0x0080000000000000 Exemption

Exemption granted or revoked

0x0100000000000000 Security label

Security label granted or revoked

0x0200000000000000 WRITE with GRANT

Privilege granted or revoked to write a global variable with granting of

privileges allowed.

0x0400000000000000 Role Membership

Role membership that is granted or revoked

0x0800000000000000 Role Membership with ADMIN Option

Role membership with ADMIN Option that is granted or revoked

0x1000000000000000 READ

Privilege granted or revoked to read a global variable.

0x2000000000000000 READ with GRANT

Privilege granted or revoked to read a global variable with granting of

privileges allowed.

0x4000000000000000 WRITE

Privilege granted or revoked to write a global variable.

Audit record layout for SYSADMIN events

The following table shows the audit record layout for SYSADMIN events.

Sample audit record:

timestamp=1998-06-24-11.54.04.129923;

category=SYSADMIN;

audit event=DB2AUDIT;

event correlator=1;

Chapter 9. Audit facility record layouts 217

event status=0;

userid=boss;authid=BOSS;

application id=*LOCAL.boss.980624155404;

application name=db2audit;

 Table 45. Audit Record Layout for SYSADMIN Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SYSADMIN

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

218 Database Security Guide

Table 45. Audit Record Layout for SYSADMIN Events (continued)

NAME FORMAT DESCRIPTION

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record layout for VALIDATE events

The format of the audit record for VALIDATE events is shown in the following

table.

Sample audit record:

timestamp=2007-05-07-10.30.51.585626;

category=VALIDATE;

audit event=AUTHENTICATION;

event correlator=1;

event status=0;

userid=newton;

authid=NEWTON;

execution id=gstager;

application id=*LOCAL.gstager.070507143051;

application name=db2bp;

auth type=SERVER;

plugin name=IBMOSauthserver;

 Table 46. Audit Record Layout for VALIDATE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS, GET_USERID,

AUTHENTICATE_PASSWORD, VALIDATE_USER,

AUTHENTICATION and GET_USERMAPPING_FROM_PLUGIN.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0

 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Chapter 9. Audit facility record layouts 219

Table 46. Audit Record Layout for VALIDATE Events (continued)

NAME FORMAT DESCRIPTION

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Authentication Type VARCHAR(32) Authentication type at the time of the audit event.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Plug-in Name VARCHAR(32) The name of the plug-in in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the trusted

connection.

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The name of the role inherited through the trusted context.

Audit record layout for CONTEXT events

The following table shows the audit record layout for CONTEXT events.

Sample audit record:

timestamp=1998-06-24-08.42.41.476840;

category=CONTEXT;

audit event=EXECUTE_IMMEDIATE;

event correlator=3;

database=FOO;

userid=boss;

authid=BOSS;

application id=*LOCAL.newton.980624124210;

application name=testapp;

package schema=NULLID;

package name=SQLC28A1;

package section=203;

text=create table audit(c1 char(10), c2 integer);

220 Database Security Guide

Table 47. Audit Record Layout for CONTEXT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CONTEXT

category in “Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used

to identify what audit records are associated with a single event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if

this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

 When the audit event is SWITCH_USER, this field

represents the user ID that is switched to.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

 When the audit event is SWITCH_USER, this field

represents the authorization ID that is switched to.

Origin Node Number SMALLINT Node number at which the audit event occurred.

Coordinator Node

Number

SMALLINT Node number of the coordinator node.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section

Number

SMALLINT Section number in package being used at the time the audit event

occurred.

Statement Text CLOB(8M) Text of the SQL or XQuery statement, if applicable. Null if no SQL

or XQuery statement text is available.

Package Version VARCHAR(64) Version of the package in use at the time the audit event occurred.

Local Transaction ID VARCHAR(10) FOR

BIT DATA

The local transaction ID in use at the time the audit event occurred.

This is the SQLU_TID structure that is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR

BIT DATA

The global transaction ID in use at the time the audit event

occurred. This is the data field in the SQLP_GXID structure that is

part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the

time the audit event occurred.

Client Workstation

Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special

register at the time the audit event occurred.

Client Application

Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register

at the time the audit event occurred.

Client Accounting

String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at

the time the audit event occurred.

Trusted Context Name VARCHAR(128) The name of the trusted context associated with the

trusted connection.

Chapter 9. Audit facility record layouts 221

Table 47. Audit Record Layout for CONTEXT Events (continued)

NAME FORMAT DESCRIPTION

Connection Trust Type INTEGER Possible values are:

IMPLICIT_TRUSTED_CONNECTION

EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Audit record layout for EXECUTE events

The following table describes all of the fields that are audited as part of the

EXECUTE category.

Sample audit record:

Note: Unlike other audit categories, the EXECUTE category, when the audit log is

viewed in a table format, can show multiple rows describing one event. The first

record describes the main event, and its event column contains the key word

STATEMENT. The remaining rows describe the parameter markers or host

variables, one row per parameter, and their event column contains the key word

DATA. When the audit log is viewed in report format, there is one record, but it

has multiple entries for the Statement Value. The DATA key word is only be

present in table format.
timestamp=2006-04-10-13.20.51.029203;

 category=EXECUTE;

 audit event=STATEMENT;

 event correlator=1;

 event status=0;

 database=SAMPLE;

 userid=smith;

 authid=SMITH;

 session authid=SMITH;

 application id=*LOCAL.prodrig.060410172044;

 application name=myapp;

 package schema=NULLID;

 package name=SQLC2F0A;

 package section=201;

 uow id=2;

 activity id=3;

 statement invocation id=0;

 statement nesting level=0;

 statement text=SELECT * FROM DEPARTMENT WHERE DEPTNO = ? AND DEPTNAME = ?;

 statement isolation level=CS;

 compilation environment=

 isolation level=CS

 query optimization=5

 min_dec_div_3=NO

 degree=1

 sqlrules=DB2

 refresh age=+00000000000000.000000

 schema=SMITH

 maintained table type=SYSTEM

 resolution timestamp=2006-06-29-20.32.13.000000

 federated asynchrony=0;

 value index=0;

 value type=CHAR;

 value data=C01;

 value index=1;

 value type=VARCHAR;

 value index=INFORMATION CENTER;

222 Database Security Guide

Table 48. Audit Record Layout for EXECUTE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit

event

Category CHAR(8) Category of audit event.

Possible values are:

EXECUTE

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values,

refer to the section for the

EXECUTE category in

“Audit events” on page 227.

Event Correlator INTEGER Correlation identifier for the

operation being audited. Can

be used to identify what

audit records are associated

with a single event.

Event Status INTEGER Status of audit event,

represented by an SQLCODE

where Successful event > = 0

Failed event < 0

Database Name CHAR(8) Name of the database for

which the event was

generated. Blank if this was

an instance level audit event

User ID VARCHAR(1024) User ID at time of audit

event.

Authorization ID VARCHAR(128) The Statement Authorization

ID at time of audit event.

Session Authorization ID VARCHAR(128) The Session Authorization ID

at the time of the audit

event.

Origin Node Number SMALLINT Node number at which the

audit event occurred

Coordinator Node Number SMALLINT Node number of the

coordinator node

Application ID VARCHAR(255) Application ID in use at the

time the audit event

occurred.

Application Name VARCHAR(1024) Application name in use at

the time the audit event

occurred.

Client User ID VARCHAR(255) The value of the CURRENT

CLIENT USERID special

register at the time the audit

event occurred

Client Accounting String VARCHAR(255) The value of the CURRENT

CLIENT_ACCTNG special

register at the time the audit

event occurred

Chapter 9. Audit facility record layouts 223

Table 48. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Client Workstation Name VARCHAR(255) The value of the CURRENT

CLIENT_WRKSTNNAME

special register at the time

the audit event occurred

Client Application Name VARCHAR(255) The value of the CURRENT

CLIENT_APPLNAME special

register at the time the audit

event occurred

Trusted Context Name VARCHAR(128) The name of the trusted

context associated with the

trusted connection.

Connection Trust type INTEGER Possible values are

IMPLICIT_TRUSTED_

CONNECTION and

EXPLICIT_TRUSTED_

CONNECTION.

Role Inherited VARCHAR(128) The role inherited through a

trusted connection.

Package Schema VARCHAR(128) Schema of the package in use

at the time of the audit

event.

Package Name VARCHAR(128) Name of package in use at

the time the audit event

occurred.

Package Section SMALLINT Section number in package

being used at the time the

audit event occurred.

Package Version VARCHAR(164) Version of the package in use

at the time the audit event

occurred.

Local Transaction ID VARCHAR(10) FOR BIT

DATA

The local transaction ID in

use at the time the audit

event occurred. This is the

SQLU_TID structure that is

part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR BIT

DATA

The global transaction ID in

use at the time the audit

event occurred. This is the

data field in the SQLP_GXID

structure that is part of the

transaction logs

UOW ID BIGINT The unit of work identifier in

which an activity originates.

This value is unique within

an application ID for each

unit of work.

Activity ID BIGINT The unique activity ID

within the unit of work.

224 Database Security Guide

Table 48. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Statement Invocation ID BIGINT The identifier (ID) of the

routine invocation in which

the SQL statement was run.

The value indicates the

number of routine

invocations at the current

nesting level that occurred

while that level was active in

the application. You can use

this element, along with

Statement Nesting Level, to

uniquely identify an

invocation of a particular

SQL statement.

