
DB2 Version 9.5

for Linux, UNIX, and Windows

SQL Reference, Volume 2
Updated March, 2008

SC23-5862-01

���

DB2 Version 9.5

for Linux, UNIX, and Windows

SQL Reference, Volume 2
Updated March, 2008

SC23-5862-01

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 1007.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book v

Who should use this book v

How this book is structured v

How to read the syntax diagrams vi

Conventions used in this manual viii

Error conditions viii

Highlighting conventions viii

Related documentation viii

Statements 1

SQL statements 2

How SQL statements are invoked 10

About SQL control statements 14

Function, method, and procedure designators . . . 17

ALLOCATE CURSOR 21

ALTER AUDIT POLICY 23

ALTER BUFFERPOOL 26

ALTER DATABASE PARTITION GROUP 29

ALTER DATABASE 33

ALTER FUNCTION 36

ALTER HISTOGRAM TEMPLATE 38

ALTER METHOD 40

ALTER NICKNAME 41

ALTER PROCEDURE (External) 49

ALTER PROCEDURE (Sourced) 52

ALTER PROCEDURE (SQL) 54

ALTER SECURITY LABEL COMPONENT 56

ALTER SECURITY POLICY 59

ALTER SEQUENCE 63

ALTER SERVER 67

ALTER SERVICE CLASS 70

ALTER TABLE 76

ALTER TABLESPACE 121

ALTER THRESHOLD 131

ALTER TRUSTED CONTEXT 137

ALTER TYPE (Structured) 145

ALTER USER MAPPING 152

ALTER VIEW 154

ALTER WORK ACTION SET 156

ALTER WORK CLASS SET 167

ALTER WORKLOAD 172

ALTER WRAPPER 178

ALTER XSROBJECT 180

ASSOCIATE LOCATORS 181

AUDIT 183

BEGIN DECLARE SECTION 187

CALL 189

CASE 194

CLOSE 197

COMMENT 199

COMMIT 211

Compound SQL (Dynamic) 213

Compound SQL (Embedded) 218

Compound SQL (Procedure) 222

CONNECT (Type 1) 231

CONNECT (Type 2) 238

CREATE ALIAS 245

CREATE AUDIT POLICY 248

CREATE BUFFERPOOL 251

CREATE DATABASE PARTITION GROUP . . . 255

CREATE EVENT MONITOR 257

CREATE FUNCTION 276

CREATE FUNCTION (External Scalar) 277

CREATE FUNCTION (External Table) 301

CREATE FUNCTION (OLE DB External Table) . . 319

CREATE FUNCTION (Sourced or Template) . . . 328

CREATE FUNCTION (SQL Scalar, Table, or Row) 340

CREATE FUNCTION MAPPING 350

CREATE HISTOGRAM TEMPLATE 354

CREATE INDEX 356

CREATE INDEX EXTENSION 372

CREATE METHOD 378

CREATE NICKNAME 384

CREATE PROCEDURE 396

CREATE PROCEDURE (External) 397

CREATE PROCEDURE (Sourced) 411

CREATE PROCEDURE (SQL) 416

CREATE ROLE 422

CREATE SCHEMA 423

CREATE SECURITY LABEL COMPONENT . . . 426

CREATE SECURITY LABEL 429

CREATE SECURITY POLICY 431

CREATE SEQUENCE 433

CREATE SERVICE CLASS 438

CREATE SERVER 445

CREATE TABLE 449

CREATE TABLESPACE 517

CREATE THRESHOLD 531

CREATE TRANSFORM 539

CREATE TRIGGER 543

CREATE TRUSTED CONTEXT 554

CREATE TYPE (Array) 561

CREATE TYPE (Distinct) 563

CREATE TYPE (Structured) 569

CREATE TYPE MAPPING 592

CREATE USER MAPPING 598

CREATE VARIABLE 600

CREATE VIEW 603

CREATE WORK ACTION SET 617

CREATE WORK CLASS SET 625

CREATE WORKLOAD 630

CREATE WRAPPER 638

DECLARE CURSOR 640

DECLARE GLOBAL TEMPORARY TABLE . . . 646

DELETE 654

DESCRIBE 660

DESCRIBE INPUT 661

DESCRIBE OUTPUT 664

DISCONNECT 668

DROP 671

END DECLARE SECTION 702

© Copyright IBM Corp. 1993, 2008 iii

EXECUTE IMMEDIATE 703

EXECUTE 706

EXPLAIN 712

FETCH 717

FLUSH EVENT MONITOR 720

FLUSH OPTIMIZATION PROFILE CACHE . . . 721

FLUSH PACKAGE CACHE 723

FOR 724

FREE LOCATOR 727

GET DIAGNOSTICS 728

GOTO 731

GRANT (Database Authorities) 733

GRANT (Exemption) 737

GRANT (Global Variable Privileges) 740

GRANT (Index Privileges) 742

GRANT (Package Privileges) 744

GRANT (Role) 747

GRANT (Routine Privileges) 750

GRANT (Schema Privileges) 754

GRANT (Security Label) 757

GRANT (Sequence Privileges) 760

GRANT (Server Privileges) 762

GRANT (SETSESSIONUSER Privilege) 764

GRANT (Table Space Privileges) 766

GRANT (Table, View, or Nickname Privileges) . . 768

GRANT (Workload Privileges) 775

GRANT (XSR Object Privileges) 777

IF 778

INCLUDE 780

INSERT 782

ITERATE 791

LEAVE 792

LOCK TABLE 794

LOOP 796

MERGE 798

OPEN 807

PREPARE 811

REFRESH TABLE 820

RELEASE (Connection) 823

RELEASE SAVEPOINT 825

RENAME TABLESPACE 826

RENAME 827

REPEAT 829

RESIGNAL 831

RETURN 833

REVOKE (Database Authorities) 835

REVOKE (Exemption) 839

REVOKE (Global Variable Privileges) 841

REVOKE (Index Privileges) 843

REVOKE (Package Privileges) 845

REVOKE (Role) 848

REVOKE (Routine Privileges) 851

REVOKE (Schema Privileges) 855

REVOKE (Security Label) 857

REVOKE (Sequence Privileges) 859

REVOKE (Server Privileges) 861

REVOKE (SETSESSIONUSER Privilege) 863

REVOKE (Table Space Privileges) 865

REVOKE (Table, View, or Nickname Privileges) 867

REVOKE (Workload Privileges) 872

REVOKE (XSR Object Privileges) 874

ROLLBACK 875

SAVEPOINT 878

SELECT INTO 881

SELECT 883

SET COMPILATION ENVIRONMENT 884

SET CONNECTION 885

SET CURRENT DECFLOAT ROUNDING MODE 887

SET CURRENT DEFAULT TRANSFORM GROUP 889

SET CURRENT DEGREE 890

SET CURRENT EXPLAIN MODE 892

SET CURRENT EXPLAIN SNAPSHOT 895

SET CURRENT FEDERATED ASYNCHRONY . . 897

SET CURRENT IMPLICIT XMLPARSE OPTION 899

SET CURRENT ISOLATION 900

SET CURRENT LOCK TIMEOUT 901

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 903

SET CURRENT MDC ROLLOUT MODE 905

SET CURRENT OPTIMIZATION PROFILE . . . 907

SET CURRENT PACKAGE PATH 910

SET CURRENT PACKAGESET 914

SET CURRENT QUERY OPTIMIZATION 916

SET CURRENT REFRESH AGE 919

SET ENCRYPTION PASSWORD 921

SET EVENT MONITOR STATE 922

SET INTEGRITY 924

SET PASSTHRU 942

SET PATH 944

SET ROLE 946

SET SCHEMA 947

SET SERVER OPTION 949

SET SESSION AUTHORIZATION 951

SET variable 954

SIGNAL 961

TRANSFER OWNERSHIP 964

UPDATE 979

VALUES INTO 989

VALUES 991

WHENEVER 992

WHILE 994

Appendix A. Overview of the DB2

technical information 997

DB2 technical library in hardcopy or PDF format 998

Ordering printed DB2 books 1000

Displaying SQL state help from the command line

processor 1001

Accessing different versions of the DB2

Information Center 1001

Displaying topics in your preferred language in

the DB2 Information Center 1001

Updating the DB2 Information Center installed on

your computer or intranet server 1002

DB2 tutorials 1003

DB2 troubleshooting information 1004

Terms and Conditions 1004

Appendix B. Notices 1007

Index 1011

iv SQL Reference, Volume 2

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2®

Database for Linux®, UNIX®, and Windows®. It includes:

v Information about relational database concepts, language elements, functions,

and the forms of queries (Volume 1)

v Information about the syntax and semantics of SQL statements (Volume 2)

Who should use this book

This book is intended for anyone who wants to use the Structured Query

Language (SQL) to access a database. It is primarily for programmers and database

administrators, but it can also be used by those who access databases through the

command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be writing

application programs and therefore presents the full functions of the database

manager.

How this book is structured

The second volume of the SQL Reference contains information about the syntax

and semantics of SQL statements.

v “Statements” contains syntax diagrams, semantic descriptions, rules, and

examples of all SQL statements, including SQL procedure statements.

© IBM Corporation 1993, 2008 v

How to read the syntax diagrams

Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on

execution, and is used only for readability.

��

required_item
 optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it will appear above the main path, and the

remaining choices will be shown below.

How to read the syntax diagrams

vi SQL Reference, Volume 2

��

required_item
 default_choice

optional_choice

optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be

repeated. In this case, repeated items must be separated by one or more blanks.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase (for example, column-name). They

represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are

shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For

example, in the following diagram, the variable parameter-block represents the

whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

 parameter1

parameter2

parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any

sequence.

�� required_item item1 * item2 * item3 * item4 ��

The above diagram shows that item2 and item3 may be specified in either order.

Both of the following are valid:

 required_item item1 item2 item3 item4

 required_item item1 item3 item2 item4

How to read the syntax diagrams

About this book vii

Conventions used in this manual

Error conditions

An error condition is indicated within the text of the manual by listing the

SQLSTATE associated with the error in parentheses. For example:

 A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions

The following conventions are used in this book.

 Bold Indicates commands, keywords, and other items whose names are

predefined by the system.

Italics Indicates one of the following:

v Names or values (variables) that must be supplied by the user

v General emphasis

v The introduction of a new term

v A reference to another source of information

Monospace Indicates one of the following:

v Files and directories

v Information that you are instructed to type at a command prompt or in a

window

v Examples of specific data values

v Examples of text similar to what might be displayed by the system

v Examples of system messages

Related documentation

The following publications might prove useful when you are preparing

applications:

v Getting Started with Database Application Development

– Provides an introduction to DB2 application development, including platform

prerequisites; supported development software; and guidance on the benefits

and limitations of the supported programming APIs.
v DB2 for i5/OS SQL Reference

– This book defines SQL as supported by DB2 Query Manager and SQL

Development Kit on System i™. It contains reference information for the tasks

of system administration, database administration, application programming,

and operation. This manual includes syntax, usage notes, keywords, and

examples for each of the SQL statements used on i5/OS® systems running

DB2.
v DB2 for z/OS SQL Reference

– This book defines SQL used in DB2 for z/OS®. It provides query forms, SQL

statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog

tables, and SQL reserved words for z/OS systems running DB2.
v DB2 Spatial Extender User’s Guide and Reference

– This book discusses how to write applications to create and use a geographic

information system (GIS). Creating and using a GIS involves supplying a

database with resources and then querying the data to obtain information

such as locations, distances, and distributions within areas.

How to read the syntax diagrams

viii SQL Reference, Volume 2

v IBM SQL Reference

– This book contains all the common elements of SQL that span IBM’s database

products. It provides limits and rules that assist in preparing portable

programs using IBM® databases. This manual provides a list of SQL

extensions and incompatibilities among the following standards and products:

SQL92E, XPG4-SQL, IBM-SQL, and the IBM relational database products.
v American National Standard X3.135-1992, Database Language SQL

– Contains the ANSI standard definition of SQL.
v ISO/IEC 9075:1992, Database Language SQL

– Contains the 1992 ISO standard definition of SQL.
v ISO/IEC 9075-2:2003, Information technology -- Database Languages -- SQL -- Part 2:

Foundation (SQL/Foundation)

– Contains a large portion of the 2003 ISO standard definition of SQL.
v ISO/IEC 9075-4:2003, Information technology -- Database Languages -- SQL -- Part 4:

Persistent Stored Modules (SQL/PSM)

– Contains the 2003 ISO standard definition for SQL procedure control

statements.

Related documentation

About this book ix

Related documentation

x SQL Reference, Volume 2

Statements

© Copyright IBM Corp. 1993, 2008 1

SQL statements

The following tables list the SQL statements classified by type:

v SQL schema statements (Table 1)

v SQL data change statements (Table 2 on page 6)

v SQL data statements (Table 3 on page 6)

v SQL transaction statements (Table 4 on page 6)

v SQL connection statements (Table 5 on page 7)

v SQL dynamic statements (Table 6 on page 7)

v SQL session statements (Table 7 on page 7)

v SQL embedded host language statements (Table 8 on page 8)

v SQL control statements (Table 9 on page 8)

 Table 1. SQL schema statements

SQL Statement Purpose

“ALTER AUDIT POLICY” on page 23 Modifies the definition of an audit policy at the current server.

“ALTER BUFFERPOOL” on page 26 Changes the definition of a buffer pool.

“ALTER DATABASE” on page 33 Adds new storage paths to the collection of paths that are used for

automatic storage table spaces.

“ALTER DATABASE PARTITION GROUP” on

page 29

Changes the definition of a database partition group.

“ALTER FUNCTION” on page 36 Modifies an existing function by changing the properties of the

function.

“ALTER HISTOGRAM TEMPLATE” on page

38

Modifies the template describing the type of histogram that can be

used to override one or more of the default histograms of a service

class or a work class.

“ALTER METHOD” on page 40 Modifies an existing method by changing the method body

associated with the method.

“ALTER NICKNAME” on page 41 Changes the definition of a nickname.

“ALTER PROCEDURE (External)” on page 49 Modifies an existing external procedure by changing the properties of

the procedure.

“ALTER PROCEDURE (Sourced)” on page 52 Modifies an existing sourced procedure by changing the data type of

one or more parameters of the sourced procedure.

“ALTER PROCEDURE (SQL)” on page 54 Modifies an existing SQL procedure by changing the properties of the

procedure.

“ALTER SECURITY LABEL COMPONENT”

on page 56

Modifies a security label component.

“ALTER SECURITY POLICY” on page 59 Modifies a security policy.

“ALTER SEQUENCE” on page 63 Changes the definition of a sequence.

“ALTER SERVER” on page 67 Changes the definition of a data source in a federated system.

“ALTER SERVICE CLASS” on page 70 Changes the definition of a service class.

“ALTER TABLE” on page 76 Changes the definition of a table.

“ALTER TABLESPACE” on page 121 Changes the definition of a table space.

“ALTER THRESHOLD” on page 131 Changes the definition of a threshold.

“ALTER TRUSTED CONTEXT” on page 137 Changes the definition of a trusted context at the current server.

“ALTER TYPE (Structured)” on page 145 Changes the definition of a structured type.

SQL statements

2 SQL Reference, Volume 2

Table 1. SQL schema statements (continued)

SQL Statement Purpose

“ALTER USER MAPPING” on page 152 Changes the definition of a user authorization mapping.

“ALTER VIEW” on page 154 Changes the definition of a view by altering a reference type column

to add a scope.

“ALTER WORK ACTION SET” on page 156 Adds, alters, or drops work actions within a work action set.

“ALTER WORK CLASS SET” on page 167 Adds, alters, or drops work classes within a work class set.

“ALTER WORKLOAD” on page 172 Changes a workload.

“ALTER WRAPPER” on page 178 Updates the options that, along with a wrapper module, are used to

access data sources of a specific type.

“ALTER XSROBJECT” on page 180 Enables or disables decomposition support for a specific XML

schema.

“AUDIT” on page 183 Determines the audit policy that is to be used for a particular

database or database object at the current server.

“COMMENT” on page 199 Replaces or adds a comment to the description of an object.

“CREATE ALIAS” on page 245 Defines an alias for a table, view, or another alias.

“CREATE AUDIT POLICY” on page 248 Defines an auditing policy at the current server.

“CREATE BUFFERPOOL” on page 251 Creates a new buffer pool.

“CREATE DATABASE PARTITION GROUP”

on page 255

Defines a database partition group.

“CREATE EVENT MONITOR” on page 257 Specifies events in the database to monitor.

“CREATE FUNCTION” on page 276 Registers a user-defined function.

“CREATE FUNCTION (External Scalar)” on

page 277

Registers a user-defined external scalar function.

“CREATE FUNCTION (External Table)” on

page 301

Registers a user-defined external table function.

“CREATE FUNCTION (OLE DB External

Table)” on page 319

Registers a user-defined OLE DB external table function.

“CREATE FUNCTION (Sourced or Template)”

on page 328

Registers a user-defined sourced function.

“CREATE FUNCTION (SQL Scalar, Table, or

Row)” on page 340

Registers and defines a user-defined SQL function.

“CREATE FUNCTION MAPPING” on page

350

Defines a function mapping.

“CREATE HISTOGRAM TEMPLATE” on page

354

Defines a template describing the type of histogram that can be used

to override one or more of the default histograms of a service class or

a work class.

“CREATE INDEX” on page 356 Defines an index on a table.

“CREATE INDEX EXTENSION” on page 372 Defines an extension object for use with indexes on tables with

structured or distinct type columns.

“CREATE METHOD” on page 378 Associates a method body with a previously defined method

specification.

“CREATE NICKNAME” on page 384 Defines a nickname.

“CREATE PROCEDURE” on page 396 Registers a procedure.

“CREATE PROCEDURE (External)” on page

397

Registers an external procedure.

SQL statements

Statements 3

Table 1. SQL schema statements (continued)

SQL Statement Purpose

“CREATE PROCEDURE (Sourced)” on page

411

Registers a procedure (the sourced procedure) that is based on

another procedure (the source procedure). In a federated system, a

federated procedure is a sourced procedure whose source procedure

is at a supported data source.

“CREATE PROCEDURE (SQL)” on page 416 Registers an SQL procedure.

“CREATE ROLE” on page 422 Defines a role at the current server.

“CREATE SCHEMA” on page 423 Defines a schema.

“CREATE SECURITY LABEL COMPONENT”

on page 426

Creates a component that is to be used as part of a security policy.

“CREATE SECURITY LABEL” on page 429 Creates a security label.

“CREATE SECURITY POLICY” on page 431 Creates a security policy.

“CREATE SEQUENCE” on page 433 Defines a sequence.

“CREATE SERVER” on page 445 Defines a data source to a federated database.

“CREATE SERVICE CLASS” on page 438 Defines a service class.

“CREATE TABLE” on page 449 Defines a table.

“CREATE TABLESPACE” on page 517 Defines a table space.

“CREATE THRESHOLD” on page 531 Defines a threshold.

“CREATE TRANSFORM” on page 539 Defines transformation functions.

“CREATE TRIGGER” on page 543 Defines a trigger.

“CREATE TRUSTED CONTEXT” on page 554 Defines a trusted context at the current server.

“CREATE TYPE (Array)” on page 561 Defines an array type.

“CREATE TYPE (Distinct)” on page 563 Defines a distinct data type.

“CREATE TYPE (Structured)” on page 569 Defines a structured data type.

“CREATE TYPE MAPPING” on page 592 Defines a mapping between data types.

“CREATE USER MAPPING” on page 598 Defines a mapping between user authorizations.

“CREATE VARIABLE” on page 600 Defines a global variable.

“CREATE VIEW” on page 603 Defines a view of one or more table, view or nickname.

“CREATE WORK ACTION SET” on page 617 Defines a work action set and work actions within the work action

set.

“CREATE WORK CLASS SET” on page 625 Defines a work class set.

“CREATE WORKLOAD” on page 630 Defines a workload.

“CREATE WRAPPER” on page 638 Registers a wrapper.

“DROP” on page 671 Deletes objects in the database.

“GRANT (Database Authorities)” on page 733 Grants authorities on the entire database.

“GRANT (Exemption)” on page 737 Grants an exemption on an access rule for a specified label-based

access control (LBAC) security policy.

“GRANT (Global Variable Privileges)” on

page 740

Grants one or more privileges on a created global variable.

“GRANT (Index Privileges)” on page 742 Grants the CONTROL privilege on indexes in the database.

“GRANT (Package Privileges)” on page 744 Grants privileges on packages in the database.

“GRANT (Role)” on page 747 Grants roles to users, groups, or to other roles.

“GRANT (Routine Privileges)” on page 750 Grants privileges on a routine (function, method, or procedure).

SQL statements

4 SQL Reference, Volume 2

Table 1. SQL schema statements (continued)

SQL Statement Purpose

“GRANT (Schema Privileges)” on page 754 Grants privileges on a schema.

“GRANT (Security Label)” on page 757 Grants a label-based access control (LBAC) security label for read

access, write access, or for both read and write access.

“GRANT (Sequence Privileges)” on page 760 Grants privileges on a sequence.

“GRANT (Server Privileges)” on page 762 Grants privileges to query a specific data source.

“GRANT (SETSESSIONUSER Privilege)” on

page 764

Grants the privilege to use the SET SESSION AUTHORIZATION

statement.

“GRANT (Table Space Privileges)” on page

766

Grants privileges on a table space.

“GRANT (Table, View, or Nickname

Privileges)” on page 768

Grants privileges on tables, views and nicknames.

“GRANT (Workload Privileges)” on page 775 Grants the USAGE privilege on a workload.

“GRANT (XSR Object Privileges)” on page

777

Grants the USAGE privilege on an XSR object.

“REFRESH TABLE” on page 820 Refreshes the data in a materialized query table.

“RENAME” on page 827 Renames an existing table.

“RENAME TABLESPACE” on page 826 Renames an existing table space.

“REVOKE (Database Authorities)” on page

835

Revokes authorities from the entire database.

“REVOKE (Exemption)” on page 839 Revokes the exemption on an access rule for a specified label-based

access control (LBAC) security policy.

“REVOKE (Global Variable Privileges)” on

page 841

Revokes one or more privileges on a created global variable.

“REVOKE (Index Privileges)” on page 843 Revokes the CONTROL privilege on given indexes.

“REVOKE (Package Privileges)” on page 845 Revokes privileges from given packages in the database.

“REVOKE (Role)” on page 848 Revokes roles from users, groups, or other roles.

“REVOKE (Routine Privileges)” on page 851 Revokes privileges on a routine (function, method, or procedure).

“REVOKE (Schema Privileges)” on page 855 Revokes privileges on a schema.

“REVOKE (Security Label)” on page 857 Revokes a label-based access control (LBAC) security label for read

access, write access, or for both read and write access.

“REVOKE (Sequence Privileges)” on page 859 Revokes privileges on a sequence.

“REVOKE (Server Privileges)” on page 861 Revokes privileges to query a specific data source.

“REVOKE (SETSESSIONUSER Privilege)” on

page 863

Revokes the privilege to use the SET SESSION AUTHORIZATION

statement.

“REVOKE (Table Space Privileges)” on page

865

Revokes the USE privilege on a given table space.

“REVOKE (Table, View, or Nickname

Privileges)” on page 867

Revokes privileges from given tables, views or nicknames.

“REVOKE (Workload Privileges)” on page 872 Revokes the USAGE privilege on a workload.

“REVOKE (XSR Object Privileges)” on page

874

Revokes the USAGE privilege on an XSR object.

“SET INTEGRITY” on page 924 Sets the set integrity pending state and checks data for constraint

violations.

“TRANSFER OWNERSHIP” on page 964 Transfers ownership of a database object.

SQL statements

Statements 5

Table 2. SQL data change statements

SQL Statement Purpose

“DELETE” on page 654 Deletes one or more rows from a table.

“INSERT” on page 782 Inserts one or more rows into a table.

“MERGE” on page 798 Updates a target (a table or view) using data from a source (result of

a table reference).

“UPDATE” on page 979 Updates the values of one or more columns in one or more rows of a

table.

 Table 3. SQL data statements

SQL Statement Purpose

“ALLOCATE CURSOR” on page 21 Allocates a cursor for the result set identified by the result set locator

variable.

“ASSOCIATE LOCATORS” on page 181 Gets the result set locator value for each result set returned by a

procedure.

“CLOSE” on page 197 Closes a cursor.

“DECLARE CURSOR” on page 640 Defines an SQL cursor.

“DELETE” on page 654 Deletes one or more rows from a table.

“FETCH” on page 717 Assigns values of a row to host variables.

“FLUSH EVENT MONITOR” on page 720 Writes out the active internal buffer of an event monitor.

“FLUSH PACKAGE CACHE” on page 723 Removes all cached dynamic SQL statements currently in the

package cache.

“FREE LOCATOR” on page 727 Removes the association between a locator variable and its value.

“INSERT” on page 782 Inserts one or more rows into a table.

“LOCK TABLE” on page 794 Either prevents concurrent processes from changing a table or

prevents concurrent processes from using a table.

“MERGE” on page 798 Updates a target (a table or view) using data from a source (result of

a table reference).

“OPEN” on page 807 Prepares a cursor that will be used to retrieve values when the

FETCH statement is issued.

“SELECT INTO” on page 881 Specifies a result table of no more than one row and assigns the

values to host variables.

“SET variable” on page 954 Assigns values to NEW transition variables.

“UPDATE” on page 979 Updates the values of one or more columns in one or more rows of a

table.

“VALUES INTO” on page 989 Specifies a result table of no more than one row and assigns the

values to host variables.

 Table 4. SQL transaction statements

SQL Statement Purpose

“COMMIT” on page 211 Terminates a unit of work and commits the database changes made

by that unit of work.

“RELEASE SAVEPOINT” on page 825 Releases a savepoint within a transaction.

“ROLLBACK” on page 875 Terminates a unit of work and backs out the database changes made

by that unit of work.

“SAVEPOINT” on page 878 Sets a savepoint within a transaction.

SQL statements

6 SQL Reference, Volume 2

Table 5. SQL connection statements

SQL Statement Purpose

“CONNECT (Type 1)” on page 231 Connects to an application server according to the rules for remote

unit of work.

“CONNECT (Type 2)” on page 238 Connects to an application server according to the rules for

application-directed distributed unit of work.

“DISCONNECT” on page 668 Terminates one or more connections when there is no active unit of

work.

“RELEASE (Connection)” on page 823 Places one or more connections in the release-pending state.

“SET CONNECTION” on page 885 Changes the state of a connection from dormant to current, making

the specified location the current server.

 Table 6. SQL dynamic statements

SQL Statement Purpose

“DESCRIBE” on page 660 Obtains information about an object.

“DESCRIBE INPUT” on page 661 Obtains information about the input parameter markers of a

prepared statement.

“DESCRIBE OUTPUT” on page 664 Obtains information about a prepared statement or information about

the select list columns in a prepared SELECT statement.

“EXECUTE” on page 706 Executes a prepared SQL statement.

“EXECUTE IMMEDIATE” on page 703 Prepares and executes an SQL statement.

“PREPARE” on page 811 Prepares an SQL statement (with optional parameters) for execution.

 Table 7. SQL session statements

SQL Statement Purpose

“DECLARE GLOBAL TEMPORARY TABLE”

on page 646

Defines the Global Temporary Table.

“EXPLAIN” on page 712 Captures information about the chosen access plan.

“SET COMPILATION ENVIRONMENT” on

page 884

Changes the current compilation environment in the connection to

match the values contained in the compilation environment provided

by a deadlock event monitor.

“SET CURRENT DECFLOAT ROUNDING

MODE” on page 887

Verifies that the specified rounding mode is the value that is

currently set for the CURRENT DECFLOAT ROUNDING MODE

special register.

“SET CURRENT DEFAULT TRANSFORM

GROUP” on page 889

Changes the value of the CURRENT DEFAULT TRANSFORM

GROUP special register.

“SET CURRENT DEGREE” on page 890 Changes the value of the CURRENT DEGREE special register.

“SET CURRENT EXPLAIN MODE” on page

892

Changes the value of the CURRENT EXPLAIN MODE special

register.

“SET CURRENT EXPLAIN SNAPSHOT” on

page 895

Changes the value of the CURRENT EXPLAIN SNAPSHOT special

register.

“SET CURRENT FEDERATED

ASYNCHRONY” on page 897

Changes the value of the CURRENT FEDERATED ASYNCHRONY

special register.

“SET CURRENT IMPLICIT XMLPARSE

OPTION” on page 899

Changes the value of the CURRENT IMPLICIT XMLPARSE OPTION

special register.

“SET CURRENT ISOLATION” on page 900 Changes the value of the CURRENT ISOLATION special register.

SQL statements

Statements 7

Table 7. SQL session statements (continued)

SQL Statement Purpose

“SET CURRENT LOCK TIMEOUT” on page

901

Changes the value of the CURRENT LOCK TIMEOUT special

register.

“SET CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION” on page 903

Changes the value of the CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION special register.

“SET CURRENT MDC ROLLOUT MODE” on

page 905

Assigns a value to the CURRENT MDC ROLLOUT MODE special

register.

“SET CURRENT OPTIMIZATION PROFILE”

on page 907

Assigns a value to the CURRENT OPTIMIZATION PROFILE special

register.

“SET CURRENT PACKAGE PATH” on page

910

Assigns a value to the CURRENT PACKAGE PATH special register.

“SET CURRENT PACKAGESET” on page 914 Sets the schema name for package selection.

“SET CURRENT QUERY OPTIMIZATION”

on page 916

Changes the value of the CURRENT QUERY OPTIMIZATION special

register.

“SET CURRENT REFRESH AGE” on page 919 Changes the value of the CURRENT REFRESH AGE special register.

“SET ENCRYPTION PASSWORD” on page

921

Sets the password for encryption.

“SET EVENT MONITOR STATE” on page 922 Activates or deactivates an event monitor.

“SET PASSTHRU” on page 942 Opens a session for submitting data source native SQL directly to the

data source.

“SET PATH” on page 944 Changes the value of the CURRENT PATH special register.

“SET ROLE” on page 946 Verifies that the authorization ID of the session is a member of a

specific role.

“SET SCHEMA” on page 947 Changes the value of the CURRENT SCHEMA special register.

“SET SERVER OPTION” on page 949 Sets server option settings.

“SET SESSION AUTHORIZATION” on page

951

Changes the value of the SESSION USER special register.

 Table 8. SQL embedded host language statements

SQL Statement Purpose

“BEGIN DECLARE SECTION” on page 187 Marks the beginning of a host variable declaration section.

“END DECLARE SECTION” on page 702 Marks the end of a host variable declaration section.

“GET DIAGNOSTICS” on page 728 Used to obtain information about the previously executed SQL

statement.

“INCLUDE” on page 780 Inserts code or declarations into a source program.

“RESIGNAL” on page 831 Used to resignal an error or warning condition.

“SIGNAL” on page 961 Used to signal an error or warning condition.

“WHENEVER” on page 992 Defines actions to be taken on the basis of SQL return codes.

 Table 9. SQL control statements

SQL Statement Purpose

“CALL” on page 189 Calls a procedure.

“CASE” on page 194 Selects an execution path based on multiple conditions.

“Compound SQL (Dynamic)” on page 213 Combines one or more other SQL statements into an dynamic block.

SQL statements

8 SQL Reference, Volume 2

Table 9. SQL control statements (continued)

SQL Statement Purpose

“Compound SQL (Embedded)” on page 218 Combines one or more other SQL statements into an executable

block.

“Compound SQL (Procedure)” on page 222 Groups other statements together in an SQL procedure.

“FOR” on page 724 Executes a statement or group of statements for each row of a table.

“GOTO” on page 731 Used to branch to a user-defined label within an SQL procedure.

“IF” on page 778 Selects an execution path based on the evaluation of a condition.

“ITERATE” on page 791 Causes the flow of control to return to the beginning of a labelled

loop.

“LEAVE” on page 792 Transfers program control out of a loop or a compound statement.

“LOOP” on page 796 Repeats the execution of a statement or a group of statements.

“REPEAT” on page 829 Executes a statement or group of statements until a search condition

is true.

“RESIGNAL” on page 831 Used to resignal an error or warning condition.

“RETURN” on page 833 Used to return from a routine.

“SIGNAL” on page 961 Used to signal an error or warning condition.

“WHILE” on page 994 Repeats the execution of a statement or group of statements while a

specified condition is true.

SQL statements

Statements 9

How SQL statements are invoked

SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:

v Embedded in an application program

v Embedded in an SQL procedure.

v Prepared and executed dynamically

v Issued interactively

Depending on the statement, some or all of these methods can be used.

(Statements embedded in REXX™ are prepared and executed dynamically.)

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be

invoked in three ways. It can be:

v Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and

CLOSE (static invocation)

v Prepared dynamically, referenced in DECLARE CURSOR, and executed

implicitly by OPEN, FETCH and CLOSE (dynamic invocation)

v Issued interactively

Embedding a statement in an application program

SQL statements can be included in a source program that will be submitted to a

precompiler. Such statements are said to be embedded in the program. An

embedded statement can be placed anywhere in the program where a host

language statement is allowed. Each embedded statement must be preceded by the

keywords EXEC SQL.

An executable statement embedded in an application program is executed every

time a statement of the host language would be executed if it were specified in the

same place. Thus, a statement within a loop is executed every time the loop is

executed, and a statement within a conditional construct is executed only when the

condition is satisfied.

An embedded statement can contain references to host variables. A host variable

referenced in this way can be used in two ways. It can be used:

v As input (the current value of the host variable is used in the execution of the

statement)

v As output (the variable is assigned a new value as a result of executing the

statement)

In particular, all references to host variables in expressions and predicates are

effectively replaced by current values of the variables; that is, the variables are

used as input.

All executable statements should be followed by a test of the SQL return code.

Alternatively, the WHENEVER statement (which is itself non-executable) can be

used to change the flow of control immediately after the execution of an embedded

statement.

How SQL statements are invoked

10 SQL Reference, Volume 2

All objects referenced in data manipulation language (DML) statements must exist

when the statements are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The

precompiler reports any errors encountered in the statement. The statement is never

processed during program execution; therefore, such statements should not be

followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE

PROCEDURE statement. Such statements are said to be embedded in the SQL

procedure. Whenever an SQL statement description refers to a host-variable, an

SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution

An application program can dynamically build an SQL statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, input from a workstation). The

statement (not a select-statement) constructed can be prepared for execution by

means of the (embedded) PREPARE statement, and executed by means of the

(embedded) EXECUTE statement. Alternatively, an (embedded) EXECUTE

IMMEDIATE statement can be used to prepare and execute the statement in one

step.

A statement that is going to be dynamically prepared must not contain references

to host variables. It can instead contain parameter markers. (For rules concerning

parameter markers, see “PREPARE”.) When the prepared statement is executed,

the parameter markers are effectively replaced by current values of the host

variables specified in the EXECUTE statement. Once prepared, a statement can be

executed several times with different values for the host variables. Parameter

markers are not allowed in the EXECUTE IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of

an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)

statement completes. The SQL return code should be checked, as described above.

For more information, see “SQL return codes (SQLCODE and SQLSTATE)” on

page 12.

Static invocation of a select-statement

A select-statement can be included as a part of the (non-executable) DECLARE

CURSOR statement. Such a statement is executed every time the cursor is opened

by means of the (embedded) OPEN statement. After the cursor is open, the result

table can be retrieved, one row at a time, by successive executions of the FETCH

statement.

Used in this way, the select-statement can contain references to host variables.

These references are effectively replaced by the values that the variables have when

the OPEN statement executes.

Dynamic invocation of a select-statement

An application program can dynamically build a select-statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, a query obtained from a

workstation). The statement so constructed can be prepared for execution by

How SQL statements are invoked

Statements 11

means of the (embedded) PREPARE statement, and referenced by a

(non-executable) DECLARE CURSOR statement. The statement is then executed

every time the cursor is opened by means of the (embedded) OPEN statement.

After the cursor is open, the result table can be retrieved, one row at a time, by

successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.

It can contain parameter markers instead. The parameter markers are effectively

replaced by the values of the host variables specified in the OPEN statement.

Interactive invocation

A capability for entering SQL statements from a workstation is part of the

architecture of the database manager. A statement entered in this way is said to be

issued interactively. Such a statement must be an executable statement that does

not contain parameter markers or references to host variables, because these make

sense only in the context of an application program.

SQL use with other host systems

SQL statement syntax exhibits minor variations among different types of host

systems (DB2 for z/OS, DB2 for System i, DB2 Database for Linux, UNIX, and

Windows). Regardless of whether the SQL statements in an application are static or

dynamic, it is important — if the application is meant to access different database

host systems — to ensure that the SQL statements and precompile/bind options

are supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found

in the DB2 for i5/OS SQL Reference and the DB2 for z/OS SQL Reference.

SQL return codes (SQLCODE and SQLSTATE)

An application program containing executable SQL statements can use either

SQLCODE or SQLSTATE values to handle return codes from SQL statements.

There are two ways in which an application can get access to these values.

v Include a structure named SQLCA. The SQLCA includes an integer variable

named SQLCODE and a character string variable named SQLSTATE. In REXX,

an SQLCA is provided automatically. In other languages, an SQLCA can be

obtained by using the INCLUDE SQLCA statement.

v If LANGLEVEL SQL92E is specified as a precompile option, a variable named

SQLCODE or SQLSTATE can be declared in the SQL declare section of the

program. If neither of these variables is declared in the SQL declare section, it is

assumed that a variable named SQLCODE is declared elsewhere in the program.

With LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA

statement.

An SQLCODE is set by the database manager after each SQL statement executes.

All database managers conform to the ISO/ANSI SQL standard, as follows:

v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.

v If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the

result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.

How SQL statements are invoked

12 SQL Reference, Volume 2

v If SQLCODE = 0 and SQLWARN0 = ’W’, execution was successful, but one or

more warning indicators were set.

v If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes.

Application programs can check the execution of SQL statements by testing

SQLSTATE instead of SQLCODE. SQLSTATE provides common codes for common

error conditions. Application programs can test for specific errors or classes of

errors. The coding scheme is the same for all IBM database managers, and is based

on the ISO/ANSI SQL92 standard.

SQL comments

Static SQL statements can include host language or SQL comments. Dynamic SQL

statements can include SQL comments. There are two types of SQL comments:

simple comments

Simple comments are introduced by two consecutive hyphens (--) and end

with the end of line.

bracketed comments

Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:

v The two hyphens must be on the same line and must not be separated by a

space.

v Simple comments can be started wherever a space is valid (except within a

delimiter token or between ’EXEC’ and ’SQL’).

v Simple comments cannot be continued to the next line.

v In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:

v The /* must be on the same line and must not be separated by a space.

v The */ must be on the same line and must not be separated by a space.

v Bracketed comments can be started wherever a space is valid (except within a

delimiter token or between ’EXEC’ and ’SQL’).

v Bracketed comments can be continued to subsequent lines.

Example 1: This example shows how to include simple comments in a statement:

 CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL

 AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT

 FROM PROJECT

 WHERE DEPTNO = ’E21’ -- SYSTEMS SUPPORT DEPT CODE

 AND PRSTAFF > 1

Example 2: This example shows how to include bracketed comments in a statement:

 CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT

 PERSONNEL */

 AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */

 FROM PROJECT

 WHERE DEPTNO = ’E21’ /* SYSTEMS SUPPORT DEPT CODE */

 AND PRSTAFF > 1

How SQL statements are invoked

Statements 13

About SQL control statements

Control statements are SQL statements that allow structured query language to be

used in a manner similar to writing a program in a structured programming

language. SQL control statements provide the capability to control the logic flow,

declare, and set variables, and handle warnings and exceptions. Some SQL control

statements include other nested SQL statements. SQL control statements can be

used in the body of a routine, trigger or a dynamic compound statement.

References to SQL parameters, SQL variables, and global

variables

SQL parameters, SQL variables, and global variables can be referenced anywhere in

an SQL procedure statement where an expression or variable can be specified. Host

variables cannot be specified in SQL routines, SQL triggers or dynamic compound

statements. SQL parameters can be referenced anywhere in the routine, and can be

qualified with the routine name. SQL variables can be referenced anywhere in the

compound statement in which they are declared, and can be qualified with the

label name specified at the beginning of the compound statement. Global variables

can be referenced within any expression as long as the expression is not required

to be deterministic. The following scenarios require deterministic expressions,

which preclude the use of global variables:

v Check constraints

v Definitions of generated columns

v Refresh immediate MQTs

All SQL parameters, SQL variables, and global variables are considered nullable.

The name of an SQL parameter, SQL variable, or global variable in an SQL routine

can be the same as the name of a column in a table or view referenced in the

routine. The name of an SQL variable can also be the same as the name of another

SQL variable declared in the same routine. This can occur when the two SQL

variables are declared in different compound statements. The compound statement

that contains the declaration of an SQL variable determines the scope of that

variable. For more information, see “Compound SQL (Procedure)”.

The name of an SQL variable or SQL parameter in an SQL routine can be the same

as the name of an identifier used in certain SQL statements. If the name is not

qualified, the following rules describe whether the name refers to the identifier or

to the SQL parameter or SQL variable:

v In the SET PATH and SET SCHEMA statements, the name is checked as an SQL

parameter or SQL variable. If not found as an SQL variable or SQL parameter, it

is used as an identifier.

v In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION

statements, the name is used as an identifier.

Names that are the same should be explicitly qualified. Qualifying a name clearly

indicates whether the name refers to a column, SQL variable, SQL parameter, or

global variable. If the name is not qualified, or qualified but still ambiguous, the

following rules describe whether the name refers to a column, an SQL variable, an

SQL parameter, or a global variable:

v If the tables and views specified in an SQL routine body exist at the time the

routine is created, the name is first checked as a column name. If not found as a

column, it is then checked as an SQL variable in the compound statement, then

checked as an SQL parameter, and then, finally, checked as a global variable.

About SQL control statements

14 SQL Reference, Volume 2

v If the referenced tables or views do not exist at the time the routine is created,

the name is first checked as an SQL variable in the compound statement, then as

an SQL parameter, and then as a global variable. The variable can be declared

within the compound statement that contains the reference, or within a

compound statement in which that compound statement is nested. If two SQL

variables are within the same scope and have the same name, which can happen

if they are declared in different compound statements, the SQL variable that is

declared in the innermost compound statement is used. If not found, it is

assumed to be a column.

References to labels

Labels can be specified on most SQL procedure statements. The compound

statement that contains the statement that defines a label determines the scope of

that label name. A label name must be unique within the compound statement in

which it is defined, including any labels defined in compound statements that are

nested within that compound statement (SQLSTATE 42734). The label must not be

the same as a label specified on the compound statement itself (SQLSTATE 42734),

or the same as the name of the routine that contains the SQL procedure statement

(SQLSTATE 42734).

A label name can only be referenced within the compound statement in which it is

defined, including any compound statements that are nested within that

compound statement. A label can be used to qualify the name of an SQL variable,

or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names

The name of an SQL condition can be the same as the name of another SQL

condition declared in the same routine. This can occur when the two SQL

conditions are declared in different compound statements. The compound

statement that contains the declaration of an SQL condition name determines the

scope of that condition name. A condition name must be unique within the

compound statement in which it is declared, excluding any declarations in

compound statements that are nested within that compound statement (SQLSTATE

42734). A condition name can only be referenced within the compound statement

in which it is declared, including any compound statements that are nested within

that compound statement. When there is a reference to a condition name, the

condition that is declared in the innermost compound statement is the condition

that is used. For more information, see “Compound SQL (Procedure)”.

References to SQL statement names

The name of an SQL statement can be the same as the name of another SQL

statement declared in the same routine. This can occur when the two SQL

statements are declared in different compound statements. The compound

statement that contains the declaration of an SQL statement name determines the

scope of that statement name. A statement name must be unique within the

compound statement in which it is declared, excluding any declarations in

compound statements that are nested within that compound statement (SQLSTATE

42734). A statement name can only be referenced within the compound statement

in which it is declared, including any compound statements that are nested within

that compound statement. When there is a reference to a statement name, the

statement that is declared in the innermost compound statement is the statement

that is used. For more information, see “Compound SQL (Procedure)”.

About SQL control statements

Statements 15

References to SQL cursor names

The name of an SQL cursor can be the same as the name of another SQL cursor

declared in the same routine. This can occur when the two SQL cursors are

declared in different compound statements. The compound statement that contains

the declaration of an SQL cursor determines the scope of that cursor name. A

cursor name must be unique within the compound statement in which it is

declared, excluding any declarations in compound statements that are nested

within that compound statement (SQLSTATE 42734). A cursor name can only be

referenced within the compound statement in which it is declared, including any

compound statements that are nested within that compound statement. When there

is a reference to a cursor name, the cursor that is declared in the innermost

compound statement is the cursor that is used. For more information, see

“Compound SQL (Procedure)”.

About SQL control statements

16 SQL Reference, Volume 2

Function, method, and procedure designators

The following sections describe syntax fragments that are used to uniquely identify

a function, method, or procedure.

Function designator

A function designator uniquely identifies a single function. Function designators

typically appear in DDL statements for functions (such as DROP or ALTER).

function-designator:

�

 FUNCTION function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION function-name

Identifies a particular function, and is valid only if there is exactly one function

instance with the name function-name in the schema. The identified function

can have any number of parameters defined for it. In dynamic SQL statements,

the CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. If no function by this name exists in the named or implied schema, an

error (SQLSTATE 42704) is raised. If there is more than one instance of the

function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function. The

function resolution algorithm is not used.

function-name

Specifies the name of the function. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE FUNCTION statement. The number of data

types, and the logical concatenation of the data types, is used to identify

the specific function instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

Function, method, and procedure designators

Statements 17

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Identifies a particular user-defined function, using the name that is specified or

defaulted to at function creation time. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements, the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The specific-name

must identify a specific function instance in the named or implied schema;

otherwise, an error (SQLSTATE 42704) is raised.

Method designator

A method designator uniquely identifies a single method. Method designators

typically appear in DDL statements for methods (such as DROP or ALTER).

method-designator:

�

 METHOD method-name FOR type-name

(

)

,

data-type

SPECIFIC METHOD

specific-name

METHOD method-name

Identifies a particular method, and is valid only if there is exactly one method

instance with the name method-name for the type type-name. The identified

method can have any number of parameters defined for it. If no method by

this name exists for the type, an error (SQLSTATE 42704) is raised. If there is

more than one instance of the method for the type, an error (SQLSTATE 42725)

is raised.

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method. The

method resolution algorithm is not used.

method-name

Specifies the name of the method for the type type-name.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE TYPE statement. The number of data types, and

the logical concatenation of the data types, is used to identify the specific

method instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

Function, method, and procedure designators

18 SQL Reference, Volume 2

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named

or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name

Names the type with which the specified method is to be associated. The

name must identify a type already described in the catalog (SQLSTATE

42704). In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names.

SPECIFIC METHOD specific-name

Identifies a particular method, using the name that is specified or defaulted to

at method creation time. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names. The specific-name must identify a

specific method instance in the named or implied schema; otherwise, an error

(SQLSTATE 42704) is raised.

Procedure designator

A procedure designator uniquely identifies a single procedure. Procedure

designators typically appear in DDL statements for procedures (such as DROP or

ALTER).

procedure-designator:

�

 PROCEDURE procedure-name

(

)

,

data-type

SPECIFIC PROCEDURE

specific-name

PROCEDURE procedure-name

Identifies a particular procedure, and is valid only if there is exactly one

procedure instance with the name procedure-name in the schema. The identified

procedure can have any number of parameters defined for it. In dynamic SQL

statements, the CURRENT SCHEMA special register is used as a qualifier for

an unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. If no procedure by this name exists in the named or implied schema,

Function, method, and procedure designators

Statements 19

an error (SQLSTATE 42704) is raised. If there is more than one instance of the

procedure in the named or implied schema, an error (SQLSTATE 42725) is

raised.

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure. The

procedure resolution algorithm is not used.

procedure-name

Specifies the name of the procedure. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names.

(data-type,...)

Values must match the data types that were specified (in the corresponding

position) on the CREATE PROCEDURE statement. The number of data

types, and the logical concatenation of the data types, is used to identify

the specific procedure instance.

 If a data type is unqualified, the type name is resolved by searching the

schemas on the SQL path. This also applies to data type names specified

for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking for a

data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.

Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name

Identifies a particular procedure, using the name that is specified or defaulted

to at procedure creation time. In dynamic SQL statements, the CURRENT

SCHEMA special register is used as a qualifier for an unqualified object name.

In static SQL statements, the QUALIFIER precompile/bind option implicitly

specifies the qualifier for unqualified object names. The specific-name must

identify a specific procedure instance in the named or implied schema;

otherwise, an error (SQLSTATE 42704) is raised.

Function, method, and procedure designators

20 SQL Reference, Volume 2

ALLOCATE CURSOR

The ALLOCATE CURSOR statement allocates a cursor for the result set identified

by the result set locator variable. For more information about result set locator

variables, see the description of the ASSOCIATE LOCATORS statement.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ��

Description

cursor-name

Names the cursor. The name must not identify a cursor that has already been

declared in the source SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

 Names a result set locator variable that has been declared in the source SQL

procedure, according to the rules for declaring result set locator variables. For

more information on declaring SQL variables, see “Compound SQL (Procedure)

statement”.

The result set locator variable must contain a valid result set locator value, as

returned by the ASSOCIATE LOCATORS SQL statement (SQLSTATE 0F001).

Rules

v The following rules apply when using an allocated cursor:

– An allocated cursor cannot be opened with the OPEN statement (SQLSTATE

24502).

– An allocated cursor cannot be used in a positioned UPDATE or DELETE

statement (SQLSTATE 42828).

– An allocated cursor can be closed with the CLOSE statement. Closing an

allocated cursor closes the associated cursor.

– Only one cursor can be allocated to each result set.
v Allocated cursors last until a rollback operation, an implicit close, or an explicit

close.

v A commit operation destroys allocated cursors that are not defined WITH

HOLD.

v Destroying an allocated cursor closes the associated cursor in the SQL procedure.

Examples

This SQL procedure example defines and associates cursor C1 with the result set

locator variable LOC1 and the related result set returned by the SQL procedure:

ALLOCATE CURSOR

Statements 21

ALLOCATE C1 CURSOR FOR RESULT SET LOC1;

ALLOCATE CURSOR

22 SQL Reference, Volume 2

ALTER AUDIT POLICY

The ALTER AUDIT POLICY statement modifies the definition of an audit policy at

the current server.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER AUDIT POLICY policy-name �

�

�

�

,

(1)

(2)

CATEGORIES

ALL

STATUS

BOTH

AUDIT

FAILURE

CHECKING

NONE

CONTEXT

SUCCESS

WITHOUT DATA

EXECUTE

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

ERROR TYPE

NORMAL

AUDIT

��

Notes:

1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most

once (SQLSTATE 42614).

2 Each category can be specified at most once (SQLSTATE 42614), and no other

category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name

Identifies the audit policy that is to be altered. This is a one-part name. It is an

SQL identifier (either ordinary or delimited). The name must uniquely identify

an existing audit policy at the current server (SQLSTATE 42704).

CATEGORIES

A list of one or more audit categories for which a new status value is specified.

If ALL is not specified, the STATUS of any category that is not explicitly

specified remains unchanged.

ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT

DATA.

ALTER AUDIT POLICY

Statements 23

AUDIT

Generates records when audit settings are changed or when the audit log

is accessed.

CHECKING

Generates records during authorization checking of attempts to access or

manipulate database objects or functions.

CONTEXT

Generates records to show the operation context when a database

operation is performed.

EXECUTE

Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host

variables and parameter markers should be logged as part of the

EXECUTE category.

WITHOUT DATA

Input data values provided for any host variables and parameter

markers are not logged as part of the EXECUTE category.

WITH DATA

Input data values provided for any host variables and parameter

markers are logged as part of the EXECUTE category. Not all input

values are logged; specifically, LOB, LONG, XML, and structured

type parameters appear as the null value. Date, time, and

timestamp fields are logged in ISO format. The input data values

are converted to the database code page before being logged. If

code page conversion fails, no errors are returned and the

unconverted data is logged.

OBJMAINT

Generates records when data objects are created or dropped.

SECMAINT

Generates records when object privileges, database privileges, or DBADM

authority is granted or revoked. Records are also generated when the

database manager security configuration parameters sysadm_group,

sysctrl_group, or sysmaint_group are modified.

SYSADMIN

Generates records when operations requiring SYSADM, SYSMAINT, or

SYSCTRL authority are performed.

VALIDATE

Generates records when users are authenticated or when system security

information related to a user is retrieved.

STATUS

Specifies a status for the specified category.

BOTH

Successful and failing events will be audited.

FAILURE

Only failing events will be audited.

SUCCESS

Only successful events will be audited.

ALTER AUDIT POLICY

24 SQL Reference, Volume 2

NONE

No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for

errors associated with the operation being performed are returned to the

application.

AUDIT

All errors, including errors occurring within the audit facility itself, are

returned to the application.

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context

is associated with an audit policy
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL

statement is executing, subsequent AUDIT-exclusive SQL statements wait until

the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

v If the audit policy that is being altered is currently associated with a database

object, the changes do not take effect until the next unit of work for the

application that is affected by the change. For example, if the audit policy is in

use for the database, no current units of work will see the change to the policy

until after a COMMIT or a ROLLBACK statement for that unit of work

completes.

Example

Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy

named DBAUDPRF to audit both successes and failures.

 ALTER AUDIT POLICY DBAUDPRF

 CATEGORIES SECMAINT STATUS BOTH,

 CHECKING STATUS BOTH,

 VALIDATE STATUS BOTH

ALTER AUDIT POLICY

Statements 25

ALTER BUFFERPOOL

The ALTER BUFFERPOOL statement is used to do the following:

v Modify the size of the buffer pool on all database partitions or on a single

database partition

v Enable or disable automatic sizing of the buffer pool

v Add this buffer pool definition to a new database partition group

v Modify the block area of the buffer pool for block-based I/O

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� ALTER BUFFERPOOL bufferpool-name �

�
 IMMEDIATE

SIZE

number-of-pages

DEFERRED

DBPARTITIONNUM

db-partition-number

AUTOMATIC

number-of-pages

ADD DATABASE PARTITION GROUP

db-partition-group-name

NUMBLOCKPAGES

number-of-pages

BLOCKSIZE

number-of-pages

BLOCKSIZE

number-of-pages

��

Description

bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). It must be a buffer pool described in the catalog.

IMMEDIATE or DEFERRED

Indicates whether or not the buffer pool size will be changed immediately.

IMMEDIATE

The buffer pool size will be changed immediately. If there is not enough

reserved space in the database shared memory to allocate new space

(SQLSTATE 01657), the statement is executed as DEFERRED.

DEFERRED

The buffer pool size will be changed when the database is reactivated (all

applications need to be disconnected from the database). Reserved memory

space is not needed; DB2 will allocate the required memory from the

system at activation time.

DBPARTITIONNUM db-partition-number

Specifies the database partition on which the size of the buffer pool is

modified. An exception entry is created in the

SYSCAT.BUFFERPOOLDBPARTITIONS system catalog view. The database

partition must be in one of the database partition groups for the buffer pool

(SQLSTATE 42729). If this clause is not specified, the size of the buffer pool is

ALTER BUFFERPOOL

26 SQL Reference, Volume 2

modified on all database partitions except those that have an exception entry

in SYSCAT.BUFFERPOOLDBPARTITIONS.

SIZE

Specifies a new size for the buffer pool, or enables or disables self tuning for

this buffer pool.

number-of-pages

The number of pages for the new buffer pool size. If the buffer pool is

already a self-tuning buffer pool, and the SIZE number-of-pages clause is

specified, the alter operation disables self-tuning for this buffer pool.

AUTOMATIC

Enables self tuning for this buffer pool. The database manager adjusts the

size of the buffer pool in response to workload requirements. When

AUTOMATIC is specified, the DBPARTITIONNUM clause cannot be

specified (SQLSTATE 42601).

ADD DATABASE PARTITION GROUP db-partition-group-name

Adds this database partition group to the list of database partition groups to

which the buffer pool definition is applicable. For any database partition in the

database partition group that does not already have the buffer pool defined,

the buffer pool is created on the database partition using the default size

specified for the buffer pool. Table spaces in db-partition-group-name may

specify this buffer pool. The database partition group must currently exist in

the database (SQLSTATE 42704).

NUMBLOCKPAGES number-of-pages

Specifies the number of pages that should exist in the block-based area. The

number of pages must not be greater than 98 percent of the number of pages

for the buffer pool (SQLSTATE 54052). Specifying the value 0 disables block

I/O. The actual value of NUMBLOCKPAGES used will be a multiple of

BLOCKSIZE.

BLOCKSIZE number-of-pages

Specifies the number of pages in a block. The block size must be a value

between 2 and 256 (SQLSTATE 54053). The default value is 32.

Notes

v Only the buffer pool size can be changed dynamically (immediately). All other

changes are deferred, and will only come into effect after the database is

reactivated.

v If the statement is executed as deferred, the following is true: Although the

buffer pool definition is transactional and the changes to the buffer pool

definition will be reflected in the catalog tables on commit, no changes to the

actual buffer pool will take effect until the next time the database is started. The

current attributes of the buffer pool will exist until then, and there will not be

any impact to the buffer pool in the interim. Tables created in table spaces of

new database partition groups will use the default buffer pool. The statement is

IMMEDIATE by default when that keyword applies.

v There should be enough real memory on the machine for the total of all the

buffer pools, as well as for the rest of the database manager and application

requirements.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

ALTER BUFFERPOOL

Statements 27

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

ALTER BUFFERPOOL

28 SQL Reference, Volume 2

ALTER DATABASE PARTITION GROUP

The ALTER DATABASE PARTITION GROUP statement is used to:

v add one or more database partitions to a database partition group

v drop one or more database partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax

�� ALTER DATABASE PARTITION GROUP db-partition-name �

�

�

 ,

ADD

DBPARTITIONNUM

db-partitions-clause

DBPARTITIONNUMS

LIKE DBPARTITIONNUM

db-partition-number

WITHOUT TABLESPACES

DROP

DBPARTITIONNUM

db-partitions-clause

DBPARTITIONNUMS

��

db-partitions-clause:

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

Description

db-partition-name

Names the database partition group. This is a one-part name. It is an SQL

identifier (either ordinary or delimited). It must be a database partition group

described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be

specified (SQLSTATE 42832).

ADD DBPARTITIONNUM

Specifies the specific database partition or partitions to add to the database

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.

Any specified database partition must not already be defined in the database

partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM

Specifies the specific database partition or partitions to drop from the database

partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.

Any specified database partition must already be defined in the database

partition group (SQLSTATE 42729).

db-partitions-clause

Specifies the database partition or partitions to be added or dropped.

ALTER DATABASE PARTITION GROUP

Statements 29

db-partition-number1

Specify a specific database partition number.

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9).

LIKE DBPARTITIONNUM db-partition-number

Specifies that the containers for the existing table spaces in the database

partition group will be the same as the containers on the specified

db-partition-number. The specified database partition must be a partition that

existed in the database partition group prior to this statement, and that is not

included in a DROP DBPARTITIONNUM clause of the same statement.

 For table spaces that are defined to use automatic storage (that is, table spaces

that were created with the MANAGED BY AUTOMATIC STORAGE clause of

the CREATE TABLESPACE statement, or for which no MANAGED BY clause

was specified at all), the containers will not necessarily match those from the

specified partition. Instead, containers will automatically be assigned by the

database manager based on the storage paths that are associated with the

database, and this might or might not result in the same containers being used.

The size of each table space is based on the initial size that was specified when

the table space was created, and might not match the current size of the table

space on the specified partition.

WITHOUT TABLESPACES

Specifies that the containers for existing table spaces in the database partition

group are not created on the newly added database partition or partitions. The

ALTER TABLESPACE statement using the db-partitions-clause must be used to

define containers for use with the table spaces that are defined on this

database partition group. If this option is not specified, the default containers

are specified on newly added database partitions for each table space defined

on the database partition group.

 This option is ignored for table spaces that are defined to use automatic

storage (that is, table spaces that were created with the MANAGED BY

AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement, or for

which no MANAGED BY clause was specified at all). There is no way to defer

container creation for these table spaces. Containers will automatically be

assigned by the database manager based on the storage paths that are

associated with the database. The size of each table space will be based on the

initial size that was specified when the table space was created.

Rules

v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).

v Each db-partition-number listed in the db-partitions-clause must be for a unique

database partition (SQLSTATE 42728).

v A valid database partition number is between 0 and 999 inclusive (SQLSTATE

42729).

v A database partition cannot appear in both the ADD and DROP clauses

(SQLSTATE 42728).

v There must be at least one database partition remaining in the database partition

group. The last database partition cannot be dropped from a database partition

group (SQLSTATE 428C0).

ALTER DATABASE PARTITION GROUP

30 SQL Reference, Volume 2

v If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT

TABLESPACES clause is specified when adding a database partition, the default

is to use the lowest database partition number of the existing database partitions

in the database partition group (say it is 2) and proceed as if LIKE

DBPARTITIONNUM 2 had been specified. For an existing database partition to

be used as the default, it must have containers defined for all the table spaces in

the database partition group (column IN_USE of

SYSCAT.DBPARTITIONGROUPDEF is not ’T’).

Notes

v When a database partition is added to a database partition group, a catalog

entry is made for the database partition (see

SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed

immediately to include the new database partition, along with an indicator

(IN_USE) that the database partition is in the distribution map if either:

– no table spaces are defined in the database partition group or

– no tables are defined in the table spaces defined in the database partition

group and the WITHOUT TABLESPACES clause was not specified.
The distribution map is not changed and the indicator (IN_USE) is set to

indicate that the database partition is not included in the distribution map if

either:

– Tables exist in table spaces in the database partition group or

– Table spaces exist in the database partition group and the WITHOUT

TABLESPACES clause was specified (unless all of the table spaces are defined

to use automatic storage, in which case the WITHOUT TABLESPACES clause

is ignored)
To change the distribution map, the REDISTRIBUTE DATABASE PARTITION

GROUP command must be used. This redistributes any data, changes the

distribution map, and changes the indicator. Table space containers need to be

added before attempting to redistribute data if the WITHOUT TABLESPACES

clause was specified.

v When a database partition is dropped from a database partition group, the

catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)

is updated. If there are no tables defined in the table spaces defined in the

database partition group, the distribution map is changed immediately to

exclude the dropped database partition and the entry for the database partition

in the database partition group is dropped. If tables exist, the distribution map is

not changed and the indicator (IN_USE) is set to indicate that the database

partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION

GROUP command must be used to redistribute the data and drop the entry for

the database partition from the database partition group.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

Example

Assume that you have a six-partition database that has the following database

partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the

system.

ALTER DATABASE PARTITION GROUP

Statements 31

v Assume that you want to add database partitions 3 and 6 to a database partition

group called MAXGROUP, and have table space containers like those on

database partition 2. The statement is as follows:

 ALTER DATABASE PARTITION GROUP MAXGROUP

 ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

v Assume that you want to drop database partition 1 and add database partition 6

to database partition group MEDGROUP. You will define the table space

containers separately for database partition 6 using ALTER TABLESPACE. The

statement is as follows:

 ALTER DATABASE PARTITION GROUP MEDGROUP

 ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES

 DROP DBPARTITIONNUM(1)

ALTER DATABASE PARTITION GROUP

32 SQL Reference, Volume 2

ALTER DATABASE

The ALTER DATABASE statement adds new storage paths to the collection of

paths that are used for automatic storage table spaces. An automatic storage table

space is a table space that has been created using automatic storage; that is, the

MANAGED BY AUTOMATIC STORAGE clause has been specified on the CREATE

TABLESPACE statement, or no MANAGED BY clause has been specified at all. If a

database is enabled for automatic storage, container and space management

characteristics of its table spaces can be completely determined by the database

manager.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either

SYSADM or SYSCTRL authority.

Syntax

��

ALTER DATABASE

database-name

�

 ,

ADD STORAGE ON

’storage-location’

��

Description

database-name

An optional value specifying the name of the database that is to be altered. If

specified, the value must match the name of the database to which the

application is currently connected (not the alias that the client might have

cataloged); otherwise, an error is returned (SQLSTATE 42961).

ADD STORAGE ON

Specifies that one or more new storage locations are to be added to the

collection of storage locations that are used for automatic storage table spaces.

’storage-location’

A string constant that specifies either an absolute path or the letter name of

a drive (Windows operating systems only) on which containers for

automatic storage table spaces are to be created.

Rules

v If automatic storage is not defined for the database (that is, the AUTOMATIC

STORAGE NO clause was specified on the CREATE DATABASE command),

new storage paths cannot be added (SQLSTATE 55060).

v The storage path must exist and be accessible (SQLSTATE 57019). Similarly, in a

partitioned database environment, the storage path must exist and be accessible

on every database partition (SQLSTATE 57019).

ALTER DATABASE

Statements 33

Notes

v When adding new storage paths:

– Existing regular and large table spaces using automatic storage will not

initially use these new paths. The database manager might choose to create

new table space containers on these paths only if an out-of-space condition

occurs.

– Existing temporary table spaces using automatic storage might use these new

paths immediately. If a temporary table space is not in use at the time of an

ADD STORAGE ON operation, new containers might be created on those

storage paths immediately. However, if the temporary table space is in use,

new containers will not be created until there are no more users of the table

space.
v Although ADD STORAGE is an operation that is logged, whether or not it is

redone during a rollforward operation depends on how the database was

restored. If the restore operation does not redefine the storage paths that are

associated with the database, the log record that contains the storage path

definition is redone, and the storage paths that are described in the log record

are added during the rollforward operation. However, if the storage paths are

redefined during the restore operation, the rollforward operation will not redo

this log record, because it is assumed that you have already set up the storage

paths. This behavior also applies to high availability disaster recovery (HADR)

environments: the log record will not be redone if the storage paths were

redefined when the standby system was set up.

v Do not use the ADD STORAGE clause to add storage paths to a database while

a new database partition is being added. If new storage paths are added during

or after a database partition has been added, but before that new partition has

been started, the new storage paths will not be reflected on the new database

partition, and the database partitions will be out of synchronization.

v When free space is calculated for a storage path on a database partition, the

database manager checks for the existence of the following directories or mount

points within the storage path, and will use the first one that is found.

<storage path>/<instance name>/NODE####/<database name>

<storage path>/<instance name>/NODE####

<storage path>/<instance name>

<storage path>

Where:

– <storage path> is a storage path associated with the database

– <instance name> is the instance under which the database resides

– NODE#### corresponds to the database partition number (for example,

NODE0000 or NODE0001)

– <database name> is the name of the database
File systems can be mounted at a point beneath the storage path, and the

database manager will recognize that the actual amount of free space available

for table space containers might not be the same amount that is associated with

the storage path directory itself.

Consider an example in which two logical database partitions exist on one

physical machine, and there is a single storage path (/db2data). Each database

partition will use this storage path, but you might want to isolate the data from

each partition within its own file system. In this case, a separate file system can

be created for each partition and it can be mounted at /db2data/<instance>/
NODE####. When creating containers on the storage path and determining free

ALTER DATABASE

34 SQL Reference, Volume 2

space, the database manager will not retrieve free space information for

/db2data, but instead will retrieve it for the corresponding /db2data/
<instance>/NODE#### directory.

v In general, the same storage paths must be used for each partition in a

multi-partition database. One exception to this is the case in which database

partition expressions are used within the storage path. Doing this allows the

database partition number to be reflected in the storage path, such that the

resulting path name is different on each partition.

You use the argument “ $N” ([blank]$N) to indicate a database partition

expression. A database partition expression can be used anywhere in the storage

path, and multiple database partition expressions can be specified. Terminate the

database partition expression with a space character; whatever follows the space

is appended to the storage path after the database partition expression is

evaluated. If there is no space character in the storage path after the database

partition expression, it is assumed that the rest of the string is part of the

expression. The argument can only be used in one of the following forms.

 Table 10. Arguments for Creating Storage Paths. Operators are evaluated from left to right.

The database partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N ″ $N″ 10

[blank]$N+[number] ″ $N+100″ 110

[blank]$N%[number] ″ $N%5″

a 0

[blank]$N+[number]%[number] ″ $N+1%5″ 1

[blank]$N%[number]+[number] ″ $N%4+2″ 4

a % represents the modulus operator.

Examples

Example 1: Add two paths under the /db2 directory (/db2/filesystem1 and

/db2/filesystem2) and a third path named /filesystem3 to the space for

automatic storage table spaces that is associated with the currently connected

database.

 ALTER DATABASE ADD STORAGE ON ’/db2/filesystem1’, ’/db2/filesystem2’,

 ’/filesystem3’

Example 2: Add drives D and E to the space for automatic storage table spaces that

is associated with the SAMPLE database.

 ALTER DATABASE SAMPLE ADD STORAGE ON ’D:’, ’E:\’

Example 3: Add directory F:\DB2DATA and drive G to the space for automatic storage

table spaces that is associated with the currently connected database.

 ALTER DATABASE ADD STORAGE ON ’F:\DB2DATA’, ’G:’

Example 4: Add a storage path that uses a database partition expression to

differentiate the storage paths on each of the database partitions.

 ALTER DATABASE ADD STORAGE ON ’/dataForPartition $N’

The storage path that would be used on database partition 0 is

/dataForPartition0; on database partition 1, it would be /dataForPartition1; and

so on.

ALTER DATABASE

Statements 35

ALTER FUNCTION

The ALTER FUNCTION statement modifies the properties of an existing function.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the function

v Owner of the function, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v SYSADM or DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the

authorization ID of the statement must also include at least one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v SYSADM or DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of

the statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To alter a function to be fenced, no additional authorities or privileges are

required.

Syntax

��

ALTER

function-designator

�

EXTERNAL NAME

’string’

identifier

FENCED

NOT FENCED

THREADSAFE

NOT THREADSAFE

��

Description

function-designator

Uniquely identifies the function to be altered. For more information, see

“Function, method, and procedure designators” on page 17.

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the function. This

option can only be specified when altering external functions (SQLSTATE

42849).

ALTER FUNCTION

36 SQL Reference, Volume 2

FENCED or NOT FENCED

Specifies whether the function is considered safe to run in the database

manager operating environment’s process or address space (NOT FENCED), or

not (FENCED). Most functions have the option of running as FENCED or NOT

FENCED.

 If a function is altered to be FENCED, the database manager insulates its

internal resources (for example, data buffers) from access by the function. In

general, a function running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions that were not adequately coded,

reviewed, and tested can compromise the integrity of DB2. DB2 takes some

precautions against many of the common types of inadvertent failures that

might occur, but cannot guarantee complete integrity when NOT FENCED

user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT

FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with

the NO SQL option, the function cannot be altered to be FENCED (SQLSTATE

42613).

This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions

(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE

Specifies whether the function is considered safe to run in the same process as

other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the function is defined with LANGUAGE other than OLE and OLEDB:

v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be

threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will

never simultaneously invoke the function in the same process as another

routine. Only a fenced function can be NOT THREADSAFE (SQLSTATE

42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions

(SQLSTATE 42849).

Notes

v It is not possible to alter a function that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).

v Functions declared as LANGUAGE SQL, sourced functions, or template

functions cannot be altered (SQLSTATE 42917).

Example

The function MAIL() has been thoroughly tested. To improve its performance, alter

the function to be not fenced.

 ALTER FUNCTION MAIL() NOT FENCED

ALTER FUNCTION

Statements 37

ALTER HISTOGRAM TEMPLATE

The ALTER HISTOGRAM TEMPLATE statement is used to modify the template

describing the type of histogram that can be used to override one or more of the

default histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant ��

Description

template-name

Names the histogram template. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The name must identify an existing histogram

template at the current server (SQLSTATE 42704). The template name can be

the default system histogram template SYSDEFAULTHISTOGRAM.

HIGH BIN VALUE bigint-constant

Specifies the top value of the second to last bin (the last bin has an unbounded

top value). The units depend on how the histogram is used. The maximum

value is 268 435 456.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

ALTER HISTOGRAM TEMPLATE

38 SQL Reference, Volume 2

Notes

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is

executing, subsequent WLM-exclusive SQL statements will wait until the current

WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Example

Change the high bin value of a histogram template named LIFETIMETEMP.

 ALTER HISTOGRAM TEMPLATE LIFETIMETEMP

 HIGH BIN VALUE 90000

ALTER HISTOGRAM TEMPLATE

Statements 39

ALTER METHOD

The ALTER METHOD statement modifies an existing method by changing the

method body associated with the method.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:

– ALTERIN privilege on the schema of the type

– Owner of the type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view
v SYSADM or DBADM authority

Syntax

�� ALTER method-designator EXTERNAL NAME ’string’

identifier
 ��

Description

method-designator

Uniquely identifies the method to be altered. For more information, see

“Function, method, and procedure designators” on page 17.

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the method. This

option can only be specified when altering external methods (SQLSTATE

42849).

Notes

v It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).

v Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).

v Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).

v The specified method must have a body before it can be altered (SQLSTATE

42704).

Example

Alter the method DISTANCE() in the structured type ADDRESS_T to use the

library newaddresslib.

 ALTER METHOD DISTANCE()

 FOR TYPE ADDRESS_T

 EXTERNAL NAME ’newaddresslib!distance2’

ALTER METHOD

40 SQL Reference, Volume 2

ALTER NICKNAME

The ALTER NICKNAME statement modifies the nickname information associated

with a data source object (such as a table, view, or file). This statement modifies

the information that is stored in the federated database by:

v Altering the local column names for the columns of the data source object

v Altering the local data types for the columns of the data source object

v Adding, setting, or dropping nickname and column options

v Adding or dropping a primary key

v Adding or dropping one or more unique, referential, or check constraints

v Altering one or more referential or check constraint attributes

v Altering the caching of data at a federated server

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTER privilege on the nickname specified in the statement

v CONTROL privilege on the nickname specified in the statement

v ALTERIN privilege on the schema, if the schema name of the nickname exists

v Owner of the nickname, as recorded in the OWNER column of the

SYSCAT.TABLES catalog view

v SYSADM or DBADM authority

Syntax

�� ALTER NICKNAME nickname �

�

�

,

ADD

OPTIONS

(

nickname-option-name

string-constant

)

SET

DROP

nickname-option-name

 �

ALTER NICKNAME

Statements 41

�

�

�

,

COLUMN

(1)

ALTER

column-name

LOCAL NAME

column-name

LOCAL TYPE

local-data-type

(2)

federated-column-options

ADD

unique-constraint

referential-constraint

check-constraint

ALTER

FOREIGN KEY

constraint-name

constraint-alteration

CHECK

DROP

PRIMARY KEY

FOREIGN KEY

constraint-name

UNIQUE

CHECK

CONSTRAINT

ALLOW CACHING

DISALLOW CACHING

��

local-data-type:

 built-in-type

distinct-type-name

built-in-type:

ALTER NICKNAME

42 SQL Reference, Volume 2

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(1)

CHARACTER

CHAR

(integer)

(3)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

federated-column-options:

�

 ,

ADD

OPTIONS

(

column-option-name

string-constant

)

SET

DROP

column-option-name

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

�

ALTER NICKNAME

Statements 43

� constraint-attributes

referential-constraint:

CONSTRAINT

constraint-name

FOREIGN KEY

�

 ,

(

column-name

)

�

� references-clause

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� constraint-attributes

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

constraint-attributes:

*

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

(4)

DISABLE QUERY OPTIMIZATION

*

ALTER NICKNAME

44 SQL Reference, Volume 2

constraint-alteration:

 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

Notes:

1 You cannot specify both the ALTER COLUMN clause and an ADD, ALTER,

or DROP informational constraint clause in the same ALTER NICKNAME

statement.

2 If you need to specify the federated-column-options clause in addition to the

LOCAL NAME parameter, the LOCAL TYPE parameter, or both, you must

specify the federated-column-options clause last.

3 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

4 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary

key constraint.

Description

nickname

Identifies the nickname for the data source object (such as a table, view, or file)

that contains the column being altered. It must be a nickname described in the

catalog.

OPTIONS

Indicates the nickname options that are added, set, or dropped when the

nickname is altered.

ADD

Adds a nickname option.

SET

Changes the setting of a nickname option.

nickname-option-name

Names a nickname option that is to be added or set.

string-constant

Specifies the setting for nickname-option-name as a character string constant.

DROP nickname-option-name

Drops a nickname option.

ALTER COLUMN column-name

Names the column to be altered. The column-name is the federated server’s

current name for the column of the table or view at the data source. The

column-name must identify an existing column of the nickname (SQLSTATE

42703). You cannot reference the same column name multiple times in the same

ALTER NICKNAME statement (SQLSTATE 42711).

LOCAL NAME column-name

Specifies a new name, column-name, by which the federated server is to

reference the column to be altered. The new name cannot be qualified, and the

same name cannot be used for more than one column of the nickname

(SQLSTATE 42711).

ALTER NICKNAME

Statements 45

LOCAL TYPE local-data-type

Specifies a new local data type to which the data type of the column that is to

be altered will map. The new type is denoted by local-data-type.

 Some wrappers only support a subset of the SQL data types. For descriptions

of specific data types, see the description of the “CREATE TABLE” statement.

OPTIONS

Indicates what column options are to be added, set, or dropped for the column

specified after the COLUMN keyword.

ADD

Adds a column option.

SET

Changes the setting of a column option.

column-option-name

Names a column option that is to be added or set.

string-constant

Specifies the setting for column-option-name as a character string constant.

DROP column-option-name

Drops a column option.

ADD unique-constraint

Defines a unique constraint. See the description of the “CREATE NICKNAME”

statement.

ADD referential-constraint

Defines a referential constraint. See the description of the “CREATE

NICKNAME” statement.

ADD check-constraint

Defines a check constraint. See the description of the “CREATE NICKNAME”

statement.

ALTER FOREIGN KEY constraint-name

Alters the constraint attributes of the referential constraint constraint-name. For

a description of the constraint attributes, see the “CREATE NICKNAME”

statement. The constraint-name must identify an existing referential constraint

(SQLSTATE 42704).

ALTER CHECK constraint-name

Alters the constraint attributes of the check constraint constraint-name. The

constraint-name must identify an existing check constraint (SQLSTATE 42704).

constraint-alteration

Provides options for changing the attributes associated with referential or

check constraints.

ENABLE QUERY OPTIMIZATION

The constraint can be used for query optimization under appropriate

circumstances.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

DROP PRIMARY KEY

Drops the definition of the primary key and all referential constraints that are

dependent upon this primary key. The nickname must have a primary key.

ALTER NICKNAME

46 SQL Reference, Volume 2

DROP FOREIGN KEY constraint-name

Drops the referential constraint constraint-name. The constraint-name must

identify an existing referential constraint defined on the nickname.

DROP UNIQUE constraint-name

Drops the definition of the unique constraint constraint-name and all referential

constraints that are dependent upon this unique constraint. The constraint-name

must identify an existing unique constraint.

DROP CHECK constraint-name

Drops the check constraint constraint-name. The constraint-name must identify an

existing check constraint defined on the nickname.

DROP CONSTRAINT constraint-name

Drops the constraint constraint-name. The constraint-name must identify an

existing check constraint, referential constraint, primary key, or unique

constraint defined on the nickname.

ALLOW CACHING or DISALLOW CACHING

Specifies whether or not data for this nickname can be cached at the federated

server.

ALLOW CACHING

Specifies that data for this nickname can be cached at the federated server.

DISALLOW CACHING

Specifies that data for this nickname cannot be cached at the federated

server. A materialized query table definition cannot refer to a nickname

that disallows caching, and this clause cannot be specified for a nickname

that is referenced in the fullselect of a materialized query table definition

(SQLSTATE 42917).

Rules

v If a nickname is used in a view, SQL method, or SQL function, or informational

constraints are defined on it, the ALTER NICKNAME statement cannot be used

to change the local names or data types for the columns in the nickname

(SQLSTATE 42893). The statement can be used, however, to add, set, or drop

column options, nickname options, or informational constraints.

v If a nickname is referenced by a materialized query table definition, the ALTER

NICKNAME statement cannot be used to change the local names, data types,

column options, or nickname options (SQLSTATE 42893). Moreover, the

statement cannot be used to disable caching (SQLSTATE 42917). The statement

can be used, however, to add, alter, or drop informational constraints.

v A column option cannot be specified more than once in the same ALTER

NICKNAME statement (SQLSTATE 42853). When a column option is enabled,

reset, or dropped, any other column options that are in use are not affected.

v For relational nicknames, the ALTER NICKNAME statement within a given unit

of work (UOW) cannot be processed under either of the following conditions

(SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– Either an INSERT, DELETE, or UPDATE statement is already issued in the

same UOW against the nickname that is referenced in this statement
v For non-relational nicknames, the ALTER NICKNAME statement within a given

unit of work (UOW) cannot be processed under any of the following conditions

(SQLSTATE 55007):

ALTER NICKNAME

Statements 47

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW

– Either an INSERT, DELETE, or UPDATE statement has already been issued in

the same UOW against the nickname that is referenced in this statement

Notes

v If the ALTER NICKNAME statement is used to change the local name for a

column of a nickname, queries against that column must reference it by its new

name.

v When the local specification of a column’s data type is changed, the database

manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so on) gathered

for that column.

v Specify the DISALLOW CACHING clause for nicknames whose data source

object is protected. This ensures that each time the nickname is used, data for

the appropriate authorization ID is returned from the data source at query

execution time.

Examples

Example 1: The nickname NICK1 references a DB2 for System i table called T1.

Also, COL1 is the local name that references this table’s first column, C1. Rename

the local name for C1 from COL1 to NEWCOL.

 ALTER NICKNAME NICK1

 ALTER COLUMN COL1

 LOCAL NAME NEWCOL

Example 2: The nickname EMPLOYEE references a DB2 for z/OS table called EMP.

Also, SALARY is the local name that references EMP_SAL, one of this table’s

columns. The column’s data type, FLOAT, maps to the local data type, DOUBLE.

Change the mapping so that FLOAT maps to DECIMAL (10, 5).

 ALTER NICKNAME EMPLOYEE

 ALTER COLUMN SALARY

 LOCAL TYPE DECIMAL(10,5)

Example 3: Indicate that in an Oracle table, a column with the data type of

VARCHAR does not have trailing blanks. The nickname for the table is NICK2,

and the local name for the column is COL1.

 ALTER NICKNAME NICK2

 ALTER COLUMN COL1

 OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS ’Y’)

Example 4: Alter the fully qualified path for the table-structured file, drugdata1.txt,

for the nickname DRUGDATA1. Use the FILE_PATH nickname option and change

the path from the current value of ’/user/pat/drugdata1.txt’ to

’/usr/kelly/data/drugdata1.txt’.

 ALTER NICKNAME DRUGDATA1

 OPTIONS (SET FILE_PATH ’/usr/kelly/data/drugdata1.txt’)

ALTER NICKNAME

48 SQL Reference, Volume 2

ALTER PROCEDURE (External)

The ALTER PROCEDURE (External) statement modifies an existing external

procedure by changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the procedure

v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v SYSADM or DBADM authority

To alter the EXTERNAL NAME of a procedure, the privileges held by the

authorization ID of the statement must also include at least one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v SYSADM or DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of

the statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To alter a procedure to be fenced, no additional authorities or privileges are

required.

Syntax

��

ALTER

procedure-designator

�

EXTERNAL NAME

’string’

identifier

FENCED

NOT FENCED

EXTERNAL ACTION

NO EXTERNAL ACTION

THREADSAFE

NOT THREADSAFE

NEW SAVEPOINT LEVEL

��

Description

procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a

procedure that exists at the current server. The owner of the procedure and all

ALTER PROCEDURE (External)

Statements 49

privileges on the procedure are preserved. For more information, see

“Function, method, and procedure designators” on page 17.

EXTERNAL NAME ’string’ or identifier

Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED

Specifies whether the procedure is considered safe to run in the database

manager operating environment’s process or address space (NOT FENCED), or

not (FENCED). Most procedures have the option of running as FENCED or

NOT FENCED.

 If a procedure is altered to be FENCED, the database manager insulates its

internal resources (for example, data buffers) from access by the procedure. In

general, a procedure running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that were not adequately coded,

reviewed, and tested can compromise the integrity of DB2. DB2 takes some

precautions against many of the common types of inadvertent failures that

might occur, but cannot guarantee complete integrity when NOT FENCED

stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT

FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined

with the NO SQL option, the procedure cannot be altered to be FENCED

(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures

(SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the

system can use certain optimizations that assume the procedure has no

external impact.

THREADSAFE or NOT THREADSAFE

Specifies whether the procedure is considered safe to run in the same process

as other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the procedure is defined with LANGUAGE other than OLE:

v If the procedure is defined as THREADSAFE, the database manager can

invoke the procedure in the same process as other routines. In general, to be

threadsafe, a procedure should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED procedures can be THREADSAFE.

v If the procedure is defined as NOT THREADSAFE, the database manager

will never invoke the procedure in the same process as another routine.

Only a fenced procedure can be NOT THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE

42849).

NEW SAVEPOINT LEVEL

Specifies that a new savepoint level is to be created for the procedure. A

ALTER PROCEDURE (External)

50 SQL Reference, Volume 2

savepoint level refers to the scope of reference for any savepoint-related

statement, as well as to the name space used for comparison and reference of

any savepoint names.

 The savepoint level for a procedure can only be altered to NEW SAVEPOINT

LEVEL.

Rules

v It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or

SYSPROC schema (SQLSTATE 42832).

Example

Alter the procedure PARTS_ON_HAND() to be not fenced.

 ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

ALTER PROCEDURE (External)

Statements 51

ALTER PROCEDURE (Sourced)

The ALTER PROCEDURE (Sourced) statement modifies an existing sourced

procedure by changing the data type of one or more parameters of the sourced

procedure.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the procedure

v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v SYSADM or DBADM authority

Syntax

�� ALTER procedure-designator �

�

�

ALTER PARAMETER

parameter-alteration

��

parameter-alteration:

 parameter-name SET DATA TYPE data-type

Description

procedure-designator

Uniquely identifies the procedure to be altered. The identified procedure must

be a sourced procedure (SQLSTATE 42849). For more information, see

“Function, method, and procedure designators” on page 17.

parameter-name

Identifies the parameter to be altered. The parameter-name must identify an

existing parameter of the procedure (SQLSTATE 42703). The name must not

identify a parameter that is otherwise being altered in the same ALTER

PROCEDURE statement (SQLSTATE 42713).

data-type

Specifies the new local data type of the parameter. SQL data type specifications

and abbreviations that are valid for the data-type definition of a CREATE

TABLE statement can be specified. LONG VARCHAR, LONG VARGRAPHIC,

BLOB, CLOB, DBCLOB, DECFLOAT, XML, REFERENCE, and user-defined

types are not supported (SQLSTATE 42815).

ALTER PROCEDURE (Sourced)

52 SQL Reference, Volume 2

Example

Assume that federated procedure FEDEMPLOYEE has been created for a remote

Oracle procedure named ’EMPLOYEE’. The data type of an input parameter

named SALARY maps to a DOUBLE(8) in DB2. Alter the data type of this

parameter to DECIMAL(5,2).

 ALTER PROCEDURE FEDEMPLOYEE

 ALTER PARAMETER SALARY

 SET DATA TYPE DECIMAL(5,2)

ALTER PROCEDURE (Sourced)

Statements 53

ALTER PROCEDURE (SQL)

The ALTER PROCEDURE (SQL) statement modifies an existing SQL procedure by

changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the procedure

v Owner of the procedure, as recorded in the OWNER column of the

SYSCAT.ROUTINES catalog view

v SYSADM or DBADM authority

Syntax

��

ALTER

procedure-designator

�

EXTERNAL ACTION

NO EXTERNAL ACTION

NEW SAVEPOINT LEVEL

��

Description

procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a

procedure that exists at the current server. The owner of the procedure and all

privileges on the procedure are preserved. For more information, see

“Function, method, and procedure designators” on page 17.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the

system can use certain optimizations that assume the procedure has no

external impact.

NEW SAVEPOINT LEVEL

Specifies that a new savepoint level is to be created for the procedure. A

savepoint level refers to the scope of reference for any savepoint-related

statement, as well as to the name space used for comparison and reference of

any savepoint names.

 The savepoint level for a procedure can only be altered to NEW SAVEPOINT

LEVEL.

Rules

v It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or

SYSPROC schema (SQLSTATE 42832).

ALTER PROCEDURE (SQL)

54 SQL Reference, Volume 2

Example

Alter the procedure MEDIAN_RESULT_SET to indicate that it has no external

action.

 ALTER PROCEDURE MEDIAN_RESULT_SET(DOUBLE)

 NO EXTERNAL ACTION

ALTER PROCEDURE (SQL)

Statements 55

ALTER SECURITY LABEL COMPONENT

The ALTER SECURITY LABEL COMPONENT statement modifies a security label

component.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER SECURITY LABEL COMPONENT component-name add-element-clause ��

add-element-clause:

 ADD ELEMENT string-constant

array-element-clause

tree-element-clause

array-element-clause:

 BEFORE

AFTER
 string-constant

tree-element-clause:

�

 ROOT

UNDER

string-constant

,

OVER

string-constant

Description

component-name

Specifies the name of the security label component to be altered. The named

component must exist at the current server (SQLSTATE 42704).

ADD ELEMENT

Specifies the element to be added to the security label component. If

array-element-clause and tree-element-clause are not specified, the element is

added to a set component.

string-constant

The string constant value to be added to the set of valid values for the

ALTER SECURITY LABEL COMPONENT

56 SQL Reference, Volume 2

security label component. The value cannot be the same as any other value

in the set of valid values for the security label component (SQLSTATE

42713).

BEFORE or AFTER

For an array component, specifies where the element is to be added in the

ordered set of element values for the security label component.

BEFORE

The element to be added is to be ranked immediately before the identified

existing element.

AFTER

The element to be added is to be ranked immediately after the identified

existing element.

string-constant

Specifies a string constant value of an existing element in the array

component (SQLSTATE 42704).

ROOT or UNDER

For a tree component, specifies where the element is to be added in the tree

structure of node element values for the security label component.

ROOT

The element to be added is to be considered the root node of the tree.

UNDER string-constant

The element to be added is an immediate child of the element identified by

the string-constant. The string-constant value must be an existing element in

the tree component (SQLSTATE 42704).

OVER string-constant,...

The element to be added is an immediate child of every element

identified by the list of string-constant values. Each string-constant value

must be an existing element in the tree component (SQLSTATE 42704).

Rules

v Element names cannot contain any of these characters (SQLSTATE 42601):

– Opening parenthesis - (

– Closing parenthesis -)

– Comma - ,

– Colon - :
v An element name can have no more than 32 bytes (SQLSTATE 42622).

v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.

v If the component is an array, it might or might not be possible to arrive at an

array whose total number of elements matches the total number of elements that

could be specified when creating a security label component of type array

(65 535). DB2 assigns an encoded value to the new element from within the

interval into which the new element is added. Depending on the pattern

followed when adding elements to an array component, the number of possible

values that can be assigned from within a particular interval might be quickly

exhausted if several elements are inserted into that interval.

v BEFORE and AFTER must only be specified for a security label component that

is an array (SQLSTATE 42613).

ALTER SECURITY LABEL COMPONENT

Statements 57

v ROOT and UNDER must only be specified for a security label component that is

a tree (SQLSTATE 42613).

Notes

v For a set component, there is no order to the elements in the set.

Examples

Example 1: Add the element ’High classified’ to the LEVEL security label array

component between the elements ’Secret’ and ’Classified’.

 ALTER SECURITY LABEL COMPONENT LEVEL

 ADD ELEMENT ’High classified’ BEFORE ’Classified’

Example 2: Add the element ’Funding’ to the COMPARTMENTS security label set

component.

 ALTER SECURITY LABEL COMPONENT COMPARTMENTS

 ADD ELEMENT ’Funding’

Example 3: Add the elements ’ENGINE’ and ’TOOLS’ to the GROUPS security label

array component. The following diagram shows where these new elements are to

be placed.

 PROJECT

 ________|________

 | |

 ENGINE TOOLS

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

 ALTER SECURITY LABEL COMPONENT GROUPS

 ADD ELEMENT ’TOOLS’ UNDER ’PROJECT’

 ALTER SECURITY LABEL COMPONENT GROUPS

 ADD ELEMENT ’ENGINE’ UNDER ’PROJECT’

 OVER ’TEST’, ’DEVELOPMENT’

ALTER SECURITY LABEL COMPONENT

58 SQL Reference, Volume 2

ALTER SECURITY POLICY

The ALTER SECURITY POLICY statement modifies a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER SECURITY POLICY security-policy-name �

�

�

(1)

ADD SECURITY LABEL COMPONENT

component-name

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

USE GROUP AUTHORIZATIONS

IGNORE GROUP AUTHORIZATIONS

USE ROLE AUTHORIZATIONS

IGNORE ROLE AUTHORIZATIONS

��

Notes:

1 Only the ADD SECURITY LABEL COMPONENT clause can be specified

more than once.

Description

security-policy-name

Specifies the name of the security policy to be altered. The name must identify

an existing security policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name

Adds a security label component to the security policy. The same security

component must not be specified more than once for the security policy

(SQLSTATE 42713). The security policy cannot currently be in use by a table

(SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL

Specifies the action taken when a user is not authorized to write the explicitly

specified security label that is provided in the INSERT or UPDATE statement

issued against a table that is protected with this security policy. A user’s

security label and exemption credentials determine the user’s authorization to

write an explicitly provided security label.

ALTER SECURITY POLICY

Statements 59

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user’s security label, rather than the

explicitly specified security label, is used for write access during an insert

or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in

the INSERT or UPDATE statement (SQLSTATE 42519).

USE GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION

Specifies whether or not security labels and exemptions granted to groups,

directly or indirectly, are considered for any access attempt.

USE GROUP AUTHORIZATION

Indicates that any security labels or exemptions granted to groups, directly

or indirectly, are considered.

IGNORE GROUP AUTHORIZATION

Indicates that any security labels or exemptions granted to groups are not

considered.

USE ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION

Specifies whether or not security labels and exemptions granted to roles,

directly or indirectly, are considered for any access attempt.

USE ROLE AUTHORIZATION

Indicates that any security labels or exemptions granted to roles, directly or

indirectly, are considered.

IGNORE ROLE AUTHORIZATION

Indicates that any security labels or exemptions granted to roles are not

considered.

Rules

v If a user does not directly hold a security label for write access, an error is

returned in the following situations (SQLSTATE 42519):

– A value for the row security label column is not explicitly provided as part of

the SQL statement

– The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in

effect for the security policy, and the user is not allowed to write a data object

with the provided security label

Notes

v New components are logically added at the end of the existing security label

definition contained by the modified policy. Existing security labels defined for

this security policy are modified to contain the new component as part of their

definition with no element in their value for this component.

v Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY

LABEL: Changing the NOT AUTHORIZED WRITE SECURITY LABEL to a new

value will cause the invalidation of any cached dynamic or static SQL statements

that are dependent on any table that is protected by the security policy being

altered.

v Because the session authorization ID is the focus authorization ID for label-based

access control, security labels granted to groups or to roles that are accessible

through groups are eligible for consideration for all types of SQL statements,

including static SQL.

ALTER SECURITY POLICY

60 SQL Reference, Volume 2

v If more than one security label or exemption is available to a user with

associated groups or roles at the time of a read or write access attempt, those

security labels and exemptions will be evaluated for eligibility based on the

following rules:

– If the security policy enables only role authorizations for consideration, all

security labels and exemptions granted to roles of which the user

authorization ID is a direct or indirect member will be considered. Security

labels and exemptions granted to roles for which membership is only

accessible through the groups associated with the user authorization ID will

not be considered.

– If the security policy enables only group authorizations for consideration, all

security labels and exemptions granted to groups associated with the user

authorization ID will be considered. Security labels and exemptions granted

to roles for which membership is only accessible through the groups

associated with the user authorization ID will not be considered.

– If the security policy enables both group and role authorizations for

consideration, any security labels and exemptions granted to roles accessible

to the user indirectly through groups associated with the user authorization

ID will be considered.

– Role authorizations that are accessible to the user only through PUBLIC will

not be considered at any time.
v If more than one security label is eligible for consideration during an access

attempt, the values provided for each security label are merged at the individual

component level to form a security label that reflects the combination of all

available values at each component piece of the security policy. This is the

security label value that will be used for the access attempt.

The mechanisms for combining security labels vary by component type. The

components of the resultant security label are as follows:

– Set components contain the union of all unique values encountered in the

eligible security labels

– Array components contain the highest order element encountered in the

eligible security labels

– Tree components contain the union of all unique values encountered in the

eligible security labels
v If more than one exemption is eligible for consideration during an access

attempt, all found exemptions are applied to the access attempt.

Examples

Example 1: Alter a security policy named DATA_ACCESS to add a new component

named REGION.

 ALTER SECURITY POLICY DATA_ACCESS

 ADD COMPONENT REGION

Example 2: Alter a security policy named DATA_ACCESS to allow access through

security labels granted to roles.

 ALTER SECURITY POLICY DATA_ACCESS

 USE ROLE AUTHORIZATIONS

Example 3: Show the eligible security labels that would be considered depending

on the settings for group or role authorizations in a security policy. The security

policy SECUR_POL has an array component and a set component, consisting of the

following elements:

ALTER SECURITY POLICY

Statements 61

Array = {TS, S, C, U}

Set = {A, B, X, Y}

The following security labels are defined for SECUR_POL:

Security label L1 = C:A

Security label L2 = S:B

Security label L3 = TS:X

Security label L4 = U:Y

User Paul is a member of role R1 and group G1. Group G1 is a member of role R2.

Security label L1 is granted to Paul. Security label L2 is granted to role R1. Security

label L3 is granted to group G1. Security label L4 is granted to role R2. The

following table shows what security labels would be considered for any access

attempt by Paul, depending on the different possible settings of the security policy

SECUR_POL.

 Table 11. Security labels considered as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled L1, L2, L3, L4 L1, L3

Groups Disabled L1, L2 L1

The following table shows the value of the combined security label for any access

attempt by Paul, depending on the different settings of the security policy

SECUR_POL.

 Table 12. Combined security labels as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled TS:(A, B, X, Y) TS:(A, X)

Groups Disabled S:(A, B) C:A

ALTER SECURITY POLICY

62 SQL Reference, Volume 2

ALTER SEQUENCE

The ALTER SEQUENCE statement can be used to change a sequence in any of

these ways:

v Restarting the sequence

v Changing the increment between future sequence values

v Setting or eliminating the minimum or maximum values

v Changing the number of cached sequence numbers

v Changing the attribute that determines whether the sequence can cycle or not

v Changing whether sequence numbers must be generated in order of request

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTER privilege on the sequence to be altered

v ALTERIN privilege on the schema implicitly or explicitly specified

v SYSADM or DBADM authority

Syntax

�� ALTER SEQUENCE sequence-name �

�

�

(1)

RESTART

WITH

numeric-constant

INCREMENT BY

numeric-constant

MINVALUE

numeric-constant

NO MINVALUE

MAXVALUE

numeric-constant

NO MAXVALUE

CYCLE

NO CYCLE

CACHE

integer-constant

NO CACHE

ORDER

NO ORDER

��

Notes:

1 The same clause must not be specified more than once.

ALTER SEQUENCE

Statements 63

Description

sequence-name

Identifies the sequence that is to be changed. The name, including the implicit

or explicit schema qualifier, must uniquely identify an existing sequence at the

current server. If no sequence by this name exists in the explicitly or implicitly

specified schema, an error (SQLSTATE 42704) is returned. sequence-name must

not be a sequence generated by the system for an identity column (SQLSTATE

428FB).

RESTART

Restarts the sequence. If numeric-constant is not specified, the sequence is

restarted at the value specified implicitly or explicitly as the starting value on

the CREATE SEQUENCE statement that originally created the sequence.

WITH numeric-constant

Restarts the sequence with the specified value. This value can be any

positive or negative value that could be assigned to a column of the data

type associated with the sequence (SQLSTATE 42815), without non-zero

digits existing to the right of the decimal point (SQLSTATE 428FA).

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the sequence. This value

can be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), and does not

exceed the value of a large integer constant (SQLSTATE 42820), without

non-zero digits existing to the right of the decimal point (SQLSTATE 428FA).

 If this value is negative, then this is a descending sequence. If this value is 0 or

positive, this is an ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE

Specifies the minimum value at which a descending sequence either cycles or

stops generating values, or an ascending sequence cycles to after reaching the

maximum value.

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value. This value can

be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point (SQLSTATE

428FA), but the value must be less than or equal to the maximum value

(SQLSTATE 42815).

NO MINVALUE

For an ascending sequence, the value is the original starting value. For a

descending sequence, the value is the minimum value of the data type

associated with the sequence.

MAXVALUE or NO MAXVALUE

Specifies the maximum value at which an ascending sequence either cycles or

stops generating values, or a descending sequence cycles to after reaching the

minimum value.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value. This value can

be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point (SQLSTATE

428FA), but the value must be greater than or equal to the minimum value

(SQLSTATE 42815).

ALTER SEQUENCE

64 SQL Reference, Volume 2

NO MAXVALUE

For an ascending sequence, the value is the maximum value of the data

type associated with the sequence. For a descending sequence, the value is

the original starting value.

CYCLE or NO CYCLE

Specifies whether the sequence should continue to generate values after

reaching either its maximum or minimum value. The boundary of the sequence

can be reached either with the next value landing exactly on the boundary

condition, or by overshooting the value.

CYCLE

Specifies that values continue to be generated for this sequence after the

maximum or minimum value has been reached. If this option is used, after

an ascending sequence reaches its maximum value, it generates its

minimum value; or after a descending sequence reaches its minimum

value, it generates its maximum value. The maximum and minimum

values for the sequence determine the range that is used for cycling.

 When CYCLE is in effect, then duplicate values can be generated by DB2

for the sequence.

NO CYCLE

Specifies that values will not be generated for the sequence once the

maximum or minimum value for the sequence has been reached.

CACHE or NO CACHE

Specifies whether to keep some preallocated values in memory for faster

access. This is a performance and tuning option.

CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated

and kept in memory. Preallocating and storing values in the cache reduces

synchronous I/O to the log when values are generated for the sequence.

 In the event of a system failure, all cached sequence values that have not

been used in committed statements are lost (that is, they will never be

used). The value specified for the CACHE option is the maximum number

of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE

Specifies that values of the sequence are not to be preallocated. It ensures

that there is not a loss of values in the case of a system failure, shutdown

or database deactivation. When this option is specified, the values of the

sequence are not stored in the cache. In this case, every request for a new

value for the sequence results in synchronous I/O to the log.

ORDER or NO ORDER

Specifies whether the sequence numbers must be generated in order of request.

ORDER

Specifies that the sequence numbers are generated in order of request.

NO ORDER

Specifies that the sequence numbers do not need to be generated in order

of request.

Notes

v Only future sequence numbers are affected by the ALTER SEQUENCE

statement.

ALTER SEQUENCE

Statements 65

v The data type of a sequence cannot be changed. Instead, drop and recreate the

sequence specifying the desired data type for the new sequence.

v All cached values are lost when a sequence is altered.

v After restarting a sequence or changing to CYCLE, it is possible for sequence

numbers to be duplicate values of ones generated by the sequence previously.

v Compatibilities

– For compatibility with previous versions of DB2 and for consistency:

- A comma can be used to separate multiple sequence options.
– The following syntax is also supported:

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Examples

Example 1: A possible reason for specifying RESTART without a numeric value

would be to reset the sequence to the START WITH value. In this example, the

goal is to generate the numbers from 1 up to the number of rows in the table and

then inserting the numbers into a column added to the table using temporary

tables. Another use would be to get results back where all the resulting rows are

numbered:

 ALTER SEQUENCE ORG_SEQ RESTART

 SELECT NEXT VALUE FOR ORG_SEQ, ORG.* FROM ORG

ALTER SEQUENCE

66 SQL Reference, Volume 2

ALTER SERVER

The ALTER SERVER statement is used to:

v Modify the definition of a specific data source, or the definition of a category of

data sources.

v Make changes in the configuration of a specific data source, or the configuration

of a category of data sources—changes that will persist over multiple

connections to the federated database.

In this statement, the word SERVER and the parameter names that start with

server- refer only to data sources in a federated system. They do not refer to the

federated server in such a system, or to DRDA® application servers.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER SERVER �

� server-name

VERSION

server-version

TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

 �

�

�

,

ADD

OPTIONS

(

server-option-name

string-constant

)

SET

DROP

server-option-name

 ��

server-version:

 version

.

release

.

mod

version-string-constant

Description

server-name

Identifies the federated server’s name for the data source to which the changes

being requested are to apply. The data source must be one that is described in

the catalog.

ALTER SERVER

Statements 67

VERSION

After server-name, VERSION and its parameter specify a new version of the

data source that server-name denotes.

version

Specifies the version number. The value must be an integer.

release

Specifies the number of the release of the version denoted by version. The

value must be an integer.

mod

Specifies the number of the modification of the release denoted by release.

The value must be an integer.

version-string-constant

Specifies the complete designation of the version. The version-string-constant

can be a single value (for example, ‘8i’); or it can be the concatenated

values of version, release and, if applicable, mod (for example, ‘8.0.3’).

TYPE server-type

Specifies the type of data source to which the changes being requested are to

apply.

VERSION

After server-type, VERSION and its parameter specify the version of the data

sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name

Specifies the name of the wrapper that the federated server uses to interact

with data sources of the type and version denoted by server-type and

server-version. The wrapper must be listed in the catalog.

OPTIONS

Indicates what server options are to be enabled, reset, or dropped for the data

source denoted by server-name, or for the category of data sources denoted by

server-type and its associated parameters.

ADD

Enables a server option.

SET

Changes the setting of a server option.

server-option-name

Names a server option that is to be enabled or reset.

string-constant

Specifies the setting for server-option-name as a character string constant.

DROP server-option-name

Drops a server option.

Notes

v A server option cannot be specified more than once in the same ALTER SERVER

statement (SQLSTATE 42853). When a server option is enabled, reset, or

dropped, any other server options that are in use are not affected.

v An ALTER SERVER statement within a given unit of work (UOW) cannot be

processed (SQLSTATE 55007) under either of the following conditions:

– The statement references a single data source, and the UOW already includes

one of the following:

ALTER SERVER

68 SQL Reference, Volume 2

- A SELECT statement that references a nickname for a table or view within

this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following:

- A SELECT statement that references a nickname for a table or view within

one of these data sources

- An open cursor on a nickname for a table or view within one of these data

sources

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v If the server option is set to one value for a type of data source, and set to

another value for an instance of this type, the second value overrides the first

one for the instance. For example, assume that PLAN_HINTS is set to ‘Y’ for

server type ORACLE, and to ‘N’ for an Oracle data source named DELPHI. This

configuration causes plan hints to be enabled at all Oracle data sources except

DELPHI.

v You can only alter set or alter drop server options for a category of data sources

that was enabled by a prior alter add server option operation (SQLSTATE

42704).

v When altering the server version, DB2 does not verify that the specified server

version matches the remote server version. Specifying an incorrect server version

can result in SQL errors when you access nicknames that belong to the DB2

server definition. This is most likely when you specify a server version that is

later than the remote server version. In that case, when you access nicknames

that belong to the server definition, DB2 might send SQL that the remote server

does not recognize.

Examples

Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3 data

sources, the case of the IDs will remain unchanged. Also, assume that the local

federated server CPU is twice as fast as the data source CPU. Inform the optimizer

of this statistic.

 ALTER SERVER

 TYPE ORACLE

 VERSION 8.0.3

 OPTIONS

 (ADD FOLD_ID ’N’,

 SET CPU_RATIO ’2.0’)

Example 2: Indicate that the Documentum data source called DCTM_SVR_ASIA has

been changed to Version 4.

 ALTER SERVER DCTM_SVR_ASIA

 VERSION 4

ALTER SERVER

Statements 69

ALTER SERVICE CLASS

The ALTER SERVICE CLASS statement alters the definition of a service class.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER SERVICE CLASS service-class-name

UNDER

service-superclass-name
 �

�

�

AGENT PRIORITY DEFAULT

AGENT PRIORITY

integer-constant

PREFETCH PRIORITY DEFAULT

PREFETCH PRIORITY HIGH

PREFETCH PRIORITY MEDIUM

PREFETCH PRIORITY LOW

OUTBOUND CORRELATOR NONE

OUTBOUND CORRELATOR

string-constant

(1)

COLLECT ACTIVITY DATA

alter-collect-activity-data-clause

NONE

BASE

COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

NONE

BASE

COLLECT AGGREGATE REQUEST DATA

NONE

(2)

ACTIVITY LIFETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE

template-name

REQUEST EXECUTETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE

template-name

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

ENABLE

DISABLE

��

alter-collect-activity-data-clause:

 DATABASE PARTITION

ON COORDINATOR

WITHOUT DETAILS

DATABASE PARTITIONS

WITH DETAILS

ON ALL

AND VALUES

Notes:

1 The COLLECT clauses are only valid for a service subclass.

2 The HISTOGRAM TEMPLATE clauses are only valid for a service subclass.

ALTER SERVICE CLASS

70 SQL Reference, Volume 2

Description

service-class-name

Identifies the service class that is to be altered. This is a one-part name. It is an

SQL identifier (either ordinary or delimited).The service-class-name must

identify a service class that exists in the database (SQLSTATE 42704). To alter a

service subclass, the service-superclass-name must be specified using the UNDER

clause.

UNDER service-superclass-name

This clause is used only for altering a service subclass. The

service-superclass-name identifies the service superclass of the service subclass

and must identify a service superclass that exists in the database (SQLSTATE

42704).

AGENT PRIORITY DEFAULT or AGENT PRIORITY integer-constant

Specifies the relative (delta) operating system priority of agents running in the

service class or the normal priority of threads running in DB2. The default

value is DEFAULT. When set to DEFAULT, no special action is taken, and

agents in the service class are scheduled according to the normal priority that

the operating system schedules all DB2 threads. When this parameter is set to

a value other than DEFAULT, agents are set to a priority that is equal to the

normal priority plus AGENT PRIORITY when the next activity begins. For

example, if the normal priority is 20 and AGENT PRIORITY is set to -10, the

priority of agents in the service class is set to 20 – 10 = 10.

 On UNIX operating systems and Linux, valid values are DEFAULT and -20 to

20 (SQLSTATE 42615). Negative values denote a higher relative priority.

Positive values denote a lower relative priority.

On Windows operating systems, valid values are DEFAULT and -6 to 6

(SQLSTATE 42615). Negative values denote a lower relative priority. Positive

values denote a higher relative priority.

If AGENT PRIORITY is DEFAULT for a service subclass, it inherits the AGENT

PRIORITY value of its parent superclass. AGENT PRIORITY cannot be altered

for a default subclass (SQLSTATE 5U032). AGENT PRIORITY must be set to

DEFAULT if OUTBOUND CORRELATOR is set (SQLSTATE 42613).

Note: On AIX®, the instance owner must have CAP_NUMA_ATTACH and

CAP_PROPAGATE capabilities to set a higher relative priority for agents in a

service class using AGENT PRIORITY. To grant these capabilities, logon as root

and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

PREFETCH PRIORITY

This parameter controls the priority with which agents in the service class can

submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or

DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch

requests will be submitted to the high, medium, and low priority queues,

respectively. Prefetchers empty the priority queue in order from high to low.

Agents in the service class submit their prefetch requests at the PREFETCH

PRIORITY level when the next activity begins. If PREFETCH PRIORITY is

altered after a prefetch request is submitted, the request priority does not

change. The default value is DEFAULT, which is internally mapped to

MEDIUM for service superclasses. If DEFAULT is set for a service subclass, it

inherits the PREFETCH PRIORITY of its parent superclass.

 PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE

5U032).

ALTER SERVICE CLASS

Statements 71

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR

string-constant

Specifies whether or not to associate threads from this service class to an

external workload manager service class.

 If OUTBOUND CORRELATOR is set to a string-constant for the service

superclass and OUTBOUND CORRELATOR NONE is set for a service

subclass, the service subclass inherits the OUTBOUND CORRELATOR of its

parent. OUTBOUND CORRELATOR must be set to NONE if the AGENT

PRIORITY is not set to DEFAULT (SQLSTATE 42613).

OUTBOUND CORRELATOR NONE

For a service superclass, specifies that there is no external workload

manager service class association with this service class, and for a service

subclass, specifies that the external workload manager service class

association is the same as its parent.

OUTBOUND CORRELATOR string-constant

Specifies the string-constant that is to be used as a correlator to associate

threads from this service class to an external workload manager service

class. The external workload manager must be active (SQLSTATE 5U030).

The external workload manager should be set up to recognize the value of

string-constant.

COLLECT ACTIVITY DATA

Specifies that information about each activity that executes in this service class

is to be sent to the applicable event monitor when the activity completes. The

COLLECT ACTIVITY DATA clause is only valid for a service subclass.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION

Specifies that activity data is only to be collected at the database

partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that activity data is to be collected at all database partitions

where the activity is processed. However, activity details and values

will only be collected at the database partition of the coordinator.

WITHOUT DETAILS

Specifies that data about each activity that executes in the service class

should be sent to the applicable event monitor when the activity

completes execution. Statement and compilation environment are not

sent to the event monitor.

WITH DETAILS

Specifies that statement and compilation environment data is to be sent

to the applicable event monitor for those activities that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

NONE

Specifies that activity data should not be collected for each activity that

executes in this service class.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data should be captured for this service class

and sent to the applicable event monitor. This information is collected

periodically on an interval that is specified by the wlm_collect_int database

ALTER SERVICE CLASS

72 SQL Reference, Volume 2

configuration parameter. The default is COLLECT AGGREGATE ACTIVITY

DATA BASE. The COLLECT AGGREGATE ACTIVITY DATA clause is only

valid for a service subclass.

BASE

Specifies that basic aggregate activity data should be captured for this

service class and sent to the applicable event monitor. Basic aggregate

activity data includes:

v Estimated activity cost high watermark

v Rows returned high watermark

v Temporary table space usage high watermark

v Activity life time histogram

v Activity queue time histogram

v Activity execution time histogram

EXTENDED

Specifies that all aggregate activity data should be captured for this service

class and sent to the applicable event monitor. This includes all basic

aggregate activity data plus:

v Activity data manipulation language (DML) estimated cost histogram

v Activity DML inter-arrival time histogram

NONE

Specifies that no aggregate activity data should be captured for this service

class.

COLLECT AGGREGATE REQUEST DATA

Specifies that aggregate request data should be captured for this service class

and sent to the applicable event monitor. This information is collected

periodically on an interval specified by the wlm_collect_int database

configuration parameter. The default is COLLECT AGGREGATE ACTIVITY

DATA NONE. The COLLECT AGGREGATE ACTIVITY DATA clause is only

valid for a service subclass.

BASE

Specifies that basic aggregate request data should be captured for this

service class and sent to the applicable event monitor.

NONE

Specifies that no aggregate request data should be captured for this service

class.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the duration, in microseconds, of DB2 activities running in the

service class during a specific interval. This time includes both time queued

and time executing. This information is only collected when the COLLECT

AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or

EXTENDED option. This clause is only valid for a service subclass.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 activities running in

the service class are queued during a specific interval. This information is only

collected when the COLLECT AGGREGATE ACTIVITY DATA clause is

specified, with either the BASE or EXTENDED option. This clause is only valid

for a service subclass.

ALTER SERVICE CLASS

Statements 73

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 activities running in

the service class are executing during a specific interval. This time does not

include the time spent queued. Activity execution time is collected in this

histogram at the coordinator database partition only. The time does not include

idle time. Idle time is the time between the execution of requests belonging to

the same activity when no work is being done. An example of idle time is the

time between the end of opening a cursor and the start of fetching from that

cursor. This information is only collected when the COLLECT AGGREGATE

ACTIVITY DATA clause is specified, with either the BASE or EXTENDED

option. This clause is only valid for a service subclass.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 requests running in

the service class are executing during a specific interval. This time does not

include the time spent queued. Request execution time is collected in this

histogram on each database partition where the request executes. This

information is only collected when the COLLECT AGGREGATE REQUEST

DATA clause is specified with the BASE option. This clause is only valid for a

service subclass.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the estimated cost, in timerons, of DML activities running in the

service class. This information is only collected when the COLLECT

AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED

option. This clause is only valid for a service subclass.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, between the arrival of one

DML activity and the arrival of the next DML activity. This information is only

collected when the COLLECT AGGREGATE ACTIVITY DATA clause is

specified with the EXTENDED option. This clause is only valid for a service

subclass.

ENABLE or DISABLE

Specifies whether or not connections and activities can be mapped to the

service class.

ENABLE

Connections and activities can be mapped to the service class.

DISABLE

Connections and activities cannot be mapped to the service class. New

connections or activities that are mapped to a disabled service class will be

rejected (SQLSTATE 5U028). When a service superclass is disabled, its

service subclasses are also disabled. When the service superclass is

re-enabled, its service subclasses return to states that are defined in the

system catalog. A default service class cannot be disabled (SQLSTATE

5U032).

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

ALTER SERVICE CLASS

74 SQL Reference, Volume 2

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is

executing, subsequent WLM-exclusive SQL statements will wait until the current

WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until after a

COMMIT statement, even for the connection that issues the statement.

v After the ALTER SERVICE CLASS statement is committed, changes to AGENT

PRIORITY, PREFETCH PRIORITY, OUTBOUND CORRELATOR, and COLLECT

take effect for the next new activity in the service class. Existing activities in the

service class continue to complete their work using the old settings.

Examples

Example 1: Alter the agent priority of agents in service superclass PETSALES from

DEFAULT to 100.

 ALTER SERVICE CLASS PETSALES AGENT PRIORITY 100

Example 2: Alter service superclass BARNSALES and add an outbound correlator

’osLowPriority’. Threads running in the service superclass and its service

subclasses will have the outbound correlator ’osLowPriority’ associated with them.

 ALTER SERVICE CLASS BARNSALES OUTBOUND CORRELATOR ’osLowPriority’

ALTER SERVICE CLASS

Statements 75

ALTER TABLE

The ALTER TABLE statement alters the definition of a table.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTER privilege on the table to be altered

v CONTROL privilege on the table to be altered

v ALTERIN privilege on the schema of the table

v SYSADM or DBADM authority

To create or drop a foreign key, the privileges held by the authorization ID of the

statement must include one of the following on the parent table:

v REFERENCES privilege on the table

v REFERENCES privilege on each column of the specified parent key

v CONTROL privilege on the table

v SYSADM or DBADM authority

To drop the primary key or a unique constraint on table T, the privileges held by

the authorization ID of the statement must include at least one of the following on

every table that is a dependent of this parent key of T:

v ALTER privilege on the table

v CONTROL privilege on the table

v ALTERIN privilege on the schema of the table

v SYSADM or DBADM authority

To alter a table to become a materialized query table (using a fullselect), the

privileges held by the authorization ID of the statement must include at least one

of the following:

v CONTROL privilege on the table

v SYSADM or DBADM authority

and at least one of the following on each table or view identified in the fullselect

(excluding group privileges):

v SELECT privilege and ALTER privilege (including group privileges) on the table

or view

v CONTROL privilege on the table or view

v SELECT privilege on the table or view, and ALTERIN privilege (including group

privileges) on the schema of the table or view

v SYSADM or DBADM authority

ALTER TABLE

76 SQL Reference, Volume 2

To alter a table so that it is no longer a materialized query table, the privileges held

by the authorization ID of the statement must include at least one of the following

on each table or view identified in the fullselect used to define the materialized

query table:

v ALTER privilege on the table or view

v CONTROL privilege on the table or view

v ALTERIN privilege on the schema of the table or view

v SYSADM or DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges held by

the authorization ID of the statement must include at least a security label from the

security policy associated with the table.

To remove the security policy from a table, the privileges held by the authorization

ID of the statement must include SECADM authority.

To alter a table to attach a data partition, the privileges held by the authorization

ID of the statement must also include at least one of the following on the source

table:

v SELECT privilege on the table and DROPIN privilege on the schema of the table

v CONTROL privilege on the table

v SYSADM or DBADM authority

and at least one of the following on the target table:

v ALTER and INSERT privileges on the table

v CONTROL privilege on the table

v SYSADM or DBADM authority

To alter a table to detach a data partition, the privileges held by the authorization

ID of the statement must also include at least one of the following on the target

table of the detached partition:

v CREATETAB authority on the database, and USE privilege on the table spaces

used by the table, as well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the new table does not exist

– CREATEIN privilege on the schema, if the schema name of the new table

refers to an existing schema
v SYSADM or DBADM authority

and at least one of the following on the source table:

v SELECT, ALTER, and DELETE privileges on the table

v CONTROL privilege on the table

v SYSADM or DBADM authority

Syntax

�� ALTER TABLE table-name �

ALTER TABLE

Statements 77

�

�

COLUMN

ADD

column-definition

unique-constraint

referential-constraint

check-constraint

distribution-clause

RESTRICT ON DROP

MATERIALIZED

QUERY

ADD

materialized-query-definition

ALTER

FOREIGN KEY

constraint-name

constraint-alteration

CHECK

COLUMN

ALTER

column-alteration

DROP

PRIMARY KEY

FOREIGN KEY

constraint-name

UNIQUE

CHECK

CONSTRAINT

COLUMN

CASCADE

column-name

RESTRICT

RESTRICT ON DROP

DROP DISTRIBUTION

MATERIALIZED

DROP

QUERY

DATA CAPTURE

NONE

CHANGES

INCLUDE LONGVAR COLUMNS

ACTIVATE NOT LOGGED INITIALLY

WITH EMPTY TABLE

PCTFREE

integer

LOCKSIZE

ROW

BLOCKINSERT

TABLE

APPEND

ON

OFF

CARDINALITY

VOLATILE

NOT VOLATILE

COMPRESS

YES

NO

ACTIVATE

VALUE COMPRESSION

DEACTIVATE

LOG INDEX BUILD

NULL

OFF

ON

ADD PARTITION

add-partition

ATTACH PARTITION

attach-partition

DETACH PARTITION

partition-name

INTO

table-name1

ADD SECURITY POLICY

policy-name

DROP SECURITY POLICY

��

add-partition:

 boundary-spec

partition-name

IN

tablespace-name

LONG IN

tablespace-name

boundary-spec:

 starting-clause ending-clause

ending-clause

starting-clause:

ALTER TABLE

78 SQL Reference, Volume 2

FROM

STARTING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT

ENDING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

attach-partition:

 boundary-spec FROM table-name

partition-name

column-definition:

 column-name

(1)

data-type

column-options

column-options:

�

NOT NULL

(2)

lob-options

(3)

SCOPE

typed-table-name2

typed-view-name2

PRIMARY KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-definition

COMPRESS SYSTEM DEFAULT

COLUMN

SECURED WITH

security-label-name

NOT HIDDEN

(4)

IMPLICITLY HIDDEN

lob-options:

 LOGGED

*

NOT LOGGED

 NOT COMPACT

*

*

COMPACT

ALTER TABLE

Statements 79

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� rule-clause constraint-attributes

rule-clause:

 ON DELETE NO ACTION ON UPDATE NO ACTION

*

*

*

ON DELETE

RESTRICT

ON UPDATE RESTRICT

CASCADE

SET NULL

constraint-attributes:

*

 ENFORCED

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

generated-column-definition:

 default-clause

ALWAYS

GENERATED

as-row-change-timestamp-clause

BY DEFAULT

ALWAYS

GENERATED

AS

(

generation-expression

)

default-clause:

 WITH

DEFAULT

constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

ALTER TABLE

80 SQL Reference, Volume 2

referential-constraint:

CONSTRAINT

constraint-name

�

 ,

FOREIGN KEY

(

column-name

)

�

� references-clause

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

distribution-clause:

HASH

DISTRIBUTE BY

�

 ,

(

column-name

)

materialized-query-definition:

 (fullselect) refreshable-table-options

refreshable-table-options:

 * DATA INITIALLY DEFERRED * REFRESH DEFERRED

IMMEDIATE
 * �

�
 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

MAINTAINED BY

SYSTEM

USER

FEDERATED_TOOL

*

ALTER TABLE

Statements 81

constraint-alteration:

�

(5)

ENABLE

QUERY OPTIMIZATION

DISABLE

ENFORCED

NOT

column-alteration:

 column-name SET DATA TYPE altered-data-type

generated-column-alteration

EXPRESSION AS

(

generation-expression

)

INLINE LENGTH

integer

NOT NULL

generation-alteration

identity-alteration

identity-alteration

DROP

IDENTITY

EXPRESSION

DEFAULT

NOT NULL

ADD SCOPE

typed-table-name

typed-view-name

COMPRESS

SYSTEM DEFAULT

OFF

SECURED WITH

security-label-name

DROP COLUMN SECURITY

altered-data-type:

�� built-in-type ��

built-in-type:

ALTER TABLE

82 SQL Reference, Volume 2

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

generated-column-alteration:

 default-clause

ALWAYS

GENERATED

identity-options

BY DEFAULT

ALWAYS

GENERATED

AS

(

generation-expression

)

ALTER TABLE

Statements 83

default-clause:

 WITH

DEFAULT

constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

identity-options:

 AS IDENTITY

�

(5)

1

(

START WITH

numeric-constant

)

1

INCREMENT BY

numeric-constant

NO MINVALUE

MINVALUE

numeric-constant

NO MAXVALUE

MAXVALUE

numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE

integer-constant

as-row-change-timestamp-clause:

 (6)

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

generation-alteration:

 SET GENERATED ALWAYS

BY DEFAULT

identity-alteration:

ALTER TABLE

84 SQL Reference, Volume 2

�

(5)

SET INCREMENT BY

numeric-constant

SET

NO MINVALUE

MINVALUE

numeric-constant

SET

NO MAXVALUE

MAXVALUE

numeric-constant

SET

NO CYCLE

CYCLE

SET

NO CACHE

CACHE

integer-constant

SET

NO ORDER

ORDER

RESTART

WITH

numeric-constant

Notes:

1 If the first column option chosen is generated-column-definition, data-type can be

omitted; it will be computed by the generation expression.