Statement Nesting Level BIGINT The level of nesting or

recursion in effect when the

statement was being run;

each level of nesting

corresponds to nested or

recursive invocation of a

stored procedure or

user-defined function (UDF).

Activity Type VARCHAR(32) The type of activity.

Possible values are:

v READ_DML

v WRITE_DML

v DDL

v CALL

v NONE

Statement Text CLOB(8M) Text of the SQL or XQuery

statement, if applicable.

Statement Isolation Level CHAR(8) The isolation value in effect

for the statement while it

was being run.

Possible values are:

v NONE (no isolation

specified)

v UR (uncommitted read)

v CS (cursor stability)

v RS (read stability)

v RR (repeatable read)

Compilation Environment

Description

BLOB(8K) The compilation environment

used when compiling the

SQL statement. You can

provide this element as input

to the COMPILATION_ENV

table function, or to the SET

COMPILATION

ENVIRONMENT SQL

statement

Chapter 9. Audit facility record layouts 225

Table 48. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Rows Modified INTEGER Contains the total number of

rows deleted, inserted, or

updated as a result of both:

v The enforcement of

constraints after a

successful delete operation

v The processing of

triggered SQL statements

from activated triggers

If compound SQL is invoked,

contains an accumulation of

the number of such rows for

all sub-statements. In some

cases, when an error is

encountered, this field

contains a negative value

that is an internal error

pointer. This value is

equivalent to the sqlerrd(5)

field of the SQLCA.

Rows Returned BIGINT Contains the total number of

rows returned by the

statement.

Savepoint ID BIGINT The Savepoint ID in effect

for the statement while it is

being run. If the Audit Event

is SAVEPOINT,

RELEASE_SAVEPOINT or

ROLLBACK_SAVEPOINT,

then the Savepoint ID is the

save point that is being set,

released, or rolled back to,

respectively.

Statement Value Index INTEGER The position of the input

parameter marker or host

variable used in the SQL

statement.

Statement Value Type CHAR(16) A string representation of the

type of a data value

associated with the SQL

statement. INTEGER or

CHAR are examples of

possible values.

Statement Value Data CLOB(128K) A string representation of a

data value to the SQL

statement. LOB, LONG,

XML, and structured type

parameters are not present.

Date, time, and timestamp

fields are recorded in ISO

format.

226 Database Security Guide

Audit events

For each audit category, certain types of events can create audit records.

Events for the AUDIT category

v ALTER_AUDIT_POLICY

v ARCHIVE

v AUDIT_REMOVE

v AUDIT_REPLACE

v AUDIT_USING

v CONFIGURE

v CREATE_AUDIT_POLICY

v DB2AUD

v DROP_AUDIT_POLICY

v EXTRACT

v FLUSH

v LIST_LOGS

v PRUNE (not generated in Version 9.5, and later).

v START

v STOP

v UPDATE_DBM_CFG

Events for the CHECKING category

v CHECKING_FUNCTION

v CHECKING_MEMBERSHIP_IN_ROLES

v CHECKING_OBJECT

v CHECKING_TRANSFER

Chapter 9. Audit facility record layouts 227

Events for the CONTEXT category

 Table 49. Events for the CONTEXT category

 CONNECT

CONNECT_RESET

ATTACH

DETACH

DARI_START

DARI_STOP

BACKUP_DB

RESTORE_DB

ROLLFORWARD_DB

OPEN_TABLESPACE_QUERY

FETCH_TABLESPACE

CLOSE_TABLESPACE_QUERY

OPEN_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

SET_TABLESPACE_CONTAINERS

GET_TABLESPACE_STATISTIC

READ_ASYNC_LOG_RECORD

QUIESCE_TABLESPACE

LOAD_TABLE

UNLOAD_TABLE

UPDATE_RECOVERY_HISTORY

PRUNE_RECOVERY_HISTORY

SINGLE_TABLESPACE_QUERY

LOAD_MSG_FILE

UNQUIESCE_TABLESPACE

ENABLE_MULTIPAGE

DESCRIBE_DATABASE

DROP_DATABASE

CREATE_DATABASE

ADD_NODE

FORCE_APPLICATION

 SET_APPL_PRIORITY

RESET_DB_CFG

GET_DB_CFG

GET_DFLT_CFG

UPDATE_DBM_CFG

SET_MONITOR

GET_SNAPSHOT

ESTIMATE_SNAPSHOT_SIZE

RESET_MONITOR

OPEN_HISTORY_FILE

CLOSE_HISTORY_FILE

FETCH_HISTORY_FILE

SET_RUNTIME_DEGREE

UPDATE_AUDIT

DBM_CFG_OPERATION

DISCOVER

OPEN_CURSOR

CLOSE_CURSOR

FETCH_CURSOR

EXECUTE

EXECUTE_IMMEDIATE

PREPARE

DESCRIBE

BIND

REBIND

RUNSTATS

REORG

REDISTRIBUTE

COMMIT

ROLLBACK

REQUEST_ROLLBACK

IMPLICIT_REBIND

EXTERNAL_CANCEL

SWITCH_USER

Events for the EXECUTE category

v COMMIT Execution of a COMMIT statement

v CONNECT Establishment of a database connection

v CONNECT RESET Termination of a database connection

v DATA A host variable or parameter marker data values for the statement

This event is repeated for each host variable or parameter marker that is part of

the statement. It is only present in a delimited extract of an audit log.

v GLOBAL COMMIT Execution of a COMMIT within a global transaction

v GLOBAL ROLLBACK Execution of a ROLLBACK within a global transaction

v RELEASE SAVEPOINT Execution of a RELEASE SAVEPOINT statement

v ROLLBACK Execution of a ROLLBACK statement

v SAVEPOINT Execution of a SAVEPOINT statement

v STATEMENT Execution of an SQL statement

v SWITCH USER Switching of a user within a trusted connection

228 Database Security Guide

Events for the OBJMAINT category

v ALTER_OBJECT (generated only when altering protected tables)

v CREATE_OBJECT

v DROP_OBJECT

v RENAME_OBJECT

Events for the SECMAINT category

v ADD_DEFAULT_ROLE

v ADD_USER

v ALTER_DEFAULT_ROLE

v ALTER SECURITY POLICY

v ALTER_USER_ADD_ROLE

v ALTER_USER_AUTHENTICATION

v ALTER_USER_DROP_ROLE

v DROP_DEFAULT_ROLE

v DROP_USER

v GRANT

v IMPLICIT_GRANT

v IMPLICIT_REVOKE

v REVOKE

v SET_SESSION_USER

v TRANSFER_OWNERSHIP

v UPDATE_DBM_CFG

Chapter 9. Audit facility record layouts 229

Events for the SYSADMIN category

 Table 50. Events for the SYSADMIN category

 START_DB2

STOP_DB2

CREATE_DATABASE

ALTER_DATABASE

DROP_DATABASE

UPDATE_DBM_CFG

UPDATE_DB_CFG

CREATE_TABLESPACE

DROP_TABLESPACE

ALTER_TABLESPACE

RENAME_TABLESPACE

CREATE_NODEGROUP

DROP_NODEGROUP

ALTER_NODEGROUP

CREATE_BUFFERPOOL

DROP_BUFFERPOOL

ALTER_BUFFERPOOL

CREATE_EVENT_MONITOR

DROP_EVENT_MONITOR

ENABLE_MULTIPAGE

MIGRATE_DB_DIR

DB2TRC

DB2SET

ACTIVATE_DB

ADD_NODE

BACKUP_DB

CATALOG_NODE

CATALOG_DB

CATALOG_DCS_DB

CHANGE_DB_COMMENT

DEACTIVATE_DB

DROP_NODE_VERIFY

FORCE_APPLICATION

GET_SNAPSHOT

LIST_DRDA_INDOUBT_TRANSACTIONS

MIGRATE_DB

RESET_ADMIN_CFG

RESET_DB_CFG

RESET_DBM_CFG

RESET_MONITOR

RESTORE_DB

 ROLLFORWARD_DB

SET_RUNTIME_DEGREE

SET_TABLESPACE_CONTAINERS

UNCATALOG_DB

UNCATALOG_DCS_DB

UNCATALOG_NODE

UPDATE_ADMIN_CFG

UPDATE_MON_SWITCHES

LOAD_TABLE

DB2AUDIT

SET_APPL_PRIORITY

CREATE_DB_AT_NODE

KILLDBM

MIGRATE_SYSTEM_DIRECTORY

DB2REMOT

DB2AUD

MERGE_DBM_CONFIG_FILE

UPDATE_CLI_CONFIGURATION

OPEN_TABLESPACE_QUERY

SINGLE_TABLESPACE_QUERY

CLOSE_TABLESPACE_QUERY

FETCH_TABLESPACE

OPEN_CONTAINER_QUERY

FETCH_CONTAINER_QUERY

CLOSE_CONTAINER_QUERY

GET_TABLESPACE_STATISTICS

DESCRIBE_DATABASE

ESTIMATE_SNAPSHOT_SIZE

READ_ASYNC_LOG_RECORD

PRUNE_RECOVERY_HISTORY

UPDATE_RECOVERY_HISTORY

QUIESCE_TABLESPACE

UNLOAD_TABLE

UPDATE_DATABASE_VERSION

CREATE_INSTANCE

DELETE_INSTANCE

SET_EVENT_MONITOR

GRANT_DBADM

REVOKE_DBADM

GRANT_DB_AUTHORITIES

REVOKE_DB_AUTHORITIES

REDISTRIBUTE_NODEGROUP

Events for the VALIDATE category

v AUTHENTICATE

v CHECK_GROUP_MEMBERSHIP (not generated in Version 9.5, and later)

v GET_USERMAPPING_FROM_PLUGIN

v GET_GROUPS (not generated in Version 9.5, and later)

v GET_USERID (not generated in Version 9.5, and later)

230 Database Security Guide

Chapter 10. Working with operating system security

Operating systems provide security features that you can use to support security

for your database installation.

DB2 and Windows security

A Windows domain is an arrangement of client and server computers referenced

by a specific and unique name; and, that share a single user accounts database

called the Security Access Manager (SAM). One of the computers in the domain is

the domain controller. The domain controller manages all aspects of user-domain

interactions.

The domain controller uses the information in the domain user accounts database

to authenticate users logging onto domain accounts. For each domain, one domain

controller is the primary domain controller (PDC). Within the domain, there may

also be backup domain controllers (BDC) which authenticate user accounts when

there is no primary domain controller or the primary domain controller is not

available. Backup domain controllers hold a copy of the Windows Security Account

Manager (SAM) database which is regularly synchronized against the master copy

on the PDC.

User accounts, user IDs, and passwords only need to be defined at the primary

domain controller to be able to access domain resources.

Note: Two-part user IDs are supported by the CONNECT statement and the

ATTACH command. The qualifier of the SAM-compatible user ID is a name of the

style ’Domain\User’ which has a maximum length of 15 characters.

During the setup procedure when a Windows server is installed, you may select to

create:

v A primary domain controller in a new domain

v A backup domain controller in a known domain

v A stand-alone server in a known domain.

Selecting “controller” in a new domain makes that server the primary domain

controller.

The user may log on to the local machine, or when the machine is installed in a

Windows Domain, the user may log on to the Domain. To authenticate the user,

DB2 checks the local machine first, then the Domain Controller for the current

Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the DB2 instance requires Server

authentication. The configuration is as follows:

© Copyright IBM Corp. 1993, 2009 231

Each machine has a security database, Security Access Management (SAM). DC1 is

the domain controller, in which the client machine, Ivan, and the DB2 server, Servr,

are enrolled. TDC2 is a trusted domain for DC1 and the client machine, Abdul, is a

member of TDC2’s domain.

Authentication scenarios

A scenario with server authentication (Windows)

1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2 SAM

database).

2. Abdul then connects to a DB2 database that is cataloged to reside on SRV3:

 db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this

information first searches the local machine (SRV3) and then the domain

controller (DC1) before trying any trusted domains. Username Abdul is found

on TDC2. This search order requires a single namespace for users and groups.

4. SRV3 then:

a. Validates the username and password with TDC2.

b. Finds out whether Abdul is an administrator by asking TDC2.

c. Enumerates all Abdul’s groups by asking TDC2.

A scenario with client authentication and a Windows client

machine

1. Dale, the administrator, logs on to SRV3 and changes the authentication for the

database instance to Client:

 db2 update dbm cfg using authentication client

 db2stop

 db2start

2. Ivan, at a Windows client machine, logs on to the DC1 domain (that is, he is

known in the DC1 SAM database).

Figure 5. Authentication Using Windows Domains

232 Database Security Guide

3. Ivan then connects to a DB2 database that is cataloged to reside on SRV3:

 DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan’s machine validates the username and password. The API used to find this

information first searches the local machine (Ivan) and then the domain

controller (DC1) before trying any trusted domains. Username Ivan is found on

DC1.

5. Ivan’s machine then validates the username and password with DC1.

6. SRV3 then:

a. Determines where Ivan is known.

b. Finds out whether Ivan is an administrator by asking DC1.

c. Enumerates all Ivan’s groups by asking DC1.

Note: Before attempting to connect to the DB2 database, ensure that DB2 Security

Service has been started. The Security Service is installed as part of the Windows

installation. DB2 is then installed and “registered” as a Windows service however,

it is not started automatically. To start the DB2 Security Service, enter the NET

START DB2NTSECSERVER command.

Support for global groups (on Windows)

The DB2 database system supports global groups.

To use global groups, you must include global groups inside a local group. When

the DB2 database manager enumerates all the groups that a person is a member of,

it also lists the local groups that the user is a member of indirectly (by the virtue of

being in a global group that is itself a member of one or more local groups).

Global groups are used in two possible situations:

v Included inside a local group. Permission must be granted to this local group.

v Included on a domain controller. Permission must be granted to the global

group.

User authentication with DB2 on Windows

User name and group name restrictions (Windows)

There are a few limitations that are specific to the Windows environment. Be aware

that general DB2 object naming rules also apply.

v User names under Windows are not case sensitive; however, passwords are case

sensitive.

v User names and group names can be a combination of upper- and lowercase

characters. However, they are usually converted to uppercase when used within

the DB2 database. For example, if you connect to the database and create the

table schema1.table1, this table is stored as SCHEMA1.TABLE1 within the

database. (If you wish to use lowercase object names, issue commands from the

command line processor, enclosing the object names in quotation marks, or use

third-party ODBC front-end tools.)

v A user can not belong to more than 64 groups.

v The DB2 database manager supports a single namespace. That is, when running

in a trusted domains environment, you should not have a user account of the

same name that exists in multiple domains, or that exists in the local SAM of the

server machine and in another domain.

Chapter 10. Working with operating system security 233

Groups and user authentication on Windows

Users are defined on Windows by creating user accounts using the Windows

administration tool called the “User Manager”. An account containing other

accounts, also called members, is a group.

Groups give Windows administrators the ability to grant rights and permissions to

the users within the group at the same time, without having to maintain each user

individually. Groups, like user accounts, are defined and maintained in the

Security Access Manager (SAM) database.

There are two types of groups:

v Local groups. A local group can include user accounts created in the local

accounts database. If the local group is on a machine that is part of a domain,

the local group can also contain domain accounts and groups from the Windows

domain. If the local group is created on a workstation, it is specific to that

workstation.

v Global groups. A global group exists only on a domain controller and contains

user accounts from the domain’s SAM database. That is, a global group can only

contain user accounts from the domain on which it is created; it cannot contain

any other groups as members. A global group can be used in servers and

workstations of its own domain, and in trusting domains.

Trust relationships between domains on Windows

Trust relationships are an administration and communication link between two

domains. A trust relationship between two domains enables user accounts and

global groups to be used in a domain other than the domain where the accounts

are defined.

Account information is shared to validate the rights and permissions of user

accounts and global groups residing in the trusted domain without being

authenticated. Trust relationships simplify user administration by combining two

or more domains into an single administrative unit.

There are two domains in a trust relationship:

v The trusting domain. This domain trusts another domain to authenticate users

for them.

v The trusted domain. This domain authenticates users on behalf of (in trust for)

another domain.

Trust relationships are not transitive. This means that explicit trust relationships

need to be established in each direction between domains. For example, the

trusting domain may not necessarily be a trusted domain.

DB2 database system and Windows security service

In the DB2 database system, the authentication of user names and passwords is

integrated with the DB2 System Controller.

The Security Service is only required when a client is connected to a server that is

configured for authentication CLIENT.

Authentication with groups and domain security (Windows)

The DB2 database system allows you to specify either a local group or a global

group when granting privileges or defining authority levels.

234 Database Security Guide

A user is determined to be a member of a group if the user’s account is defined

explicitly in the local or global group, or implicitly by being a member of a global

group defined to be a member of a local group.

The DB2 database manager supports the following types of groups:

v Local groups

v Global groups

v Global groups as members of local groups.

The DB2 database manager Renumerates the local and global groups that the

user is a member of, using the security database where the user was found. The

DB2 database system provides an override that forces group enumeration to

occur on the local Windows server where the DB2 database is installed,

regardless of where the user account was found. This override can be achieved

using the following commands:

– For global settings:

 db2set -g DB2_GRP_LOOKUP=local

– For instance settings:

 db2set -i <instance_name> DB2_GRP_LOOKUP=local

After issuing this command, you must stop and start the DB2 database

instance for the change to take effect. Then create local groups and include

domain accounts or global groups in the local group.

To view all DB2 profile registry variables that are set, type

 db2set -all

If the DB2_GRP_LOOKUP profile registry variable is set to local, then DB2

database tries to enumerate the user’s groups on the local machine only. If the user

is not defined as a member of a local or global group, then group enumeration

fails. DB2 does not try to enumerate the user’s groups on another machine in the

domain or on the domain controllers.

If the DB2_GRP_LOOKUP profile registry variable is not set then:

1. The DB2 database system first tries to find the user on the same machine.

2. If the user name is defined locally, the user is authenticated locally.

3. If the user is not found locally, the DB2 database system attempts to find the

user name on it domain, and then on trusted domains.

If the DB2 database manager is running on a machine that is a primary or backup

domain controller in the resource domain, it is able to locate any domain controller

in any trusted domain. This occurs because the names of the domains of backup

domain controllers in trusted domains are only known if you are a domain

controller.

If the DB2 database manager is not running on a domain controller, then you

should issue:

 db2set -g DB2_GRP_LOOKUP=DOMAIN

This command tells the DB2 database system to use a domain controller in its own

domain to find the name of a domain controller in the accounts domain. That is,

when a DB2 database finds out that a particular user account is defined in domain

x, rather than attempting to locate a domain controller for domain x, it sends that

request to a domain controller in its own domain. The name of the domain

Chapter 10. Working with operating system security 235

controller in the account domain will be found and returned to the machine the

DB2 database is running on. There are two advantages to this method:

1. The nearest domain controller is found when the primary domain controller is

unavailable.