2 The lob-options clause only applies to large object types (CLOB, DBCLOB, and

BLOB), and to distinct types that are based on large object types.

3 The SCOPE clause only applies to the REF type.

4 IMPLICITLY HIDDEN can only be specified if ROW CHANGE TIMESTAMP

is also specified.

5 The same clause must not be specified more than once.

6 Data type is optional for a row change timestamp column.

Description

table-name

The table-name must identify a table that exists at the current server. It cannot

be a nickname (SQLSTATE 42809) and must not be a view, a catalog table, or a

declared temporary table (SQLSTATE 42995).

 If table-name identifies a materialized query table, alterations are limited to

adding or dropping the materialized query table, activating not logged initially,

adding or dropping RESTRICT ON DROP, and changing pctfree, locksize,

append, or volatile.

If table-name identifies a range-clustered table, alterations are limited to adding,

changing, or dropping constraints, activating not logged initially, adding or

dropping RESTRICT ON DROP, changing locksize, data capture, or volatile,

and setting column default values.

ADD PARTITION add-partition

Adds one or more data partitions to a partitioned table. If the specified table is

not a partitioned table, an error is returned (SQLSTATE 428FT). The number of

data partitions must not exceed 32 767.

partition-name

Names the data partition. The name must not be the same as any other

data partition for the table (SQLSTATE 42710). If this clause is not

specified, the name will be ’PART’ followed by the character form of an

integer value to make the name unique for the table.

boundary-spec

Specifies the range of values for the new data partition. This range must

ALTER TABLE

Statements 85

not overlap that of an existing data partition (SQLSTATE 56016). For a

description of the starting-clause and the ending-clause, see “CREATE

TABLE”.

 If the starting-clause is omitted, the new data partition is assumed to be at

the end of the table. If the ending-clause is omitted, the new data partition

is assumed to be at the start of the table. If the first column of the

partitioning key is DESC, these assumptions are reversed.

IN tablespace-name

Specifies the table space where the data partition is to be stored. The

named table space must have the same page size, be in the same database

partition group, and manage space in the same way as the other table

spaces of the partitioned table (SQLSTATE 42838). This can be a table space

that is already being used for another data partition of the same table, or a

table space that is currently not being used by this table, but it must be a

table space on which the authorization ID of the statement holds the USE

privilege (SQLSTATE 42727). If this clause is not specified, the table space

of the first visible or attached data partition of the table is used.

LONG IN tablespace-name

Specifies the table space where the data partition containing long column

data is to be stored. The named table space must have the same page size,

be in the same database partition group, and manage space in the same

way as the other table spaces and data partitions of the partitioned table

(SQLSTATE 42838); it must be a table space on which the authorization ID

of the statement holds the USE privilege. The page size and extent size for

the named table space can be different from the page size and extent size

of the other data partitions of the partitioned table.

 For rules governing the use of the LONG IN clause with partitioned tables,

see “Large object behavior in partitioned tables”.

ATTACH PARTITION attach-partition

Attaches another table as a new data partition. The data object of the table

being attached becomes a new partition of the table being attached to. There is

no data movement involved. The table is placed in set integrity pending state,

and referential integrity checking is deferred until execution of a SET

INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow

the use of the IN or LONG IN clause. The placement of LOBs for that data

partition is determined at the time the source table is created. For rules

governing the use of the LONG IN clause with partitioned tables, see “Large

object behavior in partitioned tables”.

partition-name

Names the data partition. The name must not be the same as any other

data partition for the table (SQLSTATE 42710). If this clause is not

specified, the name will be ’PART’ followed by the character form of an

integer value to make the name unique for the table.

boundary-spec

Specifies the range of values for the new data partition. This range must

not overlap that of an existing data partition (SQLSTATE 56016). For a

description of the starting-clause and the ending-clause, see “CREATE

TABLE”.

 If the starting-clause is omitted, the new data partition is assumed to be at

the end of the table. If the ending-clause is omitted, the new data partition

is assumed to be at the start of the table.

ALTER TABLE

86 SQL Reference, Volume 2

FROM table-name1

Specifies the table that is to be used as the source of data for the new

partition. The table definition of table-name1 cannot have multiple data

partitions, and it must match the altered table in the following ways

(SQLSTATE 428G3):

v The number of columns must be the same.

v The data types of the columns in the same ordinal position in the table

must be the same.

v The nullability characteristic of the columns in the same ordinal position

in the table must be the same.

v If the data is also distributed, it must be distributed over the same

database partition group using the same distribution method.

v If the data in either table is organized, the organization must match.

After the data from table-name1 is successfully attached, an operation

equivalent to DROP TABLE table-name1 is performed to remove this table,

which no longer has data, from the database.

DETACH PARTITION partition-name INTO table-name1

Detaches the data partition partition-name from the altered table, and uses the

data partition to create a new table named table-name1. The data partition is

logically attached to the new table without any data movement. The specified

data partition cannot be the last remaining partition of the table being altered

(SQLSTATE 428G2).

ADD SECURITY POLICY policy-name

Adds a security policy to the table. The security policy must exist at the

current server (SQLSTATE 42704). The table must not already have a security

policy (SQLSTATE 55065), and must not be a typed table (SQLSTATE 428DH),

materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY

Removes the security policy and all LBAC protection from the table. The table

specified by table-name must be protected by a security policy (SQLSTATE

428GT). If the table has a column with data type DB2SECURITYLABEL, the

data type is changed to VARCHAR (128) FOR BIT DATA. If the table has one

or more protected columns, those columns become unprotected.

ADD column-definition

Adds a column to the table. The table must not be a typed table (SQLSTATE

428DH). For all existing rows in the table, the value of the new column is set

to its default value. The new column is the last column of the table; that is, if

initially there are n columns, the added column is column n+1.

 Adding the new column must not make the total byte count of all columns

exceed the maximum record size.

column-name

Is the name of the column to be added to the table. The name cannot be

qualified. Existing column names in the table cannot be used (SQLSTATE

42711).

data-type

Is one of the data types listed under “CREATE TABLE”.

NOT NULL

Prevents the column from containing null values. The default-clause must

also be specified (SQLSTATE 42601).

ALTER TABLE

Statements 87

NOT HIDDEN or IMPLICITLY HIDDEN

Specifies whether or not the column is to be defined as hidden. The hidden

attribute determines whether the column is included in an implicit

reference to the table, or whether it can be explicitly referenced in SQL

statements. The default is NOT HIDDEN.

NOT HIDDEN

Specifies that the column is included in implicit references to the table,

and that the column can be explicitly referenced.

IMPLICITLY HIDDEN

Specifies that the column is not visible in SQL statements unless the

column is explicitly referenced by name. For example, assuming that a

table includes a column defined with the IMPLICITLY HIDDEN clause,

the result of a SELECT * does not include the implicitly hidden

column. However, the result of a SELECT that explicitly refers to the

name of an implicitly hidden column will include that column in the

result table.

 IMPLICITLY HIDDEN must only be specified for a ROW CHANGE

TIMESTAMP column (SQLSTATE 42867). The ROW CHANGE

TIMESTAMP FOR table-designator expression will resolve to an

IMPLICITLY HIDDEN ROW CHANGE TIMESTAMP column.

Therefore, a ROW CHANGE TIMESTAMP column can be added to a

table as IMPLICITLY HIDDEN, and existing applications that do a

SELECT * from this table will not need to be modified to handle the

column. Using the expression, new applications can always access the

column without knowing the column name.

lob-options

Specifies options for LOB data types. See lob-options in “CREATE TABLE”.

SCOPE

Specify a scope for a reference type column.

typed-table-name2

The name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name2 (SQLSTATE 428DM).

No checking is done of the default value for column-name to ensure

that the value actually references an existing row in typed-table-name2.

typed-view-name2

The name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name2 (SQLSTATE 428DM).

No checking is done of the default value for column-name to ensure

that the values actually references an existing row in typed-view-name2.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that

was already specified within the same ALTER TABLE statement, or as the

name of any other existing constraint on the table (SQLSTATE 42710).

 If the constraint name is not specified by the user, an 18 byte long

identifier unique within the identifiers of the existing constraints defined

on the table is generated by the system. (The identifier consists of ″SQL″

followed by a sequence of 15 numeric characters that are generated by a

timestamp-based function.)

ALTER TABLE

88 SQL Reference, Volume 2

When used with a PRIMARY KEY or UNIQUE constraint, the

constraint-name may be used as the name of an index that is created to

support the constraint. See Notes for details on index names associated

with unique constraints.

PRIMARY KEY

This provides a shorthand method of defining a primary key

composed of a single column. Thus, if PRIMARY KEY is specified in

the definition of column C, the effect is the same as if the PRIMARY

KEY(C) clause were specified as a separate clause. The column cannot

contain null values, so the NOT NULL attribute must also be specified

(SQLSTATE 42831).

 See PRIMARY KEY within the description of the unique-constraint

below.

UNIQUE

This provides a shorthand method of defining a unique key composed

of a single column. Thus, if UNIQUE is specified in the definition of

column C, the effect is the same as if the UNIQUE(C) clause were

specified as a separate clause.

 See UNIQUE within the description of the unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key composed

of a single column. Thus, if a references-clause is specified in the

definition of column C, the effect is the same as if that

references-clause were specified as part of a FOREIGN KEY clause in

which C is the only identified column.

 See references-clause in “CREATE TABLE”.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that

applies to a single column. See check-condition in “CREATE TABLE”.

generated-column-definition

For details on column generation, see “CREATE TABLE”.

default-clause

Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on

INSERT or is specified as DEFAULT on INSERT or UPDATE. If a

specific default value is not specified following the DEFAULT

keyword, the default value depends on the data type of the

column as shown in Table 13 on page 90. If a column is defined as

an XML or structured type, then a DEFAULT clause cannot be

specified.

 If a column is defined using a distinct type, then the default value

of the column is the default value of the source data type cast to

the distinct type.

ALTER TABLE

Statements 89

Table 13. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to

January 1, 0001. For added rows, the current

date.

Time For existing rows, a time corresponding to 0

hours, 0 minutes, and 0 seconds. For added

rows, the current time.

Timestamp For existing rows, a date corresponding to

January 1, 0001, and a time corresponding to

0 hours, 0 minutes, 0 seconds and 0

microseconds. For added rows, the current

timestamp.

Binary string (blob) A string of length 0

Omission of DEFAULT from a column-definition results in the use of

the null value as the default for the column.

Specific types of values that can be specified with the DEFAULT

keyword are as follows.

constant

Specifies the constant as the default value for the column. The

specified constant must:

v represent a value that could be assigned to the column in

accordance with the rules of assignment as described in

Chapter 3

v not be a floating-point constant unless the column is defined

with a floating-point data type

v be a numeric constant or a decimal floating-point special

value if the data type of the column is decimal

floating-point. Floating-point constants are first interpreted

as DOUBLE and then converted to decimal floating-point.

For DECFLOAT(16) columns, decimal constants must have a

precision less than or equal to 16.

v not have non-zero digits beyond the scale of the column

data type if the constant is a decimal constant (for example,

1.234 cannot be the default for a DECIMAL(5,2) column)

v be expressed with no more than 254 bytes including the

quote characters, any introducer character such as the X for

a hexadecimal constant, and characters from the fully

qualified function name and parentheses when the constant

is the argument of a cast-function.

datetime-special-register

Specifies the value of the datetime special register (CURRENT

DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the

time of INSERT, UPDATE, or LOAD as the default for the

ALTER TABLE

90 SQL Reference, Volume 2

column. The data type of the column must be the data type

that corresponds to the special register specified (for example,

data type must be DATE when CURRENT DATE is specified).

For existing rows, the value is the current date, current time or

current timestamp when the ALTER TABLE statement is

processed.

user-special-register

Specifies the value of the user special register (CURRENT

USER, SESSION_USER, SYSTEM_USER) at the time of INSERT,

UPDATE, or LOAD as the default for the column. The data

type of the column must be a character string with a length not

less than the length attribute of a user special register. Note

that USER can be specified in place of SESSION_USER and

CURRENT_USER can be specified in place of CURRENT

USER. For existing rows, the value is the CURRENT USER,

SESSION_USER, or SYSTEM_USER of the ALTER TABLE

statement.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special register

at the time of INSERT, UPDATE, or LOAD as the default for

the column. If CURRENT SCHEMA is specified, the data type

of the column must be a character string with a length greater

than or equal to the length attribute of the CURRENT

SCHEMA special register. For existing rows, the value of the

CURRENT SCHEMA special register at the time the ALTER

TABLE statement is processed.

NULL

Specifies NULL as the default for the column. If NOT NULL

was specified, DEFAULT NULL must not be specified within

the same column definition.

cast-function

This form of a default value can only be used with columns

defined as a distinct type, BLOB or datetime (DATE, TIME or

TIMESTAMP) data type. For distinct type, with the exception

of distinct types based on BLOB or datetime types, the name of

the function must match the name of the distinct type for the

column. If qualified with a schema name, it must be the same

as the schema name for the distinct type. If not qualified, the

schema name from function resolution must be the same as the

schema name for the distinct type. For a distinct type based on

a datetime type, where the default value is a constant, a

function must be used and the name of the function must

match the name of the source type of the distinct type with an

implicit or explicit schema name of SYSIBM. For other

datetime columns, the corresponding datetime function may

also be used. For a BLOB or a distinct type based on BLOB, a

function must be used and the name of the function must be

BLOB with an implicit or explicit schema name of SYSIBM.

constant

Specifies a constant as the argument. The constant must

conform to the rules of a constant for the source type of

ALTER TABLE

Statements 91

the distinct type or for the data type if not a distinct type.

If the cast-function is BLOB, the constant must be a string

constant.

datetime-special-register

Specifies CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP. The source type of the distinct

type of the column must be the data type that corresponds

to the specified special register.

user-special-register

Specifies CURRENT USER, SESSION_USER, or

SYSTEM_USER. The data type of the source type of the

distinct type of the column must be a string data type with

a length of at least 8 bytes. If the cast-function is BLOB, the

length attribute must be at least 8 bytes.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register. The data type of the source type of the distinct

type of the column must be a character string with a length

greater than or equal to the length attribute of the

CURRENT SCHEMA special register. If the cast-function is

BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()

Specifies a zero-length string as the default for the column. The

column must have the data type that corresponds to the result

data type of the function.

 If the value specified is not valid, an error (SQLSTATE 42894) is

returned.

GENERATED

Specifies that DB2 generates values for the column.

ALWAYS

Specifies that DB2 will always generate a value for the column

when a row is inserted into the table, or whenever the result value

of the generation-expression might change. The result of the

expression is stored in the table. GENERATED ALWAYS is the

recommended option unless data propagation or unload and

reload operations are being performed. GENERATED ALWAYS is

the required option for generated columns.

BY DEFAULT

Specifies that DB2 will generate a value for the column when a

row is inserted into the table, or updated, specifying DEFAULT for

the column, unless an explicit value is specified. BY DEFAULT is

the recommended option when using data propagation or

performing unload and reload operations.

AS (generation-expression)

Specifies that the definition of the column is based on an

expression. Requires that the table be put in set integrity pending

state, using the SET INTEGRITY statement with the OFF option.

After the ALTER TABLE statement, the SET INTEGRITY statement

with the IMMEDIATE CHECKED and FORCE GENERATED

options must be used to update and check all the values in that

ALTER TABLE

92 SQL Reference, Volume 2

column against the new expression. For details on specifying a

column with a generation-expression, see “CREATE TABLE”.

COMPRESS SYSTEM DEFAULT

Specifies that system default values (that is, the default values used for the

data types when no specific values are specified) are to be stored using

minimal space. If the VALUE COMPRESSION clause is not specified, a

warning is returned (SQLSTATE 01648) and system default values are not

stored using minimal space.

 Allowing system default values to be stored in this manner causes a slight

performance penalty during insert and update operations on the column

because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or

structured data type (SQLSTATE 42842). If the base data type is a

varying-length string, this clause is ignored. String values of length 0 are

automatically compressed if a table has been set with VALUE

COMPRESSION.

COLUMN SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601). The table must have a security policy associated with it (SQLSTATE

55064).

ADD unique-constraint

Defines a unique or primary key constraint. A primary key or unique

constraint cannot be added to a table that is a subtable (SQLSTATE 429B3). If

the table is a supertable at the top of the hierarchy, the constraint applies to the

table and all its subtables.

CONSTRAINT constraint-name

Names the primary key or unique constraint. For more information, see

constraint-name in “CREATE TABLE”.

UNIQUE (column-name...,)

Defines a unique key composed of the identified columns. The identified

columns must be defined as NOT NULL. Each column-name must identify a

column of the table and the same column must not be identified more than

once. The name cannot be qualified. The number of identified columns

must not exceed 64, and the sum of their stored lengths must not exceed

the index key length limit for the page size. For column stored lengths, see

“Byte Counts” in “CREATE TABLE”. For key length limits, see “SQL

limits”. No LOB, LONG VARCHAR, LONG VARGRAPHIC, distinct type

based on any of these types, or structured type can be used as part of a

unique key, even if the length attribute of the column is small enough to fit

within the index key length limit for the page size (SQLSTATE 54008). The

set of columns in the unique key cannot be the same as the set of columns

of the primary key or another unique key (SQLSTATE 01543). (If

LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

Any existing values in the set of identified columns must be unique

(SQLSTATE 23515).

 A check is performed to determine whether an existing index matches the

unique key definition (ignoring any INCLUDE columns in the index). An

index definition matches if it identifies the same set of columns without

regard to the order of the columns or the direction (ASC/DESC)

specifications. If a matching index definition is found, the description of

the index is changed to indicate that it is required by the system and it is

ALTER TABLE

Statements 93

changed to unique (after ensuring uniqueness) if it was a non-unique

index. If the table has more than one matching index, an existing unique

index is selected (the selection is arbitrary). If no matching index is found,

a unique bidirectional index will automatically be created for the columns,

as described in CREATE TABLE. See Notes for details on index names

associated with unique constraints.

PRIMARY KEY ...(column-name,)

Defines a primary key composed of the identified columns. Each

column-name must identify a column of the table, and the same column

must not be identified more than once. The name cannot be qualified. The

number of identified columns must not exceed 64, and the sum of their

stored lengths must not exceed the index key length limit for the page size.

For column stored lengths, see “Byte Counts” in “CREATE TABLE”. For

key length limits, see “SQL limits”. The table must not have a primary key

and the identified columns must be defined as NOT NULL. No LOB,

LONG VARCHAR, LONG VARGRAPHIC, distinct type based on any of

these types, or structured type may be used as part of a primary key, even

if the length attribute of the column is small enough to fit within the index

key length limit for the page size (SQLSTATE 54008). The set of columns in

the primary key cannot be the same as the set of columns in a unique key

(SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is

returned, SQLSTATE 42891.) Any existing values in the set of identified

columns must be unique (SQLSTATE 23515).

 A check is performed to determine if an existing index matches the

primary key definition (ignoring any INCLUDE columns in the index). An

index definition matches if it identifies the same set of columns without

regard to the order of the columns or the direction (ASC/DESC)

specifications. If a matching index definition is found, the description of

the index is changed to indicate that it is the primary index, as required by

the system, and it is changed to unique (after ensuring uniqueness) if it

was a non-unique index. If the table has more than one matching index, an

existing unique index is selected (the selection is arbitrary). If no matching

index is found, a unique bidirectional index will automatically be created

for the columns, as described in CREATE TABLE. See Notes for details on

index names associated with unique constraints.

Only one primary key can be defined on a table.

ADD referential-constraint

Defines a referential constraint. See referential-constraint in “CREATE TABLE”.

ADD check-constraint

Defines a check constraint or functional dependency. See check-constraint in

“CREATE TABLE”.

ADD distribution-clause

Defines a distribution key. The table must be defined in a table space on a

single-partition database partition group (SQLSTATE 55037) and must not

already have a distribution key (SQLSTATE 42889). If a distribution key

already exists for the table, the existing key must be dropped before adding the

new distribution key. A distribution key cannot be added to a table that is a

subtable (SQLSTATE 428DH) or to a table with a column of data type XML

(SQLSTATE 42997).

DISTRIBUTE BY HASH (column-name...)

Defines a distribution key using the specified columns. Each column-name

must identify a column of the table, and the same column must not be

ALTER TABLE

94 SQL Reference, Volume 2

identified more than once. The name cannot be qualified. A column cannot

be used as part of a distribution key if the data type of the column is a

LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, XML,

distinct type on any of these types, or structured type.

ADD RESTRICT ON DROP

Specifies that the table cannot be dropped, and that the table space that

contains the table cannot be dropped.

ADD MATERIALIZED QUERY

materialized-query-definition

Changes a regular table to a materialized query table for use during query

optimization. The table specified by table-name must not:

v Be previously defined as a materialized query table

v Be a typed table

v Have any constraints, unique indexes, or triggers defined

v Reference a nickname that is marked with caching disabled

v Be referenced in the definition of another materialized query table

v Be referenced in the definition of a view that is enabled for query

optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE

428EW).

fullselect

Defines the query in which the table is based. The columns of the

existing table must:

v have the same number of columns

v have exactly the same data types

v have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details about

specifying the fullselect for a materialized query table, see “CREATE

TABLE”. One additional restriction is that table-name cannot be directly

or indirectly referenced in the fullselect.

refreshable-table-options

Specifies the refreshable options for altering a materialized query table.

DATA INITIALLY DEFERRED

The data in the table must be validated using the REFRESH TABLE

or SET INTEGRITY statement.

REFRESH

Indicates how the data in the table is maintained.

DEFERRED

The data in the table can be refreshed at any time using the

REFRESH TABLE statement. The data in the table only reflects

the result of the query as a snapshot at the time the REFRESH

TABLE statement is processed. Materialized query tables

defined with this attribute do not allow INSERT, UPDATE, or

DELETE statements (SQLSTATE 42807).

IMMEDIATE

The changes made to the underlying tables as part of a

DELETE, INSERT, or UPDATE are cascaded to the materialized

query table. In this case, the content of the table, at any

ALTER TABLE

Statements 95

point-in-time, is the same as if the specified subselect is

processed. Materialized query tables defined with this attribute

do not allow INSERT, UPDATE, or DELETE statements

(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization.

DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query

optimization. The table can still be queried directly.

MAINTAINED BY

Specifies whether the data in the materialized query table is

maintained by the system, user, or replication tool.

SYSTEM

Specifies that the data in the materialized query table is

maintained by the system.

USER

Specifies that the data in the materialized query table is

maintained by the user. The user is allowed to perform update,

delete, or insert operations against user-maintained

materialized query tables. The REFRESH TABLE statement,

used for system-maintained materialized query tables, cannot

be invoked against user-maintained materialized query tables.

Only a REFRESH DEFERRED materialized query table can be

defined as MAINTAINED BY USER.

FEDERATED_TOOL

Specifies that the data in the materialized query table is

maintained by the replication tool. The REFRESH TABLE

statement, used for system-maintained materialized query

tables, cannot be invoked against federated_tool-maintained

materialized query tables. Only a REFRESH DEFERRED

materialized query table can be defined as MAINTAINED BY

FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name

Alters the constraint attributes of the referential constraint constraint-name. The

constraint-name must identify an existing referential constraint (SQLSTATE

42704).

ALTER CHECK constraint-name

Alters the constraint attributes of the check constraint or functional

dependency constraint-name. The constraint-name must identify an existing

check constraint or functional dependency (SQLSTATE 42704).

constraint-alteration

Options for changing attributes associated with referential or check constraints.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether the constraint or functional dependency can be used for

query optimization under appropriate circumstances.

ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query

optimization.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

ALTER TABLE

96 SQL Reference, Volume 2

ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager

during normal operations such as insert, update, or delete.

ENFORCED

Change the constraint to ENFORCED. ENFORCED cannot be specified

for a functional dependency (SQLSTATE 42621).

NOT ENFORCED

Change the constraint to NOT ENFORCED. This should only be

specified if the table data is independently known to conform to the

constraint. Query results might be unpredictable if the data does not

actually conform to the constraint.

ALTER column-alteration

Alters the definition of a column. Only the specified attributes will be altered;

others will remain unchanged. Columns of a typed table cannot be altered

(SQLSTATE 428DH).

column-name

Specifies the name of the column that is to be altered. The column-name

must identify an existing column of the table (SQLSTATE 42703). The name

must not be qualified. The name must not identify a column that is

otherwise being added, altered, or dropped in the same ALTER TABLE

statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type

Specifies the new data type of the column. The new data type must be

compatible with the existing data type of the column (SQLSTATE 42837).

For more information on built-in data types, see “CREATE TABLE”.

Table 14 lists the compatible data types. The ″Reorg recommended″ column

identifies the data type alterations that will require table reorganization

before a table can again be fully accessed (SQLSTATE 57016). In such cases,

the column being altered cannot be part of a table containing an XML data

type column (SQLSTATE 42997).

 The data type of an identity column cannot be altered (SQLSTATE 42997).

The table cannot have data capture enabled (SQLSTATE 42997).

The specified length, precision, or scale can be greater than or equal to (but

not less than) the existing length, precision, or scale (SQLSTATE 42837).

 Table 14. Compatible Data Types

From type To type

Valid for

table

parti-
tioning

key

column

Valid for

MDC

organi-
zing

dimen-
sion

column

Valid for

distribution

key

column

Reorg

recom-
mended

SMALLINT INTEGER yes yes yes yes

SMALLINT BIGINT yes yes yes yes

SMALLINT DECIMAL (p, m);

p-m > 4

yes yes no yes

SMALLINT REAL yes yes no yes

SMALLINT DOUBLE yes yes no yes

ALTER TABLE

Statements 97

Table 14. Compatible Data Types (continued)

From type To type

Valid for

table

parti-
tioning

key

column

Valid for

MDC

organi-
zing

dimen-
sion

column

Valid for

distribution

key

column

Reorg

recom-
mended

SMALLINT DECFLOAT(16) or

DECFLOAT(34)

yes yes no yes

INTEGER BIGINT yes yes yes yes

INTEGER DECIMAL (p, m);

p-m > 9

yes yes no yes

INTEGER DOUBLE yes yes no yes

INTEGER DECFLOAT(16) or

DECFLOAT(34)

yes yes no yes

BIGINT DECIMAL (p, m);

p-m > 19

yes yes no yes

BIGINT DECFLOAT(34) yes yes no yes

REAL DOUBLE yes yes yes yes

REAL DECFLOAT(16) or

DECFLOAT(34)

yes yes no yes

DOUBLE DECFLOAT(16) or

DECFLOAT(34)

yes yes no yes

DECIMAL (n, m) DECIMAL (p, q); p

>= n; q >= m; (p-q)

>= (n-m)

yes yes no yes

DECIMAL (n, m); n

<= 15

DECFLOAT(16) yes yes no yes

DECIMAL (n, m) DECFLOAT(34) yes yes no yes

DECFLOAT(16) DECFLOAT(34) yes yes yes yes

CHARACTER (n) CHARACTER (n+x) no yes yes yes

CHARACTER (n) VARCHAR (n+x) no yes yes yes

VARCHAR (n) CHARACTER (n+x) no yes yes yes

VARCHAR (n) VARCHAR (n+x) no yes yes no

GRAPHIC (n) GRAPHIC (n+x) no yes yes yes

GRAPHIC (n) VARGRAPHIC (n+x) no yes yes yes

VARGRAPHIC (n) VARGRAPHIC (n+x) no yes yes no

VARGRAPHIC (n) GRAPHIC (n+x) no yes yes yes

BLOB (n) BLOB (n+x) n/a n/a n/a yes

CLOB (n) CLOB (n+x) n/a n/a n/a yes

DBCLOB (n) DBCLOB (n+x) n/a n/a n/a yes

Altering a column must not make the total byte count of all columns

exceed the maximum record size (SQLSTATE 54010). If the column is used

in a unique constraint or an index, the new length must not cause the sum

of the stored lengths for the unique constraint or index to exceed the index

key length limit for the page size (SQLSTATE 54008). For column stored

ALTER TABLE

98 SQL Reference, Volume 2

lengths, see “Byte Counts” in “CREATE TABLE”. For key length limits, see

“SQL limits”.

 Table 15. Cascaded Effects of Altering a Column

Operation Effect

Altering a column that is referenced by a

view or check constraint

The object is regenerated during alter

processing. In the case of a view, function or

method resolution for the object might be

different after the alter operation, changing

the semantics of the object. In the case of a

check constraint, if the semantics of the

object will change as a result of the alter

operation, the operation fails.

Altering a column in a table that has a

dependent package, trigger, or SQL routine

The object is marked invalid, and is

revalidated on next use.

Altering the type of a column in a table that

is referenced by an XSROBJECT enabled for

decomposition

The XSROBJECT is marked inoperative for

decomposition. Re-enabling the XSROBJECT

might require readjustment of its mappings;

following this, issue an ALTER XSROBJECT

ENABLE DECOMPOSITION statement

against the XSROBJECT.

Altering a column that is referenced in the

default expression of a global variable

The default expression of the global variable

is validated during alter processing. If a

user-defined function used in the default

expression cannot be resolved, the operation

fails.

SET generated-column-alteration

Specifies the technique used to generate a value for the column. This can

be in the form of a specific default value, an expression, or defining the

column as an identity column. If an existing default for the column results

from a different generation technique, that default must be dropped, which

can be done in the same column-alteration using one of the DROP clauses.

default-clause

Specifies a new default value for the column that is to be altered. The

column must not already be defined as the identity column or have a

generation expression defined (SQLSTATE 42837). The specified default

value must represent a value that could be assigned to the column in

accordance with the rules for assignment as described in “Assignments

and comparisons”. Altering the default value does not change the

value that is associated with this column for existing rows.

GENERATED ALWAYS or GENERATED BY DEFAULT

Specifies when the database manager is to generate values for the

column. GENERATED BY DEFAULT specifies that a value is only to be

generated when a value is not provided, or the DEFAULT keyword is

used in an assignment to the column. GENERATED ALWAYS specifies

that the database manager is to always generate a value for the

column. GENERATED BY DEFAULT cannot be specified with a

generation-expression.

identity-options

Specifies that the column is the identity column for the table. The

column must not already be defined as the identity column, cannot

have a generation expression, or cannot have an explicit default

(SQLSTATE 42837). A table can only have a single identity column

ALTER TABLE

Statements 99

(SQLSTATE 428C1). The column must be specified as not nullable

(SQLSTATE 42997), and the data type associated with the column

must be an exact numeric data type with a scale of zero

(SQLSTATE 42815). An exact numeric data type is one of:

SMALLINT, INTEGER, BIGINT, DECIMAL, or NUMERIC with a

scale of zero, or a distinct type based on one of these types. For

details on identity options, see “CREATE TABLE”.

AS (generation-expression)

Specifies that the definition of the column is based on an

expression. The column must not already be defined with a

generation expression, cannot be the identity column, or cannot

have an explicit default (SQLSTATE 42837). The

generation-expression must conform to the same rules that apply

when defining a generated column. The result data type of the

generation-expression must be assignable to the data type of the

column (SQLSTATE 42821). The column must not be referenced in

the distribution key column or in the ORGANIZE BY clause

(SQLSTATE 42997).

SET EXPRESSION AS (generation-expression)

Changes the expression for the column to the specified

generation-expression. SET EXPRESSION AS requires the table to be put in

set integrity pending state, using the SET INTEGRITY statement with the

OFF option. After the ALTER TABLE statement, the SET INTEGRITY

statement with the IMMEDIATE CHECKED and FORCE GENERATED

options must be used to update and check all the values in that column

against the new expression. The column must already be defined as a

generated column based on an expression (SQLSTATE 42837), and must

not have appeared in the PARTITIONING KEY, DIMENSIONS, or KEY

SEQUENCE clauses of the table (SQLSTATE 42997). The

generation-expression must conform to the same rules that apply when

defining a generated column. The result data type of the

generation-expression must be assignable to the data type of the column

(SQLSTATE 42821).

SET INLINE LENGTH integer

Changes the inline length of an existing structured or XML type column.

The inline length indicates the maximum byte size of an instance of a

structured or XML type to store in the base table row. Instances of

structured or XML types that cannot be stored inline in the base table row

are stored separately, similar to the way that LOB values are handled.

 The data type of column-name must be a structured or XML type

(SQLSTATE 42842).

The default inline length for a structured-type column is the inline length

of its type (specified explicitly or by default in the CREATE TYPE

statement). If the inline length of a structured type is less than 292, the

value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE -1); must

be at least 292; and cannot exceed 32672 (SQLSTATE 54010).

Altering the column must not make the total byte count of all columns

exceed the maximum record size (SQLSTATE 54010).

Data that is already stored separately from the rest of the row will not be

moved inline into the base table row by this statement. To take advantage

of the altered inline length of a structured type column, invoke the REORG

ALTER TABLE

100 SQL Reference, Volume 2

command against the specified table after altering the inline length of its

column. To take advantage of the altered inline length of an XML type

column in an existing table, you must update all rows with an UPDATE

statement. The REORG command has no effect on the row storage of XML

documents.

SET NOT NULL

Specifies that the column cannot contain null values. No value for this

column in existing rows of the table can be the null value (SQLSTATE

23502). This clause is not allowed if the column is specified in the foreign

key of a referential constraint with a DELETE rule of SET NULL, and no

other nullable columns exist in the foreign key (SQLSTATE 42831). Altering

this attribute for a column requires table reorganization before further table

access is allowed (SQLSTATE 57016). Note that because this operation

requires validation of table data, it cannot be performed when the table is

in reorg pending state (SQLSTATE 57016). The column being altered cannot

be part of a table containing an XML data type column (SQLSTATE 42997).

The table cannot have data capture enabled (SQLSTATE 42997).

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp column for the table. A value is

generated for the column in each row that is inserted, and for any row in

which any column is updated. The value that is generated for a ROW

CHANGE TIMESTAMP column is a timestamp that corresponds to the

insert or update time for that row. If multiple rows are inserted or updated

with a single statement, the value of the ROW CHANGE TIMESTAMP

column might be different for each row.

 A table can only have one ROW CHANGE TIMESTAMP column

(SQLSTATE 428C1). If data-type is specified, it must be TIMESTAMP

(SQLSTATE 42842). A ROW CHANGE TIMESTAMP column cannot have a

DEFAULT clause (SQLSTATE 42623). NOT NULL must be specified for a

ROW CHANGE TIMESTAMP column (SQLSTATE 42831).

SET GENERATED ALWAYS or GENERATED BY DEFAULT

Specifies when the database manager is to generate values for the column.

GENERATED BY DEFAULT specifies that a value is only to be generated

when a value is not provided or the DEFAULT keyword is used in an

assignment to the column. GENERATED ALWAYS specifies that the

database manager is to always generate a value for the column. The

column must already be defined as a generated column based on an

identity column; that is, defined with the AS IDENTITY clause (SQLSTATE

42837).

identity-alteration

Alters the identity attributes of the column. The column must be an

identity column.

SET INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the identity

column. The next value to be generated for the identity column will be

determined from the last assigned value with the increment applied.

The column must already be defined with the IDENTITY attribute

(SQLSTATE 42837).

 This value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), and does not exceed the value of a

large integer constant (SQLSTATE 42820), without non-zero digits

existing to the right of the decimal point (SQLSTATE 428FA).

ALTER TABLE

Statements 101

If this value is negative, this is a descending sequence after the ALTER

statement. If this value is 0 or positive, this is an ascending sequence

after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant

Specifies the minimum value at which a descending identity column

either cycles or stops generating values, or the value to which an

ascending identity column cycles after reaching the maximum value.

The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO MINVALUE

For an ascending sequence, the value is the original starting value.

For a descending sequence, the value is the minimum value of the

data type of the column.

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value. This

value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), without non-zero digits existing

to the right of the decimal point (SQLSTATE 428FA), but the value

must be less than or equal to the maximum value (SQLSTATE

42815).

SET NO MAXVALUE or MAXVALUE numeric-constant

Specifies the maximum value at which an ascending identity column

either cycles or stops generating values, or the value to which a

descending identity column cycles after reaching the minimum value.

The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO MAXVALUE

For an ascending sequence, the value is the maximum value of the

data type of the column. For a descending sequence, the value is

the original starting value.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value. This

value can be any positive or negative value that could be assigned

to this column (SQLSTATE 42815), without non-zero digits existing

to the right of the decimal point (SQLSTATE 428FA), but the value

must be greater than or equal to the minimum value (SQLSTATE

42815).

SET NO CYCLE or CYCLE

Specifies whether this identity column should continue to generate

values after generating either its maximum or minimum value. The

column must exist in the specified table (SQLSTATE 42703), and must

already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE

Specifies that values will not be generated for the identity column

once the maximum or minimum value has been reached.

CYCLE

Specifies that values continue to be generated for this column after

the maximum or minimum value has been reached. If this option

is used, then after an ascending identity column reaches the

ALTER TABLE

102 SQL Reference, Volume 2

maximum value, it generates its minimum value; or after a

descending sequence reaches the minimum value, it generates its

maximum value. The maximum and minimum values for the

identity column determine the range that is used for cycling.

 When CYCLE is in effect, duplicate values can be generated for an

identity column. Although not required, if unique values are

desired, a single-column unique index defined using the identity

column will ensure uniqueness. If a unique index exists on such an

identity column and a non-unique value is generated, an error

occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant

Specifies whether to keep some pre-allocated values in memory for

faster access. This is a performance and tuning option. The column

must already be defined with the IDENTITY attribute (SQLSTATE

42837).

NO CACHE

Specifies that values for the identity column are not to be

pre-allocated. In a data sharing environment, if the identity values

must be generated in order of request, the NO CACHE option must

be used.

 When this option is specified, the values of the identity column are

not stored in the cache. In this case, every request for a new

identity value results in synchronous I/O to the log.

CACHE integer-constant

Specifies how many values of the identity sequence are

pre-allocated and kept in memory. When values are generated for

the identity column, pre-allocating and storing values in the cache

reduces synchronous I/O to the log.

 If a new value is needed for the identity column and there are no

unused values available in the cache, the allocation of the value

requires waiting for I/O to the log. However, when a new value is

needed for the identity column and there is an unused value in the

cache, the allocation of that identity value can happen more

quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to a

system failure, all cached sequence values that have not been used

in committed statements are lost (that is, they will never be used).

The value specified for the CACHE option is the maximum

number of values for the identity column that could be lost in case

of system failure.

The minimum value is 2 (SQLSTATE 42815).

SET NO ORDER or ORDER

Specifies whether the identity column values must be generated in

order of request. The column must exist in the specified table

(SQLSTATE 42703), and must already be defined with the IDENTITY

attribute (SQLSTATE 42837).

NO ORDER

Specifies that the identity column values do not need to be

generated in order of request.

ALTER TABLE

Statements 103

ORDER

Specifies that the identity column values must be generated in

order of request.

RESTART or RESTART WITH numeric-constant

Resets the state of the sequence associated with the identity column. If

WITH numeric-constant is not specified, the sequence for the identity

column is restarted at the value that was specified, either implicitly or

explicitly, as the starting value when the identity column was

originally created.

 The column must exist in the specified table (SQLSTATE 42703), and

must already be defined with the IDENTITY attribute (SQLSTATE

42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any

positive or negative value that could be assigned to this column

(SQLSTATE 42815), without non-zero digits existing to the right of the

decimal point (SQLSTATE 428FA). The numeric-constant will be used as

the next value for the column.

DROP IDENTITY

Drops the identity attributes of the column, making the column a simple

numeric data type column. DROP IDENTITY is not allowed if the column

is not an identity column (SQLSTATE 42837).

DROP EXPRESSION

Drops the generated expression attributes of the column, making the

column a non-generated column. DROP EXPRESSION is not allowed if the

column is not a generated expression column (SQLSTATE 42837).

DROP DEFAULT

Drops the current default for the column. The specified column must have

a default value (SQLSTATE 42837).

DROP NOT NULL

Drops the NOT NULL attribute of the column, allowing the column to

have the null value. This clause is not allowed if the column is specified in

the primary key, or in a unique constraint of the table (SQLSTATE 42831).

Altering this attribute for a column requires table reorganization before

further table access is allowed (SQLSTATE 57016). The column being

altered cannot be part of a table containing an XML data type column

(SQLSTATE 42997). The table cannot have data capture enabled

(SQLSTATE 42997).

ADD SCOPE

Add a scope to an existing reference type column that does not already

have a scope defined (SQLSTATE 428DK). If the table being altered is a

typed table, the column must not be inherited from a supertable

(SQLSTATE 428DJ).

typed-table-name

The name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that

the values actually reference existing rows in typed-table-name.

typed-view-name

The name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No

ALTER TABLE

104 SQL Reference, Volume 2

checking is done of any existing values in column-name to ensure that

the values actually reference existing rows in typed-view-name.

COMPRESS

Specifies whether or not default values for this column are to be stored

more efficiently.

SYSTEM DEFAULT

Specifies that system default values (that is, the default values used for

the data types when no specific values are specified) are to be stored

using minimal space. If the table is not already set with the VALUE

COMPRESSION attribute activated, a warning is returned (SQLSTATE

01648), and system default values are not stored using minimal space.

 Allowing system default values to be stored in this manner causes a

slight performance penalty during insert and update operations on the

column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table

reorganization to enable existing data to take advantage of storing

system default values using minimal space.

OFF

Specifies that system default values are to be stored in the column as

regular values. Existing data in the column is not changed. Offline

reorganization is recommended to change existing data.

 The base data type must not be DATE, TIME or TIMESTAMP (SQLSTATE

42842). If the base data type is a varying-length string, this clause is

ignored. String values of length 0 are automatically compressed if a table

has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be inherited

from a supertable (SQLSTATE 428DJ).

SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601).The table must have a security policy associated with it (SQLSTATE

55064).

DROP COLUMN SECURITY

Alters a column to make it a non-protected column.

DROP PRIMARY KEY

Drops the definition of the primary key and all referential constraints

dependent on this primary key. The table must have a primary key (SQLSTATE

42888).

DROP FOREIGN KEY constraint-name

Drops the referential constraint constraint-name. The constraint-name must

identify a referential constraint (SQLSTATE 42704). For information on

implications of dropping a referential constraint see Notes.

DROP UNIQUE constraint-name

Drops the definition of the unique constraint constraint-name and all referential

constraints dependent on this unique constraint. The constraint-name must

identify an existing UNIQUE constraint (SQLSTATE 42704). For information on

implications of dropping a unique constraint, see Notes.

ALTER TABLE

Statements 105

DROP CHECK constraint-name

Drops the check constraint constraint-name. The constraint-name must identify an

existing check constraint defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name

Drops the constraint constraint-name. The constraint-name must identify an

existing check constraint, referential constraint, primary key, or unique

constraint defined on the table (SQLSTATE 42704). For information on

implications of dropping a constraint, see Notes.

DROP COLUMN

Drops the identified column from the table. The table must not be a typed

table (SQLSTATE 428DH). The table cannot have data capture enabled

(SQLSTATE 42997). Dropping a column requires table reorganization before

further table access is allowed.

column-name

Identifies the column that is to be dropped. The column name must not be

qualified. The name must identify a column of the specified table

(SQLSTATE 42703). The name must not identify the only column of the

table (SQLSTATE 42814). The name must not identify a column that is part

of the table’s distribution key, table partitioning key, or organizing

dimensions (SQLSTATE 42997). The name must not identify a column that

is part of a table containing an XML data type column (SQLSTATE 42997).

CASCADE

Specifies that any views, indexes, triggers, SQL functions, constraints, or

global variables that are dependent on the column being dropped are also

dropped, or that any decomposition-enabled XSROBJECTs that are

dependent on the table containing the column are made inoperative for

decomposition. A trigger is dependent on the column if it is referenced in

the UPDATE OF column list, or anywhere in the triggered action. A

decomposition-enabled XSROBJECT is dependent on a table if it contains a

mapping of an XML element or attribute to the table. If an SQL function or

global variable is dependent on another database object, it might not be

possible to drop the function or global variable by means of the CASCADE

option. CASCADE is the default.

RESTRICT

Specifies that the column cannot be dropped if any views, indexes,

triggers, constraints, or global variables are dependent on the column, or if

any decomposition-enabled XSROBJECT is dependent on the table that

contains the column (SQLSTATE 42893). A trigger is dependent on the

column if it is referenced in the UPDATE OF column list, or anywhere in

the triggered action. A decomposition-enabled XSROBJECT is dependent

on a table if it contains a mapping of an XML element or attribute to the

table. The first dependent object that is detected is identified in the

administration log.

 Table 16. Cascaded Effects of Dropping a Column

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is

referenced by a view or a

trigger

Dropping the column is not

allowed.

The object and all objects that

are dependent on that object

are dropped.

ALTER TABLE

106 SQL Reference, Volume 2

Table 16. Cascaded Effects of Dropping a Column (continued)

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is

referenced in the key of an

index

If all columns that are

referenced in the index are

dropped in the same ALTER

TABLE statement, dropping

the index is allowed.

Otherwise, dropping the

column is not allowed.

The index is dropped.

Dropping a column that is

referenced in a unique

constraint

If all columns that are

referenced in the unique

constraint are dropped in the

same ALTER TABLE

statement, and the unique

constraint is not referenced

by a referential constraint, the

columns and the constraint

are dropped. (The index that

is used to satisfy the

constraint is also dropped.)

Otherwise, dropping the

column is not allowed.

The unique constraint and

any referential constraints

that reference that unique

constraint are dropped. (Any

indexes that are used by

those constraints are also

dropped).

Dropping a column that is

referenced in a referential

constraint

If all columns that are

referenced in the referential

constraint are dropped in the

same ALTER TABLE

statement, the columns and

the constraint are dropped.

Otherwise, dropping the

column is not allowed.

The referential constraint is

dropped.

Dropping a column that is

referenced by a

system-generated column

that is not being dropped.

Dropping the column is not

allowed.

Dropping the column is not

allowed.

Dropping a column that is

referenced in a check

constraint

Dropping the column is not

allowed.

The check constraint is

dropped.

Dropping a column that is

referenced in a

decomposition-enabled

XSROBJECT

Dropping the column is not

allowed.

The XSROBJECT is marked

inoperative for

decomposition. Re-enabling

the XSROBJECT might

require readjustment of its

mappings; following this,

issue an ALTER XSROBJECT

ENABLE DECOMPOSITION

statement against the

XSROBJECT.

Dropping a column that is

referenced in the default

expression of a global

variable

Dropping the column is not

allowed.

The global variable is

dropped, unless the dropping

of the global variable is

disallowed because there are

other objects, which do not

allow the cascade, that

depend on the global

variable.

ALTER TABLE

Statements 107

DROP RESTRICT ON DROP

Removes the restriction, if there is one, on dropping the table and the table

space that contains the table.

DROP DISTRIBUTION

Drops the distribution definition for the table. The table must have a

distribution definition (SQLSTATE 428FT). The table space for the table must

be defined on a single partition database partition group.

DROP MATERIALIZED QUERY

Changes a materialized query table so that it is no longer considered to be a

materialized query table. The table specified by table-name must be defined as a

materialized query table that is not replicated (SQLSTATE 428EW). The

definition of the columns of table-name is not changed, but the table can no

longer be used for query optimization, and the REFRESH TABLE statement

can no longer be used.

DATA CAPTURE

Indicates whether extra information for data replication is to be written to the

log.

 If the table is a typed table, then this option is not supported (SQLSTATE

428DH for root tables or 428DR for other subtables).

Data capture is incompatible with row compression (SQLSTATE 42997).

NONE

Indicates that no extra information will be logged.

CHANGES

Indicates that extra information regarding SQL changes to this table will be

written to the log. This option is required if this table will be replicated

and the Capture program is used to capture changes for this table from the

log.

 If the table is defined to allow data on a database partition other than the

catalog partition (multiple partition database partition group, or database

partition group with database partitions other than the catalog partition),

then this option is not supported (SQLSTATE 42997).

If the schema name (implicit or explicit) of the table is longer than 18

bytes, this option is not supported (SQLSTATE 42997).

INCLUDE LONGVAR COLUMNS

Allows data replication utilities to capture changes made to LONG

VARCHAR or LONG VARGRAPHIC columns. The clause may be

specified for tables that do not have any LONG VARCHAR or LONG

VARGRAPHIC columns since it is possible to ALTER the table to

include such columns.

ACTIVATE NOT LOGGED INITIALLY

Activates the NOT LOGGED INITIALLY attribute of the table for this current

unit of work.

 Any changes made to the table by an INSERT, DELETE, UPDATE, CREATE

INDEX, DROP INDEX, or ALTER TABLE in the same unit of work after the

table is altered by this statement are not logged. Any changes made to the

system catalog by the ALTER statement in which the NOT LOGGED

INITIALLY attribute is activated are logged. Any subsequent changes made in

the same unit of work to the system catalog information are logged.

ALTER TABLE

108 SQL Reference, Volume 2

At the completion of the current unit of work, the NOT LOGGED INITIALLY

attribute is deactivated and all operations that are done on the table in

subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting data, it

is important that only this clause be specified on the ALTER TABLE statement.

Use of any other clause in the ALTER TABLE statement will result in catalog

locks. If no other clauses are specified for the ALTER TABLE statement, then

only a SHARE lock will be acquired on the system catalog tables. This can

greatly reduce the possibility of concurrency conflicts for the duration of time

between when this statement is executed and when the unit of work in which

it was executed is ended.

If the table is a typed table, this option is only supported on the root table of

the typed table hierarchy (SQLSTATE 428DR).

For more information about the NOT LOGGED INITIALLY attribute, see the

description of this attribute in “CREATE TABLE”.

Note: If non-logged activity occurs against a table that has the NOT LOGGED

INITIALLY attribute activated, and if a statement fails (causing a rollback), or a

ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back

(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY

attribute was activated is marked inaccessible after the rollback has occurred

and can only be dropped. Therefore, the opportunity for errors within the unit

of work in which the NOT LOGGED INITIALLY attribute is activated should

be minimized.

WITH EMPTY TABLE

Causes all data currently in table to be removed. Once the data has been

removed, it cannot be recovered except through use of the RESTORE

facility. If the unit of work in which this alter statement was issued is

rolled back, the table data will not be returned to its original state.

 When this action is requested, no DELETE triggers defined on the affected

table are fired. Any indexes that exist on the table are also deleted.

A partitioned table with attached data partitions cannot be emptied

(SQLSTATE 42928).

PCTFREE integer

Specifies the percentage of each page that is to be left as free space during a

load or a table reorganization operation. The first row on each page is added

without restriction. When additional rows are added to a page, at least integer

percent of the page is left as free space. The PCTFREE value is considered only

by the load and table reorg utilities. The value of integer can range from 0 to

99. A PCTFREE value of -1 in the system catalog (SYSCAT.TABLES) is

interpreted as the default value. The default PCTFREE value for a table page is

0. If the table is a typed table, this option is only supported on the root table of

the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE

Indicates the size (granularity) of locks used when the table is accessed. Use of

this option in the table definition will not prevent normal lock escalation from

occurring. If the table is a typed table, this option is only supported on the root

table of the typed table hierarchy (SQLSTATE 428DR).

ROW

Indicates the use of row locks. This is the default lock size when a table is

created.

ALTER TABLE

Statements 109

BLOCKINSERT

Indicates the use of block locks during insert operations. This means that

the appropriate exclusive lock is acquired on the block before insertion,

and row locking is not done on the inserted row. This option is useful

when separate transactions are inserting into separate cells in the table.

Transactions inserting into the same cells can still do so concurrently, but

will insert into distinct blocks, and this can impact the size of the cell if

more blocks are needed. This option is only valid for MDC tables

(SQLSTATE 628N).

TABLE

Indicates the use of table locks. This means that the appropriate share or

exclusive lock is acquired on the table, and that intent locks (except intent

none) are not used. For partitioned tables, this lock strategy is applied to

both the table lock and the data partition locks for any data partitions that

are accessed. Use of this value can improve the performance of queries by

limiting the number of locks that need to be acquired. However,

concurrency is also reduced, because all locks are held over the complete

table.

APPEND

Indicates whether data is appended to the end of the table data or placed

where free space is available in data pages. If the table is a typed table, this

option is only supported on the root table of the typed table hierarchy

(SQLSTATE 428DR).

ON

Indicates that table data will be appended and information about free

space on pages will not be kept. The table must not have a clustered index

(SQLSTATE 428CA).

OFF

Indicates that table data will be placed where there is available space. This

is the default when a table is created.

 The table should be reorganized after setting APPEND OFF since the

information about available free space is not accurate and may result in

poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY

Indicates to the optimizer whether or not the cardinality of table table-name can

vary significantly at run time. Volatility applies to the number of rows in the

table, not to the table itself. CARDINALITY is an optional keyword. The

default is NOT VOLATILE.

VOLATILE

Specifies that the cardinality of table table-name can vary significantly at

run time, from empty to large. To access the table, the optimizer will use

an index scan (rather than a table scan, regardless of the statistics) if that

index is index-only (all referenced columns are in the index), or that index

is able to apply a predicate in the index scan. The list prefetch access

method will not be used to access the table. If the table is a typed table,

this option is only supported on the root table of the typed table hierarchy

(SQLSTATE 428DR).

NOT VOLATILE

Specifies that the cardinality of table-name is not volatile. Access plans to

this table will continue to be based on existing statistics and on the current

optimization level.

ALTER TABLE

110 SQL Reference, Volume 2

COMPRESS

Specifies whether or not data compression applies to the rows of the table.

YES

Specifies that data row compression is enabled. Insert and update

operations on the table will be subject to compression. If no compression

dictionary for the table exists, a compression dictionary is automatically

created and rows are subject to compression after the table is sufficiently

populated with data. If there is an existing compression dictionary for the

table, compression is reactivated to use this dictionary, and rows are

subject to compression.

NO

Specifies that data row compression is disabled. Insert and update

operations on the table will no longer be subject to compression. Any rows

in the table that are in compressed format remain in compressed format

until they are converted to non-compressed format when they are updated.

A non-inplace reorganization of the table decompresses all rows that are

compressed. If a compression dictionary exists, it is discarded during table

reinitialization or truncation (such as, for example, a replace operation).

VALUE COMPRESSION

This determines the row format that is to be used. Each data type has a

different byte count depending on the row format that is used. For more

information, see “Byte Counts” in “CREATE TABLE”. An update operation

causes an existing row to be changed to the new row format. Offline table

reorganization is recommended to improve the performance of update

operations on existing rows. This can also result in the table taking up less

space. If the row size, calculated using the appropriate column in the table

named “Byte Counts of Columns by Data Type” (see “CREATE TABLE”),

would no longer fit within the row size limit, as indicated in the table named

“Limits for Number of Columns and Row Size In Each Table Space Page Size”,

an error is returned (SQLSTATE 54010). If the table is a typed table, this option

is only supported on the root table of the typed table hierarchy (SQLSTATE

428DR).

ACTIVATE

The NULL value is stored using three bytes. This is the same or less space

than when VALUE COMPRESSION is not active for columns of all data

types, with the exception of CHAR(1). Whether or not a column is defined

as nullable has no affect on the row size calculation. The zero-length data

values for columns whose data type is VARCHAR, VARGRAPHIC, LONG

VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, or BLOB are to be

stored using two bytes only, which is less than the storage required when

VALUE COMPRESSION is not active. When a column is defined using the

COMPRESS SYSTEM DEFAULT option, this also allows the system default

value for the column to be stored using three bytes of total storage. The

row format that is used to support this determines the byte counts for each

data type, and tends to cause data fragmentation when updating to or

from NULL, a zero-length value, or the system default value.

DEACTIVATE

The NULL value is stored with space set aside for possible future updates.

This space is not set aside for varying-length columns. It also does not

support efficient storage of system default values for a column. If columns

already exist with the COMPRESS SYSTEM DEFAULT attribute, a warning

is returned (SQLSTATE 01648).

ALTER TABLE

Statements 111

LOG INDEX BUILD

Specifies the level of logging that is to be performed during create, recreate, or

reorganize index operations on this table.

NULL

Specifies that the value of the logindexbuild database configuration

parameter will be used to determine whether or not index build operations

are to be completely logged. This is the default when the table is created.

OFF

Specifies that any index build operations on this table will be logged

minimally. This value overrides the setting of the logindexbuild database

configuration parameter.

ON

Specifies that any index build operations on this table will be logged

completely. This value overrides the setting of the logindexbuild database

configuration parameter.

Rules

v Any unique or primary key constraint defined on the table must be a superset of

the distribution key, if there is one (SQLSTATE 42997).

v Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

v A column can only be referenced in one ADD, ALTER, or DROP COLUMN

clause in a single ALTER TABLE statement (SQLSTATE 42711).

v A column length or data type cannot be altered, nor can the column be dropped,

if the table has any materialized query tables that are dependent on the table

(SQLSTATE 42997).

v VARCHAR and VARGRAPHIC columns that have been altered to be greater

than 4000 and 2000, respectively, must not be used as input parameters in

functions in the SYSFUN schema (SQLSTATE 22001).

v A column length cannot be altered if the table has any views enabled for query

optimization that are dependent on the table (SQLSTATE 42997).

v The table must be put in set integrity pending state, using the SET INTEGRITY

statement with the OFF option (SQLSTATE 55019), before:

– Adding a column with a generation expression

– Altering the generated expression of a column

– Changing a column to have a generated expression
v A column of data type XML cannot be added to a table if there are type 1

indexes on that table (SQLSTATE 42997). The indexes can be converted to type 2

indexes using the REORG INDEXES command with the CONVERT option.

v An existing column cannot be altered to become of type DB2SECURITYLABEL

(SQLSTATE 42837).

v Defining a column of type DB2SECURITYLABEL fails if the table does not have

a security policy associated with it (SQLSTATE 55064).

v A column of type DB2SECURITYLABEL cannot be altered or dropped

(SQLSTATE 42817).

v An ALTER TABLE operation to mark a table as protected fails if there exists an

MQT that depends on that table (SQLSTATE 55067).

v Attaching a partition to a protected partitioned table fails if the source table and

the target table are not protected using the same security policy, have the same

row security label column, and have the same set of protected columns

(SQLSTATE 428GE).

ALTER TABLE

112 SQL Reference, Volume 2

v If a generated column is referenced in a table partitioning key, the generated

column expression cannot be altered (SQLSTATE 42837).

Notes

v A REORG-recommended operation has occured when changes resulting from an

ALTER TABLE statement affect the row format of the data. When this occurs,

most subsequent operations on the table are restricted until a table

reorganization operation completes successfully. Up to three ALTER TABLE

statements of this type can execute against a table before reorganization must be

done (SQLSTATE 57016). Multiple alterations that would constitute a

REORG-recommended operation can be made as part of a single ALTER TABLE

statement (one per column); this is considered to be a single

REORG-recommended operation. For example, dropping two columns in a

single ALTER TABLE statement is not considered to be two

REORG-recommended operations. Dropping two columns in two separate

ALTER TABLE statements, however, would be regarded as two statements that

contain REORG-recommended operations.

v The following table operations are allowed after a successful

REORG-recommended operation has occurred:

– ALTER TABLE, where no row data validation is required. However, the

following operations are not allowed (SQLSTATE 57007):

- ADD CHECK CONSTRAINT

- ADD REFERENTIAL CONSTRAINT

- ADD UNIQUE CONSTRAINT

- ALTER COLUMN SET NOT NULL
– DROP TABLE

– RENAME TABLE

– REORG TABLE

– TRUNCATE TABLE

– Table scan access of table data
v Altering a table to make it a materialized query table will put the table in set

integrity pending state. If the table is defined as REFRESH IMMEDIATE, the

table must be taken out of set integrity pending state before INSERT, DELETE,

or UPDATE commands can be invoked on the table referenced by the fullselect.

The table can be taken out of set integrity pending state by using REFRESH

TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED option, to

completely refresh the data in the table based on the fullselect. If the data in the

table accurately reflects the result of the fullselect, the IMMEDIATE

UNCHECKED option of SET INTEGRITY can be used to take the table out of set

integrity pending state.

v Altering a table to change it to a REFRESH IMMEDIATE materialized query

table will cause any packages with INSERT, DELETE, or UPDATE usage on the

table referenced by the fullselect to be invalidated.

v Altering a table to change from a materialized query table to a regular table will

cause any packages dependent on the table to be invalidated.

v Altering a table to change from a MAINTAINED BY FEDERATED_TOOL

materialized query table to a regular table will not cause any change in the

subscription setup of the replication tool. Because a subsequent change to a

MAINTAINED BY SYSTEM materialized query table will cause the replication

tool to fail, you must change the subscription setting when changing a

MAINTAINED BY FEDERATED_TOOL materialized query table.

ALTER TABLE

Statements 113

v If a deferred materialized query table is associated with a staging table, the

staging table will be dropped if the materialized query table is altered to a

regular table.

v ADD column clauses are processed prior to all other clauses. Other clauses are

processed in the order that they are specified.

v Any columns added through an alter table operation will not automatically be

added to any existing view of the table.

v Adding or attaching a data partition to a partitioned table, or detaching a data

partition from a partitioned table causes any packages that are dependent on

that table to be invalidated.

v To drop the partitioning for a table, the table must be dropped and then

recreated.

v To drop the organization for a table, the table must be dropped and then

recreated.

v When an index is automatically created for a unique or primary key constraint,

the database manager will try to use the specified constraint name as the index

name with a schema name that matches the schema name of the table. If this

matches an existing index name or no name for the constraint was specified, the

index is created in the SYSIBM schema with a system-generated name formed of

″SQL″ followed by a sequence of 15 numeric characters generated by a

timestamp based function.

v When an index is created on a partitioned table with attached data partitions,

the index will not include the data in the attached data partitions. Use the SET

INTEGRITY statement to maintain all indexes for all attached data partitions.

v Any table that may be involved in a DELETE operation on table T is said to be

delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of

T or it is a dependent of a table in which deletes from T cascade.

v A package has an insert (update/delete) usage on table T if records are inserted

into (updated in/deleted from) T either directly by a statement in the package,

or indirectly through constraints or triggers executed by the package on behalf

of one of its statements. Similarly, a package has an update usage on a column if

the column is modified directly by a statement in the package, or indirectly

through constraints or triggers executed by the package on behalf of one of its

statements.

v In a federated system, a remote base table that was created using transparent

DDL can be altered. However, transparent DDL does impose some limitations on

the modifications that can be made:

– A remote base table can only be altered by adding new columns or specifying

a primary key.

– Specific clauses supported by transparent DDL include:

- ADD COLUMN column-definition

- NOT NULL and PRIMARY KEY in the column-options clause

- ADD unique-constraint (PRIMARY KEY only)
– You cannot specify a comment on an existing column in a remote base table.

– An existing primary key in a remote base table cannot be altered or dropped.

– Altering a remote base table invalidates any packages that are dependent on

the nickname associated with that remote base table.

– The remote data source must support the changes being requested through

the ALTER TABLE statement. Depending on how the data source responds to

requests it does not support, an error might be returned or the request might

be ignored.

ALTER TABLE

114 SQL Reference, Volume 2

– An attempt to alter a remote base table that was not created using transparent

DDL returns an error.
v Any changes, whether implicit or explicit, to primary key, unique keys, or

foreign keys might have the following effects on packages, indexes, and other

foreign keys.

– If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys. (If the

primary or unique key uses an existing unique index that was created in a

previous version and has not been converted to support deferred

uniqueness, the index is converted, and packages with update usage on the

associated table are invalidated.)
– If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint. Any

packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for the

constraint and it is no longer system-required. Any packages dependent on

the index are invalidated.

- The index is set to no longer system required if it was an existing unique

index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each

dependent foreign key, as specified in the next item.
– If a foreign key is added, dropped, or altered from NOT ENFORCED to

ENFORCED (or ENFORCED to NOT ENFORCED):

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the foreign

key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the parent

key are invalidated.
– If a foreign key or a functional dependency is altered from ENABLE QUERY

OPTIMIZATION to DISABLE QUERY OPTIMIZATION:

- All packages with dependencies on the constraint for optimization

purposes are invalidated.
v Adding a column to a table will result in invalidation of all packages with insert

usage on the altered table. If the added column is the first user-defined

structured type column in the table, packages with DELETE usage on the altered

table will also be invalidated.

v Adding a check or referential constraint to a table that already exists and that is

not in set integrity pending state, or altering the existing check or referential

constraint from NOT ENFORCED to ENFORCED on an existing table that is not

in set integrity pending state will cause the existing rows in the table to be

immediately evaluated against the constraint. If the verification fails, an error is

returned (SQLSTATE 23512). If a table is in set integrity pending state, adding a

check or referential constraint, or altering a constraint from NOT ENFORCED to

ENFORCED will not immediately lead to the enforcement of the constraint.

Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to

begin enforcing the constraint.

v Adding, altering, or dropping a check constraint will result in invalidation of all

packages with either an insert usage on the object table, an update usage on at

least one of the columns involved in the constraint, or a select usage exploiting

the constraint to improve performance.

ALTER TABLE

Statements 115

v Adding a distribution key invalidates all packages with an update usage on at

least one of the columns of the distribution key.

v A distribution key that was defined by default as the first column of the primary

key is not affected by dropping the primary key and adding a different primary

key.

v Dropping a column or changing its data type removes all runstats information

from the table being altered. Runstats should be performed on the table after it

is again accessible. The statistical profile of the table is preserved if the table

does not contain a column that was explicitly dropped.

v Altering a column (to increase its length or change its data type or nullability

attribute) or dropping a column invalidates all packages that reference (directly

or indirectly through a referential constraint or trigger) its table.

v Altering a column (to increase its length or change its data type or nullability

attribute) regenerates views (except typed views) that are dependent on its table.

If a problem occurs while regenerating such a view, an error is returned

(SQLSTATE 56098). Any typed views that are dependent on the table are marked

inoperative.

v Altering a column to increase its length or change its data type marks all

dependent triggers and SQL functions as invalid; they are implicitly recompiled

on next use. If a problem occurs while regenerating such an object, an error is

returned (SQLSTATE 56098).

v Altering a column (to increase its length or change its data type or nullability

attribute) might cause errors (SQLSTATE 54010) while processing a trigger or an

SQL function when a statement involving the trigger or SQL function is

prepared or bound. This can occur if the row length based on the sum of the

lengths of the transition variables and transition table columns is too long. If

such a trigger or SQL function is dropped, a subsequent attempt to recreate it

returns an error (SQLSTATE 54040).

v Altering a structured or XML type column to increase the inline length will

invalidate all packages that reference the table, either directly or indirectly

through a referential constraint or trigger.

v Altering a structured or XML type column to increase the inline length will

regenerate views that are dependent on the table.

v Changing the LOCKSIZE for a table will result in invalidation of all packages

that have a dependency on the altered table.

v Changing VOLATILE or NOT VOLATILE CARDINALITY will result in

invalidation of all packages that have a dependency on the altered table.

v Replication: Exercise caution when increasing the length or changing the data

type of a column. The change data table that is associated with an application

table might already be at or near the DB2 row size limit. The change data table

should be altered before the application table, or the two tables should be

altered within the same unit of work, to ensure that the alteration can be

completed for both tables. Consideration should be given to copies, which might

also be at or near the row size limit, or reside on platforms which lack the

ability to increase the length of an existing column.

If the change data table is not altered before the Capture program processes log

records with the altered attributes, the Capture program will likely fail. If a copy

containing the altered column is not altered before the subscription maintaining

the copy runs, the subscription will likely fail.

v When detaching a partition from a protected table, the target table automatically

created by DB2 will be protected in exactly the same way the source table is

protected.

ALTER TABLE

116 SQL Reference, Volume 2

v When a table is altered such that it becomes protected with row level

granularity, any cached dynamic SQL sections that depend on such a table are

invalidated. Similarly, any packages that depend on such a table are also

invalidated.

v When a column of a table, T, is altered such that it becomes a protected column,

any cached dynamic SQL sections that depend on table T are invalidated.

Similarly, any packages that depend on table T are also invalidated.

v When a column of a table, T, is altered such that it becomes a non protected

column, any cached dynamic SQL sections that depend on table T are

invalidated. Similarly, any packages that depend on table T are also invalidated.

v For existing rows in the table, the value of the security label column defaults to

the security label for write access of the session authorization ID at the time the

ALTER statement that adds a row security label column is executed.

v Considerations for implicitly hidden columns: A column that is defined as

implicitly hidden can be explicitly referenced in an ALTER TABLE statement. For

example, an implicitly hidden column can be altered or specified as part of a

referential constraint, check constraint, or materialized query table definition.

v Compatibilities

– For compatibility with previous versions of DB2:

- The ADD keyword is optional for:

v Unnamed PRIMARY KEY constraints

v Unnamed referential constraints

v Referential constraints whose name follows the phrase FOREIGN KEY
- The CONSTRAINT keyword can be omitted from a column-definition

defining a references-clause

- constraint-name can be specified following FOREIGN KEY (without the

CONSTRAINT keyword)

- SET SUMMARY AS can be specified in place of SET MATERIALIZED

QUERY AS

- SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in

place of DROP MATERIALIZED QUERY

- SET MATERIALIZED QUERY AS (fullselect) can be specified in place of

ADD MATERIALIZED QUERY (fullselect)

- ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE

BY HASH; the optional USING HASHING clause can also still be specified

in this case

- DROP PARTITIONING KEY can be specified in place of DROP

DISTRIBUTION
– For compatibility with previous versions of DB2 and for consistency:

- A comma can be used to separate multiple options in the identity-alteration

clause
– For compatibility with DB2 for z/OS:

- PART can be specified in place of PARTITION

- VALUES can be specified in place of ENDING AT
– The following syntax is also supported:

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

ALTER TABLE

Statements 117

Examples

Example 1: Add a new column named RATING, which is one character long, to

the DEPARTMENT table.

 ALTER TABLE DEPARTMENT

 ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table. Create

SITE_NOTES as a varying-length column with a maximum length of 1000 bytes.

The values of the column do not have an associated character set and therefore

should not be converted.

 ALTER TABLE PROJECT

 ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3: Assume a table called EQUIPMENT exists defined with the following

columns:

 Column Name Data Type

 EQUIP_NO INT

 EQUIP_DESC VARCHAR(50)

 LOCATION VARCHAR(50)

 EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner

(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the

DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT table. If a

department is removed from the DEPARTMENT table, the owner

(EQUIP_OWNER) values for all equipment owned by that department should

become unassigned (or set to null). Give the constraint the name DEPTQUIP.

 ALTER TABLE EQUIPMENT

 ADD CONSTRAINT DEPTQUIP

 FOREIGN KEY (EQUIP_OWNER)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity

associated with this equipment record. Unless otherwise specified, the EQUIP_QTY

column should have a value of 1 and must never be null.

 ALTER TABLE EQUIPMENT

 ADD COLUMN EQUIP_QTY

 SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named REVENUE

defined so that each employee must make a total of salary and commission greater

than $30,000.

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT REVENUE

 CHECK (SALARY + COMM > 30000)

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was

previously defined.

 ALTER TABLE EMPLOYEE

 DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

 ALTER TABLE SALARY1

 DATA CAPTURE NONE

ALTER TABLE

118 SQL Reference, Volume 2

Example 7: Alter a table to log SQL changes in an expanded format.

 ALTER TABLE SALARY2

 DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default values.

 ALTER TABLE EMPLOYEE

 ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)

 ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE(’01-01-1850’)

 ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X’01’)

 ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X’00’)

The default values use various function names when specifying the default. Since

MEASURE is a distinct type based on INTEGER, the MEASURE function is used.

The HEIGHT column default could have been specified without the function since

the source type of MEASURE is not BLOB or a datetime data type. Since

BIRTHDATE is a distinct type based on DATE, the DATE function is used

(BIRTHDATE cannot be used here). For the FLAGS and PHOTO columns the

default is specified using the BLOB function even though PHOTO is a distinct

type. To specify a default for BIRTHDAY, FLAGS and PHOTO columns, a function

must be used because the type is a BLOB or a distinct type sourced on a BLOB or

datetime data type.

Example 9: A table called CUSTOMERS is defined with the following columns:

 Column Name Data Type

 BRANCH_NO SMALLINT

 CUSTOMER_NO DECIMAL(7)

 CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and

CUSTOMER_NO columns. To distribute the table, you will need to create a

distribution key for the table. The table must be defined in a table space on a

single-node database partition group. The primary key must be a superset of the

distribution key columns: at least one of the columns of the primary key must be

used as the distribution key. Make BRANCH_NO the distribution key as follows:

 ALTER TABLE CUSTOMERS

 ADD DISTRIBUTE BY HASH (BRANCH_NO)

Example 10: A remote table EMPLOYEE was created in a federated system using

transparent DDL. Alter the remote table EMPLOYEE to add the columns

PHONE_NO and WORK_DEPT; also add a primary key on the existing column

EMP_NO and the new column WORK_DEPT.

 ALTER TABLE EMPLOYEE

 ADD COLUMN PHONE_NO CHAR(4) NOT NULL

 ADD COLUMN WORK_DEPT CHAR(3)

 ADD PRIMARY KEY (EMP_NO, WORK_DEPT)

Example 11: Alter the DEPARTMENT table to add a functional dependency FD1,

then drop the functional dependency FD1 from the DEPARTMENT table.

 ALTER TABLE DEPARTMENT

 ADD CONSTRAINT FD1

 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

 ALTER TABLE DEPARTMENT

 DROP CHECK FD1

Example 12: Change the default value for the WORKDEPT column in the

EMPLOYEE table to 123.

ALTER TABLE

Statements 119

ALTER TABLE EMPLOYEE

 ALTER COLUMN WORKDEPT

 SET DEFAULT ’123’

Example 13: Associate the security policy DATA_ACCESS with the table

EMPLOYEE.

 ALTER TABLE EMPLOYEE

 ADD SECURITY POLICY DATA_ACCESS

Example 14: Alter the table EMPLOYEE to protect the SALARY column.

 ALTER TABLE EMPLOYEE

 ALTER COLUMN SALARY

 SECURED WITH EMPLOYEESECLABEL

Example 15: Assume that you have a table named SALARY_DATA that is defined

with the following columns:

Column Name Data Type

----------- ---------

EMP_NAME VARCHAR(50) NOT NULL

EMP_ID SMALLINT NOT NULL

EMP_POSITION VARCHAR(100) NOT NULL

SALARY DECIMAL(5,2)

PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column, make

PROMOTION_DATE an optional field that can be set to the null value, and

remove the EMP_POSITION column.

 ALTER TABLE SALARY_DATA

 ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)

 ALTER COLUMN PROMOTION_DATE DROP NOT NULL

 DROP COLUMN EMP_POSITION

ALTER TABLE

120 SQL Reference, Volume 2

ALTER TABLESPACE

The ALTER TABLESPACE statement is used to modify an existing table space in

the following ways:

v Add a container to, or drop a container from a DMS table space; that is, a table

space created with the MANAGED BY DATABASE option.

v Modify the size of a container in a DMS table space.

v Add a container to an SMS table space on a database partition that currently has

no containers.

v Modify the PREFETCHSIZE setting for a table space.

v Modify the BUFFERPOOL used for tables in the table space.

v Modify the OVERHEAD setting for a table space.

v Modify the TRANSFERRATE setting for a table space.

v Modify the file system caching policy for a table space.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� ALTER TABLESPACE tablespace-name �

ALTER TABLESPACE

Statements 121

�

�

ADD

database-container-clause

TO STRIPE SET

stripeset

on-db-partitions-clause

system-container-clause

on-db-partitions-clause

BEGIN NEW STRIPE SET

database-container-clause

on-db-partitions-clause

DROP

drop-container-clause

on-db-partitions-clause

REDUCE

database-container-clause

on-db-partitions-clause

all-containers-clause

EXTEND

database-container-clause

RESIZE

all-containers-clause

on-db-partitions-clause

PREFETCHSIZE

AUTOMATIC

number-of-pages

integer

K

M

G

BUFFERPOOL

bufferpool-name

OVERHEAD

number-of-milliseconds

TRANSFERRATE

number-of-milliseconds

FILE SYSTEM CACHING

NO FILE SYSTEM CACHING

DROPPED TABLE RECOVERY

ON

OFF

SWITCH ONLINE

AUTORESIZE

NO

YES

INCREASESIZE

integer

PERCENT

K

M

G

MAXSIZE

integer

K

M

G

NONE

CONVERT TO LARGE

��

database-container-clause:

�

 ,

(

FILE

’container-string’

number-of-pages

)

DEVICE

integer

K

M

G

drop-container-clause:

�

 ,

(

FILE

’container-string’

)

DEVICE

system-container-clause:

�

 ,

(

’container-string’

)

on-db-partitions-clause:

 ON DBPARTITIONNUM

DBPARTITIONNUMS
 �

ALTER TABLESPACE

122 SQL Reference, Volume 2

�

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

all-containers-clause:

 CONTAINERS

(

ALL

number-of-pages

)

integer

K

M

G

Description

tablespace-name

Names the table space. This is a one-part name. It is a long SQL identifier

(either ordinary or delimited).

ADD

Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset

Specifies that one or more new containers are to be added to the table space,

and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET

Specifies that a new stripe set is to be created in the table space, and that one

or more containers are to be added to this new stripe set. Containers that are

subsequently added using the ADD option will be added to this new stripe set

unless TO STRIPE SET is specified.

DROP

Specifies that one or more containers are to be dropped from the table space.

REDUCE

For non-automatic storage table spaces, specifies that existing containers are to

be reduced in size. The size specified is the size by which the existing

container is decreased. If the all-containers-clause is specified, all containers in

the table space will decrease by this size. If the reduction in size will result in a

table space size that is smaller then the current high water mark, an attempt

will be made to reduce the high water mark before attempting to reduce the

containers. For non-automatic storage table spaces, the REDUCE clause must

be followed by a database-container-clause or an all-containers-clause.

 For automatic storage table spaces, specifies that the current high water mark

is to be reduced, if possible, and that the size of the table space is to be

reduced to the new high water mark. For automatic storage table spaces, the

REDUCE clause must not be followed by a database-container-clause or an

all-containers-clause.

EXTEND

Specifies that existing containers are to be increased in size. The size specified

is the size by which the existing container is increased. If the

all-containers-clause is specified, all containers in the table space will increase by

this size.

RESIZE

Specifies that the size of existing containers is to be changed. The size specified

ALTER TABLESPACE

Statements 123

is the new size for the container. If the all-containers-clause is specified, all

containers in the table space will be changed to this size. If the operation

affects more than one container, these containers must all either increase in

size, or decrease in size. It is not possible to increase some while decreasing

others (SQLSTATE 429BC).

database-container-clause

Adds one or more containers to a DMS table space. The table space must

identify a DMS table space that already exists at the application server.

drop-container-clause

Drops one or more containers from a DMS table space. The table space must

identify a DMS table space that already exists at the application server.

system-container-clause

Adds one or more containers to an SMS table space on the specified database

partitions. The table space must identify an SMS table space that already exists

at the application server. There must not be any containers on the specified

database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause

Specifies one or more database partitions for the corresponding container

operations.

all-containers-clause

Extends, reduces, or resizes all of the containers in a DMS table space. The

table space must identify a DMS table space that already exists at the

application server.

PREFETCHSIZE

Specifies to read in data needed by a query prior to it being referenced by the

query, so that the query need not wait for I/O to be performed.

AUTOMATIC

Specifies that the prefetch size of a table space is to be updated

automatically; that is, the prefetch size will be managed by DB2, using the

following formula:

 Prefetch size =

 (number of containers) *

 (number of physical disks per container) *

 (extent size)

The number of physical disks per container defaults to 1, unless a value is

specified through the DB2_PARALLEL_IO registry variable.

 DB2 will update the prefetch size automatically whenever the number of

containers in a table space changes (following successful execution of an

ALTER TABLESPACE statement that adds or drops one or more

containers). The prefetch size is updated at database start-up.

Automatic updating of the prefetch size can be turned off by specifying a

numeric value in the PREFETCHSIZE clause.

number-of-pages

Specifies the number of PAGESIZE pages that will be read from the table

space when data prefetching is being performed. The prefetch size value

can also be specified as an integer value followed by K (for kilobytes), M

(for megabytes), or G (for gigabytes). If specified in this way, the floor of

the number of bytes divided by the page size is used to determine the

number of pages value for prefetch size.

ALTER TABLESPACE

124 SQL Reference, Volume 2

BUFFERPOOL bufferpool-name

The name of the buffer pool used for tables in this table space. The buffer pool

must currently exist in the database (SQLSTATE 42704). The database partition

group of the table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the I/O

controller overhead and disk seek and latency time, in milliseconds. The

number should be an average for all containers that belong to the table space,

if not the same for all containers. This value is used to determine the cost of

I/O during query optimization.

TRANSFERRATE number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the time

to read one page (4K or 8K) into memory, in milliseconds. The number should

be an average for all containers that belong to the table space, if not the same

for all containers. This value is used to determine the cost of I/O during query

optimization.

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING

Specifies whether or not I/O operations will be cached at the file system level.

Connections to the database must be terminated before a new caching policy

takes effect. Note that I/O access to long or LOB data is buffered for both SMS

and DMS containers.

FILE SYSTEM CACHING

All I/O operations in the target table space will be cached at the file

system level.

NO FILE SYSTEM CACHING

All I/O operations will bypass the file system level cache.

DROPPED TABLE RECOVERY

Specifies whether or not tables that have been dropped from tablespace-name

can be recovered using the RECOVER DROPPED TABLE ON option of the

ROLLFORWARD DATABASE command. For partitioned tables, dropped table

recovery is always on, even if dropped table recovery is turned off for

non-partitioned tables in one or more table spaces.

ON

Specifies that dropped tables can be recovered.

OFF

Specifies that dropped tables cannot be recovered.

SWITCH ONLINE

Specifies that table spaces in OFFLINE state are to be brought online if their

containers have become accessible. If the containers are not accessible, an error

is returned (SQLSTATE 57048).

AUTORESIZE

Specifies whether or not the auto-resize capability of a database managed

space (DMS) table space or an automatic storage table space is to be enabled.

Auto-resizable table spaces automatically increase in size when they become

full.

NO

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be disabled. If the auto-resize capability

is disabled, any values that have been previously specified for

INCREASESIZE or MAXSIZE will not be kept.

ALTER TABLESPACE

Statements 125

YES

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be enabled.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G

Specifies the amount, per database partition, by which a table space that is

enabled for auto-resize will automatically be increased when the table space is

full, and a request for space has been made. The integer value must be

followed by:

v PERCENT to specify the amount as a percentage of the table space size at

the time that a request for space is made. When PERCENT is specified, the

integer value must be between 0 and 100 (SQLSTATE 42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the

amount in bytes

Note that the actual value used might be slightly smaller or larger than what

was specified, because the database manager strives to maintain consistent

growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE

Specifies the maximum size to which a table space that is enabled for

auto-resize can automatically be increased.

integer

Specifies a hard limit on the size, per database partition, to which a DMS

table space or an automatic storage table space can automatically be

increased. The integer value must be followed by K (for kilobytes), M (for

megabytes), or G (for gigabytes). Note that the actual value used might be

slightly smaller than what was specified, because the database manager

strives to maintain consistent growth across containers in the table space.

NONE

Specifies that the table space is to be allowed to grow to file system

capacity, or to the maximum table space size (described in “SQL limits”).

CONVERT TO LARGE

Modifies an existing regular DMS table space to be a large DMS table space.

The table space and its contents are locked during conversion. This option can

only be used on regular DMS table spaces. If an SMS table space, a temporary

table space, or the system catalog table space is specified, an error is returned

(SQLSTATE 560CF). You cannot convert a table space that contains a data

partition of a partitioned table that has data partitions in another table space

(SQLSTATE 560CF). Conversion cannot be reversed after being committed. If

tables in the table space are defined with DATA CAPTURE CHANGES,

consider the storage and capacity limits of the target table and table space.

Rules

v The BEGIN NEW STRIPE SET clause cannot be specified in the same statement

as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those clauses are being

directed to different database partitions (SQLSTATE 429BC).

v The stripe set value specified with the TO STRIPE SET clause must be within the

valid range for the table space being altered (SQLSTATE 42615).

v When adding or removing space from the table space, the following rules must

be followed:

– EXTEND and RESIZE can be used in the same statement, provided that the

size of each container is increasing (SQLSTATE 429BC).

ALTER TABLESPACE

126 SQL Reference, Volume 2

– REDUCE and RESIZE can be used in the same statement, provided that the

size of each container is decreasing (SQLSTATE 429BC).

– EXTEND and REDUCE cannot be used in the same statement, unless they are

being directed to different database partitions (SQLSTATE 429BC).

– ADD cannot be used with REDUCE or DROP in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).

– DROP cannot be used with EXTEND or ADD in the same statement, unless

they are being directed to different database partitions (SQLSTATE 429BC).
v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for

system managed space (SMS) table spaces, temporary table spaces that were

created using automatic storage, or DMS table spaces that are defined to use raw

device containers (SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is

not auto-resizable (SQLSTATE 42601).

v When specifying a new maximum size for a table space, the value must be

larger than the current size on each database partition (SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE

SET) cannot be performed on automatic storage table spaces, because the

database manager is controlling the space management of such table spaces

(SQLSTATE 42858).

v Raw device containers cannot be added to an auto-resizable DMS table space

(SQLSTATE 42601).

v The CONVERT TO LARGE clause cannot be specified in the same statement as

any other clause (SQLSTATE 429BC).

Notes

v Each container definition requires 53 bytes plus the number of bytes necessary to

store the container name. The combined length of all container names for the

table space cannot exceed 20 480 bytes (SQLSTATE 54034).

v Default container operations are container operations that are specified in the

ALTER TABLESPACE statement, but that are not explicitly directed to a specific

database partition. These container operations are sent to any database partition

that is not listed in the statement. If these default container operations are not

sent to any database partition, because all database partitions are explicitly

mentioned for a container operation, a warning is returned (SQLSTATE 1758W).

v Once space has been added or removed from a table space, and the transaction

is committed, the contents of the table space may be rebalanced across the

containers. Access to the table space is not restricted during rebalancing.

v If the table space is in OFFLINE state and the containers have become accessible,

the user can disconnect all applications and connect to the database again to

bring the table space out of OFFLINE state. Alternatively, SWITCH ONLINE

option can bring the table space up (out of OFFLINE) while the rest of the

database is still up and being used.

v If adding more than one container to a table space, it is recommended that they

be added in the same statement so that the cost of rebalancing is incurred only

once. An attempt to add containers to the same table space in separate ALTER

TABLESPACE statements within a single transaction will result in an error

(SQLSTATE 55041).

v Any attempts to extend, reduce, resize, or drop containers that do not exist will

raise an error (SQLSTATE 428B2).

ALTER TABLESPACE

Statements 127

v When extending, reducing, or resizing a container, the container type must

match the type that was used when the container was created (SQLSTATE

428B2).

v An attempt to change container sizes in the same table space, using separate

ALTER TABLESPACE statements but within a single transaction, will raise an

error (SQLSTATE 55041).

v In a partitioned database if more than one database partition resides on the

same physical node, the same device or specific path cannot be specified for

such database partitions (SQLSTATE 42730). For this environment, either specify

a unique container-string for each database partition or use a relative path name.

v Although the table space definition is transactional and the changes to the table

space definition are reflected in the catalog tables on commit, the buffer pool

with the new definition cannot be used until the next time the database is

started. The buffer pool in use, when the ALTER TABLESPACE statement was

issued, will continue to be used in the interim.

v The REDUCE, RESIZE, or DROP option attempts to free unused extents, if

necessary, for DMS table spaces, and the REDUCE option attempts to free

unused extents for automatic storage table spaces. The removal of unused

extents allows the table space high water mark to be reduced to a value that

accurately represents the amount of space used, which, in turn, enables larger

reductions in table space size.

v Conversion to large DMS table spaces:

– After conversion, it is recommended that you issue the COMMIT statement

and then increase the storage capacity of the table space.

- If the table space is enabled for auto-resize, the MAXSIZE table space

attribute should be increased, unless it is already set to NONE.

- If the table space is not enabled for auto-resize:

v Enable auto-resize by issuing the ALTER TABLESPACE statement with

the AUTORESIZE YES option, or

v Add more storage by adding stripe sets, extending the size of existing

containers, or both
– Indexes for tables in a converted table space must be reorganized or rebuilt

before they can support large record identifiers (RIDs).

- The indexes can be reorganized using the REORG INDEXES ALL command

(without the CLEANUP ONLY clause). Specify the ALLOW NO ACCESS

option for partitioned tables.

- Alternatively, the tables can be reorganized (not INPLACE), which will

rebuild all indexes and enable the tables to support more than 255 rows per

page.

- Any rebuilt Type 1 index is automatically converted to a Type 2 index.
– To determine which tables do not yet support large RIDs, use the

ADMIN_GET_TAB_INFO table function.
v Compatibilities

– For compatibility with versions earlier than Version 8, the keyword:

- NODE can be substituted for DBPARTITIONNUM

- NODES can be substituted for DBPARTITIONNUMS

Examples

Example 1: Add a device to the PAYROLL table space.

ALTER TABLESPACE

128 SQL Reference, Volume 2

ALTER TABLESPACE PAYROLL

 ADD (DEVICE ’/dev/rhdisk9’ 10000)

Example 2: Change the prefetch size and I/O overhead for the ACCOUNTING

table space.

 ALTER TABLESPACE ACCOUNTING

 PREFETCHSIZE 64

 OVERHEAD 19.3

Example 3: Create a table space TS1, then resize the containers so that all of the

containers have 2000 pages. (Three different ALTER TABLESPACE statements that

will accomplish this resizing are shown.)

 CREATE TABLESPACE TS1

 MANAGED BY DATABASE

 USING (FILE ’/conts/cont0’ 1000,

 DEVICE ’/dev/rcont1’ 500,

 FILE ’cont2’ 700)

 ALTER TABLESPACE TS1

 RESIZE (FILE ’/conts/cont0’ 2000,

 DEVICE ’/dev/rcont1’ 2000,

 FILE ’cont2’ 2000)

OR

 ALTER TABLESPACE TS1

 RESIZE (ALL 2000)

OR

 ALTER TABLESPACE TS1

 EXTEND (FILE ’/conts/cont0’ 1000,

 DEVICE ’/dev/rcont1’ 1500,

 FILE ’cont2’ 1300)

Example 4: Extend all of the containers in the DATA_TS table space by 1000 pages.

 ALTER TABLESPACE DATA_TS

 EXTEND (ALL 1000)

Example 5: Resize all of the containers in the INDEX_TS table space to 100

megabytes (MB).

 ALTER TABLESPACE INDEX_TS

 RESIZE (ALL 100 M)

Example 6: Add three new containers. Extend the first container, and resize the

second.

 ALTER TABLESPACE TS0

 ADD (FILE ’cont2’ 2000, FILE ’cont3’ 2000)

 ADD (FILE ’cont4’ 2000)

 EXTEND (FILE ’cont0’ 100)

 RESIZE (FILE ’cont1’ 3000)

Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new

container to database partition 0. Extend all of the containers on database partition

1. Resize a container on all database partitions other than the ones that were

explicitly specified (that is, database partitions 0 and 1).

 ALTER TABLESPACE TS0

 ADD (FILE ’A’ 200) ON DBPARTITIONNUM (0)

 EXTEND (ALL 200) ON DBPARTITIONNUM (1)

 RESIZE (FILE ’B’ 500)

ALTER TABLESPACE

Statements 129

The RESIZE clause is the default container clause in this example, and will be

executed on database partition 2, because other operations are being explicitly sent

to database partitions 0 and 1. If, however, there had only been these two database

partitions, the statement would have succeeded, but returned a warning

(SQL1758W) that default containers had been specified but not used.

Example 8: Enable the auto-resize option for table space DMS_TS1, and set its

maximum size to 256 megabytes.

 ALTER TABLESPACE DMS_TS1

 AUTORESIZE YES MAXSIZE 256 M

Example 9: Enable the auto-resize option for table space AUTOSTORE1, and change

its growth rate to 5%.

 ALTER TABLESPACE AUTOSTORE1

 AUTORESIZE YES INCREASESIZE 5 PERCENT

Example 10: Change the growth rate for an auto-resizable table space named

MY_TS to 512 kilobytes, and set its maximum size to be as large as possible.

 ALTER TABLESPACE MY_TS

 INCREASESIZE 512 K MAXSIZE NONE

ALTER TABLESPACE

130 SQL Reference, Volume 2

ALTER THRESHOLD

The ALTER THRESHOLD statement alters the definition of a threshold.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER THRESHOLD threshold-name �

�

�

WHEN

alter-threshold-predicate

alter-threshold-exceeded-actions

ENABLE

DISABLE

��

altered-threshold-predicate:

 TOTALDBPARTITIONCONNECTIONS > integer-value

TOTALSCPARTITIONCONNECTIONS

>

integer-value

AND QUEUEDCONNECTIONS

>

integer-value

AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME

>

integer-value

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

CONCURRENTWORKLOADOCCURRENCES

>

integer-value

CONCURRENTWORKLOADACTIVITIES

>

integer-value

CONCURRENTDBCOORDACTIVITIES

>

integer-value

AND QUEUEDACTIVITIES

>

integer-value

AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST

>

bigint-value

SQLROWSRETURNED

>

integer-value

ACTIVITYTOTALTIME

>

integer-value

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SQLTEMPSPACE

>

integer-value

K

M

G

alter-threshold-exceeded-actions:

COLLECT ACTIVITY DATA

alter-collect-activity-data-clause

NONE

 �

ALTER THRESHOLD

Statements 131

� STOP EXECUTION

CONTINUE

alter-collect-activity-data-clause:

 DATABASE PARTITION

ON COORDINATOR

DATABASE PARTITIONS

ON ALL

�

� WITHOUT DETAILS

WITH DETAILS

AND VALUES

Description

threshold-name

Identifies the threshold to be altered. This is a one-part name. It is an SQL

identifier (either ordinary or delimited). The name must uniquely identify an

existing threshold at the current server (SQLSTATE 42704).

WHEN alter-threshold-predicate

Replaces the existing upper bound value in the threshold condition with a new

upper bound value. The condition of the threshold cannot be changed to a

different one.

TOTALDBPARTITIONCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator

connections that can run concurrently on a database partition. This value

can be any positive integer, including zero (SQLSTATE 42820). A value of

zero means that any new coordinator connection will be prevented from

connecting. All currently running or queued connections will continue.

TOTALSCPARTITIONCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator

connections that can run concurrently on a database partition in a specific

service superclass. This value can be any positive integer, including zero

(SQLSTATE 42820). A value of zero means that any new connection will be

prevented from joining the service class. All currently running or queued

connections will continue.

AND QUEUEDCONNECTIONS > integer-value or AND

QUEUEDCONNECTIONS UNBOUNDED

Specifies a queue size for when the maximum number of coordinator

connections is exceeded. This value can be any positive integer,

including zero (SQLSTATE 42820). A value of zero means that no

coordinator connections are queued. Specifying UNBOUNDED will

queue every connection that exceeds the specified maximum number

of coordinator connections, and the threshold-exceeded-actions will never

be executed.

CONNECTIONIDLETIME > integer-value (DAY | DAYS | HOUR | HOURS

| MINUTE | MINUTES)

This condition defines an upper bound for the amount of time the

database manager will allow a connection to remain idle. This value can be

any non-zero positive integer (SQLSTATE 42820). Use a valid duration

ALTER THRESHOLD

132 SQL Reference, Volume 2

keyword to specify an appropriate unit of time for integer-value. This

condition is logically enforced at the coordinator database partition.

 Because the minimum granularity for this threshold is five minutes,

specified values are rounded up to the closest non-zero multiple of five

minutes. In cases where the rounding generates an overflow or underflow,

the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value

specified that has a seconds equivalent larger than 2 147 483 400 seconds

will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing

less frequent checks might affect the granularity of this threshold.

CONCURRENTWORKLOADOCCURRENCES > integer-value

This condition defines an upper bound on the number of concurrent

occurrences for the workload on each database partition. This value can be

any non-zero positive integer (SQLSTATE 42820).

CONCURRENTWORKLOADACTIVITIES > integer-value

This condition defines an upper bound on the number of concurrent

coordinator activities and nested activities for the workload on each

database partition. This value can be any non-zero positive integer

(SQLSTATE 42820).

 Each nested activity must satisfy the following conditions:

v It must be a recognized coordinator activity. Any nested coordinator

activity that does not fall within the recognized types of activities will

not be counted. Similarly, nested subagent activities, such as remote

node requests, are not counted.

v It must be directly invoked from user logic, such as a user-written

procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started

under the invocation of a DB2 utility or routines in the SYSIBM, SYSFUN,

or SYSPROC schemas are not counted towards the upper bound specified

by this threshold.

Internal SQL activities, such as those generated by the setting of a

constraint or the refreshing of a materialized query table, are also not

counted by this threshold, because they are initiated by the database

manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value

This condition defines an upper bound on the number of recognized

database coordinator activities that can run concurrently on all database

partitions in the specified domain. This value can be any positive integer,

including zero (SQLSTATE 42820). A value of zero means that any new

database coordinator activities will be prevented from executing. All

currently running or queued database coordinator activities will continue.

AND QUEUEDACTIVITIES > integer-value or AND

QUEUEDACTIVITIES UNBOUNDED

Specifies a queue size for when the maximum number of database

coordinator activities is exceeded. This value can be any positive

integer, including zero (SQLSTATE 42820). A value of zero means that

no database coordinator activities are queued. Specifying

UNBOUNDED will queue every database coordinator activity that

ALTER THRESHOLD

Statements 133

exceeds the specified maximum number of database coordinator

activities, and the threshold-exceeded-actions will never be executed.

ESTIMATEDSQLCOST > bigint-value

This condition defines an upper bound for the optimizer-assigned cost (in

timerons) of an activity. This value can be any non-zero positive big integer

(SQLSTATE 42820). This condition is enforced at the coordinator database

partition. Activities tracked by this condition are:

v Coordinator activities of type data manipulation language (DML)

v Nested DML activities that are invoked from user logic. Consequently,

DML activities that can be initiated by the database manager (such as

utilities, procedures, or internal SQL) are not tracked by this condition

(unless their cost is included in the parent’s estimate, in which case they

are indirectly tracked).

SQLROWSRETURNED > integer-value

This condition defines an upper bound for the number of rows returned to

a client application from the application server. This value can be any

non-zero integer (SQLSTATE 42820). This condition is enforced at the

coordinator database partition. Activities tracked by this condition are:

v Coordinator activities of type DML

v Nested DML activities that are derived from user logic. Activities that

are initiated by the database manager through a utility, procedure, or

internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as

individual activities. There is no aggregation of the rows that are returned

by the procedure itself.

ACTIVITYTOTALTIME > integer-value (DAY | DAYS | HOUR | HOURS |

MINUTE | MINUTES)

This condition defines an upper bound for the amount of time the

database manager will allow an activity to execute, including the time the

activity was queued. This value can be any non-zero positive integer

(SQLSTATE 42820). Use a valid duration keyword to specify an

appropriate unit of time for integer-value. This condition is logically

enforced at the coordinator database partition.

 Because the minimum granularity for this threshold is five minutes,

specified values are rounded up to the closest non-zero multiple of five

minutes. In cases where the rounding generates an overflow or underflow,

the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value

specified that has a seconds equivalent larger than 2 147 483 400 seconds

will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing

less frequent checks might affect the granularity of this threshold.

SQLTEMPSPACE > integer-value (K | M | G)

This condition defines an upper bound for the size of a system temporary

table space on any database partition. This value can be any non-zero

positive integer (SQLSTATE 42820).

 If integer-value K (in either upper- or lowercase) is specified, the maximum

size is 1024 times integer-value. If integer-value M is specified, the maximum

size is 1 048 576 times integer-value. If integer-value G is specified, the

maximum size is 1 073 741 824 times integer-value.

ALTER THRESHOLD

134 SQL Reference, Volume 2

Activities tracked by this condition are:

v Coordinator activities of type DML and corresponding subagent work

(subsection execution)

v Nested DML activities that are derived from user logic and their

corresponding subagent work (subsection execution). Activities that are

initiated by the database manager through a utility, procedure, or

internal SQL are not affected by this condition.

alter-threshold-exceeded-actions

Specifies what action is to be taken when a condition is exceeded. Each time

that a condition is exceeded, an event is recorded and made available through

the appropriate event monitor.

COLLECT ACTIVITY DATA

Specifies that data about each activity that exceeded the threshold is to be

sent to the appropriate event monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION

Specifies that the activity data is to be collected only at the

database partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that the activity data is to be collected at all database

partitions on which the activity is processed. However, any activity

details or values will only be collected at the database partition of

the coordinator.

WITHOUT DETAILS

Specifies that data about each activity that exceeds the threshold

should be sent to the applicable event monitor when the activity

completes. Statement and compilation environment information are

not sent to the event monitor.

WITH DETAILS

Specifies that statement and compilation environment information

are to be sent to the applicable event monitor for those activities

that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

NONE

Specifies that activity data should not be collected for each activity that

exceeds the threshold.

STOP EXECUTION

The execution of the activity is stopped and an error is returned

(SQLSTATE 5U026).

CONTINUE

The execution of the activity is not stopped. When the condition also has a

queue, this option causes queuing to extend beyond the size of the queue.

ENABLE or DISABLE

Specifies whether or not the threshold is enabled for use by the database

manager.

ENABLE

The threshold is used by the database manager to restrict the execution of

ALTER THRESHOLD

Statements 135

database activities. Currently running database activities will continue to

execute without the restriction of this threshold.

DISABLE

The threshold is not used by the database manager to restrict the execution

of database activities. New database activities will not be restricted by this

threshold. Thresholds with a queue, for example

TOTALSCPARTITIONCONNECTIONS or

CONCURRENTDBCOORDACTIVITIES, must be disabled before they can

be dropped.

Notes

v The new value for a threshold affects only DB2 activities that start executing

after the alter operation commits.

Example

Alter the threshold MAXBIGQUERIESCONCURRENCY to a maximum of three

activities rather than two.

 ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY

 WHEN CONCURRENTDBCOORDACTIVITIES > 3

 STOP EXECUTION

Because this is a threshold with a queue, the threshold cannot be dropped unless it

is disabled, as follows:

 ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY DISABLE

ALTER THRESHOLD

136 SQL Reference, Volume 2

ALTER TRUSTED CONTEXT

The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted

context at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� ALTER TRUSTED CONTEXT context-name �

�

�

�

�

�

�

(1)

ALTER

SYSTEM AUTHID

authorization-name

,

(2)

ATTRIBUTES

(

address-clause

)

(3)

ENCRYPTION

encryption-value

NO DEFAULT ROLE

DEFAULT ROLE

role-name

DISABLE

ENABLE

,

(2)

ADD ATTRIBUTES

(

address-clause

)

,

(2)

DROP ATTRIBUTES

(

ADDRESS

address-value

)

user-clause

��

address-clause:

 ADDRESS address-value

WITH ENCRYPTION

encryption-value

user-clause:

�

�

�

 ,

WITHOUT AUTHENTICATION

ADD USE FOR

authorization-name

ROLE

role-name

WITH AUTHENTICATION

PUBLIC

,

WITHOUT AUTHENTICATION

REPLACE USE FOR

authorization-name

ROLE

role-name

WITH AUTHENTICATION

PUBLIC

,

DROP USE FOR

authorization-name

PUBLIC

ALTER TRUSTED CONTEXT

Statements 137

Notes:

1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses

can be specified at most once (SQLSTATE 42614).

2 Each attribute name and corresponding value must be unique (SQLSTATE

4274D).

3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);

however, WITH ENCRYPTION can be specified for each ADDRESS that is

specified.

Description

context-name

Identifies the trusted context that is to be altered. This is a one-part name. It is

an SQL identifier (either ordinary or delimited). The context-name must identify

a trusted context that exists at the current server (SQLSTATE 42704).

ALTER

Alters the options and attributes of a trusted context.

SYSTEM AUTHID authorization-name

Specifies that the context is a connection established by system

authorization ID authorization-name, which must not be associated with an

existing trusted context (SQLSTATE 428GL). It cannot be the authorization

ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)

Specifies a list of one or more connection trust attributes, upon which the

trusted context is defined, that are to be modified. Existing values for the

specified attributes are replaced with the new values. If an attribute is not

currently part of the trusted context definition, an error is returned

(SQLSTATE 4274C). Attributes that are not specified retain their previous

values.

ADDRESS address-value

Specifies the actual communication address used by the client to

communicate with the database server. The only protocol supported is

TCP/IP. Previous ADDRESS values for the specified trusted context are

removed. The ADDRESS attribute can be specified multiple times, but

each address-value pair must be unique for the set of attributes

(SQLSTATE 4274D).

 When establishing a trusted connection, if multiple values are defined

for the ADDRESS attribute of a trusted context, a candidate connection

is considered to match this attribute if the address used by the

connection matches any of the defined values for the ADDRESS

attribute of the trusted context.

address-value

Specifies a string constant that contains the value to be associated

with the ADDRESS trust attribute. The address-value must be an

IPv4 address, an IPv6 address, or a secure domain name.

v An IPv4 address must not contain leading spaces and is

represented as a dotted decimal address. An example of an IPv4

address is 9.112.46.111. The value ’localhost’ or its equivalent

representation ’127.0.0.1’ will not result in a match; the real IPv4

address of the host must be specified instead.

ALTER TRUSTED CONTEXT

138 SQL Reference, Volume 2

v An IPv6 address must not contain leading spaces and is

represented as a colon hexadecimal address. An example of an

IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.

IPv4-mapped IPv6 addresses (for example, ::ffff:192.0.2.128) will

not result in a match. Similarly, ’localhost’ or its IPv6 short

representation ’::1’ will not result in a match.

v A domain name is converted to an IP address by the domain

name server where a resulting IPv4 or IPv6 address is

determined. An example of a domain name is

corona.torolab.ibm.com. When a domain name is converted to an

IP address, the result of this conversion could be a set of one or

more IP addresses. In this case, an incoming connection is said

to match the ADDRESS attribute of a trusted context object if the

IP address from which the connection originates matches any of

the IP addresses to which the domain name was converted.

When creating a trusted context object, it is advantageous to

provide domain name values for the ADDRESS attribute instead

of static IP addresses, particularly in Dynamic Host

Configuration Protocol (DHCP) environments. With DHCP, a

device can have a different IP address each time it connects to

the network. So, if a static IP address is provided for the

ADDRESS attribute of a trusted context object, some device

might acquire a trusted connection unintentionally. Providing

domain names for the ADDRESS attribute of a trusted context

object avoids this problem in DHCP environments.

WITH ENCRYPTION encryption-value

Specifies the minimum level of encryption of the data stream

or network encryption for this specific address-value. This

encryption-value overrides the global ENCRYPTION attribute

setting for this specific address-value.

encryption-value

Specifies a string constant that contains the value to be

associated with the ENCRYPTION trust attribute for this

specific address-value. The encryption-value must be one of

the following (SQLSTATE 42615):

v NONE, no specific level of encryption is required

v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be

DATA_ENCRYPT if an incoming connection is to match

the encryption setting for this specific address

v HIGH, Secure Socket Layer (SSL) encryption must be

used for data communication between the DB2 client

and the DB2 server if an incoming connection is to

match the encryption setting for this specific address

ENCRYPTION encryption-value

Specifies the minimum level of encryption of the data stream or

network encryption. The default is NONE.

encryption-value

Specifies a string constant that contains the value to be associated

with the ENCRYPTION trust attribute for this specific address-value.

The encryption-value must be one of the following (SQLSTATE

42615):

ALTER TRUSTED CONTEXT

Statements 139

v NONE, no specific level of encryption is required for an

incoming connection to match the ENCRYPTION attribute of

this trusted context object

v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be

DATA_ENCRYPT if an incoming connection is to match the

ENCRYPTION attribute of this trusted context object

v HIGH, Secure Socket Layer (SSL) encryption must be used for

data communication between the DB2 client and the DB2 server

if an incoming connection is to match the ENCRYPTION

attribute of this trusted context object

For details about the ENCRYPTION trust attribute, see “CREATE

TRUSTED CONTEXT”.

NO DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether or not a default role is associated with a trusted connection

that is based on this trusted context. If a trusted connection for this context is

active, the change comes into effect on the next switch user request or a new

connection request.

NO DEFAULT ROLE

Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name

Specifies that role-name is the default role for the trusted context. The

role-name must identify a role that exists at the current server (SQLSTATE

42704). This role is used with the user in a trusted connection, based on

this trusted context, when the user does not have a user-specific role

defined as part of the definition of the trusted context.

ENABLE or DISABLE

Specifies whether the trusted context is enabled or disabled.

ENABLE

Specifies that the trusted context is enabled.

DISABLE

Specifies that the trusted context is disabled. A trusted context that is

disabled is not considered when a trusted connection is established.

ADD ATTRIBUTES

Specifies a list of one or more additional trust attributes on which the trusted

context is defined.

ADDRESS address-value

Specifies the actual communication address used by the client to

communicate with the database server. The only protocol supported is

TCP/IP. The ADDRESS attribute can be specified multiple times, but each

address-value pair must be unique for the set of attributes (SQLSTATE

4274D).

 When establishing a trusted connection, if multiple values are defined for

the ADDRESS attribute of a trusted context, a candidate connection is

considered to match this attribute if the address used by the connection

matches any of the defined values for the ADDRESS attribute of the

trusted context.

address-value

Specifies a string constant that contains the value to be associated with

ALTER TRUSTED CONTEXT

140 SQL Reference, Volume 2

the ADDRESS trust attribute. The address-value must be an IPv4

address, an IPv6 address, or a secure domain name.

v An IPv4 address must not contain leading spaces and is represented

as a dotted decimal address. An example of an IPv4 address is

9.112.46.111. The value ’localhost’ or its equivalent representation

’127.0.0.1’ will not result in a match; the real IPv4 address of the host

must be specified instead.

v An IPv6 address must not contain leading spaces and is represented

as a colon hexadecimal address. An example of an IPv6 address is

2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6

addresses (for example, ::ffff:192.0.2.128) will not result in a match.

Similarly, ’localhost’ or its IPv6 short representation ’::1’ will not

result in a match.

v A domain name is converted to an IP address by the domain name

server, where a resulting IPv4 or IPv6 address is determined. An

example of a domain name is corona.torolab.ibm.com.

WITH ENCRYPTION encryption-value

Specifies the minimum level of encryption of the data stream or

network encryption for this specific address-value. This

encryption-value overrides the global ENCRYPTION attribute setting

for this specific address-value.

encryption-value

Specifies a string constant that contains the value to be

associated with the ENCRYPTION trust attribute for this

specific address-value. The encryption-value must be one of the

following (SQLSTATE 42615):

v NONE, no specific level of encryption is required

v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be

DATA_ENCRYPT if an incoming connection is to match the

encryption setting for this specific address

v HIGH, Secure Socket Layer (SSL) encryption must be used

for data communication between the DB2 client and the DB2

server if an incoming connection is to match the

ENCRYPTION attribute of this trusted context object

DROP ATTRIBUTES

Specifies that one or more attributes are to be dropped from the definition of

the trusted context. If the attribute and attribute value pair is not currently part

of the trusted context definition, an error is returned (SQLSTATE 4274C).

ADDRESS address-value

Specifies that the identified communication address is to be removed from

the definition of the trusted context. The address-value specifies a string

constant that contains the value of an existing ADDRESS trust attribute.

ADD USE FOR

Specifies additional users who can use a trusted connection based on this

trusted context. If the definition of a trusted context allows access by PUBLIC

and a list of users, the specifications for a user override the specifications for

PUBLIC.

authorization-name

Specifies that the trusted connection can be used by the specified

authorization-name. The authorization-name must not identify an

ALTER TRUSTED CONTEXT

Statements 141

authorization ID that is already defined to use the trusted context, and

must not be specified more than once in the ADD USE FOR clause

(SQLSTATE 428GM). It must also not be the authorization ID of the

statement (SQLSTATE 42502).

ROLE role-name

Specifies that role-name is the role to be used for the user. The role-name

must identify a role that exists at the current server (SQLSTATE 42704).

The role explicitly specified for the user overrides any default role

associated with the trusted context.

PUBLIC

Specifies that a trusted connection that is based on this trusted context can

be used by any user. PUBLIC must not already be defined to use the

trusted context, and PUBLIC must not be specified more than once in the

ADD USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION

Specifies whether or not switching the current user on a trusted connection

based on this trusted context requires authentication.

WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection based

on this trusted context to this user does not require authentication.

WITH AUTHENTICATION

Specifies that switching the current user on a trusted connection based

on this trusted context to this user requires authentication.

REPLACE USE FOR

Specifies that the way in which a particular user or PUBLIC uses the trusted

context is to change.

authorization-name

Specifies the authorization-name of the user whose use of the trusted

connection is to change. The trusted context must already be defined to

allow use by the authorization-name (SQLSTATE 428GN), and

authorization-name must not be specified more than once in the REPLACE

USE FOR clause (SQLSTATE 428GM). It must also not be the authorization

ID of the statement (SQLSTATE 42502).

ROLE role-name

Specifies that role-name is the role for the user. The role-name must

identify a role that exists at the current server (SQLSTATE 42704). The

role explicitly specified for the user overrides any default role

associated with the trusted context.

PUBLIC

Specifies that the attributes for use of the trusted connection by PUBLIC

are to change. The trusted context must already be defined to allow use by

PUBLIC (SQLSTATE 428GN), and PUBLIC must not be specified more than

once in the REPLACE USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION

Specifies whether or not switching the current user on a trusted connection

based on this trusted context requires authentication.

WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection based

on this trusted context to this user does not require authentication.

ALTER TRUSTED CONTEXT

142 SQL Reference, Volume 2

WITH AUTHENTICATION

Specifies that switching the current user on a trusted connection based

on this trusted context to this user requires authentication.

DROP USE FOR

Specifies who can no longer use the trusted context. The users who are

removed from the definition of the trusted context are those users who are

currently allowed to use the trusted context. If one or more, but not all, users

can be removed from the definition of the trusted context, the specified users

are removed and a warning is returned (SQLSTATE 01682). If none of the

specified users can be removed from the definition of the trusted context, an

error is returned (SQLSTATE 428GN).

authorization-name

Removes the ability of the specified authorization ID to use this trusted

context.

PUBLIC

Removes the ability of all users (except the system authorization ID and

individual authorization IDs that have been explicitly enabled) to use this

trusted context.

Rules

v A trusted context-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL

statements are:

– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP

(TRUSTED CONTEXT)
v A trusted context-exclusive SQL statement cannot be issued within a global

transaction; for example, an XA transaction or a global transaction that is

initiated as part of two-phase commit for federated transactions (SQLSTATE

51041).

Notes

v When providing an IP address as part of a trusted context definition, the address

must be in the format that is in effect for the network. For example, providing

an address in an IPv6 format when the network is IPv4 will not result in a

match. In a mixed environment, it is advantageous to specify both the IPv4 and

the IPv6 representations of the address, or better yet, to specify a secure domain

name (for example, corona.torolab.ibm.com), which hides the address format

details.

v Only one uncommitted trusted context-exclusive SQL statement is allowed at a

time across all database partitions. If an uncommitted trusted context-exclusive

SQL statement is executing, subsequent trusted context-exclusive SQL statements

will wait until the current trusted context-exclusive SQL statement commits or

rolls back.

v Changes are written to the system catalog but do not take effect until they are

committed, even for the connection that issues the statement.

v Order of operations: The order of operations within an ALTER TRUSTED

CONTEXT statement is:

– DROP

– ALTER

– ADD ATTRIBUTES

– ADD USE FOR

ALTER TRUSTED CONTEXT

Statements 143

– REPLACE USE FOR
v Effect of changes on existing trusted connections: If trusted connections exist for

the trusted context being altered, the connections remain trusted with the

definition in effect prior to the ALTER TRUSTED CONTEXT statement until the

next switch user request or the connection terminates. If the trusted context is

disabled while trusted connections for this context are active, the connections

remain trusted until the next switch user request or the connection terminates. If

trust attributes are changed with the ALTER TRUSTED CONTEXT statement,

trusted connections that exist at the time of the ALTER TRUSTED CONTEXT

statement that use the trusted context are allowed to continue.

v Role privileges: If there is no role associated with the user or the trusted context,

only the privileges associated with the user are applicable. This is the same as

not being in a trusted context.

Examples

Example 1: Assume that trusted context APPSERVER exists and that it is enabled.

Issue an ALTER TRUSTED CONTEXT statement to allow Bill to use the trusted

context APPSERVER, but put the trusted context in the disabled state.

 ALTER TRUSTED CONTEXT APPSERVER

 DISABLE

 ADD USE FOR BILL

Example 2: Assume that trusted context SECUREROLE exists. Issue an ALTER

TRUSTED CONTEXT statement to modify the existing user Joe to use the trusted

context with authentication and to add everyone else to use the trusted context

without authentication.

 ALTER TRUSTED CONTEXT SECUREROLE

 REPLACE USE FOR JOE WITH AUTHENTICATION

 ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

Example 3: Assume that trusted context SECUREROLEENCRYPT exists with

ADDRESS attribute values ’9.13.55.100’ and ’9.12.30.112’, and ENCRYPTION

attribute value ’NONE’. Issue an ALTER statement to modify the ADDRESS

attribute values and the encryption attribute to ’LOW’.

 ALTER TRUSTED CONTEXT SECUREROLEENCRYPT

 ALTER ATTRIBUTES (ADDRESS ’9.12.155.200’,

 ENCRYPTION ’LOW’)

ALTER TRUSTED CONTEXT

144 SQL Reference, Volume 2

ALTER TYPE (Structured)

The ALTER TYPE statement is used to add or drop attributes or method

specifications of a user-defined structured type. Properties of existing methods can

also be altered.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the type

v Owner of the type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view

v SYSADM or DBADM authority

To alter a method to be not fenced, the privileges held by the authorization ID of

the statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To alter a method to be fenced, no additional authorities or privileges are required.

Syntax

�� ALTER TYPE type-name �

�

�

�

ADD ATTRIBUTE

attribute-definition

RESTRICT

DROP ATTRIBUTE

attribute-name

ADD METHOD

method-specification

ALTER

method-identifier

method-options

RESTRICT

DROP

method-identifier

��

ALTER TYPE (Structured)

Statements 145

method-identifier:

�

 METHOD method-name

(

)

,

(

data-type

)

SPECIFIC METHOD

specific-name

method-options:

 FENCED

NOT FENCED

THREADSAFE

NOT THREADSAFE

Description

type-name

Identifies the structured type to be changed. It must be an existing type

defined in the catalog (SQLSTATE 42704), and the type must be a structured

type (SQLSTATE 428DP). In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

ADD ATTRIBUTE

Adds an attribute after the last attribute of the existing structured type.

attribute-definition

Defines the attributes of the structured type.

attribute-name

Specifies a name for the attribute. The name cannot be the same as any

other attribute of this structured type (including inherited attributes) or

any subtype of this structured type (SQLSTATE 42711).

 A number of names used as keywords in predicates are reserved for

system use, and may not be used as an attribute-name (SQLSTATE

42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,

NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH

and the comparison operators.

data-type 1

Specifies the data type of the attribute. It is one of the data types listed

under CREATE TABLE, other than LONG VARCHAR, LONG

VARGRAPHIC, XML, or a distinct type based on LONG VARCHAR,

LONG VARGRAPHIC, or XML (SQLSTATE 42601). The data type must

identify an existing data type (SQLSTATE 42704). If data-type is

specified without a schema name, the type is resolved by searching the

schemas on the SQL path. The description of various data types is

given in “CREATE TABLE”. If the attribute data type is a reference

type, the target type of the reference must be a structured type that

exists (SQLSTATE 42704).

 To prevent type definitions that, at run time, would permit an instance

of the type to directly, or indirectly, contain another instance of the

ALTER TYPE (Structured)

146 SQL Reference, Volume 2

same type or one of its subtypes, there is a restriction that a type may

not be defined such that one of its attribute types directly or indirectly

uses itself (SQLSTATE 428EP).

lob-options

Specifies the options associated with LOB types (or distinct types based

on LOB types). For a detailed description of lob-options, see “CREATE

TABLE”.

DROP ATTRIBUTE

Drops an attribute of the existing structured type.

attribute-name

The name of the attribute. The attribute must exist as an attribute of the

type (SQLSTATE 42703).

RESTRICT

Enforces the rule that no attribute can be dropped if type-name is used as

the type of an existing table, view, column, attribute nested inside the type

of a column, or an index extension.

ADD METHOD method-specification

Adds a method specification to the type identified by type-name. The method

cannot be used until a separate CREATE METHOD statement is used to give

the method a body. For more information about method-specification, see

“CREATE TYPE (Structured)”.

ALTER method-identifier

Uniquely identifies an instance of a method that is to be altered. The specified

method may or may not have an existing method body. Methods declared as

LANGUAGE SQL cannot be altered (SQLSTATE 42917).

method-identifier

METHOD method-name

Identifies a particular method, and is valid only if there is exactly one

method instance with the name method-name for the type type-name.

The identified method can have any number of parameters defined for

it. If no method by this name exists for the type, an error (SQLSTATE

42704) is raised. If there is more than one instance of the method for

the type, an error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method.

The method resolution algorithm is not used.

method-name

Specifies the name of the method for the type type-name.

(data-type,...)

Values must match the data types that were specified (in the

corresponding position) on the CREATE TYPE statement. The

number of data types, and the logical concatenation of the data

types, is used to identify the specific method instance.

 If a data type is unqualified, the type name is resolved by

searching the schemas on the SQL path. This also applies to data

type names specified for a REFERENCE type.

ALTER TYPE (Structured)

Statements 147

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can

be coded to indicate that these attributes are to be ignored when

looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match

that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for

n, because 0 < n < 25 means REAL, and 24 < n < 54 means

DOUBLE. Matching occurs on the basis of whether the type is

REAL or DOUBLE.

If no method with the specified signature exists for the type in the

named or implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC METHOD specific-name

Identifies a particular method, using the name that is specified or

defaulted to at method creation time. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER

precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific

method instance in the named or implied schema; otherwise, an error

(SQLSTATE 42704) is raised.

method-options

Specifies the options that are to be altered for the method.

FENCED or NOT FENCED

Specifies whether the method is considered safe to run in the database

manager operating environment’s process or address space (NOT

FENCED), or not (FENCED). Most methods have the option of running as

FENCED or NOT FENCED.

 If a method is altered to be FENCED, the database manager insulates its

internal resources (for example, data buffers) from access by the method. In

general, a method running as FENCED will not perform as well as a

similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for methods that were not adequately coded,

reviewed, and tested can compromise the integrity of DB2. DB2 takes

some precautions against many of the common types of inadvertent

failures that might occur, but cannot guarantee complete integrity when

NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be NOT

FENCED (SQLSTATE 42613).

If a method has any parameters defined AS LOCATOR, and was defined

with the NO SQL option, the method cannot be altered to be FENCED

(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods (SQLSTATE

42849).

ALTER TYPE (Structured)

148 SQL Reference, Volume 2

THREADSAFE or NOT THREADSAFE

Specifies whether a method is considered safe to run in the same process

as other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the method is defined with LANGUAGE other than OLE:

v If the method is defined as THREADSAFE, the database manager can

invoke the method in the same process as other routines. In general, to

be threadsafe, a method should not use any global or static data areas.

Most programming references include a discussion of writing threadsafe

routines. Both FENCED and NOT FENCED methods can be

THREADSAFE. If the method is defined with LANGUAGE OLE,

THREADSAFE may not be specified (SQLSTATE 42613).

v If the method is defined as NOT THREADSAFE, the database manager

will never invoke the method in the same process as another routine.

Only a fenced method can be NOT THREADSAFE (SQLSTATE 42613).

DROP method-identifier

Uniquely identifies an instance of a method that is to be dropped. The

specified method must not have an existing method body (SQLSTATE 428ER).

Use the DROP METHOD statement to drop the method body before using

ALTER TYPE DROP METHOD. Methods implicitly generated by the CREATE

TYPE statement (such as mutators and observers) cannot be dropped

(SQLSTATE 42917).

RESTRICT

Indicates that the specified method is restricted from having an existing

method body. Use the DROP METHOD statement to drop the method body

before using ALTER TYPE DROP METHOD.

Rules

v Adding or dropping an attribute is not allowed for type type-name (SQLSTATE

55043) if either:

– The type or one of its subtypes is the type of an existing table or view.

– There exists a column of a table whose type directly or indirectly uses

type-name. The terms directly uses and indirectly uses are defined in “Structured

types”.

– The type or one of its subtypes is used in an index extension.
v A type may not be altered by adding attributes so that the total number of

attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE 54050).

v ADD ATTRIBUTE option:

– ADD ATTRIBUTE generates observer and mutator methods for the new

attribute. These methods are similar to those generated when a structured

type is created (see “CREATE TYPE (Structured)”). If these methods conflict

with or override any existing methods or functions, the ALTER TYPE

statement fails (SQLSTATE 42745).