2. The nearest domain controller is found when the primary domain controller is

geographically remote.

Authentication using an ordered domain list

User IDs may be defined more than once in a trusted domain forest. A trusted

domain forest is a collection of domains that are interrelated through a network.

It is possible for a user on one domain to have the same user ID as that for

another user on a different domain. This may cause difficulties when attempting to

do any of the following:

v Authenticating multiple users having the same user ID but on different domains.

v Group lookup for the purposes of granting and revoking privileges based on

groups.

v Validation of passwords.

v Control of network traffic.

To prevent difficulties arising from the possibility of multiple users with the same

user ID across a domain forest, you should use an ordered domain list as defined

using the db2set and the registry variable DB2DOMAINLIST. When setting the

order, the domains to be included in the list are separated by a comma. You must

make a conscious decision regarding the order that the domains are searched when

authenticating users.

Those user IDs that are present on domains further down the domain list will have

to be renamed by you if they are to be authenticated for access.

Control of access can be done through the domain list. For example, if the domain

of a user is not in the list, the user will not be allowed to connect.

Note: The DB2DOMAINLIST registry variable is effective only when CLIENT

authentication is set in the database manager configuration and is needed if a

single signon from a Windows desktop is required in a Windows domain

environment. DB2DOMAINLIST is supported by some versions of DB2 servers

however DB2DOMAINLIST will not be enforced if neither the client nor the server

are in a Windows environment.

Domain security support (Windows)

The following example illustrates how the DB2 database management system can

support Windows domain security. The connection works because the user name

and local group are on the same domain.

The connection works in the following scenario because the user name and local or

global group are on the same domain.

Note that the user name and local or global group do not need to be defined on

the domain where the database server is running, but they must be on the same

domain as each other.

236 Database Security Guide

Table 51. Successful Connection Using a Domain Controller

Domain1 Domain2

A trust relationship exists with Domain2. v A trust relationship exists with Domain1.

v The local or global group grp2 is defined.

v The user name id2 is defined.

v The user name id2 is part of grp2.

The DB2 server runs in this domain. The following DB2

commands are issued from it:

 REVOKE CONNECT ON db FROM public

 GRANT CONNECT ON db TO GROUP grp2

 CONNECT TO db USER id2

The local or global domain is scanned but id2 is not

found. Domain security is scanned.

 The user name id2 is found on this domain. DB2 gets

additional information about this user name (that is, it is

part of the group grp2).

The connection works because the user name and local

or global group are on the same domain.

Acquiring Windows users’ group information using an access

token

An access token is an object that describes the security context of a process or

thread. The information in an access token includes the identity and privileges of

the user account associated with the process or thread.

When you log on, the system verifies your password by comparing it with

information stored in a security database. If the password is authenticated, the

system produces an access token. Every process run on your behalf uses a copy of

this access token.

An access token can also be acquired based on cached credentials. After you have

been authenticated to the system, your credentials are cached by the operating

system. The access token of the last logon can be referenced in the cache when it is

not possible to contact the domain controller.

The access token includes information about all of the groups you belong to: local

groups and various domain groups (global groups, domain local groups, and

universal groups).

Note: Group lookup using client authentication is not supported using a remote

connection even though access token support is enabled.

To enable access token support, you must use the db2set command to update the

DB2_GRP_LOOKUP registry variable. Your choices when updating this registry

variable include:

v TOKEN

This choice enables access token support to lookup all groups that the user

belongs to at both the local machines as well as at the location where the user

account is defined (if the account is defined at the domain).

v TOKENLOCAL

Chapter 10. Working with operating system security 237

This choice enables access token support to lookup all local groups that the user

belongs to on the DB2 database server.

v TOKENDOMAIN

This choice enables access token support to lookup all groups that the user

belongs to at the location where the user account is defined. This location is

typically either at the domain or local to the DB2 database server.

You should consider using the DB2_GRP_LOOKUP registry variable and specify

the group lookup location to indicate where the DB2 database system should look

up groups using the conventional group enumeration methodology. For example,

 db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

This enables the access token support for enumerating local groups.

 db2set DB2_GRP_LOOKUP=,TOKEN

This enables the access token support for enumerating groups at both the local

machines as well as the location where the user ID is defined (if the account is

defined at the domain).

 db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

This enables the access token support for enumerating domain groups at the

location where the user ID is defined.

Access token support can be enabled with all authentications types except CLIENT

authentication.

Windows platform security considerations for users

Certain users have SYSADM authority if NULL is specified for sysadm_group

database manager configuration parameter.

These users are:

v Members of the local Administrators group

v Members of the Administrators group at the Domain Controller, if the DB2

database manager is configured to enumerate groups for users at the location

where the users are defined

v Members of the DB2ADMNS group, if Windows extended security is enabled.

The location of the DB2ADMNS group is decided during installation.

v The LocalSystem account

There are cases where the above default behavior is not desirable. You can use the

sysadm_group database manager configuration parameter to override this

behavior by choosing one of the following methods:

v Create a local group on the DB2 server machine and add to it users (domain

users or local users) that you want to have SYSADM authority. The DB2

database manager should be configured to enumerate groups for the user on the

local machine.

v Create a domain group and add to it the users that you want to have SYSADM

authority. The DB2 database manager should be configured to enumerate groups

for users at the location where the users are defined.

Then update the database manager configuration parameter to this group, using

the following commands:

238 Database Security Guide

db2stop

 DB2 UPDATE DBM CFG USING SYSADM_GROUP group_name

 db2start

Note: You can configure DB2 group enumeration by using the

DB2_GRP_LOOKUP environment variable.

Windows LocalSystem account support

On Windows platforms, the DB2 database system supports applications running

under the context of the local system account (LSA) with local implicit connection.

The authorization ID for the LocalSystem account is SYSTEM.

The LocalSystem account is considered a system administrator (holding SYSADM

authority) when the sysadm_group database manager configuration parameter is

set to NULL.

Developers writing applications to be run under this account need to be aware that

the DB2 database system has restrictions on objects with schema names starting

with “SYS”. Therefore if your applications contain DDLs that create DB2 database

objects, they should be written such that:

v For static queries, they should be bound with a value for the QUALIFIER

options other than the default one (SYSTEM).

v For dynamic queries, the objects to be created should be explicitly qualified with

a schema name supported by the DB2 database manager, or the CURRENT

SCHEMA register must be set to a schema name supported by the DB2 database

manager.

Group information for the LocalSystem account is gathered at the first group

lookup request after the DB2 database instance is started and is not refreshed until

the instance is restarted.

Extended Windows security using DB2ADMNS and

DB2USERS groups

For the server version of the DB2 database manager, extended security is implicitly

enabled by default. However, for the client version, extended security is implicitly

disabled by default; you must explicitly select extended security during installation

to have it enabled.

To enable extended security during DB2 installation on a client, select the Enable

operating system security check box on the Enable operating system security for

the DB2 object panel. The installer creates two new groups, DB2ADMNS and

DB2USERS. DB2ADMNS and DB2USERS are the default group names; optionally,

you can specify different names for these groups at installation time (if you select

silent install, you can change these names within the install response file). If you

choose to use groups that already exist on your system, be aware that the

privileges of these groups will be modified. They will be given the privileges, as

required, listed in the table, below. It is important to understand that these groups

are used for protection at the operating-system level and are in no way associated

with DB2 authority levels, such as SYSADM, SYSMAINT, and SYSCTRL. However,

instead of using the default Administrator’s group, your database administrator

can use the DB2ADMNS group for one or all of the DB2 authority levels, at the

discretion of the installer or administrator. If you are specifying a SYSADM group,

then that should be the DB2ADMNS group. This can be established during

installation or subsequently, by an administrator.

Chapter 10. Working with operating system security 239

Note: You can specify your DB2 Administrators Group (DB2ADMNS or the name

you chose during installation) and DB2 Users Group (DB2USERS or the name you

chose during installation) either as local groups or as domain groups. Both groups

must be of the same type, so either both local or both domain.

If you change the computer name, and the computer groups DB2ADMNS and

DB2USERS are local computer groups, you must update the DB2_ADMINGROUP

and DB2_USERSGROUP global registries. To update the registry variables after

renaming and restarting the computer run the following command:

1. Open a command prompt.

2. Run the db2extsec command to update security settings:

db2extsec -a new computer name\DB2ADMNS -u new computer name\DB2USERS

Note: If extended security is enabled in DB2 database products on Windows Vista,

only users that belong to the DB2ADMNS group can run the graphical DB2

administration tools. In addition, members of the DB2ADMNS group need to

launch the tools with full administrator privileges. This is accomplished by

right-clicking on the shortcut and then choosing ″Run as administrator″.

Abilities acquired through the DB2ADMNS and DB2USERS

groups

The DB2ADMNS and DB2USERS groups provide members with the following

abilities:

v DB2ADMNS

Full control over all DB2 objects (see the list of protected objects, below)

v DB2USERS

Read and Execute access for all DB2 objects located in the installation and

instance directories, but no access to objects under the database system directory

and limited access to IPC resources

For certain objects, there may be additional privileges available, as required (for

example, write privileges, add or update file privileges, and so on). Members of

this group have no access to objects under the database system directory.

Note: The meaning of Execute access depends on the object; for example, for a

.dll or .exe file having Execute access means you have authority to execute the

file, however, for a directory it means you have authority to traverse the

directory.

Ideally, all DB2 administrators should be members of the DB2ADMNS group (as

well as being members of the local Administrators group), but this is not a strict

requirement. Everyone else who requires access to the DB2 database system must

be a member of the DB2USERS group. To add a user to one of these groups:

1. Launch the Users and Passwords Manager tool.

2. Select the user name to add from the list.

3. Click Properties. In the Properties window, click the Group membership tab.

4. Select the Other radio button.

5. Select the appropriate group from the drop-down list.

Adding extended security after installation (db2extsec command)

If the DB2 database system was installed without extended security enabled, you

can enable it by executing the command db2extsec (called db2secv82 in earlier

240 Database Security Guide

releases). To execute the db2extsec command you must be a member of the local

Administrators group so that you have the authority to modify the ACL of the

protected objects.

You can run the db2extsec command multiple times, if necessary, however, if this

is done, you cannot disable extended security unless you issue the db2extsec –r

command immediately after each execution of db2extsec.

Removing extended security

CAUTION:

Do not remove extended security after it has been enabled unless absolutely

necessary.

You can remove extended security by running the command db2extsec -r,

however, this will only succeed if no other database operations (such as creating a

database, creating a new instance, adding table spaces, and so on) have been

performed after enabling extended security. The safest way to remove the extended

security option is to uninstall the DB2 database system, delete all the relevant DB2

directories (including the database directories) and then reinstall the DB2 database

system without extended security enabled.

Protected objects

The static objects that can be protected using the DB2ADMNS and DB2USERS

groups are:

v File system

– File

– Directory
v Services

v Registry keys

The dynamic objects that can be protected using the DB2ADMNS and DB2USERS

groups are:

v IPC resources, including:

– Pipes

– Semaphores

– Events
v Shared memory

Privileges owned by the DB2ADMNS and DB2USERS groups

The privileges assigned to the DB2ADMNS and DB2USERS groups are listed in the

following table:

 Table 52. Privileges for DB2ADMNS and DB2USERS groups

Privilege DB2ADMNS DB2USERS Reason

Create a token object

(SeCreateTokenPrivilege)

Y N Token manipulation (required for certain

token manipulation operations and used in

authentication and authorization)

Replace a process level token

(SeAssignPrimaryTokenPrivilege)

Y N Create process as another user

Chapter 10. Working with operating system security 241

Table 52. Privileges for DB2ADMNS and DB2USERS groups (continued)

Privilege DB2ADMNS DB2USERS Reason

Increase quotas

(SeIncreaseQuotaPrivilege)

Y N Create process as another user

Act as part of the operating system

(SeTcbPrivilege)

Y N LogonUser (required prior to Windows XP

in order to execute the LogonUser API for

authentication purposes)

Generate security audits

(SeSecurityPrivilege)

Y N Manipulate audit and security log

Take ownership of files or other

objects (SeTakeOwnershipPrivilege)

Y N Modify object ACLs

Increase scheduling priority

(SeIncreaseBasePriorityPrivilege)

Y N Modify the process working set

Backup files and directories

(SeBackupPrivilege)

Y N Profile/Registry manipulation (required to

perform certain user profile and registry

manipulation routines: LoadUserProfile,

RegSaveKey(Ex), RegRestoreKey,

RegReplaceKey, RegLoadKey(Ex))

Restore files and directories

(SeRestorePrivilege)

Y N Profile/Registry manipulation (required to

perform certain user profile and registry

manipulation routines: LoadUserProfile,

RegSaveKey(Ex), RegRestoreKey,

RegReplaceKey, RegLoadKey(Ex))

Debug programs (SeDebugPrivilege) Y N Token manipulation (required for certain

token manipulation operations and used in

authentication and authorization)

Manage auditing and security log

(SeAuditPrivilege)

Y N Generate auditing log entries

Log on as a service

(SeServiceLogonRight)

Y N Run DB2 as a service

Access this computer from the

network (SeNetworkLogonRight)

Y Y Allow network credentials (allows the DB2

database manager to use the

LOGON32_LOGON_NETWORK option to

authenticate, which has performance

implications)

Impersonate a client after

authentication

(SeImpersonatePrivilege)

Y N Client impersonation (required for

Windowsto allow use of certain APIs to

impersonate DB2 clients:

ImpersonateLoggedOnUser, ImpersonateSelf,

RevertToSelf, and so on)

Lock pages in memory

(SeLockMemoryPrivilege)

Y N Large Page support

Create global objects

(SeCreateGlobalPrivilege)

Y Y Terminal Server support (required on

Windows)

Considerations for Vista: User Access Control feature

The User Access Control (UAC) feature of Windows Vista impacts the DB2

database system in the following ways.

242 Database Security Guide

Starting applications with full administrative privileges

On Vista, by default, applications start with only standard user rights, even if the

user is a local administrator. To start an application with further privileges, you

need to launch the command from a command window that is running with full

administrative privileges. The DB2 installation process creates a shortcut called

″Command window - Administrator″ specifically for Vista users. It is

recommended that you launch this shortcut if you want to run administrative

commands.

If you do not have full administrative privileges and you attempt to perform DB2

administration tasks from a command prompt or graphical tool on Windows Vista,

you can encounter various error messages implying that your access is denied and

the tasks will fail to complete successfully.

To determine whether the action you are performing is considered to be an

administration task, check whether any of the following are true:

v It requires SYSADM, SYSCTRL or SYSMAINT authority

v It modifies registry keys under the HKLM branch in the registry

v It writes to the directories under the Program Files directory

For example, the following actions are all considered to be administration tasks:

v Creating and dropping DB2 instances

v Starting and stopping DB2 instances

v Creating databases

v Updating database manager configuration parameters or DB2 Administration

Server (DAS) configuration parameters

v Updating CLI configuration parameters and configuring system data source

names (DSN)

v Starting the DB2 trace facility

v Running the db2pd utility

v Changing DB2 profile registry variables

To resolve the problem, you must perform DB2 administration tasks from a

command prompt or graphical tool that is running with full administrator

privileges. To launch a command prompt or graphical tool with full administrator

privileges, right-click on the shortcut and then select Run as administrator.

Note: If extended security is enabled, you also need to be a member of the

DB2ADMNS group in order to launch the graphical administration tools (such as

the Command Editor or Control Center).

User data location

User data (for example, files under instance directories) is stored in

ProgramData\IBM\DB2\copy_name, where copy_name is the name of the DB2 copy

(by default, DB2COPY1 is the name of the first copy installed). On Windows

versions other than Vista, user data is stored in Documents and Settings\All

Users\Application Data\IBM\DB2\copy_name.

Chapter 10. Working with operating system security 243

DB2 and UNIX security

UNIX platform security considerations for users

The DB2 database does not support root acting directly as a database

administrator. You should use su - <instance owner> as the database administrator.

For security reasons, in general, do not use the instance name as the Fenced ID.

However, if you are not planning to use fenced UDFs or stored procedures, you

can set the Fenced ID to the instance name instead of creating another user ID.

The recommendation is to create a user ID that is recognized as being associated

with this group. The user for fenced UDFs and stored procedures is specified as a

parameter of the instance creation script (db2icrt ... -u <FencedID>). This is not

required if you install the DB2 Clients or the DB2 Software Developer’s Kit.

Location of the instance directory

For root installations on Linux and UNIX, the db2icrt command creates the main

SQL library (sqllib) directory under the home directory of the instance owner.

On Windows operating systems, the default locations for the instance directory are

as follows:

v On the Windows XP and Windows 2003 operating systems: Documents and

Settings\All Users\Application Data\IBM\DB2\Copy name

v On the Windows Vista (and later) operating systems: ProgramData\IBM\DB2\
Copy name

DB2 and Linux security

Change password support (Linux)

DB2 database products provide support for changing passwords on Linux

operating systems.

This support is implemented through the use of security plug-in libraries called

IBMOSchgpwdclient.so and IBMOSchgpwdserver.so.

To enable password change support on Linux, set the database manager

configuration parameter CLNT_PW_PLUGIN to IBMOSchgpwdclient and

SRVCON_PW_PLUGIN to IBMOSchgpwdserver.

You must also create a PAM configuration file called ″db2″ in the /etc/pam.d

directory.

Deploying a change password plug-in (Linux)

To enable support for changing passwords in DB2 database products on Linux,

you must configure the DB2 instance to use the security plug-ins

IBMOSchgpwdclient and IBMOSchgpwdserver.

Before you begin

The plug-in libraries are located in the following directories:

v INSTHOME/sqllib/securityXX/plugin/IBM/client/IBMOSchgpwdclient.so

v INSTHOME/sqllib/securityXX/plugin/IBM/server/IBMOSchgpwdserver.so

244 Database Security Guide

where INSTHOME is the home directory of the instance owner and securityXX is

either security32 or security64, depending on the bit-width of the instance.