– If the INLINE LENGTH for the type (or any of its subtypes) was explicitly

specified by the user with a value less than 292, and the attributes added

cause the specified inline length to be less than the size of the result of the

constructor function for the altered type (32 bytes plus 10 bytes per attribute),

then an error results (SQLSTATE 42611).
v DROP ATTRIBUTE option:

– An attribute that is inherited from an existing supertype cannot be dropped

(SQLSTATE 428DJ).

ALTER TYPE (Structured)

Statements 149

– DROP ATTRIBUTE drops the mutator and observer methods of the dropped

attributes, and checks dependencies on those dropped methods.
v DROP METHOD option:

– An original method that is overridden by other methods cannot be dropped

(SQLSTATE -2).

Notes

v It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC

schema (SQLSTATE 42832).

v When a type is altered by adding or dropping an attribute, all packages are

invalidated that depend on functions or methods that use this type or a subtype

of this type as a parameter or a result.

v When an attribute is added to or dropped from a structured type:

– If the INLINE LENGTH of the type was calculated by the system when the

type was created, the INLINE LENGTH values are automatically modified for

the altered type, and all of its subtypes to account for the change. The

INLINE LENGTH values are also automatically (recursively) modified for all

structured types where the INLINE LENGTH was calculated by the system

and the type includes an attribute of any type with a changed INLINE

LENGTH.

– If the INLINE LENGTH of any type affected by adding or dropping

attributes was explicitly specified by a user, then the INLINE LENGTH for

that particular type is not changed. Special care must be taken for explicitly

specified inline lengths. If it is likely that a type will have attributes added

later on, then the inline length, for any uses of that type or one of its

subtypes in a column definition, should be large enough to account for the

possible increase in length of the instantiated object.

– If new attributes are to be made visible to application programs, existing

transform functions must be modified to match the new structure of the data

type.
v In a partitioned database environment, the use of SQL in external user-defined

functions or methods is not supported (SQLSTATE 42997).

v Privileges

The EXECUTE privilege is not given for any methods explicitly specified in the

ALTER TYPE statement until a method body is defined using the CREATE

METHOD statement. The owner of the user-defined type has the ability to drop

the method specification using the ALTER TYPE statement.

Examples

Example 1: The ALTER TYPE statement can be used to permit a cycle of mutually

referencing types and tables. Consider mutually referencing tables named

EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.

 CREATE TYPE DEPT ...

 CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))

 ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF(EMP)

 CREATE TABLE DEPARTMENT OF DEPT ...

 CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)

 ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.

ALTER TYPE (Structured)

150 SQL Reference, Volume 2

DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)

 DROP TABLE DEPARTMENT

 ALTER TYPE DEPT DROP ATTRIBUTE MANAGER

 DROP TYPE EMP

 DROP TYPE DEPT

Example 2: The ALTER TYPE statement can be used to create a type with an

attribute that references a subtype.

 CREATE TYPE EMP ...

 CREATE TYPE MGR UNDER EMP ...

 ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

Example 3: The ALTER TYPE statement can be used to add an attribute. The

following statement adds the SPECIAL attribute to the EMP type. Because the

inline length was not specified on the original CREATE TYPE statement, DB2

recalculates the inline length by adding 13 (10 bytes for the new attribute +

attribute length + 2 bytes for a non-LOB attribute).

 ALTER TYPE EMP ...

 ADD ATTRIBUTE SPECIAL CHAR(1)

Example 4: The ALTER TYPE statement can be used to add a method associated

with a type. The following statement adds a method called BONUS.

 ALTER TYPE EMP ...

 ADD METHOD BONUS (RATE DOUBLE)

 RETURNS INTEGER

 LANGUAGE SQL

 CONTAINS SQL

 NO EXTERNAL ACTION

 DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD statement

is issued to create the method body. If it is assumed that type EMP includes an

attribute called SALARY, then the following is an example of a method body

definition.

 CREATE METHOD BONUS(RATE DOUBLE) FOR EMP

 RETURN CAST(SELF.SALARY * RATE AS INTEGER)

ALTER TYPE (Structured)

Statements 151

ALTER USER MAPPING

The ALTER USER MAPPING statement is used to change the authorization ID or

password that is used at a data source for a specified federated server

authorization ID.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

If the authorization ID of the statement is different from the authorization name

that is mapped to the data source, the privileges held by the authorization ID of

the statement must include SYSADM or DBADM authority. Otherwise, if the

authorization ID and the authorization name match, no authorities or privileges

are required.

Syntax

�� ALTER USER MAPPING FOR authorization-name

USER
 SERVER server-name �

�

�

 ,

ADD

OPTIONS

(

user-option-name

string-constant

)

SET

DROP

user-option-name

��

Description

authorization-name

Specifies the authorization name under which a user or application connects to

a federated database.

USER

The value in the special register USER. When USER is specified, then the

authorization ID of the ALTER USER MAPPING statement will be mapped to

the data source authorization ID that is specified in the REMOTE_AUTHID

user option.

SERVER server-name

Identifies the data source accessible under the remote authorization ID that

maps to the local authorization ID that’s denoted by authorization-name or

referenced by USER.

OPTIONS

Indicates what user options are to be enabled, reset, or dropped for the

mapping that is being altered.

ADD

Enables a user option.

ALTER USER MAPPING

152 SQL Reference, Volume 2

SET

Changes the setting of a user option.

user-option-name

Names a user option that is to be enabled or reset.

string-constant

Specifies the setting for user-option-name as a character string constant.

DROP user-option-name

Drops a user option.

Notes

v A user option cannot be specified more than once in the same ALTER USER

MAPPING statement (SQLSTATE 42853). When a user option is enabled, reset,

or dropped, any other user options that are in use are not affected.

v An ALTER USER MAPPING statement within a given unit of work (UOW)

cannot be processed (SQLSTATE 55007) if the UOW already includes one of the

following:

– A SELECT statement that references a nickname for a table or view at the

data source that is to be included in the mapping

– An open cursor on a nickname for a table or view at the data source that is to

be included in the mapping

– Either an INSERT, DELETE, or UPDATE issued against a nickname for a table

or view at the data source that is to be included in the mapping.

Examples

Example 1: Jim uses a local database to connect to an Oracle data source called

ORACLE1. He accesses the local database under the authorization ID KLEEWEIN;

KLEEWEIN maps to CORONA, the authorization ID under which he accesses

ORACLE1. Jim is going to start accessing ORACLE1 under a new ID, JIMK. So

KLEEWEIN now needs to map to JIMK.

 ALTER USER MAPPING FOR KLEEWEIN

 SERVER ORACLE1

 OPTIONS (SET REMOTE_AUTHID ’JIMK’)

Example 2: Mary uses a federated database to connect to a DB2 for z/OS data

source called DORADO. She uses one authorization ID to access DB2 and another

to access DORADO, and she has created a mapping between these two IDs. She

has been using the same password with both IDs, but now decides to use a

separate password, ZNYQ, with the ID for DORADO. Accordingly, she needs to

map her federated database password to ZNYQ.

 ALTER USER MAPPING FOR MARY

 SERVER DORADO

 OPTIONS (ADD REMOTE_PASSWORD ’ZNYQ’)

ALTER USER MAPPING

Statements 153

ALTER VIEW

The ALTER VIEW statement modifies an existing view by:

v Altering a reference type column to add a scope

v Enabling or disabling a view for use in query optimization

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTERIN privilege on the schema of the view

v Owner of the view to be altered

v CONTROL privilege on the view to be altered

v SYSADM or DBADM authority

To enable or disable a view for use in query optimization, the privileges held by

the authorization ID of the statement must also include at least one of the

following for each of the tables or underlying tables of views that are referenced in

the FROM clause of the view fullselect:

v ALTER privilege on the table

v ALTERIN privilege on the schema of the table

v SYSADM or DBADM authority

Syntax

�� ALTER VIEW view-name �

�

�

COLUMN

ALTER

column-name

ADD SCOPE

typed-table-name

typed-view-name

ENABLE

QUERY OPTIMIZATION

DISABLE

��

Description

view-name

Specifies the view that is to be changed. It must be a view that is described in

the catalog.

ALTER COLUMN column-name

Specifies the name of the column that is to be altered. The column-name must

identify an existing column of the view (SQLSTATE 42703). The name cannot

be qualified.

ALTER VIEW

154 SQL Reference, Volume 2

ADD SCOPE

Adds a scope to an existing reference type column that does not already have

a scope defined (SQLSTATE 428DK). The column must not be inherited from a

superview (SQLSTATE 428DJ).

typed-table-name

Specifies the name of a typed table. The data type of column-name must be

REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that the

values actually reference existing rows in typed-table-name.

typed-view-name

Specifies the name of a typed view. The data type of column-name must be

REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No

checking is done of any existing values in column-name to ensure that the

values actually reference existing rows in typed-view-name.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether or not the view and any associated statistics are to be used

to improve the optimization of queries. DISABLE QUERY OPTIMIZATION is

the default when a view is created.

ENABLE QUERY OPTIMIZATION

Specifies that the view includes statistics that can be used to improve the

optimization of queries that involve this view or queries that include

subqueries similar to the fullselect of this view.

DISABLE QUERY OPTIMIZATION

Specifies that the view and any associated statistics are not to be used to

improve the optimization of queries.

Rules

v A view cannot be enabled for query optimization if:

– The view directly or indirectly references a materialized query table (MQT).

Note that an MQT or statistical view can reference a statistical view.

– It is a typed view

Notes

v To be considered for optimizing a query, a view:

– Cannot contain aggregation or distinct operations

– Cannot contain union, except, or intersect operations

– Cannot contain scalar aggregate (OLAP) functions
v If a view is altered to disable query optimization, cached query plans that used

the view for query optimization are invalidated. If a view is altered to enable

query optimization, cached query plans are invalidated if they reference the

same tables as the newly enabled view references, either directly or indirectly

through other views. The invalidation of these cached query plans results in

implicit revalidation that takes the view’s changed query optimization property

into account.

The query optimization property for a view has no impact on static embedded

SQL statements.

ALTER VIEW

Statements 155

ALTER WORK ACTION SET

The ALTER WORK ACTION SET statement alters a work action set by adding,

altering, or dropping work actions within the work action set.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER WORK ACTION SET work-action-set-name �

�

�

(1)

ADD

work-action-definition

ALTER

work-action-alteration

WORK ACTION

DROP

work-action-name

(2)

ENABLE

DISABLE

��

work-action-definition:

 WORK ACTION

work-action-name

ON WORK CLASS

work-class-name

�

�

action-types-clause

histogram-template-clause
 ENABLE

DISABLE

action-types-clause:

 WITH NESTED

MAP ACTIVITY

TO

service-subclass-name

WITHOUT NESTED

WHEN

threshold-types-clause

threshold-exceeded-actions

PREVENT EXECUTION

COUNT ACTIVITY

COLLECT ACTIVITY DATA

alter-collect-activity-data-clause

BASE

COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

ALTER WORK ACTION SET

156 SQL Reference, Volume 2

threshold-types-clause:

 (3) AND QUEUEDACTIVITIES > 0

CONCURRENTDBCOORDACTIVITIES

>

integer

AND QUEUEDACTIVITIES

>

integer

AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE

>

integer

K

M

G

SQLROWSRETURNED

>

integer

ESTIMATEDSQLCOST

>

bigint

ACTIVITYTOTALTIME

>

integer

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

threshold-exceeded-actions:

COLLECT ACTIVITY DATA

alter-collect-activity-data-clause

NONE

 �

� STOP EXECUTION

CONTINUE

alter-collect-activity-data-clause:

 DATABASE PARTITION

ON COORDINATOR

DATABASE PARTITIONS

ON ALL

�

� WITHOUT DETAILS

WITH DETAILS

AND VALUES

histogram-template-clause:

 ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE

template-name

�

ALTER WORK ACTION SET

Statements 157

�
 ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

work-action-alteration:

 WORK ACTION

work-action-name

�

�

�

(4)

SET WORK CLASS

work-class-name

action-types-clause

ACTIVITY LIFETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE

template-name

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE

template-name

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

ENABLE

DISABLE

Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which

they are specified.

2 The ENABLE or DISABLE clause can only be specified once in the same

statement.

3 Only one work action of the same threshold type can be applied to a single

work class at a time.

4 The same clause must not be specified more than once.

Description

work-action-set-name

Identifies the work action set that is to be altered. This is a one-part name. It is

an SQL identifier (either ordinary or delimited). The work-action-set-name must

identify a work action set that exists at the current server (SQLSTATE 42704).

ADD

Adds a work action to the work action set.

WORK ACTION work-action-name

Names the work action. The work-action-name must not identify a work

action that already exists at the current server under this work action set

(SQLSTATE 42710). The work-action-name cannot begin with ’SYS’

(SQLSTATE 42939).

ON WORK CLASS work-class-name

Specifies the work class that identifies the database activities to which this

work action will apply. The work-class-name must exist in the

work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY

Specifies a work action of mapping the activity. This action can only be

specified if the object for which this work action set is defined is a service

superclass (SQLSTATE 5U034).

ALTER WORK ACTION SET

158 SQL Reference, Volume 2

WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity

are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED

All database activities that have a nesting level of zero that are

classified under the work class, and all database activities nested

under this activity, are mapped to the service subclass; that is,

activities with a nesting level greater than zero are run under the

same service class as activities with a nesting level of zero.

WITHOUT NESTED

Only database activities that have a nesting level of zero that are

classified under the work class are mapped to the service subclass.

Database activities that are nested under this activity are handled

according to their activity type.

TO service-subclass-name

Specifies the service subclass to which activities are to be mapped. The

service-subclass-name must already exist in the service-superclass-name at

the current server (SQLSTATE 42704). The service-subclass-name cannot

be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE

5U018).

WHEN

Specifies the threshold that will be applied to the database activity that is

associated with the work class for which this work action is defined. A

threshold can only be specified if the database manager object for which

this work action set is defined is a database (SQLSTATE 5U034). None of

these thresholds apply to internal database activities initiated by the

database manager or to database activities generated by administrative

SQL routines.

threshold-types-clause

For a description of valid threshold types, see “CREATE

THRESHOLD” statement.

threshold-exceeded-actions

For a description of valid threshold-exceeded actions, see “CREATE

THRESHOLD” statement.

PREVENT EXECUTION

Specifies that none of the database activities associated with the work class

for which this work action is defined will be allowed to run (SQLSTATE

5U033).

COUNT ACTIVITY

Specifies that all of the database activities associated with the work class

are to be run and that each time one is run, the counter for the work class

will be incremented.

COLLECT ACTIVITY DATA

Specifies that data about each activity associated with the work class for

which this work action is defined is to be sent to the applicable event

monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION

Specifies that the activity data is to be collected only at the

database partition of the coordinator of the activity.

ALTER WORK ACTION SET

Statements 159

ON ALL DATABASE PARTITIONS

Specifies that the activity data is to be collected at all database

partitions on which the activity is processed. However, any activity

details or values will only be collected at the database partition of

the coordinator.

WITHOUT DETAILS

Specifies that data about each activity that is associated with the

work class for which this work action is defined should be sent to

the applicable event monitor when the activity completes.

Statement and compilation environment information are not sent to

the event monitor.

WITH DETAILS

Specifies that statement and compilation environment information

are to be sent to the applicable event monitor for those activities

that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

NONE

Specifies that activity data should not be collected for each activity that

is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data is to be captured for activities that are

associated with the work class for which this work action is defined and

sent to the applicable event monitor. This information is collected

periodically on an interval that is specified by the wlm_collect_int

database configuration parameter. The default is COLLECT AGGREGATE

ACTIVITY DATA BASE. This clause cannot be specified for a work action

defined in a work action set that is applied to a database.

BASE

Specifies that basic aggregate activity data should be captured for

activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. Basic aggregate

activity data includes:

v Estimated activity cost high watermark

v Rows returned high watermark

v Temporary table space usage high watermark

v Activity life time histogram

v Activity queue time histogram

v Activity execution time histogram

EXTENDED

Specifies that all aggregate activity data should be captured for

activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. This includes all

basic aggregate activity data plus:

v Activity data manipulation language (DML) estimated cost

histogram

v Activity DML inter-arrival time histogram

ALTER WORK ACTION SET

160 SQL Reference, Volume 2

ENABLE or DISABLE

Specifies whether or not the work action is to be considered when database

activities are submitted. The default is ENABLE.

ENABLE

Specifies that the work action is enabled and will be considered when

database activities are submitted.

DISABLE

Specifies that the work action is disabled and will not be considered

when database activities are submitted.

histogram-template-clause

Specifies histogram templates to use when collecting aggregate activity

data for activities associated with the work class to which this work action

is assigned. Aggregate activity data is only collected for the work class

when the work action type is COLLECT AGGREGATE ACTIVITY DATA.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect

statistical data about the duration, in microseconds, of DB2

activities—associated with the work class to which this work action is

assigned—running during a specific interval. This time includes both

time queued and time executing. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when

the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with

either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect

statistical data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are queued during a specific interval. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when

the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with

either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect

statistical data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are executing during a specific interval. This time does not

include the time spent queued. Activity execution time is collected in

this histogram at each database partition where the activity executes.

On the activity’s coordinator database partition, this is the end-to-end

execution time (that is, the life time less the time spent queued). On

non-coordinator database partitions, this is the time that these

partitions spend working on behalf of the activity. During the

execution of a given activity, DB2 might present work to a remote

database partition more than once, and each time the remote partition

will collect the execution time for that occurrence of the activity.

Therefore, the counts in the execution time histogram might not

represent the actual number of unique activities that executed on a

database partition. The default is SYSDEFAULTHISTOGRAM. This

information is only collected when the COLLECT AGGREGATE

ACTIVITY DATA clause is specified, with either the BASE or

EXTENDED option.

ALTER WORK ACTION SET

Statements 161

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect

statistical data about the estimated cost, in timerons, of DML activities

associated with the work class to which this work action is assigned.

The default is SYSDEFAULTHISTOGRAM. This information is only

collected when the COLLECT AGGREGATE ACTIVITY DATA clause is

specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

Specifies the template that describes the histogram used to collect

statistical data about the length of time, in microseconds, between the

arrival of one DML activity and the arrival of the next DML activity,

for any activity associated with the work class to which this work

action is assigned. The default is SYSDEFAULTHISTOGRAM. This

information is only collected when the COLLECT AGGREGATE

ACTIVITY DATA clause is specified with the EXTENDED option.

ALTER

Alters the definition of the work action. You can change the work class to

which this work action applies, and the action that is to be applied to the

database activity that falls within the work class.

WORK ACTION work-action-name

Identifies the work action. The work-action-name must identify a work

action that exists at the current server under this work action set

(SQLSTATE 42704).

SET WORK CLASS work-class-name

Specifies the work class that identifies the database activities to which this

work action will apply. The work-class-name must exist in the

work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY

Specifies a work action of mapping the activity. This action can only be

specified if the object for which this work action set is defined is a service

superclass (SQLSTATE 5U034).

WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity

are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED

All database activities that have a nesting level of zero that are

classified under the work class, and all database activities nested

under this activity are mapped to the service subclass.

WITHOUT NESTED

Only database activities that have a nesting level of zero that are

classified under the work class are mapped to the service subclass.

Database activities that are nested under this activity are handled

according to their activity type.

TO service-subclass-name

Specifies the service subclass to which activities are to be mapped. The

service-subclass-name must already exist in the service-superclass-name at

the current server (SQLSTATE 42704). The service-subclass-name cannot

be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE

5U018).

ALTER WORK ACTION SET

162 SQL Reference, Volume 2

WHEN

Specifies the threshold that will be applied to the database activity that is

associated with the work class for which this work action is defined. A

threshold can only be specified if the database manager object for which

this work action set is defined is a database (SQLSTATE 5U034). None of

these thresholds apply to internal database activities initiated by the

database manager or to database activities generated by administrative

SQL routines.

threshold-types-clause

For a description of valid threshold types, see “CREATE

THRESHOLD” statement.

threshold-exceeded-actions

For a description of valid threshold-exceeded actions, see “CREATE

THRESHOLD” statement.

PREVENT EXECUTION

Specifies that none of the database activities associated with the work class

for which this work action is defined will be allowed to run (SQLSTATE

5U033).

COUNT ACTIVITY

Specifies that all of the database activities associated with the work class

are to be run and that each time one is run, the counter for the work class

will be incremented.

COLLECT ACTIVITY DATA

Specifies that data about each activity associated with the work class for

which this work action is defined is to be sent to the applicable event

monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION

Specifies that the activity data is to be collected only at the

database partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that the activity data is to be collected at all database

partitions on which the activity is processed. However, any activity

details or values will only be collected at the database partition of

the coordinator.

WITHOUT DETAILS

Specifies that data about each activity that is associated with the

work class for which this work action is defined should be sent to

the applicable event monitor when the activity completes.

Statement and compilation environment information are not sent to

the event monitor.

WITH DETAILS

Specifies that statement and compilation environment information

are to be sent to the applicable event monitor for those activities

that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

ALTER WORK ACTION SET

Statements 163

NONE

Specifies that activity data should not be collected for each activity that

is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data is to be captured for activities that are

associated with the work class for which this work action is defined and

sent to the applicable event monitor. This information is collected

periodically on an interval that is specified by the wlm_collect_int

database configuration parameter. The default is COLLECT AGGREGATE

ACTIVITY DATA BASE. This clause cannot be specified for a work action

defined in a work action set that is applied to a database.

BASE

Specifies that basic aggregate activity data should be captured for

activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. Basic aggregate

activity data includes:

v Estimated activity cost high watermark

v Rows returned high watermark

v Temporary table space usage high watermark

v Activity life time histogram

v Activity queue time histogram

v Activity execution time histogram

EXTENDED

Specifies that all aggregate activity data should be captured for

activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. This includes all

basic aggregate activity data plus:

v Activity DML estimated cost histogram

v Activity DML inter-arrival time histogram

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the duration, in microseconds, of DB2 activities—associated

with the work class to which this work action is assigned—running during

a specific interval. This time includes both time queued and time

executing. The default is SYSDEFAULTHISTOGRAM. This information is

only collected when the COLLECT AGGREGATE ACTIVITY DATA clause

is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are queued during a specific interval. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when the

COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either

the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are executing during a specific interval. This time does not

include the time spent queued. Activity execution time is collected in this

ALTER WORK ACTION SET

164 SQL Reference, Volume 2

histogram at each database partition where the activity executes. On the

activity’s coordinator database partition, this is the end-to-end execution

time (that is, the life time less the time spent queued). On non-coordinator

database partitions, this is the time that these partitions spend working on

behalf of the activity. During the execution of a given activity, DB2 might

present work to a remote database partition more than once, and each time

the remote partition will collect the execution time for that occurrence of

the activity. Therefore, the counts in the execution time histogram might

not represent the actual number of unique activities that executed on a

database partition. The default is SYSDEFAULTHISTOGRAM. This

information is only collected when the COLLECT AGGREGATE ACTIVITY

DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the estimated cost, in timerons, of data manipulation language

(DML) activities associated with the work class to which this work action

is assigned. The default is SYSDEFAULTHISTOGRAM. This information is

only collected when the COLLECT AGGREGATE ACTIVITY DATA clause

is specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, between the arrival of one

DML activity and the arrival of the next DML activity, for any activity

associated with the work class to which this work action is assigned. The

default is SYSDEFAULTHISTOGRAM. This information is only collected

when the COLLECT AGGREGATE ACTIVITY DATA clause is specified

with the EXTENDED option.

ENABLE or DISABLE

Specifies whether or not the work action is to be considered when database

activities are submitted.

ENABLE

Specifies that the work action is enabled and will be considered when

database activities are submitted.

DISABLE

Specifies that the work action is disabled and will not be considered

when database activities are submitted.

DROP work-action-name

Drops the work action from the work action set. The work-action-name must

identify a work action that exists at the current server under this work action

set (SQLSTATE 42704).

ENABLE or DISABLE

Specifies whether or not the work action set is to be considered when database

activities are submitted.

ENABLE

Specifies that the work action set is enabled and will be considered when

database activities are submitted.

DISABLE

Specifies that the work action set is disabled and will not be considered

when database activities are submitted.

ALTER WORK ACTION SET

Statements 165

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Examples

Example 1: Alter the DATABASE_ACTIONS work action set and add two work

actions using the work class LARGE_SELECTS. For the work action

ONE_CONCURRENT_SELECT, apply a concurrency threshold of 1 to control the

number of activities that can run at one time, and allow a maximum of 3 to be

queued. For work action BIG_ROWS_RETURNED, limit the number of rows that

can be returned by database activities that fall within that class to 1 000 000.

 ALTER WORK ACTION SET DATABASE_ACTIONS

 ADD WORK ACTION ONE_CONCURRENT_SELECT ON WORK CLASS LARGE_SELECTS

 WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 3 STOP EXECUTION

 ADD WORK ACTION BIG_ROWS_RETURNED ON WORK CLASS LARGE_SELECTS

 WHEN SQLROWSRETURNED > 1000000 STOP EXECUTION

Example 2: Alter the ADMIN_APPS_ACTIONS work action set to alter the

MAP_SELECTS work action to map all activities that run in super service class

ADMIN_APPS under the work class SELECT_CLASS to the service subclass

ALL_SELECTS. Also add a new work action called MAP_UPDATES that maps all

activities that would run in the work class UPDATE_CLASS to the service subclass

ALL_SELECTS.

 ALTER WORK ACTION SET ADMIN_APPS_ACTIONS

 ALTER WORK ACTION MAP_SELECTS MAP ACTIVITY TO ALL_SELECTS

 ADD WORK ACTION MAP_UPDATES ON WORK CLASS UPDATE_CLASS

 MAP ACTIVITY TO ALL_SELECTS

ALTER WORK ACTION SET

166 SQL Reference, Volume 2

ALTER WORK CLASS SET

The ALTER WORK CLASS SET statement adds, alters, or drops work classes

within a work class set.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER WORK CLASS SET work-class-set-name �

�

�

(1)

ADD

work-class-definition

ALTER

work-class-alteration

WORK CLASS

DROP

work-class-name

��

work-class-definition:

 WORK CLASS

work-class-name

work-attributes

position-clause

work-attributes:

 WORK TYPE READ

for-from-to-clause

WRITE

for-from-to-clause

CALL

schema-clause

DML

for-from-to-clause

DDL

LOAD

ALL

for-from-to-clause

schema-clause

for-from-to-clause:

 TO UNBOUNDED

FOR

TIMERONCOST

FROM

from-value

CARDINALITY

TO

to-value

ALTER WORK CLASS SET

Statements 167

schema-clause:

 ROUTINES IN SCHEMA schema-name

position-clause:

 POSITION LAST

POSITION BEFORE

work-class-name

POSITION AFTER

work-class-name

POSITION AT

integer

work-class-alteration:

 WORK CLASS

work-class-name

�

�

�

(2)

for-from-to-alter-clause

schema-alter-clause

position-clause

for-from-to-alter-clause:

 TO UNBOUNDED

FOR

TIMERONCOST

FROM

from-value

CARDINALITY

TO

to-value

ALL UNITS UNBOUNDED

schema-alter-clause:

 ROUTINES IN SCHEMA schema-name

ALL

Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which

they are specified.

2 The same clause must not be specified more than once.

Description

work-class-set-name

Identifies the work class set that is to be altered. This is a one-part name. It is

an SQL identifier (either ordinary or delimited). The work-class-set-name must

identify a work class set that exists at the current server (SQLSTATE 42704).

ADD

Adds a work class to the work class set. For details, see “CREATE WORK

CLASS SET”.

ALTER WORK CLASS SET

168 SQL Reference, Volume 2

ALTER

Alters the database activity attributes and the position of a specific work class

within the work class set.

WORK CLASS work-class-name

Identifies the work class to be altered. The work-class-name must identify a

work class that exists within the work class set at the current server

(SQLSTATE 42704).

DROP

Drops the work class from the work class set.

WORK CLASS work-class-name

Identifies the work class to be dropped. The work-class-name must identify

a work class that exists within the work class set at the current server

(SQLSTATE 42704). A work class cannot be dropped if there is a work

action in any of the work action sets associated with this work class set

that is dependent on it (SQLSTATE 42893).

for-to-from-alter-clause

FOR

Indicates the type of information that is being specified in the FROM

from-value TO to-value clause. The FOR clause is only used for the following

work types:

v READ

v WRITE

v DML

v ALL

TIMERONCOST

The estimated cost of the work, in timerons. This value is used to

determine whether the work falls within the range specified in the

FROM from-value TO to-value clause.

CARDINALITY

The estimated cardinality of the work. This value is used to determine

whether the work falls within the range specified in the FROM

from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value

Specifies the range of either timeron value (for estimated cost) or

cardinality within which the database activity must fall if it is to be

part of this work class. The range is inclusive of from-value and to-value.

This range is only used for the following work types:

v READ

v WRITE

v DML

v ALL

FROM from-value TO UNBOUNDED

The from-value must be zero or a positive DOUBLE value

(SQLSTATE 5U019). The range has no upper bound.

FROM from-value TO to-value

The from-value must be zero or a positive DOUBLE value and the

to-value must be a positive DOUBLE value. The from-value must be

smaller than or equal to the to-value (SQLSTATE 5U019).

ALTER WORK CLASS SET

Statements 169

ALL UNITS UNBOUNDED

Indicates that no range is to be specified in the FROM from-value TO

to-value clause, and that all work that falls within the specified work

type is to be included.

schema-alter-clause

ROUTINES

This clause is only used if the work type is CALL or ALL and the

database activity is a CALL statement.

IN SCHEMA schema-name

Specifies the schema name of the procedure that the CALL

statement will be calling.

ALL

Specifies that all schemas are included.

position-clause

POSITION

Specifies where this work class is to be placed within the work class

set, which determines the order in which work classes are evaluated.

When performing work class assignment at run time, the database

manager first determines the work class set that is associated with the

object, either the database or a service superclass. The first matching

work class within that work class set is then selected. If this keyword

is not specified, the work class is placed in the last position.

LAST

Specifies that the work class is to be placed last in the ordered list

of work classes within the work class set.

BEFORE work-class-name

Specifies that the work class is to be placed before work class

work-class-name in the list. The work-class-name must identify a work

class in the work class set that exists at the current server

(SQLSTATE 42704).

AFTER work-class-name

Specifies that the work class is to be placed after work class

work-class-name in the list. The work-class-name must identify a work

class in the work class set that exists at the current server

(SQLSTATE 42704).

AT position

Specifies the absolute position at which the work class is to be

placed within the work class set in the ordered list of work classes.

This value can be any positive integer value (SQLSTATE 42615). If

position is greater than the number of existing work classes plus

one, the work class is placed at the last position within the work

class set.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

ALTER WORK CLASS SET

170 SQL Reference, Volume 2

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Examples

Example 1: Alter work class set LARGE_QUERIES and set the two existing work

classes to have each range starting at 100 000, keeping the range unbounded. Add

a third work class for all SELECT statements that have an estimated timeron cost

greater than or equal to 10 000, and position this work class to take priority over

the existing two work classes.

 ALTER WORK CLASS SET LARGE_QUERIES

 ALTER WORK CLASS LARGE_ESTIMATED_COST

 FOR TIMERONCOST FROM 100000 TO UNBOUNDED

 ALTER WORK CLASS LARGE_CARDINALITY

 FOR CARDINALITY FROM 100000 TO UNBOUNDED

 ADD WORK CLASS LARGE_SELECTS WORK TYPE READ

 FOR TIMERONCOST FROM 10000 TO UNBOUNDED POSITION AT 1

Example 2: Alter a work class set named DML_STATEMENTS to add a work class

that represents all DML SELECT statements that contain a DELETE, INSERT,

MERGE, or UPDATE statement.

 ALTER WORK CLASS SET DML_STATEMENTS

 ADD WORK CLASS UPDATE_CLASS WORK TYPE WRITE

ALTER WORK CLASS SET

Statements 171

ALTER WORKLOAD

The ALTER WORKLOAD statement alters a workload.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER WORKLOAD workload-name �

�

�

(1)

ADD

connection-attributes

DROP

connection-attributes

ALLOW DB ACCESS

DISALLOW DB ACCESS

ENABLE

DISABLE

SERVICE CLASS

service-class-name

UNDER

service-superclass-name

POSITION

LAST

BEFORE

workload-name

AFTER

workload-name

AT

position

COLLECT ACTIVITY DATA

alter-collect-activity-data-clause

NONE

��

connection-attributes:

ALTER WORKLOAD

172 SQL Reference, Volume 2

�

�

�

�

�

�

�

�

�

(2)

APPLNAME

(

’application-name’

)

SYSTEM_USER

(

’authorization-name’

)

SESSION_USER

(

’authorization-name’

)

SESSION_USER GROUP

(

’authorization-name’

)

SESSION_USER ROLE

(

’authorization-name’

)

CURRENT CLIENT_USERID

(

’user-id’

)

CURRENT CLIENT_APPLNAME

(

’client-application-name’

)

CURRENT CLIENT_WRKSTNNAME

(

’workstation-name’

)

CURRENT CLIENT_ACCTNG

(

’accounting-string’

)

alter-collect-activity-data-clause:

 DATABASE PARTITION

ON COORDINATOR

DATABASE PARTITIONS

ON ALL

�

� WITHOUT DETAILS

WITH DETAILS

AND VALUES

Notes:

1 The same clause must not be specified more than once.

2 Each connection attribute clause can only be specified once.

Description

workload-name

Identifies the workload that is to be altered. This is a one-part name. It is an

SQL identifier (either ordinary or delimited). The workload-name must identify a

workload that exists at the current server (SQLSTATE 42704).

ADD connection-attributes

Adds one or more connection attribute values to the definition of the

workload. Each specified connection attribute value must not already be

defined for the workload (SQLSTATE 5U039). The ADD option cannot be

specified if workload-name is ’SYSDEFAULTUSERWORKLOAD’ or

’SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

ALTER WORKLOAD

Statements 173

DROP connection-attributes

Drops one or more connection attribute values from the definition of the

workload. Each specified connection attribute value must be defined for the

workload (SQLSTATE 5U040). The DROP option cannot be specified if

workload-name is ’SYSDEFAULTUSERWORKLOAD’ or

’SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832). There must be at least

one defined connection attribute value. The last connection attribute value

cannot be dropped (SQLSTATE 5U022).

connection-attributes

Specifies connection attribute values for the workload.

APPLNAME (’application-name’, ...)

Specifies one or more applications for the APPLNAME connection

attribute. An application name cannot appear more than once in the list

(SQLSTATE 42713). The application-name is case sensitive and is equivalent

to the value shown in the “Application name” field in system monitor

output and in output from the LIST APPLICATIONS command.

SYSTEM_USER (’authorization-name’, ...)

Specifies one or more authorization IDs for the SYSTEM USER connection

attribute. An authorization ID cannot appear more than once in the list

(SQLSTATE 42713).

SESSION_USER (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION USER connection

attribute. An authorization ID cannot appear more than once in the list

(SQLSTATE 42713).

SESSION_USER GROUP (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION_USER GROUP

connection attribute. An authorization ID cannot appear more than once in

the list (SQLSTATE 42713).

SESSION_USER ROLE (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION_USER ROLE

connection attribute. The roles of a session authorization ID in this context

refer to all the roles that are available to the session authorization ID,

regardless of how the roles were obtained. An authorization ID cannot

appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID (’user-id’, ...)

Specifies one or more client user IDs for the CURRENT CLIENT_USERID

connection attribute. A client user ID cannot appear more than once in the

list (SQLSTATE 42713).

CURRENT CLIENT_APPLNAME (’client-application-name’, ...)

Specifies one or more applications for the CURRENT

CLIENT_APPLNAME connection attribute. An application name cannot

appear more than once in the list (SQLSTATE 42713). The

client-application-name is case sensitive and is equivalent to the value shown

in the “TP Monitor client application name” field in system monitor

output.

CURRENT CLIENT_WRKSTNNAME (’workstation-name’, ...)

Specifies one or more client workstation names for the CURRENT

CLIENT_WRKSTNNAME connection attribute. A client workstation name

cannot appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_ACCTNG (’accounting-string’, ...)

Specifies one or more client accounting strings for the CURRENT

ALTER WORKLOAD

174 SQL Reference, Volume 2

CLIENT_ACCTNG connection attribute. A client accounting string cannot

appear more than once in the list (SQLSTATE 42713).

ALLOW DB ACCESS or DISALLOW DB ACCESS

Specifies whether or not a workload occurrence associated with this workload

is allowed access to the database.

ALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are

allowed access to the database.

DISALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are not

allowed access to the database. The next unit of work associated with this

workload will be rejected (SQLSTATE 5U020). Workload occurrences that

are already running are allowed to complete. This option cannot be

specified if workload-name is ’SYSDEFAULTADMWORKLOAD’ (SQLSTATE

42832).

ENABLE or DISABLE

Specifies whether or not this workload will be considered when a workload is

chosen.

ENABLE

Specifies that the workload is enabled and will be considered when a

workload is chosen.

DISABLE

Specifies that the workload is disabled and will not be considered when a

workload is chosen. This option cannot be specified if workload-name is

SYSDEFAULTUSERWORKLOAD or SYSDEFAULTADMWORKLOAD

(SQLSTATE 42832).

SERVICE CLASS service-class-name

Specifies that requests associated with this workload are to be executed in the

service class service-class-name. The service-class-name must identify a service

class that exists at the current server (SQLSTATE 42704). The service-class-name

cannot be ’SYSDEFAULTSUBCLASS’, ’SYSDEFAULTSYSTEMCLASS’, or

’SYSDEFAULTMAINTENANCECLASS’ (SQLSTATE 5U032). This option cannot

be specified if workload-name is ’SYSDEFAULTADMWORKLOAD’ (SQLSTATE

42832).

UNDER service-superclass-name

This clause is used when specifying a service subclass. The

service-superclass-name identifies the service superclass of service-class-name.

The service-superclass-name must identify a service superclass that exists at

the current server (SQLSTATE 42704). The service-superclass-name cannot be

’SYSDEFAULTSYSTEMCLASS’ or ’SYSDEFAULTMAINTENANCECLASS’

(SQLSTATE 5U032).

POSITION

Specifies where this workload is to be placed within the ordered list of

workloads. At run time, this list is searched in order for the first workload that

matches the required connection attributes. This option cannot be specified if

workload-name is ’SYSDEFAULTUSERWORKLOAD’ or

’SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

LAST

Specifies that the workload is to be last in the list, before the default

workloads SYSDEFAULTUSERWORKLOAD and

SYSDEFAULTADMWORKLOAD.

ALTER WORKLOAD

Statements 175

BEFORE relative-workload-name

Specifies that the workload is to be placed before workload

relative-workload-name in the list. The relative-workload-name must identify a

workload that exists at the current server (SQLSTATE 42704). The BEFORE

option cannot be specified if relative-workload-name is

’SYSDEFAULTUSERWORKLOAD’ or ’SYSDEFAULTADMWORKLOAD’

(SQLSTATE 42832).

AFTER relative-workload-name

Specifies that the workload is to be placed after workload

relative-workload-name in the list. The relative-workload-name must identify a

workload that exists at the current server (SQLSTATE 42704). The AFTER

option cannot be specified if relative-workload-name is

’SYSDEFAULTUSERWORKLOAD’ or ’SYSDEFAULTADMWORKLOAD’

(SQLSTATE 42832).

AT position

Specifies the absolute position at which the workload is to be placed in the

list. This value can be any positive integer value (SQLSTATE 42615). If

position is greater than the number of existing workloads plus one, the

workload is placed at the last position, just before

SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

COLLECT ACTIVITY DATA

Specifies that data about each activity associated with this workload is to be

sent to the applicable event monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION

Specifies that the activity data is to be collected only at the database

partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that the activity data is to be collected at all database

partitions on which the activity is processed; however any activity

details or values will be collected only at the database partition of the

coordinator of the activity.

WITHOUT DETAILS

Specifies that data about each activity that is associated with this

workload is to be sent to the applicable event monitor when the

activity completes execution. Statement and compilation environment

are not sent to the event monitor.

WITH DETAILS

Specifies that statement and compilation environment information are

to be sent to the applicable event monitor for those activities that have

them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

NONE

Specifies that activity data should not be collected for each activity that is

associated with this workload.

ALTER WORKLOAD

176 SQL Reference, Volume 2

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement. For newly

submitted workload occurrences, changes take effect after the ALTER

WORKLOAD statement commits. For active workload occurrences, changes take

effect at the beginning of the next unit of work.

v If the DISABLE option is specified, the workload is disabled after the statement

commits. The workload is not considered the next time that a workload is

chosen. If there is an active workload occurrence associated with this workload

when the ALTER WORKLOAD statement commits, it continues to run until the

end of the current unit of work. At the beginning of the next unit of work, a

workload re-evaluation takes place, and the connection becomes associated with

a different workload.

Examples

Example 1: The workload PAYROLL is currently positioned such that the workload

INVENTORY is considered first when DB2 chooses a workload at run time. Alter

the evaluation order so that PAYROLL will be considered first.

 ALTER WORKLOAD PAYROLL

 POSITION BEFORE INVENTORY

Example 2: Alter the evaluation order so that the workload BENCHMARK is

evaluated by DB2 before any other workload in the catalog.

 ALTER WORKLOAD BENCHMARK

 POSITION AT 1

Example 3: The workload REPORTS was created with APPLNAME set to appl1,

appl2, and appl3, and SYSTEM_USER set to BOB and MARY. Alter the workload

to add a new application, appl4 to the application name list, and remove appl2,

because it should no longer be mapped to REPORTS.

 ALTER WORKLOAD REPORTS

 ADD APPLNAME (’appl4’)

 DROP APPLNAME (’appl2’)

ALTER WORKLOAD

Statements 177

ALTER WRAPPER

The ALTER WRAPPER statement is used to update the properties of a wrapper.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� ALTER WRAPPER wrapper-name OPTIONS �

�

�

 ,

ADD

(

wrapper-option-name

string-constant

)

SET

DROP

wrapper-option-name

��

Description

wrapper-name

Specifies the name of the wrapper.

OPTIONS

Indicates what wrapper options are to be enabled, reset, or dropped.

ADD

Enables a server option.

SET

Changes the setting of a wrapper option.

wrapper-option-name

Names a wrapper option that is to be enabled or reset. Currently the only

supported wrapper option name is DB2_FENCED.

string-constant

Specifies the setting for wrapper-option-name as a character string constant.

Valid values are ’Y’ or ’N’. The default value for relational wrappers is ’N’,

and the default value for non-relational wrappers is ’Y’.

DROP wrapper-option-name

Drops a wrapper option.

Notes

v Execution of the ALTER WRAPPER statement does not include checking the

validity of wrapper-specific options.

ALTER WRAPPER

178 SQL Reference, Volume 2

v An ALTER WRAPPER statement within a given unit of work (UOW) cannot be

processed (SQLSTATE 55007) if the UOW already includes one of the following:

– A SELECT statement that references a nickname that belongs to the wrapper.

– An open cursor on a nickname that belongs to the wrapper.

– An INSERT, DELETE, or UPDATE statement issued against a nickname that

belongs to the wrapper.

Examples

Example 1: Set the DB2_FENCED option on for wrapper NET8.

 ALTER WRAPPER NET8 OPTIONS (SET DB2_FENCED ’Y’)

ALTER WRAPPER

Statements 179

ALTER XSROBJECT

This statement is used to either enable or disable the decomposition support for a

specific XML schema. Annotated XML schemas can be used to decompose XML

documents into relational tables, if decomposition has been enabled for those XML

schemas.

Invocation

The ALTER XSROBJECT statement can be embedded in an application program or

issued through the use of dynamic SQL statements. It is an executable statement

that can be dynamically prepared only if the DYNAMICRULES run behavior is in

effect for the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:

v SYSADM or DBADM

v ALTERIN on the SQL schema

v Ownership of the XSR object to be altered

Syntax

�� ALTER XSROBJECT xsrobject-name ENABLE DECOMPOSITION

DISABLE DECOMPOSITION
 ��

Description

xsrobject-name

Identifies the XSR object to be altered. The xsrobject-name, including the implicit

or explicit schema qualifier, must uniquely identify an existing XSR object at

the current server. If no XSR object with this identifier exists, an error is

returned (SQLSTATE 42704).

ENABLE DECOMPOSITION or DISABLE DECOMPOSITION

Enables or disables the use of the XSR object for decomposition. The identified

XSR object must be an XML schema (SQLSTATE 42809). In order to enable

decomposition, the XML schema needs to be annotated with decomposition

rules (SQLSTATE 225DE) and the objects referenced by the decomposition rules

must exist at the current server (SQLSTATE 42704).

Notes:

v When decomposition for an XSR object is disabled, all related catalog entries are

removed.

v Decomposition support for an XSR object will be disabled if any objects the XSR

object depends on (such as tables) are dropped or altered to become

incompatible with the XSR object.

ALTER XSROBJECT

180 SQL Reference, Volume 2

ASSOCIATE LOCATORS

The ASSOCIATE LOCATORS statement gets the result set locator value for each

result set returned by a stored procedure.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

��
 RESULT SET

ASSOCIATE

LOCATOR

LOCATORS

�

�

�

 ,

(

rs-locator-variable

)

WITH PROCEDURE

procedure-name

��

Description

rs-locator-variable

Specifies a result set locator variable that has been declared in a compound

SQL (Procedure) statement.

WITH PROCEDURE

Identifies the stored procedure that returns result set locators by the specified

procedure name.

procedure-name

A procedure name is a qualified or unqualified name.

 A fully qualified procedure name is a two-part name. The first part is an

identifier that contains the schema name of the stored procedure. The last

part is an identifier that contains the name of the stored procedure. A

period must separate each of the parts. Any or all of the parts can be a

delimited identifier.

If the procedure name is unqualified, it has only one name because the

implicit schema name is not added as a qualifier to the procedure name.

Successful execution of the ASSOCIATE LOCATOR statement only requires

that the unqualified procedure name in the statement be the same as the

procedure name in the most recently executed CALL statement that was

specified with an unqualified procedure name. The implicit schema name

for the unqualified name in the CALL statement is not considered in the

match. The rules for how the procedure name must be specified are

described below.

 When the ASSOCIATE LOCATORS statement is executed, the procedure name

or specification must identify a stored procedure that the requester has already

invoked using the CALL statement. The procedure name in the ASSOCIATE

ASSOCIATE LOCATORS

Statements 181

LOCATORS statement must be specified the same way that it was specified on

the CALL statement. For example, if a two-part name was specified on the

CALL statement, you must use a two-part name in the ASSOCIATE

LOCATORS statement.

Notes

v If the number of result set locator variables that are listed in the ASSOCIATE

LOCATORS statement is less than the number of locators returned by the stored

procedure, all variables in the statement are assigned a value, and a warning is

issued.

v If the number of result set locator variables that are listed in the ASSOCIATE

LOCATORS statement is greater than the number of locators returned by the

stored procedure, the extra variables are assigned a value of 0.

v If a stored procedure is called more than once from the same caller, only the

most recent result sets are accessible.

v Result set locator values are available for a procedure that is called using an

EXECUTE statement executing the CALL statement that was previously

prepared by the PREPARE statement. Result set locator values, however, are not

available for a procedure that is called using an EXECUTE IMMEDIATE

statement.

Examples

The statements in the following examples are assumed to be embedded in SQL

Procedures.

Example 1: Use result set locator variables LOC1 and LOC2 to get the result set

locator values for the two result sets returned by stored procedure P1. Assume that

the stored procedure is called with a one-part name.

 CALL P1;

 ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

 WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an

explicit schema name for the stored procedure to ensure that stored procedure P1

in schema MYSCHEMA is used.

 CALL MYSCHEMA.P1;

 ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)

 WITH PROCEDURE MYSCHEMA.P1;

ASSOCIATE LOCATORS

182 SQL Reference, Volume 2

AUDIT

The AUDIT statement determines the audit policy that is to be used for a

particular database or database object at the current server. Whenever the object is

in use, it is audited according to that policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

AUDIT

�

 ,

(1)

DATABASE

TABLE

table-name

TRUSTED CONTEXT

context-name

USER

authorization-name

GROUP

ROLE

SYSADM

SYSCTRL

SYSMAINT

SYSMON

SECADM

DBADM

�

� USING POLICY policy-name

REPLACE

REMOVE POLICY

 ��

Notes:

1 Each clause (with the same object name, if applicable) can be specified at

most once (SQLSTATE 42713).

Description

DATABASE

Specifies that an audit policy is to be associated with or removed from the

database at the current server. All auditable events that occur within the

database are audited according to the associated audit policy.

TABLE table-name

Specifies that an audit policy is to be associated with or removed from

table-name. The table-name must identify a table, materialized query table

(MQT), or nickname that exists at the current server (SQLSTATE 42704). It

cannot be a view, a catalog table, a declared temporary table (SQLSTATE

42995), or a typed table (SQLSTATE 42997). Only EXECUTE category audit

AUDIT

Statements 183

events, with or without data, will be generated when the table is accessed,

even if the policy indicates that other categories should be audited.

TRUSTED CONTEXT context-name

Specifies that an audit policy is to be associated with or removed from

context-name. The context-name must identify a trusted context that exists at the

current server (SQLSTATE 42704). All auditable events that happen within the

trusted connection defined by the trusted context context-name will be audited

according to the associated audit policy.

USER authorization-name

Specifies that an audit policy is to be associated with or removed from the user

with authorization ID authorization-name. All auditable events that are initiated

by authorization-name will be audited according to the associated audit policy.

GROUP authorization-name

Specifies that an audit policy is to be associated with or removed from the

group with authorization ID authorization-name. All auditable events that are

initiated by users who are members of authorization-name will be audited

according to the associated audit policy. If user membership in a group cannot

be determined, the policy will not apply to that user.

ROLE authorization-name

Specifies that an audit policy is to be associated with or removed from the role

with authorization ID authorization-name. The authorization-name must identify a

role that exists at the current server (SQLSTATE 42704). All auditable events

that are initiated by users who are members of authorization-name will be

audited according to the associated audit policy. Indirect role membership

through other roles or groups is valid.

SYSADM, SYSMAINT, SYSCTRL, SYSMON, DBADM or SECADM

Specifies that an audit policy is to be associated with or removed from the

specified authority. All auditable events that are initiated by a user who holds

the specified authority, even if that authority is not required for the event, will

be audited according to the associated audit policy.

USING, REMOVE, or REPLACE

Specifies whether the audit policy should be used, removed, or replaced for

the specified object.

USING

Specifies that the audit policy is to be used for the specified object. An

existing audit policy must not already be defined for the object (SQLSTATE

5U041). If an audit policy already exists, it must be removed or replaced.

REMOVE

Specifies that the audit policy is to be removed from the specified object.

Use of the object will no longer be audited according to the audit policy.

The association is deleted from the catalog when the audit policy is

removed from the object.

REPLACE

Specifies that the audit policy is to replace an existing audit policy for the

specified object. This combines both REMOVE and USING options into one

step to ensure that there is no period of time in which an audit policy does

not apply to the specified object. If a policy was not in use for the specified

object, REPLACE is equivalent to USING.

AUDIT

184 SQL Reference, Volume 2

POLICY policy-name

Specifies the audit policy that is to be used to determine audit settings. The

policy-name must identify an existing audit policy at the current server

(SQLSTATE 42704).

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

v An object can be associated with no more than one policy (SQLSTATE 5U042).

Notes

v Changes are written to the catalog, but do not take effect until after a COMMIT

statement executes.

v Changes do not take effect until the next unit of work that references the object

to which the audit policy applies. For example, if the audit policy is in use for

the database, no current units of work will begin auditing according to the

policy until after a COMMIT or a ROLLBACK statement completes.

v Views accessing a table that is associated with an audit policy are audited

according to the underlying table’s policy.

v The audit policy that applies to a table does not apply to a materialized query

table (MQT) based on that table. It is recommended that if you associate an

audit policy with a table, you also associate that policy with any MQT based on

that table. The compiler might automatically use an MQT, even though an SQL

statement references the base table; however, the audit policy in use for the base

table will still be in effect.

v When a switch user operation is performed within a trusted context, all audit

policies are re-evaluated according to the new user, and no policies from the old

user are used for the current session. This applies specifically to audit policies

associated directly with the user, the user’s group or role memberships, and the

user’s authorities. For example, if the current session was audited because the

previous user was a member of an audited role, and the switched-to user is not

a member of that role, that policy no longer applies to the session.

v When a SET SESSION USER statement is executed, the audit policies associated

with the original user (and that user’s group and role memberships and

authorities) are combined with the policies that are associated with the user

specified in the SET SESSION USER statement. The audit policies associated

with the original user are still in effect, as are the policies for the user specified

in the SET SESSION USER statement. If multiple SET SESSION USER statements

are issued within a session, only the audit policies associated with the original

user and the current user are considered.

v If the object with which an audit policy is associated is dropped, the association

to the audit policy is removed from the catalog and no longer exists. If that

object is recreated at some later time, the object will not be audited according to

the policy that was associated with it when the object was dropped.

AUDIT

Statements 185

Examples

Example 1: Use the audit policy DBAUDPRF to determine the audit settings for the

database at the current server.

 AUDIT DATABASE USING POLICY DBAUDPRF

Example 2: Remove the audit policy from the EMPLOYEE table.

 AUDIT TABLE EMPLOYEE REMOVE POLICY

Example 3: Use the audit policy POWERUSERS to determine the audit settings for

the authorities SYSADM, DBADM, and SECADM, as well as the group DBAS.

 AUDIT SYSADM, DBADM, SECADM, GROUP DBAS USING POLICY POWERUSERS

Example 4: Replace the audit policy for the role TELLER with the new policy

TELLERPRF.

 AUDIT ROLE TELLER REPLACE POLICY TELLERPRF

AUDIT

186 SQL Reference, Volume 2

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTION statement marks the beginning of a host variable

declare section.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It must not be specified in REXX.

Authorization

None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description

The BEGIN DECLARE SECTION statement may be coded in the application

program wherever variable declarations can appear in accordance with the rules of

the host language. It is used to indicate the beginning of a host variable declaration

section. A host variable section ends with an END DECLARE SECTION statement.

Rules

v The BEGIN DECLARE SECTION and the END DECLARE SECTION statements

must be paired and may not be nested.

v SQL statements cannot be included within the declare section.

v Variables referenced in SQL statements must be declared in a declare section in

all host languages other than REXX. Furthermore, the section must appear before

the first reference to the variable. Generally, host variables are not declared in

REXX with the exception of LOB locators and file reference variables. In this

case, they are not declared within a BEGIN DECLARE SECTION.

v Variables declared outside a declare section should not have the same name as

variables declared within a declare section.

v LOB data types must have their data type and length preceded with the SQL

TYPE IS keywords.

Examples

Example 1: Define the host variables hv_smint (smallint), hv_vchar24 (varchar(24)),

hv_double (double), hv_blob_50k (blob(51200)), hv_struct (of structured type

″struct_type″ as blob(10240)) in a C program.

 EXEC SQL BEGIN DECLARE SECTION;

 short hv_smint;

 struct {

 short hv_vchar24_len;

 char hv_vchar24_value[24];

 } hv_vchar24;

BEGIN DECLARE SECTION

Statements 187

double hv_double;

 SQL TYPE IS BLOB(50K) hv_blob_50k;

 SQL TYPE IS struct_type AS BLOB(10k) hv_struct;

 EXEC SQL END DECLARE SECTION;

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24

(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a COBOL

program.

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 HV-SMINT PIC S9(4) COMP-4.

 01 HV-VCHAR24.

 49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.

 49 HV-VCHAR24-VALUE PIC X(24).

 01 HV-DEC72 PIC S9(5)V9(2) COMP-3.

 01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

 EXEC SQL END DECLARE SECTION END-EXEC.

Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24

(char(24)), HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran

program.

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*2 HVSMINT

 CHARACTER*24 HVVCHAR24

 REAL*8 HVDOUBLE

 SQL TYPE IS BLOB(50K) HVBLOB50K

 EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 bytes, then a CLOB host

variable should be used.

Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K

(blob(51200)), and HVCLOBLOC (a CLOB locator) in a REXX program.

 DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR

 call sqlexec ’FETCH c1 INTO :HVSMINT, :HVBLOB50K’

Note that the variables HVSMINT and HVBLOB50K were implicitly defined by

using them in the FETCH statement.

BEGIN DECLARE SECTION

188 SQL Reference, Volume 2

CALL

The CALL statement calls a procedure or a foreign procedure.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v EXECUTE privilege on the procedure

v SYSADM or DBADM authority

If a matching procedure exists that the authorization ID of the statement is not

authorized to execute, an error is returned (SQLSTATE 42501).

Syntax

�� CALL procedure-name

�

,

(

expression

)

NULL

 ��

Description

procedure-name

Specifies the procedure that is to be called. It must be a procedure that is

described in the catalog. The specific procedure to invoke is chosen using

procedure resolution. (For more details, see the “Notes” section of this

statement.)

expression or NULL

Each specification of expression or NULL is an argument of the CALL. The nth

argument of the CALL statement corresponds to the nth parameter defined in

the CREATE PROCEDURE statement for the procedure.

 Each argument of the CALL must be compatible with the corresponding

parameter in the procedure definition as follows:

v IN parameter

– The argument must be assignable to the parameter.

– The assignment of a string argument uses the storage assignment rules.
v OUT parameter

– The argument must be a single variable or parameter marker (SQLSTATE

42886).

– The argument must be assignable to the parameter.

– The assignment of a string argument uses the retrieval assignment rules.
v INOUT parameter

CALL

Statements 189

– The argument must be a single variable or parameter marker (SQLSTATE

42886).

– The argument must be assignable to the parameter.

– The assignment of a string argument uses the storage assignment rules on

invocation and the retrieval assignment rules on return.

Notes

v Parameter assignments:

When the CALL statement is executed, the value of each of its arguments is

assigned (using storage assignment) to the corresponding parameter of the

procedure. Control is passed to the procedure according to the calling

conventions of the host language. When execution of the procedure is complete,

the value of each parameter of the procedure is assigned (using storage

assignment) to the corresponding argument of the CALL statement defined as

OUT or INOUT. If an error is returned by the procedure, OUT arguments are

undefined and INOUT arguments are unchanged. For details on the assignment

rules, see “Assignments and comparisons”.

When the CALL statement is in an SQL procedure and is calling another SQL

procedure, assignment of XML parameters is done by reference. When an XML

argument is passed by reference, the input node trees, if any, are used directly

from the XML argument, preserving all properties, including document order,

the original node identities, and all parent properties.

v Procedure signatures:

A procedure is identified by its schema, a procedure name, and the number of

parameters. This is called a procedure signature, which must be unique within

the database. There can be more than one procedure with the same name in a

schema, provided that the number of parameters is different for each procedure.

v SQL path:

A procedure can be invoked by referring to a qualified name (schema and

procedure name), followed by an optional list of arguments enclosed by

parentheses. A procedure can also be invoked without the schema name,

resulting in a choice of possible procedures in different schemas with the same

number of parameters. In this case, the SQL path is used to assist in procedure

resolution. The SQL path is a list of schemas that is searched to identify a

procedure with the same name and number of parameters. For static CALL

statements, SQL path is specified using the FUNCPATH bind option. For

dynamic CALL statements, SQL path is the value of the CURRENT PATH

special register.

v Procedure resolution:

Given a procedure invocation, the database manager must decide which of the

possible procedures with the same name to call. Procedure resolution is done

using the steps that follow.

1. Find all procedures from the catalog (SYSCAT.ROUTINES), such that all of

the following are true:

– For invocations where the schema name was specified (that is, qualified

references), the schema name and the procedure name match the

invocation name.

– For invocations where the schema name was not specified (that is,

unqualified references), the procedure name matches the invocation name,

and has a schema name that matches one of the schemas in the SQL path.

– The number of defined parameters matches the invocation.

– The invoker has the EXECUTE privilege on the procedure.

CALL

190 SQL Reference, Volume 2

2. Choose the procedure whose schema is earliest in the SQL path.
If there are no candidate procedures remaining after step 1, an error is returned

(SQLSTATE 42884).

v Retrieving the DB2_RETURN_STATUS from an SQL procedure:

If an SQL procedure successfully issues a RETURN statement with a status

value, this value is returned in the first SQLERRD field of the SQLCA. If the

CALL statement is issued in an SQL procedure, use the GET DIAGNOSTICS

statement to retrieve the DB2_RETURN_STATUS value. The value is -1 if the

SQLSTATE indicates an error. The values is 0 if no error is returned and the

RETURN statement was not specified in the procedure.

v Returning result sets from procedures:

If the calling program is written using CLI, JDBC, or SQLJ, or the caller is an

SQL procedure, result sets can be returned directly to the caller. The procedure

indicates that a result set is to be returned by declaring a cursor on that result

set, opening a cursor on the result set, and leaving the cursor open when exiting

the procedure.

At the end of a procedure:

– For every cursor that has been left open, a result set is returned to the caller

or (for WITH RETURN TO CLIENT cursors) directly to the client.

– Only unread rows are passed back. For example, if the result set of a cursor

has 500 rows, and 150 of those rows have been read by the procedure at the

time the procedure is terminated, rows 151 through 500 will be returned to

the caller or application (as appropriate).

If the procedure was invoked from CLI or JDBC, and more than one cursor is

left open, the result sets can only be processed in the order in which the cursors

were opened.

v Improving performance:

The values of all arguments are passed from the application to the procedure. To

improve the performance of this operation, host variables that correspond to

OUT parameters and have lengths of more than a few bytes should be set to

NULL before the CALL statement is executed.

v Nesting CALL statements:

Procedures can be called from routines as well as application programs. When a

procedure is called from a routine, the call is considered to be nested.

If a procedure returns any query result sets, the result sets are returned as

follows:

– RETURN TO CALLER result sets are visible only to the program that is at the

previous nesting level.

– RETURN TO CLIENT results sets are visible only if the procedure was

invoked from a set of nested procedures. If a function or method occurs

anywhere in the call chain, the result set is not visible. If the result set is

visible, it is only visible to the client application that made the initial

procedure call.
Consider the following example:

 Client program:

 EXEC SQL CALL PROCA;

 PROCA:

 EXEC SQL CALL PROCB;

 PROCB:

 EXEC SQL DECLARE B1 CURSOR WITH RETURN TO CLIENT ...;

 EXEC SQL DECLARE B2 CURSOR WITH RETURN TO CALLER ...;

CALL

Statements 191

EXEC SQL DECLARE B3 CURSOR FOR SELECT UDFA FROM T1;

 UDFA:

 EXEC SQL CALL PROCC;

 PROCC:

 EXEC SQL DECLARE C1 CURSOR WITH RETURN TO CLIENT ...;

 EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CALLER ...;

From procedure PROCB:

– Cursor B1 is visible in the client application, but not visible in procedure

PROCA.

– Cursor B2 is visible in PROCA, but not visible to the client.
From procedure PROCC:

– Cursor C1 is visible to neither UDFA nor to the client application. (Because

UDFA appears in the call chain between the client and PROCC, the result set

is not returned to the client.)

– Cursor C2 is visible in UDFA, but not visible to any of the higher procedures.
v Nesting procedures within triggers, dynamic compound statements, functions, or

methods:

When a procedure is called within a trigger, dynamic compound statement,

function, or method:

– The procedure must not issue a COMMIT or a ROLLBACK statement.

– Result sets returned from the procedure cannot be accessed.

– If the procedure is defined as READS SQL DATA or MODIFIES SQL DATA,

no statement in the procedure can access a table that is being modified by the

statement that invoked the procedure (SQLSTATE 57053). If the procedure is

defined as MODIFIES SQL DATA, no statement in the procedure can modify

a table that is being read or modified by the statement that invoked the

procedure (SQLSTATE 57053).
When a procedure is called within a function or method:

– The procedure has the same table access restrictions as the invoking function

or method.

– Savepoints defined before the function or method was invoked will not be

visible to the procedure, and savepoints defined inside the procedure will not

be visible outside the function or method.

– RETURN TO CLIENT result sets returned from the procedure cannot be

accessed from the client.
v Compatibilities:

– There is an older form of the CALL statement that can be embedded in an

application by precompiling the application with the CALL_RESOLUTION

DEFERRED option. This option is not available for SQL procedures and

federated procedures.

Examples

Example 1:

A Java™ procedure is defined in the database using the following statement:

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

 OUT COST DECIMAL(7,2),

 OUT QUANTITY INTEGER)

 EXTERNAL NAME ’parts!onhand’

 LANGUAGE JAVA

 PARAMETER STYLE DB2GENERAL;

CALL

192 SQL Reference, Volume 2

A Java application calls this procedure using the following code fragment:

 ...

 CallableStatement stpCall;

 String sql = "CALL PARTS_ON_HAND (?, ?, ?)";

 stpCall = con.prepareCall(sql); /*con is the connection */

 stpCall.setInt(1, hvPartnum);

 stpCall.setBigDecimal(2, hvCost);

 stpCall.setInt(3, hvQuantity);

 stpCall.registerOutParameter(2, Types.DECIMAL, 2);

 stpCall.registerOutParameter(3, Types.INTEGER);

 stpCall.execute();

 hvCost = stpCall.getBigDecimal(2);

 hvQuantity = stpCall.getInt(3);

 ...

This application code fragment will invoke the Java method onhand in class parts,

because the procedure name specified on the CALL statement is found in the

database and has the external name parts!onhand.

Example 2:

There are six FOO procedures, in four different schemas, registered as follows

(note that not all required keywords appear):

 CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC FOO_1 ...

 CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC FOO_2 ...

 CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC FOO_3 ...

 CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIFIC FOO_4 ...

 CREATE PROCEDURE CAESAR.FOO (INT, INT) SPECIFIC FOO_5 ...

 CREATE PROCEDURE NERO.FOO (INT,INT) SPECIFIC FOO_6 ...

The procedure reference is as follows (where I1 and I2 are INTEGER values):

 CALL FOO(I1, I2)

Assume that the application making this reference has an SQL path established as:

 "JULIUS", "AUGUSTUS", "CAESAR"

Following through the algorithm...

The procedure with specific name FOO_6 is eliminated as a candidate, because the

schema ″NERO″ is not included in the SQL path. FOO_1, FOO_3, and FOO_4 are

eliminated as candidates, because they have the wrong number of parameters. The

remaining candidates are considered in order, as determined by the SQL path.

Note that the types of the arguments and parameters are ignored. The parameters

of FOO_5 exactly match the arguments in the CALL, but FOO_2 is chosen because

″AUGUSTUS″ appears before ″CAESAR″ in the SQL path.

CALL

Statements 193

CASE

The CASE statement selects an execution path based on multiple conditions. This

statement should not be confused with the CASE expression, which allows an

expression to be selected based on the evaluation of one or more conditions.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the CASE statement. However, the privileges

held by the authorization ID of the statement must include all necessary privileges

to invoke the SQL statements and expressions that are embedded in the CASE

statement.

Syntax

�� CASE searched-case-statement-when-clause

simple-case-statement-when-clause
 END CASE ��

simple-case-statement-when-clause:

expression

�

�

WHEN

expression

THEN

SQL-procedure-statement

;

�

�

�

ELSE

SQL-procedure-statement

;

searched-case-statement-when-clause:

�

�

WHEN

search-condition

THEN

SQL-procedure-statement

;

�

�

�

ELSE

SQL-procedure-statement

;

CASE

194 SQL Reference, Volume 2

Description

CASE

Begins a case-statement.

simple-case-statement-when-clause

The value of the expression prior to the first WHEN keyword is tested for

equality with the value of each expression that follows the WHEN keyword. If

the search condition is true, the THEN statement is executed. If the result is

unknown or false, processing continues to the next search condition. If the

result does not match any of the search conditions, and an ELSE clause is

present, the statements in the ELSE clause are processed.

searched-case-statement-when-clause

The search-condition following the WHEN keyword is evaluated. If it evaluates

to true, the statements in the associated THEN clause are processed. If it

evaluates to false, or unknown, the next search-condition is evaluated. If no

search-condition evaluates to true and an ELSE clause is present, the statements

in the ELSE clause are processed.

SQL-procedure-statement

Specifies a statement that should be invoked. See SQL-procedure-statement in

“Compound SQL (Procedure)”.

END CASE

Ends a case-statement.

Notes

v If none of the conditions specified in the WHEN are true, and an ELSE clause is

not specified, an error is issued at runtime, and the execution of the case

statement is terminated (SQLSTATE 20000).

v Ensure that your CASE statement covers all possible execution conditions.

Examples

Depending on the value of SQL variable v_workdept, update column DEPTNAME

in table DEPARTMENT with the appropriate name.

The following example shows how to do this using the syntax for a

simple-case-statement-when-clause:

 CASE v_workdept

 WHEN’A00’

 THEN UPDATE department

 SET deptname = ’DATA ACCESS 1’;

 WHEN ’B01’

 THEN UPDATE department

 SET deptname = ’DATA ACCESS 2’;

 ELSE UPDATE department

 SET deptname = ’DATA ACCESS 3’;

 END CASE

The following example shows how to do this using the syntax for a

searched-case-statement-when-clause:

 CASE

 WHEN v_workdept = ’A00’

 THEN UPDATE department

 SET deptname = ’DATA ACCESS 1’;

 WHEN v_workdept = ’B01’

 THEN UPDATE department

CASE

Statements 195

SET deptname = ’DATA ACCESS 2’;

 ELSE UPDATE department

 SET deptname = ’DATA ACCESS 3’;

 END CASE

CASE

196 SQL Reference, Volume 2

CLOSE

The CLOSE statement closes a cursor. If a result table was created when the cursor

was opened, that table is destroyed.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that cannot be dynamically prepared.

Authorization

None required. For the authorization required to use a cursor, see “DECLARE

CURSOR”.

Syntax

�� CLOSE cursor-name

WITH RELEASE
 ��

Description

cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared

cursor as explained in the DECLARE CURSOR statement. When the CLOSE

statement is executed, the cursor must be in the open state.

WITH RELEASE

The release of all locks that have been held for the cursor is attempted. Note

that not all of the locks are necessarily released; these locks may be held for

other operations or activities.

Notes

v At the end of a unit of work, all cursors that belong to an application process

and that were declared without the WITH HOLD option are implicitly closed.

v The WITH RELEASE clause has no effect when closing cursors defined in

functions or methods. The clause also has no effect when closing cursors defined

in procedures called from functions or methods.

v The WITH RELEASE clause has no effect for cursors that are operating under

isolation levels CS or UR. When specified for cursors that are operating under

isolation levels RS or RR, WITH RELEASE terminates some of the guarantees of

those isolation levels. Specifically, if the cursor is opened again, an RS cursor

may experience the ’nonrepeatable read’ phenomenon and an RR cursor may

experience either the ’nonrepeatable read’ or ’phantom’ phenomenon.

If a cursor that was originally either RR or RS is reopened after being closed

using the WITH RELEASE clause, new locks will be acquired.

v Special rules apply to cursors within a procedure that have not been closed

before returning to the calling program.

v While a cursor is open (that is, it has not been closed yet), any changes to

sequence values as a result of statements involving that cursor (for example, a

FETCH or an UPDATE using the cursor that includes a NEXT VALUE

expression for a sequence) will not result in an update to PREVIOUS VALUE for

those sequences as seen by that cursor. The PREVIOUS VALUE values for these

affected sequences are updated when the cursor is closed explicitly with the

CLOSE

Statements 197

CLOSE statement. In a partitioned database environment, if a cursor is closed

implicitly by a commit or a rollback, the PREVIOUS VALUE may not be

updated with the most recently generated value for the sequence.

Example

A cursor is used to fetch one row at a time into the C program variables dnum,

dname, and mnum. Finally, the cursor is closed. If the cursor is reopened, it is again

located at the beginning of the rows to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM TDEPT

 WHERE ADMRDEPT = ’A00’;

 EXEC SQL OPEN C1;

 while (SQLCODE==0) { .

 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 .

 .

 }

 EXEC SQL CLOSE C1;

CLOSE

198 SQL Reference, Volume 2

COMMENT

The COMMENT statement adds or replaces comments in the catalog descriptions

of various objects.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Owner of the object (underlying table for column or constraint), as recorded in

the OWNER column of the catalog view for the object

v ALTERIN privilege on the schema (applicable only to objects that allow more

than one-part names)

v CONTROL privilege on the object (applicable only to index, package, table, or

view objects)

v ALTER privilege on the object (applicable only to table objects)

v The WITH ADMIN OPTION (applicable only to roles)

v SECADM authority (applicable only to audit policy, role, security label, security

label component, security policy, or trusted context objects)

v SYSADM or DBADM authority (not applicable to audit policy, role, security

label, security label component, security policy, or trusted context objects)

Note that for table space or database partition group, the authorization ID must

have SYSCTRL or SYSADM authority.

Syntax

�� COMMENT ON

�

 objects IS string-constant

,

table-name

(

column-name

IS

string-constant

)

view-name

 ��

objects:

COMMENT

Statements 199

�

�

 ALIAS alias-name

AUDIT POLICY

policy-name

COLUMN

table-name.column-name

view-name.column-name

CONSTRAINT

table-name.constraint-name

FUNCTION

function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

HISTOGRAM TEMPLATE

template-name

(1)

INDEX

index-name

NICKNAME

nickname

DATABASE PARTITION GROUP

db-partition-group-name

PACKAGE

package-id

schema-name.

VERSION

version-id

PROCEDURE

procedure-name

(

)

,

data-type

ROLE

role-name

SPECIFIC PROCEDURE

specific-name

SCHEMA

schema-name

SECURITY LABEL

sec-label-name

SECURITY LABEL COMPONENT

label-comp-name

SECURITY POLICY

label-pol-name

SERVER

server-name

SERVER OPTION

server-option-name

FOR

remote-server

SERVICE CLASS

service-class-name

UNDER

service-superclass-name

TABLE

table-name

view-name

TABLESPACE

tablespace-name

THRESHOLD

threshold-name

TRIGGER

trigger-name

TRUSTED CONTEXT

context-name

TYPE

type-name

TYPE MAPPING

type-mapping-name

VARIABLE

variable-name

WORK ACTION SET

work-action-set-name

WORK CLASS SET

work-class-set-name

WORKLOAD

workload-name

WRAPPER

wrapper-name

XSROBJECT

xsrobject-name

remote-server:

 SERVER server-name

SERVER TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

server-version:

 version

.

release

.

mod

version-string-constant

COMMENT

200 SQL Reference, Volume 2

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

ALIAS alias-name

Indicates a comment will be added or replaced for an alias. The alias-name

must identify an alias that exists at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the SYSCAT.TABLES

catalog view for the row that describes the alias.

AUDIT POLICY policy-name

Indicates a comment will be added or replaced for an audit policy. The

policy-name must identify an audit policy that exists at the current server

(SQLSTATE 42704). The comment replaces the value of the REMARKS column

of the SYSCAT.AUDITPOLICIES catalog view for the row that describes the

audit policy.

COLUMN table-name.column-name or view-name.column-name

Indicates that a comment for a column will be added or replaced. The

table-name.column-name or view-name.column-name combination must identify a

column and table combination that exists at the current server (SQLSTATE

42704), but must not identify a global temporary table (SQLSTATE 42995). The

comment replaces the value of the REMARKS column of the

SYSCAT.COLUMNS catalog view for the row that describes the column.

CONSTRAINT table-name.constraint-name

Indicates a comment will be added or replaced for a constraint. The

table-name.constraint-name combination must identify a constraint and the table

that it constrains; they must exist at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the

SYSCAT.TABCONST catalog view for the row that describes the constraint.

FUNCTION

Indicates a comment will be added or replaced for a function. The function

instance specified must be a user-defined function or function template that

exists at the current server.

 There are several different ways available to identify the function instance:

FUNCTION function-name

Identifies the particular function, and is valid only if there is exactly one

function with the function-name. The function thus identified may have any

number of parameters defined for it. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If no function by this name exists in the named or implied

schema, an error (SQLSTATE 42704) is raised. If there is more than one

specific instance of the function in the named or implied schema, an error

(SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function to

be commented upon. The function selection algorithm is not used.

function-name

Gives the function name of the function to be commented upon. In

dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL

COMMENT

Statements 201

statements the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

FUNCTION statement in the corresponding position. The number of

data types, and the logical concatenation of the data types is used to

identify the specific function for which to add or replace the comment.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n

since 0 <n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

(Note that the FOR BIT DATA attribute is not considered part of the

signature for matching purposes. So, for example, a CHAR FOR BIT

DATA specified in the signature would match a function defined with

CHAR only, and vice versa.)

 If no function with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Indicates that comments will be added or replaced for a function (see

FUNCTION for other methods of identifying a function). Identifies the

particular user-defined function that is to be commented upon, using the

specific name either specified or defaulted to at function creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific function

instance in the named or implied schema; otherwise, an error (SQLSTATE

42704) is raised.

It is not possible to comment on a function that is in the SYSIBM, SYSFUN, or

SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the

SYSCAT.ROUTINES catalog view for the row that describes the function.

FUNCTION MAPPING function-mapping-name

Indicates a comment will be added or replaced for a function mapping. The

function-mapping-name must identify a function mapping that exists at the

current server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.FUNCMAPPINGS catalog view for the row

that describes the function mapping.

COMMENT

202 SQL Reference, Volume 2

HISTOGRAM TEMPLATE template-name

Indicates a comment will be added or replaced for a histogram template. The

template-name must identify a histogram template that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.HISTOGRAMTEMPLATES catalog view for the row

that describes the histogram template.

INDEX index-name

Indicates a comment will be added or replaced for an index or index

specification. The index-name must identify either a distinct index or an index

specification that exists at the current server (SQLSTATE 42704). The comment

replaces the value for the REMARKS column of the SYSCAT.INDEXES catalog

view for the row that describes the index or index specification.

NICKNAME nickname

Indicates a comment will be added or replaced for a nickname. The nickname

must be a nickname that exists at the current server (SQLSTATE 42704). The

comment replaces the value for the REMARKS column of the SYSCAT.TABLES

catalog view for the row that describes the nickname.

DATABASE PARTITION GROUP db-partition-group-name

Indicates a comment will be added or replaced for a database partition group.

The db-partition-group-name must identify a distinct database partition group

that exists at the current server (SQLSTATE 42704). The comment replaces the

value for the REMARKS column of the SYSCAT.DBPARTITIONGROUPS

catalog view for the row that describes the database partition group.

PACKAGE schema-name.package-id

Indicates that a comment will be added or replaced for a package. If a schema

name is not specified, the package ID is implicitly qualified by the default

schema. The schema name and package ID, together with the implicitly or

explicitly specified version ID, must identify a package that exists at the

current server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.PACKAGES catalog view for the row that

describes the package.

VERSION version-id

Identifies which package version is to be commented on. If a value is not

specified, the version defaults to the empty string. If multiple packages

with the same package name but different versions exist, only one package

version can be commented on in one invocation of the COMMENT

statement. Delimit the version identifier with double quotation marks

when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

PROCEDURE

Indicates a comment will be added or replaced for a procedure. The procedure

instance specified must be a procedure that exists at the current server.

 There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name

Identifies the particular procedure, and is valid only if there is exactly one

procedure with the procedure-name in the schema. The procedure thus

COMMENT

Statements 203

identified may have any number of parameters defined for it. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. If no procedure by this name exists in the named

or implied schema, an error (SQLSTATE 42704) is raised. If there is more

than one specific instance of the procedure in the named or implied

schema, an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)

This is used to provide the procedure signature, which uniquely identifies

the procedure to be commented upon.

procedure-name

Gives the procedure name of the procedure to be commented upon. In

dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

PROCEDURE statement in the corresponding position. For federated

procedures, the data type must match the local catalog information.

The number of data types, and the logical concatenation of the data

types is used to identify the specific procedure for which to add or

replace the comment.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement or the

local catalog information, in the case of a federated procedure.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

 If no procedure with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name

Indicates that comments will be added or replaced for a procedure (see

PROCEDURE for other methods of identifying a procedure). Identifies the

particular procedure that is to be commented upon, using the specific

name either specified or defaulted to at procedure creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

COMMENT

204 SQL Reference, Volume 2

unqualified object names. The specific-name must identify a specific

procedure instance in the named or implied schema; otherwise, an error

(SQLSTATE 42704) is raised.

It is not possible to comment on a procedure that is in the SYSIBM, SYSFUN,

or SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the

SYSCAT.ROUTINES catalog view for the row that describes the procedure.

ROLE role-name

Indicates a comment will be added or replaced for a role. The role-name must

identify a role that exists at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the SYSCAT.ROLES

catalog view for the row that describes the role.

SCHEMA schema-name

Indicates a comment will be added or replaced for a schema. The schema-name

must identify a schema that exists at the current server (SQLSTATE 42704). The

comment replaces the value of the REMARKS column of the

SYSCAT.SCHEMATA catalog view for the row that describes the schema.

SECURITY LABEL sec-label-name

Indicates that a comment will be added or replaced for the security label

named sec-label-name. The name must be qualified with a security policy and

must identify a security label that exists at the current server (SQLSTATE

42704). The comment replaces the value for the REMARKS column of the

SYSCAT.SECURITYLABELS catalog view for the row that describes the

security label.

SECURITY LABEL COMPONENT label-comp-name

Indicates that a comment will be added or replaced for the security label

component named label-comp-name. The label-comp-name must identify a security

label component that exists at the current server (SQLSTATE 42704). The

comment replaces the value for the REMARKS column of the

SYSCAT.SECURITYLABELCOMPONENTS catalog view for the row that

describes the security label component.

SECURITY POLICY label-pol-name

Indicates that a comment will be added or replaced for the security policy

named label-pol-name. The label-pol-name must identify a security policy that

exists at the current server (SQLSTATE 42704). The comment replaces the value

for the REMARKS column of the SYSCAT.SECURITYPOLICIES catalog view

for the row that describes the security policy.

SERVER server-name

Indicates a comment will be added or replaced for a data source. The

server-name must identify a data source that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.SERVERS catalog view for the row that describes the data

source.

SERVER OPTION server-option-name FOR remote-server

Indicates a comment will be added or replaced for a server option.

server-option-name

Identifies a server option. This option must be one that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the

REMARKS column of the SYSCAT.SERVEROPTIONS catalog view for the

row that describes the server option.

COMMENT

Statements 205

remote-server

Describes the data source to which the server-option applies.

SERVER server-name

Names the data source to which the server-option applies. The

server-name must identify a data source that exists at the current server.

TYPE server-type

Specifies the type of data source—for example, DB2 for z/OS or

Oracle—to which the server-option applies. The server-type can be

specified in either lower- or uppercase; it will be stored in uppercase in

the catalog.

VERSION

Specifies the version of the data source identified by server-name.

version

Specifies the version number. version must be an integer.

release

Specifies the number of the release of the version denoted by

version. release must be an integer.

mod

Specifies the number of the modification of the release denoted by

release. mod must be an integer.

version-string-constant

Specifies the complete designation of the version. The

version-string-constant can be a single value (for example, ‘8i’); or it

can be the concatenated values of version, release, and, if applicable,

mod (for example, ‘8.0.3’).

WRAPPER wrapper-name

Identifies the wrapper that is used to access the data source referenced

by server-name.

SERVICE CLASS service-class-name

Indicates a comment will be added or replaced for a service class. The

service-class-name must identify a service class that exists at the current server

(SQLSTATE 42704). To add or replace a comment for a service subclass, the

service-superclass-name must be specified using the UNDER clause. The

comment replaces the value for the REMARKS column of the

SYSCAT.SERVICECLASSES catalog view for the row that describes the service

class.

UNDER service-superclass-name

Specifies the service superclass of the service subclass when adding or

replacing a comment for a service subclass. The service-superclass-name must

identify a service superclass that exists at the current server (SQLSTATE

42704).

TABLE table-name or view-name

Indicates a comment will be added or replaced for a table or view. The

table-name or view-name must identify a table or view (not an alias or nickname)

that exists at the current server (SQLSTATE 42704) and must not identify a

declared temporary table (SQLSTATE 42995). The comment replaces the value

for the REMARKS column of the SYSCAT.TABLES catalog view for the row

that describes the table or view.

TABLESPACE tablespace-name

Indicates a comment will be added or replaced for a table space. The

COMMENT

206 SQL Reference, Volume 2

tablespace-name must identify a distinct table space that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.TABLESPACES catalog view for the row that describes

the table space.

THRESHOLD threshold-name

Indicates a comment will be added or replaced for a threshold. The

threshold-name must identify a threshold that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.THRESHOLDS catalog view for the row that describes the

threshold.

TRIGGER trigger-name

Indicates a comment will be added or replaced for a trigger. The trigger-name

must identify a distinct trigger that exists at the current server (SQLSTATE

42704). The comment replaces the value for the REMARKS column of the

SYSCAT.TRIGGERS catalog view for the row that describes the trigger.

TRUSTED CONTEXT context-name

Indicates a comment will be added or replaced for a trusted context. The

context-name must identify a trusted context that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.CONTEXTS catalog view for the row that describes the trusted

context.

TYPE type-name

Indicates a comment will be added or replaced for a user-defined type. The

type-name must identify a user-defined type that exists at the current server

(SQLSTATE 42704). The comment replaces the value of the REMARKS column

of the SYSCAT.DATATYPES catalog view for the row that describes the

user-defined type.

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names.

TYPE MAPPING type-mapping-name

Indicates a comment will be added or replaced for a user-defined data type

mapping. The type-mapping-name must identify a data type mapping that exists

at the current server (SQLSTATE 42704). The comment replaces the value for

the REMARKS column of the SYSCAT.TYPEMAPPINGS catalog view for the

row that describes the mapping.

VARIABLE variable-name

Indicates a comment will be added or replaced for a global variable. The

variable-name must identify a global variable that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.VARIABLES catalog view for the row that describes the

variable.

WORK ACTION SET work-action-set-name

Indicates a comment will be added or replaced for a work action set. The

work-action-set-name must identify a work action set that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.WORKACTIONSETS catalog view for the row that

describes the work action set.

WORK CLASS SET work-class-set-name

Indicates a comment will be added or replaced for a work class set. The

COMMENT

Statements 207

work-class-set-name must identify a work class set that exists at the current

server (SQLSTATE 42704). The comment replaces the value for the REMARKS

column of the SYSCAT.WORKCLASSSETS catalog view for the row that

describes the work class set.

WORKLOAD workload-name

Indicates that a comment will be added or replaced for a workload. The

workload-name must identify a workload that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.WORKLOADS catalog view for the row that describes the

workload.

WRAPPER wrapper-name

Indicates a comment will be added or replaced for a wrapper. The

wrapper-name must identify a wrapper that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.WRAPPERS catalog view for the row that describes the

wrapper.

XSROBJECT xsrobject-name

Indicates a comment will be added or replaced for an XSR object. The

xsrobject-name must identify an XSR object that exists at the current server

(SQLSTATE 42704). The comment replaces the value for the REMARKS column

of the SYSCAT.XSROBJECTS catalog view for the row that describes the XSR

object.

IS string-constant

Specifies the comment to be added or replaced. The string-constant can be any

character string constant of up to 254 bytes. (Carriage return and line feed each

count as 1 byte.)

table-name|view-name ({ column-name IS string-constant } ...)

This form of the COMMENT statement provides the ability to specify

comments for multiple columns of a table or view. The column names must

not be qualified, each name must identify a column of the specified table or

view, and the table or view must exist at the current server. The table-name

cannot be a declared temporary table (SQLSTATE 42995).

 A comment cannot be made on a column of an inoperative view (SQLSTATE

51024).

Notes

v Compatibilities

– For compatibility with previous versions of DB2:

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

- DISTINCT TYPE type-name can be specified in place of TYPE type-name

- DATA TYPE type-name can be specified in place of TYPE type-name

Examples

Example 1: Add a comment for the EMPLOYEE table.

 COMMENT ON TABLE EMPLOYEE

 IS ’Reflects first quarter reorganization’

Example 2: Add a comment for the EMP_VIEW1 view.

 COMMENT ON TABLE EMP_VIEW1

 IS ’View of the EMPLOYEE table without salary information’

COMMENT

208 SQL Reference, Volume 2

Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.

 COMMENT ON COLUMN EMPLOYEE.EDLEVEL

 IS ’highest grade level passed in school’

Example 4: Add comments for two different columns of the EMPLOYEE table.

 COMMENT ON EMPLOYEE

 (WORKDEPT IS ’see DEPARTMENT table for names’,

 EDLEVEL IS ’highest grade level passed in school’)

Example 5: Pellow wants to comment on the CENTRE function, which he created

in his PELLOW schema, using the signature to identify the specific function to be

commented on.

 COMMENT ON FUNCTION CENTRE (INT,FLOAT)

 IS ’Frank’’s CENTRE fctn, uses Chebychev method’

Example 6: McBride wants to comment on another CENTRE function, which she

created in the PELLOW schema, using the specific name to identify the function

instance to be commented on:

 COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS

 ’Louise’’s most triumphant CENTRE function, uses the

 Brownian fuzzy-focus technique’

Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM schema,

where it is known that there is only one function with that name:

 COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT

 IS ’takes atomic nbr, gives atomic weight’

Example 8: Eigler wants to comment on the SEARCH procedure, which he created

in his EIGLER schema, using the signature to identify the specific procedure to be

commented on.

 COMMENT ON PROCEDURE SEARCH (CHAR,INT)

 IS ’Frank’’s mass search and replace algorithm’

Example 9: Macdonald wants to comment on another SEARCH function, which he

created in the EIGLER schema, using the specific name to identify the procedure

instance to be commented on:

 COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS

 ’Patrick’’s mass search and destroy algorithm’

Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema,

where it is known that there is only one procedure with that name:

 COMMENT ON PROCEDURE BIOLOGY.OSMOSIS

 IS ’Calculations modelling osmosis’

Example 11: Comment on an index specification named INDEXSPEC.

 COMMENT ON INDEX INDEXSPEC

 IS ’An index specification that indicates to the optimizer

 that the table referenced by nickname NICK1 has an index.’

Example 12: Comment on the wrapper whose default name is NET8.

 COMMENT ON WRAPPER NET8

 IS ’The wrapper for data sources associated with

 Oracle’s Net8 client software.’

Example 13: Create a comment on the XML schema HR.EMPLOYEE.

 COMMENT ON XSROBJECT HR.EMPLOYEE

 IS ’This is the base XML Schema for employee data.’

COMMENT

Statements 209

Example 14: Create a comment for trusted context APPSERVER.

 COMMENT ON TRUSTED CONTEXT APPSERVER

 IS ’WebSphere Server’

COMMENT

210 SQL Reference, Volume 2

COMMIT

The COMMIT statement terminates a unit of work and commits the database

changes that were made by that unit of work.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 WORK

COMMIT

��

Description

The unit of work in which the COMMIT statement is executed is terminated and a

new unit of work is initiated. All changes made by the following statements

executed during the unit of work are committed: ALTER, COMMENT, CREATE,

DROP, GRANT, LOCK TABLE, REVOKE, SET INTEGRITY, SET Variable, and the

data change statements (INSERT, DELETE, MERGE, UPDATE), including those

nested in a query.

The following statements, however, are not under transaction control and changes

made by them are independent of the COMMIT statement:

v SET CONNECTION

v SET CURRENT DEFAULT TRANSFORM GROUP

v SET CURRENT DEGREE

v SET CURRENT EXPLAIN MODE

v SET CURRENT EXPLAIN SNAPSHOT

v SET CURRENT LOCK TIMEOUT

v SET CURRENT PACKAGESET

v SET CURRENT QUERY OPTIMIZATION

v SET CURRENT REFRESH AGE

v SET EVENT MONITOR STATE

v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,

the passthru session initiated by the statement is under transaction control.

v SET PATH

v SET SCHEMA

v SET SERVER OPTION

All locks acquired by the unit of work subsequent to its initiation are released,

except necessary locks for open cursors that are declared WITH HOLD. All open

COMMIT

Statements 211

cursors not defined WITH HOLD are closed. Open cursors defined WITH HOLD

remain open, and the cursor is positioned before the next logical row of the result

table. (A FETCH must be performed before a positioned UPDATE or DELETE

statement is issued.) All LOB locators are freed. Note that this is true even when

the locators are associated with LOB values retrieved via a cursor that has the

WITH HOLD property.

All savepoints set within the transaction are released.

The following statements behave differently than other data definition language

(DDL) and data control language (DCL) statements. Changes made by these

statements do not take effect until the statement is committed, even for the current

connection that issues the statement. Only one of these statements can be issued by

any application at a time, and only one of these statements is allowed within any

one unit of work. Each statement must be followed by a COMMIT or a

ROLLBACK statement before another one of these statements can be issued.

v CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

v CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

v CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)

v CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)

v CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

v GRANT (Workload Privileges) or REVOKE (Workload Privileges)

Notes

v It is strongly recommended that each application process explicitly ends its unit

of work before terminating. If the application program ends normally without a

COMMIT or ROLLBACK statement then the database manager attempts a

commit or rollback depending on the application environment.

v For information on the impact of COMMIT on cached dynamic SQL statements,

see “EXECUTE”.

v For information on potential impacts of COMMIT on declared temporary tables,

see “DECLARE GLOBAL TEMPORARY TABLE”.

Example

Commit alterations to the database made since the last commit point.

 COMMIT WORK

COMMIT

212 SQL Reference, Volume 2

Compound SQL (Dynamic)

A compound statement groups other statements together into an executable block.

SQL variables can be declared within a dynamically prepared atomic compound

statement.

Invocation

This statement can be embedded in a trigger, SQL function, or SQL method, or

issued through the use of dynamic SQL statements. It is an executable statement

that can be dynamically prepared.

Authorization

No privileges are required to invoke a dynamic compound statement. However,

the privileges held by the authorization ID of the statement must include all

necessary privileges to invoke the SQL statements that are embedded in the

compound statement.

Syntax

dynamic-compound-statement

��

(1)

label:

 BEGIN ATOMIC

�

SQL-variable-declaration

;

condition-declaration

 �

�

�

,

SQL-routine-statement

;

 END

label
 ��

SQL-variable-declaration:

DECLARE

�

 ,

SQL-variable-name

data-type

DEFAULT NULL

DEFAULT

default-values

condition-declaration:

 DECLARE condition-name CONDITION FOR �

�

 VALUE

SQLSTATE

string-constant

SQL-routine-statement:

Compound SQL (Dynamic)

Statements 213

�

 CALL

FOR

fullselect

,

WITH

common-table-expression

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:

1 A label can only be specified when the statement is in a function, method, or

trigger definition.

Description

label

Defines the label for the code block. If the beginning label is specified, it can be

used to qualify SQL variables declared in the dynamic compound statement

and can also be specified on a LEAVE statement. If the ending label is

specified, it must be the same as the beginning label.

ATOMIC

ATOMIC indicates that, if an error occurs in the compound statement, all SQL

statements in the compound statement will be rolled back, and any remaining

SQL statements in the compound statement are not processed.

SQL-routine-statement

Specifies the SQL statements that are to be used within the dynamic compound

statement. The RETURN statement can also be used within a dynamic

compound statement that is within an SQL function or SQL method. A

searched update, searched delete, insert, or merge operation on nicknames

inside compound SQL is not supported.

SQL-variable-declaration

Declares a variable that is local to the dynamic compound statement.

SQL-variable-name

Defines the name of a local variable. DB2 converts all SQL variable names

to uppercase. The name cannot be the same as:

v Another SQL variable within the compound statement

v A parameter name

If an SQL statement contains an identifier with the same name as an SQL

variable and a column reference, DB2 interprets the identifier as a column.

data-type

Specifies the data type of the variable. XML types are not supported

(SQLSTATE 429BB), and array types are not supported (SQLSTATE 42815).

DEFAULT default-values or NULL

Defines the default for the SQL variable. The variable is initialized when

Compound SQL (Dynamic)

214 SQL Reference, Volume 2

the dynamic compound statement is called. If a default value is not

specified, the variable is initialized to NULL.

condition-declaration

Declares a condition name and corresponding SQLSTATE value.

condition-name

Specifies the name of the condition. The condition name must be unique

within the compound statement in which it is declared, excluding any

declarations in compound statements that are nested within that

compound statement (SQLSTATE 42734). A condition name can only be

referenced within the compound statement in which it is declared,

including any compound statements that are nested within that compound

statement (SQLSTATE 42737).

FOR SQLSTATE string-constant

Specifies the SQLSTATE associated with the condition. The string-constant

must be specified as five characters enclosed by single quotation marks,

and cannot be ’00000’.

Notes

v Dynamic compound statements are compiled by DB2 as one single statement.

This statement is effective for short scripts involving little control flow logic but

significant dataflow. For larger constructs with requirements for nested complex

control flow or condition handling, a better choice is to use SQL procedures. For

more details on using SQL procedures, see “CREATE PROCEDURE”.

v A procedure called within a compound statement must not issue a COMMIT or

a ROLLBACK statement (SQLSTATE 42985).

v Table access restrictions:

If a procedure is defined as READS SQL DATA or MODIFIES SQL DATA, no

statement in the procedure can access a table that is being modified by the

compound statement that invoked the procedure (SQLSTATE 57053). If the

procedure is defined as MODIFIES SQL DATA, no statement in the procedure

can modify a table that is being read or modified by the compound statement

that invoked the procedure (SQLSTATE 57053).

Examples

Example 1:

This example illustrates how inline SQL PL can be used in a data warehousing

scenario for data cleansing.

The example introduces three tables. The ″target″ table contains the cleansed data.

The ″except″ table stores rows that cannot be cleansed (exceptions) and the

″source″ table contains the raw data to be cleansed.

A simple SQL function called ″discretize″ is used to classify and modify the data. It

returns NULL for all bad data. The Dynamic Compound statement then cleanses

the data. It walks all rows of the source table in a FOR-loop and decides whether

the current row gets inserted into the ″target″ or the ″except″ table, depending on

the result of the ″discretize″ function. More elaborate mechanisms (multistage

cleansing) are possible with this technique.

The same code can be written using an SQL Procedure or any other procedure or

application in a host language. However, the dynamic compound statement offers

Compound SQL (Dynamic)

Statements 215

a unique advantage in that the FOR-loop does not open a cursor and the single

row inserts are not really single row inserts. In fact, the logic is effectively a

multi-table insert from a shared select.

This is achieved by compilation of the dynamic compound as a single statement.

Similar to a view whose body is integrated into the query that uses it and then is

compiled and optimized as a whole within the query context, the DB2 optimizer

compiles and optimizes both the control and data flow together. The whole logic is

therefore executed within DB2’s runtime. No data is moved outside of the core

DB2 engine, as would be done for a procedure.

The first step is to create the required tables:

 CREATE TABLE target

 (pk INTEGER NOT NULL

 PRIMARY KEY, c1 INTEGER)

This creates a table called TARGET to contain the cleansed data.

 CREATE TABLE except

 (pk INTEGER NOT NULL

 PRIMARY KEY, c1 INTEGER)

This creates a table called EXCEPT to contain the exceptions.

 CREATE TABLE source

 (pk INTEGER NOT NULL

 PRIMARY KEY, c1 INTEGER)

This creates a table called SOURCE to hold the data that is to be cleansed.

Next, we create a ″discretize″ function to cleanse the data by throwing out all

values outside [0..1000] and aligning them to steps of 10.

 CREATE FUNCTION discretize(raw INTEGER) RETURNS INTEGER

 RETURN CASE

 WHEN raw < 0 THEN CAST(NULL AS INTEGER)

 WHEN raw > 1000 THEN NULL

 ELSE ((raw / 10) * 10) + 5

 END

Then we insert the values:

 INSERT INTO source (pk, c1)

 VALUES (1, -5),

 (2, NULL),

 (3, 1200),

 (4, 23),

 (5, 10),

 (6, 876)

Invoke the function:

 BEGIN ATOMIC

 FOR row AS

 SELECT pk, c1, discretize(c1) AS d FROM source

 DO

 IF row.d is NULL THEN

 INSERT INTO except VALUES(row.pk, row.c1);

 ELSE

 INSERT INTO target VALUES(row.pk, row.d);

 END IF;

 END FOR;

 END

Compound SQL (Dynamic)

216 SQL Reference, Volume 2

And test the results:

 SELECT * FROM except ORDER BY 1

 PK C1

 ----------- -----------

 1 -5

 2 -

 3 1200

 3 record(s) selected.

 SELECT * FROM target ORDER BY 1

 PK C1

 ----------- -----------

 4 25

 5 15

 6 875

 3 record(s) selected.

The final step is to clean up:

 DROP FUNCTION discretize

 DROP TABLE source

 DROP TABLE target

 DROP TABLE except

Compound SQL (Dynamic)

Statements 217

Compound SQL (Embedded)

Combines one or more other SQL statements (sub-statements) into an executable

block.

Invocation

This statement can only be embedded in an application program. The entire

Compound SQL statement construct is an executable statement that cannot be

dynamically prepared. The statement is not supported in REXX.

Authorization

No privileges are required to invoke an embedded compound statement. However,

the privileges held by the authorization ID of the statement must include all

necessary privileges to invoke the SQL statements that are embedded in the

compound statement.

Syntax

�� BEGIN COMPOUND ATOMIC

NOT ATOMIC
 STATIC �

�

STOP AFTER FIRST

host-variable

STATEMENTS

�

sql-statement

;

�

� END COMPOUND ��

Description

ATOMIC

Specifies that, if any of the sub-statements within the Compound SQL

statement fail, then all changes made to the database by any of the

sub-statements, including changes made by successful sub-statements, are

undone.

NOT ATOMIC

Specifies that, regardless of the failure of any sub-statements, the Compound

SQL statement will not undo any changes made to the database by the other

sub-statements.

STATIC

Specifies that input variables for all sub-statements retain their original value.

For example, if

 SELECT ... INTO :abc ...

is followed by:

 UPDATE T1 SET C1 = 5 WHERE C2 = :abc

Compound SQL (Embedded)

218 SQL Reference, Volume 2

the UPDATE statement will use the value that :abc had at the start of the

execution of the Compound SQL statement, not the value that follows the

SELECT INTO.

 If the same variable is set by more than one sub-statement, the value of that

variable following the Compound SQL statement is the value set by the last

sub-statement.

Note: Non-static behavior is not supported. This means that the

sub-statements should be viewed as executing non-sequentially and

sub-statements should not have interdependencies.

STOP AFTER FIRST

Specifies that only a certain number of sub-statements will be executed.

host-variable

A small integer that specifies the number of sub-statements to be executed.

STATEMENTS

Completes the STOP AFTER FIRST host-variable clause.

sql-statement

All executable statements except the following can be contained within an

embedded static compound SQL statement:

 CALL FETCH

 CLOSE OPEN

 CONNECT PREPARE

 Compound SQL RELEASE (Connection)

 DESCRIBE ROLLBACK

 DISCONNECT SET CONNECTION

 EXECUTE IMMEDIATE SET variable

Note: INSERT, UPDATE, and DELETE are not supported in compound SQL

for use with nicknames.

If a COMMIT statement is included, it must be the last sub-statement. If

COMMIT is in this position, it will be issued even if the STOP AFTER FIRST

host-variable STATEMENTS clause indicates that not all of the sub-statements

are to executed. For example, suppose COMMIT is the last sub-statement in a

compound SQL block of 100 sub-statements. If the STOP AFTER FIRST

STATEMENTS clause indicates that only 50 sub-statements are to be executed,

then COMMIT will be the 51st sub-statement.

An error will be returned if COMMIT is included when using CONNECT

TYPE 2 or running in an XA distributed transaction processing environment

(SQLSTATE 25000).

Rules

v DB2 Connect™ does not support SELECT statements selecting LOB columns in a

compound SQL block.

v No host language code is allowed within a Compound SQL statement; that is,

no host language code is allowed between the sub-statements that make up the

Compound SQL statement.

v Only NOT ATOMIC Compound SQL statements will be accepted by DB2

Connect.

v Compound SQL statements cannot be nested.

v A prepared COMMIT statement is not allowed in an ATOMIC Compound SQL

statement

Compound SQL (Embedded)

Statements 219

Notes

One SQLCA is returned for the entire Compound SQL statement. Most of the

information in that SQLCA reflects the values set by the application server when it

processed the last sub-statement. For instance:

v The SQLCODE and SQLSTATE are normally those for the last sub-statement (the

exception is described in the next point).

v If a ’no data found’ warning (SQLSTATE ’02000’) is returned, that warning is

given precedence over any other warning so that a WHENEVER NOT FOUND

exception can be acted upon. (This means that the SQLCODE, SQLERRML,

SQLERRMC, and SQLERRP fields in the SQLCA that is eventually returned to

the application are those from the sub-statement that triggered the ’no data

found’ warning. If there is more than one ’no data found’ warning within the

Compound SQL statement, the fields for the last sub-statement will be the fields

that are returned.)

v The SQLWARN indicators are an accumulation of the indicators set for all

sub-statements.

If one or more errors occurred during NOT ATOMIC Compound SQL execution

and none of these are of a serious nature, the SQLERRMC will contain information

on up to a maximum of seven of these errors. The first token of the SQLERRMC

will indicate the total number of errors that occurred. The remaining tokens will

each contain the ordinal position and the SQLSTATE of the failing sub-statement

within the Compound SQL statement. The format is a character string of the form:

 nnnXsssccccc

with the substring starting with X repeating up to six more times and the string

elements defined as follows.

nnn The total number of statements that produced errors. (If the number would

exceed 999, counting restarts at zero.) This field is left-justified and padded

with blanks.

X The token separator X’FF’.

sss The ordinal position of the statement that caused the error. (If the number

would exceed 999, counting restarts at zero.) For example, if the first

statement failed, this field would contain the number one left-justified (’1

’).

ccccc The SQLSTATE of the error.

The second SQLERRD field contains the number of statements that failed (returned

negative SQLCODEs).

The third SQLERRD field in the SQLCA is an accumulation of the number of rows

affected by all sub-statements.

The fourth SQLERRD field in the SQLCA is a count of the number of successful

sub-statements. If, for example, the third sub-statement in a Compound SQL

statement failed, the fourth SQLERRD field would be set to 2, indicating that 2

sub-statements were successfully processed before the error was encountered.

The fifth SQLERRD field in the SQLCA is an accumulation of the number of rows

updated or deleted due to the enforcement of referential integrity constraints for all

sub-statements that triggered such constraint activity.

Compound SQL (Embedded)

220 SQL Reference, Volume 2

Examples

Example 1: In a C program, issue a Compound SQL statement that updates both

the ACCOUNTS and TELLERS tables. If there is an error in any of the statements,

undo the effect of all statements (ATOMIC). If there are no errors, commit the

current unit of work.

 EXEC SQL BEGIN COMPOUND ATOMIC STATIC

 UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

 WHERE AID = :aid;

 UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

 WHERE TID = :tid;

 INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);

 COMMIT;

 END COMPOUND;

Example 2: In a C program, insert 10 rows of data into the database. Assume the

host variable :nbr contains the value 10 and S1 is a prepared INSERT statement.

Further, assume that all the inserts should be attempted regardless of errors (NOT

ATOMIC).

 EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST :nbr STATEMENTS

 EXECUTE S1 USING DESCRIPTOR :*sqlda0;

 EXECUTE S1 USING DESCRIPTOR :*sqlda1;

 EXECUTE S1 USING DESCRIPTOR :*sqlda2;

 EXECUTE S1 USING DESCRIPTOR :*sqlda3;

 EXECUTE S1 USING DESCRIPTOR :*sqlda4;

 EXECUTE S1 USING DESCRIPTOR :*sqlda5;

 EXECUTE S1 USING DESCRIPTOR :*sqlda6;

 EXECUTE S1 USING DESCRIPTOR :*sqlda7;

 EXECUTE S1 USING DESCRIPTOR :*sqlda8;

 EXECUTE S1 USING DESCRIPTOR :*sqlda9;

 END COMPOUND;

Compound SQL (Embedded)

Statements 221

Compound SQL (Procedure)

A procedure compound statement groups other statements together in an SQL

procedure. You can declare SQL variables, cursors, and condition handlers within a

compound statement.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke a procedure compound statement. However,

the privileges held by the authorization ID of the statement must include all

necessary privileges to invoke the SQL statements that are embedded in the

compound statement. For the authorization required to use a cursor, see

“DECLARE CURSOR”.

Syntax

procedure-compound-statement:

label:

BEGIN
 NOT ATOMIC

ATOMIC

�

�

�

SQL-variable-declaration

;

condition-declaration

return-codes-declaration

 �

�

�

statement-declaration

;

�

DECLARE-CURSOR-statement

;

 �

�

�

handler-declaration

;

�

SQL-procedure-statement

;

 �

� END

label

Compound SQL (Procedure)

222 SQL Reference, Volume 2

SQL-variable-declaration:

DECLARE

�

 ,

SQL-variable-name

DEFAULT NULL

data-type

DEFAULT

constant

RESULT_SET_LOCATOR

VARYING

condition-declaration:

 DECLARE condition-name CONDITION FOR �

�

 VALUE

SQLSTATE

string-constant

statement-declaration:

�

 ,

DECLARE

statement-name

STATEMENT

return-codes-declaration:

DECLARE
 DEFAULT ’00000’

SQLSTATE

CHARACTER(5)

CHAR(5)

DEFAULT

string-constant

DEFAULT 0

SQLCODE

INTEGER

INT

DEFAULT

integer-constant

handler-declaration:

 DECLARE CONTINUE

EXIT

UNDO

 HANDLER FOR specific-condition-value

general-condition-value
 �

� SQL-procedure-statement

specific-condition-value:

�

 ,

VALUE

SQLSTATE

string-constant

condition-name

general-condition-value:

Compound SQL (Procedure)

Statements 223

�

SQLEXCEPTION

SQLWARNING

NOT FOUND

SQL-procedure-statement:

 SQL-statement

label:

Description

label

Defines the label for the code block. If the beginning label is specified, it can be

used to qualify SQL variables declared in the compound statement and can

also be specified on a LEAVE statement. If the ending label is specified, it must

be the same as the beginning label.

ATOMIC or NOT ATOMIC

ATOMIC indicates that if an unhandled exception condition occurs in the

compound statement, all SQL statements in the compound statement will be

rolled back. NOT ATOMIC indicates that an unhandled exception condition

within the compound statement does not cause the compound statement to be

rolled back.

SQL-variable-declaration

Declares a variable that is local to the compound statement.

SQL-variable-name

Defines the name of a local variable. DB2 converts all SQL variable

names to uppercase. The name cannot be the same as another SQL

variable within the same compound statement and cannot be the same

as a parameter name. SQL variable names should not be the same as

column names. If an SQL statement contains an identifier with the

same name as an SQL variable and a column reference, DB2 interprets

the identifier as a column. If the compound statement where the

variable is declared is labeled, then uses of the variable can be

qualified with the label. For example, variable V declared in compound

statement labeled C can be referred to as C.V.

data-type

Specifies the data type of the variable. LONG VARCHAR, LONG

VARGRAPHIC, REFERENCE, and user-defined structured types are

not supported (SQLSTATE 429BB).

DEFAULT constant or NULL

Defines the default for the SQL variable. The variable is initialized

when the SQL procedure is called. If a default value is not specified,

the variable is initialized to NULL.

RESULT_SET_LOCATOR VARYING

Specifies the data type for a result set locator variable.

condition-declaration

Declares a condition name and corresponding SQLSTATE value.

condition-name

Specifies the name of the condition. The condition name must be

Compound SQL (Procedure)

224 SQL Reference, Volume 2

unique within the compound statement in which it is declared,

excluding any declarations in compound statements that are nested

within that compound statement (SQLSTATE 42734). A condition name

can only be referenced within the compound statement in which it is

declared, including any compound statements that are nested within

that compound statement (SQLSTATE 42737).

FOR SQLSTATE string-constant

Specifies the SQLSTATE that is associated with the condition. The

string-constant must be specified as five characters enclosed in single

quotes, and cannot be ’00000’.

statement-declaration

Declares a list of one or more names that are local to the compound statement.

A statement name cannot be the same as another statement name within the

same compound statement.

return-codes-declaration

Declares special variables called SQLSTATE and SQLCODE that are set

automatically to the value returned after processing an SQL statement. Both

the SQLSTATE and SQLCODE variables can only be declared in the outermost

compound statement of the SQL procedure body. These variables may be

declared only once per SQL procedure.

declare-cursor-statement

Declares a cursor in the procedure body. Each cursor must have a unique name

within the compound statement in which it is declared, excluding any

declarations in compound statements that are nested within that compound

statement (SQLSTATE 42734). The cursor can be referenced only from within

the compound statement in which it is declared, including any compound

statements that are nested within that compound statement (SQLSTATE 34000).

 Use an OPEN statement to open the cursor, and a FETCH statement to read

rows using the cursor. To return result sets from the SQL procedure to the

client application, the cursor must be declared using the WITH RETURN

clause. The following example returns one result set to the client application:

 CREATE PROCEDURE RESULT_SET()

 LANGUAGE SQL

 RESULT SETS 1

 BEGIN

 DECLARE C1 CURSOR WITH RETURN FOR

 SELECT id, name, dept, job

 FROM staff;

 OPEN C1;

 END

Note: To process result sets, you must write your client application using one

of the DB2 Call Level Interface (DB2 Call Level Interface), Open Database

Connectivity (ODBC), Java Database Connectivity (JDBC), or embedded SQL

for Java (SQLJ) application programming interfaces.

For more information on declaring a cursor, see “DECLARE CURSOR”.

handler-declaration

Specifies a handler, an SQL-procedure-statement to execute when an exception or

completion condition occurs in the compound statement. SQL-procedure-
statement is a statement that executes when the handler receives control.

 A handler is active for the set of SQL-procedure-statements that follow the set of

handler-declarations within the compound statement in which the handler is

declared, including any nested compound statements.

Compound SQL (Procedure)

Statements 225

There are three types of condition handlers:

CONTINUE

After the handler is invoked successfully, control is returned to the SQL

statement that follows the statement that raised the exception. If the error

that raised the exception is a FOR, IF, CASE, WHILE, or REPEAT statement

(but not an SQL-procedure-statement within one of these), then control

returns to the statement that follows END FOR, END IF, END CASE, END

WHILE, or END REPEAT.

EXIT

After the handler is invoked successfully, control is returned to the end of

the compound statement that declared the handler.

UNDO

Before the handler is invoked, any SQL changes that were made in the

compound statement are rolled back. After the handler is invoked

successfully, control is returned to the end of the compound statement that

declared the handler. If UNDO is specified, the compound statement where

the handler is declared must be ATOMIC.

 The conditions that cause the handler to be activated are defined in the

handler-declaration as follows:

specific-condition-value

Specifies that the handler is a specific condition handler.

SQLSTATE string

Specifies an SQLSTATE for which the handler is invoked. The first

two characters of the SQLSTATE value must not be ″00″.

condition-name

Specifies a condition name for which the handler is invoked. The

condition name must be previously defined in a condition

declaration.

general-condition-value

Specifies that the handler is a general condition handler.

SQLEXCEPTION

Specifies that the handler is invoked when an exception condition

occurs. An exception condition is represented by an SQLSTATE

value whose first two characters are not ″00″, ″01″, or ″02″.

SQLWARNING

Specifies that the handler is invoked when a warning condition

occurs. A warning condition is represented by an SQLSTATE value

whose first two characters are ″01″.

NOT FOUND

Specifies that the handler is invoked when a NOT FOUND

condition occurs. A NOT FOUND condition is represented by an

SQLSTATE value whose first two characters are ″02″.

SQL-procedure-statement

Specifies the SQL procedure statement.

label

Specifies a label for the SQL procedure statement. The label must be

unique within a list of SQL procedure statements, including any compound

statements nested within the list. Note that compound statements that are

Compound SQL (Procedure)

226 SQL Reference, Volume 2

not nested can use the same label. A list of SQL procedure statements is

possible in a number of SQL control statements.

SQL-statement

All executable SQL statements can be contained within the body of an SQL

procedure, with the exception of the following:

v ALTER

v CONNECT

v CREATE any object other than indexes, tables, or views

v DESCRIBE

v DISCONNECT

v DROP any object other than indexes, tables, or views

v FLUSH EVENT MONITOR

v REFRESH TABLE

v RELEASE (connection only)

v RENAME TABLE

v RENAME TABLESPACE

v REVOKE

v SET CONNECTION

v SET INTEGRITY

v SET PASSTHRU

v SET SERVER OPTION

The following statements are only supported in the scope of an SQL

procedure:

v ALLOCATE CURSOR

v ASSOCIATE LOCATORS

v CASE

v GOTO

v LOOP

v Compound SQL (Procedure)

v REPEAT

v RESIGNAL

Rules

v ATOMIC compound statements cannot be nested.

v The following rules apply to handler declarations:

– A handler declaration cannot contain the same condition-name or SQLSTATE

value more than once, and cannot contain an SQLSTATE value and a

condition-name that represent the same SQLSTATE value.

– Where two or more condition handlers are declared in a compound

statement:

- No two handler declarations may specify the same general condition

category (SQLEXCEPTION, SQLWARNING, NOT FOUND).

- No two handler declarations may specify the same specific condition, either

as an SQLSTATE value or as a condition-name that represents the same

value.

Compound SQL (Procedure)

Statements 227

– A handler is activated when it is the most appropriate handler for an

exception or completion condition. The most appropriate handler is

determined based on the following considerations:

- The scope of a handler declaration H is the list of SQL-procedure-statement

that follows the handler declarations contained within the compound

statement in which H appears. This means that the scope of H does not

include the statements contained in the body of the condition handler H,

implying that a condition handler cannot handle conditions that arise

inside its own body. Similarly, for any two handlers H1 and H2 declared in

the same compound statement, H1 will not handle conditions arising in the

body of H2, and H2 will not handle conditions arising in the body of H1.

- A handler for a specific-condition-value or a general-condition-value C declared

in an inner scope takes precedence over another handler for C declared in

an enclosing scope.

- When a specific handler for condition C and a general handler which

would also handle C are declared in the same scope, the specific handler

takes precedence over the general handler.

If an exception condition occurs for which there is no appropriate handler, the

SQL procedure containing the failing statement is terminated with an

unhandled exception condition. If a completion condition occurs for which

there is no appropriate handler, execution continues with the next SQL

statement.
v Referencing variables or parameters of data type XML in SQL procedures after a

commit or rollback operation occurs, without first assigning new values to these

variables, is not supported (SQLSTATE 560CE).

Notes

v XML assignments: Assignment to parameters and variables of data type XML is

done by value. When XML values are assigned by value, a copy is made by

effectively performing the following actions for each item in the sequence:

– The node tree, if any, is copied from the original XML value, maintaining the

document order

– New node identities are assigned to each node

– The parent property of the root node, if any, is set to empty
Passing parameters of data type XML in a CALL statement to an SQL procedure

is done by reference. When XML values are passed by reference, the input node

trees, if any, are used directly from the XML argument, preserving all properties,

including document order, the original node identities, and all parent properties.

Examples

Create a procedure body with a compound statement that performs the following

actions:

1. Declares SQL variables

2. Declares a cursor to return the salary of employees in a department determined

by an IN parameter. In the SELECT statement, casts the data type of the salary

column from a DECIMAL into a DOUBLE.

3. Declares an EXIT handler for the condition NOT FOUND (end of file) which

assigns the value ’6666’ to the OUT parameter medianSalary

4. Select the number of employees in the given department into the SQL variable

numRecords

Compound SQL (Procedure)

228 SQL Reference, Volume 2

5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees

have been retrieved

6. Return the median salary
 CREATE PROCEDURE DEPT_MEDIAN

 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

 LANGUAGE SQL

 BEGIN

 DECLARE v_numRecords INTEGER DEFAULT 1;

 DECLARE v_counter INTEGER DEFAULT 0;

 DECLARE c1 CURSOR FOR

 SELECT CAST(salary AS DOUBLE) FROM staff

 WHERE DEPT = deptNumber

 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND

 SET medianSalary = 6666;

 -- initialize OUT parameter

 SET medianSalary = 0;

 SELECT COUNT(*) INTO v_numRecords FROM staff

 WHERE DEPT = deptNumber;

 OPEN c1;

 WHILE v_counter < (v_numRecords / 2 + 1) DO

 FETCH c1 INTO medianSalary;

 SET v_counter = v_counter + 1;

 END WHILE;

 CLOSE c1;

 END

The following example illustrates the flow of execution in a hypothetical case

where an UNDO handler is activated from another condition as the result of

RESIGNAL:

 CREATE PROCEDURE A()

 LANGUAGE SQL

 CS1: BEGIN ATOMIC

 DECLARE C CONDITION FOR SQLSTATE ’12345’;

 DECLARE D CONDITION FOR SQLSTATE ’23456’;

 DECLARE UNDO HANDLER FOR C

 H1: BEGIN

 -- Rollback after error, perform final cleanup, and exit

 -- procedure A.

 -- ...

 -- When this handler completes, execution continues after

 -- compound statement CS1; procedure A will terminate.

 END;

 -- Perform some work here ...

 CS2: BEGIN

 DECLARE CONTINUE HANDLER FOR D

 H2: BEGIN

 -- Perform local recovery, then forward the error

 -- condition to the outer handler for additional

 -- processing.

 -- ...

 RESIGNAL C; -- will activate UNDO handler H1; execution

 -- WILL NOT return here. Any local cursors

 -- declared in H2 and CS2 will be closed.

 END;

 -- Perform some more work here ...

 -- Simulate raising of condition D by some SQL statement

Compound SQL (Procedure)

Statements 229

-- in compound statement CS2:

 SIGNAL D; -- will activate H2

 END;

 END

Compound SQL (Procedure)

230 SQL Reference, Volume 2

CONNECT (Type 1)

The CONNECT (Type 1) statement connects an application process to the identified

application server according to the rules for remote unit of work.

An application process can only be connected to one application server at a time.

This is called the current server. A default application server may be established

when the application requester is initialized. If implicit connect is available and an

application process is started, it is implicitly connected to the default application

server. The application process can explicitly connect to a different application

server by issuing a CONNECT TO statement. A connection lasts until a CONNECT

RESET statement or a DISCONNECT statement is issued or until another

CONNECT TO statement changes the application server.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

The authorization ID of the statement must be authorized to connect to the

identified application server. Depending on the authentication setting for the

database, the authorization check might be performed by either the client or the

server. For a partitioned database, the user and group definitions must be identical

across database partitions.

Syntax

�� CONNECT �

�
TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

 ��

authorization:

 USER authorization-name

host-variable
 USING password

host-variable
 �

�
NEW

password

CONFIRM

password

host-variable

CONNECT (Type 1)

Statements 231

lock-block:

 IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE DBPARTITIONNUM

Notes:

1 This form is only valid if implicit connect is enabled.

Description

CONNECT (with no operand)

Returns information about the current server. The information is returned in

the SQLERRP field of the SQLCA as described in “Successful Connection”.

 If a connection state exists, the authorization ID and database alias are placed

in the SQLERRMC field of the SQLCA. If the authorization ID is longer than 8

bytes, it will be truncated to 8 bytes, and the truncation will be flagged in the

SQLWARN0 and SQLWARN1 fields of the SQLCA, with ’W’ and ’A’,

respectively. If the database configuration parameter dyn_query_mgmt is

enabled, then the SQLWARN0 and SQLWARN7 fields of the SQLCA will be

flagged with ’W’ and ’E’, respectively.

If no connection exists and implicit connect is possible, then an attempt to

make an implicit connection is made. If implicit connect is not available, this

attempt results in an error (no existing connection). If no connection, then the

SQLERRMC field is blank.

The territory code and code page of the application server are placed in the

SQLERRMC field (as they are with a successful CONNECT TO statement).

This form of CONNECT:

v Does not require the application process to be in the connectable state.

v If connected, does not change the connection state.

v If unconnected and implicit connect is available, a connection to the default

application server is made. In this case, the country or region code and code

page of the application server are placed in the SQLERRMC field, like a

successful CONNECT TO statement.

v If unconnected and implicit connect is not available, the application process

remains unconnected.

v Does not close cursors.

TO server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

Note: DB2 for z/OS supports a 16-byte location name, and DB2 for i5/OS

supports an 18-byte target database name. DB2 Version 8 only supports the use

of an 8-byte database alias name on the SQL CONNECT statement. However,

CONNECT (Type 1)

232 SQL Reference, Volume 2

the database alias name can be mapped to an 18-byte database name through

the Database Connection Service Directory.

When the CONNECT TO statement is executed, the application process must

be in the connectable state.

Successful Connection:

If the CONNECT TO statement is successful:

v All open cursors are closed, all prepared statements are destroyed, and all

locks are released from the previous application server.

v The application process is disconnected from its previous application server,

if any, and connected to the identified application server.

v The actual name of the application server (not an alias) is placed in the

CURRENT SERVER special register.

v Information about the application server is placed in the SQLERRP field of

the SQLCA. If the application server is an IBM product, the information has

the form pppvvrrm, where:

– ppp identifies the product as follows:

- DSN for DB2 for z/OS

- ARI for DB2 Server for VSE & VM

- QSQ for DB2 for i5/OS

- SQL for DB2 Database for Linux, UNIX, and Windows
– vv is a two-digit version identifier, such as ’08’

– rr is a two-digit release identifier, such as ’01’

– m is a one-character modification level identifier, such as ’0’.
This release (Version 9.5) of DB2 Database for Linux, UNIX, and Windows is

identified as ’SQL09050’.

v The SQLERRMC field of the SQLCA is set to contain the following values

(separated by X’FF’)

 1. the country or region code of the application server (or blanks if using

DB2 Connect),

 2. the code page of the application server (or CCSID if using DB2

Connect),

 3. the authorization ID (up to first 8 bytes only),

 4. the database alias,

 5. the platform type of the application server. Currently identified values

are:

Token Server

QAS DB2 for System i

QDB2 DB2 for z/OS

QDB2/6000

DB2 Database for AIX

QDB2/HPUX

DB2 Database for HP-UX

QDB2/LINUX

DB2 Database for Linux

QDB2/NT

DB2 Database for Windows

CONNECT (Type 1)

Statements 233

QDB2/SUN

DB2 Database for Solaris Operating System

QSQLDS/VM

DB2 Server for VM

QSQLDS/VSE

DB2 Server for VSE
 6. The agent ID. It identifies the agent executing within the database

manager on behalf of the application. This field is the same as the

agent_id element returned by the database monitor.

 7. The agent index. It identifies the index of the agent and is used for

service.

 8. Database partition number. For a non-partitioned database, this is

always 0, if present.

 9. The code page of the application client.

10. Number of database partitions in a partitioned database. If the database

cannot be distributed, the value is 0 (zero). Token is present only with

Version 5 or later.
v The SQLERRD(1) field of the SQLCA indicates the maximum expected

difference in length of mixed character data (CHAR data types) when

converted to the database code page from the application code page. A value

of 0 or 1 indicates no expansion; a value greater than 1 indicates a possible

expansion in length; a negative value indicates a possible contraction.

v The SQLERRD(2) field of the SQLCA indicates the maximum expected

difference in length of mixed character data (CHAR data types) when

converted to the application code page from the database code page. A value

of 0 or 1 indicates no expansion; a value greater than 1 indicates a possible

expansion in length; a negative value indicates a possible contraction.

v The SQLERRD(3) field of the SQLCA indicates whether or not the database

on the connection is updatable. A database is initially updatable, but is

changed to read-only if a unit of work determines the authorization ID

cannot perform updates. The value is one of:

– 1 - updatable

– 2 - read-only
v The SQLERRD(4) field of the SQLCA returns certain characteristics of the

connection. The value is one of:

0 N/A (only possible if running from a down-level client that is

one-phase commit and is an updater).

1 one-phase commit.

2 one-phase commit; read-only (only applicable to connections to

DRDA1 databases in a TP Monitor environment).

3 two-phase commit.
v The SQLERRD(5) field of the SQLCA returns the authentication type for the

connection. The value is one of:

0 Authenticated on the server.

1 Authenticated on the client.

2 Authenticated using DB2 Connect.

4 Authenticated on the server with encryption.

CONNECT (Type 1)

234 SQL Reference, Volume 2

5 Authenticated using DB2 Connect with encryption.

7 Authenticated using an external Kerberos security mechanism.

9 Authenticated using an external GSS API plug-in security

mechanism.

11 Authenticated on the server, which accepts encrypted data.

255 Authentication not specified.
v The SQLERRD(6) field of the SQLCA returns the database partition number

of the database partition to which the connection was made if the database

is distributed. Otherwise, a value of 0 is returned.

v The SQLWARN1 field in the SQLCA will be set to ’A’ if the authorization ID

of the successful connection is longer than 8 bytes. This indicates that

truncation has occurred. The SQLWARN0 field in the SQLCA will be set to

’W’ to indicate this warning.

v The SQLWARN7 field in the SQLCA will be set to ’E’ if the database

configuration parameter dyn_query_mgmt for the database is enabled. The

SQLWARN0 field in the SQLCA will be set to ’W’ to indicate this warning.

Unsuccessful Connection:

If the CONNECT TO statement is unsuccessful:

v The SQLERRP field of the SQLCA is set to the name of the module at the

application requester that detected the error. The first three characters of the

module name identify the product.

v If the CONNECT TO statement is unsuccessful because the application

process is not in the connectable state, the connection state of the application

process is unchanged.

v If the CONNECT TO statement is unsuccessful because the server-name is not

listed in the local directory, an error message (SQLSTATE 08001) is issued

and the connection state of the application process remains unchanged:

– If the application requester was not connected to an application server

then the application process remains unconnected.

– If the application requester was already connected to an application

server, the application process remains connected to that application

server. Any further statements are executed at that application server.
v If the CONNECT TO statement is unsuccessful for any other reason, the

application process is placed into the unconnected state.

IN SHARE MODE

Allows other concurrent connections to the database and prevents other users

from connecting to the database in exclusive mode.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations at the

application server, unless they have the same authorization ID as the user

holding the exclusive lock. This option is not supported by DB2 Connect.

ON SINGLE DBPARTITIONNUM

Specifies that the coordinator database partition is connected in exclusive

mode and all other database partitions are connected in share mode. This

option is only effective in a partitioned database.

RESET

Disconnects the application process from the current server. A commit

operation is performed. If implicit connect is available, the application process

remains unconnected until an SQL statement is issued.

CONNECT (Type 1)

Statements 235

USER authorization-name/host-variable

Identifies the user ID trying to connect to the application server. If a

host-variable is specified, it must be a character string variable that does not

include an indicator variable. The user ID that is contained within the

host-variable must be left justified and must not be delimited by quotation

marks.

USING password/host-variable

Identifies the password of the user ID trying to connect to the application

server. The password or host-variable can be up to 14 bytes long. If a host

variable is specified, it must be a character string variable with a length

attribute not greater than 14, and it must not include an indicator variable.

NEW password/host-variable CONFIRM password

Identifies the new password that should be assigned to the user ID identified

by the USER option. The password or host-variable can be up to 14 bytes long. If

a host variable is specified, it must be a character string variable with a length

attribute not greater than 14, and it must not include an indicator variable. The

system on which the password will be changed depends on how the user

authentication has been set up. The DB2 database system provides support for

changing passwords on AIX, Linux, and Windows operating systems.

Notes

v It is good practice for the first SQL statement executed by an application process

to be the CONNECT TO statement.

v If a CONNECT TO statement is issued to the current application server with a

different user ID and password then the conversation is deallocated and

reallocated. All cursors are closed by the database manager (with the loss of the

cursor position if the WITH HOLD option was used).

v If a CONNECT TO statement is issued to the current application server with the

same user ID and password then the conversation is not deallocated and

reallocated. Cursors, in this case, are not closed.

v To use a multiple-partition partitioned database environment, the user or

application must connect to one of the database partitions listed in the

db2nodes.cfg file. You should try to ensure that not all users use the same

database partition as the coordinator partition.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT

statement. However, on Windows operating systems, local applications running

under the Local System Account can implicitly connect to the database, such that

the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user

host-variable can be specified using the Microsoft® Windows Security Account

Manager (SAM)-compatible name. The qualifier must be a NetBIOS style name,

which has a maximum length of 15 bytes. For example, ’Domain\User’.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

Examples

Example 1: In a C program, connect to the application server TOROLAB, using

database alias TOROLAB, user ID FERMAT, and password THEOREM.

 EXEC SQL CONNECT TO TOROLAB USER FERMAT USING THEOREM;

CONNECT (Type 1)

236 SQL Reference, Volume 2

Example 2: In a C program, connect to an application server whose database alias

is stored in the host variable APP_SERVER (varchar(8)). Following a successful

connection, copy the 3-character product identifier of the application server to the

variable PRODUCT (char(3)).

 EXEC SQL CONNECT TO :APP_SERVER;

 if (strncmp(SQLSTATE,’00000’,5))

 strncpy(PRODUCT,sqlca.sqlerrp,3);

CONNECT (Type 1)

Statements 237

CONNECT (Type 2)

The CONNECT (Type 2) statement connects an application process to the identified

application server and establishes the rules for application-directed distributed unit

of work. This server is then the current server for the process.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT (Type

2) statement. Rather than repeating that material here, this section describes only

those elements of Type 2 that differ from Type 1.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

The authorization ID of the statement must be authorized to connect to the

identified application server. Depending on the authentication setting for the

database, the authorization check might be performed by either the client or the

server. For a partitioned database, the user and group definitions must be identical

across database partitions.

Syntax

The selection between Type 1 and Type 2 is determined by precompiler options.

For an overview of these options, see “Distributed relational databases”.

�� CONNECT �

�
TO

server-name

host-variable

lock-block

authorization

RESET

(1)

authorization

 ��

authorization:

 USER authorization-name

host-variable
 USING password

host-variable
 �

�
NEW

password

CONFIRM

password

host-variable

lock-block:

 IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE DBPARTITIONNUM

CONNECT (Type 2)

238 SQL Reference, Volume 2

Notes:

1 This form is only valid if implicit connect is enabled.

Description

TO server-name/host-variable

The rules for coding the name of the server are the same as for Type 1.

 If the SQLRULES(STD) option is in effect, the server-name must not identify an

existing connection of the application process, otherwise an error (SQLSTATE

08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an

existing connection of the application process, that connection is made current

and the old connection is placed into the dormant state. That is, the effect of

the CONNECT statement in this situation is the same as that of a SET

CONNECTION statement.

For information about the specification of SQLRULES, see “Options that

Govern Distributed Unit of Work Semantics”.

Successful Connection

If the CONNECT TO statement is successful:

v A connection to the application server is either created (or made

non-dormant) and placed into the current and held states.

v If the CONNECT TO is directed to a different server than the current server,

then the current connection is placed into the dormant state.

v The CURRENT SERVER special register and the SQLCA are updated in the

same way as for CONNECT (Type 1).

Unsuccessful Connection

If the CONNECT TO statement is unsuccessful:

v No matter what the reason for failure, the connection state of the application

process and the states of its connections are unchanged.

v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the

SQLCA is set to the name of the module at the application requester or

server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and

USING

If a connection exists, Type 2 behaves like a Type 1. The authorization ID and

database alias are placed in the SQLERRMC field of the SQLCA. If a

connection does not exist, no attempt to make an implicit connection is made

and the SQLERRP and SQLERRMC fields return a blank. (Applications can

check if a current connection exists by checking these fields.)

 A CONNECT with no operand that includes USER and USING can still

connect an application process to a database using the DB2DBDFT

environment variable. This method is equivalent to a Type 2 CONNECT

RESET, but permits the use of a user ID and password.

RESET

Equivalent to an explicit connect to the default database if it is available. If a

default database is not available, the connection state of the application process

and the states of its connections are unchanged.

 Availability of a default database is determined by installation options,

environment variables, and authentication settings.

CONNECT (Type 2)

Statements 239

Rules

v As outlined in “Options that Govern Distributed Unit of Work Semantics”, a set

of connection options governs the semantics of connection management. Default

values are assigned to every preprocessed source file. An application can consist

of multiple source files precompiled with different connection options.

Unless a SET CLIENT command or API has been executed first, the connection

options used when preprocessing the source file containing the first SQL

statement executed at run time become the effective connection options.

If a CONNECT statement from a source file preprocessed with different

connection options is subsequently executed without the execution of any

intervening SET CLIENT command or API, an error (SQLSTATE 08001) is

returned. Note that once a SET CLIENT command or API has been executed, the

connection options used when preprocessing all source files in the application

are ignored.

Example 1 in the “Examples” section of this statement illustrates these rules.

v Although the CONNECT TO statement can be used to establish or switch

connections, CONNECT TO with the USER/USING clause will only be accepted

when there is no current or dormant connection to the named server. The

connection must be released before issuing a connection to the same server with

the USER/USING clause, otherwise it will be rejected (SQLSTATE 51022).

Release the connection by issuing a DISCONNECT statement or a RELEASE

statement followed by a COMMIT statement.

Notes

v Implicit connect is supported for the first SQL statement in an application with

Type 2 connections. In order to execute SQL statements on the default database,

first the CONNECT RESET or the CONNECT USER/USING statement must be

used to establish the connection. The CONNECT statement with no operands

will display information about the current connection if there is one, but will not

connect to the default database if there is no current connection.

v The authorization-name SYSTEM cannot be explicitly specified in the CONNECT

statement. However, on Windows operating systems, local applications running

under the Local System Account can implicitly connect to the database, such that

the user ID is SYSTEM.

v When connecting to Windows Server explicitly, the authorization-name or user

host-variable can be specified using the Microsoft Windows Security Account

Manager (SAM)-compatible name. The qualifier must be a NetBIOS style name,

which has a maximum length of 15 bytes. For example, ’Domain\User’.

Comparing Type 1 and Type 2 CONNECT Statements:

The semantics of the CONNECT statement are determined by the CONNECT

precompiler option or the SET CLIENT API (see “Options that Govern Distributed

Unit of Work Semantics”). CONNECT Type 1 or CONNECT Type 2 can be

specified and the CONNECT statements in those programs are known as Type 1

and Type 2 CONNECT statements, respectively. Their semantics are described

below:

Use of CONNECT TO:

 Type 1 Type 2

Each unit of work can only establish

connection to one application server.

Each unit of work can establish connection to

multiple application servers.

CONNECT (Type 2)

240 SQL Reference, Volume 2

Type 1 Type 2

The current unit of work must be committed

or rolled back before allowing a connection

to another application server.

The current unit of work need not be

committed or rolled back before connecting

to another application server.

The CONNECT statement establishes the

current connection. Subsequent SQL requests

are forwarded to this connection until

changed by another CONNECT.

Same as Type 1 CONNECT if establishing

the first connection. If switching to a

dormant connection and SQLRULES is set to

STD, then the SET CONNECTION statement

must be used instead.

Connecting to the current connection is valid

and does not change the current connection.

Same as Type 1 CONNECT if the SQLRULES

precompiler option is set to DB2. If

SQLRULES is set to STD, then the SET

CONNECTION statement must be used

instead.

Connecting to another application server

disconnects the current connection. The new

connection becomes the current connection.

Only one connection is maintained in a unit

of work.

Connecting to another application server

puts the current connection into the dormant

state. The new connection becomes the

current connection. Multiple connections can

be maintained in a unit of work.

If the CONNECT is for an application server

on a dormant connection, it becomes the

current connection.

Connecting to a dormant connection using

CONNECT is only allowed if

SQLRULES(DB2) was specified. If

SQLRULES(STD) was specified, then the SET

CONNECTION statement must be used

instead.

SET CONNECTION statement is supported

for Type 1 connections, but the only valid

target is the current connection.

SET CONNECTION statement is supported

for Type 2 connections to change the state of

a connection from dormant to current.

Use of CONNECT...USER...USING:

 Type 1 Type 2

Connecting with the USER...USING clauses

disconnects the current connection and

establishes a new connection with the given

authorization name and password.

Connecting with the USER/USING clause

will only be accepted when there is no

current or dormant connection to the same

named server.

CONNECT (Type 2)

Statements 241

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

 Type 1 Type 2

CONNECT RESET can be used to disconnect

the current connection.

CONNECT RESET is equivalent to

connecting to the default application server

explicitly if one has been defined in the

system.

Connections can be disconnected by the

application at a successful COMMIT. Prior to

the commit, use the RELEASE statement to

mark a connection as release-pending. All

such connections will be disconnected at the

next COMMIT.

An alternative is to use the precompiler

options DISCONNECT(EXPLICIT),

DISCONNECT(CONDITIONAL),

DISCONNECT(AUTOMATIC), or the

DISCONNECT statement instead of the

RELEASE statement.

After using CONNECT RESET to disconnect

the current connection, if the next SQL

statement is not a CONNECT statement, then

it will perform an implicit connect to the

default application server if one has been

defined in the system.

CONNECT RESET is equivalent to an

explicit connect to the default application

server if one has been defined in the system.

It is an error to issue consecutive CONNECT

RESETs.

It is an error to issue consecutive CONNECT

RESETs ONLY if SQLRULES(STD) was

specified because this option disallows the

use of CONNECT to existing connection.

CONNECT RESET also implicitly commits

the current unit of work.

CONNECT RESET does not commit the

current unit of work.

If an existing connection is disconnected by

the system for whatever reasons, then

subsequent non-CONNECT SQL statements

to this database will receive an SQLSTATE of

08003.

If an existing connection is disconnected by

the system, COMMIT, ROLLBACK, and SET

CONNECTION statements are still

permitted.

The unit of work will be implicitly

committed when the application process

terminates successfully.

Same as Type 1.

All connections (only one) are disconnected

when the application process terminates.

All connections (current, dormant, and those

marked for release pending) are disconnected

when the application process terminates.

CONNECT Failures:

 Type 1 Type 2

Regardless of whether there is a current

connection when a CONNECT fails (with an

error other than server-name not defined in

the local directory), the application process is

placed in the unconnected state. Subsequent

non-CONNECT statements receive an

SQLSTATE of 08003.

If there is a current connection when a

CONNECT fails, the current connection is

unaffected.

If there was no current connection when the

CONNECT fails, then the program is then in

an unconnected state. Subsequent

non-CONNECT statements receive an

SQLSTATE of 08003.

CONNECT (Type 2)

242 SQL Reference, Volume 2

Examples

Example 1:

This example illustrates the use of multiple source programs (shown in the boxes),

some preprocessed with different connection options (shown above the code), and

one of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

 exec sql CONNECT TO OTTAWA;

 exec sql SELECT col1 INTO :hv1

 FROM tbl1;

 ...

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)

 ...

 exec sql CONNECT TO QUEBEC;

 exec sql SELECT col1 INTO :hv1

 FROM tbl2;

 ...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)

 ...

 SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT

1

 exec sql CONNECT TO LONDON;

 exec sql SELECT col1 INTO :hv1

 FROM tbl3;

 ...

 1 Note: not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...

 exec sql CONNECT TO REGINA;

 exec sql SELECT col1 INTO :hv1

 FROM tbl4;

 ...

If the application executes PGM1 then PGM2:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES and

DISCONNECT are different.

If the application executes PGM1 then PGM3:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT

statement.

If the application executes PGM1 then PGM4:

v connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

v connect to REGINA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

CONNECT (Type 2)

Statements 243

This is OK because the preprocessor options for PGM1 are the same as those for

PGM4.

Example 2:

This example shows the interrelationships of the CONNECT (Type 2), SET

CONNECTION, RELEASE, and DISCONNECT statements. S0, S1, S2, and S3

represent four servers.

Sequence Statement

Current

Server

Dormant

Connections

Release

Pending

0 v No statement v None v None v None

1 v SELECT * FROM TBLA v S0 (default) v None v None

2 v CONNECT TO S1

v SELECT * FROM TBLB

v S1

v S1

v S0

v S0

v None

v None

3 v CONNECT TO S2

v UPDATE TBLC SET ...

v S2

v S2

v S0, S1

v S0, S1

v None

v None

4 v CONNECT TO S3

v SELECT * FROM TBLD

v S3

v S3

v S0, S1, S2

v S0, S1, S2

v None

v None

5 v SET CONNECTION S2 v S2 v S0, S1, S3 v None

6 v RELEASE S3 v S2 v S0, S1 v S3

7 v COMMIT v S2 v S0, S1 v None

8 v SELECT * FROM TBLE v S2 v S0, S1 v None

9 v DISCONNECT S1

v SELECT * FROM TBLF

v S2

v S2

v S0

v S0

v None

v None

CONNECT (Type 2)

244 SQL Reference, Volume 2

CREATE ALIAS

The CREATE ALIAS statement defines an alias for a table, view, nickname, or

another alias.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the alias does not exist

v CREATEIN privilege on the schema, if the schema name of the alias refers to an

existing schema

v SYSADM or DBADM authority

Privileges required to use the referenced object through its alias are identical to the

privileges required to use the object directly.

Syntax

�� CREATE ALIAS alias-name FOR table-name

view-name

nickname

alias-name2

 ��

Description

alias-name

Names the alias. The name must not identify a table, view, nickname, or alias

that exists in the current database.

 If a two-part name is specified, the schema name cannot begin with ’SYS’

(SQLSTATE 42939).

The rules for defining an alias name are the same as those used for defining a

table name.

FOR table-name, view-name, nickname, or alias-name2

Identifies the table, view, nickname, or alias for which alias-name is defined. If

another alias name is supplied (alias-name2), then it must not be the same as

the new alias-name being defined (in its fully-qualified form). The table-name

cannot be a declared temporary table (SQLSTATE 42995).

Notes

v The definition of the newly created alias is stored in SYSCAT.TABLES.

v An alias can be defined for an object that does not exist at the time of the

definition. If it does not exist, a warning is issued (SQLSTATE 01522). However,

CREATE ALIAS

Statements 245

the referenced object must exist when a SQL statement containing the alias is

compiled, otherwise an error is issued (SQLSTATE 52004).

v An alias can be defined to refer to another alias as part of an alias chain but this

chain is subject to the same restrictions as a single alias when used in an SQL

statement. An alias chain is resolved in the same way as a single alias. If an alias

used in a view definition, a statement in a package, or a trigger points to an

alias chain, then a dependency is recorded for the view, package, or trigger on

each alias in the chain. Repetitive cycles in an alias chain are not allowed and

are detected at alias definition time.

v Creating an alias with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v Compatibilities

– For compatibility with DB2 for z/OS:

- SYNONYM can be specified in place of ALIAS

Examples

Example 1: HEDGES attempts to create an alias for a table T1 (both unqualified).

 CREATE ALIAS A1 FOR T1

The alias HEDGES.A1 is created for HEDGES.T1.

Example 2: HEDGES attempts to create an alias for a table (both qualified).

 CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.

Example 3: HEDGES attempts to create an alias for a table (alias in a different

schema; HEDGES is not a DBADM; HEDGES does not have CREATEIN on schema

MCKNIGHT).

 CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1

This example fails (SQLSTATE 42501).

Example 4: HEDGES attempts to create an alias for an undefined table (both

qualified; FUZZY.WUZZY does not exist).

 CREATE ALIAS HEDGES.A1 FOR FUZZY.WUZZY

This statement succeeds but with a warning (SQLSTATE 01522).

Example 5: HEDGES attempts to create an alias for an alias (both qualified).

 CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

 CREATE ALIAS HEDGES.A2 FOR HEDGES.A1

The first statement succeeds (as per example 2).

The second statement succeeds and an alias chain is created, consisting of

HEDGES.A2 which refers to HEDGES.A1 which refers to MCKNIGHT.T1. Note

that it does not matter whether or not HEDGES has any privileges on

MCKNIGHT.T1. The alias is created regardless of the table privileges.

CREATE ALIAS

246 SQL Reference, Volume 2

Example 6: Designate A1 as an alias for the nickname FUZZYBEAR.

 CREATE ALIAS A1 FOR FUZZYBEAR

Example 7: A large organization has a finance department numbered D108 and a

personnel department numbered D577. D108 keeps certain information in a table

that resides at a DB2 RDBMS. D577 keeps certain records in a table that resides at

an Oracle RDBMS. A DBA defines the two RDBMSs as data sources within a

federated system, and gives the tables the nicknames of DEPTD108 and

DEPTD577, respectively. A federated system user needs to create joins between

these tables, but would like to reference them by names that are more meaningful

than their alphanumeric nicknames. So the user defines FINANCE as an alias for

DEPTD108 and PERSONNEL as an alias for DEPTD577.

 CREATE ALIAS FINANCE FOR DEPTD108

 CREATE ALIAS PERSONNEL FOR DEPTD577

CREATE ALIAS

Statements 247

CREATE AUDIT POLICY

The CREATE AUDIT POLICY statement defines an auditing policy at the current

server. The policy determines what categories are to be audited; it can then be

applied to other database objects to determine how the use of those objects is to be

audited.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE AUDIT POLICY policy-name * CATEGORIES �

�

�

 ,

(1)

ALL

STATUS

BOTH

AUDIT

FAILURE

CHECKING

NONE

CONTEXT

SUCCESS

WITHOUT DATA

EXECUTE

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

�

� * ERROR TYPE NORMAL *

AUDIT
 ��

Notes:

1 Each category can be specified at most once (SQLSTATE 42614), and no other

category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name

Names the audit policy. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The policy-name must not identify an audit policy

already described in the catalog (SQLSTATE 42710). The name must not begin

with the characters ’SYS’ (SQLSTATE 42939).

CREATE AUDIT POLICY

248 SQL Reference, Volume 2

CATEGORIES

A list of one or more audit categories for which a status is specified. If ALL is

not specified, the STATUS of any category that is not explicitly specified is set

to NONE.

ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT

DATA.

AUDIT

Generates records when audit settings are changed or when the audit log

is accessed.

CHECKING

Generates records during authorization checking of attempts to access or

manipulate database objects or functions.

CONTEXT

Generates records to show the operation context when a database

operation is performed.

EXECUTE

Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host

variables and parameter markers should be logged as part of the

EXECUTE category.

WITHOUT DATA

Input data values provided for any host variables and parameter

markers are not logged as part of the EXECUTE category.

WITHOUT DATA is the default.

WITH DATA

Input data values provided for any host variables and parameter

markers are logged as part of the EXECUTE category. Not all input

values are logged; specifically, LOB, LONG, XML, and structured

type parameters appear as the null value. Date, time, and

timestamp fields are logged in ISO format. The input data values

are converted to the database code page before being logged. If

code page conversion fails, no errors are returned and the

unconverted data is logged.

OBJMAINT

Generates records when data objects are created or dropped.

SECMAINT

Generates records when object privileges, database privileges, or DBADM

authority is granted or revoked. Records are also generated when the

database manager security configuration parameters sysadm_group,

sysctrl_group, or sysmaint_group are modified.

SYSADMIN

Generates records when operations requiring SYSADM, SYSMAINT, or

SYSCTRL authority are performed.

VALIDATE

Generates records when users are authenticated or when system security

information related to a user is retrieved.

CREATE AUDIT POLICY

Statements 249

STATUS

Specifies a status for the specified category.

BOTH

Successful and failing events will be audited.

FAILURE

Only failing events will be audited.

SUCCESS

Only successful events will be audited.

NONE

No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for

errors associated with the operation being performed are returned to the

application.

AUDIT

All errors, including errors occurring within the audit facility itself, are

returned to the application.

Rules

v An AUDIT-exclusive SQL statement must be followed by a COMMIT or

ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

– AUDIT

– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)
v An AUDIT-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time

across all database partitions. If an uncommitted AUDIT-exclusive SQL

statement is executing, subsequent AUDIT-exclusive SQL statements wait until

the current AUDIT-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Example

Create an audit policy to audit successes and failures for the AUDIT and

OBJMAINT categories; only failures for the SECMAINT, CHECKING, and

VALIDATE categories, and no events for the other categories.

 CREATE AUDIT POLICY DBAUDPRF

 CATEGORIES AUDIT STATUS BOTH,

 SECMAINT STATUS FAILURE,

 OBJMAINT STATUS BOTH,

 CHECKING STATUS FAILURE,

 VALIDATE STATUS FAILURE

 ERROR TYPE NORMAL

CREATE AUDIT POLICY

250 SQL Reference, Volume 2

CREATE BUFFERPOOL

The CREATE BUFFERPOOL statement defines a new buffer pool to be used by the

database manager.

In a partitioned database, a default buffer pool definition is specified for each

database partition, with the capability to override the size on specific database

partitions. Also, in a partitioned database, the buffer pool is defined on all

database partitions unless database partition groups are specified. If database

partition groups are specified, the buffer pool will only be created on database

partitions that are in those database partition groups.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

��

CREATE BUFFERPOOL

bufferpool-name
 IMMEDIATE

DEFERRED

�

�

�

 ALL DBPARTITIONNUMS

,

DATABASE PARTITION GROUP

db-partition-group-name

�

�
 SIZE 1000 AUTOMATIC

SIZE

number-of-pages

1000

SIZE

AUTOMATIC

number-of-pages

*

�

�
except-on-db-partitions-clause

 * �

�
 NUMBLOCKPAGES 0

NUMBLOCKPAGES

number-of-pages

BLOCKSIZE

number-of-pages

*

�

�
PAGESIZE

integer

K

 * ��

CREATE BUFFERPOOL

Statements 251

except-on-db-partitions-clause:

 EXCEPT ON DBPARTITIONNUM

DBPARTITIONNUMS
 �

�

�

 ,

(

db-partition-number1

SIZE

number-of-pages

)

TO

db-partition-number2

Description

bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The bufferpool-name must not identify a buffer pool that

already exists in the catalog (SQLSTATE 42710). The bufferpool-name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

IMMEDIATE or DEFERRED

Indicates whether or not the buffer pool will be created immediately.

IMMEDIATE

The buffer pool will be created immediately. If there is not enough

reserved space in the database shared memory to allocate the new buffer

pool (SQLSTATE 01657) the statement is executed as DEFERRED.

DEFERRED

The buffer pool will be created when the database is deactivated (all

applications need to be disconnected from the database). Reserved memory

space is not needed; DB2 will allocate the required memory from the

system.

ALL DBPARTITIONNUMS

This buffer pool will be created on all database partitions in the database.

DATABASE PARTITION GROUP db-partition-group-name, ...

Identifies the database partition group or groups to which the buffer pool

definition applies. If this parameter is specified, the buffer pool will only be

created on database partitions in these database partition groups. Each

database partition group must currently exist in the database (SQLSTATE

42704). If the DATABASE PARTITION GROUP clause is not specified, this

buffer pool will be created on all database partitions (and on any database

partitions that are subsequently added to the database).

SIZE

Specifies the size of the buffer pool. For a partitioned database, this will be the

default size for all database partitions on which the buffer pool exists. The

default is 1000 pages.

number-of-pages

The number of pages for the new buffer pool.

AUTOMATIC

Enables self tuning for this buffer pool. The database manager adjusts the

size of the buffer pool in response to workload requirements. The implicit

or explicit number of pages specified is used as the initial size of the buffer

pool.

NUMBLOCKPAGES number-of-pages

Specifies the number of pages that should exist in the block-based area. The

CREATE BUFFERPOOL

252 SQL Reference, Volume 2

number of pages must not be greater than 98 percent of the number of pages

for the buffer pool (SQLSTATE 54052). Specifying the value 0 disables block

I/O. The actual value of NUMBLOCKPAGES used will be a multiple of

BLOCKSIZE.

BLOCKSIZE number-of-pages

Specifies the number of pages in a block. The block size must be a value

between 2 and 256 (SQLSTATE 54053). The default value is 32.

except-on-db-partitions-clause

Specifies the database partition or partitions for which the size of the buffer

pool will be different than the default. If this clause is not specified, all

database partitions will have the same size as specified for this buffer pool.

EXCEPT ON DBPARTITIONNUMS

Keywords that indicate that specific database partitions are specified.

DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1

Specifies a database partition number that is included in the database

partitions for which the buffer pool is created.

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9). All database partitions

between and including the specified database partition numbers must

be included in the database partitions for which the buffer pool is

created (SQLSTATE 42729).

SIZE number-of-pages

The size of the buffer pool specified as the number of pages.

PAGESIZE integer [K]

Defines the size of pages used for the buffer pool. The valid values for integer

without the suffix K are 4096, 8192, 16 384, or 32 768. The valid values for

integer with the suffix K are 4, 8, 16, or 32. Any number of spaces is allowed

between integer and K, including no space. If the page size is not one of these

values, an error is returned (SQLSTATE 428DE).

 The default value is provided by the pagesize database configuration

parameter, which is set when the database is created.

Notes

v If the buffer pool is created using the DEFERRED option, any table space created

in this buffer pool will use a small system buffer pool of the same page size,

until next database activation. The database has to be restarted for the buffer

pool to become active and for table space assignments to the new buffer pool to

take effect. The default option is IMMEDIATE.

v There should be enough real memory on the machine for the total of all the

buffer pools, as well as for the rest of the database manager and application

requirements. If DB2 is unable to obtain memory for the regular buffer pools, it

will attempt to start up with small system buffer pools, one for each page size

(4K, 8K, 16K and 32K). In this situation, a warning will be returned to the user

(SQLSTATE 01626), and the pages from all table spaces will use the system

buffer pools.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

CREATE BUFFERPOOL

Statements 253

- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

CREATE BUFFERPOOL

254 SQL Reference, Volume 2

CREATE DATABASE PARTITION GROUP

The CREATE DATABASE PARTITION GROUP statement defines a new database

partition group within the database, assigns database partitions to the database

partition group, and records the database partition group definition in the system

catalog.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� CREATE DATABASE PARTITION GROUP db-partition-group-name �

�

�

 ON ALL DBPARTITIONNUMS

,

ON

DBPARTITIONNUMS

(

db-partition-number1

)

DBPARTITIONNUM

TO

db-partition-number2

��

Description

db-partition-group-name

Names the database partition group. This is a one-part name. It is an SQL

identifier (either ordinary or delimited). The db-partition-group-name must not

identify a database partition group that already exists in the catalog

(SQLSTATE 42710). The db-partition-group-name must not begin with the

characters ’SYS’ or ’IBM’ (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS

Specifies that the database partition group is defined over all database

partitions defined to the database (db2nodes.cfg file) at the time the database

partition group is created.

 If a database partition is added to the database system, the ALTER DATABASE

PARTITION GROUP statement should be issued to include this new database

partition in a database partition group (including IBMDEFAULTGROUP).

Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP command

must be issued to move data to the database partition.

ON DBPARTITIONNUMS

Specifies the database partitions that are in the database partition group.

DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1

Specify a database partition number. (A node-name of the form NODEnnnnn

can be specified for compatibility with the previous version.)

TO db-partition-number2

Specify a range of database partition numbers. The value of

CREATE DATABASE PARTITION GROUP

Statements 255

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9). All database partitions between

and including the specified database partition numbers are included in the

database partition group.

Rules

v Each database partition specified by number must be defined in the

db2nodes.cfg file (SQLSTATE 42729).

v Each db-partition-number listed in the ON DBPARTITIONNUMS clause must be

appear at most once (SQLSTATE 42728).

v A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).

Notes

v This statement creates a distribution map for the database partition group. A

distribution map identifier (PMAP_ID) is generated for each distribution map.

This information is recorded in the catalog and can be retrieved from

SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in

the distribution map specifies the target database partition on which all rows

that are hashed reside. For a single-partition database partition group, the

corresponding distribution map has only one entry. For a multiple partition

database partition group, the corresponding distribution map has 4096 entries,

where the database partition numbers are assigned to the map entries in a

round-robin fashion, by default.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

Examples

Assume that you have a partitioned database with six database partitions defined

as 0, 1, 2, 5, 7, and 8.

v Assume that you want to create a database partition group called MAXGROUP

on all six database partitions. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

v Assume that you want to create a database partition group called MEDGROUP

on database partitions 0, 1, 2, 5, and 8. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MEDGROUP

 ON DBPARTITIONNUMS(0 TO 2, 5, 8)

v Assume that you want to create a single-partition database partition group

MINGROUP on database partition 7. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MINGROUP

 ON DBPARTITIONNUM (7)

CREATE DATABASE PARTITION GROUP

256 SQL Reference, Volume 2

CREATE EVENT MONITOR

The CREATE EVENT MONITOR statement defines a monitor that will record

certain events that occur when using the database. The definition of each event

monitor also specifies where the database should record the events.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either

SYSADM or DBADM authority.

Syntax

�� CREATE EVENT MONITOR event-monitor-name FOR �

� nonwlm-event-monitor

wlm-event-monitor
 ��

nonwlm-event-monitor:

�

 ,

DATABASE

TABLES

DEADLOCKS

WITH DETAILS

HISTORY

VALUES

TABLESPACES

BUFFERPOOLS

CONNECTIONS

STATEMENTS

WHERE

event-condition

TRANSACTIONS

�

�

WRITE TO

TABLE

evm-group-info

PIPE

pipe-name

FILE

path-name

file-options

*

 MANUALSTART

AUTOSTART

*

�

�

ON DBPARTITIONNUM

db-partition-number

*

 LOCAL

*

GLOBAL

event-condition:

CREATE EVENT MONITOR

Statements 257

�

 AND | OR

APPL_ID

=

comparison-string

NOT

AUTH_ID

(1)

APPL_NAME

<>

>

(1)

>=

<

(1)

<=

LIKE

NOT

LIKE

(

event-condition

)

evm-group-info:

 *

�

,

evm-group

(

target-table-info

)

 * �

�
 BUFFERSIZE 4 (2)

BUFFERSIZE

pages

*

 BLOCKED

(3)

NONBLOCKED

*

target-table-info:

�

�

(4)

TABLE

table-name

IN

tablespace-name

PCTDEACTIVATE

100

PCTDEACTIVATE

integer

TRUNC

,

INCLUDES

(

element

)

EXCLUDES

file-options:

*

 MAXFILES NONE

MAXFILES

number-of-files

*

MAXFILESIZE

pages

NONE

*

�

�
 BUFFERSIZE 4 (2)

BUFFERSIZE

pages

*

 BLOCKED

(3)

NONBLOCKED

*

 APPEND

REPLACE

*

CREATE EVENT MONITOR

258 SQL Reference, Volume 2

wlm-event-monitor:

 ACTIVITIES

THRESHOLD VIOLATIONS

STATISTICS

 WRITE TO TABLE wlm-table-options

PIPE

pipe-name

FILE

path-name

file-options

 �

�

*

 AUTOSTART

MANUALSTART

*

ON DBPARTITIONNUM

db-partition-number

*

�

�
 LOCAL

*

wlm-table-options:

 *

�

,

evm-group

(

wlm-target-table-info

)

 * �

�
 BUFFERSIZE 4 (2)

BUFFERSIZE

pages

*

 BLOCKED

(3)

NONBLOCKED

*

wlm-target-table-info:

�

(4)

TABLE

table-name

IN

tablespace-name

PCTDEACTIVATE

100

PCTDEACTIVATE

integer

Notes:

1 Other forms of these operators are also supported.

2 The BUFFERSIZE clause is only applicable to the statistics event monitor, the

threshold violations event monitor, and to non-workload management (WLM)

event monitors (SQLSTATE 42613).

3 The NONBLOCKED keyword is only applicable to the statistics event

monitor, the threshold violations event monitor, and to non-WLM event

monitors (SQLSTATE 42613).

4 Each clause can be specified only once.

Description

event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The event-monitor-name must not identify an

event monitor that already exists in the catalog (SQLSTATE 42710).

CREATE EVENT MONITOR

Statements 259

FOR

Introduces the type of event to record.

DATABASE

Specifies that the event monitor records a database event when the last

application disconnects from the database.

TABLES

Specifies that the event monitor records a table event for each active table

when the last application disconnects from the database. For partitioned

tables, a table event is recorded for each data partition of each active table.

An active table is a table that has changed since the first connection to the

database.

DEADLOCKS

Specifies that the event monitor records a deadlock event whenever a

deadlock occurs.

WITH DETAILS

Specifies that the event monitor is to generate a more detailed

deadlock connection event for each application that is involved in a

deadlock. This additional detail includes:

v Information about the statement that the application was executing

when the deadlock occurred, such as the statement text

v The locks held by the application when the deadlock occurred. In a

partitioned database environment, this includes only those locks that

are held on the database partition on which the application was

waiting for its lock when the deadlock occurred. For partitioned

tables, this includes the data partition identifier.

HISTORY

Specifies that the event monitor data will also include:

v The history of all statements in the current unit of work at the

participating node (including WITH HOLD cursors opened in

previous units of work). SELECT statements issued at the

uncommitted read (UR) isolation level are not included in the

statement history.

v The statement compilation environment for each SQL statement

in binary format (if available)

VALUES

Specifies that the event monitor data will also include:

v The data values used as input variables for each SQL

statement. These data values will not include LOB data, long

data, structured type data, or XML data.

 Only one of: DEADLOCKS, DEADLOCKS WITH DETAILS, DEADLOCKS

WITH DETAILS HISTORY, or DEADLOCKS WITH DETAILS HISTORY

VALUES can be specified in a single CREATE EVENT MONITOR

statement (SQLSTATE 42613).

TABLESPACES

Specifies that the event monitor records a table space event for each table

space when the last application disconnects from the database.

BUFFERPOOLS

Specifies that the event monitor records a buffer pool event when the last

application disconnects from the database.

CREATE EVENT MONITOR

260 SQL Reference, Volume 2

ACTIVITIES

Specifies that the event monitor records an activity event when an activity

finishes executing, or before the completion of execution if the event is

triggered by the WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure.

The activity must either:

v Belong to a service class or workload that has COLLECT ACTIVITY

DATA set

v Belong to a work class whose associated work action is COLLECT

ACTIVITY DATA

v Be identified as the activity that violated a threshold whose COLLECT

ACTIVITY DATA clause was specified

v Have been identified in a call to the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure prior to

completing

THRESHOLD VIOLATIONS

Specifies that the event monitor records a threshold violation event when a

threshold is violated. Such events can be recorded at any point in the life

of an activity, not just at completion.

STATISTICS

Specifies that the event monitor records a service class, workload, or work

class event:

v Every period minutes, where period is the value of the wlm_collect_int

database configuration parameter

v When the wlm_collect_stats procedure is called

CONNECTIONS

Specifies that the event monitor records a connection event when an

application disconnects from the database.

STATEMENTS

Specifies that the event monitor records a statement event whenever a SQL

statement finishes executing.

TRANSACTIONS

Specifies that the event monitor records a transaction event whenever a

transaction completes (that is, whenever there is a commit or rollback

operation).

WHERE event-condition

Defines a filter that determines which connections cause a CONNECTION,

STATEMENT or TRANSACTION event to occur. If the result of the event

condition is TRUE for a particular connection, then that connection will

generate the requested events.

 This clause is a special form of the WHERE clause that should not be

confused with a standard search condition.

To determine if an application will generate events for a particular event

monitor, the WHERE clause is evaluated:

v For each active connection when an event monitor is first turned on

v Subsequently for each new connection to the database at connect time

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified, all events of the specified event type will

be monitored.

CREATE EVENT MONITOR

Statements 261

The event-condition must not exceed 32 678 bytes in length in the database

code page (SQLSTATE 22001).

APPL_ID

Specifies that the application ID of each connection should be

compared with the comparison-string in order to determine if the

connection should generate CONNECTION, STATEMENT or

TRANSACTION events (whichever was specified).

AUTH_ID

Specifies that the authorization ID of each connection should be

compared with the comparison-string in order to determine if the

connection should generate CONNECTION, STATEMENT or

TRANSACTION events (whichever was specified).

APPL_NAME

Specifies that the application program name of each connection should

be compared with the comparison-string in order to determine if the

connection should generate CONNECTION, STATEMENT or

TRANSACTION events (whichever was specified).

 The application program name is the first 20 bytes of the application

program file name, after the last path separator.

comparison-string

A string to be compared with the APPL_ID, AUTH_ID, or

APPL_NAME of each application that connects to the database.

comparison-string must be a string constant (that is, host variables and

other string expressions are not permitted).

WRITE TO

Introduces the target for the data.

TABLE

Indicates that the target for the event monitor data is a set of database

tables. The event monitor separates the data stream into one or more

logical data groups and inserts each group into a separate table. Data for

groups having a target table is kept, whereas data for groups not having a

target table is discarded. Each monitor element contained within a group is

mapped to a table column with the same name. Only elements that have a

corresponding table column are inserted into the table. Other elements are

discarded.

evm-group-info

Defines the target table for a logical data group. This clause should be

specified for each grouping that is to be recorded. However, if no

evm-group-info clauses are specified, all groups for the event monitor

type are recorded.

evm-group

Identifies the logical data group for which a target table is being

defined. The value depends upon the type of event monitor, as

shown in the following table:

 Type of Event Monitor evm-group Value

Database v DB

v CONTROL1

v DBMEMUSE

CREATE EVENT MONITOR

262 SQL Reference, Volume 2

Type of Event Monitor evm-group Value

Tables v TABLE

v CONTROL1

Deadlocks v CONNHEADER

v DEADLOCK

v DLCONN

v CONTROL1

Deadlocks with details v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v CONTROL1

Deadlocks with details history v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v CONTROL1

Deadlocks with details history

values

v CONNHEADER

v DEADLOCK

v DLCONN2

v DLLOCK3

v STMTHIST

v STMTVALS

v CONTROL1

Tablespaces v TABLESPACE

v CONTROL1

Bufferpools v BUFFERPOOL

v CONTROL1

Connections v CONNHEADER

v CONN

v CONTROL1

v CONMEMUSE

Statements v CONNHEADER

v STMT

v SUBSECTION4

v CONTROL1

Transactions v CONNHEADER

v XACT

v CONTROL1

Activities v ACTIVITY

v ACTIVITYSTMT

v ACTIVITYVALS

v CONTROL

CREATE EVENT MONITOR

Statements 263

Type of Event Monitor evm-group Value

Statistics v QSTATS

v SCSTATS

v WCSTATS

v WLSTATS

v HISTOGRAMBIN

v CONTROL

Threshold violations v THRESHOLDVIOLATIONS

v CONTROL

1 Logical data groups dbheader (conn_time element only), start and overflow, are all written

to the CONTROL group. The overflow group is written if the event monitor is non-blocked

and events were discarded.

2 Corresponds to the DETAILED_DLCONN event.

3 Corresponds to the LOCK logical data groups that occur within each

DETAILED_DLCONN event.

4 Created only for partitioned database environments.

target-table-info

Identifies the target table for the group. If a value for

target-table-info is not specified, CREATE EVENT MONITOR

processing proceeds as follows:

v A derived table name is used (described below).

v A default table space is chosen (described below).

v All elements are included.

v PCTDEACTIVATE and TRUNC are not specified.

TABLE table-name

Specifies the name of the target table. The target table must

be a non-partitioned table. If the name is unqualified, the

table schema defaults to the schema for the current

authorization ID. If no name is provided, the unqualified

name is derived from evm-group and event-monitor-name as

follows:

 substring(evm-group CONCAT "_"

 CONCAT event-monitor-name,1,128)

IN tablespace-name

Defines the table space in which the table is to be created.

If no table space name is provided, the table space is

chosen as follows:

 IF table space IBMDEFAULTGROUP over which the user

 has USE privilege exists

 THEN choose it

 ELSE IF a table space over which the user

 has USE privilege exists

 THEN choose it

 ELSE issue an error (SQLSTATE 42727)

PCTDEACTIVATE integer

If a table is being created in a DMS table space, the

PCTDEACTIVATE parameter specifies how full the table

space must be before the event monitor automatically

CREATE EVENT MONITOR

264 SQL Reference, Volume 2

deactivates. The specified value, which represents a

percentage, can range from 0 to 100. The default value is

100 (meaning that the event monitor deactivates when the

table space becomes completely full). This option cannot be

specified with SMS table spaces.

TRUNC

Specifies that the STMT_TEXT and STMT_VALUE_DATA

columns are defined as VARCHAR(n), where n is the

largest size that can fit into the table row. In this case, any

data that is longer than n bytes is truncated. The following

example illustrates how the value of n is calculated.

Assume that:

v The table is created in a table space that uses 32K pages.

v The total length of all the other columns in the table

equals 357 bytes.

In this case, the maximum row size for a table is 32677

bytes. Therefore, the element would be defined as

VARCHAR(32316); that is, 32677 - 357 - 4. If TRUNC is not

specified, the column will be defined as CLOB(64K). Note

that STMT_TEXT is found in the STMT event group, the

STMT_HISTORY event group, and the DLCONN event

group (for deadlocks with details event monitors).

STMT_VALUE_DATA is found in the DATA_VALUE event

group.

INCLUDES

Specifies that the following elements are to be included in

the table.

EXCLUDES

Specifies that the following elements are not to be included

in the table.

element

Identifies a monitor element. Element information can be

provided in one of the following forms:

v Specify no element information. In this case, all elements

are included in the CREATE TABLE statement.

v Specify the elements to include in the form: INCLUDES

(element1, element2, ..., elementn). Only table columns

are created for these elements.

v Specify the elements to exclude in the form: EXCLUDES

(element1, element2, ..., elementn). Only table columns

are created for all elements except these.

Use the db2evtbl command to build a CREATE EVENT

MONITOR statement that includes a complete list of

elements for a group.

BUFFERSIZE pages

Specifies the size of the event monitor buffers (in units of 4K

pages). Table event monitors insert all data from a buffer, and

issues a COMMIT once the buffer has been processed. The larger

the buffers, the larger the commit scope used by the event monitor.

Highly active event monitors should have larger buffers than

relatively inactive event monitors. When a monitor is started, two

CREATE EVENT MONITOR

Statements 265

buffers of the specified size are allocated. Event monitors use

double buffering to permit asynchronous I/O.

 The default size of each buffer is 4 pages (two 16K buffers are

allocated). The minimum size is 1 page. The maximum size of the

buffers is limited by the size of the monitor heap, because the

buffers are allocated from that heap. If many event monitors are

being used at the same time, increase the size of the mon_heap_sz

database manager configuration parameter.

BLOCKED

Specifies that each agent that generates an event should wait for an

event buffer to be written out to disk if the agent determines that

both event buffers are full. BLOCKED should be selected to

guarantee no event data loss. This is the default option.

NONBLOCKED

Specifies that each agent that generates an event should not wait

for the event buffer to be written out to disk if the agent

determines that both event buffers are full. NONBLOCKED event

monitors do not slow down database operations to the extent of

BLOCKED event monitors. However, NONBLOCKED event

monitors are subject to data loss on highly active systems.

PIPE

Specifies that the target for the event monitor data is a named pipe. The

event monitor writes the data to the pipe in a single stream (that is, as if it

were a single, infinitely long file). When writing the data to a pipe, an

event monitor does not perform blocked writes. If there is no room in the

pipe buffer, then the event monitor will discard the data. It is the

monitoring application’s responsibility to read the data promptly if it

wishes to ensure no data loss.

pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor will

write the data.

 The naming rules for pipes are platform specific. On UNIX operating

systems, pipe names are treated like file names. As a result, relative

pipe names are permitted, and are treated like relative path-names (see

path-name below). On Windows, however, there is a special syntax for a

pipe name and, as a result, absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation

time. It is the responsibility of the monitoring application to have

created and opened the pipe for reading at the time that the event

monitor is activated. If the pipe is not available at this time, then the

event monitor will turn itself off, and will log an error. (That is, if the

event monitor was activated at database start time as a result of the

AUTOSTART option, then the event monitor will log an error in the

system error log.) If the event monitor is activated via the SET EVENT

MONITOR STATE SQL statement, then that statement will fail

(SQLSTATE 58030).

FILE

Indicates that the target for the event monitor data is a file (or set of files).

The event monitor writes out the stream of data as a series of 8 character

numbered files, with the extension “evt”. (for example, 00000000.evt,

00000001.evt, and 00000002.evt). The data should be considered to be one

logical file even though the data is broken up into smaller pieces (that is,

CREATE EVENT MONITOR

266 SQL Reference, Volume 2

the start of the data stream is the first byte in the file 00000000.evt; the end

of the data stream is the last byte in the file nnnnnnnn.evt).

 The maximum size of each file can be defined as well as the maximum

number of files. An event monitor will never split a single event record

across two files. However, an event monitor may write related records in

two different files. It is the responsibility of the application that uses this

data to keep track of such related information when processing the event

files.

path-name

The name of the directory in which the event monitor should write the

event files data. The path must be known at the server; however, the

path itself could reside on another database partition (for example, on

a UNIX system, this might be an NFS mounted file). A string constant

must be used when specifying the path-name.

 The directory does not have to exist at CREATE EVENT MONITOR

time. However, a check is made for the existence of the target path

when the event monitor is activated. At that time, if the target path

does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path (a path that starts with the root directory on AIX,

or a disk identifier on Windows) is specified, the specified path will be

the one used. If a relative path (a path that does not start with the

root) is specified, then the path relative to the DB2EVENT directory in

the database directory will be used.

When a relative path is specified, the DB2EVENT directory is used to

convert it into an absolute path. Thereafter, no distinction is made

between absolute and relative paths. The absolute path is stored in the

SYSCAT.EVENTMONITORS catalog view.

It is possible to specify two or more event monitors that have the same

target path. However, once one of the event monitors has been

activated for the first time, and as long as the target directory is not

empty, it will be impossible to activate any of the other event monitors.

file-options

Specifies the options for the file format.

MAXFILES NONE

Specifies that there is no limit to the number of event files that the

event monitor will create. This is the default.

MAXFILES number-of-files

Specifies that there is a limit on the number of event monitor files

that will exist for a particular event monitor at any time. Whenever

an event monitor has to create another file, it will check to make

sure that the number of .evt files in the directory is less than

number-of-files. If this limit has already been reached, then the event

monitor will turn itself off.

 If an application removes the event files from the directory after

they have been written, then the total number of files that an event

monitor can produce can exceed number-of-files. This option has

been provided to allow a user to guarantee that the event data will

not consume more than a specified amount of disk space.

MAXFILESIZE pages

Specifies that there is a limit to the size of each event monitor file.

CREATE EVENT MONITOR

Statements 267

Whenever an event monitor writes a new event record to a file, it

checks that the file will not grow to be greater than pages (in units

of 4K pages). If the resulting file would be too large, then the event

monitor switches to the next file. The default for this option is:

v Windows - 200 4K pages

v UNIX - 1000 4K pages

The number of pages must be greater than at least the size of the

event buffer in pages. If this requirement is not met, then an error

(SQLSTATE 428A4) is raised.

MAXFILESIZE NONE

Specifies that there is no set limit on a file’s size. If MAXFILESIZE

NONE is specified, then MAXFILES 1 must also be specified. This

option means that one file will contain all of the event data for a

particular event monitor. In this case the only event file will be

00000000.evt.

BUFFERSIZE pages

Specifies the size of the event monitor buffers (in units of 4K

pages). All event monitor file I/O is buffered to improve the

performance of the event monitors. The larger the buffers, the less

I/O will be performed by the event monitor. Highly active event

monitors should have larger buffers than relatively inactive event

monitors. When the monitor is started, two buffers of the specified

size are allocated. Event monitors use double buffering to permit

asynchronous I/O.

 The default size of each buffer is 4 pages (two 16K buffers are

allocated). The minimum size is 1 page. The maximum size of the

buffers is limited by the value of the MAXFILESIZE parameter, as

well as the size of the monitor heap, because the buffers are

allocated from that heap. If many event monitors are being used at

the same time, increase the size of the mon_heap_sz database

manager configuration parameter.

Event monitors that write their data to a pipe also have two

internal (non-configurable) buffers that are each 1 page in size.

These buffers are also allocated from the monitor heap

(MON_HEAP). For each active event monitor that has a pipe

target, increase the size of the database heap by 2 pages.

BLOCKED

Specifies that each agent that generates an event should wait for an

event buffer to be written out to disk if the agent determines that

both event buffers are full. BLOCKED should be selected to

guarantee no event data loss. This is the default option.

NONBLOCKED

Specifies that each agent that generates an event should not wait

for the event buffer to be written out to disk if the agent

determines that both event buffers are full. NONBLOCKED event

monitors do not slow down database operations to the extent of

BLOCKED event monitors. However, NONBLOCKED event

monitors are subject to data loss on highly active systems.

APPEND

Specifies that if event data files already exist when the event

monitor is turned on, then the event monitor will append the new

CREATE EVENT MONITOR

268 SQL Reference, Volume 2

event data to the existing stream of data files. When the event

monitor is reactivated, it will resume writing to the event files as if

it had never been turned off. APPEND is the default option.

 The APPEND option does not apply at CREATE EVENT

MONITOR time, if there is existing event data in the directory

where the newly created event monitor is to write its event data.

REPLACE

Specifies that if event data files already exist when the event

monitor is turned on, then the event monitor will erase all of the

event files and start writing data to file 00000000.evt.

MANUALSTART

Specifies that the event monitor must be activated manually using the SET

EVENT MONITOR STATE statement. After a MANUALSTART event monitor

has been activated, it can be deactivated only by using the SET EVENT

MONITOR STATE statement or by stopping the instance. This is the default

behavior of non-WLM event monitors except the DB2DETAILDEADLOCK

event monitor.

AUTOSTART

Specifies that the event monitor is to be automatically activated whenever the

database partition on which the event monitor runs is activated. This is the

default behavior of WLM event monitors and the DB2DETAILDEADLOCK

event monitor.

ON DBPARTITIONNUM db-partition-number

Specifies the database partition on which a file or pipe event monitor is to run.

When the monitoring scope is defined as LOCAL, data is only collected on the

specified partition. When the monitoring scope is defined as GLOBAL, all

database partitions collect data and report to the database partition with the

specified number. The I/O component will physically run on the specified

database partition, writing records to the specified file or pipe.

 This clause is not valid for table event monitors. In a partitioned database

environment, write-to-table event monitors will run and write events on all

database partitions where table spaces for target tables are defined.

If this clause is not specified, the currently connected database partition

number (for the application) is used.

LOCAL

The event monitor reports only on the database partition that is running. It

gives a partial trace of the database activity. This is the default.

 This clause is not valid for table event monitors.

GLOBAL

The event monitor reports on all database partitions. For a partitioned

database, only DEADLOCKS event monitors can be defined as GLOBAL.

 This clause is not valid for table event monitors.

Rules

v Each of the event types (DATABASE, TABLES, DEADLOCKs,...) can only be

specified once in a particular event monitor definition.

CREATE EVENT MONITOR

Statements 269

Notes

v Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS

catalog view. The events themselves are recorded in the SYSCAT.EVENTS

catalog view. The names of target tables are recorded in the

SYSCAT.EVENTTABLES catalog view.

v There is a performance impact when using DEADLOCKS WITH DETAILS rather

than DEADLOCKS. When a deadlock occurs, the database manager requires

extra time to record the extra deadlock information.

v A CONNHEADER event is normally written whenever a connection is

established. However, if an event monitor is created only for DEADLOCKS

WITH DETAILS, a CONNHEADER event will only be written the first time that

the connection participates in a deadlock.

v In a database with multiple database partitions, the ON DBPARTITIONNUM

clause can be used with FILE and PIPE event monitors having a DEADLOCKS

event type to indicate where the event monitor itself should reside; information

from other database partitions, if relevant, is sent to that location for processing.

v In a database with multiple database partitions, a deadlock event monitor will

receive information about applications that have locks participating in the

deadlock from all the database partitions on which those participating locks

existed. If the database partition to which the application is connected (the

application coordinator partition) is not one of the participating database

partitions, no information about a deadlock event will be received from that

database partition.

v The BUFFERSIZE parameter restricts the size of STMT, STMT_HISTORY,

DATA_VALUE, and DETAILED_DLCONN events. If a STMT or a

STMT_HISTORY event cannot fit within a buffer, it is truncated by truncating

statement text. If a DETAILED_DLCONN event cannot fit within a buffer, it is

truncated by removing locks. If it still cannot fit, statement text is truncated. If a

DATA_VAL event cannot fit within a buffer, the data value is truncated.

Event monitors WITH DETAILS HISTORY VALUES (and, to a lesser extent,

WITH DETAILS HISTORY) use a significant amount of monitor heap space to

track statements and their data values. For more information, see the description

of the mon_heap_sz database manager configuration parameter.

v If the database partition on which the event monitor is to run is not active, event

monitor activation occurs when that database partition next activates.

v After an event monitor is activated, it behaves like an autostart event monitor

until that event monitor is explicitly deactivated or the instance is recycled. That

is, if an event monitor is active when a database partition is deactivated, and

that database partition is subsequently reactivated, the event monitor is also

explicitly reactivated.

v Write to table event monitors:

– General Notes:

- All target tables are created when the CREATE EVENT MONITOR

statement executes.

- If the creation of a table fails for any reason, an error is passed back to the

application program, and the CREATE EVENT MONITOR statement fails.

- A target table can only be used by one event monitor. During CREATE

EVENT MONITOR processing, if a target table is found to have already

been defined for use by another event monitor, the CREATE EVENT

MONITOR statement fails, and an error is passed back to the application

program. A table is defined for use by another event monitor if the table

name matches a value found in the SYSCAT.EVENTTABLES catalog view.

CREATE EVENT MONITOR

270 SQL Reference, Volume 2

- During CREATE EVENT MONITOR processing, if a table already exists,

but is not defined for use by another event monitor, no table is created, and

processing continues. A warning is passed back to the application program.

- Any table spaces must exist before the CREATE EVENT MONITOR

statement is executed. The CREATE EVENT MONITOR statement does not

create table spaces.

- If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE

TO TABLE event monitors, an event monitor output process or thread is

started on each database partition in the instance, and each of these

processes reports data only for the database partition on which it is

running.

- The following event types from the flat monitor log file or pipe format are

not recorded by write to table event monitors:

v LOG_STREAM_HEADER

v LOG_HEADER

v DB_HEADER (Elements db_name and db_path are not recorded. The

element conn_time is recorded in CONTROL.)
- In a partitioned database environment, data is only written to target tables

on the database partitions where their table spaces exist. If a table space for

a target table does not exist on some database partition, data for that target

table is ignored. This behavior allows users to choose a subset of database

partitions for monitoring, by creating a table space that exists only on

certain database partitions.

In a partitioned database environment, if some target tables do not reside

on a database partition, but other target tables do reside on that same

database partition, only the data for the target tables that do reside on that

database partition is recorded.

- Users must manually prune all target tables.
– Table Columns:

- Column names in a table match an event monitor element identifier.

Monitor variables of type sqlm_time (elapsed time) are an exception. The

column names for such types are TYPE_NAME_S, and TYPE_NAME_MS,

representing the columns that store the time in seconds and microseconds,

respectively. Any event monitor element that does not have a corresponding

target table column is ignored.

- Use the db2evtbl command to build a CREATE EVENT MONITOR

command that includes a complete list of elements for a group.

- The types of columns being used for monitor elements correlate to the

following mapping:

SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)

 (If the data in the event monitor

 record exceeds n bytes,

 it is truncated.)

SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT

SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT

SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT

SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT

sqlm_timestamp TIMESTAMP

sqlm_time(elapsed time) BIGINT

sqlca:

 sqlerrmc VARCHAR[72]

 sqlstate CHAR[5]

 sqlwarn CHAR[11]

 other fields INTEGER or BIGINT

- Columns are defined to be NOT NULL.

CREATE EVENT MONITOR

Statements 271

- Because the performance of tables with CLOB columns is inferior to tables

that have VARCHAR columns, consider using the TRUNC keyword when

specifying the STMT evm-group value (or the DLCONN evm-group value, if

using the DEADLOCKS WITH DETAILS event type).

- Unlike other target tables, the columns in the CONTROL table do not

match monitor element identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

----------- --------- -------- -----------

PARTITION_KEY INTEGER N Distribution key (partitioned

 database only)

PARTITION_NUMBER INTEGER N Database partition number

 (partitioned database only)

EVMONNAME VARCHAR(128) N Name of the event monitor

MESSAGE VARCHAR(128) N Describes the nature of

 the MESSAGE_TIME column.

 This can be one of

 the following:

 - FIRST_CONNECT (the time

 of the first connect to the

 database after activation)

 - EVMON_START (the time that

 the event monitor listed

 in EVMONNAME was started)

 - OVERFLOWS:n (denotes that

 n records were discarded

 because of buffer overflow)

 - LAST_DROPPED_RECORD

 (the last time that

 an overflow occurred)

MESSAGE_TIME TIMESTAMP N Timestamp

- In a partitioned database environment, the first column of each table is

named PARTITION_KEY, is NOT NULL, and is of type INTEGER. This

column is used as the distribution key for the table. The value of this

column is chosen so that each event monitor process inserts data into the

database partition on which the process is running; that is, insert operations

are performed locally on the database partition where the event monitor

process is running. On any database partition, the PARTITION_KEY field

will contain the same value. This means that if a database partition is

dropped and data redistribution is performed, all data on the dropped

database partition will go to one other database partition instead of being

evenly distributed. Therefore, before removing a database partition,

consider deleting all table rows on that database partition.

- In a partitioned database environment, a column named

PARTITION_NUMBER can be defined for each table. This column is NOT

NULL and is of type INTEGER. It contains the number of the database

partition on which the data was inserted. Unlike the PARTITION_KEY

column, the PARTITION_NUMBER column is not mandatory. The

PARTITION_NUMBER column is not allowed in a non-partitioned database

environment.
– Table Attributes:

- Default table attributes are used. Besides distribution key (partitioned

databases only), no extra options are specified when creating tables.

- Indexes on the table can be created.

- Extra table attributes (such as volatile, RI, triggers, constraints, and so on)

can be added, but the event monitor process (or thread) will ignore them.

- If ″not logged initially″ is added as a table attribute, it is turned off at the

first COMMIT, and is not set back on.

CREATE EVENT MONITOR

272 SQL Reference, Volume 2

– Event Monitor Activation:

- When an event monitor activates, all target table names are retrieved from

the SYSCAT.EVENTTABLES catalog view.

- In a partitioned database environment, activation processing occurs on

every database partition of the instance. On a particular database partition,

activation processing determines the table spaces and database partition

groups for each target table. The event monitor only activates on a database

partition if at least one target table exists on that database partition.

Moreover, if some target table is not found on a database partition, that

target table is flagged so that data destined for that table is dropped during

runtime processing.

- If a target table does not exist when the event monitor activates (or, in a

partitioned database environment, if the table space does not reside on a

database partition), activation continues, and data that would otherwise be

inserted into this table is ignored.

- Activation processing validates each target table. If validation fails,

activation of the event monitor fails, and messages are written to the

administration log.

- During activation in a partitioned database environment, the CONTROL

table rows for FIRST_CONNECT and EVMON_START are only inserted on

the catalog database partition. This requires that the table space for the

control table exist on the catalog database partition. If it does not exist on

the catalog database partition, these inserts are not performed.

- In a partitioned database environment, if a partition is not yet active when

a write to table event monitor is activated, the event monitor will be

activated the next time that partition is activated.
– Run Time:

- An event monitor runs with DBADM authority.

- If, while an event monitor is active, an insert operation into a target table

fails:

v Uncommitted changes are rolled back.

v A message is written to the administration log.

v The event monitor is deactivated.
- If an event monitor is active, it performs a local COMMIT when it has

finished processing an event monitor buffer.

- In a partitioned database environment, the actual statement text, which can

be up to 65 535 bytes in length, is only stored (in the STMT or DLCONN

table) by the event monitor process running on the application coordinator

database partition. On other database partitions, this value has zero length.

- In a non-partitioned database environment, all write to table event

monitors are deactivated when the last application terminates (and the

database has not been explicitly activated). In a partitioned database

environment, write to table event monitors are deactivated when the

catalog partition deactivates.

- The DROP EVENT MONITOR statement does not drop target tables.
v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

- Commas can be used to separate multiple options in the target-table-info

clause or the wlm-target-table-info clause

CREATE EVENT MONITOR

Statements 273

Examples

Example 1: The following example creates an event monitor called SMITHPAY. This

event monitor, will collect event data for the database as well as for the SQL

statements performed by the PAYROLL application owned by the JSMITH

authorization ID. The data will be appended to the absolute path

/home/jsmith/event/smithpay/. A maximum of 25 files will be created. Each file

will be a maximum of 1 024 4K pages long. The file I/O will be non-blocked.

 CREATE EVENT MONITOR SMITHPAY

 FOR DATABASE, STATEMENTS

 WHERE APPL_NAME = ’PAYROLL’ AND AUTH_ID = ’JSMITH’

 WRITE TO FILE ’/home/jsmith/event/smithpay’

 MAXFILES 25

 MAXFILESIZE 1024

 NONBLOCKED

 APPEND

Example 2: The following example creates an event monitor called

DEADLOCKS_EVTS. This event monitor will collect deadlock events and will

write them to the relative path DLOCKS. One file will be written, and there is no

maximum file size. Each time the event monitor is activated, it will append the

event data to the file 00000000.evt if it exists. The event monitor will be started

each time the database is started. The I/0 will be blocked by default.

 CREATE EVENT MONITOR DEADLOCK_EVTS

 FOR DEADLOCKS

 WRITE TO FILE ’DLOCKS’

 MAXFILES 1

 MAXFILESIZE NONE

 AUTOSTART

Example 3: This example creates an event monitor called DB_APPLS. This event

monitor collects connection events, and writes the data to the named pipe

/home/jsmith/applpipe.

 CREATE EVENT MONITOR DB_APPLS

 FOR CONNECTIONS

 WRITE TO PIPE ’/home/jsmith/applpipe’

Example 4: This example, which assumes a partitioned database environment,

creates an event monitor called FOO. This event monitor collects SQL statement

events and writes them to SQL tables with the following derived names:

v CONNHEADER_FOO

v STMT_FOO

v SUBSECTION_FOO

v CONTROL_FOO

Because no table space information is supplied, all tables will be created in a table

space selected by the system, based on the rules described under the IN

tablespace-name clause. All tables include all elements for their group (that is,

columns are defined whose names are equivalent to the element names.)

 CREATE EVENT MONITOR FOO

 FOR STATEMENTS

 WRITE TO TABLE

Example 5: This example, which assumes a partitioned database environment,

creates an event monitor called BAR. This event monitor collects SQL statement

and transaction events and writes them to tables as follows:

CREATE EVENT MONITOR

274 SQL Reference, Volume 2

v Any data from the STMT group is written to table MYDEPT.MYSTMTINFO. The

table is created in table space MYTABLESPACE. Create columns only for the

following elements: ROWS_READ, ROWS_WRITTEN, and STMT_TEXT. Any

other elements of the group will be discarded.

v Any data from the SUBSECTION group is written to table

MYDEPT.MYSUBSECTIONINFO. The table is created in table space

MYTABLESPACE. The table includes all columns, except START_TIME,

STOP_TIME, and PARTIAL_RECORD.

v Any data from the XACT group is written to table XACT_BAR. Because no table

space information is supplied, the table will be created in a table space selected

by the system, based on the rules described under the IN tablespace-name clause.

This table includes all elements contained in the XACT group.

v No tables are created for connheader or control; all data for these groups are

discarded.
 CREATE EVENT MONITOR BAR

 FOR STATEMENTS, TRANSACTIONS

 WRITE TO TABLE

 STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE

 INCLUDES(ROWS_READ, ROWS_WRITTEN, STMT_TEXT)),

 STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE

 EXCLUDES(START_TIME, STOP_TIME, PARTIAL_RECORD)),

 XACT

CREATE EVENT MONITOR

Statements 275

CREATE FUNCTION

The CREATE FUNCTION statement is used to register or define a user-defined

function or function template at the current server.

There are five different types of functions that can be created using this statement.

Each of these is described separately.

v External Scalar. The function is written in a programming language and returns

a scalar value. The external executable is registered in the database, along with

various attributes of the function.

v External Table. The function is written in a programming language and returns a

complete table. The external executable is registered in the database along with

various attributes of the function.

v OLE DB External Table. A user-defined OLE DB external table function is

registered in the database to access data from an OLE DB provider.

v Sourced or Template. A source function is implemented by invoking another

function (either built-in, external, SQL, or source) that is already registered in the

database.

It is possible to create a partial function, called a function template, which defines

what types of values are to be returned, but which contains no executable code.

The user maps it to a data source function within a federated system, so that the

data source function can be invoked from a federated database. A function

template can be registered only with an application server that is designated as a

federated server.

v SQL Scalar, Table or Row. The function body is written in SQL and defined

together with the registration in the database. It returns a scalar value, a table, or

a single row.

CREATE FUNCTION

276 SQL Reference, Volume 2

CREATE FUNCTION (External Scalar)

The CREATE FUNCTION (External Scalar) statement is used to register a

user-defined external scalar function at the current server. A scalar function returns

a single value each time it is invoked, and is in general valid wherever an SQL

expression is valid.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following:

– IMPLICIT_SCHEMA authority on the database, if the schema name of the

function does not refer to an existing schema

– CREATEIN privilege on the schema, if the schema name of the function refers

to an existing schema
v SYSADM or DBADM authority

To create a not-fenced function, the privileges held by the authorization ID of the

statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To create a fenced function, no additional authorities or privileges are required.

Syntax

�� CREATE FUNCTION function-name

�

 ()

,

parameter-declaration

 * �

� RETURNS data-type2

AS LOCATOR

data-type3

CAST FROM

data-type4

AS LOCATOR

 * �

�
SPECIFIC

specific-name
 * EXTERNAL *

NAME

’string’

identifier

 �

CREATE FUNCTION (External Scalar)

Statements 277

�
 (1)

LANGUAGE

C

JAVA

CLR

OLE

*

PARAMETER STYLE

DB2GENERAL

JAVA

SQL

*

�

�

PARAMETER CCSID

ASCII

UNICODE

*

 NOT DETERMINISTIC

DETERMINISTIC

*

�

�
 FENCED

FENCED

*

THREADSAFE

NOT THREADSAFE

THREADSAFE

NOT FENCED

*

*

 RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

*

�

�
 READS SQL DATA

NO SQL

CONTAINS SQL

*

 STATIC DISPATCH

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

�

�
 NO SCRATCHPAD

100

SCRATCHPAD

length

*

 NO FINAL CALL

FINAL CALL

*

ALLOW PARALLEL

DISALLOW PARALLEL

�

�

*

 NO DBINFO

DBINFO

*

TRANSFORM GROUP

group-name

*

�

�
PREDICATES

(

predicate-specification

)
 * �

�
 INHERIT SPECIAL REGISTERS

*

��

parameter-declaration:

 data-type1

parameter-name

AS LOCATOR

data-type1, data-type2, data-type3, data-type4:

 built-in-type

distinct-type-name

structured-type-name

REF

(

type-name

)

built-in-type:

CREATE FUNCTION (External Scalar)

278 SQL Reference, Volume 2

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(1)

CHARACTER

CHAR

(integer)

(2)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

(3)

(4)

DB2SECURITYLABEL

predicate-specification:

 WHEN = constant

<>

EXPRESSION AS

expression-name

<

>

<=

>=

 �

CREATE FUNCTION (External Scalar)

Statements 279

� data-filter

index-exploitation

index-exploitation

data-filter

data-filter:

 FILTER USING function-invocation

case-expression

index-exploitation:

 SEARCH BY INDEX EXTENSION index-extension-name

EXACT
 �

�

�

exploitation-rule

exploitation-rule:

 WHEN KEY (parameter-name1) �

�

�

 ,

USE

search-method-name

(

parameter-name2

)

Notes:

1 LANGUAGE SQL is also supported.

2 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

Description

function-name

Names the function being defined. It is a qualified or unqualified name that

designates a function. The unqualified form of function-name is an SQL

identifier (with a maximum length of 128). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier. The

CREATE FUNCTION (External Scalar)

280 SQL Reference, Volume 2

qualified name must not be the same as the data type of the first parameter, if

that first parameter is a structured type.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters and the data type of each parameter (without regard for

any length, precision or scale attributes of the data type) must not identify a

function or method described in the catalog (SQLSTATE 42723). The

unqualified name, together with the number and data types of the parameters,

while of course unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’;.

Otherwise, an error (SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a function-name. The names are SOME, ANY, ALL,

NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS,

SIMILAR, MATCH, and the comparison operators. Failure to observe this rule

will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there is

some difference in the signature of the functions.

Although there is no prohibition against it, an external user-defined function

should not be given the same name as a built-in function, unless it is an

intentional override. To give a function having a different meaning the same

name (for example, LENGTH, VALUE, MAX), with consistent arguments, as a

built-in scalar or column function, is to invite trouble for dynamic SQL

statements, or when static SQL applications are rebound; the application may

fail, or perhaps worse, may appear to run successfully while providing a

different result.

(parameter-declaration,...)

Identifies the number of input parameters of the function, and specifies the

data type of each parameter. One entry in the list must be specified for each

parameter that the function will expect to receive. No more than 90 parameters

are allowed (SQLSTATE 54023).

 It is possible to register a function that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have

exactly the same type for all corresponding parameters. Lengths, precisions,

and scales are not considered in this type comparison. Therefore, CHAR(8) and

CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and

DECIMAL (4,3). For a Unicode database, CHAR(13) and GRAPHIC(8) are

considered to be the same type. There is some further bundling of types that

causes them to be treated as the same type for this purpose, such as DECIMAL

and NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

parameter-name

Specifies an optional name for the input parameter. Parameter names are

required to reference the parameters of a function in the index-exploitation

clause of a predicate specification. The name cannot be the same as any

other parameter-name in the parameter list (SQLSTATE 42734).

data-type1

Specifies the data type of the input parameter. The data type can be a

built-in data type, a distinct type, a structured type, or a reference type.

For a more complete description of each built-in data type, see “CREATE

TABLE”. Some data types are not supported in all languages. For details

CREATE FUNCTION (External Scalar)

Statements 281

on the mapping between SQL data types and host language data types, see

“Data types that map to SQL data types in embedded SQL applications”.

v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.

v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE

(SQLSTATE 42815).

v DECFLOAT is invalid with LANGUAGE C, COBOL, CLR, JAVA, and

OLE (SQLSTATE 42815).

v XML is invalid with LANGUAGE OLE.

v Because the XML value that is seen inside a function is a serialized

version of the XML value that is passed as a parameter in the function

call, parameters of type XML must be declared using the syntax XML AS

CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE

42613).

v Array types cannot be specified (SQLSTATE 42815).

For a user-defined distinct type, the length, precision, or scale attributes for

the parameter are those of the source type of the distinct type (those

specified on CREATE TYPE). A distinct type parameter is passed as the

source type of the distinct type. If the name of the distinct type is

unqualified, the database manager resolves the schema name by searching

the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions

must exist in the associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if

the parameter is unscoped.

AS LOCATOR

Specifies that a locator to the value of the parameter is passed to the

function instead of the actual value. Specify AS LOCATOR only for

parameters with a LOB data type or a distinct type based on a LOB

data type (SQLSTATE 42601). Passing locators instead of values can

result in fewer bytes being passed to the function, especially when the

value of the parameter is very large.

 The AS LOCATOR clause has no effect on determining whether data

types can be promoted, nor does it affect the function signature, which

is used in function resolution.

If the function is FENCED and has the NO SQL option, the AS

LOCATOR clause cannot be specified (SQLSTATE 42613).

RETURNS

This mandatory clause identifies the output of the function.

data-type2

Specifies the data type of the output.

 In this case, exactly the same considerations apply as for the parameters of

external functions described above under data-type1 for function

parameters.

AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS

LOCATOR clause can be added. This indicates that a LOB locator is to

be passed from the UDF instead of the actual value.

CREATE FUNCTION (External Scalar)

282 SQL Reference, Volume 2

data-type3 CAST FROM data-type4

Specifies the data type of the output.

 This form of the RETURNS clause is used to return a different data type to

the invoking statement from the data type that was returned by the

function code. For example, in

 CREATE FUNCTION GET_HIRE_DATE(CHAR(6))

 RETURNS DATE CAST FROM CHAR(10)

 ...

 the function code returns a CHAR(10) value to the database manager,

which, in turn, converts it to a DATE and passes that value to the invoking

statement. The data-type4 must be castable to the data-type3 parameter. If it

is not castable, an error (SQLSTATE 42880) is raised.

Since the length, precision or scale for data-type3 can be inferred from

data-type4, it not necessary (but still permitted) to specify the length,

precision, or scale for parameterized types specified for data-type3. Instead

empty parentheses may be used (for example VARCHAR() may be used).

FLOAT() cannot be used (SQLSTATE 42601) since parameter value

indicates different data types (REAL or DOUBLE).

Distinct types, array types, and structured types are not valid as the type

specified in data-type4 (SQLSTATE 42815).

The cast operation is also subject to run-time checks that might result in

conversion errors being raised.

AS LOCATOR

For data-type4 specifications that are LOB types or distinct types which

are based on LOB types, the AS LOCATOR clause can be added. This

indicates that a LOB locator is to be passed back from the UDF instead

of the actual value.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined.

This specific name can be used when sourcing on this function, dropping the

function, or commenting on the function. It can never be used to invoke the

function. The unqualified form of specific-name is an SQL identifier (with a

maximum length of 128). The qualified form is a schema-name followed by a

period and an SQL identifier. The name, including the implicit or explicit

qualifier, must not identify another function instance or method specification

that exists at the application server; otherwise an error (SQLSTATE 42710) is

raised.

 The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.

If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

EXTERNAL

This clause indicates that the CREATE FUNCTION statement is being used to

register a new function based on code written in an external programming

language and adhering to the documented linkage conventions and interface.

 If NAME clause is not specified ″NAME function-name″ is assumed.

CREATE FUNCTION (External Scalar)

Statements 283

NAME ’string’

This clause identifies the name of the user-written code which implements

the function being defined.

 The ’string’ option is a string constant with a maximum of 254 bytes. The

format used for the string is dependent on the LANGUAGE specified.

v For LANGUAGE C:

The string specified is the library name and function within the library,

which the database manager invokes to execute the user-defined

function being created. The library (and the function within the library)

do not need to exist when the CREATE FUNCTION statement is

executed. However, when the function is used in an SQL statement, the

library and function within the library must exist and be accessible from

the database server machine; otherwise, an error is returned (SQLSTATE

42724).

The string can be specified as follows:

�� ’ library_id ’

absolute_path_id

!

func_id
 ��

Extraneous blanks are not permitted within the single quotation marks.

library_id

Identifies the library name containing the function. The database

manager will look for the library as follows:

– On UNIX systems, if ’myfunc’ was given as the library_id, and the

database manager is being run from /u/production, the database

manager will look for the function in library /u/production/
sqllib/function/myfunc.

– On Windows operating systems, the database manager will look

for the function in a directory path that is specified by the

LIBPATH or PATH environment variable.

absolute_path_id

Identifies the full path name of the file containing the function.

 On UNIX systems, for example, ’/u/jchui/mylib/myfunc’ would

cause the database manager to look in /u/jchui/mylib for the

myfunc shared library.

On Windows operating systems, ’d:\mylib\myfunc.dll’ would cause

the database manager to load the dynamic link library, myfunc.dll,

from the d:\mylib directory. If an absolute path ID is being used to

identify the routine body, be sure to append the .dll extension.

! func_id

Identifies the entry point name of the function to be invoked. The !

serves as a delimiter between the library ID and the function ID.

 On a UNIX system, for example, ’mymod!func8’ would direct the

database manager to look for the library $inst_home_dir/sqllib/
function/mymod and to use entry point func8 within that library.

On Windows operating systems, ’mymod!func8’ would direct the

database manager to load the mymod.dll file and to call the func8()

function in the dynamic link library (DLL).
If the string is not properly formed, an error is returned (SQLSTATE

42878).

CREATE FUNCTION (External Scalar)

284 SQL Reference, Volume 2

The body of every external function should be in a directory that is

available on every database partition.

v For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier

and method identifier, which the database manager invokes to execute

the user-defined function being created. The class identifier and method

identifier do not need to exist when the CREATE FUNCTION statement

is executed. If a jar_id is specified, it must exist when the CREATE

FUNCTION statement is executed. However, when the function is used

in an SQL statement, the method identifier must exist and be accessible

from the database server machine; otherwise, an error is returned

(SQLSTATE 42724).

The string can be specified as follows:

�� ’

jar_id :
 class_id .

!
 method_id ’ ��

Extraneous blanks are not permitted within the single quotation marks.

jar_id

Identifies the jar identifier given to the jar collection when it was

installed in the database. It can be either a simple identifier, or a

schema qualified identifier. Examples are ’myJar’ and

’mySchema.myJar’.

class_id

Identifies the class identifier of the Java object. If the class is part of

a package, the class identifier part must include the complete

package prefix, for example, ’myPacks.UserFuncs’. The Java virtual

machine will look in directory ’.../myPacks/UserFuncs/’ for the

classes. On Windows operating systems, the Java virtual machine

will look in directory ’...\myPacks\UserFuncs\’.

method_id

Identifies the method name of the Java object to be invoked.
v For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable),

the class within that assembly, and the method within the class that the

database manager invokes to execute the function being created. The

module, class, and method do not need to exist when the CREATE

FUNCTION statement is executed. However, when the function is used

in an SQL statement, the module, class, and method must exist and be

accessible from the database server machine; otherwise, an error is

returned (SQLSTATE 42724).

C++ routines that are compiled with the ’/clr’ compiler option to

indicate that they include managed code extensions must be cataloged as

’LANGUAGE CLR’ and not ’LANGUAGE C’. DB2 needs to know that

the .NET infrastructure is being utilized in a user-defined function in

order to make necessary runtime decisions. All user-defined functions

using the .NET infrastructure must be cataloged as ’LANGUAGE CLR’.

The string can be specified as follows:

�� ’ assembly : class_id ! method_id ’ ��

CREATE FUNCTION (External Scalar)

Statements 285

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

assembly

Identifies the DLL or other assembly file in which the class resides.

Any file extensions (such as .dll) must be specified. If the full path

name is not given, the file must reside in the function directory of

the DB2 install path (for example, c:\sqllib\function). If the file

resides in a subdirectory of the install function directory, the

subdirectory can be given before the file name rather than specifying

the full path. For example, if your install directory is c:\sqllib and

your assembly file is c:\sqllib\function\myprocs\mydotnet.dll, it is

only necessary to specify ’myprocs\mydotnet.dll’ for the assembly.

The case sensitivity of this parameter is the same as the case

sensitivity of the file system.

class_id

Specifies the name of the class within the given assembly in which

the method that is to be invoked resides. If the class resides within a

namespace, the full namespace must be given in addition to the

class. For example, if the class EmployeeClass is in namespace

MyCompany.ProcedureClasses, then

MyCompany.ProcedureClasses.EmployeeClass must be specified for

the class. Note that the compilers for some .NET languages will add

the project name as a namespace for the class, and the behavior may

differ depending on whether the command line compiler or the GUI

compiler is used. This parameter is case sensitive.

method_id

Specifies the method within the given class that is to be invoked.

This parameter is case sensitive.
v For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class

identifier (clsid), and method identifier, which the database manager

invokes to execute the user-defined function being created. The

programmatic identifier or class identifier, and method identifier do not

need to exist when the CREATE FUNCTION statement is executed.

However, when the function is used in an SQL statement, the method

identifier must exist and be accessible from the database server machine;

otherwise, an error is returned (SQLSTATE 42724).

The string can be specified as follows:

�� ’ progid ! method_id ’

clsid
 ��

Extraneous blanks are not permitted within the single quotation marks.

progid

Identifies the programmatic identifier of the OLE object.

 progid is not interpreted by the database manager but only

forwarded to the OLE APIs at run time. The specified OLE object

must be creatable and support late binding (also called

IDispatch-based binding).

clsid

Identifies the class identifier of the OLE object to create. It can be

CREATE FUNCTION (External Scalar)

286 SQL Reference, Volume 2

used as an alternative for specifying a progid in the case that an OLE

object is not registered with a progid. The clsid has the form:

 {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where ’n’ is an alphanumeric character. clsid is not interpreted by the

database manager but only forwarded to the OLE APIs at run time.

method_id

Identifies the method name of the OLE object to be invoked.

NAME identifier

This identifier specified is an SQL identifier. The SQL identifier is used as

the library-id in the string. Unless it is a delimited identifier, the identifier is

folded to upper case. If the identifier is qualified with a schema name, the

schema name portion is ignored. This form of NAME can only be used

with LANGUAGE C.

LANGUAGE

This mandatory clause is used to specify the language interface convention to

which the user-defined function body is written.

C This means the database manager will call the user-defined function as

if it were a C function. The user-defined function must conform to the

C language calling and linkage convention as defined by the standard

ANSI C prototype.

JAVA This means the database manager will call the user-defined function as

a method in a Java class.

CLR This means the database manager will call the user-defined function as

a method in a .NET class. At this time, LANGUAGE CLR is only

supported for user-defined functions running on Windows operating

systems. NOT FENCED cannot be specified for a CLR routine

(SQLSTATE 42601).

OLE This means the database manager will call the user-defined function as

if it were a method exposed by an OLE automation object. The

user-defined function must conform with the OLE automation data

types and invocation mechanism, as described in the OLE Automation

Programmer’s Reference.

 LANGUAGE OLE is only supported for user-defined functions stored

in DB2 for Windows operating systems. THREADSAFE may not be

specified for UDFs defined with LANGUAGE OLE (SQLSTATE 42613).

PARAMETER STYLE

This clause is used to specify the conventions used for passing parameters to

and returning the value from functions.

DB2GENERAL

Used to specify the conventions for passing parameters to and returning

the value from external functions that are defined as a method in a Java

class. This can only specified when LANGUAGE JAVA is used.

 The value DB2GENRL may be used as a synonym for DB2GENERAL.

JAVA

This means that the function will use a parameter passing convention that

conforms to the Java language and SQLJ Routines specification. This can

only be specified when LANGUAGE JAVA is used, no structured data

types are specified as parameters, and no LONG VARCHAR, LONG

VARGRAPHIC, CLOB, BLOB, or DBCLOB data types are specified as

CREATE FUNCTION (External Scalar)

Statements 287

return types (SQLSTATE 429B8). PARAMETER STYLE JAVA functions do

not support the FINAL CALL, SCRATCHPAD, or DBINFO clause.

SQL

Used to specify the conventions for passing parameters to and returning

the value from external functions that conform to C language calling and

linkage conventions, methods exposed by OLE automation objects, or

public static methods of a .NET object. This must be specified when

LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

the function. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031). When the function is invoked, the application

code page for the function is the database code page.

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in UCS-2.

If the database is not a Unicode database, character data is in UTF-8. In

either case, when the function is invoked, the application code page for the

function is 1208.

 If the database is not a Unicode database, and a function with

PARAMETER CCSID UNICODE is created, the function cannot have any

graphic types, the XML type, or user-defined types (SQLSTATE 560C1).

 If the database is not a Unicode database, and the alternate collating sequence

has been specified in the database configuration, functions can be created with

either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE. All

string data passed into and out of the function will be converted to the

appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or

LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC

This optional clause specifies whether the function always returns the same

results for given argument values (DETERMINISTIC) or whether the function

depends on some state values that affect the results (NOT DETERMINISTIC).

That is, a DETERMINISTIC function must always return the same result from

successive invocations with identical inputs. Optimizations taking advantage of

the fact that identical inputs always produce the same results are prevented by

specifying NOT DETERMINISTIC. An example of a NOT DETERMINISTIC

function would be a random-number generator. An example of a

DETERMINISTIC function would be a function that determines the square root

of the input.

FENCED or NOT FENCED

This clause specifies whether or not the function is considered “safe” to run in

the database manager operating environment’s process or address space.

 If a function is registered as FENCED, the database manager protects its

internal resources (for example, data buffers) from access by the function. Most

CREATE FUNCTION (External Scalar)

288 SQL Reference, Volume 2

functions will have the option of running as FENCED or NOT FENCED. In

general, a function running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions not adequately coded, reviewed and

tested can compromise the integrity of DB2. DB2 takes some precautions

against many of the common types of inadvertent failures that might occur,

but cannot guarantee complete integrity when NOT FENCED user-defined

functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT

THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR

clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority

(CREATE_NOT_FENCED_ROUTINE) is required to register a user-defined

function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying

the NOT FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE

Specifies whether the function is considered safe to run in the same process as

other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the function is defined with LANGUAGE other than OLE:

v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be

threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will

never simultaneously invoke the function in the same process as another

routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE is

JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If

the function is defined with LANGUAGE OLE, THREADSAFE may not be

specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT

THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

This optional clause may be used to avoid a call to the external function if any

of the arguments is null. If the user-defined function is defined to have no

parameters, then of course this null argument condition cannot arise, and it

does not matter how this specification is coded.

 If RETURNS NULL ON NULL INPUT is specified, and if, at execution time,

any one of the function’s arguments is null, then the user-defined function is

not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of whether any

arguments are null, the user-defined function is called. It can return a null

value or a normal (non-null) value. But responsibility for testing for null

argument values lies with the UDF.

CREATE FUNCTION (External Scalar)

Statements 289

The value NULL CALL may be used as a synonym for CALLED ON NULL

INPUT for backwards and family compatibility. Similarly, NOT NULL CALL

may be used as a synonym for RETURNS NULL ON NULL INPUT.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what type.

NO SQL

Indicates that the function cannot execute any SQL statements (SQLSTATE

38001).

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the function (SQLSTATE 38004 or 42985). Statements that

are not supported in any function return a different error (SQLSTATE

38003 or 42985).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can be

included in the function (SQLSTATE 38002 or 42985). Statements that are

not supported in any function return a different error (SQLSTATE 38003 or

42985).

STATIC DISPATCH

This optional clause indicates that at function resolution time, DB2 chooses a

function based on the static types (declared types) of the parameters of the

function.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the function takes an action that changes the state of an

object that the database manager does not manage. An example of an external

action is sending a message or writing a record to a file. The default is

EXTERNAL ACTION.

EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an

object that the database manager does not manage.

 A function with external actions might return incorrect results if the

function is executed by parallel tasks. For example, if the function sends a

note for each initial call to it, one note is sent for each parallel task instead

of once for the function. Specify the DISALLOW PARALLEL clause for

functions that do not work correctly with parallelism.

NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the state

of an object that the database manager does not manage. The database

manager uses this information during optimization of SQL statements.

NO SCRATCHPAD or SCRATCHPAD length

This optional clause may be used to specify whether a scratchpad is to be

provided for an external function. (It is strongly recommended that

user-defined functions be re-entrant, so a scratchpad provides a means for the

function to “save state” from one call to the next.)

 If SCRATCHPAD is specified, then at first invocation of the user-defined

function, memory is allocated for a scratchpad to be used by the external

function. This scratchpad has the following characteristics:

v length, if specified, sets the size of the scratchpad in bytes; this value must be

between 1 and 32 767 (SQLSTATE 42820). The default size is 100 bytes.

v It is initialized to all X’00’’s.

CREATE FUNCTION (External Scalar)

290 SQL Reference, Volume 2

v Its scope is the SQL statement. There is one scratchpad per reference to the

external function in the SQL statement. So if the UDFX function in the

following statement is defined with the SCRATCHPAD keyword, three

scratchpads would be assigned.

 SELECT A, UDFX(A) FROM TABLEB

 WHERE UDFX(A) > 103 OR UDFX(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is different

from the above. If the function is executed in multiple database partitions, a

scratchpad would be assigned in each database partition where the function

is processed, for each reference to the function in the SQL statement.

Similarly, if the query is executed with intra-partition parallelism enabled,

more than three scratchpads may be assigned.

v It is persistent. Its content is preserved from one external function call to the

next. Any changes made to the scratchpad by the external function on one

call will be there on the next call. The database manager initializes

scratchpads at the beginning of execution of each SQL statement. The

database manager may reset scratchpads at the beginning of execution of

each subquery. The system issues a final call before resetting a scratchpad if

the FINAL CALL option is specified.

v It can be used as a central point for system resources (for example, memory)

which the external function might acquire. The function could acquire the

memory on the first call, keep its address in the scratchpad, and refer to it in

subsequent calls.

(In such a case where system resource is acquired, the FINAL CALL

keyword should also be specified; this causes a special call to be made at

end-of-statement to allow the external function to free any system resources

acquired.)

If SCRATCHPAD is specified, then on each invocation of the user-defined

function an additional argument is passed to the external function which

addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to

the external function.

SCRATCHPAD is not supported for PARAMETER STYLE JAVA functions.

FINAL CALL or NO FINAL CALL

This optional clause specifies whether a final call is to be made to an external

function. The purpose of such a final call is to enable the external function to

free any system resources it has acquired. It can be useful in conjunction with

the SCRATCHPAD keyword in situations where the external function acquires

system resources such as memory and anchors them in the scratchpad. If

FINAL CALL is specified, then at execution time:

v An additional argument is passed to the external function which specifies

the type of call. The types of calls are:

– Normal call: SQL arguments are passed and a result is expected to be

returned.

– First call: the first call to the external function for this reference to the

user-defined function in this SQL statement. The first call is a normal call.

– Final call: a final call to the external function to enable the function to free

up resources. The final call is not a normal call. This final call occurs at

the following times:

- End-of-statement: This case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through executing

otherwise.

CREATE FUNCTION (External Scalar)

Statements 291

- End-of-parallel-task: This case occurs when the function is executed by

parallel tasks.

- End-of-transaction or interrupt: This case occurs when the normal

end-of-statement does not occur. For example, the logic of an

application may for some reason bypass the close of the cursor. During

this type of final call, no SQL statements may be issued except for

CLOSE cursor (SQLSTATE 38505). This type of final call is indicated

with a special value in the ″call type″ argument.
If a commit operation occurs while a cursor defined as WITH HOLD is

open, a final call is made at the subsequent close of the cursor or at the

end of the application.
If NO FINAL CALL is specified then no “call type” argument is passed to

the external function, and no final call is made.

FINAL CALL is not supported for PARAMETER STYLE JAVA functions.

ALLOW PARALLEL or DISALLOW PARALLEL

This optional clause specifies whether, for a single reference to the function, the

invocation of the function can be parallelized. In general, the invocations of

most scalar functions should be parallelizable, but there may be functions

(such as those depending on a single copy of a scratchpad) that cannot. If

either ALLOW PARALLEL or DISALLOW PARALLEL are specified for a scalar

function, then DB2 will accept this specification. The following questions

should be considered in determining which keyword is appropriate for the

function.

v Are all the UDF invocations completely independent of each other? If YES,

then specify ALLOW PARALLEL.

v Does each UDF invocation update the scratchpad, providing value(s) that

are of interest to the next invocation? (For example, the incrementing of a

counter.) If YES, then specify DISALLOW PARALLEL or accept the default.

v Is there some external action performed by the UDF which should happen

only on one database partition? If YES, then specify DISALLOW PARALLEL

or accept the default.

v Is the scratchpad used, but only so that some expensive initialization

processing can be performed a minimal number of times? If YES, then

specify ALLOW PARALLEL.

In any case, the body of every external function should be in a directory that is

available on every database partition.

The default value is ALLOW PARALLEL, except if one or more of the

following options is specified in the statement.

v NOT DETERMINISTIC

v EXTERNAL ACTION

v SCRATCHPAD

v FINAL CALL

If any of these options is specified or implied, the default value is DISALLOW

PARALLEL.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the function

will inherit their initial values from the environment of the invoking statement.

For a function invoked in the select-statement of a cursor, the initial values are

inherited from the environment when the cursor is opened. For a routine

CREATE FUNCTION (External Scalar)

292 SQL Reference, Volume 2

invoked in a nested object (for example a trigger or view), the initial values are

inherited from the runtime environment (not inherited from the object

definition).

 No changes to the special registers are passed back to the invoker of the

function.

Non-updatable special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore set to their

default values.

NO DBINFO or DBINFO

This optional clause specifies whether certain specific information known by

DB2 will be passed to the UDF as an additional invocation-time argument

(DBINFO) or not (NO DBINFO). NO DBINFO is the default. DBINFO is not

supported for LANGUAGE OLE (SQLSTATE 42613) or PARAMETER STYLE

JAVA.

 If DBINFO is specified, then a structure is passed to the UDF which contains

the following information:

v Data base name - the name of the currently connected database.

v Application ID - unique application ID which is established for each

connection to the database.

v Application Authorization ID - the application run-time authorization ID,

regardless of the nested UDFs in between this UDF and the application.

v Code page - identifies the database code page.

v Schema name - under the exact same conditions as for Table name, contains

the name of the schema; otherwise blank.

v Table name - if and only if the UDF reference is either the right-hand side of

a SET clause in an UPDATE statement or an item in the VALUES list of an

INSERT statement, contains the unqualified name of the table being updated

or inserted; otherwise blank.

v Column name - under the exact same conditions as for Table name, contains

the name of the column being updated or inserted; otherwise blank.

v Database version/release - identifies the version, release and modification

level of the database server invoking the UDF.

v Platform - contains the server’s platform type.

v Table function result column numbers - not applicable to external scalar

functions.

TRANSFORM GROUP group-name

Indicates the transform group to be used for user-defined structured type

transformations when invoking the function. A transform is required if the

function definition includes a user-defined structured type as either a

parameter or returns data type. If this clause is not specified, the default group

name DB2_FUNCTION is used. If the specified (or default) group-name is not

defined for a referenced structured type, an error is raised (SQLSTATE 42741).

If a required FROM SQL or TO SQL transform function is not defined for the

given group-name and structured type, an error is raised (SQLSTATE 42744).

 The transform functions, both FROM SQL and TO SQL, whether designated or

implied, must be SQL functions which properly transform between the

structured type and its built in type attributes.

PREDICATES

Defines the filtering or index extension exploitation performed when this

function is used in a predicate. A predicate-specification allows the optional

CREATE FUNCTION (External Scalar)

Statements 293

SELECTIVITY clause of a search-condition to be specified. If the PREDICATES

clause is specified, the function must be defined as DETERMINISTIC with NO

EXTERNAL ACTION (SQLSTATE 42613). If the PREDICATES clause is

specified, and the database is not a Unicode database, PARAMETER CCSID

UNICODE must not be specified (SQLSTATE 42613).

WHEN comparison-operator

Introduces a specific use of the function in a predicate with a comparison

operator (″=″, ″<″, ″>″, ″>=″, ″<=″, ″<>″).

constant

Specifies a constant value with a data type comparable to the

RETURNS type of the function (SQLSTATE 42818). When a predicate

uses this function with the same comparison operator and this

constant, the specified filtering and index exploitation will be

considered by the optimizer.

EXPRESSION AS expression-name

Provides a name for an expression. When a predicate uses this function

with the same comparison operator and an expression, filtering and

index exploitation may be used. The expression is assigned an

expression name so that it can be used as a search function argument.

The expression-name cannot be the same as any parameter-name of the

function being created (SQLSTATE 42711). When an expression is

specified, the type of the expression is identified.

FILTER USING

Allows specification of an external function or a case expression to be used

for additional filtering of the result table.

function-invocation

Specifies a filter function that can be used to perform additional

filtering of the result table. This is a version of the defined function

(used in the predicate) that reduces the number of rows on which the

user-defined predicate must be executed, to determine if rows qualify.

If the results produced by the index are close to the results expected

for the user-defined predicate, applying the filtering function may be

redundant. If not specified, data filtering is not performed.

 This function can use any parameter-name, the expression-name, or

constants as arguments (SQLSTATE 42703), and returns an integer

(SQLSTATE 428E4). A return value of 1 means the row is kept,

otherwise it is discarded.

This function must also:

v Not be defined with LANGUAGE SQL (SQLSTATE 429B4)

v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 42845)

v Not have a structured data type as the data type of any of the

parameters (SQLSTATE 428E3)

v Not include a subquery (SQLSTATE 428E4)

v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E4)

If an argument invokes another function or method, these rules are

also enforced for this nested function or method. However,

system-generated observer methods are allowed as arguments to the

filter function (or any function or method used as an argument), as

long as the argument evaluates to a built-in data type.

CREATE FUNCTION (External Scalar)

294 SQL Reference, Volume 2

The definer of the function must have EXECUTE privilege on the

specified filter function.

The function-invocation clause must not exceed 65 536 bytes in length in

the database code page (SQLSTATE 22001).

case-expression

Specifies a case expression for additional filtering of the result table.

The searched-when-clause and simple-when-clause can use parameter-name,

expression-name, or a constant (SQLSTATE 42703). An external function

with the rules specified in FILTER USING function-invocation may be

used as a result-expression. Any function or method referenced in the

case-expression must also conform to the four rules listed under

function-invocation.

 Subqueries and XMLQUERY or XMLEXISTS expressions cannot be

used anywhere in the case-expression (SQLSTATE 428E4).

The case expression must return an integer (SQLSTATE 428E4). A

return value of 1 in the result-expression means that the row is kept;

otherwise it is discarded.

The case-invocation clause must not exceed 65 536 bytes in length in the

database code page (SQLSTATE 22001).

index-exploitation

Defines a set of rules in terms of the search method of an index extension

that can be used to exploit the index.

SEARCH BY INDEX EXTENSION index-extension-name

Identifies the index extension. The index-extension-name must identify

an existing index extension.

EXACT

Indicates that the index lookup is exact in terms of the predicate

evaluation. Use EXACT to tell DB2 that neither the original

user-defined predicate function or the filter need to be applied after the

index lookup. The EXACT predicate is useful when the index lookup

returns the same results as the predicate.

 If EXACT is not specified, then the original user-defined predicate is

applied after index lookup. If the index is expected to provide only an

approximation of the predicate, do not specify the EXACT option.

If the index lookup is not used, then the filter function and the original

predicate have to be applied.

exploitation-rule

Describes the search targets and search arguments and how they can be

used to perform the index search through a search method defined in the

index extension.

WHEN KEY (parameter-name1)

This defines the search target. Only one search target can be specified

for a key. The parameter-name1 value identifies parameter names of the

defined function (SQLSTATE 42703 or 428E8).

 The data type of parameter-name1 must match that of the source key

specified in the index extension (SQLSTATE 428EY). The match must

be exact for built-in and distinct data types and within the same

structured type hierarchy for structured types.

CREATE FUNCTION (External Scalar)

Statements 295

This clause is true when the values of the named parameter are

columns that are covered by an index based on the index extension

specified.

USE search-method-name(parameter-name2,...)

This defines the search argument. It identifies which search method to

use from those defined in the index extension. The search-method-name

must match a search method defined in the index extension

(SQLSTATE 42743). The parameter-name2 values identify parameter

names of the defined function or the expression-name in the

EXPRESSION AS clause (SQLSTATE 42703). It must be different from

any parameter name specified in the search target (SQLSTATE 428E9).

The number of parameters and the data type of each parameter-name2

must match the parameters defined for the search method in the index

extension (SQLSTATE 42816). The match must be exact for built-in and

distinct data types and within the same structured type hierarchy for

structured types.

Notes

v Determining whether one data type is castable to another data type does not

consider length or precision and scale for parameterized data types such as

CHAR and DECIMAL. Therefore, errors may occur when using a function as a

result of attempting to cast a value of the source data type to a value of the

target data type. For example, VARCHAR is castable to DATE but if the source

type is actually defined as VARCHAR(5), an error will occur when using the

function.

v When choosing the data types for the parameters of a user-defined function,

consider the rules for promotion that will affect its input values (see “Promotion

of data types”). For example, a constant which may be used as an input value

could have a built-in data type different from the one expected and, more

significantly, may not be promoted to the data type expected. Based on the rules

for promotion, it is generally recommended to use the following data types for

parameters:

– INTEGER instead of SMALLINT

– DOUBLE instead of REAL

– VARCHAR instead of CHAR

– VARGRAPHIC instead of GRAPHIC
v For portability of UDFs across platforms the following data types should not be

used:

– FLOAT- use DOUBLE or REAL instead.

– NUMERIC- use DECIMAL instead.

– LONG VARCHAR- use CLOB (or BLOB) instead.
v A function and a method may not be in an overriding relationship (SQLSTATE

42745). For more information about overriding, see “CREATE TYPE

(Structured)”.

v A function may not have the same signature as a method (comparing the first

parameter-type of the function with the subject-type of the method) (SQLSTATE

42723).

v Creating a function with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

CREATE FUNCTION (External Scalar)

296 SQL Reference, Volume 2

v In a partitioned database environment, the use of SQL in external user-defined

functions or methods is not supported (SQLSTATE 42997).

v Only routines defined as NO SQL can be used to define an index extension

(SQLSTATE 428F8).

v If the function allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).

v A Java routine defined as NOT FENCED will be invoked as if it had been

defined as FENCED THREADSAFE.

v XML parameters are only supported in LANGUAGE JAVA external functions

when the PARAMETER STYLE DB2GENERAL clause is specified.

v Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function can

access a table that is being modified by the statement which invoked the

function (SQLSTATE 57053). For example, suppose the user-defined function

BONUS() is defined as READS SQL DATA. If the statement UPDATE

EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL

statement in the BONUS function can read from the EMPLOYEE table.

v Privileges

– The definer of a function always receives the EXECUTE privilege WITH

GRANT OPTION on the function, as well as the right to drop the function.

– When the function is used in an SQL statement, the function definer must

have the EXECUTE privilege on any packages used by the function.
v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v ASUTIME NO LIMIT

v NO COLLID

v PROGRAM TYPE SUB

v STAY RESIDENT NO

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database if PARAMETER CCSID

UNICODE is not specified
– For compatibility with previous versions of DB2:

- PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL

- NOT VARIANT can be specified in place of DETERMINISTIC, and

VARIANT can be specified in place of NOT DETERMINISTIC

- NULL CALL can be specified in place of CALLED ON NULL INPUT, and

NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT

Examples

Example 1: Pellow is registering the CENTRE function in his PELLOW schema. Let

those keywords that will default do so, and let the system provide a function

specific name:

 CREATE FUNCTION CENTRE (INT,FLOAT)

 RETURNS FLOAT

 EXTERNAL NAME ’mod!middle’

 LANGUAGE C

CREATE FUNCTION (External Scalar)

Statements 297

PARAMETER STYLE SQL

 DETERMINISTIC

 NO SQL

 NO EXTERNAL ACTION

Example 2: Now, McBride (who has DBADM authority) is registering another

CENTRE function in the PELLOW schema, giving it an explicit specific name for

subsequent data definition language use, and explicitly providing all keyword

values. Note also that this function uses a scratchpad and presumably is

accumulating data there that affects subsequent results. Since DISALLOW

PARALLEL is specified, any reference to the function is not parallelized and

therefore a single scratchpad is used to perform some one-time only initialization

and save the results.

 CREATE FUNCTION PELLOW.CENTRE (FLOAT, FLOAT, FLOAT)

 RETURNS DECIMAL(8,4) CAST FROM FLOAT

 SPECIFIC FOCUS92

 EXTERNAL NAME ’effects!focalpt’

 LANGUAGE C PARAMETER STYLE SQL

 DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION

 SCRATCHPAD NO FINAL CALL

 DISALLOW PARALLEL

Example 3: The following is the C language user-defined function program written

to implement the rule:

 output = 2 * input - 4

returning NULL if and only if the input is null. It could be written even more

simply (that is, without null checking), if the CREATE FUNCTION statement had

used NOT NULL CALL. The CREATE FUNCTION statement:

 CREATE FUNCTION ntest1 (SMALLINT)

 RETURNS SMALLINT

 EXTERNAL NAME ’ntest1!nudft1’

 LANGUAGE C PARAMETER STYLE SQL

 DETERMINISTIC NOT FENCED NULL CALL

 NO SQL NO EXTERNAL ACTION

The program code:

#include "sqlsystm.h"

/* NUDFT1 IS A USER_DEFINED SCALAR FUNCTION */

/* udft1 accepts smallint input

and produces smallint output

implementing the rule:

if (input is null)

set output = null;

else

set output = 2 * input - 4;

*/

void SQL_API_FN nudft1

(short *input, /* ptr to input arg */

short *output, /* ptr to where result goes */

short *input_ind, /* ptr to input indicator var */

short *output_ind, /* ptr to output indicator var */

char sqlstate[6], /* sqlstate, allows for null-term */

char fname[28], /* fully qual func name, nul-term */

char finst[19], /* func specific name, null-term */

char msgtext[71]) /* msg text buffer, null-term */

{

/* first test for null input */

if (*input_ind == -1)

{

/* input is null, likewise output */

*output_ind = -1;

CREATE FUNCTION (External Scalar)

298 SQL Reference, Volume 2

}

else

{

/* input is not null. set output to 2*input-4 */

*output = 2 * (*input) - 4;

/* and set out null indicator to zero */

*output_ind = 0;

}

/* signal successful completion by leaving sqlstate as is */

/* and exit */

return;

}

/* end of UDF: NUDFT1 */

Example 4: The following registers a Java UDF which returns the position of the

first vowel in a string. The UDF is written in Java, is to be run fenced, and is the

findvwl method of class javaUDFs.

 CREATE FUNCTION findv (CLOB(100K))

 RETURNS INTEGER

 FENCED

 LANGUAGE JAVA

 PARAMETER STYLE JAVA

 EXTERNAL NAME ’javaUDFs.findvwl’

 NO EXTERNAL ACTION

 CALLED ON NULL INPUT

 DETERMINISTIC

 NO SQL

Example 5: This example outlines a user-defined predicate WITHIN that takes two

parameters, g1 and g2, of type SHAPE as input:

CREATE FUNCTION within (g1 SHAPE, g2 SHAPE)

RETURNS INTEGER

LANGUAGE C

PARAMETER STYLE SQL

NOT VARIANT

NOT FENCED

NO SQL

NO EXTERNAL ACTION

EXTERNAL NAME ’db2sefn!SDESpatilRelations’

PREDICATES

WHEN = 1

FILTER USING mbrOverlap(g1..xmin, g1..ymin, g1..xmax, g1..max,

g2..xmin, g2..ymin, g2..xmax, g2..ymax)

SEARCH BY INDEX EXTENSION gridIndex

WHEN KEY(g1) USE withinExplRule(g2)

WHEN KEY(g2) USE withinExplRule(g1)

The description of the WITHIN function is similar to that of any user-defined

function, but the following additions indicate that this function can be used in a

user-defined predicate.

v PREDICATES WHEN = 1 indicates that when this function appears as

 within(g1, g2) = 1

in the WHERE clause of a DML statement, the predicate is to be treated as a

user-defined predicate and the index defined by the index extension gridIndex

should be used to retrieve rows that satisfy this predicate. If a constant is

specified, the constant specified during the DML statement has to match exactly

the constant specified in the create index statement. This condition is provided

mainly to cover Boolean expression where the result type is either a 1 or a 0. For

other cases, the EXPRESSION clause is a better choice.

CREATE FUNCTION (External Scalar)

Statements 299

v FILTER USING mbrOverlap refers to a filtering function mbrOverlap, which is

a cheaper version of the WITHIN predicate. In the above example, the

mbrOverlap function takes the minimum bounding rectangles as input and

quickly determines if they overlap or not. If the minimum bounding rectangles

of the two input shapes do not overlap, then g1 will not be contained with g2.

Therefore the tuple can be safely discarded, avoiding the application of the

expensive WITHIN predicate.

v The SEARCH BY INDEX EXTENSION clause indicates that combinations of

index extension and search target can be used for this user-defined predicate.

Example 6: This example outlines a user-defined predicate DISTANCE that takes

two parameters, P1 and P2, of type POINT as input:

 CREATE FUNCTION distance (P1 POINT, P2 POINT)

 RETURNS INTEGER

 LANGUAGE C

 PARAMETER STYLE SQL

 NOT VARIANT

 NOT FENCED

 NO SQL

 NO EXTERNAL ACTION

 EXTERNAL NAME ’db2sefn!SDEDistances’

 PREDICATES

 WHEN > EXPRESSION AS distExpr

 SEARCH BY INDEX EXTENSION gridIndex

 WHEN KEY(P1) USE distanceGrRule(P2, distExpr)

 WHEN KEY(P2) USE distanceGrRule(P1, distExpr)

The description of the DISTANCE function is similar to that of any user-defined

function, but the following additions indicate that when this function is used in a

predicate, that predicate is a user-defined predicate.

v PREDICATES WHEN > EXPRESSION AS distExpr is another valid predicate

specification. When an expression is specified in the WHEN clause, the result

type of that expression is used for determining if the predicate is a user-defined

predicate in the DML statement. For example:

 SELECT T1.C1

 FROM T1, T2

 WHERE distance (T1.P1, T2.P1) > T2.C2

The predicate specification distance takes two parameters as input and compares

the results with T2.C2, which is of type INTEGER. Since only the data type of

the right hand side expression matters, (as opposed to using a specific constant),

it is better to choose the EXPRESSION clause in the CREATE FUNCTION DDL

for specifying a wildcard as the comparison value.

Alternatively, the following is also a valid user-defined predicate:

 SELECT T1.C1

 FROM T1, T2

 WHERE distance(T1.P1, T2.P1) > distance (T1.P2, T2.P2)

There is currently a restriction that only the right hand side is treated as the

expression; the term on the left hand side is the user-defined function for the

user-defined predicate.

v The SEARCH BY INDEX EXTENSION clause indicates that combinations of

index extension and search target can be used for this user-defined-predicate. In

the case of the distance function, the expression identified as distExpr is also one

of the search arguments that is passed to the range-producer function (defined

as part of the index extension). The expression identifier is used to define a

name for the expression so that it is passed to the range-producer function as an

argument.

CREATE FUNCTION (External Scalar)

300 SQL Reference, Volume 2

CREATE FUNCTION (External Table)

The CREATE FUNCTION (External Table) statement is used to register a

user-defined external table function at the current server.

A table function can be used in the FROM clause of a SELECT, and returns a table

to the SELECT by returning one row at a time.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist

– CREATEIN privilege on the schema, if the schema name of the function exists
v SYSADM or DBADM authority

To create a not-fenced function, the privileges held by the authorization ID of the

statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To create a fenced function, no additional authorities or privileges are required.

Syntax

�� CREATE FUNCTION function-name

�

 ()

,

parameter-declaration

 * �

�

�

 ,

RETURNS TABLE

(

column-name

data-type2

)

AS LOCATOR

*

�

�

SPECIFIC

specific-name

*

EXTERNAL

NAME

’string’

identifier

*
 (1)

LANGUAGE

C

JAVA

CLR

OLE

�

� * PARAMETER STYLE DB2GENERAL

SQL
 *

PARAMETER CCSID

ASCII

UNICODE

 * �

CREATE FUNCTION (External Table)

Statements 301

�
 NOT DETERMINISTIC

DETERMINISTIC

*
 FENCED

FENCED

*

THREADSAFE

NOT THREADSAFE

THREADSAFE

NOT FENCED

*

*

�

�
 RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

*
 READS SQL DATA

NO SQL

CONTAINS SQL

*
 STATIC DISPATCH

*

�

�
 EXTERNAL ACTION

NO EXTERNAL ACTION

*
 NO SCRATCHPAD

100

SCRATCHPAD

length

*
 NO FINAL CALL

FINAL CALL

*

�

� DISALLOW PARALLEL

DATABASE PARTITIONS

ALLOW PARALLEL

EXECUTE ON

ALL

RESULT TABLE DISTRIBUTED

 * �

�
 NO DBINFO

DBINFO

*

CARDINALITY

integer

*

TRANSFORM GROUP

group-name

*

�

�
 INHERIT SPECIAL REGISTERS

*

��

parameter-declaration:

 data-type1

parameter-name

AS LOCATOR

data-type1, data-type2:

 built-in-type

distinct-type-name

structured-type-name

REF

(

type-name

)

built-in-type:

CREATE FUNCTION (External Table)

302 SQL Reference, Volume 2

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(2)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

(3)

(4)

DB2SECURITYLABEL

Notes:

1 For information on creating LANGUAGE OLE DB external table functions,

see “CREATE FUNCTION (OLE DB External Table)”. For information on

creating LANGUAGE SQL table functions, see “CREATE FUNCTION (SQL

Scalar, Table, or Row)”.

2 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

CREATE FUNCTION (External Table)

Statements 303

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

Description

function-name

Names the function being defined. It is a qualified or unqualified name that

designates a function. The unqualified form of function-name is an SQL

identifier (with a maximum length of 128). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier. The

qualified name must not be the same as the data type of the first parameter, if

that first parameter is a structured type.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters and the data type of each parameter (without regard for

any length, precision or scale attributes of the data type) must not identify a

function described in the catalog (SQLSTATE 42723). The unqualified name,

together with the number and data types of the parameters, while of course

unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’

(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a function-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some

difference in the signature of the functions. Although there is no prohibition

against it, an external user-defined table function should not be given the same

name as a built-in function.

(parameter-declaration,...)

Identifies the number of input parameters of the function, and specifies the

data type of each parameter. One entry in the list must be specified for each

parameter that the function will expect to receive. No more than 90 parameters

are allowed (SQLSTATE 54023).

 It is possible to register a function that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have

exactly the same type for all corresponding parameters. Lengths, precisions,

and scales are not considered in this type comparison. Therefore, CHAR(8) and

CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and

DECIMAL (4,3). For a Unicode database, CHAR(13) and GRAPHIC(8) are

considered to be the same type. There is some further bundling of types that

causes them to be treated as the same type for this purpose, such as DECIMAL

and NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

parameter-name

Specifies an optional name for the input parameter. The name cannot be

the same as any other parameter-name in the parameter list (SQLSTATE

42734).

CREATE FUNCTION (External Table)

304 SQL Reference, Volume 2

data-type1

Specifies the data type of the input parameter. The data type can be a

built-in data type, a distinct type, a structured type, or a reference type.

For a more complete description of each built-in data type, see “CREATE

TABLE”. Some data types are not supported in all languages. For details

on the mapping between SQL data types and host language data types, see

“Data types that map to SQL data types in embedded SQL applications”.

v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.

v DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE

(SQLSTATE 42815).

v XML is invalid with LANGUAGE OLE.

v Because the XML value that is seen inside a function is a serialized

version of the XML value that is passed as a parameter in the function

call, parameters of type XML must be declared using the syntax XML AS

CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE

42613).

v Array types cannot be specified (SQLSTATE 42815).

For a user-defined distinct type, the length, precision, or scale attributes for

the parameter are those of the source type of the distinct type (those

specified on CREATE TYPE). A distinct type parameter is passed as the

source type of the distinct type. If the name of the distinct type is

unqualified, the database manager resolves the schema name by searching

the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions

must exist in the associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if

the parameter is unscoped.

AS LOCATOR

Specifies that a locator to the value of the parameter is passed to the

function instead of the actual value. Specify AS LOCATOR only for

parameters with a LOB data type or a distinct type based on a LOB

data type (SQLSTATE 42601). Passing locators instead of values can

result in fewer bytes being passed to the function, especially when the

value of the parameter is very large.

 The AS LOCATOR clause has no effect on determining whether data

types can be promoted, nor does it affect the function signature, which

is used in function resolution.

If the function is FENCED and has the NO SQL option, the AS

LOCATOR clause cannot be specified (SQLSTATE 42613).

RETURNS TABLE

Specifies that the output of the function is a table. The parentheses that follow

this keyword delimit a list of the names and types of the columns of the table,

resembling the style of a simple CREATE TABLE statement which has no

additional specifications (constraints, for example). No more than 255 columns

are allowed (SQLSTATE 54011).

column-name

Specifies the name of this column. The name cannot be qualified and the

same name cannot be used for more than one column of the table.

CREATE FUNCTION (External Table)

Statements 305

data-type2

Specifies the data type of the column, and can be any data type supported

for a parameter of a UDF written in the particular language, except for

structured types (SQLSTATE 42997).

AS LOCATOR

When data-type2 is a LOB type or distinct type based on a LOB type,

the use of this option indicates that the function is returning a locator

for the LOB value that is instantiated in the result table.

 The valid types for use with this clause are discussed in “CREATE

FUNCTION (External Scalar)”.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined.

This specific name can be used when sourcing on this function, dropping the

function, or commenting on the function. It can never be used to invoke the

function. The unqualified form of specific-name is an SQL identifier (with a

maximum length of 128). The qualified form is a schema-name followed by a

period and an SQL identifier. The name, including the implicit or explicit

qualifier, must not identify another function instance that exists at the

application server; otherwise an error (SQLSTATE 42710) is raised.

 The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.

If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

EXTERNAL

This clause indicates that the CREATE FUNCTION statement is being used to

register a new function based on code written in an external programming

language and adhering to the documented linkage conventions and interface.

 If NAME clause is not specified ″NAME function-name″ is assumed.

NAME ’string’

This clause identifies the user-written code that implements the function

being defined.

 The ’string’ option is a string constant with a maximum of 254 bytes. The

format used for the string is dependent on the LANGUAGE specified.

v For LANGUAGE C:

The string specified is the library name and function within the library,

which the database manager invokes to execute the user-defined

function being created. The library (and the function within the library)

do not need to exist when the CREATE FUNCTION statement is

executed. However, when the function is used in an SQL statement, the

library and function within the library must exist and be accessible from

the database server machine.

The string can be specified as follows:

�� ’ library_id ’

absolute_path_id

!

func_id
 ��

Extraneous blanks are not permitted within the single quotation marks.

CREATE FUNCTION (External Table)

306 SQL Reference, Volume 2

library_id

Identifies the library name containing the function. The database

manager will look for the library as follows:

– On UNIX systems, if ’myfunc’ was given as the library_id, and the

database manager is being run from /u/production, the database

manager will look for the function in library /u/production/
sqllib/function/myfunc.

– On Windows operating systems, the database manager will look

for the function in a directory path that is specified by the

LIBPATH or PATH environment variable.

absolute_path_id

Identifies the full path name of the file containing the function.

 On UNIX systems, for example, ’/u/jchui/mylib/myfunc’ would

cause the database manager to look in /u/jchui/mylib for the

myfunc shared library.

On Windows operating systems, ’d:\mylib\myfunc.dll’ would cause

the database manager to load the dynamic link library, myfunc.dll,

from the d:\mylib directory. If an absolute path ID is being used to

identify the routine body, be sure to append the .dll extension.

! func_id

Identifies the entry point name of the function to be invoked. The !

serves as a delimiter between the library ID and the function ID.

 On a UNIX system, for example, ’mymod!func8’ would direct the

database manager to look for the library $inst_home_dir/sqllib/
function/mymod and to use entry point func8 within that library.

On Windows operating systems, ’mymod!func8’ would direct the

database manager to load the mymod.dll file and to call the func8()

function in the dynamic link library (DLL).
If the string is not properly formed, an error is returned (SQLSTATE

42878).

In any case, the body of every external function should be in a directory

that is available on every database partition.

v For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier

and method identifier, which the database manager invokes to execute

the user-defined function being created. The class identifier and method

identifier do not need to exist when the CREATE FUNCTION statement

is executed. If a jar_id is specified, it must exist when the CREATE

FUNCTION statement is executed. However, when the function is used

in an SQL statement, the method identifier must exist and be accessible

from the database server machine.