Procedure

To deploy the security plug-ins in a DB2 instance, perform the following steps:

1. Log in as a user with root authority.

2. Create a PAM configuration file: /etc/pam.d/db2

Ensure that the file contains the appropriate set of rules, as defined by your

system administrator. For example, on SLES 9 this can be used:

auth required pam_unix2.so nullok

account required pam_unix2.so

password required pam_pwcheck.so nullok tries=1

password required pam_unix2.so nullok use_authtok use_first_pass

session required pam_unix2.so

And on RHEL 4 this can be used:

#%PAM-1.0

auth required /lib/security/$ISA/pam_env.so

auth sufficient /lib/security/$ISA/pam_unix.so likeauth nullok

auth required /lib/security/$ISA/pam_deny.so

account required /lib/security/$ISA/pam_unix.so

account sufficient /lib/security/$ISA/pam_succeed_if.so uid < 100 quiet

account required /lib/security/$ISA/pam_permit.so

password requisite /lib/security/$ISA/pam_cracklib.so retry=3 dcredit=-1 ucredit=-1

password sufficient /lib/security/$ISA/pam_unix.so nullok use_authtok md5 shadow remember=3

password required /lib/security/$ISA/pam_deny.so

session required /lib/security/$ISA/pam_limits.so

session required /lib/security/$ISA/pam_unix.so

3. Enable the security plug-ins in the DB2 instance:

a. Update the database manager configuration parameter

SRVCON_PW_PLUGIN with the value IBMOSchgpwdserver:

db2 update dbm cfg using srvcon_pw_plugin IBMOSchgpwdserver

b. Update the database manager configuration parameter CLNT_PW_PLUGIN

with the value IBMOSchgpwdclient:

db2 update dbm cfg using CLNT_PW_PLUGIN IBMOSchgpwdclient

c. Ensure that either the database manager configuration parameter

SRVCON_AUTH is set to a value of CLIENT, SERVER, SERVER_ENCRYPT,

DATA_ENCRYPT, or DATA_ENCRYPT_CMP, or the database manager

configuration parameter SRVCON_AUTH is set to a value of

NOT_SPECIFIED and AUTHENTICATION is set to a value of CLIENT,

SERVER, SERVER_ENCRYPT, DATA_ENCRYPT, or DATA_ENCRYPT_CMP.

Chapter 10. Working with operating system security 245

246 Database Security Guide

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

If you would like to help IBM make the IBM Information Management products

easier to use, take the Consumability Survey: http://www.ibm.com/software/
data/info/consumability-survey/.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

© Copyright IBM Corp. 1993, 2009 247

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Although the tables identify books available in print, the books might not be

available in your country or region.

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 53. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC23-5842-02 Yes April, 2009

Administrative Routines

and Views

SC23-5843-02 No April, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC23-5844-02 Yes April, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC23-5845-02 Yes April, 2009

Command Reference SC23-5846-02 Yes April, 2009

Data Movement Utilities

Guide and Reference

SC23-5847-02 Yes April, 2009

Data Recovery and High

Availability Guide and

Reference

SC23-5848-02 Yes April, 2009

Data Servers, Databases,

and Database Objects

Guide

SC23-5849-02 Yes April, 2009

Database Security Guide SC23-5850-02 Yes April, 2009

Developing ADO.NET

and OLE DB

Applications

SC23-5851-02 Yes April, 2009

Developing Embedded

SQL Applications

SC23-5852-02 Yes April, 2009

Developing Java

Applications

SC23-5853-02 Yes April, 2009

Developing Perl and

PHP Applications

SC23-5854-02 No April, 2009

Developing User-defined

Routines (SQL and

External)

SC23-5855-02 Yes April, 2009

Getting Started with

Database Application

Development

GC23-5856-02 Yes April, 2009

Getting Started with

DB2 installation and

administration on Linux

and Windows

GC23-5857-02 Yes April, 2009

Internationalization

Guide

SC23-5858-02 Yes April, 2009

248 Database Security Guide

Table 53. DB2 technical information (continued)

Name Form Number Available in print Last updated

Message Reference,

Volume 1

GI11-7855-01 No April, 2009

Message Reference,

Volume 2

GI11-7856-01 No April, 2009

Migration Guide GC23-5859-02 Yes April, 2009

Net Search Extender

Administration and

User’s Guide

SC23-8509-02 Yes April, 2009

Partitioning and

Clustering Guide

SC23-5860-02 Yes April, 2009

Query Patroller

Administration and

User’s Guide

SC23-8507-01 Yes April, 2009

Quick Beginnings for

IBM Data Server Clients

GC23-5863-02 No April, 2009

Quick Beginnings for

DB2 Servers

GC23-5864-02 Yes April, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC23-8508-02 Yes April, 2009

SQL Reference, Volume 1 SC23-5861-02 Yes April, 2009

SQL Reference, Volume 2 SC23-5862-02 Yes April, 2009

System Monitor Guide

and Reference

SC23-5865-02 Yes April, 2009

Text Search Guide SC23-5866-01 Yes April, 2009

Troubleshooting Guide GI11-7857-02 No April, 2009

Tuning Database

Performance

SC23-5867-02 Yes April, 2009

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-02 Yes April, 2009

Workload Manager

Guide and Reference

SC23-5870-02 Yes April, 2009

pureXML Guide SC23-5871-02 Yes April, 2009

XQuery Reference SC23-5872-02 No April, 2009

 Table 54. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Quick Beginnings for

DB2 Connect Personal

Edition

GC23-5839-02 Yes April, 2009

Quick Beginnings for

DB2 Connect Servers

GC23-5840-02 Yes April, 2009

DB2 Connect User’s

Guide

SC23-5841-02 Yes April, 2009

Appendix A. Overview of the DB2 technical information 249

Table 55. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes March, 2008

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-02 Yes March, 2008

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-01 No

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-01 Yes March, 2008

Information Integration:

Introduction to

Replication and Event

Publishing

SC19-1028-01 Yes March, 2008

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

250 Database Security Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 247.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

Appendix A. Overview of the DB2 technical information 251

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the update feature to see what updates are available. If there are updates

that you would like to install, you can use the update feature to obtain and

install them.

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the update feature to get the packages.

However, the update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center

on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

252 Database Security Guide

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

Program_files\IBM\DB2 Information Center\Version 9.5 directory, where

Program_files represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

Appendix A. Overview of the DB2 technical information 253

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Database fundamentals section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 database products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

254 Database Security Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 255

256 Database Security Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© Copyright IBM Corp. 1993, 2009 257

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

258 Database Security Guide

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at Copyright and

trademark information at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries. Intel trademark information

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 259

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

260 Database Security Guide

Index

A
access control

authentication 7

column-specific 89

label-based access control (LBAC) 89

row-specific 89

view to table 41

access tokens 237

administrative views
AUTHORIZATIONIDS 123, 126

OBJECTOWNERS 126

PRIVILEGES 123, 126

ALTER privilege 33

APIs
plug-in 168, 175

security plug-in 167, 169, 170, 171, 174, 175, 181, 183, 184,

185, 186, 188, 190, 192, 194, 195

archivepath parameter 56

archiving
audit log 56

AUDIT events 227

audit facility
actions 50

archive 62

asynchronous record writing 67

audit data in tables
creating tables for audit data 60

loading tables with audit data 60

audit events table 200

authorities 50

behavior 67

CHECKING access approval reasons 205

CHECKING access attempted types 206

checking events table 203

CONTEXT events table 220

error handling 67

ERRORTYPE parameter 67

events 50

EXECUTE events 63, 222

object record types 199

OBJMAINT events table 209

policies 52

privileges 50

record layouts 199

record object types 199

records for EXECUTE events 222

SECMAINT events table 211

SECMAINT privileges or authorities 214

synchronous record writing 67

SYSADMIN events table 217

tips and techniques 68

VALIDATE events table 219

audit logs
archiving 56, 62

customizing location 56

file names 59

audit_buf_sz configuration parameter 67

authenticating LDAP users
troubleshooting 155

authentication
about 1

authentication (continued)
definition of 7

description 2

domain security 235

groups 235

GSS-API 135

ID/password 135

Kerberos 13, 135

partitioned database considerations 13

plug-ins
API for checking if authentication ID exists 183

API for cleaning client authentication resources 183

API for cleaning up resources 184

API for getting authentication IDs 186

API for initializing a client authentication plug-in 181

API for initializing server authentication 192

API for validating passwords 195

clean up server authentication 194

deploying 144, 147, 244

for initializing a client authentication plug-in 181

library locations 139

user ID/ password 175

remote client 12

security plug-in 135

two-part user IDs 140

types
CLIENT 7

KERBEROS 7

KRB_SERVER_ENCRYPT 7

SERVER 7

SERVER_ENCRYPT 7

using an ordered domain list 236

authentication plug-ins 148

AUTHID_ATTRIBUTE 150

authorities
audit policy 52

authority levels
database administration (DBADM) 28, 30

removing DBADM from SYSADM 24

removing DBADM from SYSCTRL 25

security administrator (SECADM) 27

See privileges 18

system administration (SYSADM) 24

system control (SYSCTRL) 25

system maintenance (SYSMAINT) 26

system monitor authority (SYSMON) 26

authorization ID 23, 153

changing
SETSESSIONUSER 31

LDAP 153

authorization names
create view for privileges information 126

retrieving for privileges information 123

retrieving names with DBADM authority 124

retrieving names with table access authority 124

retrieving privileges granted to 125

authorizations
about 1

description 3

trusted client 7

© Copyright IBM Corp. 1993, 2009 261

B
backup

security risks 128

BIND command
OWNER option 40

BIND privilege
definition 34

BINDADD database authority
definition 29

binding
rebinding invalid packages 38

books
printed

ordering 250

C
CHECKING events 227

client authentication plug-ins 148

CLIENT authentication type 7

columns
effect of LBAC on reading 108

LBAC protected
dropping 118

inserting 111

updating 113

LBAC protection
adding 107

removing 121

configuring
LDAP plug-ins 150

CONNECT database authority 29

CONTEXT events 227

CONTROL privilege
described 33

implicit issuance 40

package privileges 34

controlling access 44

CREATE DATABASE command
RESTRICTIVE option 126

CREATE ROLE statement
use 72

CREATE TRUSTED CONTEXT statement
use 84

CREATE_EXTERNAL_ROUTINE database authority 29

CREATE_NOT_FENCED_ROUTINE database authority 29

CREATETAB database authority 29

creating
LBAC security labels 97

customizing
audit log location 56

D
data

audit
creating tables 60

loading into tables 60

encryption 45

indirect access 128

label-based access control (LBAC)
adding protection 107

inserting 111

overview 107

reading 108

unprotecting 121

data (continued)
label-based access control (LBAC) (continued)

updating 113

security
overview 1

system catalog 126

database administration (DBADM) authority
overview 28

database authorities
BINDADD 29

CONNECT 29

CREATE_EXTERNAL_ROUTINE 29

CREATE_NOT_FENCED 29

CREATETAB 29

database manager (DBADM) 29

granting
overview 29

IMPLICIT_SCHEMA 29

LOAD 29

PUBLIC 29

QUIESCE_CONNECT 29

revoking 29

security administrator (SECADM) 29

database directories
permissions 6

database objects
roles 71

databases
accessing

implicit privileges through packages 40

label-based access control (LBAC) 89

datapath parameter 56

DB2 clients
configuring

SSL communications 48

DB2 Information Center
languages 251

updating 252

versions 251

viewing in different languages 251

DB2ADMNS group 238

description 239

db2audit.log file 50

DB2LBACRULES LBAC rule set 101

DB2LDAPSecurityConfig environment variable 150

DB2SECURITYLABEL data type
providing explicit values 106

viewing as string 106

DB2USERS user group
description 239

DBADM (database administration) authority
controlling access 44

description 28

retrieving names 124

debugging
security plug-ins 143

DELETE privilege
overview 33

distinguished name (DN) 153

documentation
overview 247

PDF 247

printed 247

terms and conditions of use 254

domain controller
overview 231

262 Database Security Guide

domain list
ordered 236

domains
security

authentication 235

trust relationships 234

Windows 236

dropping
columns (LBAC-protected) 118

LBAC security labels 97

dynamic SQL
EXECUTE privilege 40

dynamic XQuery
EXECUTE privilege 40

E
ENABLE_SSL parameter 150

encryption
data 45

error messages
security plug-ins 163

errors
switching user 87

trusted contexts 87

EXECUTE category
audit records 222

overview 63

EXECUTE events 227

EXECUTE privilege
database access

dynamic queries 40

static queries 40

packages 34

routines 35

explicit trusted connections
establishing 79

user ID switching 79, 85

extended security
Windows 239

F
file names

audit logs 59

firewalls
application proxy 133

circuit level 133

description 133

screening router 133

stateful multi-layer inspection (SMLI) 134

format
security label as string 99

functions
client plug-in

check if authentication ID exists 183

clean up client authentication 183

clean up resources 184

clean up server authentication 194

free memory held by token 184

generate initial credentials 185

get authentication IDs 186

get default login context 188

initialize client authentication 181

initialize server authentication 192

process service principal name 190

functions (continued)
client plug-in (continued)

remap user ID and password 190

validate password 195

DECRYPT 45

ENCRYPT 45

GETHINT 45

group plug-in
check if group exists 169

clean up 175

free error message memory 170

free group list memory 170

get list of groups 171

initialization 174

privileges 35

G
global group support

Windows 233

GRANT statement
example 37

implicit issuance 40

use of 37

granting
LBAC security labels 97

group lookup support 154

LDAP 148

plug-ins 148

GROUP_BASEDN 150

GROUP_LOOKUP_ATTRIBUTE 154

GROUP_LOOKUP_METHOD 150, 154

GROUP_OBJECTCLASS 150

GROUPNAME_ATTRIBUTE 150

groups
access token 237

selecting 4

user authentication 234

versus roles 77

GSS-APIs
authentication plug-ins 197

Restrictions 197

H
help

configuring language 251

SQL statements 251

I
IBM Informix Dynamic Server

migrating fromusing roles 78

IBMLDAPSecurity.ini 150

implicit authorization
managing 40

implicit schema authority
IMPLICIT_SCHEMA 30

IMPLICIT_SCHEMA
database authority 29

INDEX privilege 33, 35

indexes
privileges 35

INSERT privilege 33

inserting data (LBAC) 111

Index 263

instance directory
permissions 6

instances
configuring

SSL communications 46

K
Kerberos authentication protocol

description 13

server 7

KRB_SERVER_ENCRYPT authentication type
description 7

L
label-based access control (LBAC)