The string can be specified as follows:

�� ’

jar_id :
 class_id . method_id ’

!
 ��

Extraneous blanks are not permitted within the single quotation marks.

jar_id

Identifies the jar identifier given to the jar collection when it was

CREATE FUNCTION (External Table)

Statements 307

installed in the database. It can be either a simple identifier, or a

schema qualified identifier. Examples are ’myJar’ and

’mySchema.myJar’

class_id

Identifies the class identifier of the Java object. If the class is part of

a package, the class identifier part must include the complete

package prefix, for example, ’myPacks.UserFuncs’. The Java virtual

machine will look in directory ’.../myPacks/UserFuncs/’ for the

classes. On Windows 32-bit operating systems, the Java virtual

machine will look in directory ’...\myPacks\UserFuncs\’.

method_id

Identifies the method name of the Java object to be invoked.
v For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable),

the class within that assembly, and the method within the class that the

database manager invokes to execute the function being created. The

module, class, and method do not need to exist when the CREATE

FUNCTION statement is executed. However, when the function is used

in an SQL statement, the module, class, and method must exist and be

accessible from the database server machine; otherwise, an error is

returned (SQLSTATE 42724).

C++ routines that are compiled with the ’/clr’ compiler option to

indicate that they include managed code extensions must be cataloged as

’LANGUAGE CLR’ and not ’LANGUAGE C’. DB2 needs to know that

the .NET infrastructure is being utilized in a user-defined function in

order to make necessary runtime decisions. All user-defined functions

using the .NET infrastructure must be cataloged as ’LANGUAGE CLR’.

The string can be specified as follows:

�� ’ assembly : class_id ! method_id ’ ��

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

assembly

Identifies the DLL or other assembly file in which the class resides.

Any file extensions (such as .dll) must be specified. If the full path

name is not given, the file must reside in the function directory of

the DB2 install path (for example, c:\sqllib\function). If the file

resides in a subdirectory of the install function directory, the

subdirectory can be given before the file name rather than specifying

the full path. For example, if your install directory is c:\sqllib and

your assembly file is c:\sqllib\function\myprocs\mydotnet.dll, it is

only necessary to specify ’myprocs\mydotnet.dll’ for the assembly.

The case sensitivity of this parameter is the same as the case

sensitivity of the file system.

class_id

Specifies the name of the class within the given assembly in which

the method that is to be invoked resides. If the class resides within a

namespace, the full namespace must be given in addition to the

class. For example, if the class EmployeeClass is in namespace

MyCompany.ProcedureClasses, then

MyCompany.ProcedureClasses.EmployeeClass must be specified for

the class. Note that the compilers for some .NET languages will add

CREATE FUNCTION (External Table)

308 SQL Reference, Volume 2

the project name as a namespace for the class, and the behavior may

differ depending on whether the command line compiler or the GUI

compiler is used. This parameter is case sensitive.

method_id

Specifies the method within the given class that is to be invoked.

This parameter is case sensitive.
v For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class

identifier (clsid), and method identifier, which the database manager

invokes to execute the user-defined function being created. The

programmatic identifier or class identifier, and method identifier do not

need to exist when the CREATE FUNCTION statement is executed.

However, when the function is used in an SQL statement, the method

identifier must exist and be accessible from the database server machine;

otherwise, an error is returned (SQLSTATE 42724).

The string can be specified as follows:

�� ’ progid ! method_id ’

clsid
 ��

Extraneous blanks are not permitted within the single quotation marks.

progid

Identifies the programmatic identifier of the OLE object.

 progid is not interpreted by the database manager but only

forwarded to the OLE APIs at run time. The specified OLE object

must be creatable and support late binding (also called

IDispatch-based binding).

clsid

Identifies the class identifier of the OLE object to create. It can be

used as an alternative for specifying a progid in the case that an OLE

object is not registered with a progid. The clsid has the form:

 {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where ’n’ is an alphanumeric character. clsid is not interpreted by the

database manager but only forwarded to the OLE APIs at run time.

method_id

Identifies the method name of the OLE object to be invoked.

NAME identifier

This clause identifies the name of the user-written code which implements

the function being defined. The identifier specified is an SQL identifier. The

SQL identifier is used as the library-id in the string. Unless it is a delimited

identifier, the identifier is folded to upper case. If the identifier is qualified

with a schema name, the schema name portion is ignored. This form of

NAME can only be used with LANGUAGE C.

LANGUAGE

This mandatory clause is used to specify the language interface convention to

which the user-defined function body is written.

C This means the database manager will call the user-defined function as

if it were a C function. The user-defined function must conform to the

C language calling and linkage convention as defined by the standard

ANSI C prototype.

CREATE FUNCTION (External Table)

Statements 309

JAVA This means the database manager will call the user-defined function as

a method in a Java class.

CLR This means the database manager will call the user-defined function as

a method in a .NET class. At this time, LANGUAGE CLR is only

supported for user-defined functions running on Windows operating

systems. NOT FENCED cannot be specified for a CLR routine

(SQLSTATE 42601).

OLE This means the database manager will call the user-defined function as

if it were a method exposed by an OLE automation object. The

user-defined function must conform with the OLE automation data

types and invocation mechanism, as described in the OLE Automation

Programmer’s Reference.

 LANGUAGE OLE is only supported for user-defined functions stored

in DB2 for Windows 32-bit operating systems.

For information on creating LANGUAGE OLE DB external table

functions, see “CREATE FUNCTION (OLE DB External Table)”.

PARAMETER STYLE

This clause is used to specify the conventions used for passing parameters to

and returning the value from functions.

DB2GENERAL

Used to specify the conventions for passing parameters to and returning

the value from external functions that are defined as a method in a Java

class. This can only be specified when LANGUAGE JAVA is used.

SQL

Used to specify the conventions for passing parameters to and returning

the value from external functions that conform to C language calling and

linkage conventions, methods exposed by OLE automation objects, or

public static methods of a .NET object. This must be specified when

LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

the function. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031). When the function is invoked, the application

code page for the function is the database code page.

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in UCS-2.

If the database is not a Unicode database, character data is in UTF-8. In

either case, when the function is invoked, the application code page for the

function is 1208.

 If the database is not a Unicode database, and a function with

PARAMETER CCSID UNICODE is created, the function cannot have any

graphic types or user-defined types (SQLSTATE 560C1).

If the database is not a Unicode database, table functions can be created

with PARAMETER CCSID UNICODE, but the following rules apply:

CREATE FUNCTION (External Table)

310 SQL Reference, Volume 2

v The alternate collating sequence must be specified in the database

configuration before creating the table function (SQLSTATE 56031).

PARAMETER CCSID UNICODE table functions collate with the

alternate collating sequence specified in the database configuration.

v Tables or table functions created with CCSID ASCII, and tables or table

functions created with CCSID UNICODE, cannot both be used in a

single SQL statement (SQLSTATE 53090). This applies to tables and table

functions referenced directly in the statement, as well as to tables and

table functions referenced indirectly (such as, for example, through

referential integrity constraints, triggers, materialized query tables, and

tables in the body of views).

v Table functions created with PARAMETER CCSID UNICODE cannot be

referenced in SQL functions or SQL methods (SQLSTATE 560C0).

v An SQL statement that references a table function created with

PARAMETER CCSID UNICODE cannot invoke an SQL function or SQL

method (SQLSTATE 53090).

v Graphic types, the XML type, and user-defined types cannot be used as

parameters to PARAMETER CCSID UNICODE table functions

(SQLSTATE 560C1).

v Statements that reference a PARAMETER CCSID UNICODE table

function can only be invoked from a DB2 Version 8.1 or later client

(SQLSTATE 42997).

v SQL statements are always interpreted in the database code page. In

particular, this means that every character in literals, hex literals, and

delimited identifiers must have a representation in the database code

page; otherwise, the character will be replaced with the substitution

character.

 If the database is not a Unicode database, and the alternate collating sequence

has been specified in the database configuration, functions can be created with

either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE. All

string data passed into and out of the function will be converted to the

appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or

LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC

This optional clause specifies whether the function always returns the same

results for given argument values (DETERMINISTIC) or whether the function

depends on some state values that affect the results (NOT DETERMINISTIC).

That is, a DETERMINISTIC function must always return the same table from

successive invocations with identical inputs. Optimizations taking advantage of

the fact that identical inputs always produce the same results are prevented by

specifying NOT DETERMINISTIC. An example of a table function that is

non-deterministic is one that references special registers, global variables,

non-deterministic functions, or sequences in a way that affects the table

function result table.

FENCED or NOT FENCED

This clause specifies whether or not the function is considered “safe” to run in

the database manager operating environment’s process or address space (NOT

FENCED), or not (FENCED).

 If a function is registered as FENCED, the database manager protects its

internal resources (for example, data buffers) from access by the function. Most

CREATE FUNCTION (External Table)

Statements 311

functions will have the option of running as FENCED or NOT FENCED. In

general, a function running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions not adequately coded, reviewed and

tested can compromise the integrity of DB2. DB2 takes some precautions

against many of the common types of inadvertent failures that might occur,

but cannot guarantee complete integrity when NOT FENCED user defined

functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT

THREADSAFE (SQLSTATE 42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR

clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority

(CREATE_NOT_FENCED_ROUTINE) is required to register a user-defined

function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying

the NOT FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE

Specifies whether the function is considered safe to run in the same process as

other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the function is defined with LANGUAGE other than OLE:

v If the function is defined as THREADSAFE, the database manager can

invoke the function in the same process as other routines. In general, to be

threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED functions can be THREADSAFE.

v If the function is defined as NOT THREADSAFE, the database manager will

never simultaneously invoke the function in the same process as another

routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE is

JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If

the function is defined with LANGUAGE OLE, THREADSAFE may not be

specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT

THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

This optional clause may be used to avoid a call to the external function if any

of the arguments is null. If the user-defined function is defined to have no

parameters, then of course this null argument condition cannot arise, and it

does not matter how this specification is coded.

 If RETURNS NULL ON NULL INPUT is specified, and if, at table function

OPEN time, any of the function’s arguments are null, then the user-defined

function is not called. The result of the attempted table function scan is the

empty table (a table with no rows).

If CALLED ON NULL INPUT is specified, then regardless of whether any

arguments are null, the user-defined function is called. It can return a null

value or a normal (non-null) value. But responsibility for testing for null

argument values lies with the UDF.

CREATE FUNCTION (External Table)

312 SQL Reference, Volume 2

The value NULL CALL may be used as a synonym for CALLED ON NULL

INPUT for backwards and family compatibility. Similarly, NOT NULL CALL

may be used as a synonym for RETURNS NULL ON NULL INPUT.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the function issues any SQL statements and, if so, what type.

NO SQL

Indicates that the function cannot execute any SQL statements (SQLSTATE

38001). If the ALLOW PARALLEL, EXECUTE ON ALL DATABASE

PARTITIONS, and RESULT TABLE DISTRIBUTED clauses are all specified,

NO SQL is the only option allowed.

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the function (SQLSTATE 38004 or 42985). Statements that

are not supported in any function return a different error (SQLSTATE

38003 or 42985).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can be

included in the function (SQLSTATE 38002 or 42985). Statements that are

not supported in any function return a different error (SQLSTATE 38003 or

42985).

STATIC DISPATCH

This optional clause indicates that at function resolution time, DB2 chooses a

function based on the static types (declared types) of the parameters of the

function.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the function takes an action that changes the state of an

object that the database manager does not manage. An example of an external

action is sending a message or writing a record to a file. The default is

EXTERNAL ACTION.

EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an

object that the database manager does not manage.

 A function with external actions might return incorrect results if the

function is executed by parallel tasks. For example, if the function sends a

note for each initial call to it, one note is sent for each parallel task instead

of once for the function. Specify the DISALLOW PARALLEL clause for

functions that do not work correctly with parallelism.

NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the state

of an object that the database manager does not manage. The database

manager uses this information during optimization of SQL statements.

NO SCRATCHPAD or SCRATCHPAD length

This optional clause may be used to specify whether a scratchpad is to be

provided for an external function. (It is strongly recommended that

user-defined functions be re-entrant, so a scratchpad provides a means for the

function to “save state” from one call to the next.)

 If SCRATCHPAD is specified, then at first invocation of the user-defined

function, memory is allocated for a scratchpad to be used by the external

function. This scratchpad has the following characteristics:

CREATE FUNCTION (External Table)

Statements 313

v length, if specified, sets the size of the scratchpad in bytes and must be

between 1 and 32 767 (SQLSTATE 42820). The default value is 100.

v It is initialized to all X’00’’s.

v Its scope is the SQL statement. There is one scratchpad per reference to the

external function in the SQL statement. So if the UDFX function in the

following statement is defined with the SCRATCHPAD keyword, two

scratchpads would be assigned.

 SELECT A.C1, B.C2

 FROM TABLE (UDFX(:hv1)) AS A,

 TABLE (UDFX(:hv1)) AS B

 WHERE ...

v It is persistent. It is initialized at the beginning of the execution of the

statement, and can be used by the external table function to preserve the

state of the scratchpad from one call to the next. If the FINAL CALL

keyword is also specified for the UDF, then the scratchpad is NEVER altered

by DB2, and any resources anchored in the scratchpad should be released

when the special FINAL call is made.

If NO FINAL CALL is specified or defaulted, then the external table function

should clean up any such resources on the CLOSE call, as DB2 will

re-initialize the scratchpad on each OPEN call. This determination of FINAL

CALL or NO FINAL CALL and the associated behavior of the scratchpad

could be an important consideration, particularly if the table function will be

used in a subquery or join, since that is when multiple OPEN calls can occur

during the execution of a statement.

v It can be used as a central point for system resources (for example, memory)

which the external function might acquire. The function could acquire the

memory on the first call, keep its address in the scratchpad, and refer to it in

subsequent calls.

(As outlined above, the FINAL CALL/NO FINAL CALL keyword is used to

control the re-initialization of the scratchpad, and also dictates when the

external table function should release resources anchored in the scratchpad.)

If SCRATCHPAD is specified, then on each invocation of the user-defined

function an additional argument is passed to the external function which

addresses the scratchpad.

If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to

the external function.

FINAL CALL or NO FINAL CALL

This optional clause specifies whether a final call (and a separate first call) is to

be made to an external function. It also controls when the scratchpad is

re-initialized. If NO FINAL CALL is specified, then DB2 can only make three

types of calls to the table function: open, fetch and close. However, if FINAL

CALL is specified, then in addition to open, fetch and close, a first call and a

final call can be made to the table function.

 For external table functions, the call-type argument is ALWAYS present,

regardless of which option is chosen.

If the final call is being made because of an interrupt or end-of-transaction, the

UDF may not issue any SQL statements except for CLOSE cursor (SQLSTATE

38505). A special value is passed in the ″call type″ argument for these special

final call situations.

CREATE FUNCTION (External Table)

314 SQL Reference, Volume 2

DISALLOW PARALLEL or ALLOW PARALLEL EXECUTE ON ALL DATABASE

PARTITIONS RESULT TABLE DISTRIBUTED

Specifies whether or not, for a single reference to the function, the invocation

of the function is to be parallelized.

DISALLOW PARALLEL

Specifies that on each invocation of the function, DB2 invokes the function

on a single database partition.

ALLOW PARALLEL EXECUTE ON ALL DATABASE PARTITIONS RESULT

TABLE DISTRIBUTED

Specifies that on each invocation of the function, DB2 invokes the function

on all database partitions. The union of the result sets obtained on each

database partition is returned. The function cannot execute SQL statements

(the NO SQL clause must also be specified).

NO DBINFO or DBINFO

This optional clause specifies whether certain specific information known to

DB2 is to be passed to the function as an additional invocation-time argument

(DBINFO) or not (NO DBINFO). NO DBINFO is the default. DBINFO is not

supported for LANGUAGE OLE (SQLSTATE 42613).

 If DBINFO is specified, a structure containing the following information is

passed to the function:

v Database name - the name of the currently connected database

v Application ID - the unique application ID that is established for each

connection to the database

v Application authorization ID - the application runtime authorization ID,

regardless of any nested functions between this function and the application

v Code page - the database code page

v Schema name - not applicable to external table functions

v Table name - not applicable to external table functions

v Column name - not applicable to external table functions

v Database version or release - the version, release, and modification level of

the database server that is invoking the function

v Platform - the server’s platform type

v Table function result column numbers - an array of result column numbers

that is used by the statement referencing the function; this information

enables the function to return only required column values instead of all

column values

v Database partition number - the number of the database partition on which

the external table function is invoked; in a single database partition

environment, this value is 0

CARDINALITY integer

This optional clause provides an estimate of the expected number of rows to be

returned by the function for optimization purposes. Valid values for integer

range from 0 to 9 223 372 036 854 775 807 inclusive.

 If the CARDINALITY clause is not specified for a table function, DB2 will

assume a finite value as a default- the same value assumed for tables for which

the RUNSTATS utility has not gathered statistics.

Warning: If a function does, in fact, have infinite cardinality — that is, it

returns a row every time it is called to do so, and never returns the

″end-of-table″ condition — then queries that require the end-of-table condition

to correctly function will be infinite, and will have to be interrupted. Examples

CREATE FUNCTION (External Table)

Statements 315

of such queries are those that contain a GROUP BY or an ORDER BY clause.

Writing such UDFs is not recommended.

TRANSFORM GROUP group-name

Indicates the transform group to be used for user-defined structured type

transformations when invoking the function. A transform is required if the

function definition includes a user-defined structured type as a parameter data

type. If this clause is not specified, the default group name DB2_FUNCTION is

used. If the specified (or default) group-name is not defined for a referenced

structured type, an error results (SQLSTATE 42741). If a required FROM SQL

transform function is not defined for the given group-name and structured

type, an error results (SQLSTATE 42744).

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the function

will inherit their initial values from the environment of the invoking statement.

For a function invoked in the select-statement of a cursor, the initial values are

inherited from the environment when the cursor is opened. For a routine

invoked in a nested object (for example a trigger or view), the initial values are

inherited from the runtime environment (not inherited from the object

definition).

 No changes to the special registers are passed back to the invoker of the

function.

Non-updatable special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore set to their

default values.

Rules

v In a partitioned database environment, the use of SQL in external user-defined

functions or methods is not supported (SQLSTATE 42997).

v Only routines defined as NO SQL can be used to define an index extension

(SQLSTATE 428F8).

v If the function allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).

v Table access restrictions If a function is defined as READS SQL DATA, no

statement in the function can access a table that is being modified by the

statement which invoked the function (SQLSTATE 57053). For example, suppose

the user-defined function BONUS() is defined as READS SQL DATA. If the

statement UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is

invoked, no SQL statement in the BONUS function can read from the

EMPLOYEE table.

Notes

v When choosing the data types for the parameters of a user-defined function,

consider the rules for promotion that will affect its input values. For example, a

constant which may be used as an input value could have a built-in data type

that is different from the one expected and, more significantly, may not be

promoted to the data type expected. Based on the rules for promotion, it is

generally recommended to use the following data types for parameters:

– INTEGER instead of SMALLINT

– DOUBLE instead of REAL

– VARCHAR instead of CHAR

– VARGRAPHIC instead of GRAPHIC

CREATE FUNCTION (External Table)

316 SQL Reference, Volume 2

v For portability of UDFs across platforms, it is recommended to use the following

data types:

– DOUBLE or REAL instead of FLOAT

– DECIMAL instead of NUMERIC

– CLOB (or BLOB) instead of LONG VARCHAR
v Creating a function with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v A Java routine defined as NOT FENCED will be invoked as if it had been

defined as FENCED THREADSAFE.

v Privileges

– The definer of a function always receives the EXECUTE privilege WITH

GRANT OPTION on the function, as well as the right to drop the function.

– When the function is used in an SQL statement, the function definer must

have the EXECUTE privilege on any packages used by the function.
v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v ASUTIME NO LIMIT

v NO COLLID

v PROGRAM TYPE SUB

v STAY RESIDENT NO

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database if PARAMETER CCSID

UNICODE is not specified
– For compatibility with previous versions of DB2:

- PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL

- NOT VARIANT can be specified in place of DETERMINISTIC

- VARIANT can be specified in place of NOT DETERMINISTIC

- NULL CALL can be specified in place of CALLED ON NULL INPUT

- NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT

- DB2GENRL can be specified in place of DB2GENERAL.

Examples

Example 1: The following registers a table function written to return a row

consisting of a single document identifier column for each known document in a

text management system. The first parameter matches a given subject area and the

second parameter contains a given string.

Within the context of a single session, the UDF will always return the same table,

and therefore it is defined as DETERMINISTIC. Note the RETURNS clause which

defines the output from DOCMATCH. FINAL CALL must be specified for each

table function. In addition, the DISALLOW PARALLEL keyword is added as table

functions cannot operate in parallel. Although the size of the output for

DOCMATCH is highly variable, CARDINALITY 20 is a representative value, and

is specified to help the DB2 optimizer.

CREATE FUNCTION (External Table)

Statements 317

CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

 RETURNS TABLE (DOC_ID CHAR(16))

 EXTERNAL NAME ’/common/docfuncs/rajiv/udfmatch’

 LANGUAGE C

 PARAMETER STYLE SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 NOT FENCED

 SCRATCHPAD

 FINAL CALL

 DISALLOW PARALLEL

 CARDINALITY 20

Example 2: The following registers an OLE table function that is used to retrieve

message header information and the partial message text of messages in Microsoft

Exchange.

 CREATE FUNCTION MAIL()

 RETURNS TABLE (TIMERECEIVED DATE,

 SUBJECT VARCHAR(15),

 SIZE INTEGER,

 TEXT VARCHAR(30))

 EXTERNAL NAME ’tfmail.header!list’

 LANGUAGE OLE

 PARAMETER STYLE SQL

 NOT DETERMINISTIC

 FENCED

 CALLED ON NULL INPUT

 SCRATCHPAD

 FINAL CALL

 NO SQL

 EXTERNAL ACTION

 DISALLOW PARALLEL

CREATE FUNCTION (External Table)

318 SQL Reference, Volume 2

CREATE FUNCTION (OLE DB External Table)

The CREATE FUNCTION (OLE DB External Table) statement is used to register a

user-defined OLE DB external table function to access data from an OLE DB

provider.

A table function can be used in the FROM clause of a SELECT.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist

– CREATEIN privilege on the schema, if the schema name of the function exists
v SYSADM or DBADM authority

Syntax

�� CREATE FUNCTION function-name (parameter-declaration) * �

�

�

 ,

RETURNS TABLE

(

column-name

data-type2

)

*

�

�
SPECIFIC

specific-name
 * EXTERNAL NAME ’string’ * �

�

LANGUAGE

OLEDB

*

 NOT DETERMINISTIC

DETERMINISTIC

*

 STATIC DISPATCH

*

�

�
 RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

*

 NO EXTERNAL ACTION

EXTERNAL ACTION

*

�

CREATE FUNCTION (OLE DB External Table)

Statements 319

�
CARDINALITY

integer
 * ��

parameter-declaration:

 data-type1

parameter-name

data-type1, data-type2:

 built-in-type

distinct-type-name

structured-type-name

REF

(

type-name

)

built-in-type:

CREATE FUNCTION (OLE DB External Table)

320 SQL Reference, Volume 2

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(1)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

SYSPROC.

(2)

(3)

DB2SECURITYLABEL

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

CREATE FUNCTION (OLE DB External Table)

Statements 321

Description

function-name

Names the function being defined. It is a qualified or unqualified name that

designates a function. The unqualified form of function-name is an SQL

identifier (with a maximum length of 18). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters and the data type of each parameter (without regard for

any length, precision or scale attributes of the data type) must not identify a

function described in the catalog (SQLSTATE 42723). The unqualified name,

together with the number and data types of the parameters, while of course

unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’

(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a function-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some

difference in the signature of the functions. Although there is no prohibition

against it, an external user-defined table function should not be given the same

name as a built-in function.

(parameter-declaration,...)

Identifies the input parameter of the function, and specifies the data type of

the parameter. If no input parameter is specified, data is retrieved from the

external source possibly subsetted through query optimization. The input

parameter passes command text to an OLE DB provider.

 It is possible to register a function that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have

exactly the same type for all corresponding parameters. Lengths, precisions,

and scales are not considered in this type comparison. Therefore, CHAR(8) and

CHAR(35) are considered to be the same type. For a Unicode database,

CHAR(13) and GRAPHIC(8) are considered to be the same type. A duplicate

signature returns an error (SQLSTATE 42723).

parameter-name

Specifies an optional name for the input parameter.

data-type1

Specifies the data type of the input parameter. The data type can be any

character or graphic string data type or a distinct type based on a character

or graphic string data type. Parameters of type XML are not supported

(SQLSTATE 42815).

 For a more complete description of each built-in data type, see “CREATE

TABLE”.

For a user-defined distinct type, the length, precision, or scale attributes for

the parameter are those of the source type of the distinct type (those

CREATE FUNCTION (OLE DB External Table)

322 SQL Reference, Volume 2

specified on CREATE TYPE). A distinct type parameter is passed as the

source type of the distinct type. If the name of the distinct type is

unqualified, the database manager resolves the schema name by searching

the schemas in the SQL path.

RETURNS TABLE

Specifies that the output of the function is a table. The parentheses that follow

this keyword delimit a list of the names and types of the columns of the table,

resembling the style of a simple CREATE TABLE statement which has no

additional specifications (constraints, for example).

column-name

Specifies the name of the column which must be the same as the

corresponding rowset column name. The name cannot be qualified and the

same name cannot be used for more than one column of the table.

data-type2

Specifies the data type of the column. XML is invalid (SQLSTATE 42815).

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined.

This specific name can be used when sourcing on this function, dropping the

function, or commenting on the function. It can never be used to invoke the

function. The unqualified form of specific-name is an SQL identifier (with a

maximum length of 18). The qualified form is a schema-name followed by a

period and an SQL identifier. The name, including the implicit or explicit

qualifier, must not identify another function instance that exists at the

application server; otherwise an error (SQLSTATE 42710) is raised.

 The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.

If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of function-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

EXTERNAL NAME ’string’

This clause identifies the external table and an OLE DB provider.

 The ’string’ option is a string constant with a maximum of 254 bytes.

The string specified is used to establish a connection and session with an OLE

DB provider, and retrieve data from a rowset. The OLE DB provider and data

source do not need to exist when the CREATE FUNCTION statement is

executed.

The string can be specified as follows:

�� ’ server ! ’

rowset

!

!

connectstring

rowset

!

COLLATING_SEQUENCE =

N

Y

 ��

server

Identifies the local name of a data source as defined by “CREATE

SERVER”.

CREATE FUNCTION (OLE DB External Table)

Statements 323

rowset

Identifies the rowset (table) exposed by the OLE DB provider. Fully

qualified table names must be provided for OLE DB providers that support

catalog or schema names.

connectstring

String version of the initialization properties needed to connect to a data

source. The basic format of a connection string is based on the ODBC

connection string. The string contains a series of keyword/value pairs

separated by semicolons. The equal sign (=) separates each keyword and

its value. Keywords are the descriptions of the OLE DB initialization

properties (property set DBPROPSET_DBINIT) or provider-specific

keywords.

COLLATING_SEQUENCE

Specifies whether the data source uses the same collating sequence as DB2

Database for Linux, UNIX, and Windows. For details, see “CREATE

SERVER”. Valid values are as follows:

v Y = Same collating sequence

v N = Different collating sequence

If COLLATING_SEQUENCE is not specified, the data source is assumed to

have a different collating sequence than DB2 Database for Linux, UNIX,

and Windows.

 If server is provided, connectstring or COLLATING_SEQUENCE are not allowed

in the external name. They are defined as server options CONNECTSTRING

and COLLATING_SEQUENCE. If no server is provided, a connectstring must be

provided. If rowset is not provided, the table function must have an input

parameter to pass through command text to the OLE DB provider.

LANGUAGE OLEDB

This means the database manager will deploy a built-in generic OLE DB

consumer to retrieve data from the OLE DB provider. No table function

implementation is required by the developer.

 LANGUAGE OLEDB table functions can be created on any platform, but only

executed on platforms supported by Microsoft OLE DB.

DETERMINISTIC or NOT DETERMINISTIC

This optional clause specifies whether the function always returns the same

results for given argument values (DETERMINISTIC) or whether the function

depends on some state values that affect the results (NOT DETERMINISTIC).

That is, a DETERMINISTIC function must always return the same table from

successive invocations with identical inputs. Optimizations taking advantage of

the fact that identical inputs always produce the same results are prevented by

specifying NOT DETERMINISTIC.

STATIC DISPATCH

This optional clause indicates that at function resolution time, DB2 chooses a

function based on the static types (declared types) of the parameters of the

function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

This optional clause may be used to avoid a call to the external function if any

of the arguments is null. If the user-defined function is defined to have no

parameters, then of course this null argument condition cannot arise.

CREATE FUNCTION (OLE DB External Table)

324 SQL Reference, Volume 2

If RETURNS NULL ON NULL INPUT is specified and if at execution time any

one of the function’s arguments is null, the user-defined function is not called

and the result is the empty table; that is, a table with no rows.

If CALLED ON NULL INPUT is specified, then at execution time regardless of

whether any arguments are null, the user-defined function is called. It can

return an empty table or not, depending on its logic. But responsibility for

testing for null argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL

INPUT for backwards and family compatibility. Similarly, NOT NULL CALL

may be used as a synonym for RETURNS NULL ON NULL INPUT.

NO EXTERNAL ACTION or EXTERNAL ACTION

Specifies whether the function takes an action that changes the state of an

object that the database manager does not manage. An example of an external

action is sending a message or writing a record to a file. The default is NO

EXTERNAL ACTION.

NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the state

of an object that the database manager does not manage. The database

manager uses this information during optimization of SQL statements.

EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an

object that the database manager does not manage.

CARDINALITY integer

This optional clause provides an estimate of the expected number of rows to be

returned by the function for optimization purposes. Valid values for integer

range from 0 to 2 147 483 647 inclusive.

 If the CARDINALITY clause is not specified for a table function, DB2 will

assume a finite value as a default- the same value assumed for tables for which

the RUNSTATS utility has not gathered statistics.

Warning: If a function does, in fact, have infinite cardinality — that is, it

returns a row every time it is called to do so, and never returns the

″end-of-table″ condition — then queries that require the end-of-table condition

to correctly function will be infinite, and will have to be interrupted. Examples

of such queries are those that contain a GROUP BY or an ORDER BY clause.

Writing such UDFs is not recommended.

Notes

v FENCED, FINAL CALL, SCRATCHPAD, PARAMETER STYLE SQL, DISALLOW

PARALLEL, NO DBINFO, NOT THREADSAFE, and NO SQL are implicit in the

statement and can be specified.

v When choosing the data types for the parameters of a user-defined function,

consider the rules for promotion that will affect its input values. For example, a

constant which may be used as an input value could have a built-in data type

that is different from the one expected and, more significantly, may not be

promoted to the data type expected. Based on the rules for promotion, it is

generally recommended to use the following data types for parameters:

– VARCHAR instead of CHAR

– VARGRAPHIC instead of GRAPHIC
v For portability of UDFs across platforms, it is recommended to use the following

data types:

CREATE FUNCTION (OLE DB External Table)

Statements 325

– DOUBLE or REAL instead of FLOAT

– DECIMAL instead of NUMERIC

– CLOB (or BLOB) instead of LONG VARCHAR
v Creating a function with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v Privileges

The definer of a function always receives the EXECUTE privilege WITH GRANT

OPTION on the function, as well as the right to drop the function.

v Compatibilities

– For compatibility with previous versions of DB2:

- NOT VARIANT can be specified in place of DETERMINISTIC

- VARIANT can be specified in place of NOT DETERMINISTIC

- NULL CALL can be specified in place of CALLED ON NULL INPUT

- NOT NULL CALL can be specified in place of RETURNS NULL ON NULL

INPUT

Examples

Example 1: The following registers an OLE DB table function, which retrieves

order information from a Microsoft Access database. The connection string is

defined in the external name.

 CREATE FUNCTION orders ()

 RETURNS TABLE (orderid INTEGER,

 customerid CHAR(5),

 employeeid INTEGER,

 orderdate TIMESTAMP,

 requireddate TIMESTAMP,

 shippeddate TIMESTAMP,

 shipvia INTEGER,

 freight dec(19,4))

 LANGUAGE OLEDB

 EXTERNAL NAME ’!orders!Provider=Microsoft.Jet.OLEDB.3.51;

 Data Source=c:\sqllib\samples\oledb\nwind.mdb

 !COLLATING_SEQUENCE=Y’;

Example 2: The following registers an OLE DB table function, which retrieves

customer information from an Oracle database. The connection string is provided

through a server definition. The table name is fully qualified in the external name.

The local user john is mapped to the remote user dave. Other users will use the

guest user ID in the connection string.

 CREATE SERVER spirit

 WRAPPER OLEDB

 OPTIONS (CONNECTSTRING ’Provider=MSDAORA;Persist Security Info=False;

 User ID=guest;password=pwd;Locale Identifier=1033;

 OLE DB Services=CLIENTCURSOR;Data Source=spirit’);

 CREATE USER MAPPING FOR john

 SERVER spirit

 OPTIONS (REMOTE_AUTHID ’dave’, REMOTE_PASSWORD ’mypwd’);

 CREATE FUNCTION customers ()

 RETURNS TABLE (customer_id INTEGER,

 name VARCHAR(20),

 address VARCHAR(20),

 city VARCHAR(20),

CREATE FUNCTION (OLE DB External Table)

326 SQL Reference, Volume 2

state VARCHAR(5),

 zip_code INTEGER)

 LANGUAGE OLEDB

 EXTERNAL NAME ’spirit!demo.customer’;

Example 3: The following registers an OLE DB table function, which retrieves

information about stores from a MS SQL Server 7.0 database. The connection string

is provided in the external name. The table function has an input parameter to

pass through command text to the OLE DB provider. The rowset name does not

need to be specified in the external name. The query example passes in SQL

statement text to retrieve the top three stores.

 CREATE FUNCTION favorites (varchar(600))

 RETURNS TABLE (store_id CHAR (4),

 name VARCHAR (41),

 sales INTEGER)

 SPECIFIC favorites

 LANGUAGE OLEDB

 EXTERNAL NAME ’!!Provider=SQLOLEDB.1;Persist Security Info=False;

 User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;

 Locale Identifier=1033;Use Procedure for Prepare=1;

 Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;

 OLE DB Services=CLIENTCURSOR;’;

 SELECT *

 FROM TABLE (favorites

 (’ select top 3 sales.stor_id as store_id, ’ CONCAT

 ’ stores.stor_name as name, ’ CONCAT

 ’ sum(sales. qty) as sales ’ CONCAT

 ’ from sales, stores ’ CONCAT

 ’ where sales.stor_id = stores.stor_id ’ CONCAT

 ’ group by sales.stor_id, stores.stor_name ’ CONCAT

 ’ order by sum(sales.qty) desc ’)) as f;

CREATE FUNCTION (OLE DB External Table)

Statements 327

CREATE FUNCTION (Sourced or Template)

The CREATE FUNCTION (Sourced or Template) statement is used to:

v Register a user-defined function, based on another existing scalar or column

function, at the current server.

v Register a function template with an application server that is designated as a

federated server. A function template is a partial function that contains no

executable code. The user creates it for the purpose of mapping it to a data

source function. After the mapping is created, the user can specify the function

template in queries submitted to the federated server. When such a query is

processed, the federated server will invoke the data source function to which the

template is mapped, and return values whose data types correspond to those in

the RETURNS portion of the template’s definition.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the function does not exist

v CREATEIN privilege on the schema, if the schema name of the function exists

v SYSADM or DBADM authority

The privileges held by the authorization ID of the statement must also include

EXECUTE privilege on the source function if the authorization ID of the statement

does not have SYSADM or DBADM authority, and the SOURCE clause is specified.

Syntax

�� CREATE FUNCTION function-name

�

 ()

,

parameter-declaration

 * �

� RETURNS data-type2 *

SPECIFIC

specific-name
 * �

�

�

 SOURCE function-name

SPECIFIC

specific-name

PARAMETER CCSID

ASCII

function-name

(

)

UNICODE

,

data-type

NOT DETERMINISTIC

EXTERNAL ACTION

AS TEMPLATE

*

*

DETERMINISTIC

NO EXTERNAL ACTION

 * ��

CREATE FUNCTION (Sourced or Template)

328 SQL Reference, Volume 2

parameter-declaration:

 data-type1

parameter-name

data-type1, data-type2:

 built-in-type

distinct-type-name

structured-type-name

built-in-type:

CREATE FUNCTION (Sourced or Template)

Statements 329

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(1)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

(2)

(3)

DB2SECURITYLABEL

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

CREATE FUNCTION (Sourced or Template)

330 SQL Reference, Volume 2

Description

function-name

Names the function or function template being defined. It is a qualified or

unqualified name that designates a function. The unqualified form of

function-name is an SQL identifier (with a maximum length of 18). In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a qualifier

for an unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. The qualified form is a schema-name followed by a period and an SQL

identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters and the data type of each parameter (without regard for

any length, precision or scale attributes of the data type) must not identify a

function or function template described in the catalog (SQLSTATE 42723). The

unqualified name, together with the number and data types of the parameters,

while of course unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ‘SYS’

(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a function-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

When naming a user-defined function that is sourced on an existing function

with the purpose of supporting the same function with a user-defined distinct

type, the same name as the sourced function may be used. This allows users to

use the same function with a user-defined distinct type without realizing that

an additional definition was required. In general, the same name can be used

for more than one function if there is some difference in the signature of the

functions.

(parameter-declaration,...)

Identifies the number of input parameters of the function or function template,

and specifies the data type of each parameter. One entry in the list must be

specified for each parameter that the function or function template will expect

to receive. No more than 90 parameters are allowed (SQLSTATE 54023).

 It is possible to register a function that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have

exactly the same type for all corresponding parameters. This restriction also

applies to a function and function template with the same name within the

same schema. Lengths, precisions, and scales are not considered in this type

comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same

type, as are DECIMAL(11,2) and DECIMAL (4,3). For a Unicode database,

CHAR(13) and GRAPHIC(8) are considered to be the same type. There is some

further bundling of types that causes them to be treated as the same type for

this purpose, such as DECIMAL and NUMERIC. A duplicate signature returns

an error (SQLSTATE 42723).

parameter-name

Specifies an optional name for the input parameter. The name cannot be

the same as any other parameter-name in the parameter list (SQLSTATE

42734).

CREATE FUNCTION (Sourced or Template)

Statements 331

data-type1

Specifies the data type of the input parameter. The data type can be a

built-in data type, a distinct type, or a structured type.

 Any valid SQL data type can be used if it is castable to the type of the

corresponding parameter of the function identified in the SOURCE clause

(for information, see “Casting between data types”). However, this

checking does not guarantee that an error will not occur when the function

is invoked.

For a more complete description of each built-in data type, see “CREATE

TABLE”.

v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.

v Array types cannot be specified (SQLSTATE 42879).

v A reference type specified as REF(type-name) cannot be specified

(SQLSTATE 42879).

For a user-defined distinct type, the length, precision, or scale attributes for

the parameter are those of the source type of the distinct type (those

specified on CREATE TYPE). A distinct type parameter is passed as the

source type of the distinct type. If the name of the distinct type is

unqualified, the database manager resolves the schema name by searching

the schemas in the SQL path.

For a user-defined structured type, the appropriate transform functions

must exist in the associated transform group.

Because the function is sourced, it is not necessary (but still permitted) to

specify length, precision, or scale for the parameterized data types. Empty

parentheses can be used instead; for example, CHAR(). A parameterized data

type is any one of the data types that can be defined with a specific length,

scale, or precision. The parameterized data types are the string data types

and the decimal data types.

With a function template, empty parentheses can also be used instead of

specifying length, precision, or scale for the parameterized data types. It is

recommended to use empty parentheses for the parameterized data types.

If you use empty parentheses, the length, precision, or scale is the same as

that of the remote function, which is determined when the function

template is mapped to a remote function by creating a function mapping.

If you omit parentheses altogether, the default length for the data type is

used (see “CREATE TABLE”).

RETURNS

This mandatory clause identifies the output of the function or function

template.

data-type2

Specifies the data type of the output.

 With a sourced scalar function, any valid SQL data type is acceptable, as is

a distinct type, provided it is castable from the result type of the source

function. An array type cannot be specified as the data type of a parameter

(SQLSTATE 42879).

The parameter of a parameterized type need not be specified, as above for

parameters of a sourced function. Instead, empty parentheses can be used;

for example, VARCHAR().

CREATE FUNCTION (Sourced or Template)

332 SQL Reference, Volume 2

For additional considerations and rules that apply to the specification of

the data type in the RETURNS clause when the function is sourced on

another, see the “Rules” section of this statement.

With a function template, empty parentheses are not allowed (SQLSTATE

42611). Length, precision, or scale must be specified for the parameterized

data types. It is recommended to specify the same length, precision, or

scale as that of the remote function.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined.

This specific name can be used when sourcing on this function, dropping the

function, or commenting on the function. It can never be used to invoke the

function. The unqualified form of specific-name is an SQL identifier (with a

maximum length of 18). The qualified form is a schema-name followed by a

period and an SQL identifier. The name, including the implicit or explicit

qualifier, must not identify another function instance that exists at the

application server; otherwise an error (SQLSTATE 42710) is returned.

 The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.

If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of function-name or an error (SQLSTATE 42882) is returned.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

SOURCE

Specifies that the function being created is to be implemented by another

function (the source function) already known to the database manager. The

source function can be either a built-in function (except for COALESCE,

DATAPARTITIONNUM, DBPARTITIONNUM, GREATEST, HASHEDVALUE,

LEAST, MAX (scalar), MIN (scalar), NULLIF, NVL, RAISE_ERROR, RID,

RID_BIT, TYPE_ID, TYPE_NAME, TYPE_SCHEMA, or VALUE) or a previously

created user-defined scalar function.

 The SOURCE clause may be specified only for scalar or column functions; it

may not be specified for table functions.

The SOURCE clause provides the identity of the other function.

function-name

Identifies the particular function that is to be used as the source and is

valid only if there is exactly one specific function in the schema with this

function-name for which the authorization ID of the statement has

EXECUTE privilege. This syntax variant is not valid for a source function

that is a built-in function.

 If an unqualified name is provided, then the current SQL path (the value

of the CURRENT PATH special register) is used to locate the function. The

first schema in the SQL path that has a function with this name for which

the authorization ID of the statement has EXECUTE privilege is selected.

If no function by this name exists in the named schema or if the name is

not qualified and there is no function with this name in the SQL path, an

error (SQLSTATE 42704) is returned. If there is more than one authorized

specific instance of the function in the named or located schema, an error

(SQLSTATE 42725) is returned. If a function by this name exists and the

CREATE FUNCTION (Sourced or Template)

Statements 333

authorization ID of the statement does not have EXECUTE privilege on

this function, an error (SQLSTATE 42501) is returned.

SPECIFIC specific-name

Identifies the particular user-defined function that is to be used as the

source, by the specific-name either specified or defaulted to at function

creation time. This syntax variant is not valid for a source function that is a

built-in function.

 If an unqualified name is provided, the current SQL path is used to locate

the function. The first schema in the SQL path that has a function with this

specific name for which the authorization ID of the statement has

EXECUTE privilege is selected.

If no function by this specific-name exists in the named schema or if the

name is not qualified and there is no function with this specific-name in the

SQL path, an error (SQLSTATE 42704) is returned. If a function by this

specific-name exists, and the authorization ID of the statement does not have

EXECUTE privilege on this function, an error (SQLSTATE 42501) is

returned.

function-name (data-type,...)

Provides the function signature, which uniquely identifies the source

function. This is the only valid syntax variant for a source function that is

a built-in function.

 The rules for function resolution are applied to select one function from the

functions with the same function name, given the data types specified in

the SOURCE clause. However, the data type of each parameter in the

function selected must have the exact same type as the corresponding data

type specified in the source function.

function-name

Gives the function name of the source function. If an unqualified name

is provided, then the schemas of the user’s SQL path are considered.

data-type

Must match the data type that was specified on the CREATE

FUNCTION statement in the corresponding position (comma

separated).

 It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match. For example, DECIMAL() will match a

parameter whose data type was defined as DECIMAL(7,2)).

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE FUNCTION statement. This can

be useful in assuring that the intended function will be used. Note also

that synonyms for data types will be considered a match (for example

DEC and NUMERIC will match).

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

CREATE FUNCTION (Sourced or Template)

334 SQL Reference, Volume 2

If no function with the specified signature exists in the named or implied

schema, an error (SQLSTATE 42883) is returned.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out

of the function. If the PARAMETER CCSID clause is not specified, the

default is PARAMETER CCSID UNICODE for Unicode databases, and

PARAMETER CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031). When the function is invoked, the

application code page for the function is the database code page.

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in

UCS-2. If the database is not a Unicode database, character data is in

UTF-8. In either case, when the function is invoked, the application

code page for the function is 1208.

 The PARAMETER CCSID clause must specify the same encoding scheme

as the source function (SQLSTATE 53090).

AS TEMPLATE

Indicates that this statement will be used to create a function template, not a

function with executable code.

NOT DETERMINISTIC or DETERMINISTIC

Specifies whether the function returns the same results for identical input

arguments. The default is NOT DETERMINISTIC.

NOT DETERMINISTIC

Specifies that the function might not return the same result each time

that the function is invoked with the same input arguments. The

function depends on some state values that affect the results. The

database manager uses this information during optimization of SQL

statements. An example of a function that is not deterministic is one

that generates random numbers.

 A function that is not deterministic might receive incorrect results if it

is executed by parallel tasks.

DETERMINISTIC

Specifies that the function always returns the same result each time

that the function is invoked with the same input arguments. The

database manager uses this information during optimization of SQL

statements. An example of a function that is deterministic is one that

calculates the square root of the input argument.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the function takes an action that changes the state of an

object that the database manager does not manage. An example of an

external action is sending a message or writing a record to a file. The

default is EXTERNAL ACTION.

EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an

object that the database manager does not manage. EXTERNAL

CREATE FUNCTION (Sourced or Template)

Statements 335

ACTION must be implicitly or explicitly specified if the SQL routine

body invokes a function that is defined with EXTERNAL ACTION

(SQLSTATE 428C2).

 A function with external actions might return incorrect results if the

function is executed by parallel tasks. For example, if the function

sends a note for each initial call to it, one note is sent for each parallel

task instead of once for the function.

NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the

state of an object that the database manager does not manage. The

database manager uses this information during optimization of SQL

statements.

Rules

v For convenience, in this section we will call the function being created CF and

the function identified in the SOURCE clause SF, no matter which of the three

allowable syntaxes was used to identify SF.

– The unqualified name of CF and the unqualified name of SF can be different.

– A function named as the source of another function can, itself, use another

function as its source. Extreme care should be exercised when exploiting this

facility, because it could be very difficult to debug an application if an

indirectly invoked function returns an error.

– The following clauses are invalid if specified in conjunction with the SOURCE

clause (because CF will inherit these attributes from SF):

- CAST FROM ...,

- EXTERNAL ...,

- LANGUAGE ...,

- PARAMETER STYLE ...,

- DETERMINISTIC / NOT DETERMINISTIC,

- FENCED / NOT FENCED,

- RETURNS NULL ON NULL INPUT / CALLED ON NULL INPUT

- EXTERNAL ACTION / NO EXTERNAL ACTION

- NO SQL / CONTAINS SQL / READS SQL DATA

- SCRATCHPAD / NO SCRATCHPAD

- FINAL CALL / NO FINAL CALL

- RETURNS TABLE (...)

- CARDINALITY ...

- ALLOW PARALLEL / DISALLOW PARALLEL

- DBINFO / NO DBINFO

- THREADSAFE / NOT THREADSAFE

- INHERIT SPECIAL REGISTERS
An error (SQLSTATE 42613) will result from violation of these rules.

v The number of input parameters in CF must be the same as those in SF;

otherwise an error (SQLSTATE 42624) is returned.

v It is not necessary for CF to specify length, precision, or scale for a

parameterized data type in the case of:

– The function’s input parameters,

– Its RETURNS parameter

CREATE FUNCTION (Sourced or Template)

336 SQL Reference, Volume 2

Instead, empty parentheses may be specified as part of the data type (for

example: VARCHAR()) in order to indicate that the length/precision/scale will

be the same as those of the source function, or determined by the casting.

However, if length, precision, or scale is specified then the value in CF is

checked against the corresponding value in SF as outlined below for input

parameters and returns value.

v The specification of the input parameters of CF are checked against those of SF.

The data type of each parameter of CF must either be the same as or be castable

to the data type of the corresponding parameter of SF. If any parameter is not

the same type or castable, an error (SQLSTATE 42879) is returned.

Note that this rule provides no guarantee against an error occurring when CF is

used. An argument that matches the data type and length or precision attributes

of a CF parameter may not be assignable if the corresponding SF parameter has

a shorter length or less precision. In general, parameters of CF should not have

length or precision attributes that are greater than the attributes of the

corresponding SF parameters.

v The specifications for the RETURNS data type of CF are checked against that of

SF. The final RETURNS data type of SF, after any casting, must either be the

same as or castable to the RETURNS data type of CF. Otherwise an error

(SQLSTATE 42866) is returned.

Note that this rule provides no guarantee against an error occurring when CF is

used. A result value that matches the data type and length or precision attributes

of the SF RETURNS data type may not be assignable if the CF RETURNS data

type has a shorter length or less precision. Caution should be used when

choosing to specify the RETURNS data type of CF as having length or precision

attributes that are less than the attributes of the SF RETURNS data type.

Notes

v Determining whether one data type is castable to another data type does not

consider length or precision and scale for parameterized data types such as

CHAR and DECIMAL. Therefore, errors may occur when using a function as a

result of attempting to cast a value of the source data type to a value of the

target data type. For example, VARCHAR is castable to DATE but if the source

type is actually defined as VARCHAR(5), an error will occur when using the

function.

v When choosing the data types for the parameters of a user-defined function,

consider the rules for promotion that will affect its input values (see “Promotion

of data types”). For example, a constant which may be used as an input value

could have a built-in data type different from the one expected and, more

significantly, may not be promoted to the data type expected. Based on the rules

for promotion, it is generally recommended to use the following data types for

parameters:

– INTEGER instead of SMALLINT

– DOUBLE instead of REAL

– VARCHAR instead of CHAR

– VARGRAPHIC instead of GRAPHIC
v Creating a function with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v For a federated server to recognize a data source function, the function must

map to a counterpart at the federated database. If the database contains no

counterpart, the user must create the counterpart and then the mapping.

CREATE FUNCTION (Sourced or Template)

Statements 337

The counterpart can be a function (scalar or source) or a function template. If the

user creates a function and the required mapping, then, each time a query that

specifies the function is processed, DB2 (1) compares strategies for invoking it

with strategies for invoking the data source function, and (2) invokes the

function that is expected to require less overhead.

If the user creates a function template and the mapping, then each time a query

that specifies the template is processed, DB2 invokes the data source function

that it maps to, provided that an access plan for invoking this function exists.

v Privileges

The definer of a function always receives the EXECUTE privilege on the

function, as well as the right to drop the function. The definer of the function is

also given the WITH GRANT OPTION if any one of the following is true:

– The source function is a built-in function.

– The definer of the function has EXECUTE WITH GRANT OPTION on the

source function.

– The function is a template.

Examples

Example 1: Some time after the creation of Pellow’s original CENTRE external

scalar function, another user wants to create a function based on it, except this

function is intended to accept only integer arguments.

 CREATE FUNCTION MYCENTRE (INTEGER, INTEGER)

 RETURNS FLOAT

 SOURCE PELLOW.CENTRE (INTEGER, FLOAT)

Example 2: A distinct type, HATSIZE, has been created based on the built-in

INTEGER data type. It would be useful to have an AVG function to compute the

average hat size of different departments. This is easily done as follows:

 CREATE FUNCTION AVG (HATSIZE) RETURNS HATSIZE

 SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function, allowing

the cast from HATSIZE to INTEGER for the argument and from INTEGER to

HATSIZE for the result of the function.

Example 3: In a federated system, a user wants to invoke an Oracle UDF that

returns table statistics in the form of values with double-precision floating points.

The federated server can recognize this function only if there is a mapping

between the function and a federated database counterpart. But no such

counterpart exists. The user decides to provide one in the form of a function

template, and to assign this template to a schema called NOVA. The user uses the

following code to register the template with the federated server.

 CREATE FUNCTION NOVA.STATS (DOUBLE, DOUBLE)

 RETURNS DOUBLE

 AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

Example 4: In a federated system, a user wants to invoke an Oracle UDF that

returns the dollar amounts that employees of a particular organization earn as

bonuses. The federated server can recognize this function only if there is a

mapping between the function and a federated database counterpart. No such

counterpart exists; thus, the user creates one in the form of a function template.

The user uses the following code to register this template with the federated

server.

CREATE FUNCTION (Sourced or Template)

338 SQL Reference, Volume 2

CREATE FUNCTION BONUS ()

 RETURNS DECIMAL (8,2)

 AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

CREATE FUNCTION (Sourced or Template)

Statements 339

CREATE FUNCTION (SQL Scalar, Table, or Row)

The CREATE FUNCTION (SQL Scalar, Table, or Row) statement is used to define a

user-defined SQL scalar, table, or row function. A scalar function returns a single

value each time it is invoked, and is generally valid wherever an SQL expression is

valid. A table function can be used in a FROM clause and returns a table. A row

function can be used as a transform function and returns a row.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v For each table, view, or nickname identified in any fullselect:

– CONTROL privilege on that table, view, or nickname, or

– SELECT privilege on that table, view, or nickname

and at least one of the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the function does not exist

– CREATEIN privilege on the schema, if the schema name of the function refers

to an existing schema
v SYSADM or DBADM authority

Group privileges other than PUBLIC are not considered for any table or view

specified in the CREATE FUNCTION statement.

Authorization requirements of the data source for the table or view referenced by

the nickname are applied when the function is invoked. The authorization ID of

the connection can be mapped to a different remote authorization ID.

If a function definer can only create the function because the definer has SYSADM

authority, the definer is granted implicit DBADM authority for the purpose of

creating the function.

If the authorization ID of the statement does not have SYSADM or DBADM

authority, the privileges held by the authorization ID of the statement must also

include all of the privileges necessary to invoke the SQL statements that are

specified in the function body.

Syntax

�� CREATE FUNCTION function-name

�

 ()

,

parameter-declaration

 * �

CREATE FUNCTION (SQL Scalar, Table, or Row)

340 SQL Reference, Volume 2

� RETURNS data-type2

ROW

column-list

TABLE

 *

SPECIFIC

specific-name
 * �

�
 LANGUAGE SQL

*

PARAMETER CCSID

ASCII

UNICODE

*

�

�
 NOT DETERMINISTIC

DETERMINISTIC

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

�

�
 READS SQL DATA

CONTAINS SQL

(1)

MODIFIES SQL DATA

*

 STATIC DISPATCH

*

�

�
 CALLED ON NULL INPUT

*

 INHERIT SPECIAL REGISTERS

*

�

�
(2)

PREDICATES

(

predicate-specification

)

 �

�
 INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

SQL-function-body

��

parameter-declaration:

 parameter-name data-type1

data-type1, data-type2, data-type3:

 built-in-type

distinct-type-name

structured-type-name

REF

(

type-name

)

built-in-type:

CREATE FUNCTION (SQL Scalar, Table, or Row)

Statements 341

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(3)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

SYSPROC.

(4)

(5)

DB2SECURITYLABEL

column-list:

�

 ,

(

column-name

data-type3

)

SQL-function-body:

 RETURN Statement

dynamic-compound-statement

CREATE FUNCTION (SQL Scalar, Table, or Row)

342 SQL Reference, Volume 2

Notes:

1 Valid only if RETURNS specifies a table (TABLE column-list)

2 Valid only if RETURNS specifies a scalar result (data-type2)

3 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

4 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

5 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

Description

function-name

Names the function being defined. It is a qualified or unqualified name that

designates a function. The unqualified form of function-name is an SQL

identifier (with a maximum length of 18). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters and the data type of each parameter (without regard for

any length, precision or scale attributes of the data type) must not identify a

function described in the catalog (SQLSTATE 42723). The unqualified name,

together with the number and data types of the parameters, while of course

unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’

(SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a function-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some

difference in the signature of the functions. Although there is no prohibition

against it, an external user-defined table function should not be given the same

name as a built-in function.

(parameter-declaration,...)

Identifies the number of input parameters of the function, and specifies the

data type of each parameter. One entry in the list must be specified for each

parameter that the function will expect to receive. No more than 90 parameters

are allowed (SQLSTATE 54023).

 It is possible to register a function that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have

exactly the same type for all corresponding parameters. Lengths, precisions,

and scales are not considered in this type comparison. Therefore, CHAR(8) and

CHAR(35) are considered to be the same type, as are DECIMAL(11,2) and

CREATE FUNCTION (SQL Scalar, Table, or Row)

Statements 343

DECIMAL (4,3), as well as DECFLOAT(16) and DECFLOAT(34). For a Unicode

database, CHAR(13) and GRAPHIC(8) are considered to be the same type.

There is some further bundling of types that causes them to be treated as the

same type for this purpose, such as DECIMAL and NUMERIC. A duplicate

signature returns an error (SQLSTATE 42723).

parameter-name

Specifies a name for the input parameter. The name cannot be the same as

any other parameter-name in the parameter list (SQLSTATE 42734).

data-type1

Specifies the data type of the input parameter. The data type can be a

built-in data type, a distinct type, a structured type, or a reference type.

 For a more complete description of each built-in data type, see “CREATE

TABLE”.

v Array, LONG VARCHAR, LONG VARGRAPHIC, or XML data types

cannot be specified (SQLSTATE 42815).

v A datetime type parameter is passed as a character data type, and the

data is passed in the ISO format.

For a user-defined distinct type, the length, precision, or scale attributes for

the parameter are those of the source type of the distinct type (those

specified on CREATE TYPE). A distinct type parameter is passed as the

source type of the distinct type. If the name of the distinct type is

unqualified, the database manager resolves the schema name by searching

the schemas in the SQL path.

For a reference type, the parameter can be specified as REF(type-name) if

the parameter is unscoped. The system does not attempt to infer the scope

of the parameter or result. Inside the body of the function, a reference type

can be used in a dereference operation only by first casting it to have a

scope. Similarly, a reference returned by an SQL function can be used in a

dereference operation only by first casting it to have a scope.

RETURNS

This mandatory clause identifies the type of output of the function.

data-type2

Specifies the data type of the output.

 In this statement, exactly the same considerations apply as for the

parameters of SQL functions described above under data-type1 for function

parameters.

ROW column-list

Specifies that the output of the function is a single row. If the function

returns more than one row, an error is raised (SQLSTATE 21505). The

column-list must include at least two columns (SQLSTATE 428F0).

 A row function can only be used as a transform function for a structured

type (having one structured type as its parameter and returning only base

types).

TABLE column-list

Specifies that the output of the function is a table.

column-list

The list of column names and data types returned for a ROW or TABLE

function

CREATE FUNCTION (SQL Scalar, Table, or Row)

344 SQL Reference, Volume 2

column-name

Specifies the name of this column. The name cannot be qualified and

the same name cannot be used for more than one column of the row.

data-type3

Specifies the data type of the column, and can be any data type

supported by a parameter of the SQL function.

SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined.

This specific name can be used when sourcing on this function, dropping the

function, or commenting on the function. It can never be used to invoke the

function. The unqualified form of specific-name is an SQL identifier (with a

maximum length of 18). The qualified form is a schema-name followed by a

period and an SQL identifier. The name, including the implicit or explicit

qualifier, must not identify another function instance that exists at the

application server; otherwise an error is raised (SQLSTATE 42710).

 The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used.

If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of function-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

LANGUAGE SQL

Specifies that the function is written using SQL.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

the function. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031).

UNICODE

Specifies that character data is in UTF-8, and that graphic data is in UCS-2.

If the database is not a Unicode database, PARAMETER CCSID UNICODE

cannot be specified (SQLSTATE 56031).

DETERMINISTIC or NOT DETERMINISTIC

This optional clause specifies whether the function always returns the same

results for given argument values (DETERMINISTIC) or whether the function

depends on some state values that affect the results (NOT DETERMINISTIC).

That is, a DETERMINISTIC function must always return the same table from

successive invocations with identical inputs. Optimizations taking advantage of

the fact that identical inputs always produce the same results are prevented by

specifying NOT DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the function takes an action that changes the state of an

object that the database manager does not manage. An example of an external

action is sending a message or writing a record to a file. The default is

EXTERNAL ACTION.

CREATE FUNCTION (SQL Scalar, Table, or Row)

Statements 345

EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an

object that the database manager does not manage.

NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the state

of an object that the database manager does not manage. The database

manager uses this information during optimization of SQL statements.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA

Indicates what type of SQL statements can be executed.

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the function (SQLSTATE 42985).

READS SQL DATA

Indicates that SQL statements that do not modify SQL data can be

executed by the function (SQLSTATE 42985).

MODIFIES SQL DATA

Indicates that all SQL statements supported in dynamic-compound-statement

can be executed by the function.

STATIC DISPATCH

This optional clause indicates that at function resolution time, DB2 chooses a

function based on the static types (declared types) of the parameters of the

function.

CALLED ON NULL INPUT

This clause indicates that the function is called regardless of whether any of its

arguments are null. It can return a null value or a non-null value.

Responsibility for testing null argument values lies with the user-defined

function.

 The phrase NULL CALL may be used in place of CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS

This optional clause indicates that updatable special registers in the function

will inherit their initial values from the environment of the invoking statement.

For a function that is invoked in the select-statement of a cursor, the initial

values are inherited from the environment when the cursor is opened. For a

routine that is invoked in a nested object (for example, a trigger or a view), the

initial values are inherited from the runtime environment (not the object

definition).

 No changes to the special registers are passed back to the caller of the function.

Some special registers, such as the datetime special registers, reflect a property

of the statement currently executing, and are therefore never inherited from the

caller.

PREDICATES

For predicates using this function, this clause identifies those that can exploit

the index extensions, and can use the optional SELECTIVITY clause for the

predicate’s search condition. If the PREDICATES clause is specified, the

function must be defined as DETERMINISTIC with NO EXTERNAL ACTION

(SQLSTATE 42613). If the PREDICATES clause is specified, and the database is

not a Unicode database, PARAMETER CCSID UNICODE must not be specified

(SQLSTATE 42613).

CREATE FUNCTION (SQL Scalar, Table, or Row)

346 SQL Reference, Volume 2

predicate-specification

For details on predicate specification, see “CREATE FUNCTION (External

Scalar)”.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT

ISOLATION LEVEL WITH LOCK REQUEST

Specifies whether or not a lock request can be associated with the

isolation-clause of the statement when the function inherits the isolation level

of the statement that invokes the function. The default is INHERIT

ISOLATION LEVEL WITHOUT LOCK REQUEST.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

Specifies that, as the function inherits the isolation level of the invoking

statement, it cannot be invoked in the context of an SQL statement which

includes a lock-request-clause as part of a specified isolation-clause

(SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

Specifies that, as the function inherits the isolation level of the invoking

statement, it also inherits the specified lock-request-clause.

SQL-function-body

Specifies the body of the function. Parameter names can be referenced in the

SQL-function-body. Parameter names may be qualified with the function name

to avoid ambiguous references.

 If the SQL-function-body is a dynamic compound statement, it must contain at

least one RETURN statement, and a RETURN statement must be executed

when the function is called (SQLSTATE 42632). If the function is a table or row

function, it can contain only one RETURN statement, which must be the last

statement in the dynamic compound statement (SQLSTATE 429BD).

Notes

v Resolution of function calls inside the function body is done according to the

SQL path that is effective for the CREATE FUNCTION statement and does not

change after the function is created.

v If an SQL function contains multiple references to any of the date or time special

registers, all references return the same value, and it will be the same value

returned by the register invocation in the statement that called the function.

v The body of an SQL function cannot contain a recursive call to itself or to

another function or method that calls it, since such a function could not exist to

be called.

v The following rules are enforced by all statements that create functions or

methods:

– A function may not have the same signature as a method (comparing the first

parameter-type of the function with the subject-type of the method).

– A function and a method may not be in an overriding relationship. That is, if

the function were a method with its first parameter as subject, it must not

override, or be overridden by, another method. For more information about

overriding methods, see the “CREATE TYPE (Structured)” statement.

– Because overriding does not apply to functions, it is permissible for two

functions to exist such that, if they were methods, one would override the

other.
For the purpose of comparing parameter-types in the above rules:

– Parameter-names, lengths, AS LOCATOR, and FOR BIT DATA are ignored.

– A subtype is considered to be different from its supertype.

CREATE FUNCTION (SQL Scalar, Table, or Row)

Statements 347

v Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function can

access a table that is being modified by the statement that invoked the function

(SQLSTATE 57053). For example, suppose the user-defined function BONUS() is

defined as READS SQL DATA. If the statement UPDATE EMPLOYEE SET

SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL statement in the

BONUS function can read from the EMPLOYEE table.

If a function defined with MODIFIES SQL DATA contains nested CALL

statements, read access to the tables being modified by the function (by either

the function definition or the statement that invoked the function) is not allowed

(SQLSTATE 57053).

v Privileges

The definer of a function always receives the EXECUTE privilege on the

function, as well as the right to drop the function. The definer of a function is

also given the WITH GRANT OPTION on the function if the definer has WITH

GRANT OPTION on all privileges required to define the function, or if the

definer has SYSADM or DBADM authority.

The definer of a function only acquires privileges if the privileges from which

they are derived exist at the time the function is created. The definer must have

these privileges either directly, or because PUBLIC has the privileges. Privileges

held by groups of which the function definer is a member are not considered.

When using the function, the connected user’s authorization ID must have the

valid privileges on the table or view that the nickname references at the data

source.

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database
– For compatibility with previous versions of DB2:

- NULL CALL can be specified in place of CALLED ON NULL INPUT

Examples

Example 1: Define a scalar function that returns the tangent of a value using the

existing sine and cosine functions.

 CREATE FUNCTION TAN (X DOUBLE)

 RETURNS DOUBLE

 LANGUAGE SQL

 CONTAINS SQL

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN SIN(X)/COS(X)

Example 2: Define a transform function for the structured type PERSON.

 CREATE FUNCTION FROMPERSON (P PERSON)

 RETURNS ROW (NAME VARCHAR(10), FIRSTNAME VARCHAR(10))

 LANGUAGE SQL

 CONTAINS SQL

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN VALUES (P..NAME, P..FIRSTNAME)

CREATE FUNCTION (SQL Scalar, Table, or Row)

348 SQL Reference, Volume 2

Example 3: Define a table function that returns the employees in a specified

department number.

 CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))

 RETURNS TABLE (EMPNO CHAR(6),

 LASTNAME VARCHAR(15),

 FIRSTNAME VARCHAR(12))

 LANGUAGE SQL

 READS SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN

 SELECT EMPNO, LASTNAME, FIRSTNME

 FROM EMPLOYEE

 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

Example 4: Define a scalar function that reverses a string.

 CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))

 RETURNS VARCHAR(4000)

 DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL

 BEGIN ATOMIC

 DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT ’’;

 DECLARE LEN INT;

 IF INSTR IS NULL THEN

 RETURN NULL;

 END IF;

 SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));

 WHILE LEN > 0 DO

 SET (REVSTR, RESTSTR, LEN)

 = (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,

 SUBSTR(RESTSTR, 2, LEN - 1),

 LEN - 1);

 END WHILE;

 RETURN REVSTR;

 END

Example 4: Define the table function from Example 4 with auditing.

 CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))

 RETURNS TABLE (EMPNO CHAR(6),

 LASTNAME VARCHAR(15),

 FIRSTNAME VARCHAR(12))

 LANGUAGE SQL

 MODIFIES SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

 BEGIN ATOMIC

 INSERT INTO AUDIT

 VALUES (USER,

 ’Table: EMPLOYEE Prd: DEPTNO = ’ CONCAT DEPTNO);

 RETURN

 SELECT EMPNO, LASTNAME, FIRSTNME

 FROM EMPLOYEE

 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

 END

CREATE FUNCTION (SQL Scalar, Table, or Row)

Statements 349

CREATE FUNCTION MAPPING

The CREATE FUNCTION MAPPING statement is used to:

v Define a mapping between a federated database function or function template

and a data source function. The mapping can associate the federated database

function or template with a function at:

– A specified data source

– A range of data sources; for example, all data sources of a particular type and

version
v Disable a default mapping between a federated database function and a data

source function.

If multiple function mappings are applicable to a function, the most recent one is

applied.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE FUNCTION MAPPING

function-mapping-name
 FOR �

�

�

 ,

function-name

(

)

data-type

SPECIFIC

specific-name

�

� SERVER server-name

SERVER TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

 �

�
function-options

WITH INFIX
 ��

server-version:

 version

.

release

.

mod

version-string-constant

CREATE FUNCTION MAPPING

350 SQL Reference, Volume 2

function-options:

�

 ,

ADD

OPTIONS

(

function-option-name

string-constant

)

Description

function-mapping-name

Names the function mapping. The name must not identify a function mapping

that is already described in the catalog (SQLSTATE 42710).

 If the function-mapping-name is omitted, a system-generated unique name is

assigned.

function-name

Specifies the qualified or unqualified name of the federated database function

or federated database function template from which to map.

data-type

For a function or function template that has input parameters, data-type

specifies the data type of each parameter. The data type cannot be DECFLOAT,

LONG VARCHAR, LONG VARGRAPHIC, XML, or a user-defined type.

 Empty parentheses can be used instead of specifying length, precision, or scale

for the parameterized data types. It is recommended to use empty parentheses

for the parameterized data types; for example, CHAR(). A parameterized data

type is any one of the data types that can be defined with a specific length,

scale, or precision. The parameterized data types are the string data types and

the decimal data types. If you specify length, precision, or scale, it must be the

same as that of the function template. If you omit parentheses altogether, the

default length for the data type is used (see the description of the CREATE

TABLE statement).

SPECIFIC specific-name

Identifies the function or function template from which to map. Specify

specific-name to create a convenient function name.

SERVER server-name

Names the data source containing the function that is being mapped.

SERVER TYPE server-type

Identifies the type of data source containing the function that is being mapped.

VERSION

Identifies the version of the data source denoted by server-type.

version

Specifies the version number. The value must be an integer.

release

Specifies the number of the release of the version denoted by version. The

value must be an integer.

mod

Specifies the number of the modification of the release denoted by release.

The value must be an integer.

version-string-constant

Specifies the complete designation of the version. The version-string-constant

can be a single value (for example, ‘8i’); or it can be the concatenated

values of version, release and, if applicable, mod (for example, ‘8.0.3’).

CREATE FUNCTION MAPPING

Statements 351

WRAPPER wrapper-name

Specifies the name of the wrapper that the federated server uses to interact

with data sources of the type and version denoted by server-type and

server-version.

OPTIONS

Indicates what function mapping options are to be enabled.

ADD

Enables one or more function mapping options.

function-option-name

Names a function mapping option that applies either to the function

mapping or to the data source function included in the mapping.

string-constant

Specifies the setting for function-option-name as a character string constant.

WITH INFIX

Specifies that the data source function be generated in infix format. The

federated database system converts prefix notation to the infix notation that is

used by the remote data source.

Notes

v A federated database function or function template can map to a data source

function if:

– The federated database function or template has the same number of input

parameters as the data source function.

– The data types that are defined for the federated function or template are

compatible with the corresponding data types defined for the data source

function.
v If a distributed request references a DB2 function that maps to a data source

function, the optimizer develops strategies for invoking either function when the

request is processed. The DB2 function is invoked if doing so requires less

overhead than invoking the data source function. Otherwise, if invoking the DB2

function requires more overhead, the data source function is invoked.

v If a distributed request references a DB2 function template that maps to a data

source function, only the data source function can be invoked when the request

is processed. The template cannot be invoked because it has no executable code.

v Default function mappings can be rendered inoperable by disabling them (they

cannot be dropped). To disable a default function mapping, code the CREATE

FUNCTION MAPPING statement so that it specifies the name of the DB2

function within the mapping and sets the DISABLE option to ‘Y’.

v Functions in the SYSIBM schema do not have a specific name. To override the

default function mapping for a function in the SYSIBM schema, specify

function-name using the explicit qualifier SYSIBM; for example,

SYSIBM.LENGTH().

v A CREATE FUNCTION MAPPING statement within a given unit of work

(UOW) cannot be processed (SQLSTATE 55007) under either of the following

conditions:

– The statement references a single data source, and the UOW already includes

one of the following:

- A SELECT statement that references a nickname for a table or view within

this data source

- An open cursor on a nickname for a table or view within this data source

CREATE FUNCTION MAPPING

352 SQL Reference, Volume 2

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following:

- A SELECT statement that references a nickname for a table or view within

one of these data sources

- An open cursor on a nickname for a table or view within one of these data

sources

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources

Examples

Example 1: Map a function template to a UDF that all Oracle data sources can

access. The template is called STATS and belongs to a schema called NOVA. The

Oracle UDF is called STATISTICS and belongs to a schema called STAR.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN1

 FOR NOVA.STATS (DOUBLE, DOUBLE)

 SERVER TYPE ORACLE

 OPTIONS (REMOTE_NAME ’STAR.STATISTICS’)

Example 2: Map a function template called BONUS to a UDF, also called BONUS,

that is used at an Oracle data source called ORACLE1.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN2

 FOR BONUS()

 SERVER ORACLE1

 OPTIONS (REMOTE_NAME ’BONUS’)

Example 3: Assume that there is a default function mapping between the WEEK

system function that is defined to the federated database and a similar function

that is defined to Oracle data sources. When a query that requests Oracle data and

that references WEEK is processed, either WEEK or its Oracle counterpart will be

invoked, depending on which one is estimated by the optimizer to require less

overhead. The DBA wants to find out how performance would be affected if only

WEEK were invoked for such queries. To ensure that WEEK is invoked each time,

the DBA must disable the mapping.

 CREATE FUNCTION MAPPING

 FOR SYSFUN.WEEK(INT)

 SERVER TYPE ORACLE

 OPTIONS (DISABLE ’Y’)

Example 4: Map the federated function UCASE(CHAR) to a UDF that is used at an

Oracle data source called ORACLE2. Include the estimated number of instructions

per invocation of the Oracle UDF.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN4

 FOR SYSFUN.UCASE(CHAR)

 SERVER ORACLE2

 OPTIONS

 (REMOTE_NAME ’UPPERCASE’,

 INSTS_PER_INVOC ’1000’)

CREATE FUNCTION MAPPING

Statements 353

CREATE HISTOGRAM TEMPLATE

The CREATE HISTOGRAM TEMPLATE statement defines a template describing

the type of histogram that can be used to override one or more of the default

histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant ��

Description

template-name

Names the histogram template. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The name must not identify an existing

histogram template at the current server (SQLSTATE 42710). The name must

not begin with the characters ’SYS’ (SQLSTATE 42939).

HIGH BIN VALUE bigint-constant

Specifies the top value of the second to last bin (the last bin has an unbounded

top value). The units depend on how the histogram is used. The maximum

value is 268 435 456.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

CREATE HISTOGRAM TEMPLATE

354 SQL Reference, Volume 2

Notes

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is

executing, subsequent WLM-exclusive SQL statements will wait until the current

WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Example

Create a histogram template named LIFETIMETEMP on service class PAYROLL in

service superclass ADMIN that will override the default activity lifetime histogram

template with a new high bin value of 90 000, which represents 90 000

microseconds. This will produce a histogram with exponentially increasing bin

ranges, ending with a bin whose range is 90 000 to infinity.

 CREATE HISTOGRAM TEMPLATE LIFETIMETEMP

 HIGH BIN VALUE 90000

 CREATE SERVICE CLASS PAYROLL

 UNDER ADMIN ACTIVITY LIFETIME HISTOGRAM TEMPLATE LIFETIMETEMP

CREATE HISTOGRAM TEMPLATE

Statements 355

CREATE INDEX

The CREATE INDEX statement is used to:

v Define an index on a DB2 table. An index can be defined on XML data, or on

relational data.

v Create an index specification (metadata that indicates to the optimizer that a

data source table has an index)

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v One of:

– CONTROL privilege on the table or nickname on which the index is defined

– INDEX privilege on the table or nickname on which the index is defined

and one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist

– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v SYSADM or DBADM authority

No explicit privilege is required to create an index on a declared temporary table.

Syntax

�� CREATE INDEX index-name

UNIQUE
 �

�

�

 ,

(1)

ASC

ON

table-name

(

column-name

)

(2)

DESC

nickname

NOT PARTITIONED

�

�
IN

tablespace-name
 *

SPECIFICATION ONLY
 �

�

�

 *

,

(3)

INCLUDE

(

column-name

)

 �

CREATE INDEX

356 SQL Reference, Volume 2

�

�

 *

(4)

xml-index-specification

CLUSTER

EXTEND USING

index-extension-name

,

(

constant-expression

)

 �

�
 PCTFREE 10

*

*

PCTFREE

integer

LEVEL2 PCTFREE

integer

�

�
 ALLOW REVERSE SCANS

*

*

MINPCTUSED

integer

DISALLOW REVERSE SCANS

�

�
 PAGE SPLIT SYMMETRIC

*

PAGE SPLIT

HIGH

LOW

COLLECT

STATISTICS

DETAILED

SAMPLED

��

Notes:

1 In a federated system, table-name must identify a table in the federated

database. It cannot identify a data source table.

2 If nickname is specified, the CREATE INDEX statement creates an index

specification. In this case, INCLUDE, xml-index-specification, CLUSTER,

EXTEND USING, PCTFREE, MINPCTUSED, DISALLOW REVERSE SCANS,

ALLOW REVERSE SCANS, PAGE SPLIT, or COLLECT STATISTICS cannot be

specified.

3 The INCLUDE clause can only be specified if UNIQUE is specified.

4 If xml-index-specification is specified, column-name DESC, INCLUDE, or

CLUSTER cannot be specified.

xml-index-specification:

 (1)

GENERATE KEY USING XMLPATTERN

xmlpattern-clause

�

� xmltype-clause

Notes:

1 The alternative syntax GENERATE KEYS USING XMLPATTERN can be used.

xmlpattern-clause:

 ’ pattern-expression ’

namespace-declaration

CREATE INDEX

Statements 357

namespace-declaration:

�

DECLARE NAMESPACE

namespace-prefix=namespace-uri

;

DECLARE DEFAULT ELEMENT NAMESPACE

namespace-uri

pattern-expression:

�

/

forward-axis

xmlname-test

//

xmlkind-test

forward-axis:

 child::

@

attribute::

descendant::

self::

descendant-or-self::

xmlname-test:

 xml-qname

xml-wildcard

xml-wildcard:

 *

xml-nsprefix:*

*:xml-ncname

xmlkind-test:

 node()

text()

comment()

processing instruction()

xmltype-clause:

AS

data-type
 IGNORE INVALID VALUES

REJECT INVALID VALUES

data-type:

CREATE INDEX

358 SQL Reference, Volume 2

sql-data-type

sql-data-type:

 SQL VARCHAR (integer)

HASHED

DOUBLE

DATE

TIMESTAMP

Description

UNIQUE

If ON table-name is specified, UNIQUE prevents the table from containing two

or more rows with the same value of the index key. The uniqueness is enforced

at the end of the SQL statement that updates rows or inserts new rows.

 The uniqueness is also checked during the execution of the CREATE INDEX

statement. If the table already contains rows with duplicate key values, the

index is not created.

If the index is on an XML column (the index is an index over XML data), the

uniqueness applies to values with the specified pattern-expression for all rows of

the table. Uniqueness is enforced on each value after the value has been

converted to the specified sql-data-type. Because converting to the specified

sql-data-type might result in a loss of precision or range, or different values

might be hashed to the same key value, multiple values that appear to be

unique in the XML document might result in duplicate key errors. The

uniqueness of character strings depends on XQuery semantics where trailing

blanks are significant. Therefore, values that would be duplicates in SQL but

differ in trailing blanks are considered unique values in an index over XML

data.

When UNIQUE is used, null values are treated as any other values. For

example, if the key is a single column that may contain null values, that

column may contain no more than one null value.

If the UNIQUE option is specified, and the table has a distribution key, the

columns in the index key must be a superset of the distribution key. That is,

the columns specified for a unique index key must include all the columns of

the distribution key (SQLSTATE 42997).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

If ON nickname is specified, UNIQUE should be specified only if the data for

the index key contains unique values for every row of the data source table.

The uniqueness will not be checked.

For an index over XML data, UNIQUE can be specified only if the specified

pattern-expression specifies a single complete path and does not contain a

descendant or descendant-or-self axis, ″//″, an xml-wildcard, node(), or

processing-instruction() (SQLSTATE 429BS).

INDEX index-name

Names the index or index specification. The name, including the implicit or

explicit qualifier, must not identify an index or index specification that is

described in the catalog, or an existing index on a declared temporary table

(SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or

SYSSTAT (SQLSTATE 42939).

CREATE INDEX

Statements 359

The implicit or explicit qualifier for indexes on declared global temporary

tables must be SESSION (SQLSTATE 428EK).

ON table-name or nickname

The table-name identifies a table on which an index is to be created. The table

must be a base table (not a view), a materialized query table described in the

catalog, or a declared temporary table. The name of a declared temporary table

must be qualified with SESSION. The table-name must not identify a catalog

table (SQLSTATE 42832). If UNIQUE is specified and table-name is a typed

table, it must not be a subtable (SQLSTATE 429B3).

 nickname is the nickname on which an index specification is to be created. The

nickname references either a data source table whose index is described by the

index specification, or a data source view that is based on such a table. The

nickname must be listed in the catalog.

column-name

For an index, column-name identifies a column that is to be part of the index

key. For an index specification, column-name is the name by which the

federated server references a column of a data source table.

 Each column-name must be an unqualified name that identifies a column of the

table. Up to 64 columns can be specified. If table-name is a typed table, up to 63

columns can be specified. If table-name is a subtable, at least one column-name

must be introduced in the subtable; that is, not inherited from a supertable

(SQLSTATE 428DS). No column-name can be repeated (SQLSTATE 42711).

The sum of the stored lengths of the specified columns must not be greater

than the index key length limit for the page size. For key length limits, see

“SQL limits”. If table-name is a typed table, the index key length limit is further

reduced by 4 bytes. Note that this length limit can be reduced even more by

system overhead, which varies according to the data type of the column and

whether or not the column is nullable. For more information on overhead

affecting this limit, see “Byte Counts” in “CREATE TABLE”.

Note that this length can be reduced by system overhead, which varies

according to the data type of the column and whether it is nullable. For more

information on overhead affecting this limit, see “Byte Counts” in “CREATE

TABLE”.

No LOB column, LONG VARCHAR column, LONG VARGRAPHIC column, or

distinct type column based on a LOB, LONG VARCHAR, or LONG

VARGRAPHIC can be used as part of an index, even if the length attribute of

the column is small enough to fit within the index key length limit for the

page size (SQLSTATE 54008). A structured type column can only be specified if

the EXTEND USING clause is also specified (SQLSTATE 42962). If the

EXTEND USING clause is specified, only one column can be specified, and the

type of the column must be a structured type or a distinct type that is not

based on a LOB, LONG VARCHAR, or LONG VARGRAPHIC (SQLSTATE

42997).

If an index has only one column, and that column has the XML data type, and

the GENERATE KEY USING XMLPATTERN clause is also specified, the index

is an index over XML data. A column with the XML data type can be specified

only if the GENERATE KEY USING XMLPATTERN clause is also specified

(SQLSTATE 42962). If the GENERATE KEY USING XMLPATTERN clause is

specified, only one column can be specified, and the type of the column must

be XML.

CREATE INDEX

360 SQL Reference, Volume 2

ASC

Specifies that index entries are to be kept in ascending order of the column

values; this is the default setting. ASC cannot be specified for indexes that

are defined with EXTEND USING (SQLSTATE 42601).

DESC

Specifies that index entries are to be kept in descending order of the

column values. DESC cannot be specified for indexes that are defined with

EXTEND USING, or if the index is an index over XML data (SQLSTATE

42601).

NOT PARTITIONED

Indicates that a single index should be created that spans all of the data

partitions defined for the table. The table-name must identify a table defined

with data partitions (SQLSTATE 53036).

IN tablespace-name

Specifies the table space in which the index is to be created. This clause is only

supported for indexes on partitioned tables. You can specify this clause even if

the INDEX IN clause was specified when the table was created. This will

override that clause.

 The table space specified by tablespace-name must be in the same database

partition group as the data table spaces for the table and manage space in the

same way as the other table spaces of the partitioned table (SQLSTATE 42838);

it must be a table space on which the authorization ID of the statement holds

the USE privilege.

If the IN clause is not specified, the index is created in the table space that was

specified by the INDEX IN clause on the CREATE TABLE statement. If no

INDEX IN clause was specified, the table space of the first visible or attached

data partition of the table is used. This is the first partition in the list of data

partitions that are sorted on the basis of range specifications. If the IN clause is

not specified, the authorization ID of the statement is not required to have the

USE privilege on the default table space.

SPECIFICATION ONLY

Indicates that this statement will be used to create an index specification that

applies to the data source table referenced by nickname. SPECIFICATION

ONLY must be specified if nickname is specified (SQLSTATE 42601). It cannot

be specified if table-name is specified (SQLSTATE 42601).

 If the index specification applies to an index that is unique, DB2 does not

verify that the column values in the remote table are unique. If the remote

column values are not unique, queries against the nickname that include the

index column might return incorrect data or errors.

This clause cannot be used when creating an index on a declared temporary

table (SQLSTATE 42995).

INCLUDE

This keyword introduces a clause that specifies additional columns to be

appended to the set of index key columns. Any columns included with this

clause are not used to enforce uniqueness. These included columns might

improve the performance of some queries through index only access. The

columns must be distinct from the columns used to enforce uniqueness

(SQLSTATE 42711). UNIQUE must be specified when INCLUDE is specified

(SQLSTATE 42613). The limits for the number of columns and sum of the

length attributes apply to all of the columns in the unique key and in the

index.

CREATE INDEX

Statements 361

This clause cannot be used with declared temporary tables (SQLSTATE 42995).

column-name

Identifies a column that is included in the index but not part of the unique

index key. The same rules apply as defined for columns of the unique

index key. The keywords ASC or DESC may be specified following the

column-name but have no effect on the order.

 INCLUDE cannot be specified for indexes that are defined with EXTEND

USING, if nickname is specified, or if the index is an XML values index

(SQLSTATE 42601).

xml-index-specification

Specifies how index keys are generated from XML documents that are stored

in an XML column. xml-index-specification cannot be specified if there is more

than one index column, or if the column does not have the XML data type.

 This clause only applies to XML columns (SQLSTATE 429BS).

GENERATE KEY USING XMLPATTERN xmlpattern-clause

Specifies the parts of an XML document that are to be indexed. XML

pattern values are the indexed values generated by the xmlpattern-clause.

List data type nodes are not supported in the index. If a node is qualified

by the xmlpattern-clause and an XML schema exists that specifies that the

node is a list data type, then the list data type node cannot be indexed

(SQLSTATE 23526 for CREATE INDEX statements, or SQLSTATE 23525 for

INSERT and UPDATE statements).

xmlpattern-clause

Contains a pattern expression that identifies the nodes that are to be

indexed. It consists of an optional namespace-declaration and a required

pattern-expression.

namespace-declaration

If the pattern expression contains qualified names, a

namespace-declaration must be specified to define namespace

prefixes. A default namespace can be defined for unqualified

names.

DECLARE NAMESPACE namespace-prefix=namespace-uri

Maps namespace-prefix, which is an NCName, to namespace-uri,

which is a string literal. The namespace-declaration can contain

multiple namespace-prefix-to-namespace-uri mappings. The

namespace-prefix must be unique within the list of

namespace-declaration (SQLSTATE 10503).

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri

Declares the default namespace URI for unqualified element

names or types. If no default namespace is declared,

unqualified names of elements and types are in no namespace.

Only one default namespace can be declared (SQLSTATE

10502).

pattern-expression

Specifies the nodes in an XML document that are indexed. The

pattern-expression can contain pattern-matching characters (*). It is

similar to a path expression in XQuery, but supports a subset of

the XQuery language that is supported by DB2.

/ (forward slash)

Separates path expression steps.

CREATE INDEX

362 SQL Reference, Volume 2

// (double forward slash)

This is the abbreviated syntax for /descendant-or-self::node()/.

You cannot use // (double forward slash) if you also specify

UNIQUE.

forward-axis

child::

Specifies children of the context node. This is the default, if

no other forward axis is specified.

@ Specifies attributes of the context node. This is the

abbreviated syntax for attribute::.

attribute::

Specifies attributes of the context node.

descendant::

Specifies the descendants of the context node. You cannot

use descendant:: if you also specify UNIQUE.

self::

Specifies just the context node itself.

descendant-or-self::

Specifies the context node and the descendants of the

context node. You cannot use descendant-or-self:: if you

also specify UNIQUE.

xmlname-test

Specifies the node name for the step in the path using a

qualified XML name (xml-qname) or a wildcard

(xml-wildcard).

xml-ncname

An XML name as defined by XML 1.0. It cannot include a

colon character.

xml-qname

Specifies a qualified XML name (also known as a QName)

that can have two possible forms:

v xml-nsprefix:xml-ncname, where the xml-nsprefix is an

xml-ncname that identifies an in-scope namespace

v xml-ncname, which indicates that the default namespace

should be applied as the implicit xml-nsprefix

xml-wildcard

Specifies an xml-qname as a wildcard that can have three

possible forms:

v * (a single asterisk character) indicates any xml-qname

v xml-nsprefix:* indicates any xml-ncname within the

specified namespace

v *:xml-ncname indicates a specific XML name in any

in-scope namespace

You cannot use xml-wildcard if you also specify UNIQUE.

xmlkind-test

Use these options to specify what types of nodes you pattern

match. The following options are available to you:

CREATE INDEX

Statements 363

node()

Matches any node. You cannot use node() if you also

specify UNIQUE.

text()

Matches any text node.

comment()

Matches any comment node.

processing-instruction()

Matches any processing instruction node. You cannot use

processing-instruction() if you also specify UNIQUE.

xmltype-clause

AS data-type

Specifies the data type to which indexed values are converted

before they are stored. Values are converted to the index XML data

type that corresponds to the specified index SQL data type.

 Table 17. Corresponding index data types

Index XML data type Index SQL data type

xs:string VARCHAR(integer), VARCHAR HASHED

xs:double DOUBLE

xs:date DATE

xs:dateTime TIMESTAMP

For VARCHAR(integer) and VARCHAR HASHED, the value is

converted to an xs:string value using the XQuery function fn:string.

The length attribute of VARCHAR(integer) is applied as a

constraint to the resulting xs:string value. An index SQL data type

of VARCHAR HASHED applies a hash algorithm to the resulting

xs:string value to generate a hash code that is inserted into the

index.

For indexes using the data types DOUBLE, DATE, and

TIMESTAMP, the value is converted to the index XML data type

using the XQuery cast expression.

If the index is unique, the uniqueness of the value is enforced after

the value is converted to the indexed type.

data-type

The following data type is supported:

sql-data-type

Supported SQL data types are:

VARCHAR(integer)

If this form of VARCHAR is specified, DB2 uses integer

as a constraint. If document nodes that are to be

indexed have values that are longer than integer, the

documents are not inserted into the table if the index

already exists. If the index does not exist, the index is

not created. integer is a value between 1 and a page

size-dependent maximum. Table 18 on page 365 shows

the maximum value for each page size.

CREATE INDEX

364 SQL Reference, Volume 2

Table 18. Maximum length of document nodes by page size

Page size Maximum length of document node (bytes)

4KB 817

8KB 1841

16KB 3889

32KB 7985

XQuery semantics are used for string comparisons,

where trailing blanks are significant. This differs from

SQL semantics, where trailing blanks are insignificant

during comparisons.

VARCHAR HASHED

Specify VARCHAR HASHED to handle indexing of

arbitrary length character strings. The length of an

indexed string has no limit. DB2 generates an

eight-byte hash code over the entire string. Indexes that

use these hashed character strings can be used only for

equality lookups. XQuery semantics are used for string

equality comparisons, where trailing blanks are

significant. This differs from SQL semantics, where

trailing blanks are insignificant during comparisons.

The hash on the string preserves XQuery semantics for

equality and not SQL semantics.

DOUBLE

Specifies that the data type DOUBLE is used for

indexing numeric values. Unbounded decimal types

and 64 bit integers may lose precision when they are

stored as a DOUBLE value. The values for DOUBLE

may include the special numeric values NaN, INF,

-INF, +0, and -0, even though the SQL data type

DOUBLE itself does not support these values.

DATE

Specifies that the data type DATE is used for indexing

XML values. Note that the XML schema data type for

xs:date allows greater precision than the SQL data

type. If an out-of-range value is encountered, an error

is returned.

TIMESTAMP

Specifies that the data type TIMESTAMP is used for

indexing XML values. Note that the XML schema data

type for xs:dateTime allows greater precision than the

SQL data type. If an out-of range value is encountered,

an error is returned.

IGNORE INVALID VALUES

Specifies that XML pattern values that are invalid for the target

index XML data type are ignored and that the corresponding

values in the stored XML documents are not indexed by the

CREATE INDEX statement. By default, invalid values are ignored.

During insert and update operations, the invalid XML pattern

values are not indexed, but XML documents are still inserted into

the table. No error or warning is raised, because specifying these

CREATE INDEX

Statements 365

data types is not a constraint on the XML pattern values (XQuery

expressions that search for the specific XML index data type will

not consider these values).

 The index can ignore only invalid XML pattern values for the

index XML data type. Valid values must conform to the DB2

representation of the value for the index XML data type, or an

error is returned. An XML pattern value associated with the index

XML data type xs:string is always valid. However, the additional

length constraint of the associated index SQL data type

VARCHAR(integer) data type can still raise an error, if the

maximum length is exceeded. If an error is returned, XML data is

not inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

REJECT INVALID VALUES

Specifies that all XML pattern values must be valid for the index

XML data type. If any XML pattern value cannot be cast to the

index XML data type, an error is returned. XML data is not

inserted or updated in the table if the index already exists

(SQLSTATE 23525). If the index does not exist, the index is not

created (SQLSTATE 23526).

CLUSTER

Specifies that the index is the clustering index of the table. The cluster factor of

a clustering index is maintained or improved dynamically as data is inserted

into the associated table, by attempting to insert new rows physically close to

the rows for which the key values of this index are in the same range. Only

one clustering index may exist for a table so CLUSTER may not be specified if

it was used in the definition of any existing index on the table (SQLSTATE

55012). A clustering index may not be created on a table that is defined to use

append mode (SQLSTATE 428D8).

 CLUSTER is disallowed if nickname is specified, or if the index is an index over

XML data (SQLSTATE 42601). This clause cannot be used with declared

temporary tables (SQLSTATE 42995) or range-clustered tables (SQLSTATE

429BG).

EXTEND USING index-extension-name

Names the index-extension used to manage this index. If this clause is specified,

then there must be only one column-name specified and that column must be a

structured type or a distinct type (SQLSTATE 42997). The index-extension-name

must name an index extension described in the catalog (SQLSTATE 42704). For

a distinct type, the column must exactly match the type of the corresponding

source key parameter in the index extension. For a structured type column, the

type of the corresponding source key parameter must be the same type or a

supertype of the column type (SQLSTATE 428E0).

 This clause cannot be used with declared temporary tables (SQLSTATE 42995).

constant-expression

Identifies values for any required arguments for the index extension. Each

expression must be a constant value with a data type that exactly matches

the defined data type of the corresponding index extension parameters,

including length or precision, and scale (SQLSTATE 428E0). This clause

must not exceed 32 768 bytes in length in the database code page

(SQLSTATE 22001).

CREATE INDEX

366 SQL Reference, Volume 2

PCTFREE integer

Specifies what percentage of each index page to leave as free space when

building the index. The first entry in a page is added without restriction. When

additional entries are placed in an index page at least integer percent of free

space is left on each page. The value of integer can range from 0 to 99. If a

value greater than 10 is specified, only 10 percent free space will be left in

non-leaf pages. The default is 10.

 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause

cannot be used with declared temporary tables (SQLSTATE 42995).

LEVEL2 PCTFREE integer

Specifies what percentage of each index level 2 page to leave as free space

when building the index. The value of integer can range from 0 to 99. If

LEVEL2 PCTFREE is not set, a minimum of 10 or PCTFREE percent of free

space is left on all non-leaf pages. If LEVEL2 PCTFREE is set, integer percent of

free space is left on level 2 intermediate pages, and a minimum of 10 or integer

percent of free space is left on level 3 and higher intermediate pages.

 LEVEL2 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601).

This clause cannot be used with declared temporary tables (SQLSTATE 42995).

MINPCTUSED integer

Indicates whether index leaf pages are merged online, and the threshold for

the minimum percentage of space used on an index leaf page. If, after a key is

removed from an index leaf page, the percentage of space used on the page is

at or below integer percent, an attempt is made to merge the remaining keys on

this page with those of a neighboring page. If there is sufficient space on one

of these pages, the merge is performed and one of the pages is deleted. The

value of integer can be from 0 to 99. A value of 50 or below is recommended

for performance reasons. Specifying this option will have an impact on update

and delete performance. For type 2 indexes, merging is only done during

update and delete operations when there is an exclusive table lock. If an

exclusive table lock does not exist, keys are marked as pseudo deleted during

update and delete operations, and no merging is done. Consider using the

CLEANUP ONLY ALL option of REORG INDEXES to merge leaf pages instead

of using the MINPCTUSED option of CREATE INDEX.

 MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601). This

clause cannot be used with declared temporary tables (SQLSTATE 42995).

DISALLOW REVERSE SCANS

Specifies that an index only supports forward scans or scanning of the index in

the order that was defined at index creation time.

 DISALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

ALLOW REVERSE SCANS

Specifies that an index can support both forward and reverse scans; that is,

scanning of the index in the order that was defined at index creation time, and

scanning in the opposite order.

 ALLOW REVERSE SCANS cannot be specified together with nickname

(SQLSTATE 42601).

PAGE SPLIT

Specifies an index split behavior. The default is SYMMETRIC.

SYMMETRIC

Specifies that pages are to be split roughly in the middle.

CREATE INDEX

Statements 367

HIGH

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that increase with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

LOW

Specifies an index page split behavior that uses the space on index pages

efficiently when the values of the index keys being inserted follow a

particular pattern. For a subset of index key values, the leftmost column or

columns of the index must contain the same value, and the rightmost

column or columns of the index must contain values that decrease with

each insertion. For details, see “Options on the CREATE INDEX

statement”.

COLLECT STATISTICS

Specifies that basic index statistics are to be collected during index creation.

DETAILED

Specifies that extended index statistics (CLUSTERFACTOR and

PAGE_FETCH_PAIRS) are also to be collected during index creation.

SAMPLED

Specifies that sampling can be used when compiling extended index

statistics.

Rules

v The CREATE INDEX statement will fail (SQLSTATE 01550) if attempting to

create an index that matches an existing index.

Two index descriptions are considered duplicates if:

– the set of columns (both key and include columns) and their order in the

index is the same as that of an existing index AND

– the ordering attributes are the same AND

– both the previously existing index and the one being created are non-unique

OR the previously existing index is unique AND

– if both the previously existing index and the one being created are unique,

the key columns of the index being created are the same or a superset of key

columns of the previously existing index.
For indexes over XML data, the index descriptions are not considered duplicates

if the index names are different, even if the indexed XML column, the XML

patterns, and the data type, including its options, are identical.

v Unique indexes on system-maintained MQTs are not supported (SQLSTATE

42809).

v The COLLECT STATISTICS options are not supported if a nickname is specified

(SQLSTATE 42601).

Notes

v Indexes over XML data do not support concurrent write access while CREATE

INDEX is executing.

v For relational indexes only: Concurrent read/write access to the table is

permitted while an index is being created. Once the index has been built,

changes that were made to the table during index creation time are

CREATE INDEX

368 SQL Reference, Volume 2

forward-fitted to the new index. Write access to the table is then briefly blocked

while index creation completes, after which the new index becomes available.

To circumvent this default behavior, use the LOCK TABLE statement to

explicitly lock the table before issuing a CREATE INDEX statement. (The table

can be locked in either SHARE or EXCLUSIVE mode, depending on whether

read access is to be allowed.)

v If the named table already contains data, CREATE INDEX creates the index

entries for it. If the table does not yet contain data, CREATE INDEX creates a

description of the index; the index entries are created when data is inserted into

the table.

v Once the index is created and data is loaded into the table, it is advisable to

issue the RUNSTATS command. The RUNSTATS command updates statistics

collected on the database tables, columns, and indexes. These statistics are used

to determine the optimal access path to the tables. By issuing the RUNSTATS

command, the database manager can determine the characteristics of the new

index. If data has been loaded before the CREATE INDEX statement is issued, it

is recommended that the COLLECT STATISTICS option on the CREATE INDEX

statement be used as an alternative to the RUNSTATS command.

v Creating an index with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v The optimizer can recommend indexes prior to creating the actual index.

v If an index specification is being defined for a data source table that has an

index, the name of the index specification does not have to match the name of

the index.

v The optimizer uses index specifications to improve access to the data source

tables that the specifications apply to.

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is tolerated and ignored:

v CLOSE

v DEFINE

v FREEPAGE

v GBPCACHE

v PIECESIZE

v TYPE 2

v using-block
- The following syntax is accepted as the default behavior:

v COPY NO

v DEFER NO

Examples

Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The

purpose of the index is to ensure that there are not two entries in the table with

the same value for project name (PROJNAME). The index entries are to be in

ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM

 ON PROJECT(PROJNAME)

CREATE INDEX

Statements 369

Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table.

Arrange the index entries in ascending order by job title (JOB) within each

department (WORKDEPT).

 CREATE INDEX JOB_BY_DPT

 ON EMPLOYEE (WORKDEPT, JOB)

Example 3: The nickname EMPLOYEE references a data source table called

CURRENT_EMP. After this nickname was created, an index was defined on

CURRENT_EMP. The columns chosen for the index key were WORKDEBT and

JOB. Create an index specification that describes this index. Through this

specification, the optimizer will know that the index exists and what its key is.

With this information, the optimizer can improve its strategy to access the table.

 CREATE UNIQUE INDEX JOB_BY_DEPT

 ON EMPLOYEE (WORKDEPT, JOB)

 SPECIFICATION ONLY

Example 4: Create an extended index type named SPATIAL_INDEX on a

structured type column location. The description in index extension

GRID_EXTENSION is used to maintain SPATIAL_INDEX. The literal is given to

GRID_EXTENSION to create the index grid size.

 CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)

 EXTEND USING (GRID_EXTENSION (x’000100100010001000400010’))

Example 5: Create an index named IDX1 on a table named TAB1, and collect basic

index statistics on index IDX1.

 CREATE INDEX IDX1 ON TAB1 (col1) COLLECT STATISTICS

Example 6: Create an index named IDX2 on a table named TAB1, and collect

detailed index statistics on index IDX2.

 CREATE INDEX IDX2 ON TAB1 (col2) COLLECT DETAILED STATISTICS

Example 7: Create an index named IDX3 on a table named TAB1, and collect

detailed index statistics on index IDX3 using sampling.

 CREATE INDEX IDX3 ON TAB1 (col3) COLLECT SAMPLED DETAILED STATISTICS

Example 8: Create a unique index named A_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE UNIQUE INDEX A_IDX ON MYNUMBERDATA (A) IN IDX_TBSP

Example 9: Create a non-unique index named B_IDX on a partitioned table named

MYNUMBERDATA in table space IDX_TBSP.

 CREATE INDEX B_IDX ON MYNUMBERDATA (B)

 NOT PARTITIONED IN IDX_TBSP

Example 10: Create an index over XML data on a table named COMPANYINFO,

which contains an XML column named COMPANYDOCS. The XML column

COMPANYDOCS contains a large number of XML documents similar to the one

below:

<company name="Company1">

 <emp id="31201" salary="60000" gender="Female">

 <name>

 <first>Laura</first>

 <last>Brown</last>

 </name>

 <dept id="M25">

CREATE INDEX

370 SQL Reference, Volume 2

Finance

 </dept>

 </emp>

</company>

Users of the COMPANYINFO table often need to retrieve employee information

using the employee ID. An index like the following one can make that retrieval

more efficient.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/company/emp/@id’

 AS SQL DOUBLE

Example 11: The following index is logically equivalent to the index created in the

previous example, except that it uses unabbreviated syntax.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)

 GENERATE KEY USING XMLPATTERN ’/child::company/child::emp/attribute::id’

 AS SQL DOUBLE

Example 12: Create an index on a column named DOC, indexing only the book title

as a VARCHAR(100). Because the book title should be unique across all books, the

index must be unique.

 CREATE UNIQUE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN ’/book/title’

 AS SQL VARCHAR(100)

Example 13: Create an index on a column named DOC, indexing the chapter

number as a DOUBLE. This example includes namespace declarations.

 CREATE INDEX MYDOCSIDX ON MYDOCS(DOC)

 GENERATE KEY USING XMLPATTERN

 ’declare namespace b="http://www.foobar.com/book/";

 declare namespace c="http://acme.org/chapters";

 /b:book/c:chapter/@number’

 AS SQL DOUBLE

CREATE INDEX

Statements 371

CREATE INDEX EXTENSION

The CREATE INDEX EXTENSION statement defines an extension object for use

with indexes on tables that have structured type or distinct type columns.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the schema name of the index

extension does not refer to an existing schema

v CREATEIN privilege on the schema, if the schema name of the index extension

refers to an existing schema

v SYSADM or DBADM authority

Syntax

�� CREATE INDEX EXTENSION index-extension-name �

�

�

,

(

parameter-name1

data-type1

)

 �

� index-maintenance index-search ��

index-maintenance:

 FROM SOURCE KEY (parameter-name2 data-type2) �

� GENERATE KEY USING table-function-invocation

index-search:

�

 ,

WITH TARGET KEY

(

parameter-name3

data-type3

)

�

�

�

 ,

SEARCH METHODS

search-method-definition

search-method-definition:

�

 ,

WHEN

method-name

(

parameter-name4

data-type4

)

�

CREATE INDEX EXTENSION

372 SQL Reference, Volume 2

� RANGE THROUGH range-producing-function-invocation �

�
FILTER USING

index-filtering-function-invocation

case-expression

Description

index-extension-name

Names the index extension. The name, including the implicit or explicit

qualifier, must not identify an index extension described in the catalog. If a

two-part index-extension-name is specified, the schema name cannot begin with

’SYS’; otherwise, an error is returned (SQLSTATE 42939).

parameter-name1

Identifies a parameter that is passed to the index extension at CREATE

INDEX time to define the actual behavior of this index extension. The

parameter that is passed to the index extension is called an instance

parameter, because that value defines a new instance of an index extension.

 parameter-name1 must be unique within the definition of the index

extension. No more than 90 parameters are allowed. If this limit is

exceeded, an error (SQLSTATE 54023) is returned.

data-type1

Specifies the data type of each parameter. One entry in the list must be

specified for each parameter that the index extension will expect to receive.

The only SQL data types that can be specified are those that can be used as

constants, such as VARCHAR, INTEGER, DECIMAL, DOUBLE, or

VARGRAPHIC (SQLSTATE 429B5). The decimal floating-point data type

cannot be specified (SQLSTATE 429B5). The parameter value that is

received by the index extension at CREATE INDEX must match data-type1

exactly, including length, precision, and scale (SQLSTATE 428E0).

index-maintenance

Specifies how the index keys of a structured or distinct type column are

maintained. Index maintenance is the process of transforming the source

column to a target key. The transformation process is defined using a table

function that has previously been defined in the database.

FROM SOURCE KEY (parameter-name2 data-type2)

Specifies a structured data type or distinct type for the source key column

that is supported by this index extension.

parameter-name2

Identifies the parameter that is associated with the source key column.

A source key column is the index key column (defined in the CREATE

INDEX statement) with the same data type as data-type2.

data-type2

Specifies the data type for parameter-name2; data-type2 must be a

user-defined structured type or a distinct type that is not sourced on

LOB, XML, DECFLOAT, LONG VARCHAR, or LONG VARGRAPHIC

(SQLSTATE 42997). When the index extension is associated with the

index at CREATE INDEX time, the data type of the index key column

must:

CREATE INDEX EXTENSION

Statements 373

v Exactly match data-type2 if it is a distinct type; or

v Be the same type or a subtype of data-type2 if it is a structured type

Otherwise, an error is returned (SQLSTATE 428E0).

GENERATE KEY USING table-function-invocation

Specifies how the index key is generated using a user-defined table

function. Multiple index entries may be generated for a single source key

data value. An index entry cannot be duplicated from a single source key

data value (SQLSTATE 22526). The function can use parameter-name1,

parameter-name2, or a constant as arguments. If the data type of

parameter-name2 is a structured data type, only the observer methods of

that structured type can be used in its arguments (SQLSTATE 428E3). The

output of the GENERATE KEY function must be specified in the TARGET

KEY specification. The output of the function can also be used as input for

the index filtering function specified on the FILTER USING clause.

 The function used in table-function-invocation must:

v Resolve to a table function (SQLSTATE 428E4)

v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)

v Not be defined with LANGUAGE SQL (SQLSTATE 428E4)

v Not be defined with NOT DETERMINISTIC (SQLSTATE 428E4) or

EXTERNAL ACTION (SQLSTATE 428E4)

v Be defined with NO SQL (SQLSTATE 428E4)

v Not have a structured data type, LOB, XML, LONG VARCHAR, or

LONG VARGRAPHIC (SQLSTATE 428E3) in the data type of the

parameters, with the exception of system-generated observer methods

v Not include a subquery (SQLSTATE 428E3)

v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E3)

v Return columns with data types that follow the restrictions for data

types of columns of an index defined without the EXTEND USING

clause

If an argument invokes another operation or routine, it must be an

observer method (SQLSTATE 428E3).

The definer of the index extension must have EXECUTE privilege on this

function.

index-search

Specifies how searching is performed by providing a mapping of the search

arguments to search ranges.

WITH TARGET KEY

Specifies the target key parameters that are the output of the key

generation function specified on the GENERATE KEY USING clause.

parameter-name3

Identifies the parameter associated with a given target key. parameter-name3

corresponds to the columns of the RETURNS table as specified in the table

function of the GENERATE KEY USING clause. The number of parameters

specified must match the number of columns returned by that table

function (SQLSTATE 428E2).

data-type3

Specifies the data type for each corresponding parameter-name3. data-type3

CREATE INDEX EXTENSION

374 SQL Reference, Volume 2

must exactly match the data type of each corresponding output column of

the RETURNS table, as specified in the table function of the GENERATE

KEY USING clause (SQLSTATE 428E2), including the length, precision, and

type.

SEARCH METHODS

Introduces the search methods that are defined for the index.

search-method-definition

Specifies the method details of the index search. It consists of a method name,

the search arguments, a range producing function, and an optional index filter

function.

WHEN method-name

The name of a search method. This is an SQL identifier that relates to the

method name specified in the index exploitation rule (found in the

PREDICATES clause of a user-defined function). A search-method-name can

be referenced by only one WHEN clause in the search method definition

(SQLSTATE 42713).

parameter-name4

Identifies the parameter of a search argument. These names are for use in

the RANGE THROUGH and FILTER USING clauses.

data-type4

The data type associated with a search parameter.

RANGE THROUGH range-producing-function-invocation

Specifies an external table function that produces search ranges. This

function uses parameter-name1, parameter-name4, or a constant as arguments

and returns a set of search ranges.

 The table function used in range-producing-function-invocation must:

v Resolve to a table function (SQLSTATE 428E4)

v Not include a subquery (SQLSTATE 428E3) or SQL function (SQLSTATE

428E4) in its arguments

v Not include an XMLQUERY or XMLEXISTS expression in its arguments

(SQLSTATE 428E3)

v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)

v Not be defined with LANGUAGE SQL (SQLSTATE 428E4)

v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 428E4)

v Be defined with NO SQL (SQLSTATE 428E4)

The number and types of this function’s results must relate to the results of

the table function specified in the GENERATE KEY USING clause

(SQLSTATE 428E1) by:

v Returning up to twice as many columns as returned by the key

transformation function

v Having an even number of columns, in which the first half of the return

columns defines the start of the range (start key values), and the second

half of the return columns defines the end of the range (stop key values)

v Having each start key column with the same type as the corresponding

stop key column

v Having the type of each start key column be the same as the

corresponding key transformation function column

CREATE INDEX EXTENSION

Statements 375

More precisely, let a1:t1, ..., an:tn

be the function result columns and data

types of the key transformation function. The function result columns of

the range-producing-function-invocation must be b1:t1, ..., bm:tm, c1:t1, ..., cm:tm,

where m <= n and the ″b″ columns are the start key columns and the ″c″

columns are the stop key columns.

When the range-producing-function-invocation returns a null value as the

start or stop key value, the semantics are undefined.

The definer of the index extension must have EXECUTE privilege on this

function.

FILTER USING

Allows specification of an external function or a case expression to be used for

filtering index entries that were returned after applying the range-producing

function.

index-filtering-function-invocation

Specifies an external function to be used for filtering index entries. This

function uses the parameter-name1, parameter-name3, parameter-name4, or a

constant as arguments (SQLSTATE 42703) and returns an integer

(SQLSTATE 428E4). If the value returned is 1, the row corresponding to the

index entry is retrieved from the table. Otherwise, the index entry is not

considered for further processing.

 If not specified, index filtering is not performed.

The function used in the index-filtering-function-invocation must:

v Not be defined with PARAMETER CCSID UNICODE if this database is

not a Unicode database (SQLSTATE 428E4)

v Not be defined with LANGUAGE SQL (SQLSTATE 429B4)

v Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION

(SQLSTATE 42845)

v Be defined with NO SQL (SQLSTATE 428E4)

v Not have a structured data type in the data type of any of the

parameters (SQLSTATE 428E3)

v Not include a subquery (SQLSTATE 428E3)

v Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE

428E3)

If an argument invokes another function or method, these rules are also

enforced for this nested function or method. However, system-generated

observer methods are allowed as arguments to the filter function (or any

function or method used as an argument), as long as the argument results

in a built-in data type.

The definer of the index extension must have EXECUTE privilege on this

function.

case-expression

Specifies a case expression for filtering index entries. Either

parameter-name1, parameter-name3, parameter-name4, or a constant

(SQLSTATE 42703) can be used in the searched-when-clause and

simple-when-clause. An external function with the rules specified in FILTER

USING index-filtering-function-invocation may be used in result-expression.

Any function referenced in the case-expression must also conform to the

rules listed under index-filtering-function-invocation. In addition, subqueries

and XMLQUERY or XMLEXISTS expressions cannot be used anywhere else

in the case-expression (SQLSTATE 428E4). The case expression must return

CREATE INDEX EXTENSION

376 SQL Reference, Volume 2

an integer (SQLSTATE 428E4). A return value of 1 in the result-expression

means that the index entry is kept; otherwise, the index entry is discarded.

Notes

v Creating an index extension with a schema name that does not already exist will

result in the implicit creation of that schema, provided the authorization ID of

the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.

The CREATEIN privilege on the schema is granted to PUBLIC.

Examples

Example 1: The following creates an index extension called grid_extension that uses

a structured type SHAPE column in a table function called gridEntry to generate

seven index target keys. This index extension also provides two index search

methods to produce search ranges when given a search argument.

 CREATE INDEX EXTENSION GRID_EXTENSION (LEVELS VARCHAR(20) FOR BIT DATA)

 FROM SOURCE KEY (SHAPECOL SHAPE)

 GENERATE KEY USING GRIDENTRY(SHAPECOL..MBR..XMIN,

 SHAPECOL..MBR..YMIN,

 SHAPECOL..MBR..XMAX,

 SHAPECOL..MBR..YMAX,

 LEVELS)

 WITH TARGET KEY (LEVEL INT, GX INT, GY INT,

 XMIN INT, YMIN INT, XMAX INT, YMAX INT)

 SEARCH METHODS

 WHEN SEARCHFIRSTBYSECOND (SEARCHARG SHAPE)

 RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

 SEARCHARG..MBR..YMIN,

 SEARCHARG..MBR..XMAX,

 SEARCHARG..MBR..YMAX,

 LEVELS)

 FILTER USING

 CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR

 SEARCHARG..MBR..YMAX < YMIN) THEN 0

 ELSE CHECKDUPLICATE(LEVEL, GX, GY,

 XMIN, YMIN, XMAX, YMAX,

 SEARCHARG..MBR..XMIN,

 SEARCHARG..MBR..YMIN,

 SEARCHARG..MBR..XMAX,

 SEARCHARG..MBR..YMAX,

 LEVELS)

 END

 WHEN SEARCHSECONDBYFIRST (SEARCHARG SHAPE)

 RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,

 SEARCHARG..MBR..YMIN,

 SEARCHARG..MBR..XMAX,

 SEARCHARG..MBR..YMAX,

 LEVELS)

 FILTER USING

 CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR

 SEARCHARG..MBR..YMAX < YMIN) THEN 0

 ELSE MBROVERLAP(XMIN, YMIN, XMAX, YMAX,

 SEARCHARG..MBR..XMIN,

 SEARCHARG..MBR..YMIN,

 SEARCHARG..MBR..XMAX,

 SEARCHARG..MBR..YMAX)

 END

CREATE INDEX EXTENSION

Statements 377

CREATE METHOD

The CREATE METHOD statement is used to associate a method body with a

method specification that is already part of the definition of a user-defined

structured type.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATEIN privilege on the schema of the structured type referred to in the

CREATE METHOD statement

v The owner of the structured type referred to in the CREATE METHOD

statement

v SYSADM or DBADM authority

To associate an external method body with its method specification, the privileges

held by the authorization ID of the statement must also include at least one of the

following:

v CREATE_EXTERNAL_ROUTINE authority on the database

v SYSADM or DBADM authority

When creating an SQL method, the privileges held by the authorization ID of the

statement must also include, for each table, view, or nickname identified in any

fullselect:

v CONTROL privilege on that table, view, or nickname, or

v SELECT privilege on that table, view, or nickname

If the definer of an SQL method can only create the method because the definer

has SYSADM authority, the definer is granted implicit DBADM authority for the

purpose of creating the method.

Group privileges other than PUBLIC are not considered for any table or view

specified in the CREATE METHOD statement.

Authorization requirements of the data source for the table or view referenced by

the nickname are applied when the method is invoked. The authorization ID of the

connection can be mapped to a different remote authorization ID.

Syntax

�� CREATE METHOD method-name FOR type-name

method-signature

SPECIFIC METHOD

specific-name

 �

CREATE METHOD

378 SQL Reference, Volume 2

� * EXTERNAL * *

NAME

’string’

TRANSFORM GROUP

group-name

identifier

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

SQL-method-body

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

 ��

method-signature:

�

 method-name ()

,

data-type1

parameter-name

AS LOCATOR

 �

�
RETURNS

data-type2

AS LOCATOR

data-type3

CAST FROM

data-type4

AS LOCATOR

SQL-method-body:

 RETURN Statement

dynamic-compound-statement

Description

METHOD

Identifies an existing method specification that is associated with a

user-defined structured type. The method-specification can be identified

through one of the following means:

method-name

Names the method specification for which a method body is being defined.

The implicit schema is the schema of the subject type (type-name). There

must be only one method specification for type-name that has this

method-name (SQLSTATE 42725).

method-signature

Provides the method signature which uniquely identifies the method to be

defined. The method signature must match the method specification that

was provided on the CREATE TYPE or ALTER TYPE statement

(SQLSTATE 42883).

method-name

Names the method specification for which a method body is being

defined. The implicit schema is the schema of the subject type

(type-name).

parameter-name

Identifies the parameter name. If parameter names are provided in

the method signature, they must be exactly the same as the

corresponding parts of the matching method specification.

Parameter names are supported in this statement solely for

documentation purposes.

data-type1

Specifies the data type of each parameter. Array types are not

supported (SQLSTATE 42815).

CREATE METHOD

Statements 379

AS LOCATOR

For the LOB types or distinct types which are based on a LOB

type, the AS LOCATOR clause can be added.

RETURNS

This clause identifies the output of the method. If a RETURNS clause

is provided in the method signature, it must be exactly the same as the

corresponding part of the matching method specification on CREATE

TYPE. The RETURNS clause is supported in this statement solely for

documentation purposes.

data-type2

Specifies the data type of the output. Array types are not

supported (SQLSTATE 42815).

AS LOCATOR

For LOB types or distinct types which are based on LOB types,

the AS LOCATOR clause can be added. This indicates that a

LOB locator is to be returned by the method instead of the

actual value.

data-type3 CAST FROM data-type4

This form of the RETURNS clause is used to return a different data

type to the invoking statement from the data type that was

returned by the function code.

AS LOCATOR

For LOB types or distinct types which are based on LOB types,

the AS LOCATOR clause can be used to indicate that a LOB

locator is to be returned from the method instead of the actual

value.

FOR type-name

Names the type for which the specified method is to be associated. The

name must identify a type already described in the catalog. (SQLSTATE

42704) In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names.

SPECIFIC METHOD specific-name

Identifies the particular method, using the specific name either specified or

defaulted to at CREATE TYPE time. The specific-name must identify a method

specification in the named or implicit schema; otherwise, an error is raised

(SQLSTATE 42704).

EXTERNAL

This clause indicates that the CREATE METHOD statement is being used to

register a method, based on code written in an external programming

language, and adhering to the documented linkage conventions and interface.

The matching method-specification in CREATE TYPE must specify a

LANGUAGE other than SQL. When the method is invoked, the subject of the

method is passed to the implementation as an implicit first parameter.

 If the NAME clause is not specified, ″NAME method-name″ is assumed.

NAME

This clause identifies the name of the user-written code which implements

the method being defined.

CREATE METHOD

380 SQL Reference, Volume 2

’string’

The ’string’ option is a string constant with a maximum of 254 bytes.

The format used for the string is dependent on the LANGUAGE

specified. For more information on the specific language conventions,

see “CREATE FUNCTION (External Scalar) statement”.

identifier

This identifier specified is an SQL identifier. The SQL identifier is used

as the library-id in the string. Unless it is a delimited identifier, the

identifier is folded to upper case. If the identifier is qualified with a

schema name, the schema name portion is ignored. This form of

NAME can only be used with LANGUAGE C (as defined in the

method-specification on CREATE TYPE).

TRANSFORM GROUP group-name

Indicates the transform group that is used for user-defined structured type

transformations when invoking the method. A transform is required since the

method definition includes a user-defined structured type.

 It is strongly recommended that a transform group name be specified; if this

clause is not specified, the default group-name used is DB2_FUNCTION. If the

specified (or default) group-name is not defined for a referenced structured

type, an error results (SQLSTATE 42741). Likewise, if a required FROM SQL or

TO SQL transform function is not defined for the given group-name and

structured type, an error results (SQLSTATE 42744).

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT

ISOLATION LEVEL WITH LOCK REQUEST

Specifies whether or not a lock request can be associated with the

isolation-clause of the statement when the method inherits the isolation level of

the statement that invokes the method. The default is INHERIT ISOLATION

LEVEL WITHOUT LOCK REQUEST.

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

Specifies that, as the method inherits the isolation level of the invoking

statement, it cannot be invoked in the context of an SQL statement which

includes a lock-request-clause as part of a specified isolation-clause

(SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

Specifies that, as the method inherits the isolation level of the invoking

statement, it also inherits the specified lock-request-clause.

SQL-method-body

The SQL-method-body defines how the method is implemented if the method

specification in CREATE TYPE is LANGUAGE SQL.

 The SQL-method-body must comply with the following parts of method

specification:

v DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)

v EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE 428C2)

v CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

Parameter names can be referenced in the SQL-method-body. The subject of the

method is passed to the method implementation as an implicit first parameter

named SELF.

For additional details, see “Compound SQL (Dynamic) statement” and

“RETURN statement”.

CREATE METHOD

Statements 381

Rules

v The method specification must be previously defined using the CREATE TYPE

or ALTER TYPE statement before CREATE METHOD can be used (SQLSTATE

42723).

v If the method being created is an overriding method, those packages that are

dependent on the following methods are invalidated:

– The original method

– Other overriding methods that have as their subject a supertype of the

method being created
v The XML data type cannot be used in a method.

Notes

v If the method allows SQL, the external program must not attempt to access any

federated objects (SQLSTATE 55047).

v Privileges

The definer of a method always receives the EXECUTE privilege on the method,

as well as the right to drop the method.

If an EXTERNAL method is created, the definer of the method always receives

the EXECUTE privilege WITH GRANT OPTION.

If an SQL method is created, the definer of the method will only be given the

EXECUTE privilege WITH GRANT OPTION on the method when the definer

has WITH GRANT OPTION on all privileges required to define the method, or

if the definer has SYSADM or DBADM authority. The definer of an SQL method

only acquires privileges if the privileges from which they are derived exist at the

time the method is created. The definer must have these privileges either

directly, or because PUBLIC has the privileges. Privileges held by groups of

which the method definer is a member are not considered. When using the

method, the connected user’s authorization ID must have the valid privileges on

the table or view that the nickname references at the data source.

v Table access restrictions

If a method is defined as READS SQL DATA, no statement in the method can

access a table that is being modified by the statement which invoked the method

(SQLSTATE 57053).