inserting data protected by 111

overview 89

protecting data 107

reading protected data 108

removing protection 121

security label comparisons 100

updating data protected by 113

LBAC (label-based access control)
credentials 89

inserting data protected by 111

overview 89

protected data
adding protection 107

description 89

removing protection 121

protected tables
description 89

protecting data using 107

reading data protected by 108

removing protection 121

rule exemptions
description and use 105

effect on security label comparisons 100

rule sets
comparing security labels 100

DB2LBACRULES 101

description 101

security administrator 89

security label comparisons 100

security label components
security label comparisons 100

security labels
ARRAY component type 93

compatible data types 97

components 92

description 89

how compared 100

SET component type 93

string format 99

TREE component type 94

use 97

security policies
adding to a table 107

description 89

description and use 91

updating data protected by 113

LDAP (Lightweight Directory Access Protocol)
plug-in locations 152

plug-ins 150

LDAP (Lightweight Directory Access Protocol) (continued)
security plug-ins 148

LDAP_HOST 150

libraries
security plug-in

loading in DB2 155

restrictions 157

LOAD database authority 29

LocalSystem account 238

support 239

logs
audit 50

M
method privileges 35

migrating
using roles 78

N
naming conventions

Windows restrictions 233

naming rules
objects and users 244

NESTED_GROUPS 150

nicknames
privileges

indirect through packages 41

notices 257

O
OBJMAINT events 227

ordered domain list
authentication using 236

ordering DB2 books 250

ownership
database objects 18, 123

P
package authorization ID 23

packages
access privileges with queries 40

owner 40

privileges
overview 34

revoking (overview) 38

passwords
changing

Linux 244

maintaining
servers 18

permissions
authorization overview 3

column-specific protection 89

directories 6

row-specific protection 89

plug-ins
group retrieval 168

GSS-API authentication 197

ID authentication 175

LDAP 148

password authentication 175

264 Database Security Guide

plug-ins (continued)
security

APIs 163, 167

deploying 144, 145, 147, 244

error messages 163

library restrictions 157

naming conventions 139

restrictions (GSS-API authentication) 198

restrictions (summary) 158

return codes 160

versions 142

PRECOMPILE command
OWNER option 40

privileges
acquiring by trusted context role 84

ALTER 33

CONTROL 33

DELETE 33

EXECUTE
routines 35

GRANT statement 37

granting
roles 77

hierarchy 18

implicit for packages 18

INDEX
overview 33, 35

indirect
packages containing nicknames 41

individual 18

information about granted
retrieving 123, 125

INSERT 33

job responsibilities 36

overview 18

ownership (CONTROL) 18

packages
creating 34

planning 3

REFERENCES 33

revoking
overview 38

roles 74

roles 71

schema 31

SELECT 33

SETSESSIONUSER 31

system catalog
privilege information 123

restricting access 126

table spaces 32

tables 33

UPDATE 33

USAGE
sequences 35

workloads 36

views 33

problem determination
information available 254

security plug-ins 143

tutorials 254

procedures
privileges 35

PUBLIC
database authorities automatically granted 29

Q
QUIESCE_CONNECT database authority 29

R
records

audit 50

REFERENCES privilege 33

removing
LBAC protection 121

restrictions
naming

Windows 233

RESTRICTIVE option
CREATE DATABASE 126

REVOKE statement
example 38

implicit issuance 40

use 38

revoking
LBAC security labels 97

roles 71

creating 72

hierarchies 74

migrating from IBM Informix Dynamic Server 78

revoking privileges from 74

versus groups 77

WITH ADMIN OPTION clause 76

routine invoker authorization ID 23

rows
deleting LBAC protected 118

effect of LBAC on reading 108

inserting LBAC protected 111

protecting a row with LBAC 107

removing LBAC protection 121

updating LBAC protected 113

rule sets (LBAC)
description 101

exemptions 105

S
Savepoint ID field 63

SEARCH_DN 150

SEARCH_PW 150

SECADM
database authority 18, 27, 29

SECLABEL
description 106

SECLABEL_BY_NAME
description 106

SECLABEL_TO_CHAR
description 106

SECMAINT events 227

security
authentication 2

CLIENT level 7

column-specific 89

data 1

db2extsec command
using 239

disabling extended security 239

enabling extended security 239

establishing explicit trusted connection 79

extended security 239

label-based access control (LBAC) 89

Index 265

security (continued)
maintaining passwords

on servers 18

plug-ins 135

32 bit considerations 142

64 bit considerations 142

API for validating passwords 195

API versions 142

APIs 167, 169, 170, 171, 174, 175, 181, 183, 184, 185,

186, 188, 190, 192, 194

APIs for group retrieval 168

APIs for GSS-API 197

APIs for user ID/password 175

calling sequence of, order in which called 163

debugging, problem determination 143

deploying 144, 145, 147, 244

deployment 135, 158

developing 135

enabling 135

error messages 163

GSS-API 145

GSS-API on restrictions 198

initialization 155

libraries; location of security plug-in 139

limitations on deployment of plug-ins 158

loading 135, 155

naming 139

overview 135

restrictions on libraries 157

return codes 160

SQLCODES and SQLSTATES 143

two-part user ID support 140

risks 128

row-specific 89

UNIX considerations 244

using trusted contexts 81

Windows
description 231

domain security 236

overview 239

services 234

users 238

security administrator authority (SECADM) 18, 27, 29

security labels (LBAC)
ARRAY component type 93

compatible data types 97

components 92

policies
description and use 91

SET component type 93

string format 99

TREE component type 94

use 97

security plug-ins 148

LDAP 148

SELECT privilege 33

sequences
privileges 35

server authentication plug-ins 148

SERVER authentication type 7

SERVER_ENCRYPT authentication type 7

session authorization ID 23

SET ENCRYPTION PASSWORD statement 45

SETSESSIONUSER privilege 31

SQL statements
displaying help 251

SSL
configuring

DB2 clients 48

DB2 instances 46

SSL_KEYFILE 150

SSL_PW 150

statement authorization ID 23

Statement Value Data field 63

Statement Value Index field 63

Statement Value Type field 63

static SQL or XQuery statements
EXECUTE privilege for database access 40

switching user ID 79, 85

SYSADM authority
controlling access by 44

SYSADMIN events 227

SYSCAT catalog views
for security issues 123

SYSDEFAULTADMWORKLOAD 36

SYSDEFAULTUSERWORKLOAD 36

SYSPROC.AUDIT_ARCHIVE stored procedure 56, 62

SYSPROC.AUDIT_DELIM_EXTRACT stored procedure 56, 62

SYSPROC.AUDIT_LIST_LOGS stored procedure 62

system administration (SYSADM) authority
description 24

privileges 24

system authorization ID 23

system catalogs
privileges listing 123

retrieving
authorization names with privileges 123

names with DBADM authority 124

names with table access authority 124

privileges granted to names 125

security 126

system control authority (SYSCTRL) 25

system maintenance authority (SYSMAINT) 26

system monitor authority (SYSMON) 26

T
table spaces

privileges 32

tables
audit policy 52

effect of LBAC on reading 108

inserting into LBAC protected 111

protecting with LBAC 89, 107

removing LBAC protection 121

retrieving names with access to 124

revoking privileges 38

tasks
authorizations 36

terms and conditions
use of publications 254

troubleshooting
online information 254

security plug-ins 143

tutorials 254

trust relationships 234

trusted clients
CLIENT level security 7

trusted connections 81

establishing explicit trusted connection 79

trusted contexts 81

audit policy 52

problem determination 87

266 Database Security Guide

trusted contexts (continued)
role membership inheritance 84

tutorials
problem determination 254

troubleshooting 254

Visual Explain 254

U
UPDATE privilege 33

updates
DB2 Information Center 252

effects of LBAC on 113

USAGE privilege 35, 36

user IDs
LDAP 153

selecting 4

switching 85

two-part user IDs 140

USER_BASEDN 150

USER_OBJECTCLASS 150

user-defined functions
database authority to create non-fenced 29

USERID_ATTRIBUTE 150

V
VALIDATE events 227

views
access control to table 41

access privileges examples 41

column access 41

privileges information 126

row access 41

Vista 243

Visual Explain
tutorial 254

W
Windows operating systems

extended security 239

local system account (LSA) support 239

scenarios
client authentication 232

server authentication 232

user accounts
access tokens 237

WITH ADMIN OPTION clause
delegating role maintenance 76

WITH DATA option
description 63

write-down
description 101

write-up
description 101

Index 267

268 Database Security Guide

����

Printed in USA

SC23-5850-02

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Da
ta

ba
se

Se

cu
rit

y
Gu

id
e

�
�

�

	Contents
	About this book
	Chapter 1. DB2 security model
	Authentication
	Authorization
	Security considerations when installing and using the DB2 database manager
	File permission requirements for the instance and database directories

	Authentication details
	Authentication methods for your server
	Authentication considerations for remote clients
	Partitioned database authentication considerations
	Kerberos authentication details
	Maintaining passwords on servers

	Authorization, privileges, and object ownership
	Authorization IDs in different contexts
	Instance level authorities
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	System monitor authority (SYSMON)

	Database level authorities
	Security administration authority (SECADM)
	Database administration authority (DBADM)
	LOAD authority
	Database authorities
	Implicit schema authority (IMPLICIT_SCHEMA) considerations

	Privileges
	Authorization ID privileges
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Sequence privileges
	Routine privileges
	Usage privilege on workloads

	Tasks and required authorizations
	Granting, revoking and monitoring access
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of a package
	Implicit privileges through a package
	Indirect privileges through a package containing nicknames
	Controlling access to data with views
	Controlling access by users holding SYSADM and DBADM authority

	Data encryption
	Configuring Secure Sockets Layer (SSL) support in a DB2 instance
	Configuring Secure Sockets Layer (SSL) support in the DB2 client

	Auditing DB2 activities
	Introduction to the DB2 audit facility
	Audit policies
	Storage and analysis of audit logs
	The EXECUTE category for auditing SQL statements

	Audit facility management
	Audit facility behavior
	Audit facility tips and techniques

	Chapter 2. Roles
	Creating and granting membership in roles
	Role hierarchies
	Effect of revoking privileges from roles
	Delegating role maintenance by using the WITH ADMIN OPTION clause
	Roles compared to groups
	Using roles after migrating from IBM Informix Dynamic Server

	Chapter 3. Using trusted contexts and trusted connections
	Trusted contexts and trusted connections
	Role membership inheritance through a trusted context
	Rules for switching the user ID on an explicit trusted connection
	Trusted context problem determination

	Chapter 4. Label-based access control (LBAC)
	LBAC security policies
	LBAC security label components overview
	LBAC security label component type: SET
	LBAC security label component type: ARRAY
	LBAC security label component type: TREE

	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC rule sets overview
	LBAC rule set: DB2LBACRULES

	LBAC rule exemptions
	Built-in functions for managing LBAC security labels
	Protection of data using LBAC
	Reading of LBAC protected data
	Inserting of LBAC protected data
	Updating of LBAC protected data
	Deleting or dropping of LBAC protected data
	Removal of LBAC protection from data

	Chapter 5. Using the system catalog for security information
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view
	Security considerations

	Chapter 6. Firewall support
	Screening router firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls

	Chapter 7. Security plug-ins
	Security plug-in library locations
	Security plug-in naming conventions
	Security plug-in support for two-part user IDs
	Security plug-in API versioning
	32-bit and 64-bit considerations for security plug-ins
	Security plug-in problem determination
	Enabling plug-ins
	Deploying a group retrieval plug-in
	Deploying a user ID/password plug-in
	Deploying a GSS-API plug-in
	Deploying a Kerberos plug-in

	LDAP-based authentication and group lookup support
	Configuring the LDAP plug-in modules
	Enabling the LDAP plug-in modules
	Connecting with an LDAP user ID
	Considerations for group lookup
	Troubleshooting authenticating LDAP users or retrieving groups

	Writing security plug-ins
	How DB2 loads security plug-ins
	Restrictions for developing security plug-in libraries
	Restrictions on security plug-ins
	Return codes for security plug-ins
	Error message handling for security plug-ins
	Calling sequences for the security plug-in APIs

	Chapter 8. Security plug-in APIs
	APIs for group retrieval plug-ins
	db2secDoesGroupExist API - Check if group exists
	db2secFreeErrormsg API - Free error message memory
	db2secFreeGroupListMemory API - Free group list memory
	db2secGetGroupsForUser API - Get list of groups for user
	db2secGroupPluginInit API - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources

	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit API - Initialize client authentication plug-in
	db2secClientAuthPluginTerm API - Clean up client authentication plug-in resources
	db2secDoesAuthIDExist - Check if authentication ID exists
	db2secFreeInitInfo API - Clean up resources held by the db2secGenerateInitialCred
	db2secFreeToken API - Free memory held by token
	db2secGenerateInitialCred API - Generate initial credentials
	db2secGetAuthIDs API - Get authentication IDs
	db2secGetDefaultLoginContext API - Get default login context
	db2secProcessServerPrincipalName API - Process service principal name returned from server
	db2secRemapUserid API - Remap user ID and password
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm API - Clean up server authentication plug-in resources
	db2secValidatePassword API - Validate password

	Required APIs and definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Chapter 9. Audit facility record layouts
	Audit record object types
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	CHECKING access approval reasons
	CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events
	Audit record layout for EXECUTE events
	Audit events

	Chapter 10. Working with operating system security
	DB2 and Windows security
	Authentication scenarios
	A scenario with server authentication (Windows)
	A scenario with client authentication and a Windows client machine

	Support for global groups (on Windows)
	User authentication with DB2 on Windows
	User name and group name restrictions (Windows)
	Groups and user authentication on Windows
	Trust relationships between domains on Windows
	DB2 database system and Windows security service
	Authentication with groups and domain security (Windows)
	Authentication using an ordered domain list
	Domain security support (Windows)

	Acquiring Windows users' group information using an access token
	Windows platform security considerations for users
	Windows LocalSystem account support
	Extended Windows security using DB2ADMNS and DB2USERS groups
	Considerations for Vista: User Access Control feature

	DB2 and UNIX security
	UNIX platform security considerations for users
	Location of the instance directory

	DB2 and Linux security
	Change password support (Linux)
	Deploying a change password plug-in (Linux)

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