Examples

Example 1:

 CREATE METHOD BONUS (RATE DOUBLE)

 FOR EMP

 RETURN SELF..SALARY * RATE

Example 2:

 CREATE METHOD SAMEZIP (addr address_t)

 RETURNS INTEGER

 FOR address_t

 RETURN

 (CASE

 WHEN (self..zip = addr..zip)

 THEN 1

 ELSE 0

 END)

Example 3:

CREATE METHOD

382 SQL Reference, Volume 2

CREATE METHOD DISTANCE (address_t)

 FOR address_t

 EXTERNAL NAME ’addresslib!distance’

 TRANSFORM GROUP func_group

CREATE METHOD

Statements 383

CREATE NICKNAME

The CREATE NICKNAME statement defines a nickname for a data source object.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATETAB authority on the federated database, as well as one of:

– IMPLICIT_SCHEMA authority on the federated database, if the implicit or

explicit schema name of the nickname does not exist

– CREATEIN privilege on the schema, if the schema name of the nickname

refers to an existing schema
v SYSADM or DBADM authority

For data sources that require a user mapping, the privileges held by the

authorization ID at the data source must include the privilege to select data from

the object that the nickname represents.

Syntax

�� CREATE NICKNAME nickname FOR remote-object-name

non-relational-data-definition
 �

�

�

,

ADD

OPTIONS

(

nickname-option-name

string-constant

)

 ��

non-relational-data-definition:

 nickname-column-list FOR SERVER server-name

nickname-column-list:

�

 ,

(

nickname-column-definition

)

unique-constraint

referential-constraint

check-constraint

nickname-column-definition:

CREATE NICKNAME

384 SQL Reference, Volume 2

column-name local-data-type nickname-column-options

local-data-type:

 built-in-type

distinct-type-name

built-in-type:

 SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(1)

CHARACTER

CHAR

(integer)

(1)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

nickname-column-options:

CREATE NICKNAME

Statements 385

�

NOT NULL

PRIMARY KEY

constraint-attributes

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

federated-column-options

federated-column-options:

�

 ,

ADD

OPTIONS

(

column-option-name

string-constant

)

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

�

� constraint-attributes

referential-constraint:

CONSTRAINT

constraint-name

FOREIGN KEY

�

 ,

(

column-name

)

�

� references-clause

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� constraint-attributes

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

CREATE NICKNAME

386 SQL Reference, Volume 2

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

constraint-attributes:

*

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

(2)

DISABLE QUERY OPTIMIZATION

*

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

2 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary

key constraint.

Description

nickname

Specifies a nickname, the identifier used by the federated server for the data

source object. The nickname, including the implicit or explicit qualifier, must

not identify a table, view, nickname, or alias described in the catalog. The data

source object cannot be a DB2 alias. The schema name must not begin with

’SYS’ (SQLSTATE 42939).

FOR remote-object-name

Specifies an identifier. For data sources that support schema names, this is a

three-part identifier with the format data-source-name.remote-schema-name.remote-
table-name. For data sources that do not support schema names, this is a

two-part identifier with the format data-source-name.remote-table-name.

data-source-name

Names the data source that contains the table or view for which the

nickname is being created. The data-source-name is the same name that was

assigned to the server-name in the CREATE SERVER statement.

remote-schema-name

Names the schema to which the table or view belongs. If the remote

schema name contains any special or lowercase characters, it must be

enclosed by double quotation marks.

remote-table-name

Names the specific data source object (such as a table or a view) for which

the nickname is being created. The table cannot be a declared temporary

table (SQLSTATE 42995). If the remote table name contains any special or

lowercase characters, it must be enclosed by double quotation marks.

CREATE NICKNAME

Statements 387

non-relational-data-definition

Defines the data that is to be accessed through a nonrelational wrapper.

nickname-column-definition

Defines the local attributes of the column for the nickname. Some

wrappers require these attributes to be specified, while other wrappers

allow the attributes to be determined from the data source.

column-name

Specifies the local name for the column. The name might be different

than the corresponding column of the remote-object-name.

local-data-type

Specifies the local data type for the column. Some wrappers only

support a subset of the SQL data types. For descriptions of specific

data types, see “CREATE TABLE” .

nickname-column-options

Specifies additional options related to columns of the nickname.

NOT NULL

Specifies that the column does not allow null values.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a

constraint that was already specified within the same CREATE

NICKNAME statement (SQLSTATE 42710).

 If this clause is omitted, an 18 byte long identifier that is unique

among the identifiers of existing constraints defined on the

nickname is generated by the system. (The identifier consists of

’SQL’ followed by a sequence of 15 numeric characters generated

by a timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the

constraint-name can be used as the name of an index specification

that is created to support the constraint.

PRIMARY KEY

This provides a shorthand method of defining a primary key

composed of a single column. Thus, if PRIMARY KEY is specified

in the definition of column C, the effect is the same as if the

PRIMARY KEY(C) clause is specified as a separate clause.

 See PRIMARY KEY under unique-constraint below.

UNIQUE

This provides a shorthand method of defining a unique key

composed of a single column. Thus, if UNIQUE is specified in the

definition of column C, the effect is the same as if the UNIQUE(C)

clause is specified as a separate clause.

 See UNIQUE under unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key

composed of a single column. Thus, if a references-clause is

specified in the definition of column C, the effect is the same as if

that references-clause were specified as part of a FOREIGN KEY

clause in which C is the only identified column.

 See references-clause under referential-constraint below.

CREATE NICKNAME

388 SQL Reference, Volume 2

CHECK (check-condition)

This provides a shorthand method of defining a check constraint

that applies to a single column. See CHECK (check-condition) below.

OPTIONS

Indicates the column options that are added when the nickname is

created. Some wrappers require that certain column options be

specified.

ADD

Adds a column option.

column-option-name

Specifies the name of the option.

string-constant

Specifies the setting for column-option-name as a character string

constant.

unique-constraint

Defines a unique or primary key constraint.

CONSTRAINT constraint-name

Names the primary key or unique constraint.

UNIQUE (column-name,...)

Defines a unique key composed of the identified columns. The identified

columns must be defined as NOT NULL. Each column-name must identify a

column of the nickname and the same column must not be identified more

than once.

 The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see “Byte Counts” in “CREATE

TABLE”. For key length limits, see “SQL and XQuery limits”. No LOB,

LONG VARCHAR, LONG VARGRAPHIC, distinct type based on one of

these types, or structured type can be used as part of a unique key, even if

the length attribute of the column is small enough to fit within the index

key length limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of

columns in the primary key or another unique key (SQLSTATE 01543). (If

LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

The description of the nickname as recorded in the catalog includes the

unique key and its index specification. An index specification will

automatically be created for the columns in the sequence specified with

ascending order for each column. The name of the index specification will

be the same as the constraint-name if this does not conflict with an existing

index or index specification in the schema where the nickname is created.

If the name of the index specification conflicts, the name will be ’SQL’

followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as

the schema name.

PRIMARY KEY (column-name,...)

Defines a primary key composed of the identified columns. The clause

must not be specified more than once, and the identified columns must be

defined as NOT NULL. Each column-name must identify a column of the

nickname, and the same column must not be identified more than once.

 The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

CREATE NICKNAME

Statements 389

page size. For column stored lengths, see “Byte Counts” in “CREATE

TABLE”. For key length limits, see “SQL and XQuery limits”. No LOB,

LONG VARCHAR, LONG VARGRAPHIC, distinct type based on one of

these types, or structured type can be used as part of a primary key, even

if the length attribute of the column is small enough to fit within the index

key length limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of

columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or

MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a nickname.

The description of the nickname as recorded in the catalog includes the

primary key and its index specification. An index specification will

automatically be created for the columns in the sequence specified with

ascending order for each column. The name of the index specification will

be the same as the constraint-name if this does not conflict with an existing

index or index specification in the schema where the nickname is created.

If the name of the index specification conflicts, the name will be ’SQL’,

followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as

the schema name.

referential-constraint

Defines a referential constraint.

CONSTRAINT constraint-name

Names the referential constraint.

FOREIGN KEY (column-name,...)

Defines a referential constraint with the specified constraint-name.

 Let N1 denote the object nickname of the statement. The foreign key of the

referential constraint is composed of the identified columns. Each name in

the list of column names must identify a column of N1, and the same

column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see “Byte Counts” in “CREATE

TABLE”. For key length limits, see “SQL and XQuery limits”. Foreign keys

can be defined on variable length columns whose length is greater than

255 bytes. No LOB, LONG VARCHAR, LONG VARGRAPHIC, distinct

type based on one of these types, or structured type column can be used as

part of a foreign key (SQLSTATE 42962). There must be the same number

of foreign key columns as there are in the parent key, and the data types of

the corresponding columns must be compatible (SQLSTATE 42830). Two

column descriptions are compatible if they have compatible data types

(both columns are numeric, character string, graphic, datetime, or have the

same distinct type).

references-clause

Specifies the parent table or the parent nickname, and the parent key for

the referential constraint.

REFERENCES table-name or nickname

The table or nickname specified in a REFERENCES clause must

identify a base table or a nickname that is described in the catalog, but

must not identify a catalog table.

CREATE NICKNAME

390 SQL Reference, Volume 2

A referential constraint is a duplicate if its foreign key, parent key, and

parent table or parent nickname are the same as the foreign key, parent

key, and parent table or parent nickname of a previously specified

referential constraint. Duplicate referential constraints are ignored, and

a warning is returned (SQLSTATE 01543).

In the following discussion, let N2 denote the identified parent table or

parent nickname, and let N1 denote the nickname being created (or

altered). N1 and N2 may be the same nickname.

The specified foreign key must have the same number of columns as

the parent key of N2, and the description of the nth column of the

foreign key must be comparable to the description of the nth column

of that parent key. Datetime columns are not considered to be

comparable to string columns for the purposes of this rule.

The referential constraint specified by a FOREIGN KEY clause defines

a relationship in which N2 is the parent and N1 is the dependent.

(column-name,...)

The parent key of a referential constraint is composed of the identified

columns. Each column-name must be an unqualified name that

identifies a column of N2. The same column must not be identified

more than once.

 The list of column names must match the set of columns (in any order)

of the primary key or a unique constraint that exists on N2 (SQLSTATE

42890). If a column name list is not specified, N2 must have a primary

key (SQLSTATE 42888). Omission of the column name list is an

implicit specification of the columns of that primary key in the

sequence originally specified.

constraint-attributes

Defines attributes associated with referential integrity or check

constraints.

NOT ENFORCED

The constraint is not enforced by the database manager during

normal operations, such as insert, update, or delete.

ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query

optimization under appropriate circumstances.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

check-constraint

Defines a check constraint. A check-constraint is a search-condition that must

evaluate to not false or that defines a functional dependency between columns.

CONSTRAINT constraint-name

Names the check constraint.

CHECK (check-condition)

Defines a check constraint. The check-condition must be true or unknown

for every row of the nickname.

search-condition

The search-condition has the following restrictions:

v A column reference must be to a column of the nickname being

created.

CREATE NICKNAME

Statements 391

v The search-condition cannot contain a TYPE predicate.

v It cannot contain any of the following (SQLSTATE 42621):

– Subqueries

– Dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)

column

– CAST specifications with a SCOPE clause

– Column functions

– Functions that are not deterministic

– Functions defined to have an external action

– User-defined functions defined with either CONTAINS SQL or

READS SQL DATA

– Host variables

– Parameter markers

– Special registers

– Global variables

– References to generated columns other than the identity column

functional-dependency

Defines a functional dependency between columns.

 The parent set of columns contains the identified columns that

immediately precede the DETERMINED BY clause. The child set of

columns contains the identified columns that immediately follow the

DETERMINED BY clause. All of the restrictions on the search-condition

apply to parent set and child set columns, and only simple column

references are allowed in the set of columns (SQLSTATE 42621). The

same column must not be identified more than once in the functional

dependency (SQLSTATE 42709). The data type of the column must not

be a LOB data type, a distinct type based on a LOB data type, or a

structured type (SQLSTATE 42962). No column in the child set of

columns can be a nullable column (SQLSTATE 42621).

 If a check constraint is specified as part of a column-definition, a column

reference can only be made to the same column. Check constraints

specified as part of a nickname definition can have column references

identifying columns previously defined in the CREATE NICKNAME

statement. Check constraints are not checked for inconsistencies, duplicate

conditions, or equivalent conditions. Therefore, contradictory or redundant

check constraints can be defined, resulting in possible errors at execution

time.

FOR SERVER server-name

Specifies a server that was registered using the CREATE SERVER statement.

This server will be used to access the data for the nickname.

OPTIONS

Indicates the nickname options that are enabled when the nickname is created.

ADD

Adds a nickname option.

nickname-option-name

Specifies the name of the option.

CREATE NICKNAME

392 SQL Reference, Volume 2

string-constant

Specifies the setting for nickname-option-name as a character string constant.

Notes

v Examples of relational data source objects are: tables and views. Examples of

nonrelational data source objects are: Documentum objects or registered tables,

text files (.txt), objects that you can run a BLAST search on, and Microsoft Excel

files (.xls).

v The data source object that the nickname references must already exist at the

data source denoted by the first qualifier in remote-object-name.

v The list of supported data source data types varies from wrapper to wrapper.

The data source data types that correspond to the following DB2 data types are

not supported by any of the wrappers: XML, DECFLOAT, structured types, and

REF types. When the CREATE NICKNAME statement specifies a

remote-object-name that has columns with unsupported data types, an error is

returned.

LONG VARCHAR and LONG VARGRAPHIC data source data types are

mapped to CLOB and DBCLOB data types, respectively. LONG VARCHAR FOR

BIT DATA is mapped to BLOB.

v The maximum allowable length of DB2 index names is 128 bytes. If a nickname

is being created for a relational table that has an index whose name exceeds this

length, the entire name is not cataloged. Rather, DB2 truncates it to 128 bytes. If

the string formed by these characters is not unique within the schema to which

the index belongs, DB2 attempts to make it unique by replacing the last

character with 0. If the result is still not unique, DB2 changes the last character

to 1. DB2 repeats this process with numbers 2 through 9 and, if necessary, with

numbers 0 through 9 for the name’s 127th character, 126th character, and so on,

until a unique name is generated. To illustrate: The 130-byte name of an index

on a data source table is AREALLY...REALLYLONGNAME. The names

AREALLY...REALLYLONGNA and AREALLY...REALLYLONGN0 already exist in

the schema to which this index belongs. The new name is over 128 bytes;

therefore, DB2 truncates it to AREALLY...REALLYLONGNA. Because this name

already exists in the schema, DB2 changes the truncated version to

AREALLY...REALLYLONGN0. And because this name also exists, DB2 changes

the truncated version to AREALLY...REALLYLONGN1. This name does not

already exist in the schema, so DB2 accepts it as a new name.

v When a nickname is created for a data source object, DB2 stores the names of

the nickname columns in the catalog. When the data source object is a table or a

view, DB2 makes the nickname column names the same as the table or view

column names. If a name exceeds the maximum allowable length for DB2

column names, DB2 truncates the name to this length. If the truncated version is

not unique among the other column names in the table or view, DB2 makes it

unique by following the procedure described in the preceding paragraph.

v If the data source object has indexes defined, index specifications for each index

are created when the nickname is created. Index specifications are not created at

the data source for indexes that have:

– Duplicate column names

– More than 64 columns

– More than 1024 bytes in the sum of the length of the index key parts
v If the definition of a remote data source object is changed (for example, a

column is deleted or a data type is changed), the nickname should be dropped

and recreated; otherwise, errors might occur when the nickname is used in an

SQL statement.

CREATE NICKNAME

Statements 393

Examples

Example 1: Create a nickname for a view, DEPARTMENT, that is in a schema called

HEDGES. This view is stored in a DB2 for z/OS data source called OS390A.

 CREATE NICKNAME DEPT

 FOR OS390A.HEDGES.DEPARTMENT

Example 2: Select all records from the view for which a nickname was created in

Example 1. The view must be referenced by its nickname. The remote view can be

referenced using the name by which it is known at the data source only in

pass-through sessions.

 SELECT * FROM DEPT Valid after nickname DEPT is created

 SELECT * FROM OS390A.HEDGES.DEPARTMENT Invalid

Example 3: Create a nickname for the remote table JAPAN that is in a schema

called salesdata. Because the schema name and table name on the data source are

stored in lowercase, specify the remote schema name and table name with double

quotation marks:

 CREATE NICKNAME JPSALES

 FOR asia."salesdata"."japan"

Example 4: Create a nickname for the table-structured file DRUGDATA1.TXT.

Include the FILE_PATH, COLUMN DELIMITER, KEY_COLUMN, and

VALIDATE_DATA_FILE nickname options in the statement.

 CREATE NICKNAME DRUGDATA1

 (Dcode INTEGER,

 DRUG CHAR(20),

 MANUFACTURER CHAR(20))

 FOR SERVER biochem_lab

 OPTIONS

 (FILE_PATH ’/usr/pat/DRUGDATA1.TXT’,

 COLUMN_DELIMITER ’,’,

 KEY_COLUMN ’DCODE’,

 SORTED ’Y’,

 VALIDATE_DATA_FILE ’Y’)

Example 5: Create the parent nickname CUSTOMERS over multiple XML files

under the specified directory path /home/db2user. Include the following options:

v Column options:

– XPATH column option for the VARCHAR(5) column named ID, indicating the

element or attribute in the XML file(s) from which the column data is

extracted

– XPATH column option for the VARCHAR(16) column named NAME,

indicating the element or attribute in the XML file(s) from which the column

data is extracted

– XPATH column option for the VARCHAR(30) column named ADDRESS,

indicating the element or attribute in the XML file(s) from which the column

data is extracted

– PRIMARY_KEY column option for the VARCHAR(16) column named CID,

which identifies the customers nickname as a parent nickname in a hierarchy

of nicknames
v Nickname options:

– DIRECTORY_PATH nickname option to indicate the location of the XML files

that provide the data

CREATE NICKNAME

394 SQL Reference, Volume 2

– XPATH nickname option to indicate the element in the XML files where the

data begins

– STREAMING nickname option to indicate that the XML source data is

separated and processed element by element. In this example, the element is a

customer record.
 CREATE NICKNAME customers

 (id VARCHAR(5) OPTIONS(XPATH ’./@id’),

 name VARCHAR(16) OPTIONS(XPATH ’.//name’),

 address VARCHAR(30) OPTIONS(XPATH ’.//address/@street’),

 cid VARCHAR(16) OPTIONS(PRIMARY_KEY ’YES’))

 FOR SERVER xml_server

 OPTIONS

 (DIRECTORY_PATH ’/home/db2user’,

 XPATH ’//customer’,

 STREAMING ’YES’)

CREATE NICKNAME

Statements 395

CREATE PROCEDURE

The CREATE PROCEDURE statement defines a procedure at the current server.

Three different types of procedures can be created using this statement. Each of

these types is described separately.

v External. The procedure body is written in a programming language. The

external executable is referenced by a procedure defined at the current server,

along with various attributes of the procedure.

v Sourced. The procedure body is part of the source procedure, which is

referenced by the sourced procedure that is defined at the current server, along

with various attributes of the procedure. A sourced procedure whose source

procedure is at a data source is also called a federated procedure.

v SQL. The procedure body is written in SQL and defined at the current server,

along with various attributes of the procedure.

CREATE PROCEDURE

396 SQL Reference, Volume 2

CREATE PROCEDURE (External)

The CREATE PROCEDURE (External) statement defines an external procedure at

the current server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATE_EXTERNAL_ROUTINE authority on the database and at least one of

the following:

– IMPLICIT_SCHEMA authority on the database, if the schema name of the

procedure does not refer to an existing schema

– CREATEIN privilege on the schema, if the schema name of the procedure

refers to an existing schema
v SYSADM or DBADM authority

To create a not-fenced procedure, the privileges held by the authorization ID of the

statement must also include at least one of the following:

v CREATE_NOT_FENCED_ROUTINE authority on the database

v SYSADM or DBADM authority

To create a fenced procedure, no additional authorities or privileges are required.

Syntax

�� CREATE PROCEDURE procedure-name �

�

�

(

)

,

IN

data-type

OUT

parameter-name

INOUT

 * �

�

SPECIFIC

specific-name

*

 DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS

integer

*

�

CREATE PROCEDURE (External)

Statements 397

�
 MODIFIES SQL DATA

NO SQL

CONTAINS SQL

READS SQL DATA

*

 NOT DETERMINISTIC

DETERMINISTIC

*

 CALLED ON NULL INPUT

�

�

*

 OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

*

LANGUAGE

C

JAVA

COBOL

CLR

OLE

*

�

�

EXTERNAL

NAME

’string’

identifier

*

 FENCED

FENCED

*

THREADSAFE

NOT THREADSAFE

THREADSAFE

NOT FENCED

*

*

�

�
 EXTERNAL ACTION

NO EXTERNAL ACTION

 INHERIT SPECIAL REGISTERS

*

�

� PARAMETER STYLE DB2GENERAL

DB2SQL

GENERAL

GENERAL WITH NULLS

JAVA

SQL

 *

PARAMETER CCSID

ASCII

UNICODE

 �

�

*

PROGRAM TYPE

SUB

MAIN

*

 NO DBINFO

DBINFO

*

��

data-type:

 built-in-type

REF

(

type-name

)

built-in-type:

CREATE PROCEDURE (External)

398 SQL Reference, Volume 2

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(1)

CHARACTER

CHAR

(integer)

(1)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

(2)

(3)

DB2SECURITYLABEL

Notes:

1 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

Description

procedure-name

Names the procedure being defined. It is a qualified or unqualified name that

designates a procedure. The unqualified form of procedure-name is an SQL

CREATE PROCEDURE (External)

Statements 399

identifier (with a maximum length of 128). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters must not identify a procedure described in the catalog

(SQLSTATE 42723). The unqualified name, together with the number of the

parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ‘SYS’

(SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type,...)

Identifies the parameters of the procedure, and specifies the mode, data type,

and optional name of each parameter. One entry in the list must be specified

for each parameter that the procedure will expect.

 No two identically-named procedures within a schema are permitted to have

exactly the same number of parameters. A duplicate signature returns an SQL

error (SQLSTATE 42723).

For example, given the statements:

 CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...

 CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail, because the number of parameters in the

procedure is the same, even if the data types are not.

If an error is returned by the procedure, OUT parameters are undefined and

INOUT parameters are unchanged.

IN Identifies the parameter as an input parameter to the procedure. Any

changes made to the parameter within the procedure are not available to

the calling SQL application when control is returned. The default is IN.

OUT

Identifies the parameter as an output parameter for the procedure.

INOUT

Identifies the parameter as both an input and output parameter for the

procedure.

parameter-name

Optionally specifies the name of the parameter. The parameter name must

be unique for the procedure (SQLSTATE 42734).

data-type

Specifies the data type of the parameter.

v SQL data type specifications and abbreviations, which may be specified

in the data-type definition of a CREATE TABLE statement and have a

correspondence in the language that is being used to write the

procedure, may be specified.

v User-defined data types are not supported (SQLSTATE 42601).

v LONG VARCHAR and LONG VARGRAPHIC are not supported as

parameter types for external procedures.

v XML is invalid with LANGUAGE OLE.

CREATE PROCEDURE (External)

400 SQL Reference, Volume 2

v Because the XML value that is seen inside a procedure is a serialized

version of the XML value that is passed as a parameter in the procedure

call, parameters of type XML must be declared using the syntax XML AS

CLOB(n).

v CLR does not support DECIMAL scale greater than 28 (SQLSTATE

42613).

v Decimal floating-point is not supported with languages C, Java COBOL,

CLR, and OLE (SQLSTATE 42613).

v Parameters of the array type are supported only in Java procedures

(SQLSTATE 42815).

SPECIFIC specific-name

Provides a unique name for the instance of the procedure that is being defined.

This specific name can be used when dropping the procedure or commenting

on the procedure. It can never be used to invoke the procedure. The

unqualified form of specific-name is an SQL identifier (with a maximum length

of 128). The qualified form is a schema-name followed by a period and an SQL

identifier. The name, including the implicit or explicit qualifier, must not

identify another routine instance that exists at the application server; otherwise

an error (SQLSTATE 42710) is raised.

 The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is

used. If a qualifier is specified, it must be the same as the explicit or implicit

qualifier of procedure-name or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is ’SQL’ followed by a character timestamp:

’SQLyymmddhhmmssxxx’.

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure.

NO SQL, CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates whether the procedure issues any SQL statements and, if so, what

type.

NO SQL

Indicates that the procedure cannot execute any SQL statements

(SQLSTATE 38001).

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the procedure (SQLSTATE 38004). Statements that are not

supported in any procedure return a different error (SQLSTATE 38003).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can be

included in the procedure (SQLSTATE 38002 or 42985). Statements that are

not supported in any procedure return a different error (SQLSTATE 38003).

MODIFIES SQL DATA

Indicates that the procedure can execute any SQL statement except

statements that are not supported in procedures (SQLSTATE 38003).

DETERMINISTIC or NOT DETERMINISTIC

This clause specifies whether the procedure always returns the same results for

given argument values (DETERMINISTIC) or whether the procedure depends

on some state values that affect the results (NOT DETERMINISTIC). That is, a

CREATE PROCEDURE (External)

Statements 401

DETERMINISTIC procedure must always return the same result from

successive invocations with identical inputs.

 This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT

CALLED ON NULL INPUT always applies to procedures. This means that the

procedure is called regardless of whether any arguments are null. Any OUT or

INOUT parameter can return a null value or a normal (non-null) value.

Responsibility for testing for null argument values lies with the procedure.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL

Specifies whether or not this procedure establishes a new savepoint level for

savepoint names and effects. OLD SAVEPOINT LEVEL is the default behavior.

For more information about savepoint levels, see the “Rules” section in the

description of the SAVEPOINT statement.

LANGUAGE

This mandatory clause is used to specify the language interface convention to

which the procedure body is written.

C This means the database manager will call the procedure as if it were a C

procedure. The procedure must conform to the C language calling and

linkage convention as defined by the standard ANSI C prototype.

JAVA

This means the database manager will call the procedure as a method in a

Java class.

COBOL

This means the database manager will call the procedure as if it were a

COBOL procedure.

CLR

This means the database manager will call the procedure as a method in a

.NET class. At this time, LANGUAGE CLR is only supported for

procedures running on Windows operating systems. NOT FENCED cannot

be specified for a CLR routine (SQLSTATE 42601).

OLE

This means the database manager will call the procedure as if it were a

method exposed by an OLE automation object. The stored-procedure must

conform with the OLE automation data types and invocation mechanism.

Also, the OLE automation object needs to be implemented as an in-process

server (DLL). These restrictions are outlined in the OLE Automation

Programmer’s Reference.

 LANGUAGE OLE is only supported for procedures stored in DB2 for

Windows operating systems. THREADSAFE may not be specified for

procedures defined with LANGUAGE OLE (SQLSTATE 42613).

EXTERNAL

This clause indicates that the CREATE PROCEDURE statement is being used to

register a new procedure based on code written in an external programming

language and adhering to the documented linkage conventions and interface.

 If the NAME clause is not specified, “NAME procedure-name” is assumed. If the

NAME clause is not formatted correctly, an error is returned (SQLSTATE

42878).

CREATE PROCEDURE (External)

402 SQL Reference, Volume 2

NAME ’string’

This clause identifies the name of the user-written code which implements

the procedure being defined.

 The ’string’ option is a string constant with a maximum of 254 bytes. The

format used for the string is dependent on the LANGUAGE specified.

v For LANGUAGE C:

The string specified is the library name and procedure within the library,

which the database manager invokes to execute the procedure being

CREATEd. The library (and the procedure within the library) do not

need to exist when the CREATE PROCEDURE statement is performed.

However, when the procedure is called, the library and procedure within

the library must exist and be accessible from the database server

machine.

�� ’ library_id ’

absolute_path_id

!

proc_id
 ��

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

library_id

Identifies the library name containing the procedure. The database

manager will look for the library as follows:

– On UNIX systems, if ’myfunc’ was given as the library_id, and the

database manager is being run from /u/production, the database

manager will look for the procedure in library

/u/production/sqllib/function/myproc if FENCED is specified,

or /u/production/sqllib/function/unfenced/myproc if NOT

FENCED is specified.

– On Windows operating systems, the database manager will look

for the function in a directory path that is specified by the

LIBPATH or PATH environment variable.

Stored procedures located in any of these directories do not use any

of the registered attributes.

absolute_path_id

Identifies the full path name of the procedure.

 On UNIX systems, for example, ’/u/jchui/mylib/myproc’ would

cause the database manager to look in /u/jchui/mylib for the

myproc procedure.

On Windows operating systems, ’d:\mylib\myproc.dll’ would cause

the database manager to load the file myproc.dll from the d:\mylib

directory. If an absolute path ID is being used to identify the routine

body, be sure to append the .dll extension.

! proc_id

Identifies the entry point name of the procedure to be invoked. The

exclamation point (!) serves as a delimiter between the library ID

and the procedure ID. ’!proc8’ would direct the database manager to

look for the library in the location specified by absolute_path_id, and

to use entry point proc8 within that library.
If the string is not properly formed, an error is returned (SQLSTATE

42878).

CREATE PROCEDURE (External)

Statements 403

The body of every procedure should be in a directory that is mounted

and available on every database partition.

v For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier

and method identifier, which the database manager invokes to execute

the procedure being CREATEd. The class identifier and method

identifier do not need to exist when the CREATE PROCEDURE

statement is performed. If a jar_id is specified, it must exist when the

CREATE PROCEDURE statement is performed. However, when the

procedure is called, the class identifier and the method identifier must

exist and be accessible from the database server machine, otherwise an

error is returned (SQLSTATE 42884).

�� ’

jar_id :
 class_id . method_id ’

!
 ��

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

jar_id

Identifies the jar identifier given to the jar collection when it was

installed in the database. It can be either a simple identifier or a

schema qualified identifier. Examples are ’myJar’ and

’mySchema.myJar’.

class_id

Identifies the class identifier of the Java object. If the class is part of

a package, the class identifier part must include the complete

package prefix, for example, ’myPacks.StoredProcs’. The Java virtual

machine will look in directory ’../myPacks/StoredProcs/’ for the

classes. In Windows operating systems, the Java virtual machine will

look in directory ’..\myPacks\StoredProcs\’.

method_id

Identifies the method name with the Java class to be invoked.
v For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable),

the class within that assembly, and the method within the class that the

database manager invokes to execute the procedure being created. The

module, class, and method do not need to exist when the CREATE

PROCEDURE statement is executed. However, when the procedure is

called, the module, class, and method must exist and be accessible from

the database server machine, otherwise an error is returned (SQLSTATE

42284).

C++ routines that are compiled with the ’/clr’ compiler option to

indicate that they include managed code extensions must be cataloged as

’LANGUAGE CLR’ and not ’LANGUAGE C’. DB2 needs to know that

the .NET infrastructure is being utilized in a procedure in order to make

necessary runtime decisions. All procedures using the .NET

infrastructure must be cataloged as ’LANGUAGE CLR’.

�� ’ assembly : class_id ! method_id ’ ��

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

CREATE PROCEDURE (External)

404 SQL Reference, Volume 2

assembly

Identifies the DLL or other assembly file in which the class resides.

Any file extensions (such as .dll) must be specified. If the full path

name is not given, the file must reside in the function directory of

the DB2 install path (for example, c:\sqllib\function). If the file

resides in a subdirectory of the install function directory, the

subdirectory can be given before the file name rather than specifying

the full path. For example, if your install directory is c:\sqllib and

your assembly file is c:\sqllib\function\myprocs\mydotnet.dll, it is

only necessary to specify ’myprocs\mydotnet.dll’ for the assembly.

The case sensitivity of this parameter is the same as the case

sensitivity of the file system.

class_id

Specifies the name of the class within the given assembly in which

the method that is to be invoked resides. If the class resides within a

namespace, the full namespace must be given in addition to the

class. For example, if the class EmployeeClass is in namespace

MyCompany.ProcedureClasses, then

MyCompany.ProcedureClasses.EmployeeClass must be specified for

the class. Note that the compilers for some .NET languages will add

the project name as a namespace for the class, and the behavior may

differ depending on whether the command line compiler or the GUI

compiler is used. This parameter is case sensitive.

method_id

Specifies the method within the given class that is to be invoked.

This parameter is case sensitive.
v For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class

identifier (clsid), and method identifier (method_id), which the database

manager invokes to execute the procedure being created by the

statement. The programmatic identifier or class identifier, and the

method identifier do not need to exist when the CREATE PROCEDURE

statement is executed. However, when the procedure is used in the

CALL statement, the method identifier must exist and be accessible from

the database server machine, otherwise an error results (SQLSTATE

42724).

�� ’ progid ! method_id ’

clsid
 ��

The name must be enclosed by single quotation marks. Extraneous

blanks are not permitted.

progid

Identifies the programmatic identifier of the OLE object.

 A progid is not interpreted by the database manager, but only

forwarded to the OLE automation controller at run time. The

specified OLE object must be creatable and support late binding

(also known as IDispatch-based binding). By convention, progids

have the following format:

 <program_name>.<component_name>.<version>

Because this is only a convention, and not a rule, progids may in fact

have a different format.

CREATE PROCEDURE (External)

Statements 405

clsid

Identifies the class identifier of the OLE object to create. It can be

used as an alternative for specifying a progid in the case that an

OLE object is not registered with a progid. The clsid has the form:

 {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where ’n’ is an alphanumeric character. A clsid is not interpreted by

the database manager, but only forwarded to the OLE APIs at run

time.

method_id

Identifies the method name of the OLE object to be invoked.

NAME identifier

This identifier specified is an SQL identifier. The SQL identifier is used as

the library-id in the string. Unless it is a delimited identifier, the identifier is

folded to upper case. If the identifier is qualified with a schema name, the

schema name portion is ignored. This form of NAME can only be used

with LANGUAGE C.

FENCED or NOT FENCED

This clause specifies whether the procedure is considered “safe” to run in the

database manager operating environment’s process or address space (NOT

FENCED), or not (FENCED).

 If a procedure is registered as FENCED, the database manager protects its

internal resources (for example, data buffers) from access by the procedure. All

procedures have the option of running as FENCED or NOT FENCED. In

general, a procedure running as FENCED will not perform as well as a similar

one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that have not been adequately checked

out can compromise the integrity of DB2. DB2 takes some precautions

against many of the common types of inadvertent failures that could occur,

but cannot guarantee complete integrity when NOT FENCED procedures are

used.

Either SYSADM authority, DBADM authority, or a special authority

(CREATE_NOT_FENCED) is required to register a procedure as NOT

FENCED. Only FENCED can be specified for a procedure with LANGUAGE

OLE or NOT THREADSAFE.

LANGUAGE CLR procedures cannot be created when specifying the NOT

FENCED clause (SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE

Specifies whether the procedure is considered safe to run in the same process

as other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the procedure is defined with LANGUAGE other than OLE:

v If the procedure is defined as THREADSAFE, the database manager can

invoke the procedure in the same process as other routines. In general, to be

threadsafe, a procedure should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.

Both FENCED and NOT FENCED procedures can be THREADSAFE.

v If the procedure is defined as NOT THREADSAFE, the database manager

will never invoke the procedure in the same process as another routine.

CREATE PROCEDURE (External)

406 SQL Reference, Volume 2

For FENCED procedures, THREADSAFE is the default if the LANGUAGE is

JAVA or CLR. For all other languages, NOT THREADSAFE is the default. If

the procedure is defined with LANGUAGE OLE, THREADSAFE may not be

specified (SQLSTATE 42613).

For NOT FENCED procedures, THREADSAFE is the default. NOT

THREADSAFE cannot be specified (SQLSTATE 42613).

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

(NO EXTERNAL ACTION). The default is EXTERNAL ACTION. If NO

EXTERNAL ACTION is specified, the system can use certain optimizations that

assume the procedure has no external impact.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the procedure

will inherit their initial values from the environment of the invoking statement.

 No changes to the special registers are passed back to the caller of the

procedure.

Non-updatable special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore set to their

default values.

PARAMETER STYLE

This clause is used to specify the conventions used for passing parameters to

and returning the value from procedures.

DB2GENERAL

This means that the procedure will use a parameter passing convention

that is defined for use with Java methods. This can only be specified when

LANGUAGE JAVA is used.

DB2SQL

In addition to the parameters on the CALL statement, the following

arguments are passed to the procedure:

v A vector containing a null indicator for each parameter on the CALL

statement

v The SQLSTATE to be returned to DB2

v The qualified name of the procedure

v The specific name of the procedure

v The SQL diagnostic string to be returned to DB2

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is

used.

GENERAL

This means that the procedure will use a parameter passing mechanism by

which the procedure receives the parameters specified on the CALL. The

parameters are passed directly, as expected by the language; the SQLDA

structure is not used. This can only be specified when LANGUAGE C,

COBOL, or CLR is used.

 Null indicators are not directly passed to the program.

GENERAL WITH NULLS

In addition to the parameters on the CALL statement specified under

GENERAL, another argument is passed to the procedure. This additional

argument is a vector of null indicators, one for each of the parameters on

CREATE PROCEDURE (External)

Statements 407

the CALL statement. In C, this would be an array of short integers. This

can only be specified when LANGUAGE C, COBOL, or CLR is used.

JAVA

This means that the procedure will use a parameter passing convention

that conforms to the Java language and SQLJ Routines specification.

IN/OUT and OUT parameters will be passed as single entry arrays to

facilitate returning values. This can only be specified when LANGUAGE

JAVA is used.

 PARAMETER STYLE JAVA procedures do not support the DBINFO or

PROGRAM TYPE clauses.

SQL

In addition to the parameters on the CALL statement, the following

arguments are passed to the procedure:

v A null indicator for each parameter on the CALL statement

v The SQLSTATE to be returned to DB2

v The qualified name of the procedure

v The specific name of the procedure

v The SQL diagnostic string to be returned to DB2

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is

used.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

the procedure. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031). When the procedure is invoked, the

application code page for the procedure is the database code page.

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in UCS-2.

If the database is not a Unicode database, character data is in UTF-8. In

either case, when the procedure is invoked, the application code page for

the procedure is 1208.

 If the database is not a Unicode database, and a procedure with

PARAMETER CCSID UNICODE is created, the procedure cannot have any

graphic types, the XML type, or user-defined types (SQLSTATE 560C1).

PARAMETER CCSID UNICODE procedures can only be called from a DB2

Version 8.1 or later client (SQLSTATE 42997).

 If the database is not a Unicode database, and the alternate collating sequence

has been specified in the database configuration, procedures can be created

with either PARAMETER CCSID ASCII or PARAMETER CCSID UNICODE.

All data passed into and out of the procedure will be converted to the

appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or

LANGUAGE CLR (SQLSTATE 42613).

CREATE PROCEDURE (External)

408 SQL Reference, Volume 2

PROGRAM TYPE

Specifies whether the procedure expects parameters in the style of a main

routine or a subroutine. The default is SUB.

SUB

The procedure expects the parameters to be passed as separate arguments.

MAIN

The procedure expects the parameters to be passed as an argument

counter, and a vector of arguments (argc, argv). The name of the procedure

to be invoked must also be ″main″. Stored procedures of this type must

still be built in the same fashion as a shared library, rather than a

stand-alone executable. PROGRAM TYPE MAIN is only valid when the

LANGUAGE clause specifies one of: C, COBOL, or CLR.

DBINFO or NO DBINFO

Specifies whether specific information known by DB2 is passed to the

procedure when it is invoked as an additional invocation-time argument

(DBINFO) or not (NO DBINFO). NO DBINFO is the default. DBINFO is not

supported for LANGUAGE OLE (SQLSTATE 42613). It is also not supported

for PARAMETER STYLE JAVA or DB2GENERAL.

 If DBINFO is specified, a structure containing the following information is

passed to the procedure:

v Data base name - the name of the currently connected database.

v Application ID - unique application ID which is established for each

connection to the database.

v Application Authorization ID - the application run-time authorization ID.

v Code page - identifies the database code page.

v Database version/release - identifies the version, release and modification

level of the database server invoking the procedure.

v Platform - contains the server’s platform type.

The DBINFO structure is common for all external routines and contains

additional fields that are not relevant to procedures.

Notes

v Creating a procedure with a schema name that does not already exist results in

the implicit creation of that schema, provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v A Java routine defined as NOT FENCED will be invoked as if it had been

defined as FENCED THREADSAFE.

v A procedure that is called from within a dynamic compound statement will

execute as if it were created specifying NEW SAVEPOINT LEVEL, even if OLD

SAVEPOINT LEVEL was specified or defaulted to when the procedure was

created.

v XML parameters are only supported in LANGUAGE JAVA external procedures

when the PARAMETER STYLE DB2GENERAL clause is specified.

v Privileges

– The definer of a procedure always receives the EXECUTE privilege WITH

GRANT OPTION on the procedure, as well as the right to drop the

procedure.

– When the procedure is used in an SQL statement, the procedure definer must

have the EXECUTE privilege on any packages used by the procedure.

CREATE PROCEDURE (External)

Statements 409

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v ASUTIME NO LIMIT

v COMMIT ON RETURN NO

v NO COLLID

v STAY RESIDENT NO

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database if PARAMETER CCSID

UNICODE is not specified
– For compatibility with previous versions of DB2:

- RESULT SETS can be specified in place of DYNAMIC RESULT SETS.

- NULL CALL can be specified in place of CALLED ON NULL INPUT.

- DB2GENRL can be specified in place of DB2GENERAL.

- SIMPLE CALL can be specified in place of GENERAL.

- SIMPLE CALL WITH NULLS can be specified in place of GENERAL WITH

NULLS.

- PARAMETER STYLE DB2DARI is supported.

Examples

Example 1: Create the procedure definition for a procedure, written in Java, that is

passed a part number and that returns the cost of the part and the quantity that is

currently available.

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

 OUT COST DECIMAL(7,2),

 OUT QUANTITY INTEGER)

 EXTERNAL NAME ’parts.onhand’

 LANGUAGE JAVA PARAMETER STYLE JAVA

Example 2: Create the procedure definition for a procedure, written in C, that is

passed an assembly number and returns the number of parts that make up the

assembly, total part cost, and a result set that lists the part numbers, quantity, and

unit cost of each part.

 CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,

 OUT NUM_PARTS INTEGER,

 OUT COST DOUBLE)

 EXTERNAL NAME ’parts!assembly’

 DYNAMIC RESULT SETS 1 NOT FENCED

 LANGUAGE C PARAMETER STYLE GENERAL

CREATE PROCEDURE (External)

410 SQL Reference, Volume 2

CREATE PROCEDURE (Sourced)

The CREATE PROCEDURE (Sourced) statement registers a procedure (the sourced

procedure) that is based on another procedure (the source procedure). In a federated

system, a federated procedure is a sourced procedure whose source procedure is at a

supported data source.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the schema name of the

procedure does not refer to an existing schema

v CREATEIN privilege on the schema, if the schema name of the procedure refers

to an existing schema

v SYSADM or DBADM authority

For data sources that require a user mapping, the privileges held at the data source

by the authorization ID of the statement must include the privilege to select the

procedure’s description from the remote catalog tables.

Syntax

�� CREATE PROCEDURE procedure-name source-procedure-clause * �

�

SPECIFIC

specific-name

*

 WITH RETURN TO CALLER ALL

WITH RETURN TO CLIENT

ALL

*

�

�
NO SQL

CONTAINS SQL

MODIFIES SQL DATA

READS SQL DATA

 *

NOT DETERMINISTIC

DETERMINISTIC

 * �

� *

EXTERNAL ACTION

NO EXTERNAL ACTION

 ��

source-procedure-clause:

 SOURCE source-object-name

()

NUMBER OF PARAMETERS

integer

 �

CREATE PROCEDURE (Sourced)

Statements 411

�
UNIQUE ID

unique-id
 FOR SERVER server-name

source-object-name:

source-schema-name

.

source-package-name

.

 �

� source-procedure-name

Description

procedure-name

Names the sourced procedure being defined. It is a qualified or unqualified

name that designates a procedure. The unqualified form of procedure-name is an

SQL identifier (with a maximum length of 128). In dynamic SQL statements,

the CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements, the QUALIFIER precompile

or bind option implicitly specifies the qualifier for unqualified object names.

The qualified form is a schema-name followed by a period and an SQL

identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters, must not identify a procedure that is described in the

catalog (SQLSTATE 42723). The unqualified name, together with the number of

parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’

(SQLSTATE 42939).

In a federated system, procedure-name is the name of the procedure on the

federated server.

SOURCE source-object-name

Specifies the source procedure that is used by the procedure being defined. In

a federated system, the source procedure is a procedure that is located at a

supported data source.

source-schema-name

Identifies the schema name of the source procedure. If a schema name is

used to identify the source procedure, the source-schema-name must be

specified in the CREATE PROCEDURE (Sourced) statement. If the

source-schema-name contains any special or lowercase characters, it must be

enclosed by double quotation marks.

source-package-name

Identifies the package name of the source procedure. The

source-package-name applies only to Oracle data sources. If a package name

is used to identify the source procedure, the source-package-name must be

specified in the CREATE PROCEDURE (Sourced) statement. If the

source-package-name contains any special or lowercase characters, it must be

enclosed by double quotation marks.

source-procedure-name

Identifies the procedure name of the source procedure. If the

source-procedure-name contains any special or lowercase characters, it must

be enclosed by double quotation marks.

CREATE PROCEDURE (Sourced)

412 SQL Reference, Volume 2

() Indicates that the number of parameters is zero.

NUMBER OF PARAMETERS integer

Specifies the number of parameters for the source procedure. The minimum

value for integer is 0, and the maximum value is 32 767.

UNIQUE ID string-constant

Provides a way to uniquely identify the source procedure when there are

multiple procedures at the data source with the identical name, schema, and

number of parameters. The string-constant value, which has a maximum length

of 128, is interpreted uniquely by each data source.

FOR SERVER server-name

Specifies a server definition that was registered using the CREATE SERVER

statement.

SPECIFIC specific-name

Provides a unique name for the instance of the sourced procedure that is being

defined. This specific name can be used when dropping the sourced procedure

or commenting on the sourced procedure. This name can never be used to

invoke the sourced procedure. The unqualified form of specific-name is an SQL

identifier with a maximum length of 18. The qualified form of specific-name is a

schema-name followed by a period and an SQL identifier. The specific-name

value, including the implicit or explicit qualifier, must not identify another

procedure instance that exists at the application server; otherwise an error is

returned (SQLSTATE 42710).

 The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is

used. If a qualifier is specified, it must be the same as the explicit or implicit

qualifier for procedure-name, or an error is returned (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is ’SQL’ followed by a character timestamp:

’SQLyymmddhhmmssxxx’.

WITH RETURN TO CALLER or WITH RETURN TO CLIENT

Indicates where the result set from the source procedure is handled. Only one

result set is returned to the caller or client. If the source procedure is coded to

return more than one result set, only the first result set is returned to the caller

or client. The default is WITH RETURN TO CALLER.

WITH RETURN TO CALLER ALL

Specifies that the result set from the source procedure is returned to the

caller.

WITH RETURN TO CLIENT ALL

Specifies that the result set from the source procedure is returned directly

to the client application. Applicable only when the dynamic result sets

value at the data source is greater than 0, and in the case of a nested

procedure call.

NO SQL, CONTAINS SQL, MODIFIES SQL DATA, READS SQL DATA

Indicates the level of data access for SQL statements that are included in the

sourced procedure. Because the source procedure for the sourced procedure is

not located on the federated server, the specified level is not enforced during

execution of the source procedure at the data source. If there is discrepancy

between what is specified for the sourced procedure and what the source

procedure actually does at the data source, data inconsistency might occur. If

this option is not explicitly specified, the value for the source procedure is

CREATE PROCEDURE (Sourced)

Statements 413

used. If this option is not available at the data source, the default is MODIFIES

SQL DATA. If this option is explicitly specified but does not match the value

for the source procedure, an error is returned (SQLSTATE 428GS).

DETERMINISTIC or NOT DETERMINISTIC

Specifies whether the sourced procedure always returns the same results for

given argument values (DETERMINISTIC), or whether the sourced procedure

depends on some stated values that affect the results (NOT DETERMINISTIC).

A DETERMINISTIC sourced procedure must always return the same result

from successive invocations with identical inputs. This clause currently does

not impact the processing of the procedure. If this option is not explicitly

specified, the value for the source procedure is used. If this option is not

available at the data source, the default is NOT DETERMINISTIC. If this

option is explicitly specified, but does not match the value for the source

procedure, an error is returned (SQLSTATE 428GS).

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the sourced procedure takes some action that changes the

state of an object that is not managed by the database manager (EXTERNAL

ACTION), or does not (NO EXTERNAL ACTION). If the NO EXTERNAL

ACTION clause is specified, the federated database uses optimization that

assumes that the sourced procedure has no external impact. If this option is

not explicitly specified, the value for the source procedure is used. If this

option is not available at the data source, the default is EXTERNAL ACTION.

If this option is explicitly specified but does not match the value for the source

procedure, an error is returned (SQLSTATE 428GS).

Rules

v If the source-object-name, along with the NUMBER OF PARAMETERS and

UNIQUE ID clauses do not identify a procedure at the data source, an error is

returned (SQLSTATE 42883); if more than one procedure is identified, an error is

returned (SQLSTATE 42725).

v If the UNIQUE ID clause is specified and the data source does not support

unique IDs, an error is returned (SQLSTATE 42883).

Notes

v Before a federated procedure can be registered for a data source, the federated

server must be configured to access that data source. This configuration

includes: registering the wrapper for the data source, creating the server

definition for the data source, and creating the user mappings between the

federated server and the data source server for the data sources that require user

mapping.

v Unlike SQL and external procedures defined at the federated server, federated

procedures do not inherit the special registers of the caller, even those whose

remote-object-name refers to a procedure on a DB2 data source.

v If the definition of the source procedure is changed (for example, a parameter

data type is changed), the federated procedure should be dropped and recreated;

otherwise, errors might occur when the federated procedure is invoked.

v If the length of the source procedure parameter is longer than 128, the parameter

name of the federated procedure is truncated to 128 bytes.

v Compatibilities

– The DataJoiner® syntax for Create Stored Procedure Nickname is not

supported. In the new Version 9 syntax, parameter type mapping is handled

similarly to nicknames: A catalog look-up determines the remote data type.

The local parameter type is determined through forward type mapping.

CREATE PROCEDURE (Sourced)

414 SQL Reference, Volume 2

Examples

Example 1: Create a federated procedure named FEDEMPLOYEE for an Oracle

procedure named EMPLOYEE, using the remote schema name USER1, the remote

package name P1 at the federated server S1, and returning the result set to the

client.

 CREATE PROCEDURE FEDEMPLOYEE SOURCE USER1.P1.EMPLOYEE

 FOR SERVER S1 WITH RETURN TO CLIENT ALL

CREATE PROCEDURE (Sourced)

Statements 415

CREATE PROCEDURE (SQL)

The CREATE PROCEDURE (SQL) statement defines an SQL procedure at the

current server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v BINDADD privilege on the database, and one of the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the procedure does not exist

– CREATEIN privilege on the schema, if the schema name of the procedure

refers to an existing schema
v SYSADM or DBADM authority

If a procedure definer can only create the procedure because the definer has

SYSADM authority, the definer is granted implicit DBADM authority for the

purpose of creating the procedure.

If the authorization ID of the statement does not have SYSADM or DBADM

authority, the privileges held by the authorization ID of the statement must also

include all of the privileges necessary to invoke the SQL statements that are

specified in the procedure body.

Syntax

�� CREATE PROCEDURE procedure-name �

�

�

(

)

,

IN

parameter-name

data-type

OUT

INOUT

 * �

�

SPECIFIC

specific-name

*

 DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS

integer

*

�

�
 MODIFIES SQL DATA

CONTAINS SQL

READS SQL DATA

*

 NOT DETERMINISTIC

DETERMINISTIC

*

 CALLED ON NULL INPUT

�

CREATE PROCEDURE (SQL)

416 SQL Reference, Volume 2

�

*

 INHERIT SPECIAL REGISTERS

*

 OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

*

�

�
 LANGUAGE SQL

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

�

�
PARAMETER CCSID

ASCII

UNICODE

 * SQL-procedure-body ��

SQL-procedure-body:

 SQL-procedure-statement

Description

procedure-name

Names the procedure being defined. It is a qualified or unqualified name that

designates a procedure. The unqualified form of procedure-name is an SQL

identifier (with a maximum length of 128). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements, the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. The qualified

form is a schema-name followed by a period and an SQL identifier.

 The name, including the implicit or explicit qualifiers, together with the

number of parameters, must not identify a procedure described in the catalog

(SQLSTATE 42723). The unqualified name, together with the number of

parameters, is unique within its schema, but does not need to be unique across

schemas.

If a two-part name is specified, the schema-name cannot begin with ’SYS’;

otherwise, an error is returned (SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type,...)

Identifies the parameters of the procedure, and specifies the mode, name, and

data type of each parameter. One entry in the list must be specified for each

parameter that the procedure will expect.

 It is possible to register a procedure that has no parameters. In this case, the

parentheses must still be coded, with no intervening data types. For example:

 CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to have

exactly the same number of parameters. A duplicate signature raises an SQL

error (SQLSTATE 42723).

For example, given the statements:

 CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...

 CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the

procedure is the same, even if the data types are not.

IN | OUT | INOUT

Specifies the mode of the parameter.

CREATE PROCEDURE (SQL)

Statements 417

If an error is returned by the procedure, OUT parameters are undefined

and INOUT parameters are unchanged.

IN Identifies the parameter as an input parameter to the procedure.

Any changes made to the parameter within the procedure are not

available to the calling SQL application when control is returned.

The default is IN.

OUT Identifies the parameter as an output parameter for the procedure.

INOUT

Identifies the parameter as both an input and output parameter for

the procedure.

parameter-name

Specifies the name of the parameter. The parameter name must be unique

for the procedure (SQLSTATE 42734).

data-type

Specifies the data type of the parameter.

v SQL data type specifications and abbreviations that can be specified in

the data-type definition of a CREATE TABLE statement, and that have a

correspondence in the language that is being used to write the

procedure, may be specified.

v LONG VARCHAR, LONG VARGRAPHIC, REFERENCE, and

user-defined structured types are not supported (SQLSTATE 429BB).

SPECIFIC specific-name

Provides a unique name for the instance of the procedure that is being defined.

This specific name can be used when dropping the procedure or commenting

on the procedure. It can never be used to invoke the procedure. The

unqualified form of specific-name is an SQL identifier (with a maximum length

of 18). The qualified form is a schema-name followed by a period and an SQL

identifier. The name, including the implicit or explicit qualifier, must not

identify another procedure instance that exists at the application server;

otherwise an error (SQLSTATE 42710) is raised.

 The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is

used. If a qualifier is specified, it must be the same as the explicit or implicit

qualifier for procedure-name, or an error (SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is ’SQL’ followed by a character timestamp:

’SQLyymmddhhmmssxxx’.

DYNAMIC RESULT SETS integer

Indicates the estimated upper bound of returned result sets for the procedure.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA

Indicates the level of data access for SQL statements included in the procedure.

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data can

be executed by the procedure (SQLSTATE 38004 or 42985). Statements that

are not supported in procedures might return a different error (SQLSTATE

38003 or 42985).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can be

CREATE PROCEDURE (SQL)

418 SQL Reference, Volume 2

included in the procedure (SQLSTATE 38002 or 42985). Statements that are

not supported in procedures might return a different error (SQLSTATE

38003 or 42985).

MODIFIES SQL DATA

Indicates that the procedure can execute any SQL statement except

statements that are not supported in procedures (SQLSTATE 38003 or

42985).

If the BEGIN ATOMIC clause is used in a compound SQL procedure, the

procedure can only be created if it is defined as MODIFIES SQL DATA.

DETERMINISTIC or NOT DETERMINISTIC

This clause specifies whether the procedure always returns the same results for

given argument values (DETERMINISTIC) or whether the procedure depends

on some state values that affect the results (NOT DETERMINISTIC). That is, a

DETERMINISTIC procedure must always return the same result from

successive invocations with identical inputs.

 This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT

CALLED ON NULL INPUT always applies to procedures. This means that the

procedure is called regardless of whether any arguments are null. Any OUT or

INOUT parameter can return a null value or a normal (non-null) value.

Responsibility for testing for null argument values lies with the procedure.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the procedure

will inherit their initial values from the environment of the invoking statement.

For a routine invoked in a nested object (for example a trigger or view), the

initial values are inherited from the runtime environment (not inherited from

the object definition).

 No changes to the special registers are passed back to the caller of the

procedure.

Non-updatable special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore set to their

default values.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL

Specifies whether or not this procedure establishes a new savepoint level for

savepoint names and effects. OLD SAVEPOINT LEVEL is the default behavior.

For more information about savepoint levels, see “Rules” in “SAVEPOINT”.

LANGUAGE SQL

This clause is used to specify that the procedure body is written in the SQL

language.

EXTERNAL ACTION or NO EXTERNAL ACTION

Specifies whether the procedure takes some action that changes the state of an

object not managed by the database manager (EXTERNAL ACTION), or not

(NO EXTERNAL ACTION). The default is EXTERNAL ACTION. If NO

EXTERNAL ACTION is specified, the system can use certain optimizations that

assume the procedure has no external impact.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out of

CREATE PROCEDURE (SQL)

Statements 419

the procedure. If the PARAMETER CCSID clause is not specified, the default is

PARAMETER CCSID UNICODE for Unicode databases, and PARAMETER

CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031).

UNICODE

Specifies that character data is in UTF-8, and that graphic data is in UCS-2.

If the database is not a Unicode database, PARAMETER CCSID UNICODE

cannot be specified (SQLSTATE 56031).

SQL-procedure-body

Specifies the SQL statement that is the body of the SQL procedure. Multiple

SQL-procedure-statements can be specified within a procedure-compound-
statement. See SQL-procedure-statement in “Compound SQL (Procedure)”.

Rules

v A procedure that is called from within a dynamic compound statement will

execute as if it were created specifying NEW SAVEPOINT LEVEL, even if OLD

SAVEPOINT LEVEL was specified or defaulted to when the procedure was

created.

Notes

v Creating a procedure with a schema name that does not already exist will result

in the implicit creation of that schema, provided that the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v Privileges

The definer of a procedure always receives the EXECUTE privilege WITH

GRANT OPTION on the procedure, as well as the right to drop the procedure.

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v ASUTIME NO LIMIT

v COMMIT ON RETURN NO

v NO COLLID

v STAY RESIDENT NO
– For compatibility with previous versions of DB2:

- RESULT SETS can be specified in place of DYNAMIC RESULT SETS.

- NULL CALL can be specified in place of CALLED ON NULL INPUT.

Examples

Example 1: Create an SQL procedure that returns the median staff salary. Return a

result set containing the name, position, and salary of all employees who earn

more than the median salary.

 CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DOUBLE)

 RESULT SETS 1

 LANGUAGE SQL

 BEGIN

 DECLARE v_numRecords INT DEFAULT 1;

 DECLARE v_counter INT DEFAULT 0;

CREATE PROCEDURE (SQL)

420 SQL Reference, Volume 2

DECLARE c1 CURSOR FOR

 SELECT CAST(salary AS DOUBLE)

 FROM staff

 ORDER BY salary;

 DECLARE c2 CURSOR WITH RETURN FOR

 SELECT name, job, CAST(salary AS INTEGER)

 FROM staff

 WHERE salary > medianSalary

 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND

 SET medianSalary = 6666;

 SET medianSalary = 0;

 SELECT COUNT(*) INTO v_numRecords

 FROM STAFF;

 OPEN c1;

 WHILE v_counter < (v_numRecords / 2 + 1)

 DO

 FETCH c1 INTO medianSalary;

 SET v_counter = v_counter + 1;

 END WHILE;

 CLOSE c1;

 OPEN c2;

 END

CREATE PROCEDURE (SQL)

Statements 421

CREATE ROLE

The CREATE ROLE statement defines a role at the current server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE ROLE role-name ��

Description

role-name

Names the role. This is a one-part name. It is an SQL identifier (either ordinary

or delimited). The name must not identify an existing role at the current server

(SQLSTATE 42710). The name must not begin with the characters ’SYS’ and

must not be ’DBADM’, ‘NONE’, ’NULL’, ’PUBLIC’, or ’SECADM’ (SQLSTATE

42939).

Example

Create a role named DOCTOR.

 CREATE ROLE DOCTOR

CREATE ROLE

422 SQL Reference, Volume 2

CREATE SCHEMA

The CREATE SCHEMA statement defines a schema. It is also possible to create

some objects and grant privileges on objects within the statement.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

An authorization ID that holds SYSADM or DBADM authority can create a schema

with any valid schema-name or authorization-name.

An authorization ID that does not hold SYSADM or DBADM authority can only

create a schema with a schema-name or authorization-name that matches the

authorization ID of the statement.

If the statement includes a schema-SQL-statement, the privileges held by the

authorization-name (which, if not specified, defaults to the authorization ID of the

statement) must include at least one of the following:

v The privileges required to perform each schema-SQL-statement

v SYSADM or DBADM authority

Syntax

�� CREATE SCHEMA schema-name

AUTHORIZATION

authorization-name

schema-name

AUTHORIZATION

authorization-name

 �

�

�

schema-SQL-statement

 ��

Description

schema-name

Names the schema. The name must not identify a schema already described in

the catalog (SQLSTATE 42710). The name cannot begin with ’SYS’ (SQLSTATE

42939). The owner of the schema is the authorization ID that issued the

statement.

AUTHORIZATION authorization-name

Identifies the user who is the owner of the schema. The value of

authorization-name is also used to name the schema. The authorization-name must

not identify a schema already described in the catalog (SQLSTATE 42710).

schema-name AUTHORIZATION authorization-name

Identifies a schema called schema-name, whose owner is authorization-name. The

schema-name must not identify a schema already described in the catalog

(SQLSTATE 42710). The schema-name cannot begin with ’SYS’ (SQLSTATE

42939).

CREATE SCHEMA

Statements 423

schema-SQL-statement

SQL statements that can be included as part of the CREATE SCHEMA

statement are:

v CREATE TABLE statement, excluding typed tables and materialized query

tables

v CREATE VIEW statement, excluding typed views

v CREATE INDEX statement

v COMMENT statement

v GRANT statement

Notes

v The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified authorization-name is

the schema owner

– If an AUTHORIZATION clause is not specified, the authorization ID that

issued the CREATE SCHEMA statement is the schema owner.
v The schema owner is assumed to be a user (not a group).

v When the schema is explicitly created with the CREATE SCHEMA statement, the

schema owner is granted CREATEIN, DROPIN, and ALTERIN privileges on the

schema with the ability to grant these privileges to other users.

v The definer of any object created as part of the CREATE SCHEMA statement is

the schema owner. The schema owner is also the grantor for any privileges

granted as part of the CREATE SCHEMA statement.

v Unqualified object names in any SQL statement within the CREATE SCHEMA

statement are implicitly qualified by the name of the created schema.

v If the CREATE statement contains a qualified name for the object being created,

the schema name specified in the qualified name must be the same as the name

of the schema being created (SQLSTATE 42875). Any other objects referenced

within the statements may be qualified with any valid schema name.

v It is recommended not to use ″SESSION″ as a schema name. Since declared

temporary tables must be qualified by ″SESSION″, it is possible to have an

application declare a temporary table with a name identical to that of a

persistent table. An SQL statement that references a table with the schema name

″SESSION″ will resolve (at statement compile time) to the declared temporary

table rather than a persistent table with the same name. Since an SQL statement

is compiled at different times for static embedded and dynamic embedded SQL

statements, the results depend on when the declared temporary table is defined.

If persistent tables, views or aliases are not defined with a schema name of

″SESSION″, these issues do not require consideration.

Examples

Example 1: As a user with DBADM authority, create a schema called RICK with

the user RICK as the owner.

 CREATE SCHEMA RICK AUTHORIZATION RICK

Example 2: Create a schema that has an inventory part table and an index over the

part number. Give authority on the table to user JONES.

 CREATE SCHEMA INVENTRY

 CREATE TABLE PART (PARTNO SMALLINT NOT NULL,

 DESCR VARCHAR(24),

 QUANTITY INTEGER)

CREATE SCHEMA

424 SQL Reference, Volume 2

CREATE INDEX PARTIND ON PART (PARTNO)

 GRANT ALL ON PART TO JONES

Example 3: Create a schema called PERS with two tables that each have a foreign

key that references the other table. This is an example of a feature of the CREATE

SCHEMA statement that allows such a pair of tables to be created without the use

of the ALTER TABLE statement.

 CREATE SCHEMA PERS

 CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,

 DEPTNAME VARCHAR(14),

 MANAGER SMALLINT,

 DIVISION VARCHAR(10),

 LOCATION VARCHAR(13),

 CONSTRAINT PKEYDNO

 PRIMARY KEY (DEPTNUMB),

 CONSTRAINT FKEYMGR

 FOREIGN KEY (MANAGER)

 REFERENCES STAFF (ID))

 CREATE TABLE STAFF (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT,

 JOB VARCHAR(5),

 YEARS SMALLINT,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 CONSTRAINT PKEYID

 PRIMARY KEY (ID),

 CONSTRAINT FKEYDNO

 FOREIGN KEY (DEPT)

 REFERENCES ORG (DEPTNUMB))

CREATE SCHEMA

Statements 425

CREATE SECURITY LABEL COMPONENT

The CREATE SECURITY LABEL COMPONENT statement defines a component

that is to be used as part of a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY LABEL COMPONENT component-name array-clause

set-clause

tree-clause

 ��

array-clause:

�

 ,

ARRAY

[

string-constant

]

set-clause:

�

 ,

SET

{

string-constant

}

tree-clause:

�

 TREE (string-constant ROOT)

,

string-constant

UNDER

string-constant

Description

component-name

Names the security label component. This is a one-part name. The name must

not identify an existing security label component at the current server

(SQLSTATE 42710).

ARRAY

Specifies an ordered set of elements.

string-constant,...

One or more string constant values that make up the set of valid values for

this security label component. The order in which the array elements

CREATE SECURITY LABEL COMPONENT

426 SQL Reference, Volume 2

appear is important. The first element ranks higher than the second

element. The second element ranks higher than the third element and so

on.

SET

Specifies an unordered set of elements.

string-constant,...

One or more string constant values that make up the set of valid values for

this security label component. The order of the elements is not important.

TREE

Specifies a tree structure of node elements.

string-constant

One or more string constant values that make up the set of valid values for

this security label component.

ROOT

Specifies that the string-constant that follows the keyword is the root node

element of the tree.

UNDER

Specifies that the string-constant before the UNDER keyword is a child of

the string-constant that follows the UNDER keyword. An element must be

defined as either being the root element or as being the child of another

element before it can be used as a parent, otherwise an error (SQLSTATE

42704) is returned.

Rules

These rules apply to all three types of component (ARRAY, SET, and TREE):

v Element names cannot contain any of these characters:

– Opening parenthesis - (

– Closing parenthesis -)

– Comma - ,

– Colon - :
v An element name can have no more than 32 bytes (SQLSTATE 42622).

v If a security label component is a set or a tree, no more than 64 elements can be

part of that component.

v A CREATE SECURITY LABEL COMPONENT statement can specify at most

65 535 elements for a security label component of type array.

v No element name can be used more than once in the same component

(SQLSTATE 42713).

Examples

Example 1: Create an ARRAY type security label component named LEVEL. The

component has the following four elements, listed in order of decreasing rank: Top

Secret, Secret, Classified, and Unclassified.

 CREATE SECURITY LABEL COMPONENT LEVEL

 ARRAY [’Top Secret’, ’Secret’, ’Classified’, ’Unclassified’]

Example 2: Create a SET type security label component named COMPARTMENTS.

The component has the following three elements: Research, Analysis, and

Collection.

CREATE SECURITY LABEL COMPONENT

Statements 427

CREATE SECURITY LABEL COMPONENT COMPARTMENTS

 SET {’Collection’, ’Research’, ’Analysis’}

Example 3: Create a TREE type security label component named GROUPS.

GROUPS has five elements: PROJECT, TEST, DEVELOPMENT, CURRENT, AND

FIELD. The following diagram shows the relationship of these elements to one

another:

 PROJECT

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

 CREATE SECURITY LABEL COMPONENT GROUPS

 TREE (

 ’PROJECT’ ROOT,

 ’TEST’ UNDER ’PROJECT’,

 ’DEVELOPMENT’ UNDER ’PROJECT’,

 ’CURRENT’ UNDER ’DEVELOPMENT’,

 ’FIELD’ UNDER ’DEVELOPMENT’

)

CREATE SECURITY LABEL COMPONENT

428 SQL Reference, Volume 2

CREATE SECURITY LABEL

The CREATE SECURITY LABEL statement defines a security label.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY LABEL security-label-name �

�

�

�

 ,

,

COMPONENT

component-name

string-constant

��

Description

security-label-name

Names the security label. The name must be qualified with a security policy

(SQLSTATE 42704), and must not identify an existing security label for this

security policy (SQLSTATE 42710).

COMPONENT component-name

Specifies the name of a security label component. If the component is not part

of the security policy security-policy-name, an error is returned (SQLSTATE

4274G). If a component is specified twice in the same statement, an error is

returned (SQLSTATE 42713).

string-constant,...

Specifies a valid element for the security component. A valid element is one

that was specified when the security component was created. If the element is

invalid, an error is returned (SQLSTATE 4274F).

Examples

Example 1: Create a security label named EMPLOYEESECLABEL that is part of the

DATA_ACCESS security policy, and that has the element Top Secret for the LEVEL

component and the elements Research and Analysis for the COMPARTMENTS

component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

 COMPONENT LEVEL ’Top Secret’,

 COMPONENT COMPARTMENTS ’Research’, ’Analysis’

CREATE SECURITY LABEL

Statements 429

Example 2: Create a security label named EMPLOYEESECLABELREAD that has the

element Top Secret for the LEVEL component and the element Research for the

COMPARTMENTS component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD

 COMPONENT LEVEL ’Top Secret’,

 COMPONENT COMPARTMENTS ’Research’

Example 3: Create a security label named EMPLOYEESECLABELWRITE that has

the element Analysis for the COMPARTMENTS component and a null value for

the LEVEL component. Assume that the security policy named DATA_ACCESS is

the same security policy that is used in examples 1 and 2.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE

 COMPONENT COMPARTMENTS ’Analysis’

Example 4: Create a security label named BEGINNER that is part of an existing

CLASSPOLICY security policy, and that has the element Trainee for the TRUST

component and the element Morning for the SECTIONS component.

 CREATE SECURITY LABEL CLASSPOLICY.BEGINNER

 COMPONENT TRUST ’Trainee’,

 COMPONENT SECTIONS ’Morning’

CREATE SECURITY LABEL

430 SQL Reference, Volume 2

CREATE SECURITY POLICY

The CREATE SECURITY POLICY statement defines a security policy.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE SECURITY POLICY security-policy-name �

�

�

 ,

COMPONENTS

component-name

WITH DB2LBACRULES

�

�
 OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

��

Description

security-policy-name

Names the security policy. This is a one-part name. The name must not

identify an existing security policy at the current server (SQLSTATE 42710).

COMPONENTS component-name,...

Identifies a security label component. The name must identify a security label

component that already exists at the current server (SQLSTATE 42704). The

same security component must not be specified more than once for the security

policy (SQLSTATE 42713). No more than 16 security label components can be

specified for a security policy (SQLSTATE 54062).

WITH DB2LBACRULES

Indicates what rule set that will be used when comparing security labels that

are part of this security policy. There is currently only one rule set:

DB2LBACRULES.

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT

NOT AUTHORIZED WRITE SECURITY LABEL

Specifies the action that is to be taken when a user is not authorized to write

the explicitly specified security label that is provided in the INSERT or

UPDATE statement issued against a table that is protected with this security

policy. A user’s security label and exemption credentials determine the user’s

authorization to write an explicitly provided security label. The default is

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL.

CREATE SECURITY POLICY

Statements 431

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user’s security label, rather than the

explicitly specified security label, is to be used for write access during an

insert or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in

the INSERT or UPDATE statement (SQLSTATE 42519).

Notes

v DB2LBACRULES rule set: DB2LBACRULES is a predefined set of rules that

includes the following rules: DB2LBACREADARRAY, DB2LBACREADSET,

DB2LBACREADTREE, DB2LBACWRITEARRAY, DB2LBACWRITESET,

DB2LBACWRITETREE.

v Group and role authorizations are not considered by default when a security

policy is created. Use the ALTER SECURITY POLICY statement to change this

behavior and have them considered.

Examples

Example 1: Create a security policy named DATA_ACCESS that uses the

DB2LBACRULES rule set and has two components: LEVEL and

COMPARTMENTS, in that order. Assume that both components already exist.

 CREATE SECURITY POLICY DATA_ACCESS

 COMPONENTS LEVEL, COMPARTMENTS

 WITH DB2LBACRULES

Example 2: Create a security policy named CONTRIBUTIONS that has the

components MEMBER and BADGE, which are assumed to already exist.

 CREATE SECURITY POLICY CONTRIBUTIONS

 COMPONENTS MEMBER, BADGE

 WITH DB2LBACRULES

CREATE SECURITY POLICY

432 SQL Reference, Volume 2

CREATE SEQUENCE

The CREATE SEQUENCE statement defines a sequence at the application server.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the sequence does not exist

v CREATEIN privilege on the schema, if the schema name of the sequence refers

to an existing schema

v SYSADM or DBADM authority

Syntax

��

CREATE SEQUENCE

sequence-name

*

 AS INTEGER

AS

data-type

*

�

�

START WITH

numeric-constant

*

 INCREMENT BY 1

INCREMENT BY

numeric-constant

*

�

�
 NO MINVALUE

MINVALUE

numeric-constant

*

 NO MAXVALUE

MAXVALUE

numeric-constant

*

�

�
 NO CYCLE

CYCLE

*

 CACHE 20

CACHE

integer-constant

NO CACHE

*

 NO ORDER

ORDER

*

��

data-type:

 built-in-type

distinct-type-name

CREATE SEQUENCE

Statements 433

built-in-type:

 SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

Description

sequence-name

Names the sequence. The combination of name, and the implicit or explicit

schema name must not identify an existing sequence at the current server

(SQLSTATE 42710).

 The unqualified form of sequence-name is an SQL identifier. The qualified

form is a qualifier followed by a period and an SQL identifier. The qualifier is

a schema name.

If the sequence name is explicitly qualified with a schema name, the schema

name cannot begin with ’SYS’ or an error (SQLSTATE 42939) is raised.

AS data-type

Specifies the data type to be used for the sequence value. The data type can be

any exact numeric type (SMALLINT, INTEGER, BIGINT or DECIMAL) with a

scale of zero, or a user-defined distinct type or reference type for which the

source type is an exact numeric type with a scale of zero (SQLSTATE 42815).

The default is INTEGER.

START WITH numeric-constant

Specifies the first value for the sequence. This value can be any positive or

negative value that could be assigned to a column of the data type associated

with the sequence (SQLSTATE 42815), without non-zero digits existing to the

right of the decimal point (SQLSTATE 428FA). The default is MINVALUE for

ascending sequences and MAXVALUE for descending sequences.

 This value is not necessarily the value that a sequence would cycle to after

reaching the maximum or minimum value of the sequence. The START WITH

clause can be used to start a sequence outside the range that is used for cycles.

The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the sequence. This value

can be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), and does not

exceed the value of a large integer constant (SQLSTATE 42820), without

non-zero digits existing to the right of the decimal point (SQLSTATE 428FA).

 If this value is negative, this is a descending sequence. If this value is 0 or

positive, this is an ascending sequence. The default is 1.

MINVALUE or NO MINVALUE

Specifies the minimum value at which a descending sequence either cycles or

stops generating values, or an ascending sequence cycles to after reaching the

maximum value.

CREATE SEQUENCE

434 SQL Reference, Volume 2

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value. This value can

be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point (SQLSTATE

428FA), but the value must be less than or equal to the maximum value

(SQLSTATE 42815).

NO MINVALUE

For an ascending sequence, the value is the START WITH value, or 1 if

START WITH is not specified. For a descending sequence, the value is the

minimum value of the data type associated with the sequence. This is the

default.

MAXVALUE or NO MAXVALUE

Specifies the maximum value at which an ascending sequence either cycles or

stops generating values, or a descending sequence cycles to after reaching the

minimum value.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value. This value can

be any positive or negative value that could be assigned to a column of the

data type associated with the sequence (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point (SQLSTATE

428FA), but the value must be greater than or equal to the minimum value

(SQLSTATE 42815).

NO MAXVALUE

For an ascending sequence, the value is the maximum value of the data

type associated with the sequence. For a descending sequence, the value is

the START WITH value, or -1 if START WITH is not specified.

CYCLE or NO CYCLE

Specifies whether the sequence should continue to generate values after

reaching either its maximum or minimum value. The boundary of the sequence

can be reached either with the next value landing exactly on the boundary

condition, or by overshooting it.

CYCLE

Specifies that values continue to be generated for this sequence after the

maximum or minimum value has been reached. If this option is used, after

an ascending sequence reaches its maximum value it generates its

minimum value; after a descending sequence reaches its minimum value it

generates its maximum value. The maximum and minimum values for the

sequence determine the range that is used for cycling.

 When CYCLE is in effect, then duplicate values can be generated for the

sequence.

NO CYCLE

Specifies that values will not be generated for the sequence once the

maximum or minimum value for the sequence has been reached. This is

the default.

CACHE or NO CACHE

Specifies whether to keep some preallocated values in memory for faster

access. This is a performance and tuning option.

CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated

CREATE SEQUENCE

Statements 435

and kept in memory. Preallocating and storing values in the cache reduces

synchronous I/O to the log when values are generated for the sequence.

 In the event of a system failure, all cached sequence values that have not

been used in committed statements are lost (that is, they will never be

used). The value specified for the CACHE option is the maximum number

of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815). The default value is CACHE

20.

NO CACHE

Specifies that values of the sequence are not to be preallocated. It ensures

that there is not a loss of values in the case of a system failure, shutdown

or database deactivation. When this option is specified, the values of the

sequence are not stored in the cache. In this case, every request for a new

value for the sequence results in synchronous I/O to the log.

NO ORDER or ORDER

Specifies whether the sequence numbers must be generated in order of request.

ORDER

Specifies that the sequence numbers are generated in order of request.

NO ORDER

Specifies that the sequence numbers do not need to be generated in order

of request. This is the default.

Notes

v It is possible to define a constant sequence, that is, one that would always return

a constant value. This could be done by specifying an INCREMENT value of

zero and a START WITH value that does not exceed MAXVALUE, or by

specifying the same value for START WITH, MINVALUE and MAXVALUE. For

a constant sequence, each time NEXT VALUE is invoked for the sequence, the

same value is returned. A constant sequence can be used as a numeric global

variable. ALTER SEQUENCE can be used to adjust the values that will be

generated for a constant sequence.

v A sequence can be cycled manually by using the ALTER SEQUENCE statement.

If NO CYCLE is implicitly or explicitly specified, the sequence can be restarted

or extended using the ALTER SEQUENCE statement to cause values to continue

to be generated once the maximum or minimum value for the sequence has

been reached.

v A sequence can be explicitly defined to cycle by specifying the CYCLE keyword.

Use the CYCLE option when defining a sequence to indicate that the generated

values should cycle once the boundary is reached. When a sequence is defined

to automatically cycle (that is, CYCLE was explicitly specified), the maximum or

minimum value generated for a sequence might not be the actual MAXVALUE

or MINVALUE specified, if the increment is a value other than 1 or -1. For

example, the sequence defined with START WITH=1, INCREMENT=2, MAXVALUE=10

will generate a maximum value of 9, and will not generate the value 10. When

defining a sequence with CYCLE, carefully consider the impact of the values for

MINVALUE, MAXVALUE and START WITH.

v Caching sequence numbers implies that a range of sequence numbers can be

kept in memory for fast access. When an application accesses a sequence that

can allocate the next sequence number from the cache, the sequence number

allocation can happen quickly. However, if an application accesses a sequence

that cannot allocate the next sequence number from the cache, the sequence

number allocation may require having to wait for I/O operations to persistent

CREATE SEQUENCE

436 SQL Reference, Volume 2

storage. The choice of the value for CACHE should be done keeping in mind the

performance and application requirements tradeoffs.

v The definer of a sequences is granted ALTER and USAGE privileges with the

grant option. The owner of the sequence can drop the sequence.

v Compatibilities

– For compatibility with previous versions of DB2:

- A comma can be used to separate multiple sequence options
– The following syntax is also supported:

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and

NOORDER.

Examples

Example 1: Create a sequence called ORG_SEQ that starts at 1, increments by 1,

does not cycle, and caches 24 values at a time:

 CREATE SEQUENCE ORG_SEQ

 START WITH 1

 INCREMENT BY 1

 NO MAXVALUE

 NO CYCLE

 CACHE 24

CREATE SEQUENCE

Statements 437

CREATE SERVICE CLASS

The CREATE SERVICE CLASS statement defines a service class.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE SERVICE CLASS service-class-name �

�

UNDER

service-superclass-name

 AGENT PRIORITY DEFAULT

AGENT PRIORITY

integer-constant

�

�
 PREFETCH PRIORITY DEFAULT

PREFETCH PRIORITY HIGH

PREFETCH PRIORITY MEDIUM

PREFETCH PRIORITY LOW

 OUTBOUND CORRELATOR NONE

OUTBOUND CORRELATOR

string-constant

�

�
 (1) COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA

collect-activity-data-clause

�

�
 COLLECT AGGREGATE ACTIVITY DATA NONE

BASE

COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

�

�
 COLLECT AGGREGATE REQUEST DATA NONE

BASE

COLLECT AGGREGATE REQUEST DATA

�

�
 (2)

histogram-template-clause
 ENABLE

DISABLE

��

collect-activity-data-clause:

 DATABASE PARTITION

ON COORDINATOR

DATABASE PARTITIONS

ON ALL

�

CREATE SERVICE CLASS

438 SQL Reference, Volume 2

�
 WITHOUT DETAILS

WITH DETAILS

AND VALUES

histogram-template-clause:

 ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE

template-name

�

�
 REQUEST EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

REQUEST EXECUTETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

Notes:

1 The COLLECT clauses are only valid for a service subclass.

2 The HISTOGRAM TEMPLATE clauses are only valid for a service subclass.

Description

service-class-name

Names the service class. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). If the service class is a service superclass, the

service-class-name must not identify a service superclass that already exists in

the catalog (SQLSTATE 42710). If the service class is a service subclass, the

service-class-name must not identify a service subclass that already exists under

the service superclass (SQLSTATE 42710). If the service class is a service

subclass, the service-class-name must not be the same as its service superclass

(SQLSTATE 42710). The name must not begin with the characters ’SYS’

(SQLSTATE 42939).

UNDER service-superclass-name

Specifies that the service class is a subclass of service superclass

service-superclass-name. If UNDER is not specified, the service class is a service

superclass. The service-superclass-name must identify a service superclass that

exists for the database (SQLSTATE 42704). The service superclass cannot be a

default service class (SQLSTATE 5U029).

CREATE SERVICE CLASS

Statements 439

AGENT PRIORITY DEFAULT or AGENT PRIORITY integer-constant

Specifies the relative (delta) operating system priority of agents running in the

service class or the normal priority of threads running in DB2. The default

value is DEFAULT. When set to DEFAULT, no special action is taken, and

agents in the service class are scheduled according to the normal priority that

the operating system schedules all DB2 threads. When this parameter is set to

a value other than DEFAULT, agents are set to a priority that is equal to the

normal priority plus AGENT PRIORITY when the next activity begins. For

example, if the normal priority is 20 and AGENT PRIORITY is set to -10, the

priority of agents in the service class is set to 20 – 10 = 10.

 On UNIX operating systems and Linux, valid values are DEFAULT and -20 to

20 (SQLSTATE 42615). Negative values denote a higher relative priority.

Positive values denote a lower relative priority.

On Windows operating systems, valid values are DEFAULT and -6 to 6

(SQLSTATE 42615). Negative values denote a lower relative priority. Positive

values denote a higher relative priority.

If AGENT PRIORITY is DEFAULT for a service subclass, it inherits the AGENT

PRIORITY value of its parent superclass. AGENT PRIORITY cannot be altered

for a default subclass (SQLSTATE 5U032). AGENT PRIORITY must be set to

DEFAULT if OUTBOUND CORRELATOR is set (SQLSTATE 42613).

Note: On AIX, the instance owner must have CAP_NUMA_ATTACH and

CAP_PROPAGATE capabilities to set a higher relative priority for agents in a

service class using AGENT PRIORITY. To grant these capabilities, logon as root

and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

PREFETCH PRIORITY

This parameter controls the priority with which agents in the service class can

submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or

DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch

requests will be submitted to the high, medium, and low priority queues,

respectively. Prefetchers empty the priority queue in order from high to low.

Agents in the service class submit their prefetch requests at the PREFETCH

PRIORITY level when the next activity begins. If PREFETCH PRIORITY is

altered after a prefetch request is submitted, the request priority does not

change. The default value is DEFAULT, which is internally mapped to

MEDIUM for service superclasses. If DEFAULT is set for a service subclass, it

inherits the PREFETCH PRIORITY of its parent superclass.

 PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE

5U032).

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR

string-constant

Specifies whether or not to associate threads from this service class to an

external workload manager service class.

 If OUTBOUND CORRELATOR is set to a string-constant for the service

superclass and OUTBOUND CORRELATOR NONE is set for a service

subclass, the service subclass inherits the OUTBOUND CORRELATOR of its

parent. OUTBOUND CORRELATOR must be set to NONE if the AGENT

PRIORITY is not set to DEFAULT (SQLSTATE 42613). The default is

OUTBOUND CORRELATOR NONE.

OUTBOUND CORRELATOR NONE

For a service superclass, specifies that there is no external workload

CREATE SERVICE CLASS

440 SQL Reference, Volume 2

manager service class association with this service class, and for a service

subclass, specifies that the external workload manager service class

association is the same as its parent.

OUTBOUND CORRELATOR string-constant

Specifies the string-constant that is to be used as a correlator to associate

threads from this service class to an external workload manager service

class. The external workload manager must be active (SQLSTATE 5U030).

The external workload manager should be set up to recognize the value of

string-constant.

COLLECT ACTIVITY DATA

Specifies that information about each activity that executes in this service class

is to be sent to the applicable event monitor when the activity completes. The

default is COLLECT ACTIVITY DATA NONE. The COLLECT ACTIVITY

DATA clause is only valid for a service subclass.

NONE

Specifies that activity data should not be collected for each activity that

executes in this service class.

ON COORDINATOR DATABASE PARTITION

Specifies that activity data is only to be collected at the database partition

of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that activity data is to be collected at all database partitions where

the activity is processed. However, activity details and values will only be

collected at the database partition of the coordinator.

WITHOUT DETAILS

Specifies that data about each activity that executes in the service class

should be sent to the applicable event monitor when the activity completes

execution. Statement and compilation environment are not sent to the

event monitor.

WITH DETAILS

Specifies that statement and compilation environment data is to be sent to

the applicable event monitor for those activities that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable event

monitor for those activities that have them.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data should be captured for this service class

and sent to the applicable event monitor. This information is collected

periodically on an interval that is specified by the wlm_collect_int database

configuration parameter. The default is COLLECT AGGREGATE ACTIVITY

DATA NONE. The COLLECT AGGREGATE ACTIVITY DATA clause is only

valid for a service subclass.

BASE

Specifies that basic aggregate activity data should be captured for this

service class and sent to the applicable event monitor. Basic aggregate

activity data includes:

v Estimated activity cost high watermark

v Rows returned high watermark

v Temporary table space usage high watermark

v Activity life time histogram

CREATE SERVICE CLASS

Statements 441

v Activity queue time histogram

v Activity execution time histogram

EXTENDED

Specifies that all aggregate activity data should be captured for this service

class and sent to the applicable event monitor. This includes all basic

aggregate activity data plus:

v Activity data manipulation language (DML) estimated cost histogram

v Activity DML inter-arrival time histogram

NONE

Specifies that no aggregate activity data should be captured for this service

class.

COLLECT AGGREGATE REQUEST DATA

Specifies that aggregate request data should be captured for this service class

and sent to the applicable event monitor. This information is collected

periodically on an interval specified by the wlm_collect_int database

configuration parameter. The default is COLLECT AGGREGATE ACTIVITY

DATA NONE. The COLLECT AGGREGATE ACTIVITY DATA clause is only

valid for a service subclass.

BASE

Specifies that basic aggregate request data should be captured for this

service class and sent to the applicable event monitor.

NONE

Specifies that no aggregate request data should be captured for this service

class.

histogram-template-clause

Specifies the histogram templates to use when collecting aggregate activity

data for activities executing in the service class. The HISTOGRAM TEMPLATE

clause is only valid for a service subclass.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the duration, in microseconds, of DB2 activities running in the

service class during a specific interval. This time includes both time

queued and time executing. The default is SYSDEFAULTHISTOGRAM.

This information is only collected when the COLLECT AGGREGATE

ACTIVITY DATA clause is specified, with either the BASE or EXTENDED

option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 activities running

in the service class are queued during a specific interval. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when the

COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either

the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 activities running

in the service class are executing during a specific interval. This time does

not include the time spent queued. Activity execution time is collected in

this histogram at the coordinator database partition only. The time does not

include idle time. Idle time is the time between the execution of requests

belonging to the same activity when no work is being done. An example of

CREATE SERVICE CLASS

442 SQL Reference, Volume 2

idle time is the time between the end of opening a cursor and the start of

fetching from that cursor. The default is SYSDEFAULTHISTOGRAM. This

information is only collected when the COLLECT AGGREGATE ACTIVITY

DATA clause is specified, with either the BASE or EXTENDED option.

Only activities at nesting level 0 are considered for inclusion in the

histogram.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2 requests running

in the service class are executing during a specific interval. This time does

not include the time spent queued. Request execution time is collected in

this histogram on each database partition where the request executes. The

default is SYSDEFAULTHISTOGRAM. This information is only collected

when the COLLECT AGGREGATE REQUEST DATA clause is specified

with the BASE option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the estimated cost, in timerons, of DML activities running in the

service class. The default is SYSDEFAULTHISTOGRAM. This information

is only collected when the COLLECT AGGREGATE ACTIVITY DATA

clause is specified with the EXTENDED option. Only activities at nesting

level 0 are considered for inclusion in the histogram.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, between the arrival of one

DML activity and the arrival of the next DML activity. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when the

COLLECT AGGREGATE ACTIVITY DATA clause is specified with the

EXTENDED option.

ENABLE or DISABLE

Specifies whether or not connections and activities can be mapped to the

service class. The default is ENABLE.

ENABLE

Connections and activities can be mapped to the service class.

DISABLE

Connections and activities cannot be mapped to the service class. New

connections or activities that are mapped to a disabled service class will be

rejected (SQLSTATE 5U028). When a service superclass is disabled, its

service subclasses are also disabled. When the service superclass is

re-enabled, its service subclasses return to states that are defined in the

system catalog. A default service class cannot be disabled (SQLSTATE

5U032).

Rules

v The maximum number of service subclasses that can be created under a service

superclass is 61 (SQLSTATE 5U027).

v The maximum number of service superclasses that can be created for a database

is 64 (SQLSTATE 5U027).

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U027). WLM-exclusive SQL

statements are:

CREATE SERVICE CLASS

Statements 443

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v A default subclass, SYSDEFAULTSUBCLASS, is automatically created for every

service superclass.

v Only one uncommitted WLM-exclusive SQL statement at a time is allowed

across all partitions. If an uncommitted WLM-exclusive SQL statement is

executing, subsequent WLM-exclusive SQL statements will wait until the current

WLM-exclusive SQL statement commits or rolls back.

v Changes are written to the system catalog, but do not take effect until after a

COMMIT statement, even for the connection that issues the statement.

Examples

Example 1: Create a service superclass named PETSALES. The default subclass for

PETSALES is automatically created.

 CREATE SERVICE CLASS PETSALES

Example 2: Create a service subclass named DOGSALES under service superclass

PETSALES. Set service class DOGSALES as disabled.

 CREATE SERVICE CLASS DOGSALES UNDER PETSALES DISABLE

Example 3: Create a service superclass named BARNSALES with a prefetcher

priority of LOW. The default subclass for BARNSALES is automatically created.

Prefetch requests submitted by agents in the BARNSALES service class will go to

the low priority prefetch queue.

 CREATE SERVICE CLASS BARNSALES PREFETCH PRIORITY LOW

CREATE SERVICE CLASS

444 SQL Reference, Volume 2

CREATE SERVER

The CREATE SERVER statement defines a data source to a federated database. In

this statement, the term SERVER and the parameter names that start with server-

refer only to data sources in a federated system. They do not refer to the federated

server in such a system, or to DRDA application servers.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE SERVER server-name

TYPE

server-type
 �

�
VERSION

server-version
 WRAPPER wrapper-name �

�
AUTHORIZATION

remote-authorization-name

PASSWORD

password
 �

�

�

,

ADD

OPTIONS

(

server-option-name

string-constant

)

 ��

server-version:

 version

.

release

.

mod

version-string-constant

Description

server-name

Names the data source that is being defined to the federated database. The

name must not identify a data source that is described in the catalog. The

server-name must not be the same as the name of any table space in the

federated database.

 A server definition for relational data sources usually represents a remote

database. Some relational database management systems, such as Oracle, do

not allow multiple databases within each instance. Instead, each instance

represents a server within a federated system.

CREATE SERVER

Statements 445

For nonrelational data sources, the purpose of a server definition varies from

data source to data source. Some server definitions map to a search type and

daemon, a web site, or a web server. For other nonrelational data sources, a

server definition is created because the hierarchy of federated objects requires

that data source files (identified by nicknames) are associated with a specific

server object.

TYPE server-type

Specifies the type of data source denoted by server-name. This parameter is

required by some wrappers.

VERSION

Specifies the version of the data source denoted by server-name. This parameter

is required by some wrappers.

version

Specifies the version number. The value must be an integer.

release

Specifies the number of the release of the version denoted by version. The

value must be an integer.

mod

Specifies the number of the modification of the release denoted by release.

The value must be an integer.

version-string-constant

Specifies the complete designation of the version. The version-string-constant

can be a single value (for example, ‘8i’); or it can be the concatenated

values of version, release and, if applicable, mod (for example, ‘8.0.3’).

WRAPPER wrapper-name

Names the wrapper that the federated server uses to interact with the server

object specified by server-name.

AUTHORIZATION remote-authorization-name

Required only for DB2 family data sources. Specifies the authorization ID

under which any necessary actions are performed at the data source when the

CREATE SERVER statement is processed. This authorization ID is not used

when establishing subsequent connections to the server.

 This ID must hold the authority (BINDADD or its equivalent) that the

necessary actions require. If the remote-authorization-name is specified in mixed

or lowercase characters (and the remote data source has case sensitive

authorization names), the remote-authorization-name should be enclosed by

double quotation marks.

PASSWORD password

Required only for DB2 family data sources. Specifies the password associated

with the authorization ID represented by remote-authorization-name. If the

password is specified in mixed or lowercase characters (and the remote data

source has case sensitive passwords), the password should be enclosed by

double quotation marks.

OPTIONS

Indicates the options that are enabled when the server definition is created.

Server options are used to configure the server definition. Some server options

can be used to create the server definition for any data source. Some server

options are specific to a particular data source.

ADD

Enables one or more server options.

CREATE SERVER

446 SQL Reference, Volume 2

server-option-name

Names a server option that will be used to either configure or provide

information about the data source denoted by server-name.

string-constant

Specifies the setting for server-option-name as a character string constant.

Notes

v The password should be specified when the data source requires a password. If

any letters in password must be in lowercase, enclose password in quotation

marks.

v If the CREATE SERVER statement is used to define a DB2 family instance as a

data source, DB2 may need to bind certain packages to that instance. If binding

is required, the remote-authorization-name in the statement must have BIND

authority. The time required for the bind operation to complete is dependent on

data source speed and network connection speed.

v DB2 does not verify that the specified server version matches the remote server

version. Specifying an incorrect server version can result in SQL errors when

you access nicknames that belong to the DB2 server definition. This is most

likely when you specify a server version that is later than the remote server

version. In that case, when you access nicknames that belong to the server

definition, DB2 might send SQL that the remote server does not recognize.

Examples

Example 1: Register a server definition to access a DB2 for z/OS and OS/390®,

Version 7.1 data source. CRANDALL is the name assigned to the DB2 for z/OS

and OS/390 server definition. DRDA is the name of the wrapper used to access

this data source. In addition, specify that:

v GERALD and drowssap are the authorization ID and password under which

packages are bound at CRANDALL when this statement is processed.

v The alias for the DB2 for z/OS and OS/390 database that was specified with the

CATALOG DATABASE statement is CLIENTS390.

v The authorization IDs and passwords under which CRANDALL can be accessed

are to be sent to CRANDALL in uppercase.

v CLIENTS390 and the federated database use the same collating sequence.
 CREATE SERVER CRANDALL

 TYPE DB2/ZOS

 VERSION 7.1

 WRAPPER DRDA

 AUTHORIZATION "GERALD"

 PASSWORD drowssap

 OPTIONS

 (DBNAME ’CLIENTS390’,

 FOLD_ID ’U’,

 FOLD_PW ’U’,

 COLLATING_SEQUENCE ’Y’)

Example 2: Register a server definition to access an Oracle 9 data source.

CUSTOMERS is the name assigned to the Oracle server definition. NET8 is the

name of the wrapper used to access this data source. In addition, specify that:

v ABC is the name of the node where the Oracle database server resides.

v The CPU for the federated server runs twice as fast as the CPU that supports

CUSTOMERS.

CREATE SERVER

Statements 447

v The I/O devices at the federated server process data one and a half times as fast

as the I/O devices at CUSTOMERS.
 CREATE SERVER CUSTOMERS

 TYPE ORACLE

 VERSION 9

 WRAPPER NET8

 OPTIONS

 (NODE ’ABC’,

 CPU_RATIO ’2.0’,

 IO_RATIO ’1.5’)

Example 3: Register a server definition for the Excel wrapper. The server definition

is required to preserve the hierarchy of federated objects. BIOCHEM_LAB is the

name assigned to the Excel server definition. EXCEL_2000_WRAPPER is the name

of the wrapper used to access this data source.

 CREATE SERVER BIOCHEM_DATA

 WRAPPER EXCEL_2000_WRAPPER

Example 4: Register a server definition to access a BLAST data source.

BLAST_SERVER is the name assigned to the BLAST server definition. The type of

search that this server definition supports is the BLASTn search type. VERSION is

the version of the BLAST search program. BLAST_WRAPPER is the name of the

wrapper used to access this data source. In addition, specify that:

v NODE is the host name of the server on which the BLAST daemon process runs.

v The port number on which the BLAST daemon listens for job requests submitted

by the BLAST wrapper is 4007.
 CREATE SERVER BLAST_SERVER

 TYPE BLASTn

 VERSION 2.1.2

 WRAPPER BLAST_WRAPPER

 OPTIONS

 (NODE ’big.rs.company.com’,

 DAEMON_PORT ’4007’)

CREATE SERVER

448 SQL Reference, Volume 2

CREATE TABLE

The CREATE TABLE statement defines a table. The definition must include its

name and the names and attributes of its columns. The definition can include other

attributes of the table, such as its primary key or check constraints.

To declare a global temporary table, use the DECLARE GLOBAL TEMPORARY

TABLE statement.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CREATETAB authority on the database and USE privilege on the table space, as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v SYSADM or DBADM authority

If a subtable is being defined, the authorization ID must be the same as the owner

of the root table of the table hierarchy.

To define a foreign key, the privileges held by the authorization ID of the statement

must include one of the following on the parent table:

v REFERENCES privilege on the table

v REFERENCES privilege on each column of the specified parent key

v CONTROL privilege on the table

v SYSADM or DBADM authority

To define a materialized query table (using a fullselect), the privileges held by the

authorization ID of the statement must include at least one of the following on

each table or view identified in the fullselect (excluding group privileges):

v SELECT privilege on the table or view, and ALTER privilege (including group

privileges) if REFRESH DEFERRED or REFRESH IMMEDIATE is specified

v CONTROL privilege on the table or view

v SYSADM or DBADM authority

To define a staging table associated with a materialized query table, the privileges

held by the authorization ID of the statement must include at least one of the

following on the materialized query table:

v ALTER and SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

CREATE TABLE

Statements 449

and at least one of the following on each table or view identified in the fullselect of

the materialized query table (excluding group privileges):

v SELECT privilege and ALTER privilege (including group privileges) on the table

or view

v CONTROL privilege on the table or view

v SELECT privilege on the table or view, and ALTERIN privilege (including group

privileges) on the schema of the table or view

v SYSADM or DBADM authority

Syntax

�� CREATE TABLE table-name element-list

OF

type-name1

typed-table-options

LIKE

table-name1

view-name

copy-options

nickname

as-result-table

copy-options

materialized-query-definition

staging-table-definition

 * �

�

�

�

,

DIMENSIONS

ORGANIZE BY

(

column-name

)

,

(

column-name

)

KEY SEQUENCE

sequence-key-spec

 �

�
 DATA CAPTURE NONE

*

DATA CAPTURE CHANGES

*

�

,

CYCLE

IN

tablespace-name1

NO CYCLE

*

�

�
tablespace-options

 *

distribution-clause
 * �

�

partitioning-clause

 COMPRESS NO

*

COMPRESS YES

*

VALUE COMPRESSION

�

� *

WITH RESTRICT ON DROP
 *

NOT LOGGED INITIALLY
 * �

�
CCSID

ASCII

UNICODE

 * *

SECURITY POLICY

policy name
 �

�

�

,

ADD

OPTIONS

(

table-option-name

string-constant

)

 ��

CREATE TABLE

450 SQL Reference, Volume 2

element-list:

�

 ,

(

column-definition

)

unique-constraint

referential-constraint

check-constraint

column-definition:

 column-name

(1)

data-type

column-options

data-type:

 built-in-type

distinct-type-name

structured-type-name

REF

(type-name2)

built-in-type:

CREATE TABLE

Statements 451

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

(2)

VARCHAR

(integer)

FOR BIT DATA

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

(3)

(4)

DB2SECURITYLABEL

column-options:

CREATE TABLE

452 SQL Reference, Volume 2

�

NOT NULL

(5)

lob-options

(6)

SCOPE

typed-table-name

typed-view-name

PRIMARY KEY

CONSTRAINT

constraint-name

UNIQUE

references-clause

CHECK

(

check-condition

)

constraint-attributes

generated-column-definition

(7)

INLINE LENGTH

integer

COMPRESS SYSTEM DEFAULT

COLUMN

SECURED WITH

security-label-name

NOT HIDDEN

(8)

IMPLICITLY HIDDEN

lob-options:

 LOGGED NOT COMPACT

*

*

*

NOT LOGGED

COMPACT

references-clause:

 REFERENCES table-name

nickname

�

,

(

column-name

)

 �

� rule-clause constraint-attributes

rule-clause:

 ON DELETE NO ACTION ON UPDATE NO ACTION

*

*

*

ON DELETE

RESTRICT

ON UPDATE RESTRICT

CASCADE

SET NULL

constraint-attributes:

*

 ENFORCED

NOT ENFORCED

*

 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

generated-column-definition:

 default-clause

ALWAYS

GENERATED

identity-options

BY DEFAULT

as-row-change-timestamp-clause

ALWAYS

GENERATED

AS

(

generation-expression

)

CREATE TABLE

Statements 453

default-clause:

 WITH

DEFAULT

default-values

default-values:

 constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function

(

constant

)

datetime-special-register

user-special-register

CURRENT SCHEMA

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

identity-options:

�

 AS IDENTITY

(9)

1

(

START WITH

numeric-constant

)

1

INCREMENT BY

numeric-constant

NO MINVALUE

MINVALUE

numeric-constant

NO MAXVALUE

MAXVALUE

numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE

integer-constant

NO ORDER

ORDER

as-row-change-timestamp-clause:

 (10)

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

unique-constraint:

CONSTRAINT

constraint-name

UNIQUE

PRIMARY KEY

�

 ,

(

column-name

)

referential-constraint:

CREATE TABLE

454 SQL Reference, Volume 2

CONSTRAINT

constraint-name

FOREIGN KEY

�

 ,

(

column-name

)

�

� references-clause

check-constraint:

CONSTRAINT

constraint-name
 CHECK (check-condition) �

� constraint-attributes

check-condition:

 search-condition

functional-dependency

functional-dependency:

�

�

 column-name DETERMINED BY column-name

,

,

(

column-name

)

(

column-name

)

typed-table-options:

HIERARCHY

hierarchy-name

typed-element-list

under-clause

under-clause:

 UNDER supertable-name INHERIT SELECT PRIVILEGES

typed-element-list:

�

 ,

(

OID-column-definition

)

with-options

unique-constraint

check-constraint

OID-column-definition:

 REF IS OID-column-name USER GENERATED

CREATE TABLE

Statements 455

with-options:

 column-name WITH OPTIONS column-options

as-result-table:

�

,

(

column-name

)

 AS (fullselect) WITH NO DATA

materialized-query-definition:

�

,

(

column-name

)

 AS (fullselect) �

� refreshable-table-options

copy-options:

 *

COLUMN

INCLUDING

DEFAULTS

EXCLUDING

 * �

�

 COLUMN ATTRIBUTES

EXCLUDING IDENTITY

COLUMN ATTRIBUTES

INCLUDING IDENTITY

*

refreshable-table-options:

 * DATA INITIALLY DEFERRED * REFRESH DEFERRED

IMMEDIATE
 * �

�
 ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

*

MAINTAINED BY

SYSTEM

USER

FEDERATED_TOOL

*

staging-table-definition:

�

,

(

staging-column-name

)

 FOR table-name2 PROPAGATE IMMEDIATE

CREATE TABLE

456 SQL Reference, Volume 2

sequence-key-spec:

�

 ,

AT

(

column-name

ENDING

constant

)

FROM

STARTING

constant

�

� ALLOW OVERFLOW

DISALLOW OVERFLOW

PCTFREE

integer

tablespace-options:

(11)

INDEX IN

tablespace-name2

�

,

LONG IN

tablespace-name3

distribution-clause:

DISTRIBUTE BY

�

 ,

HASH

(

column-name

)

REPLICATION

partitioning-clause:

PARTITION BY
 RANGE

range-partition-spec

range-partition-spec:

�

 ,

(

partition-expression

)

�

 ,

(

partition-element

)

partition-expression:

column-name
 NULLS LAST

NULLS FIRST

partition-element:

 boundary-spec

PARTITION

partition-name

IN

tablespace-name

(12)

boundary-spec

EVERY

(

constant

duration-label

)

(12)

constant

duration-label

CREATE TABLE

Statements 457

boundary-spec:

 (13)

starting-clause

ending-clause

ending-clause

starting-clause:

FROM

STARTING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause:

AT

ENDING

�

 ,

(

constant

)

MINVALUE

MAXVALUE

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

duration-label:

 YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:

1 If the first column-option chosen is a generated-column-definition with a

generation-expression, then the data-type can be omitted. It will be

determined from the resulting data type of the generation-expression.

2 The FOR BIT DATA clause can be specified in any order with the other

column constraints that follow.

3 DB2SECURITYLABEL is the built-in distinct type that must be used to define

the row security label column of a protected table.

CREATE TABLE

458 SQL Reference, Volume 2

4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is

implicit and cannot be explicitly specified (SQLSTATE 42842). The default

value for a column of type DB2SECURITYLABEL is the session authorization

ID’s security label for write access.

5 The lob-options clause only applies to large object types (BLOB, CLOB and

DBCLOB) and distinct types based on large object types.

6 The SCOPE clause only applies to the REF type.

7 INLINE LENGTH applies only to columns defined as structured or XML

types.

8 IMPLICITLY HIDDEN can only be specified if ROW CHANGE TIMESTAMP

is also specified.

9 The same clause must not be specified more than once.

10 Data type is optional for a row change timestamp column.

11 Specifying which table space will contain a table’s indexes can be done when

the table is created. If the table is a range partitioned table, the index table

space can be specified with the IN clause of the CREATE INDEX statement.

12 This syntax for a partition-element is valid if there is only one

partition-expression with a numeric or datetime data type.

13 The first partition-element must include a starting-clause and the last

partition-element must include an ending-clause.

Description

System-maintained materialized query tables and user-maintained materialized

query tables are referred to by the common term materialized query table, unless

there is a need to identify each one separately.

table-name

Names the table. The name, including the implicit or explicit qualifier, must

not identify a table, view, nickname, or alias described in the catalog. The

schema name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE

42939).

element-list

Defines the elements of a table. This includes the definition of columns and

constraints on the table.

column-definition

Defines the attributes of a column.

column-name

Names a column of the table. The name cannot be qualified, and the same

name cannot be used for more than one column of the table (SQLSTATE

42711).

 A table may have the following:

v A 4K page size with a maximum of 500 columns, where the byte counts

of the columns must not be greater than 4 005.

v An 8K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 8 101.

v A 16K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 16 293.

CREATE TABLE

Statements 459

v A 32K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 32 677.

For more details, see Row Size.

data-type

Specifies the data type of the column.

built-in-type

For built-in types, use one of the following types.

SMALLINT

For a small integer.

INTEGER or INT

For a large integer.

BIGINT

For a big integer.

DECIMAL(precision-integer, scale-integer) or DEC(precision-integer,

scale-integer)

For a decimal number. The first integer is the precision of the

number; that is, the total number of digits; it may range from 1 to

31. The second integer is the scale of the number; that is, the

number of digits to the right of the decimal point; it may range

from 0 to the precision of the number.

 If precision and scale are not specified, the default values of 5,0 are

used. The words NUMERIC and NUM can be used as synonyms

for DECIMAL and DEC.

FLOAT(integer)

For a single or double-precision floating-point number, depending

on the value of the integer. The value of the integer must be in the

range 1 through 53. The values 1 through 24 indicate single

precision and the values 25 through 53 indicate double-precision.

 You can also specify:

REAL For single precision floating-point.

DOUBLE

For double-precision floating-point.

DOUBLE PRECISION

For double-precision floating-point.

FLOAT

For double-precision floating-point.

DECFLOAT(precision-integer)

For a decimal floating-point number. The value of precision-integer

is the precision of the number; that is, the total number of digits,

which can be 16 or 34.

 If the precision is not specified, a default value of 34 is used.

CHARACTER(integer) or CHAR(integer) or CHARACTER or CHAR

For a fixed-length character string of length integer, which may

range from 1 to 254. If the length specification is omitted, a length

of 1 character is assumed.

CREATE TABLE

460 SQL Reference, Volume 2

VARCHAR(integer), or CHARACTER VARYING(integer), or CHAR

VARYING(integer)

For a varying-length character string of maximum length integer,

which may range from 1 to 32 672.

LONG VARCHAR

For a varying-length character string with a maximum length of

32 700.

FOR BIT DATA

Specifies that the contents of the column are to be treated as bit

(binary) data. During data exchange with other systems, code page

conversions are not performed. Comparisons are done in binary,

irrespective of the database collating sequence.

CLOB or CHARACTER (CHAR) LARGE OBJECT(integer [K | M |

G])

For a character large object string of the specified maximum length

in bytes.

 The meaning of the integer K | M | G is the same as for BLOB.

If the length specification is omitted, a length of 1 048 576 (1

megabyte) is assumed.

To create CLOB strings greater than 1 gigabyte, you must specify

the NOT LOGGED option.

It is not possible to specify the FOR BIT DATA clause for CLOB

columns. However, a CHAR FOR BIT DATA string can be assigned

to a CLOB column, and a CHAR FOR BIT DATA string can be

concatenated with a CLOB string.

GRAPHIC(integer)

For a fixed-length graphic string of length integer which may range

from 1 to 127. If the length specification is omitted, a length of 1 is

assumed.

VARGRAPHIC(integer)

For a varying-length graphic string of maximum length integer,

which may range from 1 to 16 336.

LONG VARGRAPHIC

For a varying-length graphic string with a maximum length of

16 350.

DBCLOB(integer [K | M | G])

For a double-byte character large object string of the specified

maximum length in double-byte characters.

 The meaning of the integer K | M | G is similar to that for BLOB.

The differences are that the number specified is the number of

double-byte characters, and that the maximum size is

1 073 741 823 double-byte characters.

If the length specification is omitted, a length of 1 048 576

double-byte characters is assumed.

To create DBCLOB strings greater than 1 gigabyte, you must

specify the NOT LOGGED option.

CREATE TABLE

Statements 461

BLOB or BINARY LARGE OBJECT(integer [K | M | G])

For a binary large object string of the specified maximum length in

bytes.

 The length may be in the range of 1 byte to 2 147 483 647 bytes.

If integer by itself is specified, that is the maximum length.

If integer K (in either upper- or lowercase) is specified, the

maximum length is 1 024 times integer. The maximum value for

integer is 2 097 152.

If integer M is specified, the maximum length is 1 048 576 times

integer. The maximum value for integer is 2 048.

If integer G is specified, the maximum length is 1 073 741 824

times integer. The maximum value for integer is 2.

If a multiple of K, M or G that calculates out to 2 147 483 648 is

specified, the actual value used is 2 147 483 647 (or 2 gigabytes

minus 1 byte), which is the maximum length for a LOB column.

If the length specification is omitted, a length of 1 048 576 (1

megabyte) is assumed.

To create BLOB strings greater than 1 gigabyte, you must specify

the NOT LOGGED option.

Any number of spaces is allowed between the integer and K, M, or

G, and a space is not required. For example, all of the following

are valid:

 BLOB(50K) BLOB(50 K) BLOB (50 K)

DATE

For a date.

TIME

For a time.

TIMESTAMP

For a timestamp.

XML

For an XML document. Only well-formed XML documents can be

inserted into an XML column. Columns can be of type XML only if

the database instance has a single database partition (SQLSTATE

42997).

 An XML column has the following restrictions:

v The column cannot be part of any index except an index over

XML data. Therefore, it cannot be included as a column of a

primary key or unique constraint (SQLSTATE 42962).

v The column cannot be a foreign key of a referential constraint

(SQLSTATE 42962).

v A default value (WITH DEFAULT) cannot be specified for the

column (SQLSTATE 42613). If the column is nullable, the default

for the column is the null value.

v The column cannot be used in a table with a distribution key

(SQLSTATE 42997).

v The column cannot be used in a range-clustered table

(SQLSTATE 429BG).

CREATE TABLE

462 SQL Reference, Volume 2

v The column cannot be used in a range-partitioned table

(SQLSTATE 42997).

v The column cannot be referenced in a check constraint except in

a VALIDATED predicate (SQLSTATE 42621).

When a column of type XML is created, an XML path index is

created on that column. A table-level XML region index is also

created when the first column of type XML is created. The name of

these indexes is ’SQL’ followed by a character timestamp

(yymmddhhmmssxxx). The schema name is SYSIBM.

SYSPROC.DB2SECURITYLABEL

This is a built-in distinct type that must be used to define the row

security label column of a protected table. The underlying data

type of a column of the built-in distinct type DB2SECURITYLABEL

is VARCHAR(128) FOR BIT DATA. A table can have at most one

column of type DB2SECURITYLABEL (SQLSTATE 428C1).

distinct-type-name

For a user-defined type that is a distinct type. If a distinct type name is

specified without a schema name, the distinct type name is resolved by

searching the schemas on the SQL path (defined by the FUNCPATH

preprocessing option for static SQL and by the CURRENT PATH

register for dynamic SQL).

 If a column is defined using a distinct type, then the data type of the

column is the distinct type. The length and the scale of the column are

respectively the length and the scale of the source type of the distinct

type.

If a column defined using a distinct type is a foreign key of a

referential constraint, then the data type of the corresponding column

of the primary key must have the same distinct type.

structured-type-name

For a user-defined type that is a structured type. If a structured type

name is specified without a schema name, the structured type name is

resolved by searching the schemas on the SQL path (defined by the

FUNCPATH preprocessing option for static SQL, and by the

CURRENT PATH register for dynamic SQL).

 If a column is defined using a structured type, then the static data type

of the column is the structured type. The column may include values

with a dynamic type that is a subtype of structured-type-name.

A column defined using a structured type cannot be used in a primary

key, unique constraint, foreign key, index key or distribution key

(SQLSTATE 42962).

If a column is defined using a structured type, and contains a

reference-type attribute at any level of nesting, that reference-type

attribute is unscoped. To use such an attribute in a dereference

operation, it is necessary to specify a SCOPE explicitly, using a CAST

specification.

REF (type-name2)

For a reference to a typed table. If type-name2 is specified without a

schema name, the type name is resolved by searching the schemas on

the SQL path (defined by the FUNCPATH preprocessing option for

static SQL and by the CURRENT PATH register for dynamic SQL). The

underlying data type of the column is based on the representation data

CREATE TABLE

Statements 463

type specified in the REF USING clause of the CREATE TYPE

statement for type-name2 or the root type of the data type hierarchy

that includes type-name2.

column-options

Defines additional options related to columns of the table.

NOT NULL

Prevents the column from containing null values.

 If NOT NULL is not specified, the column can contain null values, and

its default value is either the null value or the value provided by the

WITH DEFAULT clause.

NOT HIDDEN or IMPLICITLY HIDDEN

Specifies whether or not the column is to be defined as hidden. The

hidden attribute determines whether the column is included in an

implicit reference to the table, or whether it can be explicitly referenced

in SQL statements. The default is NOT HIDDEN.

NOT HIDDEN

Specifies that the column is included in implicit references to the

table, and that the column can be explicitly referenced.

IMPLICITLY HIDDEN

Specifies that the column is not visible in SQL statements unless

the column is explicitly referenced by name. For example,

assuming that a table includes a column defined with the

IMPLICITLY HIDDEN clause, the result of a SELECT * does not

include the implicitly hidden column. However, the result of a

SELECT that explicitly refers to the name of an implicitly hidden

column will include that column in the result table.

 IMPLICITLY HIDDEN must only be specified for a ROW

CHANGE TIMESTAMP column (SQLSTATE 42867). The ROW

CHANGE TIMESTAMP FOR table-designator expression will resolve

to an IMPLICITLY HIDDEN ROW CHANGE TIMESTAMP column.

IMPLICITLY HIDDEN must not be specified for all columns of the

table (SQLSTATE 428GU).

lob-options

Specifies options for LOB data types.

LOGGED

Specifies that changes made to the column are to be written to the

log. The data in such columns is then recoverable with database

utilities (such as RESTORE DATABASE). LOGGED is the default.

 LOBs greater than 1 gigabyte cannot be logged (SQLSTATE 42993).

NOT LOGGED

Specifies that changes made to the column are not to be logged.

 NOT LOGGED has no effect on a commit or rollback operation;

that is, the database’s consistency is maintained even if a

transaction is rolled back, regardless of whether or not the LOB

value is logged. The implication of not logging is that during a roll

forward operation, after a backup or load operation, the LOB data

will be replaced by zeros for those LOB values that would have

CREATE TABLE

464 SQL Reference, Volume 2

had log records replayed during the roll forward. During crash

recovery, all committed changes and changes rolled back will

reflect the expected results.

COMPACT

Specifies that the values in the LOB column should take up

minimal disk space (free any extra disk pages in the last group

used by the LOB value), rather than leave any leftover space at the

end of the LOB storage area that might facilitate subsequent

append operations. Note that storing data in this way may cause a

performance penalty in any append (length-increasing) operations

on the column.

NOT COMPACT

Specifies some space for insertions to assist in future changes to the

LOB values in the column. This is the default.

SCOPE

Identifies the scope of the reference type column.

 A scope must be specified for any column that is intended to be used

as the left operand of a dereference operator or as the argument of the

DEREF function. Specifying the scope for a reference type column may

be deferred to a subsequent ALTER TABLE statement to allow the

target table to be defined, usually in the case of mutually referencing

tables.

typed-table-name

The name of a typed table. The table must already exist or be the

same as the name of the table being created (SQLSTATE 42704).

The data type of column-name must be REF(S), where S is the type

of typed-table-name (SQLSTATE 428DM). No checking is done of

values assigned to column-name to ensure that the values actually

reference existing rows in typed-table-name.

typed-view-name

The name of a typed view. The view must already exist or be the

same as the name of the view being created (SQLSTATE 42704).

The data type of column-name must be REF(S), where S is the type

of typed-view-name (SQLSTATE 428DM). No checking is done of

values assigned to column-name to ensure that the values actually

reference existing rows in typed-view-name.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint

that was already specified within the same CREATE TABLE statement.

(SQLSTATE 42710).

 If this clause is omitted, an 18 byte long identifier that is unique

among the identifiers of existing constraints defined on the table is

generated by the system. (The identifier consists of ″SQL″ followed by

a sequence of 15 numeric characters generated by a timestamp-based

function.)

When used with a PRIMARY KEY or UNIQUE constraint, the

constraint-name may be used as the name of an index that is created to

support the constraint.

PRIMARY KEY

This provides a shorthand method of defining a primary key

composed of a single column. Thus, if PRIMARY KEY is specified in

CREATE TABLE

Statements 465

the definition of column C, the effect is the same as if the PRIMARY

KEY(C) clause is specified as a separate clause.

 A primary key cannot be specified if the table is a subtable (SQLSTATE

429B3) because the primary key is inherited from the supertable.

A ROW CHANGE TIMESTAMP column cannot be used as part of a

primary key (SQLSTATE 429BV).

See PRIMARY KEY within the description of the unique-constraint

below.

UNIQUE

This provides a shorthand method of defining a unique key composed

of a single column. Thus, if UNIQUE is specified in the definition of

column C, the effect is the same as if the UNIQUE(C) clause is

specified as a separate clause.

 A unique constraint cannot be specified if the table is a subtable

(SQLSTATE 429B3) since unique constraints are inherited from the

supertable.

See UNIQUE within the description of the unique-constraint below.

references-clause

This provides a shorthand method of defining a foreign key composed

of a single column. Thus, if a references-clause is specified in the

definition of column C, the effect is the same as if that

references-clause were specified as part of a FOREIGN KEY clause in

which C is the only identified column.

 See references-clause under referential-constraint below.

CHECK (check-condition)

This provides a shorthand method of defining a check constraint that

applies to a single column. See CHECK (check-condition) below.

generated-column-definition

Specifies a generated value for the column.

default-clause

Specifies a default value for the column.

WITH

An optional keyword.

DEFAULT

Provides a default value in the event a value is not supplied on

INSERT or is specified as DEFAULT on INSERT or UPDATE. If

a default value is not specified following the DEFAULT

keyword, the default value depends on the data type of the

column as shown in “ALTER TABLE”.

 If a column is defined as XML, a default value cannot be

specified (SQLSTATE 42613). The only possible default is

NULL.

If the column is based on a column of a typed table, a specific

default value must be specified when defining a default. A

default value cannot be specified for the object identifier

column of a typed table (SQLSTATE 42997).

CREATE TABLE

466 SQL Reference, Volume 2

If a column is defined using a distinct type, then the default

value of the column is the default value of the source data type

cast to the distinct type.

If a column is defined using a structured type, the default-clause

cannot be specified (SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the

use of the null value as the default for the column. If such a

column is defined NOT NULL, then the column does not have

a valid default.

default-values

Specific types of default values that can be specified are as

follows.

constant

Specifies the constant as the default value for the column.

The specified constant must:

v represent a value that could be assigned to the column

in accordance with the rules of assignment

v not be a floating-point constant unless the column is

defined with a floating-point data type

v be a numeric constant or a decimal floating-point special

value if the data type of the column is a decimal

floating-point. Floating-point constants are first

interpreted as DOUBLE and then converted to decimal

floating-point if the target column is DECFLOAT. For

DECFLOAT(16) columns, decimal constants having

precision greater than 16 digits will be rounded using

the rounding modes specified by the CURRENT

DECFLOAT ROUNDING MODE special register.

v not have non-zero digits beyond the scale of the column

data type if the constant is a decimal constant (for

example, 1.234 cannot be the default for a DECIMAL(5,2)

column)

v be expressed with no more than 254 bytes including the

quote characters, any introducer character such as the X

for a hexadecimal constant, and characters from the fully

qualified function name and parentheses when the

constant is the argument of a cast-function

datetime-special-register

Specifies the value of the datetime special register

(CURRENT DATE, CURRENT TIME, or CURRENT

TIMESTAMP) at the time of INSERT, UPDATE, or LOAD

as the default for the column. The data type of the column

must be the data type that corresponds to the special

register specified (for example, data type must be DATE

when CURRENT DATE is specified).

user-special-register

Specifies the value of the user special register (CURRENT

USER, SESSION_USER, SYSTEM_USER) at the time of

INSERT, UPDATE, or LOAD as the default for the column.

The data type of the column must be a character string

with a length not less than the length attribute of a user

CREATE TABLE

Statements 467

special register. Note that USER can be specified in place of

SESSION_USER and CURRENT_USER can be specified in

place of CURRENT USER.

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register at the time of INSERT, UPDATE, or LOAD as the

default for the column. If CURRENT SCHEMA is specified,

the data type of the column must be a character string with

a length greater than or equal to the length attribute of the

CURRENT SCHEMA special register.

NULL

Specifies NULL as the default for the column. If NOT

NULL was specified, DEFAULT NULL may be specified

within the same column definition but will result in an

error on any attempt to set the column to the default value.

cast-function

This form of a default value can only be used with

columns defined as a distinct type, BLOB or datetime

(DATE, TIME or TIMESTAMP) data type. For distinct type,

with the exception of distinct types based on BLOB or

datetime types, the name of the function must match the

name of the distinct type for the column. If qualified with

a schema name, it must be the same as the schema name

for the distinct type. If not qualified, the schema name

from function resolution must be the same as the schema

name for the distinct type. For a distinct type based on a

datetime type, where the default value is a constant, a

function must be used and the name of the function must

match the name of the source type of the distinct type with

an implicit or explicit schema name of SYSIBM. For other

datetime columns, the corresponding datetime function

may also be used. For a BLOB or a distinct type based on

BLOB, a function must be used and the name of the

function must be BLOB with an implicit or explicit schema

name of SYSIBM.

constant

Specifies a constant as the argument. The constant

must conform to the rules of a constant for the source

type of the distinct type or for the data type if not a

distinct type. If the cast-function is BLOB, the constant

must be a string constant.

datetime-special-register

Specifies CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP. The source type of the

distinct type of the column must be the data type that

corresponds to the specified special register.

user-special-register

Specifies CURRENT USER, SESSION_USER, or

SYSTEM_USER. The data type of the source type of the

distinct type of the column must be a string data type

with a length of at least 8 bytes. If the cast-function is

BLOB, the length attribute must be at least 8 bytes.

CREATE TABLE

468 SQL Reference, Volume 2

CURRENT SCHEMA

Specifies the value of the CURRENT SCHEMA special

register. The data type of the source type of the distinct

type of the column must be a character string with a

length greater than or equal to the length attribute of

the CURRENT SCHEMA special register. If the

cast-function is BLOB, the length attribute must be at

least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()

Specifies a zero-length string as the default for the column.

The column must have the data type that corresponds to

the result data type of the function.

 If the value specified is not valid, an error is returned

(SQLSTATE 42894).

GENERATED

Indicates that DB2 generates values for the column. GENERATED

must be specified if the column is to be considered an IDENTITY

column or a ROW CHANGE TIMESTAMP column.

ALWAYS

Specifies that DB2 will always generate a value for the column

when a row is inserted into the table, or whenever the result

value of the generation-expression changes. The result of the

expression is stored in the table. GENERATED ALWAYS is the

recommended value unless data propagation or unload and

reload operations are being done. GENERATED ALWAYS is the

required value for generated columns.

BY DEFAULT

Specifies that DB2 will generate a value for the column when a

row is inserted, or updated specifying the DEFAULT clause,

unless an explicit value is specified. BY DEFAULT is the

recommended value when using data propagation or

performing an unload and reload operation.

 Although not explicitly required, to ensure uniqueness of the

values, define a unique single-column index on generated

IDENTITY columns.

AS IDENTITY

Specifies that the column is to be the identity column for this table.

A table can only have a single IDENTITY column (SQLSTATE

428C1). The IDENTITY keyword can only be specified if the data

type associated with the column is an exact numeric type with a

scale of zero, or a user-defined distinct type for which the source

type is an exact numeric type with a scale of zero (SQLSTATE

42815). SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale

of zero, or a distinct type based on one of these types, are

considered exact numeric types. By contrast, single- and

double-precision floating points are considered approximate

numeric data types. Reference types, even if represented by an

exact numeric type, cannot be defined as identity columns.

 An identity column is implicitly NOT NULL. An identity column

cannot have a DEFAULT clause (SQLSTATE 42623).

CREATE TABLE

Statements 469

START WITH numeric-constant

Specifies the first value for the identity column. This value can

be any positive or negative value that could be assigned to this

column (SQLSTATE 42815), without non-zero digits existing to

the right of the decimal point (SQLSTATE 428FA). The default

is MINVALUE for ascending sequences, and MAXVALUE for

descending sequences.

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the

identity column. This value can be any positive or negative

value that could be assigned to this column (SQLSTATE 42815),

and does not exceed the value of a large integer constant

(SQLSTATE 42820), without non-zero digits existing to the

right of the decimal point (SQLSTATE 428FA).

 If this value is negative, this is a descending sequence. If this

value is 0, or positive, this is an ascending sequence. The

default is 1.

NO MINVALUE or MINVALUE

Specifies the minimum value at which a descending identity

column either cycles or stops generating values, or an

ascending identity column cycles to after reaching the

maximum value.

NO MINVALUE

For an ascending sequence, the value is the START WITH

value, or 1 if START WITH was not specified. For a

descending sequence, the value is the minimum value of

the data type of the column. This is the default.

MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value.

This value can be any positive or negative value that could

be assigned to this column (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point

(SQLSTATE 428FA), but the value must be less than or

equal to the maximum value (SQLSTATE 42815).

NO MAXVALUE or MAXVALUE

Specifies the maximum value at which an ascending identity

column either cycles or stops generating values, or a

descending identity column cycles to after reaching the

minimum value.

NO MAXVALUE

For an ascending sequence, the value is the maximum

value of the data type of the column. For a descending

sequence, the value is the START WITH value, or -1 if

START WITH was not specified. This is the default.

MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value.

This value can be any positive or negative value that could

be assigned to this column (SQLSTATE 42815), without

non-zero digits existing to the right of the decimal point

(SQLSTATE 428FA), but the value must be greater than or

equal to the minimum value (SQLSTATE 42815).

CREATE TABLE

470 SQL Reference, Volume 2

NO CYCLE or CYCLE

Specifies whether this identity column should continue to

generate values after generating either its maximum or

minimum value.

NO CYCLE

Specifies that values will not be generated for the identity

column once the maximum or minimum value has been

reached. This is the default.

CYCLE

Specifies that values continue to be generated for this

column after the maximum or minimum value has been

reached. If this option is used, after an ascending identity

column reaches the maximum value, it generates its

minimum value; or after a descending sequence reaches

the minimum value, it generates its maximum value. The

maximum and minimum values for the identity column

determine the range that is used for cycling.

 When CYCLE is in effect, DB2 may generate duplicate

values for an identity column. Although not explicitly

required, a unique, single-column index should be defined

on the generated column to ensure uniqueness of the

values, if unique values are desired. If a unique index

exists on such an identity column and a non-unique value

is generated, an error occurs (SQLSTATE 23505).

NO CACHE or CACHE

Specifies whether to keep some pre-allocated values in memory

for faster access. If a new value is needed for the identity

column, and there are none available in the cache, then the end

of the new cache block must be logged. However, when a new

value is needed for the identity column, and there is an

unused value in the cache, then the allocation of that identity

value is faster, because no logging is necessary. This is a

performance and tuning option.

NO CACHE

Specifies that values for the identity column are not to be

pre-allocated.

 When this option is specified, the values of the identity

column are not stored in the cache. In this case, every

request for a new identity value results in synchronous I/O

to the log.

CACHE integer-constant

Specifies how many values of the identity sequence are to

be pre-allocated and kept in memory. When values are

generated for the identity column, pre-allocating and

storing values in the cache reduces synchronous I/O to the

log.

 If a new value is needed for the identity column and there

are no unused values available in the cache, the allocation

of the value involves waiting for I/O to the log. However,

when a new value is needed for the identity column and

CREATE TABLE

Statements 471

there is an unused value in the cache, the allocation of that

identity value can happen more quickly by avoiding the

I/O to the log.

In the event of a database deactivation, either normally or

due to a system failure, all cached sequence values that

have not been used in committed statements are lost; that

is, they will never be used. The value specified for the

CACHE option is the maximum number of values for the

identity column that could be lost in case of database

deactivation. (If a database is not explicitly activated, using

the ACTIVATE command or API, when the last application

is disconnected from the database, an implicit deactivation

occurs.)

The minimum value is 2 (SQLSTATE 42815). The default

value is CACHE 20.

NO ORDER or ORDER

Specifies whether the identity values must be generated in

order of request.

NO ORDER

Specifies that the values do not need to be generated in

order of request. This is the default.

ORDER

Specifies that the values must be generated in order of

request.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Specifies that the column is a timestamp column for the table. A

value is generated for the column in each row that is inserted, and

for any row in which any column is updated. The value that is

generated for a ROW CHANGE TIMESTAMP column is a

timestamp that corresponds to the insert or update time for that

row. If multiple rows are inserted or updated with a single

statement, the value of the ROW CHANGE TIMESTAMP column

might be different for each row.

 A table can only have one ROW CHANGE TIMESTAMP column

(SQLSTATE 428C1). If data-type is specified, it must be

TIMESTAMP (SQLSTATE 42842). A ROW CHANGE TIMESTAMP

column cannot have a DEFAULT clause (SQLSTATE 42623). NOT

NULL must be specified for a ROW CHANGE TIMESTAMP

column (SQLSTATE 42831).

GENERATED ALWAYS AS (generation-expression)

Specifies that the definition of the column is based on an

expression. (If the expression for a GENERATED ALWAYS column

includes a user-defined external function, changing the executable

for the function (such that the results change for given arguments)

can result in inconsistent data. This can be avoided by using the

SET INTEGRITY statement to force the generation of new values.)

The generation-expression cannot contain any of the following

(SQLSTATE 42621):

v Subqueries

v XMLQUERY or XMLEXISTS expressions

v Column functions

CREATE TABLE

472 SQL Reference, Volume 2

v Dereference operations or DEREF functions

v User-defined or built-in functions that are non-deterministic

v User-defined functions using the EXTERNAL ACTION option

v User-defined functions that are not defined with NO SQL

v Host variables or parameter markers

v Special registers

v Global variables

v References to columns defined later in the column list

v References to other generated columns

v References to columns of type XML

The data type for the column is based on the result data type of

the generation-expression. A CAST specification can be used to force

a particular data type and to provide a scope (for a reference type

only). If data-type is specified, values are assigned to the column

according to the appropriate assignment rules. A generated column

is implicitly considered nullable, unless the NOT NULL column

option is used.The data type of a generated column and the result

data type of the generation-expression must have equality defined

(see “Assignments and comparisons”). This excludes columns and

generation expressions of type LONG VARCHAR or LONG

VARGRAPHIC; LOB data types; XML; structured types; and

distinct types based on any of these types (SQLSTATE 42962).

INLINE LENGTH integer

This option is valid only for a column defined using a structured or

XML type type (SQLSTATE 42842).

 For a column of type XML, integer indicates the maximum byte size of

the internal representation of an XML document to store in the base

table row. XML documents that have a larger internal representation

are stored separately from the base table row in an auxiliary storage

object. This takes place automatically. There is no default inline length

for XML type columns.

For a structured type column, integer indicates the maximum byte size

of an instance of a structured type to store inline with the rest of the

values in the row. Instances of structured types that cannot be stored

inline are stored separately from the base table row, similar to the way

that LOB values are handled. This takes place automatically. The

default INLINE LENGTH for a structured-type column is the inline

length of its type (specified explicitly or by default in the CREATE

TYPE statement). If INLINE LENGTH of the structured type is less

than 292, the value 292 is used for the INLINE LENGTH of the

column.

Note: The inline lengths of subtypes are not counted in the default

inline length, meaning that instances of subtypes may not fit inline

unless an explicit INLINE LENGTH is specified at CREATE TABLE

time to account for existing and future subtypes.

The explicit INLINE LENGTH value must be at least 292 and cannot

exceed 32672 (SQLSTATE 54010).

COMPRESS SYSTEM DEFAULT

Specifies that system default values are to be stored using minimal

CREATE TABLE

Statements 473

space. If the VALUE COMPRESSION clause is not specified, a warning

is returned (SQLSTATE 01648), and system default values are not

stored using minimal space.

 Allowing system default values to be stored in this manner causes a

slight performance penalty during insert and update operations on the

column because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or

structured data type (SQLSTATE 42842). If the base data type is a

varying-length string, this clause is ignored. String values of length 0

are automatically compressed if a table has been set with VALUE

COMPRESSION.

COLUMN SECURED WITH security-label-name

Identifies a security label that exists for the security policy that is

associated with the table. The name must not be qualified (SQLSTATE

42601). The table must have a security policy associated with it

(SQLSTATE 55064).

unique-constraint

Defines a unique or primary key constraint. If the table has a distribution key,

any unique or primary key must be a superset of the distribution key. A

unique or primary key constraint cannot be specified for a table that is a

subtable (SQLSTATE 429B3). Primary or unique keys cannot be subsets of

dimensions (SQLSTATE 429BE). If the table is a root table, the constraint

applies to the table and all its subtables.

CONSTRAINT constraint-name

Names the primary key or unique constraint.

UNIQUE (column-name,...)

Defines a unique key composed of the identified columns. The identified

columns must be defined as NOT NULL. Each column-name must identify a

column of the table and the same column must not be identified more than

once.

 The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. No LOB, LONG VARCHAR, LONG

VARGRAPHIC, XML, distinct type based on one of these types, or

structured type can be used as part of a unique key, even if the length

attribute of the column is small enough to fit within the index key length

limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of

columns in the primary key or another unique key (SQLSTATE 01543). (If

LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

A unique constraint cannot be specified if the table is a subtable

(SQLSTATE 429B3), because unique constraints are inherited from the

supertable.

The description of the table as recorded in the catalog includes the unique

key and its unique index. A unique bidirectional index, which allows

forward and reverse scans, will automatically be created for the columns in

the sequence specified with ascending order for each column. The name of

the index will be the same as the constraint-name if this does not conflict

with an existing index in the schema where the table is created. If the

CREATE TABLE

474 SQL Reference, Volume 2

index name conflicts, the name will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name.

PRIMARY KEY (column-name,...)

Defines a primary key composed of the identified columns. The clause

must not be specified more than once, and the identified columns must be

defined as NOT NULL. Each column-name must identify a column of the

table, and the same column must not be identified more than once.

 The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. No LOB, LONG VARCHAR, LONG

VARGRAPHIC, XML, distinct type based on one of these types, or

structured type can be used as part of a primary key, even if the length

attribute of the column is small enough to fit within the index key length

limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of

columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or

MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a table.

A primary key cannot be specified if the table is a subtable (SQLSTATE

429B3) because the primary key is inherited from the supertable.

The description of the table as recorded in the catalog includes the primary

key and its primary index. A unique bidirectional index, which allows

forward and reverse scans, will automatically be created for the columns in

the sequence specified with ascending order for each column. The name of

the index will be the same as the constraint-name if this does not conflict

with an existing index in the schema where the table is created. If the

index name conflicts, the name will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name.

 If the table has a distribution key, the columns of a unique-constraint must be a

superset of the distribution key columns; column order is unimportant.

referential-constraint

Defines a referential constraint.

CONSTRAINT constraint-name

Names the referential constraint.

FOREIGN KEY (column-name,...)

Defines a referential constraint with the specified constraint-name.

 Let T1 denote the object table of the statement. The foreign key of the

referential constraint is composed of the identified columns. Each name in

the list of column names must identify a column of T1 and the same

column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of

their stored lengths must not exceed the index key length limit for the

page size. For column stored lengths, see Byte Counts. For key length

limits, see “SQL limits”. No LOB, LONG VARCHAR, LONG

VARGRAPHIC, XML, distinct type based on one of these types, or

structured type column can be used as part of a foreign key (SQLSTATE

42962). There must be the same number of foreign key columns as there

are in the parent key and the data types of the corresponding columns

CREATE TABLE

Statements 475

must be compatible (SQLSTATE 42830). Two column descriptions are

compatible if they have compatible data types (both columns are numeric,

character strings, graphic, date/time, or have the same distinct type).

references-clause

Specifies the parent table or the parent nickname, and the parent key for

the referential constraint.

REFERENCES table-name or nickname

The table or nickname specified in a REFERENCES clause must

identify a base table or a nickname that is described in the catalog, but

must not identify a catalog table.

 A referential constraint is a duplicate if its foreign key, parent key, and

parent table or parent nickname are the same as the foreign key, parent

key, and parent table or parent nickname of a previously specified

referential constraint. Duplicate referential constraints are ignored, and

a warning is returned (SQLSTATE 01543).

In the following discussion, let T2 denote the identified parent table,

and let T1 denote the table being created (or altered). (T1 and T2 may

be the same table).

The specified foreign key must have the same number of columns as

the parent key of T2 and the description of the nth column of the

foreign key must be comparable to the description of the nth column

of that parent key. Datetime columns are not considered to be

comparable to string columns for the purposes of this rule.

(column-name,...)

The parent key of a referential constraint is composed of the

identified columns. Each column-name must be an unqualified name

that identifies a column of T2. The same column must not be

identified more than once.

 The list of column names must match the set of columns (in any

order) of the primary key or a unique constraint that exists on T2

(SQLSTATE 42890). If a column name list is not specified, then T2

must have a primary key (SQLSTATE 42888). Omission of the

column name list is an implicit specification of the columns of that

primary key in the sequence originally specified.

The referential constraint specified by a FOREIGN KEY clause defines

a relationship in which T2 is the parent and T1 is the dependent.

rule-clause

Specifies what action to take on dependent tables.

ON DELETE

Specifies what action is to take place on the dependent tables when

a row of the parent table is deleted. There are four possible actions:

v NO ACTION (default)

v RESTRICT

v CASCADE

v SET NULL

The delete rule applies when a row of T2 is the object of a DELETE

or propagated delete operation and that row has dependents in T1.

Let p denote such a row of T2.

CREATE TABLE

476 SQL Reference, Volume 2

v If RESTRICT or NO ACTION is specified, an error occurs and no

rows are deleted.

v If CASCADE is specified, the delete operation is propagated to

the dependents of p in T1.

v If SET NULL is specified, each nullable column of the foreign

key of each dependent of p in T1 is set to null.

SET NULL must not be specified unless some column of the

foreign key allows null values. Omission of the clause is an

implicit specification of ON DELETE NO ACTION.

If T1 is delete-connected to T2 through multiple paths, defining

two SET NULL rules with overlapping foreign key definitions is

not allowed. For example: T1 (i1, i2, i3). Rule1 with foreign key (i1,

i2) and Rule2 with foreign key (i2, i3) is not allowed.

The firing order of the rules is:

1. RESTRICT

2. SET NULL OR CASCADE

3. NO ACTION

If any row in T1 is affected by two different rules, an error occurs

and no rows are deleted.

A referential constraint cannot be defined if it would cause a table

to be delete-connected to itself by a cycle involving two or more

tables, and where one of the delete rules is RESTRICT or SET

NULL (SQLSTATE 42915).

A referential constraint that would cause a table to be

delete-connected to either itself or another table by multiple paths

can be defined, except in the following cases (SQLSTATE 42915):

v A table must not be both a dependent table in a CASCADE

relationship (self-referencing, or referencing another table), and

have a self-referencing relationship in which the delete rule is

RESTRICT or SET NULL.

v A key overlaps another key when at least one column in one key

is the same as a column in the other key. When a table is

delete-connected to another table through multiple relationships

with overlapping foreign keys, those relationships must have the

same delete rule, and none of the delete rules can be SET NULL.

v When a table is delete-connected to another table through

multiple relationships, and at least one of those relationships is

specified with a delete rule of SET NULL, the foreign key

definitions of these relationships must not contain any

distribution key or multidimensional clustering (MDC) key

column.

v When two tables are delete-connected to the same table through

CASCADE relationships, the two tables must not be

delete-connected to each other if the delete rule of the last

relationship in each delete-connected path is RESTRICT or SET

NULL.

If any row in T1 is affected by different delete rules, the result

would be the effect of all the actions specified by these rules.

AFTER triggers and CHECK constraints on T1 will also see the

effect of all the actions. An example of this is a row that is targeted

CREATE TABLE

Statements 477

to be set null through one delete-connected path to an ancestor

table, and targeted to be deleted by a second delete-connected path

to the same ancestor table. The result would be the deletion of the

row. AFTER DELETE triggers on this descendant table would be

activated, but AFTER UPDATE triggers would not.

In applying the above rules to referential constraints, in which

either the parent table or the dependent table is a member of a

typed table hierarchy, all the referential constraints that apply to

any table in the respective hierarchies are taken into consideration.

ON UPDATE

Specifies what action is to take place on the dependent tables when

a row of the parent table is updated. The clause is optional. ON

UPDATE NO ACTION is the default and ON UPDATE RESTRICT

is the only alternative.

 The difference between NO ACTION and RESTRICT is described in

the “Notes” section.

check-constraint

Defines a check constraint. A check-constraint is a search-condition that must

evaluate to not false or a functional dependency that is defined between

columns.

CONSTRAINT constraint-name

Names the check constraint.

CHECK (check-condition)

Defines a check constraint. The search-condition must be true or unknown

for every row of the table.

search-condition

The search-condition has the following restrictions:

v A column reference must be to a column of the table being created.

v The search-condition cannot contain a TYPE predicate.

v The search-condition cannot contain any of the following (SQLSTATE

42621):

– Subqueries

– XMLQUERY or XMLEXISTS expressions

– Dereference operations or DEREF functions where the scoped

reference argument is other than the object identifier (OID)

column

– CAST specifications with a SCOPE clause

– Column functions

– Functions that are not deterministic

– Functions defined to have an external action

– User-defined functions defined with either CONTAINS SQL or

READS SQL DATA

– Host variables

– Parameter markers

– Special registers

– Global variables

– References to generated columns other than the identity column

CREATE TABLE

478 SQL Reference, Volume 2

– References to columns of type XML (except in a VALIDATED

predicate)

– An error tolerant nested-table-expression

functional-dependency

Defines a functional dependency between columns.

column-name DETERMINED BY column-name or (column-name,...)

DETERMINED BY (column-name,...)

The parent set of columns contains the identified columns that

immediately precede the DETERMINED BY clause. The child set of

columns contains the identified columns that immediately follow

the DETERMINED BY clause. All of the restrictions on the

search-condition apply to parent set and child set columns, and only

simple column references are allowed in the set of columns

(SQLSTATE 42621). The same column must not be identified more

than once in the functional dependency (SQLSTATE 42709). The

data type of the column must not be a LOB data type, a distinct

type based on a LOB data type, an XML data type, or a structured

type (SQLSTATE 42962). A ROW CHANGE TIMESTAMP column

cannot be used as part of a primary key (SQLSTATE 429BV). No

column in the child set of columns can be a nullable column

(SQLSTATE 42621).

 If a check constraint is specified as part of a column-definition, a column

reference can only be made to the same column. Check constraints

specified as part of a table definition can have column references

identifying columns previously defined in the CREATE TABLE statement.

Check constraints are not checked for inconsistencies, duplicate conditions,

or equivalent conditions. Therefore, contradictory or redundant check

constraints can be defined, resulting in possible errors at execution time.

The search-condition “IS NOT NULL” can be specified; however, it is

recommended that nullability be enforced directly, using the NOT NULL

attribute of a column. For example, CHECK (salary + bonus > 30000) is

accepted if salary is set to NULL, because CHECK constraints must be

either satisfied or unknown, and in this case, salary is unknown. However,

CHECK (salary IS NOT NULL) would be considered false and a violation of

the constraint if salary is set to NULL.

Check constraints with search-condition are enforced when rows in the table

are inserted or updated. A check constraint defined on a table

automatically applies to all subtables of that table.

A functional dependency is not enforced by the database manager during

normal operations such as insert, update, delete, or set integrity. The

functional dependency might be used during query rewrite to optimize

queries. Incorrect results might be returned if the integrity of a functional

dependency is not maintained.

constraint-attributes

Defines attributes associated with referential integrity or check constraints.

ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager

during normal operations such as insert, update, or delete. The default is

ENFORCED.

ENFORCED

The constraint is enforced by the database manager. ENFORCED

CREATE TABLE

Statements 479

cannot be specified for a functional dependency (SQLSTATE 42621).

ENFORCED cannot be specified when a referential constraint refers to

a nickname (SQLSTATE 428G7).

NOT ENFORCED

The constraint is not enforced by the database manager. This should

only be specified if the table data is independently known to conform

to the constraint.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether the constraint or functional dependency can be used for

query optimization under appropriate circumstances. The default is

ENABLE QUERY OPTIMIZATION.

ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query

optimization.

DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.

OF type-name1

Specifies that the columns of the table are based on the attributes of the

structured type identified by type-name1. If type-name1 is specified without a

schema name, the type name is resolved by searching the schemas on the SQL

path (defined by the FUNCPATH preprocessing option for static SQL and by

the CURRENT PATH register for dynamic SQL). The type name must be the

name of an existing user-defined type (SQLSTATE 42704) and it must be an

instantiable structured type (SQLSTATE 428DP) with at least one attribute

(SQLSTATE 42997).

 If UNDER is not specified, an object identifier column must be specified (refer

to the OID-column-definition). This object identifier column is the first column of

the table. The object ID column is followed by columns based on the attributes

of type-name1.

HIERARCHY hierarchy-name

Names the hierarchy table associated with the table hierarchy. It is created at

the same time as the root table of the hierarchy. The data for all subtables in

the typed table hierarchy is stored in the hierarchy table. A hierarchy table

cannot be directly referenced in SQL statements. A hierarchy-name is a

table-name. The hierarchy-name, including the implicit or explicit schema name,

must not identify a table, nickname, view, or alias described in the catalog. If

the schema name is specified, it must be the same as the schema name of the

table being created (SQLSTATE 428DQ). If this clause is omitted when defining

the root table, a name is generated by the system. This name consists of the

name of the table being created, followed by a unique suffix, such that the

identifier is unique among the identifiers of existing tables, views, and

nicknames.

UNDER supertable-name

Indicates that the table is a subtable of supertable-name. The supertable must be

an existing table (SQLSTATE 42704) and the table must be defined using a

structured type that is the immediate supertype of type-name1 (SQLSTATE

428DB). The schema name of table-name and supertable-name must be the same

(SQLSTATE 428DQ). The table identified by supertable-name must not have any

existing subtable already defined using type-name1 (SQLSTATE 42742).

 The columns of the table include the object identifier column of the supertable

with its type modified to be REF(type-name1), followed by columns based on

CREATE TABLE

480 SQL Reference, Volume 2

the attributes of type-name1 (remember that the type includes the attributes of

its supertype). The attribute names cannot be the same as the OID column

name (SQLSTATE 42711).

Other table options, including table space, data capture, not logged initially,

and distribution key options cannot be specified. These options are inherited

from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES

Any user or group holding a SELECT privilege on the supertable will be

granted an equivalent privilege on the newly created subtable. The subtable

definer is considered to be the grantor of this privilege.

typed-element-list

Defines the additional elements of a typed table. This includes the additional

options for the columns, the addition of an object identifier column (root table

only), and constraints on the table.

OID-column-definition

Defines the object identifier column for the typed table.

REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the table

as the first column. An OID is required for the root table of a table

hierarchy (SQLSTATE 428DX). The table must be a typed table (the OF

clause must be present) that is not a subtable (SQLSTATE 42613). The

name for the column is defined as OID-column-name and cannot be the

same as the name of any attribute of the structured type type-name1

(SQLSTATE 42711). The column is defined with type REF(type-name1),

NOT NULL and a system required unique index (with a default index

name) is generated. This column is referred to as the object identifier

column or OID column. The keywords USER GENERATED indicate that

the initial value for the OID column must be provided by the user

when inserting a row. Once a row is inserted, the OID column cannot

be updated (SQLSTATE 42808).

with-options

Defines additional options that apply to columns of a typed table.

column-name

Specifies the name of the column for which additional options are

specified. The column-name must correspond to the name of a column

of the table that is not also a column of a supertable (SQLSTATE

428DJ). A column name can only appear in one WITH OPTIONS clause

in the statement (SQLSTATE 42613).

 If an option is already specified as part of the type definition (in

CREATE TYPE), the options specified here override the options in

CREATE TYPE.

WITH OPTIONS column-options

Defines options for the specified column. See column-options described

earlier. If the table is a subtable, primary key or unique constraints

cannot be specified (SQLSTATE 429B3).

LIKE table-name1 or view-name or nickname

Specifies that the columns of the table have exactly the same name and

description as the columns of the identified table (table-name1), view

(view-name) or nickname (nickname). The name specified after LIKE must

CREATE TABLE

Statements 481

identify a table, view or nickname that exists in the catalog, or a declared

temporary table. A typed table or typed view cannot be specified (SQLSTATE

428EC).

 The use of LIKE is an implicit definition of n columns, where n is the number

of columns in the identified table (including implicitly hidden columns), view,

or nickname. A column of the new table that corresponds to an implicitly

hidden column in the existing table will also be defined as implicitly hidden.

v If a table is identified, then the implicit definition includes the column name,

data type, hidden attribute, and nullability characteristic of each of the

columns of table-name1. If EXCLUDING COLUMN DEFAULTS is not

specified, then the column default is also included.

v If a view is identified, then the implicit definition includes the column name,

data type, and nullability characteristic of each of the result columns of the

fullselect defined in view-name.

v If a nickname is identified, then the implicit definition includes the column

name, data type, and nullability characteristic of each column of nickname.

v If a protected table is identified in the LIKE clause, the new table inherits the

same security policy and protected columns as the identified table.

Column default and identity column attributes may be included or excluded,

based on the copy-attributes clauses. The implicit definition does not include

any other attributes of the identified table, view or nickname. Thus the new

table does not have any unique constraints, foreign key constraints, triggers, or

indexes. The table is created in the table space implicitly or explicitly specified

by the IN clause, and the table has any other optional clause only if the

optional clause is specified.

copy-options

These options specify whether or not to copy additional attributes of the

source result table definition (table, view or fullselect).

INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table

definition are copied. Columns that are not updatable will not have a

default defined in the corresponding column of the created table.

 If LIKE table-name is specified and table-name identifies a base table or

declared temporary table, then INCLUDING COLUMN DEFAULTS is the

default.

EXCLUDING COLUMN DEFAULTS

Columns defaults are not copied from the source result table definition.

 This clause is the default, except when LIKE table-name is specified and

table-name identifies a base table or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES

Identity column attributes are copied from the source result table

definition, if possible. It is possible to copy the identity column attributes,

if the element of the corresponding column in the table, view, or fullselect

is the name of a table column, or the name of a view column which

directly or indirectly maps to the name of a base table column with the

identity property. In all other cases, the columns of the new table will not

get the identity property. For example:

v the select-list of the fullselect includes multiple instances of an identity

column name (that is, selecting the same column more than once)

CREATE TABLE

482 SQL Reference, Volume 2

v the select list of the fullselect includes multiple identity columns (that is,

it involves a join)

v the identity column is included in an expression in the select list

v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES

Identity column attributes are not copied from the source result table

definition.

as-result-table

column-name

Names the columns in the table. If a list of column names is specified, it

must consist of as many names as there are columns in the result table of

the fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the table inherit the names

of the columns of the result table of the fullselect.

 A list of column names must be specified if the result table of the fullselect

has duplicate column names of an unnamed column (SQLSTATE 42908).

An unnamed column is a column derived from a constant, function,

expression, or set operation that is not named using the AS clause of the

select list.

AS

Introduces the query that is used for the definition of the table.

fullselect

Defines the query on which the table is based. The resulting column

definitions are the same as those for a view defined with the same query.

A column of the new table that corresponds to an implicitly hidden

column of a base table referenced in the fullselect is not considered hidden

in the new table.

 Every select list element must have a name (use the AS clause for

expressions). The as-result-table defines attributes of the table.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE

428FL).

Any valid fullselect that does not reference a typed table or a typed view

can be specified.

WITH NO DATA

The query is used only to define the table. The table is not populated using

the results of the query.

 The columns of the table are defined based on the definitions of the

columns that result from the fullselect. If the fullselect references a single

table in the FROM clause, select list items that are columns of that table are

defined using the column name, data type, and nullability characteristic of

the referenced table.

materialized-query-definition

column-name

Names the columns in the table. If a list of column names is specified, it

must consist of as many names as there are columns in the result table of

the fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the table inherit the names

of the columns of the result table of the fullselect.

CREATE TABLE

Statements 483

A list of column names must be specified if the result table of the fullselect

has duplicate column names of an unnamed column (SQLSTATE 42908).

An unnamed column is a column derived from a constant, function,

expression, or set operation that is not named using the AS clause of the

select list.

AS

Introduces the query that is used for the definition of the table and that

determines the data to be included in the table.

fullselect

Defines the query on which the table is based. The resulting column

definitions are the same as those for a view defined with the same query.

A column of the new table that corresponds to an implicitly hidden

column of a base table referenced in the fullselect is not considered hidden

in the new table.

 Every select list element must have a name (use the AS clause for

expressions). The materialized-query-definition defines attributes of the

materialized query table. The option chosen also defines the contents of the

fullselect as follows.

The fullselect cannot include a data-change-table-reference clause (SQLSTATE

428FL).

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified, the

fullselect cannot include (SQLSTATE 428EC):

v References to a materialized query table, declared temporary table, or

typed table in any FROM clause

v References to a view where the fullselect of the view violates any of the

listed restrictions on the fullselect of the materialized query table

v Expressions that are a reference type (or distinct type based on this type)

v Functions that have any of the following attributes:

– EXTERNAL ACTION

– LANGUAGE SQL

– CONTAINS SQL

– READS SQL DATA

– MODIFIES SQL DATA
v Functions that depend on physical characteristics (for example,

DBPARTITIONNUM, HASHEDVALUE, RID_BIT, RID)

v A ROW CHANGE expression or reference to a ROW CHANGE

TIMESTAMP column of the row

v Table or view references to system objects (Explain tables also should not

be specified)

v Expressions that are a structured type, LOB type (or a distinct type

based on a LOB type), or XML type

v References to a protected table or protected nickname

When DISTRIBUTE BY REPLICATION is specified, the following

restrictions apply:

v The GROUP BY clause is not allowed.

v The materialized query table must only reference a single table; that is, it

cannot include a join.

When REFRESH IMMEDIATE is specified:

CREATE TABLE

484 SQL Reference, Volume 2

v The query must be a subselect, with the exception that UNION ALL is

supported in the input table expression of a GROUP BY.

v The query cannot be recursive.

v The query cannot include:

– References to a nickname

– Functions that are not deterministic

– Scalar fullselects

– Predicates with fullselects

– Special registers

– Global variables

– SELECT DISTINCT

– An error tolerant nested-table-expression

v If the FROM clause references more than one table or view, it can only

define an inner join without using the explicit INNER JOIN syntax.

v When a GROUP BY clause is specified, the following considerations

apply:

– The supported column functions are SUM, COUNT, COUNT_BIG and

GROUPING (without DISTINCT). The select list must contain a

COUNT(*) or COUNT_BIG(*) column. If the materialized query table

select list contains SUM(X), where X is a nullable argument, the

materialized query table must also have COUNT(X) in its select list.

These column functions cannot be part of any expressions.

– A HAVING clause is not allowed.

– If in a multiple partition database partition group, the distribution

key must be a subset of the GROUP BY items.
v The materialized query table must not contain duplicate rows, and the

following restrictions specific to this uniqueness requirement apply,

depending upon whether or not a GROUP BY clause is specified.

– When a GROUP BY clause is specified, the following

uniqueness-related restrictions apply:

- All GROUP BY items must be included in the select list.

- When the GROUP BY contains GROUPING SETS, CUBE, or

ROLLUP, the GROUP BY items and associated GROUPING column

functions in the select list must form a unique key of the result set.

Thus, the following restrictions must be satisfied:

v No grouping sets can be repeated. For example, ROLLUP(X,Y),X is

not allowed, because it is equivalent to GROUPING

SETS((X,Y),(X),(X)).

v If X is a nullable GROUP BY item that appears within

GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X) must

appear in the select list.
– When a GROUP BY clause is not specified, the following

uniqueness-related restrictions apply:

- The materialized query table’s uniqueness requirement is achieved

by deriving a unique key for the materialized view from one of the

unique key constraints defined in each of the underlying tables.

Therefore, the underlying tables must have at least one unique key

constraint defined on them, and the columns of these keys must

appear in the select list of the materialized query table definition.

CREATE TABLE

Statements 485

v When MAINTAINED BY FEDERATED_TOOL is specified, only

references to nicknames are allowed in a FROM clause.

When REFRESH DEFERRED is specified:

v If the materialized query table is created with the intention of providing

it with an associated staging table in a later statement, the fullselect of

the materialized query table must follow the same restrictions and rules

as a fullselect used to create a materialized query table with the

REFRESH IMMEDIATE option.

v If the query is recursive, the materialized query table is not used to

optimize the processing of queries.

A materialized query table whose fullselect contains a GROUP BY clause is

summarizing data from the tables referenced in the fullselect. Such a

materialized query table is also known as a summary table. A summary

table is a specialized type of materialized query table.

refreshable-table-options

Define the refreshable options of the materialized query table attributes.

DATA INITIALLY DEFERRED

Data is not inserted into the table as part of the CREATE TABLE

statement. A REFRESH TABLE statement specifying the table-name is

used to insert data into the table.

REFRESH

Indicates how the data in the table is maintained.

DEFERRED

The data in the table can be refreshed at any time using the

REFRESH TABLE statement. The data in the table only reflects the

result of the query as a snapshot at the time the REFRESH TABLE

statement is processed. System-maintained materialized query

tables defined with this attribute do not allow INSERT, UPDATE,

or DELETE statements (SQLSTATE 42807). User-maintained

materialized query tables defined with this attribute do allow

INSERT, UPDATE, or DELETE statements.

IMMEDIATE

The changes made to the underlying tables as part of a DELETE,

INSERT, or UPDATE are cascaded to the materialized query table.

In this case, the content of the table, at any point-in-time, is the

same as if the specified subselect is processed. Materialized query

tables defined with this attribute do not allow INSERT, UPDATE,

or DELETE statements (SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION

The materialized query table can be used for query optimization under

appropriate circumstances.

DISABLE QUERY OPTIMIZATION

The materialized query table will not be used for query optimization.

The table can still be queried directly.

MAINTAINED BY

Specifies whether the data in the materialized query table is

maintained by the system, user, or replication tool. The default is

SYSTEM.

CREATE TABLE

486 SQL Reference, Volume 2

SYSTEM

Specifies that the data in the materialized query table is maintained

by the system.

USER

Specifies that the data in the materialized query table is maintained

by the user. The user is allowed to perform update, delete, or

insert operations against user-maintained materialized query tables.

The REFRESH TABLE statement, used for system-maintained

materialized query tables, cannot be invoked against

user-maintained materialized query tables. Only a REFRESH

DEFERRED materialized query table can be defined as

MAINTAINED BY USER.

FEDERATED_TOOL

Specifies that the data in the materialized query table is maintained

by the replication tool. The REFRESH TABLE statement, used for

system-maintained materialized query tables, cannot be invoked

against federated_tool-maintained materialized query tables. Only

a REFRESH DEFERRED materialized query table can be defined as

MAINTAINED BY FEDERATED_TOOL.

staging-table-definition

Defines the query supported by the staging table indirectly through an

associated materialized query table. The underlying tables of the materialized

query table are also the underlying tables for its associated staging table. The

staging table collects changes that need to be applied to the materialized query

table to synchronize it with the contents of the underlying tables.

staging-column-name

Names the columns in the staging table. If a list of column names is

specified, it must consist of two more names than there are columns in the

materialized query table for which the staging table is defined. If the

materialized query table is a replicated materialized query table, or the

query defining the materialized query table does not contain a GROUP BY

clause, the list of column names must consist of three more names than

there are columns in the materialized query table for which the staging

table is defined. Each column name must be unique and unqualified. If a

list of column names is not specified, the columns of the table inherit the

names of the columns of the associated materialized query table. The

additional columns are named GLOBALTRANSID and

GLOBALTRANSTIME, and if a third column is necessary, it is named

OPERATIONTYPE.

 Table 19. Extra Columns Appended in Staging Tables

Column Name Data Type Column Description

GLOBALTRANSID CHAR(8) FOR BIT DATA The global transaction ID for

each propagated row

GLOBALTRANSTIME CHAR(13) FOR BIT DATA The timestamp of the

transaction

OPERATIONTYPE INTEGER Operation for the propagated

row, either insert, update, or

delete.

A list of column names must be specified if any of the columns of the

associated materialized query table duplicates any of the generated column

names (SQLSTATE 42711).

CREATE TABLE

Statements 487

FOR table-name2

Specifies the materialized query table that is used for the definition of the

staging table. The name, including the implicit or explicit schema, must

identify a materialized query table that exists at the current server defined

with REFRESH DEFERRED. The fullselect of the associated materialized

query table must follow the same restrictions and rules as a fullselect used

to create a materialized query table with the REFRESH IMMEDIATE

option.

 The contents of the staging table can be used to refresh the materialized

query table, by invoking the REFRESH TABLE statement, if the contents of

the staging table are consistent with the associated materialized query table

and the underlying source tables.

PROPAGATE IMMEDIATE

The changes made to the underlying tables as part of a delete, insert, or

update operation are cascaded to the staging table in the same delete,

insert, or update operation. If the staging table is not marked inconsistent,

its content, at any point-in-time, is the delta changes to the underlying

table since the last refresh materialized query table.

ORGANIZE BY DIMENSIONS (column-name,...)

Specifies a dimension for each column or group of columns used to cluster the

table data. The use of parentheses within the dimension list specifies that a

group of columns is to be treated as one dimension. The DIMENSIONS

keyword is optional. A table whose definition specifies this clause is known as

a multidimensional clustering (MDC) table.

 A clustering block index is automatically maintained for each specified

dimension, and a block index, consisting of all columns used in the clause, is

maintained if none of the clustering block indexes includes them all. The set of

columns used in the ORGANIZE BY clause must follow the rules for the

CREATE INDEX statement.

Each column name specified in the ORGANIZE BY clause must be defined for

the table (SQLSTATE 42703). A dimension cannot occur more than once in the

dimension list (SQLSTATE 42709). The dimensions cannot contain a ROW

CHANGE TIMESTAMP column (SQLSTATE 429BV). The table must not

include any columns with data type XML (SQLSTATE 42601).

Pages of the table are arranged in blocks of equal size, which is the extent size

of the table space, and all rows of each block contain the same combination of

dimension values.

A table can be both a multidimensional clustering (MDC) table and a

partitioned table. Columns in such a table can be used in both the

range-partition-spec and in the MDC key. Note that table partitioning is

multi-column, not multidimensional.

ORGANIZE BY KEY SEQUENCE sequence-key-spec

Specifies that the table is organized in ascending key sequence with a fixed

size based on the specified range of key sequence values. A table organized in

this way is referred to as a range-clustered table. Each possible key value in the

defined range has a predetermined location in the physical table. The storage

required for a range-clustered table must be available when the table is

created, and must be sufficient to contain the number of rows in the specified

range multiplied by the row size (for details on determining the space

requirement, see Row Size and Byte Counts).

CREATE TABLE

488 SQL Reference, Volume 2

column-name

Specifies a column of the table that is included in the unique key that

determines the sequence of the range-clustered table. The data type of the

column must be SMALLINT, INTEGER, or BIGINT (SQLSTATE 42611), and

the columns must be defined as NOT NULL (SQLSTATE 42831). The same

column must not be identified more than once in the sequence key. The

number of identified columns must not exceed 64 (SQLSTATE 54008).

 A unique index entry will automatically be created in the catalog for the

columns in the key sequence specified with ascending order for each

column. The name of the index will be SQL, followed by a character

timestamp (yymmddhhmmssxxx), with SYSIBM as the schema name. An

actual index object is not created in storage, because the table organization

is ordered by this key. If a primary key or a unique constraint is defined

on the same columns as the range-clustered table sequence key, this same

index entry is used for the constraint.

For the key sequence specification, a check constraint exists to reflect the

column constraints. If the DISALLOW OVERFLOW clause is specified, the

name of the check constraint will be RCT, and the check constraint is

enforced. If the ALLOW OVERFLOW clause is specified, the name of the

check constraint will be RCT_OFLOW, and the check constraint is not

enforced.

STARTING FROM constant

Specifies the constant value at the low end of the range for column-name.

Values less than the specified constant are only allowed if the ALLOW

OVERFLOW option is specified. If column-name is a SMALLINT or

INTEGER column, the constant must be an INTEGER constant. If

column-name is a BIGINT column, the constant must be an INTEGER or

BIGINT constant (SQLSTATE 42821). If a starting constant is not specified,

the default value is 1.

ENDING AT constant

Specifies the constant value at the high end of the range for column-name.

Values greater than the specified constant are only allowed if the ALLOW

OVERFLOW option is specified. The value of the ending constant must be

greater than the starting constant. If column-name is a SMALLINT or

INTEGER column, the constant must be an INTEGER constant. If

column-name is a BIGINT column, the constant must be an INTEGER or

BIGINT constant (SQLSTATE 42821).

ALLOW OVERFLOW

Specifies that the range-clustered table allows rows with key values that

are outside of the defined range of values. When a range-clustered table is

created to allow overflows, the rows with key values outside of the range

are placed at the end of the defined range without any predetermined

order. Operations involving these overflow rows are less efficient than

operations on rows having key values within the defined range.

DISALLOW OVERFLOW

Specifies that the range-clustered table does not allow rows with key

values that are not within the defined range of values (SQLSTATE 23513).

Range-clustered tables that disallow overflows will always maintain all

rows in ascending key sequence.

PCTFREE integer

Specifies the percentage of each page that is to be left as free space. The

first row on each page is added without restriction. When additional rows

CREATE TABLE

Statements 489

are added to a page, at least integer percent of the page is left as free space.

The value of integer can range from 0 to 99. A PCTFREE value of -1 in the

system catalog (SYSCAT.TABLES) is interpreted as the default value. The

default PCTFREE value for a table page is 0.

DATA CAPTURE

Indicates whether extra information for inter-database data replication is to be

written to the log. This clause cannot be specified when creating a subtable

(SQLSTATE 42613).

 If the table is a typed table, then this option is not supported (SQLSTATE

428DH or 42HDR).

Data capture is incompatible with row compression (SQLSTATE 42997).

NONE

Indicates that no extra information will be logged.

CHANGES

Indicates that extra information regarding SQL changes to this table will be

written to the log. This option is required if this table will be replicated

and the Capture program is used to capture changes for this table from the

log.

 If the schema name (implicit or explicit) of the table is longer than 18

bytes, this option is not supported (SQLSTATE 42997).

IN tablespace-name1,...

Identifies the table spaces in which the table will be created. The table spaces

must exist, they must be in the same database partition group, and they must

be all regular DMS or all large DMS or all SMS table spaces (SQLSTATE 42838)

on which the authorization ID of the statement holds the USE privilege.

 A maximum of one IN clause is allowed at the table level. All data table spaces

used by a table must have the same page size and extent size. If they do not

all have the same prefetch size, a warning is returned. If all table spaces have

AUTOMATIC prefetch size, no warning is returned.

If only one table space is specified, all table parts are stored in this table space.

This clause cannot be specified when creating a subtable (SQLSTATE 42613),

because the table space is inherited from the root table of the table hierarchy. If

this clause is not specified, a table space for the table is determined as follows:

IF table space IBMDEFAULTGROUP (over which the user

 has USE privilege) exists with sufficient page size

 THEN choose it

ELSE IF a table space (over which the user has USE privilege)

 exists with sufficient page size (see below when

 multiple table spaces qualify)

 THEN choose it

ELSE return an error (SQLSTATE 42727)

If more than one table space is identified by the ELSE IF condition, choose the

table space with the smallest sufficient page size. If more than one table space

qualifies, choose the table space in the following order of preference,

depending on to whom the USE privilege was granted:

1. The authorization ID

2. A group to which the authorization ID belongs

3. PUBLIC

If more than one table space still qualifies, the final choice is made by the

database manager.

CREATE TABLE

490 SQL Reference, Volume 2

Table space determination can change if:

v Table spaces are dropped or created

v USE privileges are granted or revoked

Partitioned tables can have their data partitions spread across multiple table

spaces. When multiple table spaces are specified, all of the table spaces must

exist, and they must all be either SMS or regular DMS or large DMS table

spaces (SQLSTATE 42838). The authorization ID of the statement must hold the

USE privilege on all of the specified table spaces.

The sufficient page size of a table is determined by either the byte count of the

row or the number of columns. For more information, see Row Size.

When a table is placed in a large table space:

v The table can be larger than a table in a regular table space. For details on

table and table space limits, see “SQL limits”.

v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.

v Indexes that are defined on the table will require an additional 2 bytes per

row entry, compared to indexes defined on a table that resides in a regular

table space.

CYCLE or NO CYCLE

Specifies whether or not the number of data partitions with no explicit

table space can exceed the number of specified data partitions.

CYCLE

Specifies that if the number of data partitions with no explicit table

space exceeds the number of specified data partitions, the table spaces

are assigned to data partitions in a round-robin fashion.

NO CYCLE

Specifies that the number of data partitions with no explicit table space

must not exceed the number of specified data partitions (SQLSTATE

428G1). This option prevents the round-robin assignment of table

spaces to data partitions.

tablespace-options

Specifies the table space in which indexes or long column values are to be

stored. For details on types of table spaces, see “CREATE TABLESPACE”.

INDEX IN tablespace-name2

Identifies the table space in which any indexes on the table are to be

created. The specified table space must exist; it must be a DMS table

space if the table has data in DMS table spaces, or an SMS table space

if the partitioned table has data in SMS table spaces; it must be a table

space on which the authorization ID of the statement holds the USE

privilege; and it must be in the same database partition group as

tablespace-name1 (SQLSTATE 42838).

 Specifying which table space will contain indexes can be done when a

table is created or, in the case of partitioned tables, it can be done by

specifying the IN clause of the CREATE INDEX statement. Checking

for the USE privilege on the table space is done at table creation time,

not when an index is created later.

LONG IN tablespace-name3

Identifies the table spaces in which the values of any long columns are

to be stored. Long columns include those with type LONG VARCHAR

or LONG VARGRAPHIC, LOB data types, XML type, distinct types

CREATE TABLE

Statements 491

with any of these as source types, or any columns defined with

user-defined structured types whose values cannot be stored inline.

This option is allowed only if the IN clause identifies a DMS table

space.

 The specified table space must exist. It can be a regular table space if it

is the same table space in which the data is stored; otherwise, it must

be a large DMS table space on which the authorization ID of the

statement holds the USE privilege. It must also be in the same database

partition group as tablespace-name1 (SQLSTATE 42838).

Specifying which table space will contain long, LOB, or XML columns

can only be done when a table is created. Checking for the USE

privilege is done at table creation time, not when a long or LOB

column is added later.

For rules governing the use of the LONG IN clause with partitioned

tables, see “Large object behavior in partitioned tables”.

distribution-clause

Specifies the database partitioning or the way the data is distributed across

multiple database partitions.

DISTRIBUTE BY HASH (column-name,...)

Specifies the use of the default hashing function on the specified columns,

called a distribution key, as the distribution method across database

partitions. The column-name must be an unqualified name that identifies a

column of the table (SQLSTATE 42703). The same column must not be

identified more than once (SQLSTATE 42709). No column whose data type

is LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB,

XML, distinct type based on any of these types, or structured type can be

used as part of a distribution key (SQLSTATE 42962). The distribution key

cannot contain a ROW CHANGE TIMESTAMP column (SQLSTATE 429BV

). A distribution key cannot be specified for a table that is a subtable

(SQLSTATE 42613), because the distribution key is inherited from the root

table in the table hierarchy or a table with a column of data type XML

(SQLSTATE 42997). If this clause is not specified, and the table resides in a

multiple partition database partition group with multiple database

partitions, the distribution key is defined as follows:

v If the table is a typed table, the object identifier column is the

distribution key.

v If a primary key is defined, the first column of the primary key is the

distribution key.

v Otherwise, the first column whose data type is valid for a distribution

key becomes the distribution key.

The columns of the distribution key must be a subset of the columns that

make up any unique constraints.

If none of the columns satisfies the requirements for a default distribution

key, the table is created without one. Such tables are allowed only in table

spaces that are defined on single-partition database partition groups.

For tables in table spaces that are defined on single-partition database

partition groups, any collection of columns with data types that are valid

for a distribution key can be used to define the distribution key. If you do

not specify this clause, no distribution key is created.

For restrictions related to the distribution key, see Rules.

CREATE TABLE

492 SQL Reference, Volume 2

DISTRIBUTE BY REPLICATION

Specifies that the data stored in the table is physically replicated on each

database partition of the database partition group for the table spaces in

which the table is defined. This means that a copy of all of the data in the

table exists on each database partition. This option can only be specified

for a materialized query table (SQLSTATE 42997).

partitioning-clause

Specifies how the data is partitioned within a database partition.

PARTITION BY RANGE range-partition-spec

Specifies the range partitioning scheme for the table.

partition-expression

Specifies the key data over which the range is defined to determine the

target data partition of the data.

column-name

Identifies a column of the data partitioning key. The column-name

must be an unqualified name that identifies a column of the table

(SQLSTATE 42703). The same column must not be identified more

than once (SQLSTATE 42709). No column with a data type that is a

LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB,

distinct type based on any of these types, or structured type can be

used as part of a table partitioning key (SQLSTATE 42962).

 The numeric literals used in the range specification are governed

by the rules for numeric literals. All of the numeric literals (except

the decimal floating-point special values) used in ranges

corresponding to numeric columns are interpreted as integer,

floating-point or decimal constants, in accordance with the rules

specified for numeric constants. As a result, for decimal

floating-point columns, the minimum and maximum numeric

constant value that can be used in the range specification of a data

partition is the smallest DOUBLE value and the largest DOUBLE

value, respectively. Decimal floating-point special values can be

used in the range specification. All decimal floating-point special

values are interpreted as greater than MINVALUE and less than

MAXVALUE.

The range partitioning columns cannot contain a ROW CHANGE

TIMESTAMP column (SQLSTATE 429BV). The number of

identified columns must not exceed 16 (SQLSTATE 54008).

NULLS LAST

Indicates that null values compare high.

NULLS FIRST

Indicates that null values compare low.

partition-element

Specifies ranges for a data partitioning key and the table space where

rows of the table in the range will be stored.

PARTITION partition-name

Names the data partition. The name must not be the same as any

other data partition for the table (SQLSTATE 42710). If this clause

is not specified, the name will be ’PART’ followed by the character

form of an integer value to make the name unique for the table.

CREATE TABLE

Statements 493

boundary-spec

Specifies the boundaries of a range partition. The lowest range

partition must include a starting-clause, and the highest range

partition must include an ending-clause (SQLSTATE 56016). Range

partitions between the lowest and the highest can include either a

starting-clause, ending-clause, or both clauses. If only the

ending-clause is specified, the previous range partition must also

have included an ending-clause (SQLSTATE 56016).

starting-clause

Specifies the low end of the range for a data partition. There

must be at least one starting value specified and no more

values than the number of columns in the data partitioning key

(SQLSTATE 53038). If there are fewer values specified than the

number of columns, the remaining values are implicitly

MINVALUE.

STARTING FROM

Introduces the starting-clause.

constant

Specifies a constant value with a data type that is

assignable to the data type of the column-name to which

it corresponds (SQLSTATE 53045). The value must not

be in the range of any other boundary-spec for the

table (SQLSTATE 56016).

MINVALUE

Specifies a value that is lower than the lowest possible

value for the data type of the column-name to which it

corresponds.

MAXVALUE

Specifies a value that is greater than the greatest

possible value for the data type of the column-name to

which it corresponds.

INCLUSIVE

Indicates that the specified range values are to be included

in the data partition.

EXCLUSIVE

Indicates that the specified constant values are to be

excluded from the data partition. This specification is

ignored when MINVALUE or MAXVALUE is specified.

ending-clause

Specifies the high end of the range for a data partition. There

must be at least one starting value specified and no more

values than the number of columns in the data partitioning key

(SQLSTATE 53038). If there are fewer values specified than the

number of columns, the remaining values are implicitly

MAXVALUE.

ENDING AT

Introduces the ending-clause.

constant

Specifies a constant value with a data type that is

assignable to the data type of the column-name to which

CREATE TABLE

494 SQL Reference, Volume 2

it corresponds (SQLSTATE 53045). The value must not

be in the range of any other boundary-spec for the

table (SQLSTATE 56016).

MINVALUE

Specifies a value that is lower than the lowest possible

value for the data type of the column-name to which it

corresponds.

MAXVALUE

Specifies a value that is greater than the greatest

possible value for the data type of the column-name to

which it corresponds.

INCLUSIVE

Indicates that the specified range values are to be included

in the data partition.

EXCLUSIVE

Indicates that the specified constant values are to be

excluded from the data partition. This specification is

ignored when MINVALUE or MAXVALUE is specified.

IN tablespace-name

Specifies the table space where the data partition is to be stored.

The named table space must have the same page size, be in the

same database partition group, and manage space in the same way

as the other table spaces of the partitioned table (SQLSTATE

42838); it must be a table space on which the authorization ID of

the statement holds the USE privilege. If this clause is not

specified, a table space is assigned by default in a round-robin

fashion from the list of table spaces specified for the table. If a

table space was not specified for large objects using the LONG IN

clause, large objects are placed in the same table space as are the

rest of the rows for the data partition. For partitioned tables, the

LONG IN clause can be used to provide a list of table spaces. This

list is used in round robin-fashion to place large objects for each

data partition. For rules governing the use of the LONG IN clause

with partitioned tables, see “Large object behavior in partitioned

tables”.

 If the INDEX IN clause is not specified on the CREATE TABLE or

the CREATE INDEX statement, the index is placed in the same

table space as the first visible or attached partition of the table.

EVERY (constant)

Specifies the width of each data partition range when using the

automatically generated form of the syntax. Data partitions will be

created starting at the STARTING FROM value and containing this

number of values in the range. This form of the syntax is only

supported for tables that are partitioned by a single numeric or

datetime column (SQLSTATE 53038).

 If the partitioning key column is a numeric type, the starting value

of the first partition is the value specified in the starting-clause.

The ending value for the first and all other partitions is calculated

by adding the starting value of the partition to the increment value

specified as constant in the EVERY clause. The starting value for all

CREATE TABLE

Statements 495

other partitions is calculated by taking the starting value for the

previous partition and adding the increment value specified as

constant in the EVERY clause.

If the partitioning key column is a DATE or a TIMESTAMP, the

starting value of the first partition is the value specified in the

starting-clause. The ending value for the first and all other

partitions is calculated by adding the starting value of the partition

to the increment value specified as a labeled duration in the

EVERY clause. The starting value for all other partitions is

calculated by taking the starting value for the previous partition

and adding the increment value specified as a labeled duration in

the EVERY clause.

For a numeric column, the EVERY value must be a positive

numeric constant, and for a datetime column, the EVERY value

must be a labeled duration (SQLSTATE 53045).

COMPRESS

Specifies whether or not data compression applies to the rows of the table.

YES

Specifies that data row compression is enabled. Insert and update

operations on the table will be subject to compression. After the table is

sufficiently populated with data, a compression dictionary is automatically

created and rows are subject to compression.

NO

Specifies that data row compression is disabled.

VALUE COMPRESSION

This determines the row format that is to be used. Each data type has a

different byte count depending on the row format that is used. For more

information, see Byte Counts. If the table is a typed table, this option is only

supported on the root table of the typed table hierarchy (SQLSTATE 428DR).

 The NULL value is stored using three bytes. This is the same or less space than

when VALUE COMPRESSION is not active for columns of all data types, with

the exception of CHAR(1). Whether or not a column is defined as nullable has

no affect on the row size calculation. The zero-length data values for columns

whose data type is VARCHAR, VARGRAPHIC, LONG VARCHAR, LONG

VARGRAPHIC, CLOB, DBCLOB, BLOB, or XML are to be stored using two

bytes only, which is less than the storage required when VALUE

COMPRESSION is not active. When a column is defined using the COMPRESS

SYSTEM DEFAULT option, this also allows the system default value for the

column to be stored using three bytes of total storage. The row format that is

used to support this determines the byte counts for each data type, and tends

to cause data fragmentation when updating to or from NULL, a zero-length

value, or the system default value.

WITH RESTRICT ON DROP

Indicates that the table cannot be dropped, and that the table space that

contains the table cannot be dropped.

NOT LOGGED INITIALLY

Any changes made to the table by an Insert, Delete, Update, Create Index,

Drop Index, or Alter Table operation in the same unit of work in which the

table is created are not logged. For other considerations when using this

option, see the “Notes” section of this statement.

CREATE TABLE

496 SQL Reference, Volume 2

All catalog changes and storage related information are logged, as are all

operations that are done on the table in subsequent units of work.

Note: If non-logged activity occurs against a table that has the NOT LOGGED

INITIALLY attribute activated, and if a statement fails (causing a rollback), or a

ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back

(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY

attribute was activated is marked inaccessible after the rollback has occurred,

and can only be dropped. Therefore, the opportunity for errors within the unit

of work in which the NOT LOGGED INITIALLY attribute is activated should

be minimized.

CCSID

Specifies the encoding scheme for string data stored in the table. If the CCSID

clause is not specified, the default is CCSID UNICODE for Unicode databases,

and CCSID ASCII for all other databases.

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, CCSID ASCII cannot be specified

(SQLSTATE 56031).

UNICODE

Specifies that string data is encoded in Unicode. If the database is a

Unicode database, character data is in UTF-8, and graphic data is in UCS-2.

If the database is not a Unicode database, character data is in UTF-8.

 If the database is not a Unicode database, tables can be created with

CCSID UNICODE, but the following rules apply:

v The alternate collating sequence must be specified in the database

configuration before creating the table (SQLSTATE 56031). CCSID

UNICODE tables collate with the alternate collating sequence specified

in the database configuration.

v Tables or table functions created with CCSID ASCII, and tables or table

functions created with CCSID UNICODE, cannot both be used in a

single SQL statement (SQLSTATE 53090). This applies to tables and table

functions referenced directly in the statement, as well as to tables and

table functions referenced indirectly (such as, for example, through

referential integrity constraints, triggers, materialized query tables, and

tables in the body of views).

v Tables created with CCSID UNICODE cannot be referenced in SQL

functions or SQL methods (SQLSTATE 560C0).

v An SQL statement that references a table created with CCSID UNICODE

cannot invoke an SQL function or SQL method (SQLSTATE 53090).

v Graphic types, the XML type, and user-defined types cannot be used in

CCSID UNICODE tables (SQLSTATE 560C1).

v Tables cannot have both the CCSID UNICODE clause and the DATA

CAPTURE CHANGES clause specified (SQLSTATE 42613).

v The Explain tables cannot be created with CCSID UNICODE (SQLSTATE

55002).

v Declared global temporary tables cannot be created with CCSID

UNICODE (SQLSTATE 56031).

v CCSID UNICODE tables cannot be created in a CREATE SCHEMA

statement (SQLSTATE 53090).

CREATE TABLE

Statements 497

v The exception table for a load operation must have the same CCSID as

the target table for the operation (SQLSTATE 428A5).

v The exception table for a SET INTEGRITY statement must have the same

CCSID as the target table for the statement (SQLSTATE 53090).

v The target table for event monitor data must not be declared as CCSID

UNICODE (SQLSTATE 55049).

v Statements that reference a CCSID UNICODE table can only be invoked

from a DB2 Version 8.1 or later client (SQLSTATE 42997).

v SQL statements are always interpreted in the database code page. In

particular, this means that every character in literals, hex literals, and

delimited identifiers must have a representation in the database code

page; otherwise, the character will be replaced with the substitution

character.

 Host variables in the application are always in the application code page,

regardless of the CCSID of any tables in the SQL statements that are invoked.

DB2 will perform code page conversions as necessary to convert data between

the application code page and the section code page. The registry variable

DB2CODEPAGE can be set at the client to change the application code page.

SECURITY POLICY

Names the security policy to be associated with the table.

policy-name

Identifies a security policy that already exists at the current server

(SQLSTATE 42704).

OPTIONS (ADD table-option-name string-constant, ...)

Table options are used to identify the remote base table. The table-option-name is

the name of the option. The string-constant specifies the setting for the table

option. The string-constant must be enclosed in single quotation marks.

 The remote server (the server name that was specified in the CREATE SERVER

statement) must be specified in the OPTIONS clause. The OPTIONS clause can

also be used to override the schema or the unqualified name of the remote

base table that is being created.

It is recommended that a schema name be specified. If a remote schema name

is not specified, the qualifier for the table name is used. If the table name has

no qualifier, the authorization ID of the statement is used.

If an unqualified name for the remote base table is not specified, table-name is

used.

Rules

v The sum of the byte counts of the columns, including the inline lengths of all

structured or XML type columns, must not be greater than the row size limit

that is based on the page size of the table space (SQLSTATE 54010). For more

information, see Byte Counts. For typed tables, the byte count is applied to the

columns of the root table of the table hierarchy, and every additional column

introduced by every subtable in the table hierarchy (additional subtable columns

must be considered nullable for byte count purposes, even if defined as not

nullable). There is also an additional 4 bytes of overhead to identify the subtable

to which each row belongs.

v The number of columns in a table cannot exceed 1 012 (SQLSTATE 54011). For

typed tables, the total number of attributes of the types of all of the subtables in

the table hierarchy cannot exceed 1010.

CREATE TABLE

498 SQL Reference, Volume 2

v An object identifier column of a typed table cannot be updated (SQLSTATE

42808).

v Any unique or primary key constraint defined on the table must be a superset of

the distribution key (SQLSTATE 42997).

v The following rules only apply to multiple database partition databases.

– Tables composed only of columns with types LOB, LONG VARCHAR, LONG

VARGRAPHIC, XML, a distinct type based on one of these types, or a

structured type can only be created in table spaces that are defined on

single-partition database partition groups.

– The distribution key definition of a table in a table space that is defined on a

multiple partition database partition group cannot be altered.

– The distribution key column of a typed table must be the OID column.

– Columns of type XML cannot be used.

– Partitioned staging tables are not supported.
v The following restrictions apply to range-clustered tables:

– A range-clustered table cannot be specified in a database with multiple

database partitions (SQLSTATE 42997).

– A clustering index cannot be created.

– Altering the table to add a column is not supported.

– Altering the table to change the data type of a column is not supported.

– Altering the table to change PCTFREE is not supported.

– Altering the table to set APPEND ON is not supported.

– DETAILED statistics are not available.

– The load utility cannot be used to populate the table.

– Columns cannot be of type XML.
v A table is not protected unless it has a security policy associated with it and it

includes either a column of type DB2SECURITYLABEL or a column defined

with the SECURED WITH clause. The former indicates that the table is a

protected table with row level granularity and the latter indicates that the table

a protected table with column level granularity.

v Declaring a column of type DB2SECURITYLABEL fails if the table does not have

a security policy associated with it (SQLSTATE 55064).

v A security policy cannot be added to a typed table (SQLSTATE 428DH),

materialized query table, or staging table (SQLSTATE 428FG).

v An error tolerant nested-table-expression cannot be specified in the fullselect of a

materialized-query-definition (SQLSTATE 428GG).

Notes

v Creating a table with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v If a foreign key is specified:

– All packages with a delete usage on the parent table are invalidated.

– All packages with an update usage on at least one column in the parent key

are invalidated.
v Creating a subtable causes invalidation of all packages that depend on any table

in table hierarchy.

CREATE TABLE

Statements 499

v VARCHAR and VARGRAPHIC columns that are greater than 4 000 and 2 000

respectively should not be used as input parameters in functions in SYSFUN

schema. Errors will occur when the function is invoked with an argument value

that exceeds these lengths (SQLSTATE 22001).

v The use of NO ACTION or RESTRICT as delete or update rules for referential

constraints determines when the constraint is enforced. A delete or update rule

of RESTRICT is enforced before all other constraints, including those referential

constraints with modifying rules such as CASCADE or SET NULL. A delete or

update rule of NO ACTION is enforced after other referential constraints. One

example where different behavior is evident involves the deletion of rows from a

view that is defined as a UNION ALL of related tables.

 Table T1 is a parent of table T3; delete rule as noted below.

 Table T2 is a parent of table T3; delete rule CASCADE.

 CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

 DELETE FROM V1

If table T1 is a parent of table T3 with a delete rule of RESTRICT, a restrict

violation will be raised (SQLSTATE 23001) if there are any child rows for parent

keys of T1 in T3.

If table T1 is a parent of table T3 with a delete rule of NO ACTION, the child

rows may be deleted by the delete rule of CASCADE when deleting rows from

T2 before the NO ACTION delete rule is enforced for the deletes from T1. If

deletes from T2 did not result in deleting all child rows for parent keys of T1 in

T3, then a constraint violation will be raised (SQLSTATE 23504).

Note that the SQLSTATE returned is different depending on whether the delete

or update rule is RESTRICT or NO ACTION.

v For tables in table spaces defined on multiple partition database partition

groups, table collocation should be considered when choosing the distribution

keys. Following is a list of items to consider:

– The tables must be in the same database partition group for collocation. The

table spaces may be different, but must be defined in the same database

partition group.

– The distribution keys of the tables must have the same number of columns,

and the corresponding key columns must be database partition-compatible for

collocation.

– The choice of distribution key also has an impact on performance of joins. If a

table is frequently joined with another table, you should consider the joining

column(s) as a distribution key for both tables.
v The NOT LOGGED INITIALLY option is useful for situations where a large

result set needs to be created with data from an alternate source (another table

or a file) and recovery of the table is not necessary. Using this option will save

the overhead of logging the data. The following considerations apply when this

option is specified:

– When the unit of work is committed, all changes that were made to the table

during the unit of work are flushed to disk.

– When you run the rollforward utility and it encounters a log record that

indicates that a table in the database was either populated by the Load utility

or created with the NOT LOGGED INITIALLY option, the table will be

marked as unavailable. The table will be dropped by the rollforward utility if

it later encounters a DROP TABLE log. Otherwise, after the database is

recovered, an error will be issued if any attempt is made to access the table

(SQLSTATE 55019). The only operation permitted is to drop the table.

CREATE TABLE

500 SQL Reference, Volume 2

– Once such a table is backed up as part of a database or table space back up,

recovery of the table becomes possible.
v A REFRESH DEFERRED system-maintained materialized query table defined

with ENABLE QUERY OPTIMIZATION can be used to optimize the processing

of queries if CURRENT REFRESH AGE is set to ANY and CURRENT

MAINTAINED TABLE TYPES FOR OPTIMIZATION is set such that it includes

system-maintained materialized query tables. A REFRESH DEFERRED

user-maintained materialized query table defined with ENABLE QUERY

OPTIMIZATION can be used to optimize the processing of queries if CURRENT

REFRESH AGE is set to ANY and CURRENT MAINTAINED TABLE TYPES

FOR OPTIMIZATION is set such that it includes user-maintained materialized

query tables. A REFRESH IMMEDIATE materialized query table defined with

ENABLE QUERY OPTIMIZATION is always considered for optimization. For

this optimization to be able to use a REFRESH DEFERRED or a REFRESH

IMMEDIATE materialized query table, the fullselect must conform to certain

rules in addition to those already described. The fullselect must:

– be a subselect with a GROUP BY clause or a subselect with a single table

reference

– not include DISTINCT anywhere in the select list

– not include any special registers

– not include any global variables

– not include functions that are not deterministic.

If the query specified when creating a materialized query table does not conform

to these rules, a warning is returned (SQLSTATE 01633).

v If a materialized query table is defined with REFRESH IMMEDIATE, or a

staging table is defined with PROPAGATE IMMEDIATE, it is possible for an

error to occur when attempting to apply the change resulting from an insert,

update, or delete operation on an underlying table. The error will cause the

failure of the insert, update, or delete operation on the underlying table.

v Materialized query tables or staging tables cannot be used as exception tables

when constraints are checked in bulk, such as during load operations or during

execution of the SET INTEGRITY statement.

v Certain operations cannot be performed on a table that is referenced by a

materialized query table defined with REFRESH IMMEDIATE, or defined with

REFRESH DEFERRED with an associated staging table:

– IMPORT REPLACE cannot be used.

– ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE cannot be

done.
v In a federated system, nicknames for relational data sources or local tables can

be used as the underlying tables to create a materialized query table. Nicknames

for non-relational data sources are not supported. When a nickname is one of

the underlying tables, the REFRESH DEFERRED option must be used.

System-maintained materialized query tables that reference nicknames are not

supported in a partitioned database environment.

v Transparent DDL: In a federated system, a remote base table can be created,

altered, or dropped using DB2 SQL. This capability is known as transparent DDL.

Before a remote base table can be created on a data source, the federated server

must be configured to access that data source. This configuration includes

creating the wrapper for the data source, supplying the server definition for the

server where the remote base table will be located, and creating the user

mappings between the federated server and the data source.

CREATE TABLE

Statements 501

Transparent DDL does impose some limitations on what can be included in the

CREATE TABLE statement:

– Only columns and a primary key can be created on the remote base table.

– Specific clauses supported by transparent DDL include:

- column-definition and unique-constraint in the element-list clause

- NOT NULL and PRIMARY KEY in the column-options clause

- OPTIONS
– The remote data source must support:

- The remote column data types to which the DB2 column data types are

mapped

- The primary key option in the CREATE TABLE statement

Depending on how the data source responds to requests it does not support,

an error might be returned or the request might be ignored.
When a remote base table is created using transparent DDL, a nickname is

automatically created for that remote base table.

v A referential constraint may be defined in such a way that either the parent table

or the dependent table is a part of a table hierarchy. In such a case, the effect of

the referential constraint is as follows:

1. Effects of INSERT, UPDATE, and DELETE statements:

– If a referential constraint exists, in which PT is a parent table and DT is a

dependent table, the constraint ensures that for each row of DT (or any of

its subtables) that has a non-null foreign key, a row exists in PT (or one of

its subtables) with a matching parent key. This rule is enforced against any

action that affects a row of PT or DT, regardless of how that action is

initiated.
2. Effects of DROP TABLE statements:

– for referential constraints in which the dropped table is the parent table or

dependent table, the constraint is dropped

– for referential constraints in which a supertable of the dropped table is the

parent table the rows of the dropped table are considered to be deleted

from the supertable. The referential constraint is checked and its delete

rule is invoked for each of the deleted rows.

– for referential constraints in which a supertable of the dropped table is the

dependent table, the constraint is not checked. Deletion of a row from a

dependent table cannot result in violation of a referential constraint.
v Privileges: When any table is created, the definer of the table is granted

CONTROL privilege. When a subtable is created, the SELECT privilege that each

user or group has on the immediate supertable is automatically granted on the

subtable with the table definer as the grantor.

v Row Size: The maximum number of bytes allowed in the row of a table is

dependent on the page size of the table space in which the table is created

(tablspace-name1). The following list shows the row size limit and number of

columns limit associated with each table space page size.

 Table 20. Limits for Number of Columns and Row Size in Each Table Space Page Size

Page Size Row Size Limit Column Count Limit

4K 4 005 500

8K 8 101 1 012

16K 16 293 1 012

CREATE TABLE

502 SQL Reference, Volume 2

Table 20. Limits for Number of Columns and Row Size in Each Table Space Page

Size (continued)

Page Size Row Size Limit Column Count Limit

32K 32 677 1 012

The actual number of columns for a table can be further limited by the following

formula:

 Total Columns * 8 + Number of LOB Columns * 12 <=

 Row Size Limit for Page Size

v Byte Counts: The following table contains the byte counts of columns by data

type. This is used to calculate the row size. The byte counts depend on whether

or not VALUE COMPRESSION is active. When VALUE COMPRESSION is not

active, the byte counts also depend on whether or not the column is nullable.

If a table is based on a structured type, an additional 4 bytes of overhead is

reserved to identify rows of subtables, regardless of whether or not subtables are

defined. Additional subtable columns must be considered nullable for byte count

purposes, even if defined as not nullable.

 Table 21. Byte Counts of Columns by Data Type

Data type

VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

SMALLINT 4 3 2

INTEGER 6 5 4

BIGINT 10 9 8

REAL 6 5 4

DOUBLE 10 9 8

DECIMAL The integral part of (p/2)+3,

where p is the precision

The integral part of (p/2)+2,

where p is the precision

The integral part of (p/2)+1,

where p is the precision

DECFLOAT(16) 10 9 8

DECFLOAT(34) 18 17 16

CHAR(n) n+2 n+1 n

VARCHAR(n) n+2 n+5 (within a table) n+4 (within a table)

LONG VARCHAR 22 25 24

GRAPHIC(n) n*2+2 n*2+1 n*2

VARGRAPHIC(n) n*2+2 n*2+5 (within a table) n*2+4 (within a table)

LONG VARGRAPHIC 22 25 24

DATE 6 5 4

TIME 5 4 3

TIMESTAMP 12 11 10

XML (without INLINE

LENGTH specified)

82 85 84

XML (with INLINE

LENGTH specified)

INLINE LENGTH +2 INLINE LENGTH +5 INLINE LENGTH +4

Maximum LOB2 length 1024 70 73 72

Maximum LOB length 8192 94 97 96

Maximum LOB length

65 536

118 121 120

CREATE TABLE

Statements 503

Table 21. Byte Counts of Columns by Data Type (continued)

Data type

VALUE COMPRESSION is

active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

Maximum LOB length

524 000

142 145 144

Maximum LOB length

4 190 000

166 169 168

Maximum LOB length

134 000 000

198 201 200

Maximum LOB length

536 000 000

222 225 224

Maximum LOB length

1 070 000 000

254 257 256

Maximum LOB length

1 470 000 000

278 281 280

Maximum LOB length

2 147 483 647

314 317 316

1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.

2 Each LOB value has a LOB descriptor in the base record that points to the location of the actual value. The size of

the descriptor varies according to the maximum length defined for the column.

For a distinct type, the byte count is equivalent to the length of the source type of the distinct type. For a reference type,

the byte count is equivalent to the length of the built-in data type on which the reference type is based. For a

structured type, the byte count is equivalent to the INLINE LENGTH + 4. The INLINE LENGTH is the value specified

(or implicitly calculated) for the column in the column-options clause.

The row sizes for the following sample tables assume that VALUE

COMPRESSION is not specified:

DEPARTMENT 63 (0 + 3 + 33 + 7 + 3 + 17)

ORG 57 (0 + 3 + 19 + 2 + 15 + 18)

If VALUE COMPRESSION were to be specified, the row sizes would change to:

DEPARTMENT 69 (2 + 5 + 31 + 8 + 5 + 18)

ORG 53 (2 + 4 + 16 + 4 + 12 + 15)

v Storage Byte Counts: The following table contains the storage byte counts of

columns by data type for data values. The byte counts depend on whether or

not VALUE COMPRESSION is active. When VALUE COMPRESSION is not

active, the byte counts also depend on whether or not the column is nullable.

The values in the table represent the amount of storage (in bytes) that is used to

store the value.

 Table 22. Storage Byte Counts Based on Row Format, Data Type, and Data Value

Data value → NULL NULL zero-length

system

default2

all other data

values

all other data

values

all other data

values

VALUE

COMPRES-

SION → not active active1 active1 active1 not active not active active1

Column

nullability → nullable nullable n/a n/a nullable not nullable n/a

Data type

SMALLINT 3 3 - 3 3 2 4

INTEGER 5 3 - 3 5 4 6

CREATE TABLE

504 SQL Reference, Volume 2

Table 22. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data value → NULL NULL zero-length

system

default2

all other data

values

all other data

values

all other data

values

VALUE

COMPRES-

SION → not active active1 active1 active1 not active not active active1

Column

nullability → nullable nullable n/a n/a nullable not nullable n/a

Data type

BIGINT 9 3 - 3 9 8 10

REAL 5 3 - 3 5 4 6

DOUBLE 9 3 - 3 9 8 10

DECIMAL The integral

part of

(p/2)+2, where

p is the

precision

3 - 3 The integral

part of

(p/2)+2, where

p is the

precision

The integral

part of

(p/2)+1, where

p is the

precision

The integral

part of

(p/2)+3, where

p is the

precision

DECFLOAT(16) 9 3 - 3 9 8 10

DECFLOAT(34) 17 3 - 3 17 16 18

CHAR(n) n+1 3 - 3 n+1 n n+2

VARCHAR(n) 5 3 2 2 N+5, where N

is the number

of bytes in the

data

N+4, where N

is the number

of bytes in the

data

N+2, where N

is the number

of bytes in the

data

LONG

VARCHAR

5 3 2 2 25 24 22

GRAPHIC(n) n*2+1 3 - 3 n*2+1 n*2 n*2+2

VARGRAPHIC(n) 5 3 2 2 N*2+5, where

N is the

number of

bytes in the

data

N*2+4, where

N is the

number of

bytes in the

data

N*2+2, where

N is the

number of

bytes in the

data

LONG

VARGRAPHIC

5 3 2 2 25 24 22

DATE 5 3 - - 5 4 6

TIME 4 3 - - 4 3 5

TIMESTAMP 11 3 - - 11 10 12

Maximum

LOB2 length

1024

5 3 2 2 (60 to 68)+5 (60 to 68)+4 (60 to 68)+2

Maximum

LOB length

8192

5 3 2 2 (60 to 92)+5 (60 to 92)+4 (60 to 92)+2

Maximum

LOB length

65 536

5 3 2 2 (60 to 116)+5 (60 to 116)+4 (60 to 116)+2

Maximum

LOB length

524 000

5 3 2 2 (60 to 140)+5 (60 to 140)+4 (60 to 140)+2

Maximum

LOB length

4 190 000

5 3 2 2 (60 to 164)+5 (60 to 164)+4 (60 to 164)+2

Maximum

LOB length

134 000 000

5 3 2 2 (60 to 196)+5 (60 to 196)+4 (60 to 196)+2

CREATE TABLE

Statements 505

Table 22. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data value → NULL NULL zero-length

system

default2

all other data

values

all other data

values

all other data

values

VALUE

COMPRES-

SION → not active active1 active1 active1 not active not active active1

Column

nullability → nullable nullable n/a n/a nullable not nullable n/a

Data type

Maximum

LOB length

536 000 000

5 3 2 2 (60 to 220)+5 (60 to 220)+4 (60 to 220)+2

Maximum

LOB length

1 070 000 000

5 3 2 2 (60 to 252)+5 (60 to 252)+4 (60 to 252)+2

Maximum

LOB length

1 470 000 000

5 3 2 2 (60 to 276)+5 (60 to 276)+4 (60 to 276)+2

Maximum

LOB length

2 147 483 647

5 3 2 2 (60 to 312)+5 (60 to 312)+4 (60 to 312)+2

XML 5 3 - - 85 84 82

1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.

2 When COMPRESS SYSTEM DEFAULT is specified for the column.

v Dimension Columns: Because each distinct value of a dimension column is

assigned to a different block of the table, clustering on an expression may be

desirable, such as ″INTEGER(ORDER_DATE)/100″. In this case, a generated

column can be defined for the table, and this generated column may then be

used in the ORGANIZE BY DIMENSIONS clause. If the expression is monotonic

with respect to a column of the table, DB2 may use the dimension index to

satisfy range predicates on that column. For example, if the expression is simply

column-name + some-positive-constant, it is monotonic increasing. User-defined

functions, certain built-in functions, and using more than one column in an

expression, prevent monotonicity or its detection.

Dimensions involving generated columns whose expressions are non-monotonic,

or whose monotonicity cannot be determined, can still be created, but range

queries along slice or cell boundaries of these dimensions are not supported.

Equality and IN predicates can be processed by slices or cells.

A generated column is monotonic if the following is true with respect to the

generating function, fn:

– Monotonic increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>fn(x1). For

example:

 SALARY - 10000

– Monotonic decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<fn(x1). For

example:

 -SALARY

– Monotonic non-decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>=fn(x1). For

example:

CREATE TABLE

506 SQL Reference, Volume 2

SALARY/1000

– Monotonic non-increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<=fn(x1). For

example:

 -SALARY/1000

The expression ″PRICE*DISCOUNT″ is not monotonic, because it involves more

than one column of the table.

v Range-clustered tables: Organizing a table by key sequence is effective for

certain types of tables. The table should have an integer key that is tightly

clustered (dense) over the range of possible values. The columns of this integer

key must not be nullable, and the key should logically be the primary key of the

table. The organization of a range-clustered table precludes the need for a

separate unique index object, providing direct access to the row for a specified

key value, or a range of rows for a specified range of key values. The allocation

of all the space for the complete set of rows in the defined key sequence range is

done during table creation, and must be considered when defining a

range-clustered table. The storage space is not available for any other use, even

though the rows are initially marked deleted. If the full key sequence range will

be populated with data only over a long period of time, this table organization

may not be an appropriate choice.

v A table can have at most one security policy.

v DB2 enforces referential integrity constraints that are defined on protected tables.

Constraints violations in this case can be difficult to debug, because DB2 will not

allow you to see what row has caused a violation if you do not have the

appropriate security label or exemptions credentials.

v When defining the order of columns in a table, frequently updated columns

should be placed at the end of the definition to minimize the amount of data

logged for updates. This includes ROW CHANGE TIMESTAMP columns. ROW

CHANGE TIMESTAMP columns are guaranteed to be updated on each row

update.

v Security and replication: Replication can cause data rows from a protected table

to be replicated outside of the database. Care must be taken when setting up

replication for a protected table, because DB2 cannot protect data that is outside

of the database.

v Compatibilities

– For compatibility with previous versions of DB2:

- The CONSTRAINT keyword can be omitted from a column-definition

defining a references-clause

- constraint-name can be specified following FOREIGN KEY (without the

CONSTRAINT keyword)

- SUMMARY can optionally be specified after CREATE

- DEFINITION ONLY can be specified in place of WITH NO DATA

- The PARTITIONING KEY clause can be specified in place of the

DISTRIBUTE BY clause

- REPLICATED can be specified in place of DISTRIBUTE BY REPLICATION
– For compatibility with previous versions of DB2, and for consistency:

- A comma can be used to separate multiple options in the identity-options

clause
– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v IN database-name.tablespace-name

CREATE TABLE

Statements 507

v IN DATABASE database-name

v FOR MIXED DATA

v FOR SBCS DATA
- PART can be specified in place of PARTITION

- PARTITION partition-number can be specified instead of PARTITION

partition-name. A partition-number must not identify a partition that was

previously specified in the CREATE TABLE statement. If a partition-number

is not specified, a unique partition number is generated by the database

manager.

- VALUES can be specified in place of ENDING AT
– The following syntax is also supported:

- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Examples

Example 1: Create table TDEPT in the DEPARTX table space. DEPTNO,

DEPTNAME, MGRNO, and ADMRDEPT are column names. CHAR means the

column will contain character data. NOT NULL means that the column cannot

contain a null value. VARCHAR means the column will contain varying-length

character data. The primary key consists of the column DEPTNO.

 CREATE TABLE TDEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 PRIMARY KEY(DEPTNO))

 IN DEPARTX

Example 2: Create table PROJ in the SCHED table space. PROJNO, PROJNAME,

DEPTNO, RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are

column names. CHAR means the column will contain character data. DECIMAL

means the column will contain packed decimal data. 5,2 means the following: 5

indicates the number of decimal digits, and 2 indicates the number of digits to the

right of the decimal point. NOT NULL means that the column cannot contain a

null value. VARCHAR means the column will contain varying-length character

data. DATE means the column will contain date information in a three-part format

(year, month, and day).

 CREATE TABLE PROJ

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) NOT NULL,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) NOT NULL)

 IN SCHED

Example 3: Create a table called EMPLOYEE_SALARY where any unknown salary

is considered 0. No table space is specified, so that the table will be created in a

table space selected by the system based on the rules described for the IN

tablespace-name1 clause.

 CREATE TABLE EMPLOYEE_SALARY

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 EMPNO CHAR(6) NOT NULL,

 SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

CREATE TABLE

508 SQL Reference, Volume 2

Example 4: Create distinct types for total salary and miles and use them for

columns of a table created in the default table space. In a dynamic SQL statement

assume the CURRENT SCHEMA special register is JOHNDOE and the CURRENT

PATH is the default (″SYSIBM″,″SYSFUN″,″JOHNDOE″).

If a value for SALARY is not specified it must be set to 0 and if a value for

LIVING_DIST is not specified it must to set to 1 mile.

 CREATE TYPE JOHNDOE.T_SALARY AS INTEGER WITH COMPARISONS

 CREATE TYPE JOHNDOE.MILES AS FLOAT WITH COMPARISONS

 CREATE TABLE EMPLOYEE

 (ID INTEGER NOT NULL,

 NAME CHAR (30),

 SALARY T_SALARY NOT NULL WITH DEFAULT,

 LIVING_DIST MILES DEFAULT MILES(1))

Example 5: Create distinct types for image and audio and use them for columns of

a table. No table space is specified, so that the table will be created in a table space

selected by the system based on the rules described for the IN tablespace-name1

clause. Assume the CURRENT PATH is the default.

 CREATE TYPE IMAGE AS BLOB (10M)

 CREATE TYPE AUDIO AS BLOB (1G)

 CREATE TABLE PERSON

 (SSN INTEGER NOT NULL,

 NAME CHAR (30),

 VOICE AUDIO,

 PHOTO IMAGE)

Example 6: Create table EMPLOYEE in the HUMRES table space. The constraints

defined on the table are the following:

v The values of department number must lie in the range 10 to 100.

v The job of an employee can only be either ’Sales’, ’Mgr’ or ’Clerk’.

v Every employee that has been with the company since 1986 must make more

than $40,500.

Note: If the columns included in the check constraints are nullable they could also

be NULL.

 CREATE TABLE EMPLOYEE

 (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),

 JOB CHAR(5) CHECK (JOB IN (’Sales’,’Mgr’,’Clerk’)),

 HIREDATE DATE,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2),

 PRIMARY KEY (ID),

 CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986

 OR SALARY > 40500)

)

 IN HUMRES

Example 7: Create a table that is wholly contained in the PAYROLL table space.

 CREATE TABLE EMPLOYEE

 IN PAYROLL

CREATE TABLE

Statements 509

Example 8: Create a table with its data part in ACCOUNTING and its index part

in ACCOUNT_IDX.

 CREATE TABLE SALARY.....

 IN ACCOUNTING INDEX IN ACCOUNT_IDX

Example 9: Create a table and log SQL changes in the default format.

 CREATE TABLE SALARY1

or

 CREATE TABLE SALARY1

 DATA CAPTURE NONE

Example 10: Create a table and log SQL changes in an expanded format.

 CREATE TABLE SALARY2

 DATA CAPTURE CHANGES

Example 11: Create a table EMP_ACT in the SCHED table space. EMPNO,

PROJNO, ACTNO, EMPTIME, EMSTDATE, and EMENDATE are column names.

Constraints defined on the table are:

v The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any row

must be unique.

v The value of PROJNO must match an existing value for the PROJNO column in

the PROJECT table and if the project is deleted all rows referring to the project

in EMP_ACT should also be deleted.
 CREATE TABLE EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2),

 EMSTDATE DATE,

 EMENDATE DATE,

 CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),

 CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)

 REFERENCES PROJECT (PROJNO) ON DELETE CASCADE

)

 IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same

schema to enforce the unique constraint.

Example 12: Create a table that is to hold information about famous goals for the

ice hockey hall of fame. The table will list information about the player who scored

the goal, the goaltender against who it was scored, the date and place, and a

description. The description column is nullable.

 CREATE TABLE HOCKEY_GOALS

 (BY_PLAYER VARCHAR(30) NOT NULL,

 BY_TEAM VARCHAR(30) NOT NULL,

 AGAINST_PLAYER VARCHAR(30) NOT NULL,

 AGAINST_TEAM VARCHAR(30) NOT NULL,

 DATE_OF_GOAL DATE NOT NULL,

 DESCRIPTION CLOB(5000))

Example 13: Suppose an exception table is needed for the EMPLOYEE table. One

can be created using the following statement.

CREATE TABLE

510 SQL Reference, Volume 2

CREATE TABLE EXCEPTION_EMPLOYEE AS

 (SELECT EMPLOYEE.*,

 CURRENT TIMESTAMP AS TIMESTAMP,

 CAST (’’ AS CLOB(32K)) AS MSG

 FROM EMPLOYEE

) WITH NO DATA

Example 14: Given the following table spaces with the indicated attributes:

 TBSPACE PAGESIZE USER USERAUTH

 ------------------ ----------- ------ --------

 DEPT4K 4096 BOBBY Y

 PUBLIC4K 4096 PUBLIC Y

 DEPT8K 8192 BOBBY Y

 DEPT8K 8192 RICK Y

 PUBLIC8K 8192 PUBLIC Y

v If RICK creates the following table, it is placed in table space PUBLIC4K since

the byte count is less than 4005; but if BOBBY creates the same table, it is placed

in table space DEPT4K, since BOBBY has USE privilege because of an explicit

grant:

 CREATE TABLE DOCUMENTS

 (SUMMARY VARCHAR(1000),

 REPORT VARCHAR(2000))

v If BOBBY creates the following table, it is placed in table space DEPT8K since

the byte count is greater than 4005, and BOBBY has USE privilege because of an

explicit grant. However, if DUNCAN creates the same table, it is placed in table

space PUBLIC8K, since DUNCAN has no specific privileges:

 CREATE TABLE CURRICULUM

 (SUMMARY VARCHAR(1000),

 REPORT VARCHAR(2000),

 EXERCISES VARCHAR(1500))

Example 15: Create a table with a LEAD column defined with the structured type

EMP. Specify an INLINE LENGTH of 300 bytes for the LEAD column, indicating

that any instances of LEAD that cannot fit within the 300 bytes are stored outside

the table (separately from the base table row, similar to the way LOB values are

handled).

 CREATE TABLE PROJECTS (PID INTEGER,

 LEAD EMP INLINE LENGTH 300,

 STARTDATE DATE,

 ...)

Example 16: Create a table DEPT with five columns named DEPTNO,

DEPTNAME, MGRNO, ADMRDEPT, and LOCATION. Column DEPT is to be

defined as an IDENTITY column such that DB2 will always generate a value for it.

The values for the DEPT column should begin with 500 and increment by 1.

 CREATE TABLE DEPT

 (DEPTNO SMALLINT NOT NULL

 GENERATED ALWAYS AS IDENTITY

 (START WITH 500, INCREMENT BY 1),

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT SMALLINT NOT NULL,

 LOCATION CHAR(30))

Example 17: Create a SALES table that is distributed on the YEAR column, and that

has dimensions on the REGION and YEAR columns. Data will be distributed

across database partitions according to hashed values of the YEAR column. On

CREATE TABLE

Statements 511

each database partition, data will be organized into extents based on unique

combinations of values of the REGION and YEAR columns on those database

partitions.

 CREATE TABLE SALES

 (CUSTOMER VARCHAR(80),

 REGION CHAR(5),

 YEAR INTEGER)

 DISTRIBUTE BY HASH (YEAR)

 ORGANIZE BY DIMENSIONS (REGION, YEAR)

Example 18: Create a SALES table with a PURCHASEYEARMONTH column that is

generated from the PURCHASEDATE column. Use an expression to create a

column that is monotonic with respect to the original PURCHASEDATE column,

and is therefore suitable for use as a dimension. The table is distributed on the

REGION column, and organized within each database partition into extents

according to the PURCHASEYEARMONTH column; that is, different regions will

be on different database partitions, and different purchase months will belong to

different cells (or sets of extents) within those database partitions.

 CREATE TABLE SALES

 (CUSTOMER VARCHAR(80),

 REGION CHAR(5),

 PURCHASEDATE DATE,

 PURCHASEYEARMONTH INTEGER

 GENERATED ALWAYS AS (INTEGER(PURCHASEDATE)/100))

 DISTRIBUTE BY HASH (REGION)

 ORGANIZE BY DIMENSIONS (PURCHASEYEARMONTH)

Example 19: Create a CUSTOMER table with a CUSTOMERNUMDIM column that

is generated from the CUSTOMERNUM column. Use an expression to create a

column that is monotonic with respect to the original CUSTOMERNUM column,

and is therefore suitable for use as a dimension. The table is organized into cells

according to the CUSTOMERNUMDIM column, so that there is a different cell in

the table for every 50 customers. If a unique index were created on

CUSTOMERNUM, customer numbers would be clustered in such a way that each

set of 50 values would be found in a particular set of extents in the table.

 CREATE TABLE CUSTOMER

 (CUSTOMERNUM INTEGER,

 CUSTOMERNAME VARCHAR(80),

 ADDRESS VARCHAR(200),

 CITY VARCHAR(50),

 COUNTRY VARCHAR(50),

 CODE VARCHAR(15),

 CUSTOMERNUMDIM INTEGER

 GENERATED ALWAYS AS (CUSTOMERNUM/50))

 ORGANIZE BY DIMENSIONS (CUSTOMERNUMDIM)

Example 20: Create a remote base table called EMPLOYEE on the Oracle server,

ORASERVER. A nickname, named EMPLOYEE, which refers to this newly created

remote base table, will also automatically be created.

 CREATE TABLE EMPLOYEE

 (EMP_NO CHAR(6) NOT NULL,

 FIRST_NAME VARCHAR(12) NOT NULL,

 MID_INT CHAR(1) NOT NULL,

 LAST_NAME VARCHAR(15) NOT NULL,

 HIRE_DATE DATE,

 JOB CHAR(8),

 SALARY DECIMAL(9,2),

 PRIMARY KEY (EMP_NO))

CREATE TABLE

512 SQL Reference, Volume 2

OPTIONS

 (REMOTE_SERVER ’ORASERVER’,

 REMOTE_SCHEMA ’J15USER1’,

 REMOTE_TABNAME ’EMPLOYEE’)

The following CREATE TABLE statements show how to specify the table name, or

the table name and the explicit remote base table name, to get the desired case.

The lowercase identifier, employee, is used to illustrate the implicit folding of

identifiers.

Create a remote base table called EMPLOYEE (uppercase characters) on an

Informix® server, and create a nickname named EMPLOYEE (uppercase characters)

on that table:

 CREATE TABLE employee

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is not delimited,

the remote base table name will be in uppercase characters, even if the remote data

source normally stores names in lowercase characters.

Create a remote base table called employee (lowercase characters) on an Informix

server, and create a nickname named EMPLOYEE (uppercase characters) on that

table:

 CREATE TABLE employee

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’,

 REMOTE_TABNAME ’employee’)

When creating a table at a remote data source that supports delimited identifiers,

use the REMOTE_TABNAME option and a character string constant that specifies

the table name in the desired case.

Create a remote base table called employee (lowercase characters) on an Informix

server, and create a nickname named employee (lowercase characters) on that

table:

 CREATE TABLE "employee"

 (EMP_NO CHAR(6) NOT NULL,

 ...)

 OPTIONS

 (REMOTE_SERVER ’INFX_SERVER’)

If the REMOTE_TABNAME option is not specified, and table-name is delimited, the

remote base table name will be identical to table-name.

Example 21: Create a range-clustered table that can be used to locate a student

using a student ID. For each student record, include the school ID, program ID,

student number, student ID, student first name, student last name, and student

grade point average (GPA).

 CREATE TABLE STUDENTS

 (SCHOOL_ID INTEGER NOT NULL,

 PROGRAM_ID INTEGER NOT NULL,

 STUDENT_NUM INTEGER NOT NULL,

 STUDENT_ID INTEGER NOT NULL,

 FIRST_NAME CHAR(30),

CREATE TABLE

Statements 513

LAST_NAME CHAR(30),

 GPA DOUBLE)

 ORGANIZE BY KEY SEQUENCE

 (STUDENT_ID

 STARTING FROM 1

 ENDING AT 1000000)

 DISALLOW OVERFLOW

The size of each record is the sum of the columns, plus alignment, plus the

range-clustered table row header. In this case, the row size is 98 bytes: 4 + 4 + 4 +

4 + 30 + 30 + 8 + 3 (for nullable columns) + 1 (for alignment) + 10 (for the header).

With a 4-KB page size (or 4096 bytes), after accounting for page overhead, there are

4038 bytes available, enough room for 41 records per page. Allowing for 1 million

student records, there is a need for (1 million divided by 41 records per page)

24 391 pages. With two additional pages for table overhead, the final number of

4-KB pages that are allocated when the table is created is 24 393.

Example 22: Create a table named DEPARTMENT with a functional dependency

that has no specified constraint name.

 CREATE TABLE DEPARTMENT

 (DEPTNO SMALLINT NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT SMALLINT NOT NULL,

 LOCATION CHAR(30),

 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED)

Example 23: Create a table with protected rows.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE DB2SECURITYLABEL,

 POINTS INTEGER,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 24: Create a table with protected columns.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE CHAR(8),

 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 25: Create a table with protected rows and columns.

 CREATE TABLE TOASTMASTERS

 (PERFORMANCE DB2SECURITYLABEL,

 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,

 NAME VARCHAR(50))

 SECURITY POLICY CONTRIBUTIONS

Example 26: Large objects for a partitioned table reside, by default, in the same

table space as the data. This default behavior can be overridden by using the

LONG IN clause to specify one or more table spaces for the large objects. Create a

table named DOCUMENTS whose large object data is to be stored (in a

round-robin fashion for each data partition) in table spaces TBSP1 and TBSP2.

 CREATE TABLE DOCUMENTS

 (ID INTEGER,

 CONTENTS CLOB)

 LONG IN TBSP1, TBSP2

 PARTITION BY RANGE (ID)

 (STARTING 1 ENDING 1000

 EVERY 100)

CREATE TABLE

514 SQL Reference, Volume 2

Alternatively, use the long form of the syntax to explicitly identify a large table

space for each data partition. In this example, the CLOB data for the first data

partition is placed in LARGE_TBSP3, and the CLOB data for the remaining data

partitions is spread across LARGE_TBSP1 and LARGE_TBSP2 in a round-robin

fashion.

 CREATE TABLE DOCUMENTS

 (ID INTEGER,

 CONTENTS CLOB)

 LONG IN LARGE_TBSP1, LARGE_TBSP2

 PARTITION BY RANGE (ID)

 (STARTING 1 ENDING 100

 IN TBSP1 LONG IN LARGE_TBSP3,

 STARTING 101 ENDING 1000

 EVERY 100)

Example 27: Create a partitioned table named ACCESSNUMBERS having two data

partitions. The row (10, NULL) is to be placed in the first partition, and the row

(NULL, 100) is to be placed in the second (last) data partition.

 CREATE TABLE ACCESSNUMBERS

 (AREA INTEGER,

 EXCHANGE INTEGER)

 PARTITION BY RANGE (AREA NULLS LAST, EXCHANGE NULLS FIRST)

 (STARTING (1,1) ENDING (10,100),

 STARTING (11,1) ENDING (MAXVALUE,MAXVALUE))

Because null values in the second column are sorted first, the row (11, NULL)

would sort below the low boundary of the last data partition (11, 1); attempting to

insert this row returns an error. The row (12, NULL) would fall within the last data

partition.

Example 28: Create a table named RATIO having a single data partition and

partitioning column PERCENT.

 CREATE TABLE RATIO

 (PERCENT INTEGER)

 PARTITION BY RANGE (PERCENT)

 (STARTING (MINVALUE) ENDING (MAXVALUE))

This table definition allows any integer value for column PERCENT to be inserted.

The following definition for the RATIO table allows any integer value between 1

and 100 inclusive to be inserted into column PERCENT.

 CREATE TABLE RATIO

 (PERCENT INTEGER)

 PARTITION BY RANGE (PERCENT)

 (STARTING 0 EXCLUSIVE ENDING 100 INCLUSIVE)

Example 29: Create a table named MYDOCS with two columns: one is an identifier,

and the other stores XML documents.

 CREATE TABLE MYDOCS

 (ID INTEGER,

 DOC XML)

 IN HLTBSPACE

Example 30: Create a table named NOTES with four columns, including one for

storing XML-based notes.

 CREATE TABLE NOTES

 (ID INTEGER,

 DESCRIPTION VARCHAR(255),

 CREATED TIMESTAMP,

 NOTE XML)

CREATE TABLE

Statements 515

Example 31: Create a table, EMP_INFO, that contains a phone number and address

for each employee. Include a ROW CHANGE TIMESTAMP column in the table to

track the modification of employee information.

 CREATE TABLE EMP_INFO

 (EMPNO CHAR(6) NOT NULL,

 EMP_INFOCHANGE NOT NULL GENERATED ALWAYS

 FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP,

 EMP_ADDRESS VARCHAR(300),

 EMP_PHONENO CHAR(4),

 PRIMARY KEY (EMPNO))

CREATE TABLE

516 SQL Reference, Volume 2

CREATE TABLESPACE

The CREATE TABLESPACE statement defines a new table space within the

database, assigns containers to the table space, and records the table space

definition and attributes in the catalog.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSCTRL or SYSADM authority.

Syntax

�� CREATE

LARGE

REGULAR

SYSTEM

TEMPORARY

USER

 TABLESPACE tablespace-name �

�
DATABASE PARTITION GROUP

IN

db-partition-group-name

 �

�
PAGESIZE

integer

K

 �

�
 MANAGED BY AUTOMATIC STORAGE size-attributes

MANAGED BY

SYSTEM

system-containers

DATABASE

database-containers

size-attributes

�

�
EXTENTSIZE

number-of-pages

integer

K

M

PREFETCHSIZE

AUTOMATIC

number-of-pages

integer

K

M

G

 �

�
BUFFERPOOL

bufferpool-name

OVERHEAD

number-of-milliseconds
 �

�
NO FILE SYSTEM CACHING

FILE SYSTEM CACHING

TRANSFERRATE

number-of-milliseconds
 �

CREATE TABLESPACE

Statements 517

�
DROPPED TABLE RECOVERY

ON

OFF

 ��

size-attributes:

AUTORESIZE

NO

YES

INITIALSIZE

integer

K

M

G

 �

�
INCREASESIZE

integer

PERCENT

K

M

G

MAXSIZE

integer

K

M

G

NONE

system-containers:

�

�

,

USING

(

’container-string’

)

on-db-partitions-clause

database-containers:

�

USING

container-clause

on-db-partitions-clause

container-clause:

�

 ,

(

FILE

’container-string’

number-of-pages

)

DEVICE

integer

K

M

G

on-db-partitions-clause:

 ON DBPARTITIONNUM

DBPARTITIONNUMS
 �

�

�

 ,

(

db-partition-number1

)

TO

db-partition-number2

CREATE TABLESPACE

518 SQL Reference, Volume 2

Description

LARGE, REGULAR, SYSTEM TEMPORARY, or USER TEMPORARY

Specifies the type of table space that is to be created. If no type is specified, the

default is determined by the MANAGED BY clause.

LARGE

Stores all permanent data. This type is only allowed on database managed

space (DMS) table spaces. It is also the default type for DMS table spaces

when no type is specified. When a table is placed in a large table space:

v The table can be larger than a table in a regular table space. For details

on table and table space limits, see “SQL limits”.

v The table can support more than 255 rows per data page, which can

improve space utilization on data pages.

v Indexes that are defined on the table will require an additional 2 bytes

per row entry, compared to indexes defined on a table that resides in a

regular table space.

REGULAR

Stores all permanent data. This type applies to both DMS and SMS table

spaces. This is the only type allowed for SMS table spaces, and it is also

the default type for SMS table spaces when no type is specified.

SYSTEM TEMPORARY

Stores temporary tables, work areas used by the database manager to

perform operations such as sorts or joins. A database must always have at

least one SYSTEM TEMPORARY table space, because temporary tables can

only be stored in such a table space. A temporary table space is created

automatically when a database is created.

USER TEMPORARY

Stores declared global temporary tables. No user temporary table spaces

exist when a database is created. To allow the definition of declared

temporary tables, at least one user temporary table space should be created

with appropriate USE privileges.

tablespace-name

Names the table space. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The tablespace-name must not identify a table space that

already exists in the catalog (SQLSTATE 42710). The tablespace-name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

IN DATABASE PARTITION GROUP db-partition-group-name

Specifies the database partition group for the table space. The database

partition group must exist. The only database partition group that can be

specified when creating a SYSTEM TEMPORARY table space is

IBMTEMPGROUP. The DATABASE PARTITION GROUP keywords are

optional.

 If the database partition group is not specified, the default database partition

group (IBMDEFAULTGROUP) is used for REGULAR, LARGE, and USER

TEMPORARY table spaces. For SYSTEM TEMPORARY table spaces, the

default database partition group IBMTEMPGROUP is used.

PAGESIZE integer [K]

Defines the size of pages used for the table space. The valid values for integer

without the suffix K are 4 096, 8 192, 16 384, or 32 768. The valid values for

integer with the suffix K are 4, 8, 16, or 32. Any number of spaces is allowed

between integer and K, including no space. An error occurs if the page size is

CREATE TABLESPACE

Statements 519

not one of these values (SQLSTATE 428DE), or if the page size is not the same

as the page size of the buffer pool that is associated with the table space

(SQLSTATE 428CB).

 The default value is provided by the pagesize database configuration

parameter, which is set when the database is created.

MANAGED BY AUTOMATIC STORAGE

Specifies that the table space is to be an automatic storage table space. If

automatic storage is not defined for the database, an error is returned

(SQLSTATE 55060).

 An automatic storage table space is created as either a system managed space

(SMS) table space or a database managed space (DMS) table space. When DMS

is chosen and the type of table space is not specified, the default behavior is to

create a large table space. With an automatic storage table space, the database

manager determines which containers are to be assigned to the table space,

based upon the storage paths that are associated with the database.

size-attributes

Specify the size attributes for an automatic storage table space or a DMS table

space that is not an automatic storage table space. SMS table spaces are not

auto-resizable.

AUTORESIZE

Specifies whether or not the auto-resize capability of a DMS table space or

an automatic storage table space is to be enabled. Auto-resizable table

spaces automatically increase in size when they become full. The default is

NO for DMS table spaces and YES for automatic storage table spaces.

NO

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be disabled.

YES

Specifies that the auto-resize capability of a DMS table space or an

automatic storage table space is to be enabled.

INITIALSIZE integer K | M | G

Specifies the initial size, per database partition, of an automatic storage

table space. This option is only valid for automatic storage table spaces.

The integer value must be followed by K (for kilobytes), M (for

megabytes), or G (for gigabytes). Note that the actual value used might be

slightly smaller than what was specified, because the database manager

strives to maintain a consistent size across containers in the table space.

Moreover, if the table space is auto-resizable and the initial size is not large

enough to contain meta-data that must be added to the new table space,

DB2 will continue to extend the table space by INCREASESIZE until there

is enough space. If the table space is auto-resizable, but the INITIALSIZE

clause is not specified, the database manager determines an appropriate

value.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G

Specifies the amount, per database partition, by which a table space that is

enabled for auto-resize will automatically be increased when the table

space is full, and a request for space has been made. The integer value

must be followed by:

CREATE TABLESPACE

520 SQL Reference, Volume 2

v PERCENT to specify the amount as a percentage of the table space size

at the time that a request for space is made. When PERCENT is

specified, the integer value must be between 0 and 100 (SQLSTATE

42615).

v K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the

amount in bytes

Note that the actual value used might be slightly smaller or larger than

what was specified, because the database manager strives to maintain

consistent growth across containers in the table space. If the table space is

auto-resizable, but the INCREASESIZE clause is not specified, the database

manager determines an appropriate value.

MAXSIZE integer K | M | G or MAXSIZE NONE

Specifies the maximum size to which a table space that is enabled for

auto-resize can automatically be increased. If the table space is

auto-resizable, but the MAXSIZE clause is not specified, the default is

NONE.

integer

Specifies a hard limit on the size, per database partition, to which a

DMS table space or an automatic storage table space can automatically

be increased. The integer value must be followed by K (for kilobytes),

M (for megabytes), or G (for gigabytes). Note that the actual value

used might be slightly smaller than what was specified, because the

database manager strives to maintain consistent growth across

containers in the table space.

NONE

Specifies that the table space is to be allowed to grow to file system

capacity, or to the maximum table space size (described in “SQL

limits”).

MANAGED BY SYSTEM

Specifies that the table space is to be an SMS table space. When the type of

table space is not specified, the default behavior is to create a regular table

space.

system-containers

Specify the containers for an SMS table space.

USING (’container-string’,...)

For an SMS table space, identifies one or more containers that will belong

to the table space and in which the table space data will be stored. The

container-string cannot exceed 240 bytes in length.

 Each container-string can be an absolute or relative directory name.

The directory name, if not absolute, is relative to the database directory,

and can be a path name alias (a symbolic link on UNIX systems) to storage

that is not physically associated with the database directory. For example,

<dbdir>/work/c1 could be a symbolic link to a separate file system.

If any component of the directory name does not exist, it is created by the

database manager. When a table space is dropped, all components created

by the database manager are deleted. If the directory identified by

container-string exists, it must not contain any files or subdirectories

(SQLSTATE 428B2).

The format of container-string is dependent on the operating system. On

Windows operating systems, an absolute directory path name begins with

CREATE TABLESPACE

Statements 521

a drive letter and a colon (:); on UNIX systems, an absolute path name

begins with a forward slash (/). A relative path name on any platform

does not begin with an operating system-dependent character.

Remote resources (such as LAN-redirected drives or NFS-mounted file

systems) are currently only supported when using Network Appliance

Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance

iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series with

a Windows DB2 server. Note that NEC Storage NS Series is only supported

with the use of an uninterrupted power supply (UPS); continuous UPS

(rather than standby) is recommended. An NFS-mounted file system on

AIX must be mounted in uninterruptible mode using the -o nointr option.

on-db-partitions-clause

Specifies the database partition or partitions on which the containers are

created in a partitioned database. If this clause is not specified, then the

containers are created on the database partitions in the database partition

group that are not explicitly specified in any other on-db-partitions-clauses.

For a SYSTEM TEMPORARY table space defined on database partition

group IBMTEMPGROUP, when the on-db-partitions-clause is not specified,

the containers will also be created on all new database partitions added to

the database.

MANAGED BY DATABASE

Specifies that the table space is to be a DMS table space. When the type of

table space is not specified, the default behavior is to create a large table space.

database-containers

Specify the containers for a DMS table space.

USING

Introduces a container-clause.

container-clause

Specifies the containers for a DMS table space.

(FILE|DEVICE ’container-string’ number-of-pages,...)

For a DMS table space, identifies one or more containers that will

belong to the table space and in which the table space data will be

stored. The type of the container (either FILE or DEVICE) and its size

(in PAGESIZE pages) are specified. The size can also be specified as an

integer value followed by K (for kilobytes), M (for megabytes) or G

(for gigabytes). If specified in this way, the floor of the number of bytes

divided by the pagesize is used to determine the number of pages for

the container. A mixture of FILE and DEVICE containers can be

specified. The container-string cannot exceed 254 bytes in length.

 For a FILE container, container-string must be an absolute or relative file

name. The file name, if not absolute, is relative to the database

directory. If any component of the directory name does not exist, it is

created by the database manager. If the file does not exist, it will be

created and initialized to the specified size by the database manager.

When a table space is dropped, all components created by the database

manager are deleted.

Note: If the file exists, it is overwritten, and if it is smaller than

specified, it is extended. The file will not be truncated if it is larger

than specified.

CREATE TABLESPACE

522 SQL Reference, Volume 2

For a DEVICE container, container-string must be a device name. The

device must already exist.

All containers must be unique across all databases. A container can

belong to only one table space. The size of the containers can differ;

however, optimal performance is achieved when all containers are the

same size. The exact format of container-string is dependent on the

operating system.

Remote resources (such as LAN-redirected drives or NFS-mounted file

systems) are currently only supported when using Network Appliance

Filers, IBM iSCSI, IBM Network Attached Storage, Network Appliance

iSCSI, NEC iStorage S2100, S2200, or S4100, or NEC Storage NS Series

with a Windows DB2 server. Note that NEC Storage NS Series is only

supported with the use of an uninterrupted power supply (UPS);

continuous UPS (rather than standby) is recommended..

on-db-partitions-clause

Specifies the database partition or partitions on which the containers

are created in a partitioned database. If this clause is not specified,

then the containers are created on the database partitions in the

database partition group that are not explicitly specified in any other

on-db-partitions-clause. For a SYSTEM TEMPORARY table space defined

on database partition group IBMTEMPGROUP, when the

on-db-partitions-clause is not specified, the containers will also be

created on all new database partitions added to the database.

on-db-partitions-clause

Specifies the database partitions on which containers are created in a

partitioned database.

ON DBPARTITIONNUMS

Keywords indicating that individual database partitions are specified.

DBPARTITIONNUM is a synonym for DBPARTITIONNUMS.

db-partition-number1

Specify a database partition number.

TO db-partition-number2

Specify a range of database partition numbers. The value of

db-partition-number2 must be greater than or equal to the value of

db-partition-number1 (SQLSTATE 428A9). Containers are to be created

on each database partition between and including the specified values.

A specified database partition must be in the database partition group

for the table space.

 The database partition specified by number, and every database partition

within the specified range of database partitions must exist in the database

partition group for the table space (SQLSTATE 42729). A database partition

number can only appear explicitly or within a range in exactly one

on-db-partitions-clause for the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages

Specifies the number of PAGESIZE pages that will be written to a

container before skipping to the next container. The extent size value can

also be specified as an integer value followed by K (for kilobytes) or M (for

megabytes). If specified in this way, the floor of the number of bytes

divided by the page size is used to determine the value for the extent size.

The database manager cycles repeatedly through the containers as data is

stored.

CREATE TABLESPACE

Statements 523

The default value is provided by the dft_extent_sz database configuration

parameter, which has a valid range of 2-256 pages.

PREFETCHSIZE

Specifies to read in data needed by a query prior to it being referenced by

the query, so that the query need not wait for I/O to be performed.

 The default value is provided by the dft_prefetch_sz database

configuration parameter.

AUTOMATIC

Specifies that the prefetch size of a table space is to be updated

automatically; that is, the prefetch size will be managed by DB2, using

the following formula:

 Prefetch size =

 (number of containers) *

 (number of physical disks per container) *

 (extent size)

The number of physical disks per container defaults to 1, unless a

value is specified through the DB2_PARALLEL_IO registry variable.

 DB2 will update the prefetch size automatically whenever the number

of containers in a table space changes (following successful execution

of an ALTER TABLESPACE statement that adds or drops one or more

containers). The prefetch size is updated at database start-up.

number-of-pages

Specifies the number of PAGESIZE pages that will be read from the

table space when data prefetching is being performed. The prefetch

size value can also be specified as an integer value followed by K (for

kilobytes), M (for megabytes), or G (for gigabytes). If specified in this

way, the floor of the number of bytes divided by the page size is used

to determine the number of pages value for prefetch size.

BUFFERPOOL bufferpool-name

The name of the buffer pool used for tables in this table space. The buffer

pool must exist (SQLSTATE 42704). If not specified, the default buffer pool

(IBMDEFAULTBP) is used. The page size of the buffer pool must match

the page size specified (or defaulted) for the table space (SQLSTATE

428CB). The database partition group of the table space must be defined

for the buffer pool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds

Specifies the I/O controller overhead and disk seek and latency time. This

value is used to determine the cost of I/O during query optimization. The

value of number-of-milliseconds is any numeric literal (integer, decimal, or

floating point). If this value is not the same for all containers, the number

should be the average for all containers that belong to the table space.

 For a database that was created in Version 9 or later, the default I/O

controller overhead and disk seek and latency time is 7.5 milliseconds. For

a database that was migrated from a previous version of DB2 to Version 9

or later, the default is 12.67 milliseconds.

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING

Specifies whether or not I/O operations are to be cached at the file system

level. If neither option is specified, the default is:

CREATE TABLESPACE

524 SQL Reference, Volume 2

v FILE SYSTEM CACHING for JFS on AIX, Linux System z™, all non-VxFS

file systems on Solaris, HPUX, SMS temporary table space files on all

platforms, and all LOB and large data

v NO FILE SYSTEM CACHING on all other platforms and file system

types

FILE SYSTEM CACHING

Specifies that all I/O operations in the target table space are to be

cached at the file system level.

NO FILE SYSTEM CACHING

Specifies that all I/O operations are to bypass the file system-level

cache.

TRANSFERRATE number-of-milliseconds

Specifies the time to read one page into memory. This value is used to

determine the cost of I/O during query optimization. The value of

number-of-milliseconds is any numeric literal (integer, decimal, or floating

point). If this value is not the same for all containers, the number should

be the average for all containers that belong to the table space.

 For a database that was created in Version 9 or later, the default time to

read one page into memory is 0.06 milliseconds. For a database that was

migrated from a previous version of DB2 to Version 9 or later, the default

is 0.18 milliseconds.

DROPPED TABLE RECOVERY

Indicates whether dropped tables in the specified table space can be

recovered using the RECOVER DROPPED TABLE option of the

ROLLFORWARD DATABASE command. This clause can only be specified

for a regular table space (SQLSTATE 42613).

ON

Specifies that dropped tables can be recovered. This has been the

default since Version 8.

OFF

Specifies that dropped tables cannot be recovered. This is the default in

Version 7.

Rules

v If automatic storage is not defined for the database, an error is returned

(SQLSTATE 55060).

v The INITIALSIZE clause cannot be specified with the MANAGED BY SYSTEM

or MANAGED BY DATABASE clause (SQLSTATE 42601).

v The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified

with the MANAGED BY SYSTEM clause (SQLSTATE 42601).

v The AUTORESIZE, INITIALSIZE, INCREASESIZE, or MAXSIZE clause cannot

be specified for the creation of a temporary automatic storage table space

(SQLSTATE 42601).

v The INCREASESIZE or MAXSIZE clause cannot be specified if the tables space

is not auto-resizable (SQLSTATE 42601).

v AUTORESIZE cannot be enabled for DMS table spaces that are defined to use

raw device containers (SQLSTATE 42601).

v A table space must initially be large enough to hold five extents (SQLSTATE

57011).

CREATE TABLESPACE

Statements 525

v The maximum size of a table space must be larger than its initial size

(SQLSTATE 560B0).

v Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE

SET) cannot be performed on automatic storage table spaces, because the

database manager is controlling the space management of such table spaces

(SQLSTATE 42858).

v Each container definition requires 53 bytes plus the number of bytes necessary to

store the container name. The combined length of all container names for the

table space cannot exceed 20 480 bytes (SQLSTATE 54034).

v For a partitioned database, if more than one database partition resides on the

same physical node, the same device or path cannot be specified for more than

one database partition (SQLSTATE 42730). In this environment, either specify a

unique container-string for each database partition, or use a relative path name.

Notes

v Choosing between a database-managed space or a system-managed space for a

table space is a fundamental choice involving trade-offs.

v When more than one TEMPORARY table space exists in the database, they are

used in round-robin fashion to balance their usage.

v You can specify a database partition expression for container string syntax when

creating either SMS or DMS containers. You would typically specify the database

partition expression when using multiple logical database partitions in the

partitioned database system. This ensures that container names are unique

across database partition servers. When the expression is specified, the database

partition number is part of the container name or, if additional arguments are

specified, the result of the argument is part of the container name.

You use the argument “ $N” ([blank]$N) to indicate a database partition

expression. A database partition expression can be used anywhere in the

container name, and multiple database partition expressions can be specified.

Terminate the database partition expression with a space character; whatever

follows the space is appended to the container name after the database partition

expression is evaluated. If there is no space character in the container name after

the database partition expression, it is assumed that the rest of the string is part

of the expression. The argument can only be used in one of the following forms.

 Table 23. Arguments for Creating Containers. Operators are evaluated from left to right.

The database partition number in the examples is assumed to be 5.

Syntax Example Value

[blank]$N ″ $N″ 5

[blank]$N+[number] ″ $N+1011″ 1016

[blank]$N%[number] ″ $N%3″

a 2

[blank]$N+[number]%[number] ″ $N+12%13″ 4

[blank]$N%[number]+[number] ″ $N%3+20″ 22

a % represents the modulus operator.

For example:

 CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

 (device ’/dev/rcont $N’ 20000)

 On a two database partition system, the following containers

 would be created:

 /dev/rcont0 - on DATABASE PARTITION 0

CREATE TABLESPACE

526 SQL Reference, Volume 2

/dev/rcont1 - on DATABASE PARTITION 1

 CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

 (file ’/DB2/containers/TS2/container $N+100’ 10000)

 On a four database partition system, the following containers

 would be created:

 /DB2/containers/TS2/container100 - on DATABASE PARTITION 0

 /DB2/containers/TS2/container101 - on DATABASE PARTITION 1

 /DB2/containers/TS2/container102 - on DATABASE PARTITION 2

 /DB2/containers/TS2/container103 - on DATABASE PARTITION 3

 CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

 (’/TS3/cont $N%2’,’/TS3/cont $N%2+2’)

 On a two database partition system, the following containers

 would be created:

 /TS3/cont0 - On DATABASE PARTITION 0

 /TS3/cont2 - On DATABASE PARTITION 0

 /TS3/cont1 - On DATABASE PARTITION 1

 /TS3/cont3 - On DATABASE PARTITION 1

 If database partition = 5, the containers:

 ’/dbdir/node $N /cont1’

 ’/ $N+1000 /file1’

 ’ $N%10 /container’

 ’/dir/ $N2000 /dmscont’

 are created as:

 ’/dbdir/node5/cont1’

 ’/1005/file1’

 ’5/container’

 ’/dir/2000/dmscont’

v An automatic storage table space is created as either an SMS table space or a

DMS table space. DMS is chosen for large and regular table spaces, and SMS is

chosen for temporary table spaces. Note that this behavior cannot be depended

upon, because it might change in a future release. When DMS is chosen and the

type of table space is not specified, the default behavior is to create a large table

space.

v The creation of an automatic storage table space does not include container

definitions. The database manager automatically determines the location and

size, if applicable, of the containers on the basis of the storage paths that are

associated with the database. The database manager will attempt to grow large

and regular table spaces, as necessary, provided that the maximum size has not

been reached. This might involve extending existing containers or adding

containers to a new stripe set. Every time that the database is activated, the

database manager automatically reconfigures the number and location of the

containers for temporary table spaces that are not in an abnormal state.

v A large or regular automatic storage table space will not use new storage paths

(see the description of the ALTER DATABASE statement) until there is no more

space in one of the existing storage paths that the table space is using.

Temporary automatic storage table spaces can only use the new storage paths

once the database has been deactivated and then reactivated.

v Compatibilities

– For compatibility with previous versions of DB2:

- NODE can be specified in place of DBPARTITIONNUM

- NODES can be specified in place of DBPARTITIONNUMS

CREATE TABLESPACE

Statements 527

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

- LONG can be specified in place of LARGE

Examples

Example 1: Create a large DMS table space on a UNIX system using three devices

of 10 000 4K pages each. Specify their I/O characteristics.

 CREATE TABLESPACE PAYROLL

 MANAGED BY DATABASE

 USING (DEVICE’/dev/rhdisk6’ 10000,

 DEVICE ’/dev/rhdisk7’ 10000,

 DEVICE ’/dev/rhdisk8’ 10000)

 OVERHEAD 12.67

 TRANSFERRATE 0.18

Example 2: Create a regular SMS table space on Windows using three directories on

three separate drives, with a 64-page extent size, and a 32-page prefetch size.

 CREATE TABLESPACE ACCOUNTING

 MANAGED BY SYSTEM

 USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

 EXTENTSIZE 64

 PREFETCHSIZE 32

Example 3: Create a system temporary DMS table space on a UNIX system using

two files of 50 000 pages each, and a 256-page extent size.

 CREATE TEMPORARY TABLESPACE TEMPSPACE2

 MANAGED BY DATABASE

 USING (FILE ’dbtmp/tempspace2.f1’ 50000,

 FILE ’dbtmp/tempspace2.f2’ 50000)

 EXTENTSIZE 256

Example 4: Create a large DMS table space in database partition group

ODDNODEGROUP (database partitions 1, 3, and 5) on a UNIX system. Use the

device /dev/rhdisk0 for 10 000 4K pages on each database partition. Specify a

database partition-specific device with 40 000 4K pages for each database partition.

 CREATE TABLESPACE PLANS

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn1hd01’ 40000)

 ON DBPARTITIONNUM (1)

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn3hd03’ 40000)

 ON DBPARTITIONNUM (3)

 USING (DEVICE ’/dev/rhdisk0’ 10000, DEVICE ’/dev/rn5hd05’ 40000)

 ON DBPARTITIONNUM (5)

Example 5: Create a large automatic storage table space named DATATS, allowing

the system to make all decisions with respect to table space size and growth.

 CREATE TABLESPACE DATATS

or

 CREATE TABLESPACE DATATS

 MANAGED BY AUTOMATIC STORAGE

Example 6: Create a system temporary automatic storage table space named

TEMPDATA.

 CREATE TEMPORARY TABLESPACE TEMPDATA

or

CREATE TABLESPACE

528 SQL Reference, Volume 2

CREATE TEMPORARY TABLESPACE TEMPDATA

 MANAGED BY AUTOMATIC STORAGE

Example 7: Create a large automatic storage table space named USERSPACE3 with

an initial size of 100 megabytes and a maximum size of 1 gigabyte.

 CREATE TABLESPACE USERSPACE3

 INITIALSIZE 100 M

 MAXSIZE 1 G

Example 8: Create a large automatic storage table space named LARGEDATA with

a growth rate of 10 percent (that is, its total size increases by 10 percent each time

that it is automatically resized) and a maximum size of 512 megabytes. Instead of

specifying the INITIALSIZE clause, let the database manager determine an

appropriate initial size for the table space.

 CREATE LARGE TABLESPACE LARGEDATA

 INCREASESIZE 10 PERCENT

 MAXSIZE 512 M

Example 9: Create a large DMS table space named USERSPACE4 with two file

containers (each container being 1 megabyte in size), a growth rate of 2 megabytes,

and a maximum size of 100 megabytes.

 CREATE TABLESPACE USERSPACE4

 MANAGED BY DATABASE USING (FILE ’/db2/file1’ 1 M, FILE ’/db2/file2’ 1 M)

 AUTORESIZE YES

 INCREASESIZE 2 M

 MAXSIZE 100 M

Example 10: Create large DMS table spaces, using RAW devices on a Windows

operating system.

v To specify entire physical drives, use the \\.\physical-drive format:

 CREATE TABLESPACE TS1

 MANAGED BY DATABASE USING (DEVICE ’\\.\PhysicalDrive5’ 10000,

 DEVICE ’\\.\PhysicalDrive6’ 10000)

v To specify logical partitions by using drive letters:

 CREATE TABLESPACE TS2

 MANAGED BY DATABASE USING (DEVICE ’\\.\G:’ 10000,

 DEVICE ’\\.\H:’ 10000)

v To specify logical partitions by using volume global unique identifiers (GUIDs),

use the db2listvolumes utility to retrieve the volume GUID for each local

partition, then copy the GUID for the logical partition that you want into the

table space container clause:

 CREATE TABLESPACE TS3

 MANAGED BY DATABASE USING (

 DEVICE ’\\?\Volume{2ca6a0c1-8542-11d8-9734-00096b5322d2}\’ 20000M)

You might prefer to use volume GUIDs over the drive letter format if you have

more partitions than available drive letters on the machine.

v To specify logical partitions by using junction points (or volume mount points),

mount the RAW partition to another NTFS-formatted volume as a junction

point, then specify the path to the junction point on the NTFS volume as the

container path. For example:

 CREATE TABLESPACE TS4

 MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,

 DEVICE ’C:\JUNCTION\DISK_2’ 10000)

CREATE TABLESPACE

Statements 529

DB2 first queries the partition to see whether there is a file system on it; if yes,

the partition is not treated as a RAW device, and DB2 performs normal file

system I/O operations on the partition.

CREATE TABLESPACE

530 SQL Reference, Volume 2

CREATE THRESHOLD

The CREATE THRESHOLD statement defines a threshold.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE THRESHOLD threshold-name FOR threshold-domain ACTIVITIES �

�

ENFORCEMENT

enforcement-scope
 ENABLE

DISABLE

�

� WHEN threshold-predicate threshold-exceeded-actions ��

threshold-domain:

 DATABASE

SERVICE CLASS

service-class-name

UNDER

service-class-name

WORKLOAD

workload-name

enforcement-scope:

 DATABASE

DATABASE PARTITION

WORKLOAD OCCURRENCE

threshold-predicate:

CREATE THRESHOLD

Statements 531

TOTALDBPARTITIONCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS > 0

TOTALSCPARTITIONCONNECTIONS

>

integer-value

AND QUEUEDCONNECTIONS

>

integer-value

AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME

>

integer-value

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

CONCURRENTWORKLOADOCCURRENCES

>

integer-value

CONCURRENTWORKLOADACTIVITIES

>

integer-value

AND QUEUEDACTIVITIES > 0

CONCURRENTDBCOORDACTIVITIES

>

integer-value

AND QUEUEDACTIVITIES

>

integer-value

AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST

>

bigint-value

SQLROWSRETURNED

>

integer-value

ACTIVITYTOTALTIME

>

integer-value

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SQLTEMPSPACE

>

integer-value

K

M

G

threshold-exceeded-actions:

 COLLECT ACTIVITY DATA NONE

WITHOUT DETAILS

COLLECT ACTIVITY DATA

WITH DETAILS

AND VALUES

�

� STOP EXECUTION

CONTINUE

Description

threshold-name

Names the threshold. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The threshold-name must not identify a threshold that

already exists at the current server (SQLSTATE 42710). The name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

FOR threshold-domain ACTIVITIES

Specifies the definition domain of the threshold.

DATABASE

This threshold applies to any activity in the database.

SERVICE CLASSservice-class-name

This threshold applies to activities executing in service class

service-class-name. If UNDER is not specified, service-class-name must

identify an existing service superclass (SQLSTATE 42704). If UNDER is

specified, service-class-name must identify an existing service subclass of the

service superclass specified after the UNDER keyword (SQLSTATE 42704).

UNDER service-class-name

Specifies a service superclass. The service-class-name must identify an

existing service superclass (SQLSTATE 42704).

CREATE THRESHOLD

532 SQL Reference, Volume 2

WORKLOAD workload-name

This threshold applies to the specified workload. The workload-name must

identify an existing workload (SQLSTATE 42704).

ENFORCEMENT enforcement-scope

The enforcement scope of the threshold.

DATABASE

The threshold is enforced across all database partitions within the

definition domain; that is, all database partitions of the database, and all

database partitions of the service class.

PARTITION

The threshold is enforced on a per database partition basis. There is no

coordination across all database partitions to enforce the threshold.

WORKLOAD OCCURRENCE

The threshold is enforced only within a workload occurrence. Two

workload occurrences running concurrently on the same database partition

will each have their own running count for this threshold.

ENABLE or DISABLE

Specifies whether or not the threshold is enabled for use by the database

manager.

ENABLE

The threshold is used by the database manager to restrict the execution of

database activities.

DISABLE

The threshold is not used by the database manager to restrict the execution

of database activities.

WHEN threshold-predicate

Specifies the condition of the threshold.

TOTALDBPARTITIONCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator

connections that can run concurrently on a database partition. This value

can be any positive integer, including zero (SQLSTATE 42820). A value of

zero means that any new coordinator connection will be prevented from

connecting. All currently running or queued connections will continue. The

definition domain for this condition must be DATABASE, and the

enforcement scope must be PARTITION (SQLSTATE 5U037).

TOTALSCPARTITIONCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator

connections that can run concurrently on a database partition in a specific

service superclass. This value can be any positive integer, including zero

(SQLSTATE 42820). A value of zero means that any new connection will be

prevented from joining the service class. All currently running or queued

connections will continue. The definition domain for this condition must be

SERVICE SUPERCLASS, and the enforcement scope must be PARTITION

(SQLSTATE 5U037).

AND QUEUEDCONNECTIONS > integer-value or AND

QUEUEDCONNECTIONS UNBOUNDED

Specifies a queue size for when the maximum number of coordinator

connections is exceeded. This value can be any positive integer,

including zero (SQLSTATE 42820). A value of zero means that no

coordinator connections are queued. Specifying UNBOUNDED will

CREATE THRESHOLD

Statements 533

queue every connection that exceeds the specified maximum number

of coordinator connections, and the threshold-exceeded-actions will never

be executed. The default is zero.

CONNECTIONIDLETIME > integer-value (DAY | DAYS | HOUR | HOURS

| MINUTE | MINUTES)

This condition defines an upper bound for the amount of time the

database manager will allow a connection to remain idle. This value can be

any non-zero positive integer (SQLSTATE 42820). Use a valid duration

keyword to specify an appropriate unit of time for integer-value. The

definition domain for this condition must be DATABASE or SERVICE

SUPERCLASS, and the enforcement scope must be DATABASE (SQLSTATE

5U037). This condition is logically enforced at the coordinator database

partition.

 Because the minimum granularity for this threshold is five minutes,

specified values are rounded up to the closest non-zero multiple of five

minutes. In cases where the rounding generates an overflow or underflow,

the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value

specified that has a seconds equivalent larger than 2 147 483 400 seconds

will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing

less frequent checks might affect the granularity of this threshold.

CONCURRENTWORKLOADOCCURRENCES > integer-value

This condition defines an upper bound on the number of concurrent

occurrences for the workload on each database partition. This value can be

any non-zero positive integer (SQLSTATE 42820). The definition domain

for this condition must be WORKLOAD (SQLSTATE 5U037).

CONCURRENTWORKLOADACTIVITIES > integer-value

This condition defines an upper bound on the number of concurrent

coordinator activities and nested activities for the workload on each

database partition. This value can be any non-zero positive integer

(SQLSTATE 42820). The enforcement scope for this condition must be

WORKLOAD OCCURRENCE (SQLSTATE 5U037).

 Each nested activity must satisfy the following conditions:

v It must be a recognized coordinator activity. Any nested coordinator

activity that does not fall within the recognized types of activities will

not be counted. Similarly, nested subagent activities, such as remote

node requests, are not counted.

v It must be directly invoked from user logic, such as a user-written

procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started

under the invocation of a DB2 utility or routines in the SYSIBM, SYSFUN,

or SYSPROC schemas are not counted towards the upper bound specified

by this threshold.

Internal SQL activities, such as those initiated by the setting of a constraint

or the refreshing of a materialized query table, are also not counted by this

threshold, because they are initiated by the database manager and not

directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value

This condition defines an upper bound on the number of recognized

CREATE THRESHOLD

534 SQL Reference, Volume 2

database coordinator activities that can run concurrently on all database

partitions in the specified domain. This value can be any positive integer,

including zero (SQLSTATE 42820). A value of zero means that any new

database coordinator activities will be prevented from executing. All

currently running or queued database coordinator activities will continue.

The definition domain for this condition must be DATABASE, WORK

ACTION, SERVICE SUPERCLASS, or SERVICE SUBCLASS, and the

enforcement scope must be DATABASE (SQLSTATE 5U037).

AND QUEUEDACTIVITIES > integer-value or AND

QUEUEDACTIVITIES UNBOUNDED

Specifies a queue size for when the maximum number of database

coordinator activities is exceeded. This value can be any positive

integer, including zero (SQLSTATE 42820). A value of zero means that

no database coordinator activities are queued. Specifying

UNBOUNDED will queue every database coordinator activity that

exceeds the specified maximum number of database coordinator

activities, and the threshold-exceeded-actions will never be executed. The

default is zero.

ESTIMATEDSQLCOST > bigint-value

This condition defines an upper bound for the optimizer-assigned cost (in

timerons) of an activity. This value can be any non-zero positive big integer

(SQLSTATE 42820). The definition domain for this condition must be

DATABASE, WORK ACTION, SERVICE SUPERCLASS, or SERVICE

SUBCLASS, and the enforcement scope must be DATABASE (SQLSTATE

5U037). This condition is enforced at the coordinator database partition.

Activities tracked by this condition are:

v Coordinator activities of type data manipulation language (DML)

v Nested DML activities that are invoked from user logic. Consequently,

DML activities that can be initiated by the database manager (such as

utilities, procedures, or internal SQL) are not tracked by this condition

(unless their cost is included in the parent’s estimate, in which case they

are indirectly tracked).

SQLROWSRETURNED > integer-value

This condition defines an upper bound for the number of rows returned to

a client application from the application server. This value can be any

non-zero integer (SQLSTATE 42820). The definition domain for this

condition must be DATABASE, WORK ACTION, SERVICE SUPERCLASS,

or SERVICE SUBCLASS, and the enforcement scope must be DATABASE

(SQLSTATE 5U037). This condition is enforced at the coordinator database

partition. Activities tracked by this condition are:

v Coordinator activities of type DML

v Nested DML activities that are derived from user logic. Activities that

are initiated by the database manager through a utility, procedure, or

internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as

individual activities. There is no aggregation of the rows that are returned

by the procedure itself.

ACTIVITYTOTALTIME > integer-value (DAY | DAYS | HOUR | HOURS |

MINUTE | MINUTES)

This condition defines an upper bound for the amount of time the

database manager will allow an activity to execute, including the time the

activity was queued. This value can be any non-zero positive integer

CREATE THRESHOLD

Statements 535

(SQLSTATE 42820). Use a valid duration keyword to specify an

appropriate unit of time for integer-value. The definition domain for this

condition must be DATABASE, WORK ACTION, SERVICE SUPERCLASS,

or SERVICE SUBCLASS, and the enforcement scope must be DATABASE

(SQLSTATE 5U037). This condition is logically enforced at the coordinator

database partition.

 Because the minimum granularity for this threshold is five minutes,

specified values are rounded up to the closest non-zero multiple of five

minutes. In cases where the rounding generates an overflow or underflow,

the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value

specified that has a seconds equivalent larger than 2 147 483 400 seconds

will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing

less frequent checks might affect the granularity of this threshold.

SQLTEMPSPACE > integer-value (K | M | G)

This condition defines an upper bound for the size of a system temporary

table space on any database partition. This value can be any non-zero

positive integer (SQLSTATE 42820).

 If integer-value K (in either upper- or lowercase) is specified, the maximum

size is 1024 times integer-value. If integer-value M is specified, the maximum

size is 1 048 576 times integer-value. If integer-value G is specified, the

maximum size is 1 073 741 824 times integer-value.

The definition domain for this condition must be DATABASE, WORK

ACTION, SERVICE SUPERCLASS, or SERVICE SUBCLASS, and the

enforcement scope must be PARTITION (SQLSTATE 5U037). Activities

tracked by this condition are:

v Coordinator activities of type DML and corresponding subagent work

(subsection execution)

v Nested DML activities that are derived from user logic and their

corresponding subagent work (subsection execution). Activities that are

initiated by the database manager through a utility, procedure, or

internal SQL are not affected by this condition.

threshold-exceeded-actions

Specifies what action is to be taken when a condition is exceeded. Each time

that a condition is exceeded, an event is recorded and made available through

the appropriate event monitor.

STOP EXECUTION

The execution of the activity is stopped and an error is returned

(SQLSTATE 5U026).

CONTINUE

The execution of the activity is not stopped.

COLLECT ACTIVITY DATA

Specifies that data about each activity that exceeded the threshold is to be sent

to the appropriate event monitor when the activity completes. The default is

COLLECT ACTIVITY DATA NONE. If COLLECT ACTIVITY DATA is

specified, the default is WITHOUT DETAILS.

NONE

Specifies that activity data should not be collected for each activity that

exceeds the threshold.

CREATE THRESHOLD

536 SQL Reference, Volume 2

WITHOUT DETAILS

Specifies that data about each activity that exceeds the threshold should be

sent to the applicable event monitor when the activity completes.

Statement and compilation environment information are not sent to the

event monitor.

WITH DETAILS

Specifies that statement and compilation environment information are to be

sent to the applicable event monitor for those activities that have them.

AND VALUES

Specifies that input data values are to be sent to the applicable event

monitor for those activities that have them.

Notes

v Threshold exceeded action of CONTINUE and event monitor data: Event

monitor data is collected only once when a threshold condition has been

exceeded. If the threshold exceeded action is CONTINUE, the activity continues

executing and no further event monitor data is collected for that threshold. For

example, consider a time threshold of 10 minutes with an action of CONTINUE.

After an activity exceeds the 10-minute upper bound, event monitor data is

collected for the threshold. The activity continues executing and no further event

monitor data is collected for this threshold.

v Quiescing a service class: The TOTALSCPARTITIONCONNECTIONS threshold

condition can be used to simulate quiescing service classes that cannot normally

be quiesced (for example, the default user class, or the default system class).

This is useful, because thresholds do not apply to users with DBADM authority

running in the SYSDEFAULTADMWORKLOAD, whereas a quiesced service

class is not available to anyone. Consequently, default service classes cannot be

quiesced directly but only through a threshold that allows users with DBADM

authority to join them when connected to the database using the

SYSDEFAULTADMWORKLOAD.

Examples

Example 1: Create a threshold that enforces a maximum temporary table space

usage of 50M (per database partition) to any activity in the database. Any activity

that violates this threshold is to be stopped.

 CREATE THRESHOLD DBMAX50MEGTEMPSPACE

 FOR DATABASE ACTIVITIES

 ENFORCEMENT DATABASE PARTITION

 WHEN SQLTEMPSPACE > 50 M

 STOP EXECUTION

Example 2: Create a second threshold to limit the default runtime of any activity in

the database to a maximum of 1 hour. Any activity that violates this threshold is to

be stopped.

 CREATE THRESHOLD DBMAX1HOURRUNTIME

 FOR DATABASE ACTIVITIES

 ENFORCEMENT DATABASE

 WHEN ACTIVITYTOTALTIME > 1 HOUR

 STOP EXECUTION

Example 3: Assume that a service superclass named BIGQUERIES was created to

host queries using more temporary space than average and running longer than 1

hour. The thresholds defined inside this service class will override the values that

CREATE THRESHOLD

Statements 537

were set above at the database level. Note how activities violating the thresholds

inside this superclass are allowed to continue executing, but detailed information is

collected for further analysis.

 CREATE THRESHOLD BIGQUERIESMAX500MEGTEMPSPACE

 FOR SERVICE CLASS BIGQUERIES ACTIVITIES

 ENFORCEMENT DATABASE PARTITION

 WHEN SQLTEMPSPACE > 500 M

 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES

 CONTINUE

 CREATE THRESHOLD BIGQUERIESLONGRUNNINGTIME

 FOR SERVICE CLASS BIGQUERIES ACTIVITIES

 ENFORCEMENT DATABASE

 WHEN ACTIVITYTOTALTIME > 10 HOURS

 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES

 CONTINUE

Example 4: Assuming the existence of a workload named PAYROLL, create a

threshold that enforces the maximum number of activities within the workload to

be less than or equal to 10.

 CREATE THRESHOLD MAXACTIVITIESINPAYROLL

 FOR WORKLOAD PAYROLL ACTIVITIES

 ENFORCEMENT WORKLOAD OCCURRENCE

 WHEN CONCURRENTWORKLOADACTIVITIES > 10

 STOP EXECUTION

Example 5: Create a threshold that enforces a maximum concurrency of 2 activities

in the service class BIGQUERIES.

 CREATE THRESHOLD MAXBIGQUERIESCONCURRENCY

 FOR SERVICE CLASS BIGQUERIES ACTIVITIES

 ENFORCEMENT DATABASE

 WHEN CONCURRENTDBCOORDACTIVITIES > 2

 STOP EXECUTION

CREATE THRESHOLD

538 SQL Reference, Volume 2

CREATE TRANSFORM

The CREATE TRANSFORM statement defines transformation functions, identified

by a group name, that are used to exchange structured type values with host

language programs and with external functions.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Owner of the type identified by type-name, and EXECUTE privilege on every

specified function

v SYSADM or DBADM authority

Syntax

�� CREATE TRANSFORM FOR type-name

TRANSFORMS
 �

�

�

�

,

(1)

group-name

(

TO SQL

WITH

function-designator

)

FROM SQL

��

Notes:

1 The same clause must not be specified more than once.

Description

TRANSFORM or TRANSFORMS

Indicates that one or more transform groups is being defined. Either version of

the keyword can be specified.

FOR type-name

Specifies a name for the user-defined structured type for which the transform

group is being defined.

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified type-name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for an

unqualified type-name. The type-name must be the name of an existing

user-defined type (SQLSTATE 42704), and it must be a structured type

(SQLSTATE 42809). The structured type or any other structured type in the

same type hierarchy must not have transforms already defined with the given

group-name (SQLSTATE 42739).

CREATE TRANSFORM

Statements 539

group-name

Names the transform group. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The group-name must not identify a transform

group that already exists in the catalog for the specified type-name (SQLSTATE

42739). The group-name must not begin with the characters ’SYS’ (SQLSTATE

42939). At most, one of each of the FROM SQL and TO SQL function

designations can be specified for any given group (SQLSTATE 42628).

TO SQL

Defines the specific function used to transform a value to the SQL user-defined

structured type format. The function must have all its parameters as built-in

data types and the returned type is type-name.

FROM SQL

Defines the specific function used to transform a value to a built in data type

value representing the SQL user-defined structured type. The function must

have one parameter of data type type-name, and return a built-in data type (or

set of built-in data types).

WITH function-designator

Uniquely identifies the transform function.

 If FROM SQL is specified, function-designator must identify a function that

meets the following requirements:

v There is one parameter of type type-name.

v The return type is a built-in type, or a row whose columns all have built-in

types.

v The signature specifies either LANGUAGE SQL or the use of another FROM

SQL transform function that has LANGUAGE SQL.

If TO SQL is specified, function-designator must identify a function that meets

the following requirements:

v All parameters have built-in types.

v The return type is type-name.

v The signature specifies either LANGUAGE SQL or the use of another TO

SQL transform function that has LANGUAGE SQL.

If function-designator identifies a function that does not meet these requirements

(according to its use as a FROM SQL or a TO SQL transform function), an

error is raised (SQLSTATE 428DC).

Methods (even if specified with FUNCTION ACCESS) cannot be specified as

transforms through function-designator. Instead, only functions that are defined

by the CREATE FUNCTION statement can act as transforms (SQLSTATE 42704

or 42883).

For more information, see “Function, method, and procedure designators” on

page 17“Function, method, and procedure designators” on page 17.

Rules

v The one or more built-in types that are returned from the FROM SQL function

should directly correspond to the one or more built-in types that are parameters

of the TO SQL function. This is a logical consequence of the inverse relationship

between these two functions. If this relationship between the FROM transform

and the TO transform does not hold, an error is raised (SQLSTATE -3).

CREATE TRANSFORM

540 SQL Reference, Volume 2

Notes

v When a transform group is not specified in an application program (using the

TRANSFORM GROUP precompile or bind option for static SQL, or the SET

CURRENT DEFAULT TRANSFORM GROUP statement for dynamic SQL), the

transform functions in the transform group ’DB2_PROGRAM’ are used (if

defined) when the application program is retrieving or sending host variables

that are based on the user-defined structured type identified by type-name. When

retrieving a value of data type type-name, the FROM SQL transform is invoked to

transform the structured type to the built-in data type returned by the transform

function. Similarly, when sending a host variable that will be assigned to a value

of data type type-name, the TO SQL transform is invoked to transform the

built-in data type value to the structured type value. If a user-defined transform

group is not specified, or a ’DB2_PROGRAM’ group is not defined (for the given

structured type), an error is raised (SQLSTATE 42741).

v The built-in data type representation for a structured type host variable must be

assignable:

– from the result of the FROM SQL transform function for the structured type

as defined by the specified TRANSFORM GROUP option of the precompile

command (using retrieval assignment rules) and

– to the parameter of the TO SQL transform function for the structured type as

defined by the specified TRANSFORM GROUP option of the precompile

command (using storage assignment rules).

If a host variable is not assignment compatible with the type required by the

applicable transform function, an error is raised (for bind-in: SQLSTATE 42821;

for bind-out: SQLSTATE 42806). For errors that result from string assignments,

see “String Assignments”.

v The transform functions identified in the default transform group named

’DB2_FUNCTION’ are used whenever a user-defined function not written in

SQL is invoked using the data type type-name as a parameter or returns type.

This applies when the function does not specify the TRANSFORM GROUP

clause. When invoking the function with an argument of data type type-name,

the FROM SQL transform is executed to transform the structured type to the

built-in data type returned by the transform function. Similarly, when the

returns data type of the function is of data type type-name, the TO SQL transform

is invoked to transform the built-in data type value returned from the external

function program into the structured type value.

v If a structured type contains an attribute that is also a structured type, the

associated transform functions must recursively expand (or assemble) all nested

structured types. This means that the results or parameters of the transform

functions consist only of the set of built-in types representing all base attributes

of the subject structured type (including all its nested structured types). There is

no ″cascading″ of transform functions for handling nested structured types.

v The functions identified in this statement are resolved according to the rules

outlined above at the execution of this statement. When these functions are used

(implicitly) in subsequent SQL statements, they do not undergo another

resolution process. The transform functions defined in this statement are

recorded exactly as they are resolved in this statement.

v When attributes or subtypes of a given type are created or dropped, the

transform functions for the user-defined structured type must also be changed.

v For a given transform group, the FROM SQL and TO SQL transforms can be

specified in either the same group-name clause, in separate group-name clauses, or

in separate CREATE TRANSFORM statements. The only restriction is that a

given FROM SQL or TO SQL transform designation may not be redefined

CREATE TRANSFORM

Statements 541

without first dropping the existing group definition. This allows you to define,

for example, a FROM SQL transform for a given group first, and the

corresponding TO SQL transform for the same group at a later time.

Examples

Example 1: Create two transform groups that associate the user-defined structured

type polygon with transform functions customized for C and Java, respectively.

 CREATE TRANSFORM FOR POLYGON

 mystruct1 (FROM SQL WITH FUNCTION myxform_sqlstruct,

 TO SQL WITH FUNCTION myxform_structsql)

 myjava1 (FROM SQL WITH FUNCTION myxform_sqljava,

 TO SQL WITH FUNCTION myxform_javasql)

CREATE TRANSFORM

542 SQL Reference, Volume 2

CREATE TRIGGER

The CREATE TRIGGER statement defines a trigger in the database.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v ALTER privilege on the table on which the BEFORE or AFTER trigger is defined

v CONTROL privilege on the view on which the INSTEAD OF TRIGGER is

defined

v Owner of the view on which the INSTEAD OF trigger is defined

v ALTERIN privilege on the schema of the table or view on which the trigger is

defined

v SYSADM or DBADM authority

and one of:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the trigger does not exist

v CREATEIN privilege on the schema, if the schema name of the trigger refers to

an existing schema

If the authorization ID of the statement does not have SYSADM or DBADM

authority, the privileges (excluding group privileges) held by the authorization ID

of the statement must include all of the following, as long as the trigger exists:

v SELECT privilege on the table on which the trigger is defined, if any transition

variables or tables are specified

v SELECT privilege on any table or view referenced in the triggered action

condition

v Necessary privileges to invoke the triggered SQL statements specified

If a trigger definer can only create the trigger because the definer has SYSADM

authority, the definer is granted explicit DBADM authority for the purpose of

creating the trigger.

Syntax

��

CREATE TRIGGER

trigger-name
 NO CASCADE

BEFORE

AFTER

INSTEAD OF

�

CREATE TRIGGER

Statements 543

�

�

 INSERT

DELETE

UPDATE

,

OF

column-name

 ON table-name

view-name
 �

�

�

(1)

(2)

AS

REFERENCING

OLD

correlation-name

AS

NEW

correlation-name

AS

OLD TABLE

identifier

AS

NEW TABLE

identifier

 �

� FOR EACH ROW

(3)

FOR EACH STATEMENT

 triggered-action ��

triggered-action:

(4)

WHEN

(

search-condition

)

 �

� SQL-procedure-statement

label:

SQL-procedure-statement:

�

 CALL

Compound SQL (Dynamic)

FOR

fullselect

,

WITH

common-table-expression

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:

1 OLD and NEW can only be specified once each.

CREATE TRIGGER

544 SQL Reference, Volume 2

2 OLD TABLE and NEW TABLE can only be specified once each, and only for

AFTER triggers or INSTEAD OF triggers.

3 FOR EACH STATEMENT may not be specified for BEFORE triggers or

INSTEAD OF triggers.

4 WHEN condition may not be specified for INSTEAD OF triggers.

Description

trigger-name

Names the trigger. The name, including the implicit or explicit schema name,

must not identify a trigger already described in the catalog (SQLSTATE 42710).

If a two-part name is specified, the schema name cannot begin with ’SYS’

(SQLSTATE 42939).

NO CASCADE BEFORE

Specifies that the associated triggered action is to be applied before any

changes caused by the actual update of the subject table are applied to the

database. It also specifies that the triggered action of the trigger will not cause

other triggers to be activated.

AFTER

Specifies that the associated triggered action is to be applied after the changes

caused by the actual update of the subject table are applied to the database.

INSTEAD OF

Specifies that the associated triggered action replaces the action against the

subject view. Only one INSTEAD OF trigger is allowed for each kind of

operation on a given subject view (SQLSTATE 428FP).

INSERT

Specifies that the triggered action associated with the trigger is to be executed

whenever an INSERT operation is applied to the subject table or subject view.

DELETE

Specifies that the triggered action associated with the trigger is to be executed

whenever a DELETE operation is applied to the subject table or subject view.

UPDATE

Specifies that the triggered action associated with the trigger is to be executed

whenever an UPDATE operation is applied to the subject table or subject view,

subject to the columns specified or implied.

 If the optional column-name list is not specified, every column of the table is

implied. Therefore, omission of the column-name list implies that the trigger

will be activated by the update of any column of the table.

OF column-name,...

Each column-name specified must be a column of the base table (SQLSTATE

42703). If the trigger is a BEFORE trigger, the column-name specified cannot

be a generated column other than the identity column (SQLSTATE 42989).

No column-name can appear more than once in the column-name list

(SQLSTATE 42711). The trigger will only be activated by the update of a

column that is identified in the column-name list. This clause cannot be

specified for an INSTEAD OF trigger (SQLSTATE 42613).

ON

table-name

Designates the subject table of the BEFORE trigger or AFTER trigger

definition. The name must specify a base table or an alias that resolves to a

CREATE TRIGGER

Statements 545

base table (SQLSTATE 42704 or 42809). The name must not specify a

catalog table (SQLSTATE 42832), a materialized query table (SQLSTATE

42997), a declared temporary table (SQLSTATE 42995), or a nickname

(SQLSTATE 42809).

view-name

Designates the subject view of the INSTEAD OF trigger definition. The

name must specify an untyped view or an alias that resolves to an untyped

view with no columns of type XML (SQLSTATE 42704 or 42809). The name

must not specify a catalog view (SQLSTATE 42832). The name must not

specify a view that is defined using WITH CHECK OPTION (a symmetric

view), or a view on which a symmetric view has been defined, directly or

indirectly (SQLSTATE 428FQ).

REFERENCING

Specifies the correlation names for the transition variables and the table names

for the transition tables. Correlation names identify a specific row in the set of

rows affected by the triggering SQL operation. Table names identify the

complete set of affected rows. Each row affected by the triggering SQL

operation is available to the triggered action by qualifying columns with

correlation-names specified as follows.

OLD AS correlation-name

Specifies a correlation name which identifies the row state prior to the

triggering SQL operation.

NEW AS correlation-name

Specifies a correlation name which identifies the row state as modified by

the triggering SQL operation and by any SET statement in a BEFORE

trigger that has already executed.

 A NEW AS correlation name can be of type XML.

The complete set of rows affected by the triggering SQL operation is available

to the triggered action by using a temporary table name specified as follows.

OLD TABLE AS identifier

Specifies a temporary table name which identifies the set of affected rows

prior to the triggering SQL operation.

NEW TABLE AS identifier

Specifies a temporary table name which identifies the affected rows as

modified by the triggering SQL operation and by any SET statement in a

BEFORE trigger that has already executed.

 The following rules apply to the REFERENCING clause:

v None of the OLD and NEW correlation names and the OLD TABLE and

NEW TABLE names can be identical (SQLSTATE 42712).

v Only one OLD and one NEW correlation-name may be specified for a trigger

(SQLSTATE 42613).

v Only one OLD TABLE and one NEW TABLE identifier may be specified for a

trigger (SQLSTATE 42613).

v The OLD correlation-name and the OLD TABLE identifier can only be used if

the trigger event is either a DELETE operation or an UPDATE operation

(SQLSTATE 42898). If the operation is a DELETE operation, OLD

correlation-name captures the value of the deleted row. If it is an UPDATE

operation, it captures the value of the row before the UPDATE operation.

The same applies to the OLD TABLE identifier and the set of affected rows.

CREATE TRIGGER

546 SQL Reference, Volume 2

v The NEW correlation-name and the NEW TABLE identifier can only be used if

the trigger event is either an INSERT operation or an UPDATE operation

(SQLSTATE 42898). In both operations, the value of NEW captures the new

state of the row as provided by the original operation and as modified by

any BEFORE trigger that has executed to this point. The same applies to the

NEW TABLE identifier and the set of affected rows.

v OLD TABLE or NEW TABLE identifiers cannot be defined in a BEFORE

trigger (SQLSTATE 42898).

v A NEW transition variable cannot be defined in an AFTER trigger

(SQLSTATE 42987).

v OLD or NEW correlation names cannot be defined in a FOR EACH

STATEMENT trigger (SQLSTATE 42899).

v Transition tables cannot be modified (SQLSTATE 42807).

v The total of the references to the transition table columns and transition

variables in the triggered-action cannot exceed the limit for the number of

columns in a table or the sum of their lengths cannot exceed the maximum

length of a row in a table (SQLSTATE 54040).

v The scope of each correlation-name and each identifier is the entire trigger

definition.

FOR EACH ROW

Specifies that the triggered action is to be applied once for each row of the

subject table or subject view that is affected by the triggering SQL operation.

FOR EACH STATEMENT

Specifies that the triggered action is to be applied only once for the whole

statement. This type of trigger granularity cannot be specified for a BEFORE

trigger or an INSTEAD OF trigger (SQLSTATE 42613). If specified, an UPDATE

or DELETE trigger is activated, even if no rows are affected by the triggering

UPDATE or DELETE statement.

triggered-action

Specifies the action to be performed when a trigger is activated. A triggered

action is composed of an SQL-procedure-statement and by an optional condition

for the execution of the SQL-procedure-statement.

WHEN

(search-condition)

Specifies a condition that is true, false, or unknown. The

search-condition provides a capability to determine whether or not a

certain triggered action should be executed. The associated action is

performed only if the specified search condition evaluates as true. If

the WHEN clause is omitted, the associated SQL-procedure-statement is

always performed.

 The WHEN clause cannot be specified for INSTEAD OF triggers

(SQLSTATE 42613).

A reference to a transition variable with an XML data type can be used

only in a VALIDATED predicate.

label:

Specifies the label for an SQL procedure statement. The label must be

unique within a list of SQL procedure statements, including any compound

statements nested within the list. Note that compound statements that are

not nested can use the same label. A list of SQL procedure statements is

possible in a number of SQL control statements.

CREATE TRIGGER

Statements 547

Only the FOR statement, WHILE statement, and the dynamic compound

statement can include a label.

SQL-procedure-statement

Specifies the SQL statement that is to be part of the triggered action. A

searched update, searched delete, insert, or merge operation on nicknames

inside compound SQL is not supported.

 The triggered action of a BEFORE trigger on a column of type XML can

invoke the XMLVALIDATE function through a SET statement, leave values

of type XML unchanged, or assign them to NULL using a SET statement.

The SQL-procedure-statement must not contain a statement that is not

supported (SQLSTATE 42987).

The SQL-procedure-statement cannot reference an undefined transition

variable (SQLSTATE 42703), a federated object (SQLSTATE 42997), or a

declared temporary table (SQLSTATE 42995).

The SQL-procedure-statement in a BEFORE trigger cannot:

v Be a CALL statement that invokes a procedure defined with MODIFIES

SQL DATA, or a MERGE statement (SQLSTATE 42987)

v Reference a materialized query table defined with REFRESH

IMMEDIATE (SQLSTATE 42997)

v Reference a generated column other than the identity column in the

NEW transition variable (SQLSTATE 42989).

Notes

v Adding a trigger to a table that already has rows in it will not cause any

triggered actions to be activated. Thus, if the trigger is designed to enforce

constraints on the data in the table, those constraints may not be satisfied by the

existing rows.

v If the events for two triggers occur simultaneously (for example, if they have the

same event, activation time, and subject tables), then the first trigger created is

the first to execute.

v If a column is added to the subject table after triggers have been defined, the

following rules apply:

– If the trigger is an UPDATE trigger that was specified without an explicit

column list, then an update to the new column will cause the activation of the

trigger.

– The column will not be visible in the triggered action of any previously

defined trigger.

– The OLD TABLE and NEW TABLE transition tables will not contain this

column. Thus, the result of performing a ″SELECT *″ on a transition table will

not contain the added column.
v If a column is added to any table referenced in a triggered action, the new

column will not be visible to the triggered action.

v The result of a fullselect specified in a SQL-procedure-statement is not available

inside or outside of the trigger.

v A procedure called within a triggered compound statement must not issue a

COMMIT or a ROLLBACK statement (SQLSTATE 42985).

v A procedure that contains a reference to a nickname in a searched UPDATE

statement, a searched DELETE statement, or an INSERT statement is not

supported (SQLSTATE 25000).

v Table access restrictions:

CREATE TRIGGER

548 SQL Reference, Volume 2

If a procedure is defined as READS SQL DATA or MODIFIES SQL DATA, no

statement in the procedure can access a table that is being modified by the

compound statement that invoked the procedure (SQLSTATE 57053). If the

procedure is defined as MODIFIES SQL DATA, no statement in the procedure

can modify a table that is being read or modified by the compound statement

that invoked the procedure (SQLSTATE 57053).

v A BEFORE DELETE trigger defined on a table involved in a cycle of cascaded

referential constraints should not include references to the table on which it is

defined or any other table modified by cascading during the evaluation of the

cycle of referential integrity constraints. The results of such a trigger are data

dependent and therefore may not produce consistent results.

In its simplest form, this means that a BEFORE DELETE trigger on a table with

a self-referencing referential constraint and a delete rule of CASCADE should

not include any references to the table in the triggered-action.

v The creation of a trigger causes certain packages to be marked invalid:

– If an UPDATE trigger without an explicit column list is created, then

packages with an update usage on the target table or view are invalidated.

– If an UPDATE trigger with a column list is created, then packages with

update usage on the target table are only invalidated if the package also has

an update usage on at least one column in the column-name list of the

CREATE TRIGGER statement.

– If an INSERT trigger is created, packages that have an insert usage on the

target table or view are invalidated.

– If a delete trigger is created, packages that have a delete usage on the target

table or view are invalidated.
v A package remains invalid until the application program is explicitly bound or

rebound, or it is executed and the database manager automatically rebinds it.

v Inoperative triggers: An inoperative trigger is a trigger that is no longer available

and is therefore never activated. A trigger becomes inoperative if:

– a privilege that the creator of the trigger is required to have for the trigger to

execute is revoked

– an object such as a table, view or alias, upon which the triggered action is

dependent, is dropped

– a view, upon which the triggered action is dependent, becomes inoperative

– an alias that is the subject table of the trigger is dropped.
In practical terms, an inoperative trigger is one in which a trigger definition has

been dropped as a result of cascading rules for DROP or REVOKE statements.

For example, when an view is dropped, any trigger with an

SQL-procedure-statement defined using that view is made inoperative.

When a trigger is made inoperative, all packages with statements performing

operations that were activating the trigger will be marked invalid. When the

package is rebound (explicitly or implicitly) the inoperative trigger is completely

ignored. Similarly, applications with dynamic SQL statements performing

operations that were activating the trigger will also completely ignore any

inoperative triggers.

The trigger name can still be specified in the DROP TRIGGER and COMMENT

ON TRIGGER statements.

An inoperative trigger may be recreated by issuing a CREATE TRIGGER

statement using the definition text of the inoperative trigger. This trigger

definition text is stored in the TEXT column of the SYSCAT.TRIGGERS catalog

view. Note that there is no need to explicitly drop the inoperative trigger in

order to recreate it. Issuing a CREATE TRIGGER statement with the same

CREATE TRIGGER

Statements 549

trigger-name as an inoperative trigger will cause that inoperative trigger to be

replaced with a warning (SQLSTATE 01595).

Inoperative triggers are indicated by an X in the VALID column of the

SYSCAT.TRIGGERS catalog view.

v Errors executing triggers: Errors that occur during the execution of triggered SQL

statements are returned using SQLSTATE 09000 unless the error is considered

severe. If the error is severe, the severe error SQLSTATE is returned. The

SQLERRMC field of the SQLCA for non-severe error will include the trigger

name, SQLCODE, SQLSTATE and as many tokens as will fit from the tokens of

the failure.

The SQL-procedure-statement could include a SIGNAL SQLSTATE statement or a

RAISE_ERROR function. In both these cases, the SQLSTATE returned is the one

specified in the SIGNAL SQLSTATE statement or the RAISE_ERROR condition.

v Creating a trigger with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v A value generated by the database manager for an identity column is generated

before the execution of any BEFORE triggers. Therefore, the generated identity

value is visible to BEFORE triggers.

v A value generated by the database manager for a ROW CHANGE TIMESTAMP

column is generated after the execution of all BEFORE triggers. Therefore, the

ROW CHANGE TIMESTAMP value is not visible to BEFORE triggers.

v A value generated by the database manager for a generated by expression

column is generated after the execution of all BEFORE triggers.Therefore, the

value generated by the expression is not visible to BEFORE triggers.

v Triggers and typed tables: A BEFORE or AFTER trigger can be attached to a

typed table at any level of a table hierarchy. If an SQL statement activates

multiple triggers, the triggers will be executed in their creation order, even if

they are attached to different tables in the typed table hierarchy.

When a trigger is activated, its transition variables (OLD, NEW, OLD TABLE

and NEW TABLE) may contain rows of subtables. However, they will contain

only columns defined on the table to which they are attached.

Effects of INSERT, UPDATE, and DELETE statements:

– Row triggers: When an SQL statement is used to INSERT, UPDATE, or

DELETE a table row, it activates row-triggers attached to the most specific

table containing the row, and all supertables of that table. This rule is always

true, regardless of how the SQL statement accesses the table. For example,

when issuing an UPDATE EMP command, some of the updated rows may be

in the subtable MGR. For EMP rows, the row-triggers attached to EMP and its

supertables are activated. For MGR rows, the row-triggers attached to MGR

and its supertables are activated.

– Statement triggers: An INSERT, UPDATE, or DELETE statement activates

statement-triggers attached to tables (and their supertables) that could be

affected by the statement. This rule is always true, regardless of whether any

actual rows in these tables were affected. For example, on an INSERT INTO

EMP command, statement-triggers for EMP and its supertables are activated.

As another example, on either an UPDATE EMP or DELETE EMP command,

statement triggers for EMP and its supertables and subtables are activated,

even if no subtable rows were updated or deleted. Likewise, a UPDATE

ONLY (EMP) or DELETE ONLY (EMP) command will activate

statement-triggers for EMP and its supertables, but not statement-triggers for

subtables.

CREATE TRIGGER

550 SQL Reference, Volume 2

Effects of DROP TABLE statements: A DROP TABLE statement does not activate

any triggers that are attached to the table being dropped. However, if the

dropped table is a subtable, all the rows of the dropped table are considered to

be deleted from its supertables. Therefore, for a table T:

– Row triggers: DROP TABLE T activates row-type delete-triggers that are

attached to all supertables of T, for each row of T.

– Statement triggers: DROP TABLE T activates statement-type delete-triggers

that are attached to all supertables of T, regardless of whether T contains any

rows.
Actions on Views: To predict what triggers are activated by an action on a view,

use the view definition to translate that action into an action on base tables. For

example:

1. An SQL statement performs UPDATE V1, where V1 is a typed view with a

subview V2. Suppose V1 has underlying table T1, and V2 has underlying

table T2. The statement could potentially affect rows in T1, T2, and their

subtables, so statement triggers are activated for T1 and T2 and all their

subtables and supertables.

2. An SQL statement performs UPDATE V1, where V1 is a typed view with a

subview V2. Suppose V1 is defined as SELECT ... FROM ONLY(T1) and V2

is defined as SELECT ... FROM ONLY(T2). Since the statement cannot affect

rows in subtables of T1 and T2, statement triggers are activated for T1 and

T2 and their supertables, but not their subtables.

3. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view

defined as SELECT ... FROM T1. The statement can potentially affect T1 and

its subtables. Therefore, statement triggers are activated for T1 and all its

subtables and supertables.

4. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view

defined as SELECT ... FROM ONLY(T1). In this case, T1 is the only table that

can be affected by the statement, even if V1 has subviews and T1 has

subtables. Therefore, statement triggers are activated only for T1 and its

supertables.
v MERGE statement and triggers: The MERGE statement can execute update,

delete, and insert operations. The applicable UPDATE, DELETE, or INSERT

triggers are activated for the MERGE statement when an update, delete, or insert

operation is executed.

v Compatibilities

– For compatibility with previous versions of DB2:

- OLD_TABLE can be specified in place of OLD TABLE, and NEW_TABLE

can be specified in place of NEW TABLE

- MODE DB2SQL can be specified following FOR EACH ROW or FOR

EACH STATEMENT

Examples

Example 1: Create two triggers that will result in the automatic tracking of the

number of employees a company manages. The triggers will interact with the

following tables:

v EMPLOYEE table with these columns: ID, NAME, ADDRESS, and POSITION.

v COMPANY_STATS table with these columns: NBEMP, NBPRODUCT, and

REVENUE.

CREATE TRIGGER

Statements 551

The first trigger increments the number of employees each time a new person is

hired; that is, each time a new row is inserted into the EMPLOYEE table:

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The second trigger decrements the number of employees each time an employee

leaves the company; that is, each time a row is deleted from the table EMPLOYEE:

 CREATE TRIGGER FORMER_EMP

 AFTER DELETE ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

Example 2: Create a trigger that ensures that whenever a parts record is updated,

the following check and (if necessary) action is taken:

v If the on-hand quantity is less than 10% of the maximum stocked quantity, then

issue a shipping request ordering the number of items for the affected part to be

equal to the maximum stocked quantity minus the on-hand quantity.

The trigger will interact with the PARTS table with these columns: PARTNO,

DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE.

ISSUE_SHIP_REQUEST is a user-defined function that sends an order form for

additional parts to the appropriate company.

 CREATE TRIGGER REORDER

 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 REFERENCING NEW AS N

 FOR EACH ROW

 WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)

 BEGIN ATOMIC

 VALUES(ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO));

 END

Example 3: Create a trigger that will cause an error when an update occurs that

would result in a salary increase greater than ten percent of the current salary.

 CREATE TRIGGER RAISE_LIMIT

 AFTER UPDATE OF SALARY ON EMPLOYEE

 REFERENCING NEW AS N OLD AS O

 FOR EACH ROW

 WHEN (N.SALARY > 1.1 * O.SALARY)

 SIGNAL SQLSTATE ’75000’ SET MESSAGE_TEXT=’Salary increase>10%’

Example 4: Consider an application which records and tracks changes to stock

prices. The database contains two tables, CURRENTQUOTE and QUOTEHISTORY.

 Tables: CURRENTQUOTE (SYMBOL, QUOTE, STATUS)

 QUOTEHISTORY (SYMBOL, QUOTE, QUOTE_TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated, the new quote should

be copied, with a timestamp, to the QUOTEHISTORY table. Also, the STATUS

column of CURRENTQUOTE should be updated to reflect whether the stock is:

1. rising in value;

2. at a new high for the year;

3. dropping in value;

4. at a new low for the year;

5. steady in value.

CREATE TRIGGER

552 SQL Reference, Volume 2

CREATE TRIGGER statements that accomplish this are as follows.

v Trigger Definition to set the status:

 CREATE TRIGGER STOCK_STATUS

 NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE

 REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE

 FOR EACH ROW

 BEGIN ATOMIC

 SET NEWQUOTE.STATUS =

 CASE

 WHEN NEWQUOTE.QUOTE >

 (SELECT MAX(QUOTE) FROM QUOTEHISTORY

 WHERE SYMBOL = NEWQUOTE.SYMBOL

 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

 THEN ’High’

 WHEN NEWQUOTE.QUOTE <

(SELECT MIN(QUOTE) FROM QUOTEHISTORY

 WHERE SYMBOL = NEWQUOTE.SYMBOL

 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))

 THEN ’Low’

 WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE

 THEN ’Rising’

 WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE

 THEN ’Dropping’

 WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE

 THEN ’Steady’

 END;

 END

v Trigger Definition to record change in QUOTEHISTORY table:

 CREATE TRIGGER RECORD_HISTORY

 AFTER UPDATE OF QUOTE ON CURRENTQUOTE

 REFERENCING NEW AS NEWQUOTE

 FOR EACH ROW

 BEGIN ATOMIC

 INSERT INTO QUOTEHISTORY

 VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);

 END

Example 5: Create a BEFORE trigger that automatically validates XML documents

containing new product descriptions before they are inserted into the PRODUCT

table of the SAMPLE database:

 CREATE TRIGGER NEWPROD NO CASCADE BEFORE INSERT ON PRODUCT

 REFERENCING NEW AS N

 FOR EACH ROW

 BEGIN ATOMIC

 SET (N.DESCRIPTION) = XMLVALIDATE(N.DESCRIPTION

 ACCORDING TO XMLSCHEMA ID product);

 END

CREATE TRIGGER

Statements 553

CREATE TRUSTED CONTEXT

The CREATE TRUSTED CONTEXT statement defines a trusted context at the

current server.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� CREATE TRUSTED CONTEXT context-name BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name * �

�

�

 ,

(1)

(2)

ATTRIBUTES

(

ADDRESS

address-value

)

*

WITH ENCRYPTION

encryption-value

(3)

ENCRYPTION

encryption-value

�

�
 NO DEFAULT ROLE

DEFAULT ROLE

role-name

*

 DISABLE

ENABLE

*

�

�

�

,

WITHOUT AUTHENTICATION

WITH USE FOR

authorization-name

ROLE

role-name

WITH AUTHENTICATION

PUBLIC

 * ��

Notes:

1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses

can be specified at most once (SQLSTATE 42614).

2 Each attribute name and corresponding value must be unique (SQLSTATE

4274D).

3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);

however, WITH ENCRYPTION can be specified for each ADDRESS that is

specified.

Description

context-name

Names the trusted context. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The name must not identify a trusted context

that already exists at the current server (SQLSTATE 42710). The name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name

Specifies that the context is a connection established by system authorization

CREATE TRUSTED CONTEXT

554 SQL Reference, Volume 2

ID authorization-name, which must not be associated with an existing trusted

context (SQLSTATE 428GL). It cannot be the authorization ID of the statement

(SQLSTATE 42502).

ATTRIBUTES (...)

Specifies a list of one or more connection trust attributes upon which the

trusted context is defined.

ADDRESS address-value

Specifies the actual communication address used by the client to

communicate with the database server. The only protocol supported is

TCP/IP. The ADDRESS attribute can be specified multiple times, but each

address-value pair must be unique for the set of attributes (SQLSTATE

4274D).

 When establishing a trusted connection, if multiple values are defined for

the ADDRESS attribute of a trusted context, a candidate connection is

considered to match this attribute if the address used by the connection

matches any of the defined values for the ADDRESS attribute of the

trusted context.

address-value

Specifies a string constant that contains the value to be associated with

the ADDRESS trust attribute. The address-value must be an IPv4

address, an IPv6 address, or a secure domain name.

v An IPv4 address must not contain leading spaces and is represented

as a dotted decimal address. An example of an IPv4 address is

9.112.46.111. The value ’localhost’ or its equivalent representation

’127.0.0.1’ will not result in a match; the real IPv4 address of the host

must be specified instead.

v An IPv6 address must not contain leading spaces and is represented

as a colon hexadecimal address. An example of an IPv6 address is

2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6

addresses (for example, ::ffff:192.0.2.128) will not result in a match.

Similarly, ’localhost’ or its IPv6 short representation ’::1’ will not

result in a match.

v A domain name is converted to an IP address by the domain name

server where a resulting IPv4 or IPv6 address is determined. An

example of a domain name is corona.torolab.ibm.com. When a

domain name is converted to an IP address, the result of this

conversion could be a set of one or more IP addresses. In this case,

an incoming connection is said to match the ADDRESS attribute of a

trusted context object if the IP address from which the connection

originates matches any of the IP addresses to which the domain

name was converted. When creating a trusted context object, it is

advantageous to provide domain name values for the ADDRESS

attribute instead of static IP addresses, particularly in Dynamic Host

Configuration Protocol (DHCP) environments. With DHCP, a device

can have a different IP address each time it connects to the network.

So, if a static IP address is provided for the ADDRESS attribute of a

trusted context object, some device might acquire a trusted

connection unintentionally. Providing domain names for the

ADDRESS attribute of a trusted context object avoids this problem in

DHCP environments.

WITH ENCRYPTION encryption-value

Specifies the minimum level of encryption of the data stream or

CREATE TRUSTED CONTEXT

Statements 555

network encryption for this specific address-value. This

encryption-value overrides the global ENCRYPTION attribute setting

for this specific address-value.

encryption-value

Specifies a string constant that contains the value to be

associated with the ENCRYPTION trust attribute for this

specific address-value. The encryption-value must be one of the

following (SQLSTATE 42615):

v NONE, no specific level of encryption is required

v LOW, a minimum of light encryption is required; the

authentication type on the database manager must be

DATA_ENCRYPT if an incoming connection is to match the

encryption setting for this specific address

v HIGH, Secure Socket Layer (SSL) encryption must be used

for data communication between the DB2 client and the DB2

server if an incoming connection is to match the encryption

setting for this specific address

ENCRYPTION encryption-value

Specifies the minimum level of encryption of the data stream or network

encryption. The default is NONE.

encryption-value

Specifies a string constant that contains the value to be associated with

the ENCRYPTION trust attribute for this specific address-value. The

encryption-value must be one of the following (SQLSTATE 42615):

v NONE, no specific level of encryption is required for an incoming

connection to match the ENCRYPTION attribute of this trusted

context object

v LOW, a minimum of light encryption is required; the authentication

type on the database manager must be DATA_ENCRYPT if an

incoming connection is to match the ENCRYPTION attribute of this

trusted context object

v HIGH, Secure Socket Layer (SSL) encryption must be used for data

communication between the DB2 client and the DB2 server if an

incoming connection is to match the ENCRYPTION attribute of this

trusted context object

The following table summarizes when a trusted context can be used,

depending on the encryption used by the existing connection. If the

trusted context cannot be used for the connection, a warning is

returned (SQLSTATE 01679) and the SQLWARN8 field of the SQLCA is

set to ’Y’, indicating that the connection is a regular (non-trusted)

connection.

 Table 24. Encryption and trusted contexts

Encryption used by

existing connection

ENCRYPTION value for

trusted context

Can the trusted context

be used for the

connection?

No encryption ’NONE’ Yes

No encryption ’LOW’ No

No encryption ’HIGH’ No

Low encryption

(DATA_ENCRYPT)

’NONE’ Yes

CREATE TRUSTED CONTEXT

556 SQL Reference, Volume 2

Table 24. Encryption and trusted contexts (continued)

Encryption used by

existing connection

ENCRYPTION value for

trusted context

Can the trusted context

be used for the

connection?

Low encryption

(DATA_ENCRYPT)

’LOW’ Yes

Low encryption

(DATA_ENCRYPT)

’HIGH’ No

High encryption (SSL) ’NONE’ Yes

High encryption (SSL) ’LOW’ Yes

High encryption (SSL) ’HIGH’ Yes

NO DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether or not a default role is associated with a trusted connection

that is based on this trusted context. The default is NO DEFAULT ROLE.

NO DEFAULT ROLE

Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name

Specifies that role-name is the default role for the trusted context. The

role-name must identify a role that exists at the current server (SQLSTATE

42704). This role is used with the user in a trusted connection, based on

this trusted context, when the user does not have a user-specific role

defined as part of the definition of the trusted context.

DISABLE or ENABLE

Specifies whether the trusted context is created in the enabled or disabled state.

The default is DISABLE.

DISABLE

Specifies that the trusted context is created in the disabled state. A trusted

context that is disabled is not considered when a trusted connection is

established.

ENABLE

Specifies that the trusted context is created in the enabled state.

WITH USE FOR

Specifies who can use a trusted connection that is based on this trusted

context.

authorization-name

Specifies that the trusted connection can be used by the specified

authorization-name. The authorization-name must not be specified more than

once in the WITH USE FOR clause (SQLSTATE 428GM). It must also not

be the authorization ID of the statement (SQLSTATE 42502). If the

definition of a trusted context allows access by both PUBLIC and a list of

users, the specifications for a user override the specifications for PUBLIC.

For example, assume that a trusted context is defined that allows access by

both PUBLIC WITH AUTHENTICATION and JOE WITHOUT

AUTHENTICATION. If the trusted context is used by JOE, authentication

is not required. However, if the trusted context is used by GEORGE,

authentication is required.

ROLE role-name

Specifies that role-name is the role to be used for the user when a

trusted connection is using the trusted context. The role-name must

CREATE TRUSTED CONTEXT

Statements 557

identify a role that exists at the current server (SQLSTATE 42704). The

role explicitly specified for the user overrides any default role

associated with the trusted context.

PUBLIC

Specifies that a trusted connection that is based on this trusted context can

be used by any user. PUBLIC must not be specified more than once

(SQLSTATE 428GM). All users using such a trusted connection make use of

the privileges associated with the default role for the associated trusted

context. If a default role is not defined for the trusted context, there is no

role associated with the users that use a trusted connection based on this

trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION

Specifies whether or not switching the user on a trusted connection

requires authentication of the user. The default is WITHOUT

AUTHENTICATION.

WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection to this

user does not require authentication.

WITH AUTHENTICATION

Specifies that switching the current user on a trusted connection to this

user requires authentication.

Rules

v A trusted context-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL

statements are:

– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP

(TRUSTED CONTEXT)
v A trusted context-exclusive SQL statement cannot be issued within a global

transaction; for example, an XA transaction or a global transaction that is

initiated as part of two-phase commit for federated transactions (SQLSTATE

51041).

Notes

v When providing an IP address as part of a trusted context definition, the address

must be in the format that is in effect for the network. For example, providing

an address in an IPv6 format when the network is IPv4 will not result in a

match. In a mixed environment, it is advantageous to specify both the IPv4 and

the IPv6 representations of the address, or better yet, to specify a secure domain

name (for example, corona.torolab.ibm.com), which hides the address format

details.

v Specifying a role in the definition of a trusted context: The definition of a

trusted context can designate a role for a specific authorization ID, and a default

role to be used for authorization IDs for which a specific role has not been

specified in the definition of the trusted context. This role can be used with a

trusted connection based on the trusted context, but it does not make the role

available outside of a trusted connection based on the trusted context.

v When issuing a data manipulation language (DML) SQL statement using a

trusted connection, the privileges held by a context-assigned role in effect for the

authorization ID within the definition of the associated trusted context are

CREATE TRUSTED CONTEXT

558 SQL Reference, Volume 2

considered in addition to other privileges directly held by the authorization ID

of the statement, or indirectly by other roles held by the authorization ID of the

statement.

v The privileges held by a context-assigned role in effect for the authorization ID

within the definition of the associated trusted context are not considered for data

definition language (DDL) SQL statements. For example, to create an object, the

authorization ID of the statement must be able to do so without including the

privileges held by the context-assigned role.

v When installing a new application that authenticates to DB2 using the same

credentials as an existing application on the same machine, and which takes

advantage of a trusted context, the new application might also take advantage of

the same trusted context object (inheriting the trusted context role, for example).

This might not be the security administrator’s intention. The security

administrator might want to turn on the DB2 audit facility to find out what

applications are taking advantage of trusted context objects.

v Only one uncommitted trusted context-exclusive SQL statement is allowed at a

time across all database partitions. If an uncommitted trusted context-exclusive

SQL statement is executing, subsequent trusted context-exclusive SQL statements

will wait until the current trusted context-exclusive SQL statement commits or

rolls back.

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Examples

Example 1: Create a trusted context such that the current user on a trusted

connection based on this trusted context can be switched to two different user IDs.

When the current user of the connection is switched to user ID JOE, authentication

is not required. However, authentication is required when the current user of the

connection is switched to user ID BOB. Note that the trusted context has a default

role called context-role. This implies that users working within the confines of this

trusted context inherit the privileges associated with role context-role.

 CREATE TRUSTED CONTEXT APPSERVER

 BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI

 DEFAULT ROLE CONTEXT_ROLE

 ENABLE

 ATTRIBUTES (ADDRESS ’9.26.113.204’)

 WITH USE FOR JOE WITHOUT AUTHENTICATION

 BOB WITH AUTHENTICATION

Example 2: Create a trusted context such that the current user of a trusted

connection based on this trusted context can be switched to any user ID without

authentication.

 CREATE TRUSTED CONTEXT SECUREROLE

 BASED UPON CONNECTION USING SYSTEM AUTHID PBIRD

 ENABLE

 ATTRIBUTES (ADDRESS ’9.26.113.204’)

 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

Example 3: Create a trusted context such that the current user of a trusted

connection based on this trusted context can be switched to any user ID without

authentication. The difference between this trusted context and the trusted context

created in example 2, is that this trusted context has an additional attribute called

ENCRYPTION. The ENCRYPTION attribute setting for trusted context

CREATE TRUSTED CONTEXT

Statements 559

SECUREROLEENCRYPT states that the encryption setting used by a connection

must be at least ″low encryption″ (see Table 24 on page 556) to match this trusted

context attribute.

 CREATE TRUSTED CONTEXT SECUREROLEENCRYPT

 BASED UPON CONNECTION USING SYSTEM AUTHID SHARPER

 ENABLE

 ATTRIBUTES (ADDRESS ’9.26.113.204’

 ENCRYPTION ’LOW’)

 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

Example 4: Create a trusted context, such that connections made by user WRJAIBI

from addresses 9.26.146.201 and 9.26.146.203 are trusted when no encryption is

used, but a connection made by user WRJAIBI from address 9.26.146.202 requires a

LOW level of encryption to be trusted.

 CREATE TRUSTED CONTEXT WALIDLOCSENSITIVE

 BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI

 ENABLE

 ATTRIBUTES (ADDRESS ’9.26.146.201’,

 ADDRESS ’9.26.146.202’ WITH ENCRYPTION ’LOW’,

 ADDRESS ’9.26.146.203’

 ENCRYPTION ’NONE’)

CREATE TRUSTED CONTEXT

560 SQL Reference, Volume 2

CREATE TYPE (Array)

The CREATE TYPE (Array) statement defines an array type. An array type is based

on one of the built-in data types.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the schema name of the array

type does not refer to an existing schema

v CREATE_IN privilege on the schema, if the schema name of the array type

refers to an existing schema

v SYSADM or DBADM authority

Syntax

��

CREATE TYPE

type-name

AS

data-type

ARRAY

[
 2147483647

integer-constant

�

�] ��

Description

type-name

Names the type. The name, including the implicit or explicit qualifier, must not

identify any other type (built-in or user-defined) that already exists at the

current server. The unqualified name must not be the same as the name of a

built-in data type or BOOLEAN, BINARY or VARBINARY (SQLSTATE 42918).

 A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a type-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the

characters ’SYS’ (SQLSTATE 42939).

data-type

Specifies the data type of the array elements. It is one of the data types

described in “CREATE TABLE”, other than LONG VARCHAR, LONG

VARGRAPHIC, REFERENCE, SYSPROC.DB2SECURITYLABEL, XML, or

user-defined types (SQLSTATE 429C2).

ARRAY [integer-constant]

Specifies that the type is an array with a maximum cardinality of

integer-constant. The value must be a positive number greater than zero and

CREATE TYPE (Array)

Statements 561

less than the largest positive integer value (SQLSTATE 42820). The default is

the largest positive integer value (2 147 483 647).

 The cardinality of an array on a given system is limited by the total amount of

memory available to DB2 applications. As such, although arrays of large

cardinalities can be created, not all elements might be available for use.

Examples

Example 1: Create an array type named PHONENUMBERS with a maximum of 5

elements that are of the DECIMAL(10, 0) data type.

 CREATE TYPE PHONENUMBERS AS DECIMAL(10,0)

 ARRAY[5]

Example 2: Create an array type named NUMBERS with the default number of

elements in the schema GENERIC.

 CREATE TYPE GENERIC.NUMBERS AS BIGINT

 ARRAY[]

CREATE TYPE (Array)

562 SQL Reference, Volume 2

CREATE TYPE (Distinct)

The CREATE TYPE (Distinct) statement defines a distinct type. The distinct type is

always sourced on one of the built-in data types. Successful execution of the

statement also generates functions to cast between the distinct type and its source

type and, optionally, generates support for the comparison operators (=, <>, <, <=,

>, and >=) for use with the distinct type.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include as least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the schema name of the

distinct type does not refer to an existing schema

v CREATEIN privilege on the schema, if the schema name of the distinct type

refers to an existing schema

v SYSADM or DBADM authority

Syntax

�� CREATE TYPE distinct-type-name AS �

�
 (1)

source-data-type

WITH COMPARISONS

��

source-data-type:

�� built-in-type ��

built-in-type:

CREATE TYPE (Distinct)

Statements 563

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

LONG VARCHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

LONG VARGRAPHIC

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

Notes:

1 Required for all source-data-types except LOBs, LONG VARCHAR, and

LONG VARGRAPHIC, for which comparisons are not supported.

Description

distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier,

CREATE TYPE (Distinct)

564 SQL Reference, Volume 2

must not identify any other type (built-in or user-defined) that already exists at

the current server. The unqualified name must not be the same as the name of

a built-in data type or BOOLEAN, BINARY, or VARBINARY (SQLSTATE

42918). The unqualified name should also not be ARRAY, INTERVAL, or

ROWID.

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The qualified form is a schema-name followed by a

period and an SQL identifier.

A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a distinct-type-name (SQLSTATE 42939). The names

are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part distinct-type-name is specified, the schema name must not begin

with the characters ’SYS’ (SQLSTATE 42939).

source-data-type

Specifies the data type used as the basis for the internal representation of the

distinct type. The data type must be a built-in data type. For more information

on built-in data types, see “CREATE TABLE”. The source data type cannot be

of type XML or an ARRAY type (SQLSTATE 42601). For portability of

applications across platforms, use the following recommended data type

names:

v DOUBLE or REAL instead of FLOAT

v DECIMAL instead of NUMERIC

WITH COMPARISONS

Specifies that system-generated comparison operators are to be created for

comparing two instances of a distinct type. These keywords should not be

specified if the source-data-type is BLOB, CLOB, DBCLOB, LONG VARCHAR,

or LONG VARGRAPHIC, otherwise a warning is returned (SQLSTATE 01596)

and the comparison operators will not be generated. For all other

source-data-types, the WITH COMPARISONS keywords are required.

Notes

v Privileges

The definer of the user-defined type always receives the EXECUTE privilege

WITH GRANT OPTION on all functions automatically generated for the distinct

type.

EXECUTE privilege on all functions automatically generated during the CREATE

TYPE (Distinct) statement is granted to PUBLIC.

v Creating a distinct type with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID of

the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.

The CREATEIN privilege on the schema is granted to PUBLIC.

v The following functions are generated to cast to and from the source type:

– One function to convert from the distinct type to the source type

– One function to convert from the source type to the distinct type

– One function to convert from INTEGER to the distinct type if the source type

is SMALLINT

– one function to convert from VARCHAR to the distinct type if the source type

is CHAR

CREATE TYPE (Distinct)

Statements 565

– one function to convert from VARGRAPHIC to the distinct type if the source

type is GRAPHIC.

In general these functions will have the following format:

 CREATE FUNCTION source-type-name (distinct-type-name)

 RETURNS source-type-name ...

 CREATE FUNCTION distinct-type-name (source-type-name)

 RETURNS distinct-type-name ...

In cases in which the source type is a parameterized type, the function to convert

from the distinct type to the source type will have as function name the name of

the source type without the parameters (see Table 25 for details). The type of the

return value of this function will include the parameters given on the CREATE

TYPE (Distinct) statement. The function to convert from the source type to the

distinct type will have an input parameter whose type is the source type including

its parameters. For example,

 CREATE TYPE T_SHOESIZE AS CHAR(2)

 WITH COMPARISONS

 CREATE TYPE T_MILES AS DOUBLE

 WITH COMPARISONS

will generate the following functions:

 FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

 FUNCTION T_SHOESIZE (CHAR (2))

 RETURNS T_SHOESIZE

 FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

 FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the

distinct type. No other function with this name and with the same signature may

already exist in the database (SQLSTATE 42710).

The following table gives the names of the functions to convert from the distinct

type to the source type and from the source type to the distinct type for all

predefined data types.

 Table 25. CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

CHAR distinct-type-name CHAR (n) distinct-type-name

CHAR distinct-type-name CHAR (n)

distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n)

LONG VARCHAR distinct-type-name LONG VARCHAR distinct-type-name

LONG_VARCHAR distinct-type-name LONG VARCHAR

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB distinct-type-name CLOB (n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB distinct-type-name BLOB (n)

CREATE TYPE (Distinct)

566 SQL Reference, Volume 2

Table 25. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC (n)

distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n)

LONG VARGRAPHIC distinct-type-name LONG VARGRAPHIC distinct-type-name

LONG_VARGRAPHIC distinct-type-name LONG VARGRAPHIC

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB distinct-type-name DBCLOB (n)

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL (p,s)

REAL distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n<=24 distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n>24 distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

FLOAT distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE PRECISION distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DECFLOAT distinct-type-name DECFLOAT(n) distinct-type-name

DECFLOAT distinct-type-name DECFLOAT(n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

CREATE TYPE (Distinct)

Statements 567

Table 25. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable application.

DECIMAL and DOUBLE should be used instead.

The functions described in the above table are the only functions that are

generated automatically when distinct types are defined. Consequently, none of the

built-in functions (AVG, MAX, LENGTH, and so on) are supported on distinct

types until the CREATE FUNCTION statement is used to register user-defined

functions for the distinct type, and those user-defined functions are sourced on the

appropriate built-in functions. In particular, note that it is possible to register

user-defined functions that are sourced on the built-in column functions.

When a distinct type is created using the WITH COMPARISONS clause,

system-generated comparison operators are created. Creation of these comparison

operators will generate entries in the SYSCAT.ROUTINES catalog view for the new

functions.

The schema name of the distinct type must be included in the SQL path or the

FUNCPATH BIND option for successful use of these operators and cast functions

in SQL statements.

v Compatibilities

– For compatibility with previous versions of DB2:

- CREATE DISTINCT TYPE can be specified in place of CREATE TYPE

Examples

Example 1: Create a distinct type named SHOESIZE that is based on an INTEGER

data type.

 CREATE TYPE SHOESIZE AS INTEGER WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, <=, >, >=)

and cast functions INTEGER(SHOESIZE) returning INTEGER and

SHOESIZE(INTEGER) returning SHOESIZE.

Example 2: Create a distinct type named MILES that is based on a DOUBLE data

type.

 CREATE TYPE MILES AS DOUBLE WITH COMPARISONS

This will also result in the creation of comparison operators (=, <>, <, =, >, >=) and

cast functions DOUBLE(MILES) returning DOUBLE and MILES(DOUBLE)

returning MILES.

CREATE TYPE (Distinct)

568 SQL Reference, Volume 2

CREATE TYPE (Structured)

The CREATE TYPE statement defines a user-defined structured type. A

user-defined structured type may include zero or more attributes. A structured

type may be a subtype allowing attributes to be inherited from a supertype.

Successful execution of the statement generates methods, for retrieving and

updating values of attributes. Successful execution of the statement also generates

functions, for constructing instances of a structured type used in a column, for

casting between the reference type and its representation type, and for supporting

the comparison operators (=, <>, <, <=, >, and >=) on the reference type.

The CREATE TYPE statement also defines any method specifications for

user-defined methods to be used with the user-defined structured type.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the schema name of the type

does not refer to an existing schema

v CREATEIN privilege on the schema, if the schema name of the type refers to an

existing schema

v SYSADM or DBADM authority

If UNDER is specified, and the authorization ID of the statement is not the same as

the owner of the root type of the type hierarchy, SYSADM or DBADM authority is

required.

Syntax

�� CREATE TYPE type-name

UNDER

supertype-name
 �

�

�

,

AS

(

attribute-definition

)

*

 INSTANTIABLE

NOT INSTANTIABLE

*

�

�

INLINE LENGTH

integer

*

 WITHOUT COMPARISONS

*

 NOT FINAL

*

�

� MODE DB2SQL *

WITH FUNCTION ACCESS
 *

REF USING

rep-type
 �

CREATE TYPE (Structured)

Statements 569

� *

CAST (SOURCE AS REF) WITH

funcname1
 * �

�
CAST (REF AS SOURCE) WITH

funcname2
 * �

�

�

,

method-specification

 ��

attribute-definition:

 attribute-name data-type

lob-options

rep-type:

 SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

method-specification:

 METHOD method-name

OVERRIDING
 �

CREATE TYPE (Structured)

570 SQL Reference, Volume 2

�

�

 ()

,

data-type2

parameter-name

AS LOCATOR

 * RETURNS �

� data-type3

AS LOCATOR

data-type4

CAST FROM

data-type5

AS LOCATOR

 * �

�
SPECIFIC

specific-name
 *

SELF AS RESULT
 * �

�
 SQL-routine-characteristics

external-routine-characteristics

*

SQL-routine-characteristics:

*

 LANGUAGE SQL

*

PARAMETER CCSID

ASCII

UNICODE

*

�

�
 NOT DETERMINISTIC

DETERMINISTIC

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

 READS SQL DATA

CONTAINS SQL

*

�

�
 CALLED ON NULL INPUT

*

 INHERIT SPECIAL REGISTERS

*

external-routine-characteristics:

 * LANGUAGE C

JAVA

OLE

 * PARAMETER STYLE DB2GENERAL

SQL
 * �

�

PARAMETER CCSID

ASCII

UNICODE

*

 NOT DETERMINISTIC

DETERMINISTIC

*

�

�
 FENCED

FENCED

*

THREADSAFE

NOT THREADSAFE

THREADSAFE

NOT FENCED

*

*

 CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

*

�

CREATE TYPE (Structured)

Statements 571

�
 READS SQL DATA

NO SQL

CONTAINS SQL

*

 EXTERNAL ACTION

NO EXTERNAL ACTION

*

 NO SCRATCHPAD

100

SCRATCHPAD

length

�

�

*

 NO FINAL CALL

FINAL CALL

*

 ALLOW PARALLEL

DISALLOW PARALLEL

*

 NO DBINFO

DBINFO

*

�

�
 INHERIT SPECIAL REGISTERS

*

Description

type-name

Names the type. The name, including the implicit or explicit qualifier, must not

identify any other type (built-in, structured, or distinct) that already exists at

the current server. The unqualified name must not be the same as the name of

a built-in data type, BINARY, VARBINARY, or BOOLEAN (SQLSTATE 42918).

The unqualified name should also not be ARRAY, INTERVAL, or ROWID. In

dynamic SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements, the

QUALIFIER precompile or bind option implicitly specifies the qualifier for

unqualified object names.

 A number of names used as keywords in predicates are reserved for system

use, and cannot be used as a type-name (SQLSTATE 42939). The names are

SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN,

UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the

characters ’SYS’ (SQLSTATE 42939).

UNDER supertype-name

Specifies that this structured type is a subtype under the specified

supertype-name. The supertype-name must identify an existing structured type

(SQLSTATE 42704). If supertype-name is specified without a schema name, the

type is resolved by searching the schemas on the SQL path. The structured

type includes all the attributes of the supertype followed by the additional

attributes given in the attribute-definition.

attribute-definition

Defines the attributes of the structured type.

attribute-name

The name of an attribute. The attribute-name cannot be the same as any

other attribute of this structured type or any supertype of this structured

type (SQLSTATE 42711).

 A number of names used as keywords in predicates are reserved for

system use, and cannot be used as an attribute-name (SQLSTATE 42939).

The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,

LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the

comparison operators.

data-type

The data type of the attribute. It is one of the data types listed under

“CREATE TABLE”, other than LONG VARCHAR, LONG VARGRAPHIC,

XML, or a distinct type based on LONG VARCHAR or LONG

CREATE TYPE (Structured)

572 SQL Reference, Volume 2

VARGRAPHIC (SQLSTATE 42601). The data type must identify an existing

data type (SQLSTATE 42704). If data-type is specified without a schema

name, the type is resolved by searching the schemas on the SQL path. The

description of various data types is given in “CREATE TABLE”. If the

attribute data type is a reference type, the target type of the reference must

be a structured type that exists, or is created by this statement (SQLSTATE

42704).

 To prevent type definitions that would, at run time, permit an instance of

the type to directly or indirectly contain another instance of the same type

or one of its subtypes, a type cannot be defined such that one of its

attribute types directly or indirectly uses itself (SQLSTATE 428EP).

lob-options

Specifies the options associated with LOB types (or distinct types based on

LOB types). For a detailed description of lob-options, see “CREATE TABLE”.

INSTANTIABLE or NOT INSTANTIABLE

Determines whether an instance of the structured type can be created.

Implications of not instantiable structured types are:

v no constructor function is generated for a non-instantiable type

v a non-instantiable type cannot be used as the type of a table or view

(SQLSTATE 428DP)

v a non-instantiable type can be used as the type of a column (only null values

or instances of instantiable subtypes can be inserted into the column.

To create instances of a non-instantiable type, instantiable subtypes must be

created. If NOT INSTANTIABLE is specified, no instance of the new type can

be created.

INLINE LENGTH integer

This option indicates the maximum size (in bytes) of a structured type column

instance to store inline with the rest of the values in the row of a table.

Instances of a structured type or its subtypes, that are larger than the specified

inline length, are stored separately from the base table row, similar to the way

that LOB values are handled.

 If the specified INLINE LENGTH is smaller than the size of the result of the

constructor function for the newly-created type (32 bytes plus 10 bytes per

attribute) and smaller than 292 bytes, an error results (SQLSTATE 429B2). Note

that the number of attributes includes all attributes inherited from the

supertype of the type.

The INLINE LENGTH for the type, whether specified or a default value, is the

default inline length for columns that use the structured type. This default can

be overridden at CREATE TABLE time.

INLINE LENGTH has no meaning when the structured type is used as the

type of a typed table.

The default INLINE LENGTH for a structured type is calculated by the system.

In the formula given below, the following terms are used:

short attribute

refers to an attribute with any of the following data types: SMALLINT,

INTEGER, BIGINT, REAL, DOUBLE, FLOAT, DATE, or TIME. Also

included are distinct types or reference types based on these types.

non-short attribute

refers to an attribute of any of the remaining data types, or distinct

types based on those data types.

CREATE TYPE (Structured)

Statements 573

The system calculates the default inline length as follows:

1. Determine the added space requirements for non-short attributes using the

following formula:

space_for_non_short_attributes = SUM(attributelength + n)

n is defined as:

v 0 bytes for nested structured type attributes

v 2 bytes for non-LOB attributes

v 9 bytes for LOB attributes
attributelength is based on the data type specified for the attribute as shown

in Table 26.

2. Calculate the total default inline length using the following formula:

default_length(structured_type) = (number_of_attributes * 10) + 32 +

space_for_non-short_attributes

number_of_attributes is the total number of attributes for the structured type,

including attributes that are inherited from its supertype. However,

number_of_attributes does not include any attributes defined for any subtype

of structured_type.

 Table 26. Byte Counts for Attribute Data Types

Attribute Data Type Byte Count

DECIMAL The integral part of (p / 2) + 1, where p is the precision

DECFLOAT(n) If n is 16, the byte count is 8; if n is 34, the byte count is 16

CHAR(n) n

VARCHAR(n) n

GRAPHIC(n) n * 2

VARGRAPHIC(n) n * 2

TIMESTAMP 10

LOB type Each LOB attribute has a LOB descriptor in the structured

type instance that points to the location of the actual value.

The size of the descriptor varies according to the maximum

length defined for the LOB attribute (see Table 27.

Distinct type Length of the source type of the distinct type

Reference type Length of the built-in data type on which the reference type

is based

Structured type inline_length(attribute_type)

 Table 27. LOB Descriptor Size as a Function of the Maximum LOB Length

Maximum LOB Length LOB Descriptor Size

1024 72

8192 96

65 536 120

524 000 144

4 190 000 168

134 000 000 200

536 000 000 224

1 070 000 000 256

CREATE TYPE (Structured)

574 SQL Reference, Volume 2

Table 27. LOB Descriptor Size as a Function of the Maximum LOB Length (continued)

Maximum LOB Length LOB Descriptor Size

1 470 000 000 280

2 147 483 647 316

WITHOUT COMPARISONS

Indicates that there are no comparison functions supported for instances of the

structured type.

NOT FINAL

Indicates that the structured type may be used as a supertype.

MODE DB2SQL

This clause is required and allows for direct invocation of the constructor

function on this type.

WITH FUNCTION ACCESS

Indicates that all methods of this type and its subtypes, including methods

created in the future, can be accessed using functional notation. This clause can

be specified only for the root type of a structured type hierarchy (the UNDER

clause is not specified) (SQLSTATE 42613). This clause is provided to allow the

use of functional notation for those applications that prefer this form of

notation over method invocation notation.

REF USING rep-type

Defines the built-in data type used as the representation (underlying data type)

for the reference type of this structured type and all its subtypes. This clause

can only be specified for the root type of a structured type hierarchy (UNDER

clause is not specified) (SQLSTATE 42613). The rep-type cannot be a REAL,

FLOAT, DECFLOAT, LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,

DBCLOB, array type, or structured type, and must have a length less than or

equal to 32 672 bytes (SQLSTATE 42613).

 If this clause is not specified for the root type of a structured type hierarchy,

then REF USING VARCHAR(16) FOR BIT DATA is assumed.

CAST (SOURCE AS REF) WITH funcname1

Defines the name of the system-generated function that casts a value with the

data type rep-type to the reference type of this structured type. A schema name

must not be specified as part of funcname1 (SQLSTATE 42601). The cast

function is created in the same schema as the structured type. If the clause is

not specified, the default value for funcname1 is type-name (the name of the

structured type). A function signature matching funcname1(rep-type) must not

already exist in the same schema (SQLSTATE 42710).

CAST (REF AS SOURCE) WITH funcname2

Defines the name of the system-generated function that casts a reference type

value for this structured type to the data type rep-type. A schema name must

not be specified as part of funcname2 (SQLSTATE 42601). The cast function is

created in the same schema as the structured type. If the clause is not

specified, the default value for funcname2 is rep-type (the name of the

representation type).

method-specification

Defines the methods for this type. A method cannot actually be used until it is

given a body with a CREATE METHOD statement (SQLSTATE 42884).

OVERRIDING

Specifies that the method being defined overrides a method of a supertype

CREATE TYPE (Structured)

Statements 575

of the type being defined. Overriding enables one to re-implement

methods in subtypes, thereby providing more specific functionality.

Overriding is not supported for the following types of methods:

v Table and row methods

v External methods declared with PARAMETER STYLE JAVA

v Methods that can be used as predicates in an index extension

v System-generated mutator or observer methods

Attempting to override such a method will result in an error (SQLSTATE

42745).

If a method is to be a valid overriding method, there must already exist

one original method for one of the proper supertypes of the type being

defined, and the following relationships must exist between the overriding

method and the original method:

v The method name of the method being defined and the original method

are equivalent.

v The method being defined and the original method have the same

number of parameters.

v The data type of each parameter of the method being defined and the

data type of the corresponding parameters of the original method are

identical. This requirement excludes the implicit SELF parameter.

If such an original method does not exist, an error is returned (SQLSTATE

428FV).

The overriding method inherits the following attributes from the original

method:

v Language

v Determinism indication

v External action indication

v An indication whether this method should be called if any of its

arguments is the null value

v Result cast (if specified in the original method)

v SELF AS RESULT indication

v The SQL-data access or CONTAINS SQL indication

v For external methods:

– Parameter style

– Locator indication of the parameters and of the result (if specified in

the original method)

– FENCED, SCRATCHPAD, FINAL CALL, ALLOW PARALLEL, and

DBINFO indication

– INHERIT SPECIAL REGISTER and THREADSAFE indication

method-name

Names the method being defined. It must be an unqualified SQL identifier

(SQLSTATE 42601). The method name is implicitly qualified with the

schema used for CREATE TYPE.

 A number of names used as keywords in predicates are reserved for

system use, and cannot be used as a method-name (SQLSTATE 42939). The

names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE,

EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the

comparison operators.

CREATE TYPE (Structured)

576 SQL Reference, Volume 2

In general, the same name can be used for more than one method if there

is some difference in their signatures.

parameter-name

Identifies the parameter name. It cannot be SELF, which is the name

for the implicit subject parameter of a method (SQLSTATE 42734). If

the method is an SQL method, all its parameters must have names

(SQLSTATE 42629). If the method being declared overrides another

method, the parameter name must be exactly the same as the name of

the corresponding parameter of the overridden method; otherwise, an

error is returned (SQLSTATE 428FV).

data-type2

Specifies the data type of each parameter. One entry in the list must be

specified for each parameter that the method will expect to receive. No

more than 90 parameters are allowed, including the implicit SELF

parameter. If this limit is exceeded, an error is raised (SQLSTATE

54023).

 You can specify SQL data types and abbreviations that can be specified

as a column type in the CREATE TABLE statement, and that have

equivalents in the language that is being used to write the method. For

details on the mapping between SQL data types and host language

data types, see the topic that pertains to your language from the list of

related topics below.

Note: If the SQL data type in question is a structured type, there is no

default mapping to a host language data type. A user-defined

transform function must be used to create a mapping between the

structured type and the host language data type.

DECIMAL (or NUMERIC) and decimal floating-point are invalid with

LANGUAGE C and OLE (SQLSTATE 42815).

XML data types cannot be used (SQLSTATE 42815).

REF may be specified, but it does not have a defined scope. Inside the

body of the method, a reference-type can be used in a path-expression

only by first casting it to have a scope. Similarly, a reference returned

by a method can be used in a path-expression only by first casting it to

have a scope.

AS LOCATOR

For LOB types or distinct types which are based on a LOB type, the AS

LOCATOR clause can be added. This indicates that a LOB locator is to

be passed to the method instead of the actual value. This saves greatly

in the number of bytes passed to the method, and may save as well in

performance, particularly in the case where only a few bytes of the

value are actually of interest to the method.

 An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a

type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS

LOCATOR clause cannot be specified (SQLSTATE 42613).

If the method being declared overrides another method, the AS

LOCATOR indication of the parameter must match exactly the AS

LOCATOR indication of the corresponding parameter of the

overridden method (SQLSTATE 428FV).

CREATE TYPE (Structured)

Statements 577

If the method being declared overrides another method, the FOR BIT

DATA indication of each parameter must match exactly the FOR BIT

DATA indication of the corresponding parameter of the overridden

method. (SQLSTATE 428FV).

RETURNS

This mandatory clause identifies the method’s result.

data-type3

Specifies the data type of the method’s result. In this case, exactly the same

considerations apply as for the parameters of methods described above

under data-type2.

AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS

LOCATOR clause can be added. This indicates that a LOB locator is to

be passed from the method instead of the actual value.

 An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a

type other than a LOB or a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS

LOCATOR clause cannot be specified (SQLSTATE 42613).

If the method being defined overrides another method, this clause

cannot be specified (SQLSTATE 428FV).

 If the method overrides another method, data-type3 must be a subtype of

the data type of the result of the overridden method if this data type is a

structured type; otherwise both data types must be identical (SQLSTATE

428FV).

data-type4 CAST FROM data-type5

Specifies the data type of the method’s result.

 This clause is used to return a different data type to the invoking statement

from the data type returned by the method code. The data-type5 must be

castable to the data-type4 parameter. If it is not castable, an error is returned

(SQLSTATE 42880).

Because the length, precision, or scale for data-type4 can be inferred from

data-type5, it is not necessary (but still permitted) to specify the length,

precision, or scale for parameterized types specified for data-type4. Instead,

empty parentheses can be used, such as VARCHAR(), for example.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

A distinct type is not valid as the type specified in data-type5 (SQLSTATE

42815). XML is not valid as the type specified in data-type4 or data-type5

(SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in

conversion errors being returned.

AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS

LOCATOR clause can be added. This indicates that a LOB locator is to

be passed from the method instead of the actual value.

 An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a

type other than a LOB or a distinct type based on a LOB.

CREATE TYPE (Structured)

578 SQL Reference, Volume 2

If the method is FENCED, or if LANGUAGE is SQL, the AS

LOCATOR clause cannot be specified (SQLSTATE 42613).

 If the method being defined overrides another method, this clause cannot

be specified (SQLSTATE 428FV).

If the method being defined overrides another method, the FOR BIT DATA

clause cannot be specified (SQLSTATE 428FV).

SPECIFIC specific-name

Provides a unique name for the instance of the method that is being defined.

This specific name can be used when creating the method body or dropping

the method. It can never be used to invoke the method. The unqualified form

of specific-name is an SQL identifier (with a maximum length of 18). The

qualified form is a schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifier, must not identify another

specific method name that exists at the application server; otherwise an error is

raised (SQLSTATE 42710).

 The specific-name may be the same as an existing method-name.

If no qualifier is specified, the qualifier that was used for type-name is used. If a

qualifier is specified, it must be the same as the explicit or implicit qualifier of

type-name or an error is raised (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database

manager. The unique name is SQL followed by a character timestamp,

SQLyymmddhhmmssxxx.

SELF AS RESULT

Identifies this method as a type-preserving method, which means the

following:

v The declared return type must be the same as the declared subject-type

(SQLSTATE 428EQ).

v When an SQL statement is compiled and resolves to a type preserving

method, the static type of the result of the method is the same as the static

type of the subject argument.

v The method must be implemented in such a way that the dynamic type of

the result is the same as the dynamic type of the subject argument

(SQLSTATE 2200G), and the result cannot be NULL (SQLSTATE 22004).

If the method being defined overrides another method, this clause cannot be

specified (SQLSTATE 428FV).

SQL-routine-characteristics

Specifies the characteristics of the method body that will be defined for this

type using CREATE METHOD.

LANGUAGE SQL

This clause is used to indicate that the method is written in SQL with a

single RETURN statement. The method body is specified using the

CREATE METHOD statement.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out

of the SQL method. If the PARAMETER CCSID clause is not specified, the

default is PARAMETER CCSID UNICODE for Unicode databases, and

PARAMETER CCSID ASCII for all other databases.

CREATE TYPE (Structured)

Statements 579

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031).

UNICODE

Specifies that character data is in UTF-8, and that graphic data is in

UCS-2. If the database is not a Unicode database, PARAMETER CCSID

UNICODE cannot be specified (SQLSTATE 56031).

NOT DETERMINISTIC or DETERMINISTIC

This optional clause specifies whether the method always returns the same

results for given argument values (DETERMINISTIC) or whether the

method depends on some state values that affect the results (NOT

DETERMINISTIC). That is, a DETERMINISTIC method must always return

the same result from successive invocations with identical inputs.

Optimizations taking advantage of the fact that identical inputs always

produce the same results are prevented by specifying NOT

DETERMINISTIC. NOT DETERMINISTIC must be explicitly or implicitly

specified if the body of the method accesses a special register, or calls

another non-deterministic routine (SQLSTATE 428C2).

EXTERNAL ACTION or NO EXTERNAL ACTION

This optional clause specifies whether or not the method takes some action

that changes the state of an object not managed by the database manager.

Optimizations that assume methods have no external impacts are

prevented by specifying EXTERNAL ACTION. For example: sending a

message, ringing a bell, or writing a record to a file.

READS SQL DATA or CONTAINS SQL

Indicates what type of SQL statements can be executed. Because the SQL

statement supported is the RETURN statement, the distinction has to do

with whether or not the expression is a subquery.

READS SQL DATA

Indicates that SQL statements that do not modify SQL data can be

executed by the method (SQLSTATE 42985). Nicknames cannot be

referenced in the SQL statement (SQLSTATE 42997).

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data

can be executed by the method (SQLSTATE 42985).

CALLED ON NULL INPUT

This optional clause indicates that regardless of whether any arguments are

null, the user-defined method is called. It can return a null value or a

normal (non-null) value. However, responsibility for testing for null

argument values lies with the method.

 If the method being defined overrides another method, this clause cannot

be specified (SQLSTATE 428FV).

NULL CALL can be used as a synonym for CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS

This optional clause specifies that updatable special registers in the method

will inherit their initial values from the environment of the invoking

statement. For a method invoked in the select-statement of a cursor, the

initial values are inherited from the environment in which the cursor is

CREATE TYPE (Structured)

580 SQL Reference, Volume 2

opened. For a routine invoked in a nested object (for example a trigger or

view), the initial values are inherited from the run-time environment (not

inherited from the object definition).

 No changes to the special registers are passed back to the invoker of the

function.

Non-updatable special registers, such as the datetime special registers,

reflect a property of the statement currently executing, and are therefore set

to their default values.

external-routine-characteristics

LANGUAGE

This mandatory clause is used to specify the language interface convention

to which the user-defined method body is written.

C This means the database manager will call the user-defined method as

if it were a C function. The user-defined method must conform to the

C language calling and linkage convention as defined by the standard

ANSI C prototype.

JAVA

This means the database manager will call the user-defined method as

a method in a Java class.

OLE

This means the database manager will call the user-defined method as

if it were a method exposed by an OLE automation object. The method

must conform with the OLE automation data types and invocation

mechanism as described in the OLE Automation Programmer’s Reference.

 LANGUAGE OLE is only supported for user-defined methods stored

in Windows 32-bit operating systems. THREADSAFE may not be

specified for methods defined with LANGUAGE OLE (SQLSTATE

42613).

PARAMETER STYLE

This clause is used to specify the conventions used for passing parameters

to and returning the value from methods.

DB2GENERAL

Used to specify the conventions for passing parameters to and

returning the value from external methods that are defined as a

method in a Java class. This can only be specified when LANGUAGE

JAVA is used.

 The value DB2GENRL may be used as a synonym for DB2GENERAL.

SQL

Used to specify the conventions for passing parameters to and

returning the value from external methods that conform to C language

calling and linkage conventions or methods exposed by OLE

automation objects. This must be specified when either LANGUAGE C

or LANGUAGE OLE is used.

PARAMETER CCSID

Specifies the encoding scheme to use for all string data passed into and out

of the external method. If the PARAMETER CCSID clause is not specified,

the default is PARAMETER CCSID UNICODE for Unicode databases, and

PARAMETER CCSID ASCII for all other databases.

CREATE TYPE (Structured)

Statements 581

ASCII

Specifies that string data is encoded in the database code page. If the

database is a Unicode database, PARAMETER CCSID ASCII cannot be

specified (SQLSTATE 56031).

UNICODE

Specifies that character data is in UTF-8, and that graphic data is in

UCS-2. If the database is not a Unicode database, PARAMETER CCSID

UNICODE cannot be specified (SQLSTATE 56031).

 This clause cannot be specified with LANGUAGE OLE (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC

This optional clause specifies whether the method always returns the same

results for given argument values (DETERMINISTIC) or whether the

method depends on some state values that affect the results (NOT

DETERMINISTIC). That is, a DETERMINISTIC method must always return

the same result from successive invocations with identical inputs.

Optimizations taking advantage of the fact that identical inputs always

produce the same results are prevented by specifying NOT

DETERMINISTIC. An example of a type that is non-deterministic is one

that references special registers, global variables, or non-deterministic

functions in a way that affects the result type.

FENCED or NOT FENCED

This clause specifies whether the method is considered ″safe″ to run in the

database manager operating environment’s process or address space (NOT

FENCED), or not (FENCED).

 If a method is registered as FENCED, the database manager protects its

internal resources (data buffers, for example) from access by the method.

Most methods will have the option of running as FENCED or NOT

FENCED. In general, a method running as FENCED will not perform as

well as a similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for methods not adequately checked out can

compromise the integrity of DB2. DB2 takes some precautions against

many of the common types of inadvertent failures that might occur, but

cannot guarantee complete integrity when NOT FENCED user-defined

methods are used.

Only FENCED can be specified for a method with LANGUAGE OLE or

NOT THREADSAFE (SQLSTATE 42613).

If the method is FENCED and has the NO SQL option, the AS LOCATOR

clause cannot be specified (SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority

(CREATE_NOT_FENCED_ROUTINE) is required to register a method as

NOT FENCED.

THREADSAFE or NOT THREADSAFE

Specifies whether the method is considered “safe” to run in the same

process as other routines (THREADSAFE), or not (NOT THREADSAFE).

 If the method is defined with LANGUAGE other than OLE:

v If the method is defined as THREADSAFE, the database manager can

invoke the method in the same process as other routines. In general, to

be threadsafe, a method should not use any global or static data areas.

CREATE TYPE (Structured)

582 SQL Reference, Volume 2

Most programming references include a discussion of writing threadsafe

routines. Both FENCED and NOT FENCED methods can be

THREADSAFE.

v If the method is defined as NOT THREADSAFE, the database manager

will never invoke the method in the same process as another routine.

For FENCED methods, THREADSAFE is the default if the LANGUAGE is

JAVA. For all other languages, NOT THREADSAFE is the default. If the

method is defined with LANGUAGE OLE, THREADSAFE may not be

specified (SQLSTATE 42613).

For NOT FENCED methods, THREADSAFE is the default. NOT

THREADSAFE cannot be specified (SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT

This optional clause may be used to avoid a call to the external method if

any of the non-subject arguments is null.

 If RETURNS NULL ON NULL INPUT is specified, and if at execution time

any one of the method’s arguments is null, the method is not called and

the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of the number

of null arguments, the method is called. It can return a null value or a

normal (non-null) value. However, responsibility for testing for null

argument values lies with the method.

The value NULL CALL may be used as a synonym for CALLED ON

NULL INPUT for backwards and family compatibility. Similarly, NOT

NULL CALL may be used as a synonym for RETURNS NULL ON NULL

INPUT.

There are two cases in which this specification is ignored:

v If the subject argument is null, in which case the method is not executed

and the result is null

v If the method is defined to have no parameters, in which case this null

argument condition cannot occur.

NO SQL, CONTAINS SQL, READS SQL DATA

Indicates whether the method issues any SQL statements and, if so, what

type.

NO SQL

Indicates that the method cannot execute any SQL statements

(SQLSTATE 38001).

CONTAINS SQL

Indicates that SQL statements that neither read nor modify SQL data

can be executed by the method (SQLSTATE 38004 or 42985). Statements

that are not supported in any method return a different error

(SQLSTATE 38003 or 42985).

READS SQL DATA

Indicates that some SQL statements that do not modify SQL data can

be included in the method (SQLSTATE 38002 or 42985). Statements that

are not supported in any method return a different error (SQLSTATE

38003 or 42985).

EXTERNAL ACTION or NO EXTERNAL ACTION

This optional clause specifies whether or not the method takes some action

that changes the state of an object not managed by the database manager.

CREATE TYPE (Structured)

Statements 583

Optimizations that assume methods have no external impacts are

prevented by specifying EXTERNAL ACTION.

NO SCRATCHPAD or SCRATCHPAD length

This optional clause may be used to specify whether a scratchpad is to be

provided for an external method. It is strongly recommended that methods

be re-entrant, so a scratchpad provides a means for the method to ″save

state″ from one call to the next.

 If SCRATCHPAD is specified, then at the first invocation of the

user-defined method, memory is allocated for a scratchpad to be used by

the external method. This scratchpad has the following characteristics:

v length, if specified, sets the size in bytes of the scratchpad and must be

between 1 and 32 767 (SQLSTATE 42820). The default value is 100.

v It is initialized to all X’00’’s.

v Its scope is the SQL statement. There is one scratchpad per reference to

the external method in the SQL statement.

So, if method X in the following statement is defined with the

SCRATCHPAD keyword, three scratchpads would be assigned.

 SELECT A, X..(A) FROM TABLEB

 WHERE X..(A) > 103 OR X..(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is

different from the above. If the method is executed on multiple database

partitions, a scratchpad would be assigned on each database partition

where the method is processed, for each reference to the method in the

SQL statement. Similarly, if the query is executed with intra-partition

parallelism enabled, more than three scratchpads may be assigned.

The scratchpad is persistent. Its content is preserved from one external

method call to the next. Any changes made to the scratchpad by the

external method on one call will be present on the next call. The database

manager initializes scratchpads at the beginning of execution of each SQL

statement. The database manager may reset scratchpads at the beginning of

execution of each subquery. The system issues a final call before resetting a

scratchpad if the FINAL CALL option is specified.

The scratchpad can be used as a central point for system resources

(memory, for example) which the external method might acquire. The

method could acquire the memory on the first call, keep its address in the

scratchpad, and refer to it in subsequent calls.

In such a case where system resource is acquired, the FINAL CALL

keyword should also be specified; this causes a special call to be made at

end-of-statement to allow the external method to free any system resources

acquired.

If SCRATCHPAD is specified, then on each invocation of the user-defined

method, an additional argument is passed to the external method which

addresses the scratchpad.

If NO SCRATCHPAD is specified, then no scratchpad is allocated or

passed to the external method.

NO FINAL CALL or FINAL CALL

This optional clause specifies whether a final call is to be made to an

external method. The purpose of such a final call is to enable the external

method to free any system resources it has acquired. It can be useful in

CREATE TYPE (Structured)

584 SQL Reference, Volume 2

conjunction with the SCRATCHPAD keyword in situations where the

external method acquires system resources such as memory and anchors

them in the scratchpad.

 If FINAL CALL is specified, then at execution time, an additional

argument is passed to the external method which specifies the type of call.

The types of calls are:

v Normal call: SQL arguments are passed and a result is expected to be

returned.

v First call: the first call to the external method for this specific reference

to the method in this specific SQL statement. The first call is a normal

call.

v Final call: a final call to the external method to enable the method to free

up resources. The final call is not a normal call. This final call occurs at

the following times:

– End-of-statement: this case occurs when the cursor is closed for

cursor-oriented statements, or when the statement is through

executing otherwise.

– End-of-transaction: This case occurs when the normal

end-of-statement does not occur. For example, the logic of an

application may for some reason bypass the close of the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD is

open, a final call is made at the subsequent close of the cursor or at the

end of the application.

If NO FINAL CALL is specified, then no ″call type″ argument is passed to

the external method, and no final call is made.

ALLOW PARALLEL or DISALLOW PARALLEL

This optional clause specifies whether, for a single reference to the method,

the invocation of the method can be parallelized. In general, the

invocations of most scalar methods should be parallelizable, but there may

be methods (such as those depending on a single copy of a scratchpad)

that cannot. If either ALLOW PARALLEL or DISALLOW PARALLEL are

specified for a method, then DB2 will accept this specification.

 The following questions should be considered in determining which

keyword is appropriate for the method:.

v Are all the method invocations completely independent of each other? If

YES, then specify ALLOW PARALLEL.

v Does each method invocation update the scratchpad, providing value(s)

that are of interest to the next invocation (the incrementing of a counter,

for example)? If YES, then specify DISALLOW PARALLEL or accept the

default.

v Is there some external action performed by the method which should

happen only on one database partition? If YES, then specify DISALLOW

PARALLEL or accept the default.

v Is the scratchpad used, but only so that some expensive initialization

processing can be performed a minimal number of times? If YES, then

specify ALLOW PARALLEL.

In any case, the body of every external method should be in a directory

that is available on every database partition.

CREATE TYPE (Structured)

Statements 585

The syntax diagram indicates that the default value is ALLOW PARALLEL.

However, the default is DISALLOW PARALLEL if one or more of the

following options is specified in the statement:

v NOT DETERMINISTIC

v EXTERNAL ACTION

v SCRATCHPAD

v FINAL CALL

NO DBINFO or DBINFO

This optional clause specifies whether certain specific information known

by DB2 will be passed to the method as an additional invocation-time

argument (DBINFO), or not (NO DBINFO). NO DBINFO is the default.

DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613). If the

method being defined overrides another method, this clause cannot be

specified (SQLSTATE 428FV).

 If DBINFO is specified, a structure that contains the following information

is passed to the method:

v Database name - the name of the currently connected database.

v Application ID - unique application ID which is established for each

connection to the database.

v Application Authorization ID - the application runtime authorization ID,

regardless of the nested methods in between this method and the

application.

v Code page - identifies the database code page.

v Schema name - under the exact same conditions as for Table name,

contains the name of the schema; otherwise blank.

v Table name - if and only if the method reference is either the right-hand

side of a SET clause in an UPDATE statement, or an item in the

VALUES list of an INSERT statement, contains the unqualified name of

the table being updated or inserted; otherwise blank.

v Column name - under the exact same conditions as for Table name,

contains the name of the column being updated or inserted; otherwise

blank.

v Database version/release - identifies the version, release and

modification level of the database server invoking the method.

v Platform - contains the server’s platform type.

v Table method result column numbers - not applicable to methods.

INHERIT SPECIAL REGISTERS

This optional clause specifies that special registers in the method will

inherit their initial values from the calling statement. For cursors, the initial

values are inherited from the time that the cursor is opened.

 No changes to the special registers are passed back to the caller of the

method.

Some special registers, such as the datetime special registers, reflect a

property of the statement currently executing, and are therefore never

inherited from the caller.

Notes

v Creating a structured type with a schema name that does not already exist will

result in the implicit creation of that schema provided the authorization ID of

CREATE TYPE (Structured)

586 SQL Reference, Volume 2

the statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM.

The CREATEIN privilege on the schema is granted to PUBLIC.

v A structured subtype defined with no attributes defines a subtype that inherits

all its attributes from the supertype. If neither an UNDER clause nor any other

attribute is specified, then the type is a root type of a type hierarchy without any

attributes.

v The addition of a new subtype to a type hierarchy may cause packages to be

invalidated. A package may be invalidated if it depends on a supertype of the

new type. Such a dependency is the result of the use of a TYPE predicate or a

TREAT specification.

v A structured type may have no more than 4082 attributes (SQLSTATE 54050).

v A method specification is not allowed to have the same signature as a function

(comparing the first parameter-type of the function with the subject-type of the

method).

v No original method may override another method, or be overridden by an

original method (SQLSTATE 42745). Furthermore, a function and a method

cannot be in an overriding relationship. This means that if the function were

considered to be a method with its first parameter as subject S, it must not

override another method in any supertype of S, and it must not be overridden

by another method in any subtype of S (SQLSTATE 42745).

v Creation of a structured type automatically generates a set of functions and

methods for use with the type. All the functions and methods are generated in

the same schema as the structured type. If the signature of the generated

function or method conflicts with or overrides the signature of an existing

function in this schema, the statement fails (SQLSTATE 42710). The generated

functions or methods cannot be dropped without dropping the structured type

(SQLSTATE 42917). The following functions and methods are generated:

– Functions

- Reference Comparisons

Six comparison functions with names =, <>, <, <=, >, >= are generated for

the reference type REF(type-name). Each of these functions takes two

parameters of type REF(type-name) and returns true, false, or unknown. The

comparison operators for REF(type-name) are defined to have the same

behavior as the comparison operators for the underlying data type of

REF(type-name). (All references in a type hierarchy have the same reference

representation type. This enables REF(S) and REF(T) to be compared,

provided that S and T have a common supertype. Because uniqueness of

the OID column is enforced only within a table hierarchy, it is possible that

a value of REF(T) in one table hierarchy may be ″equal″ to a value of

REF(T) in another table hierarchy, even though they reference different

rows.)

The scope of the reference type is not considered in the comparison.

- Cast functions

Two cast functions are generated to cast between the generated reference

type REF(type-name) and the underlying data type of this reference type.

v The name of the function to cast from the underlying type to the

reference type is the implicit or explicit funcname1.

The format of this function is:

 CREATE FUNCTION funcname1 (rep-type)

 RETURNS REF(type-name) ...

v The name of the function to cast from the reference type to the

underlying type of the reference type is the implicit or explicit funcname2.

CREATE TYPE (Structured)

Statements 587

The format of this function is:

 CREATE FUNCTION funcname2 (REF(type-name))

 RETURNS rep-type ...

For some rep-types, there are additional cast functions generated with

funcname1 to handle casting from constants.

v If rep-type is SMALLINT, the additional generated cast function has the

format:

 CREATE FUNCTION funcname1 (INTEGER)

 RETURNS REF(type-name)

v If rep-type is CHAR(n), the additional generated cast function has the

format:

 CREATE FUNCTION funcname1 (VARCHAR(n))

 RETURNS REF(type-name)

v If rep-type is GRAPHIC(n), the additional generated cast function has the

format:

 CREATE FUNCTION funcname1 (VARGRAPHIC(n))

 RETURNS REF(type-name)

The schema name of the structured type must be included in the SQL path

for successful use of these operators and cast functions in SQL statements.

- Constructor function

The constructor function is generated to allow a new instance of the type to

be constructed. This new instance will have null for all attributes of the

type, including attributes that are inherited from a supertype.

The format of the generated constructor function is:

 CREATE FUNCTION type-name ()

 RETURNS type-name

 ...

If NOT INSTANTIABLE is specified, no constructor function is generated.
– Methods

- Observer methods

An observer method is defined for each attribute of the structured type. For

each attribute, the observer method returns the type of the attribute. If the

subject is null, the observer method returns a null value of the attribute

type.

For example, the attributes of an instance of the structured type ADDRESS

can be observed using C1..STREET, C1..CITY, C1..COUNTRY, and C1..CODE.

The method signature of the generated observer method is as if the

following statement had been executed:

 CREATE TYPE type-name

 ...

 METHOD attribute-name()

 RETURNS attribute-type

where type-name is the structured type name.

- Mutator methods

A type-preserving mutator method is defined for each attribute of the

structured type. Use mutator methods to change attributes within an

instance of a structured type. For each attribute, the mutator method

returns a copy of the subject modified by assigning the argument to the

named attribute of the copy.

CREATE TYPE (Structured)

588 SQL Reference, Volume 2

For example, an instance of the structured type ADDRESS can be mutated

using C1..CODE(’M3C1H7’). If the subject is null, the mutator method raises

an error (SQLSTATE 2202D).

The method signature of the generated mutator method is as if the

following statement had been executed:

CREATE TYPE type-name

 ...

 METHOD attribute-name (attribute-type)

 RETURNS type-name

If the attribute data type is SMALLINT, REAL, CHAR, or GRAPHIC, an

additional mutator method is generated in order to support mutation using

constants:

v If attribute-type is SMALLINT, the additional mutator supports an

argument of type INTEGER.

v If attribute-type is REAL, the additional mutator supports an argument of

type DOUBLE.

v If attribute-type is CHAR, the additional mutator supports an argument of

type VARCHAR.

v If attribute-type is GRAPHIC, the additional mutator supports an

argument of type VARGRAPHIC.
- If the structured type is used as a column type, the length of an instance of

the type can be no more than 1 GB in length at runtime (SQLSTATE 54049).
v When creating a new subtype for an existing structured type (for use as a

column type), any transform functions already written in support of existing

related structured types should be re-examined and updated as necessary.

Whether the new type is in the same hierarchy as a given type, or in the

hierarchy of a nested type, it is likely that the existing transform function

associated with this type will need to be modified to include some or all of the

new attributes introduced by the new subtype. Generally speaking, because it is

the set of transform functions associated with a given type (or type hierarchy)

that enables UDF and client application access to the structured type, the

transform functions should be written to support all of the attributes in a given

composite hierarchy (that is, including the transitive closure of all subtypes and

their nested structured types).

When a new subtype of an existing type is created, all packages dependent on

methods that are defined in supertypes of the type being created, and that are

eligible for overriding, are invalidated.

v Table access restrictions

If a method is defined as READS SQL DATA, no statement in the method can

access a table that is being modified by the statement which invoked the method

(SQLSTATE 57053). For example, suppose the method BONUS() is defined as

READS SQL DATA. If the statement UPDATE DEPTINFO SET SALARY =

SALARY + EMP..BONUS() is invoked, no SQL statement in the BONUS method

can read from the EMPLOYEE table.

v Privileges

– The definer of the user-defined type always receives the EXECUTE privilege

WITH GRANT OPTION on all methods and functions automatically

generated for the structured type. The EXECUTE privilege is not granted on

any methods explicitly specified in the CREATE TYPE statement until a

method body is defined using the CREATE METHOD statement. The definer

of the user-defined type does have the right to drop the method specification

CREATE TYPE (Structured)

Statements 589

using the ALTER TYPE statement. EXECUTE privilege on all functions

automatically generated during the CREATE TYPE (Distinct) statement is

granted to PUBLIC.

– When an external method is used in an SQL statement, the method definer

must have the EXECUTE privilege on any packages used by the method.
v In a partitioned database environment, the use of SQL in external user-defined

functions or methods is not supported (SQLSTATE 42997).

v Only routines defined as NO SQL can be used to define an index extension

(SQLSTATE 428F8).

v A Java routine defined as NOT FENCED will be invoked as if it had been

defined as FENCED THREADSAFE.

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is tolerated:

v NOT VARIANT can be specified in place of DETERMINISTIC

v VARIANT can be specified in place of NOT DETERMINISTIC

v NULL CALL can be specified in place of CALLED ON NULL INPUT

v NOT NULL CALL can be specified in place of RETURNS NULL ON

NULL INPUT
- The following syntax is accepted as the default behavior for external

methods:

v ASUTIME NO LIMIT

v NO COLLID

v PROGRAM TYPE SUB

v STAY RESIDENT NO

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database if PARAMETER CCSID

UNICODE is not specified
- The following syntax is accepted as the default behavior for SQL methods:

v CCSID UNICODE in a Unicode database

v CCSID ASCII in a non-Unicode database
– For compatibility with previous versions of DB2:

- PARAMETER STYLE DB2SQL can be specified in place of PARAMETER

STYLE SQL

Examples

Example 1: Create a type for department.

 CREATE TYPE DEPT AS

 (DEPT NAME VARCHAR(20),

 MAX_EMPS INT)

 REF USING INT

 MODE DB2SQL

Example 2: Create a type hierarchy consisting of a type for employees and a

subtype for managers.

 CREATE TYPE EMP AS

 (NAME VARCHAR(32),

 SERIALNUM INT,

 DEPT REF(DEPT),

 SALARY DECIMAL(10,2))

CREATE TYPE (Structured)

590 SQL Reference, Volume 2

MODE DB2SQL

 CREATE TYPE MGR UNDER EMP AS

 (BONUS DECIMAL(10,2))

 MODE DB2SQL

Example 3: Create a type hierarchy for addresses. Addresses are intended to be

used as types of columns. The inline length is not specified, so DB2 will calculate a

default length. Encapsulate within the address type definition an external method

that calculates how close this address is to a given input address. Create the

method body using the CREATE METHOD statement.

 CREATE TYPE address_t AS

 (STREET VARCHAR(30),

 NUMBER CHAR(15),

 CITY VARCHAR(30),

 STATE VARCHAR(10))

 NOT FINAL

 MODE DB2SQL

 METHOD SAMEZIP (addr address_t)

 RETURNS INTEGER

 LANGUAGE SQL

 DETERMINISTIC

 CONTAINS SQL

 NO EXTERNAL ACTION,

 METHOD DISTANCE (address_t)

 RETURNS FLOAT

 LANGUAGE C

 DETERMINISTIC

 PARAMETER STYLE SQL

 NO SQL

 NO EXTERNAL ACTION

 CREATE TYPE germany_addr_t UNDER address_t AS

 (FAMILY_NAME VARCHAR(30))

 NOT FINAL

 MODE DB2SQL

 CREATE TYPE us_addr_t UNDER address_t AS

 (ZIP VARCHAR(10))

 NOT FINAL

 MODE DB2SQL

Example 4: Create a type that has nested structured type attributes.

 CREATE TYPE PROJECT AS

 (PROJ_NAME VARCHAR(20),

 PROJ_ID INTEGER,

 PROJ_MGR MGR,

 PROJ_LEAD EMP,

 LOCATION ADDR_T,

 AVAIL_DATE DATE)

 MODE DB2SQL

CREATE TYPE (Structured)

Statements 591

CREATE TYPE MAPPING

The CREATE TYPE MAPPING statement defines a mapping between the following

data types:

v The data type of a column in a data source table or view that is going to be

defined to a federated database

v A corresponding data type that is already defined to the federated database

The mapping can associate the federated database data type with a data type at:

v A specified data source

v A range of data sources; for example, all data sources of a particular type and

version

A data type mapping must be created only if an existing one is not adequate.

If multiple type mappings are applicable when creating a nickname or creating a

table (transparent DDL), the most recent one is applied.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE TYPE MAPPING

type-mapping-name
 * �

�
 (1) LOCAL TYPE

FROM

local-data-type

TO

*

�

�

TO

remote-server

FROM

 REMOTE

TYPE

data-source-data-type

�

�
FOR BIT DATA

(

p

)

[p..p]

,s

P=S

,[s..s]

P>S

P<S

P>=S

P<=S

P<>S

 ��

CREATE TYPE MAPPING

592 SQL Reference, Volume 2

local-data-type:

�� built-in-type ��

built-in-type:

 SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

CREATE TYPE MAPPING

Statements 593

remote-server:

 SERVER server-name

SERVER TYPE

server-type

VERSION

server-version

WRAPPER

wrapper-name

server-version:

 version

.

release

.

mod

version-string-constant

Notes:

1 Both a TO and a FROM keyword must be present in the CREATE TYPE

MAPPING statement.

Description

type-mapping-name

Names the data type mapping. The name must not identify a data type

mapping that is already described in the catalog. A unique name is generated

if type-mapping-name is not specified.

FROM or TO

Specifies a reverse or forward type mapping.

FROM

Specifies a forward type mapping when followed by local-data-type or a

reverse type mapping when followed by remote-server.

TO

Specifies a forward type mapping when followed by remote-server or a

reverse type mapping when followed by local-data-type.

local-data-type

Identifies a data type that is defined to a federated database. If local-data-type is

specified without a schema name, the type name is resolved by searching the

schemas in the SQL path.

 Empty parentheses can be used for the parameterized data types. A

parameterized data type is any one of the data types that can be defined with

a specific length, scale, or precision. If empty parentheses are specified in a

forward type mapping, such as, for example, CHAR(), the length is determined

from the column length on the remote table. If empty parentheses are specified

in a reverse type mapping, the type mapping is applied to the data type with

any length. If you omit parentheses altogether, the default length for the data

type is used.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value

indicates different data types (REAL or DOUBLE).

The local-data-type cannot be DECFLOAT, LONG VARCHAR, LONG

VARGRAPHIC, or a user-defined type (SQLSTATE 42611).

SERVER server-name

Names the data source to which data-source-data-type is defined.

SERVER TYPE server-type

Identifies the type of data source to which data-source-data-type is defined.

CREATE TYPE MAPPING

594 SQL Reference, Volume 2

VERSION

Identifies the version of the data source to which data-source-data-type is

defined.

version

Specifies the version number. The value must be an integer.

release

Specifies the number of the release of the version denoted by version.

The value must be an integer.

mod

Specifies the number of the modification of the release denoted by

release. The value must be an integer.

version-string-constant

Specifies the complete designation of the version. The

version-string-constant can be a single value (for example, ‘8i’); or it can

be the concatenated values of version, release and, if applicable, mod (for

example, ‘8.0.3’).

WRAPPER wrapper-name

Specifies the name of the wrapper that the federated server uses to

interact with data sources of the type and version denoted by

server-type and server-version.

TYPE data-source-data-type

Specifies the data source data type that is being mapped to or from the local

data type.

 Empty parentheses can be used for the parameterized data types. If empty

parentheses are specified in a forward type mapping, such as, for example,

CHAR(), the type mapping is applied to the data type with any length. If

empty parentheses are specified in a reverse type mapping, the length is

determined from the column length specified in the transparent DDL. If you

omit parentheses altogether, the default length for the data type is used.

The data-source-data-type must be a built-in data type. User-defined types are

not allowed.

If server-name is specified with a type mapping, or existing servers are affected

by the type mapping, data-source-data-type, p, and s are verified when creating

the type mapping (SQLSTATE 42611).

p If p is specified, only the data type whose length or precision equals p is

affected by the type mapping.

[p1..p2]

For forward type mapping only. For a decimal data type, p1 and p2 specify the

minimum and maximum number of digits that a value can have. For string

data types, p1 and p2 specify the minimum and maximum number of

characters that a value can have. In all cases, the maximum must equal or

exceed the minimum; and both numbers must be valid with respect to the data

type.

s If s is specified, only the data type whose scale equals s is affected by the type

mapping.

[s1..s2]

For forward type mapping only. For a decimal data type, s1 and s2 specify the

minimum and maximum number of digits allowed to the right of the decimal

CREATE TYPE MAPPING

Statements 595

point. The maximum must equal or exceed the minimum, and both numbers

must be valid with respect to the data type.

P [operand] S

For a decimal data type, P [operand] S specifies a comparison between the

precision and the number of digits allowed to the right of the decimal point.

For example, the operand = indicates that the type mapping is applied if the

precision and the number of digits allowed in the decimal fraction are the

same.

FOR BIT DATA

Indicates whether data-source-data-type is for bit data. These keywords are

required if the data source type column contains binary values. The database

manager will determine this attribute if it is not specified for a character data

type.

Notes

v A CREATE TYPE MAPPING statement within a given unit of work (UOW)

cannot be processed (SQLSTATE 55007) under either of the following conditions:

– The statement references a single data source, and the UOW already includes

one of the following:

- A SELECT statement that references a nickname for a table or view within

this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following:

- A SELECT statement that references a nickname for a table or view within

one of these data sources

- An open cursor on a nickname for a table or view within one of these data

sources

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v When multiple type mappings are applicable, the most recent one will be used.

You can retrieve the creation time for a type mapping by querying the

CREATE_TIME column of the SYSCAT.TYPEMAPPINGS catalog view.

Examples

Example 1: Create a forward type mapping between the Oracle data type DATE

and the data type SYSIBM.DATE. For all of the nicknames that are created after

this mapping is defined, Oracle columns of data type DATE will map to DB2

columns of data type DATE.

 CREATE TYPE MAPPING MY_ORACLE_DATE

 FROM LOCAL TYPE SYSIBM.DATE

 TO SERVER TYPE ORACLE

 REMOTE TYPE DATE

Example 2: Create a forward type mapping between data type

SYSIBM.DECIMAL(10,2) and the Oracle data type NUMBER([10..38],2) at data

source ORACLE1. If there is a column in the Oracle table of data type

NUMBER(11,2), it will be mapped to a column of data type DECIMAL(10,2),

because 11 is between 10 and 38.

CREATE TYPE MAPPING

596 SQL Reference, Volume 2

CREATE TYPE MAPPING MY_ORACLE_DEC

 FROM LOCAL TYPE SYSIBM.DECIMAL(10,2)

 TO SERVER ORACLE1

 REMOTE TYPE NUMBER([10..38],2)

Example 3: Create a forward type mapping between data type

SYSIBM.VARCHAR(p) and the Oracle data type CHAR(p) at data source ORACLE1

(p is any length). If there is a column in the Oracle table of data type CHAR(10), it

will be mapped to a column of data type VARCHAR(10).

 CREATE TYPE MAPPING MY_ORACLE_CHAR

 FROM LOCAL TYPE SYSIBM.VARCHAR()

 TO SERVER ORACLE1

 REMOTE TYPE CHAR()

Example 4: Create a reverse type mapping between the Oracle data type

NUMBER(10,2) at data source ORACLE2 and data type SYSIBM.DECIMAL(10,2). If

you use transparent DDL to create an Oracle table and specify a column of data

type DECIMAL(10,2), DB2 will create the Oracle table with a column of data type

NUMBER(10,2).

 CREATE TYPE MAPPING MY_ORACLE_DEC

 TO LOCAL TYPE SYSIBM.DECIMAL(10,2)

 FROM SERVER ORACLE2

 REMOTE TYPE NUMBER(10,2)

CREATE TYPE MAPPING

Statements 597

CREATE USER MAPPING

The CREATE USER MAPPING statement defines a mapping between an

authorization ID that uses a federated database and the authorization ID and

password to use at a specified data source.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

If the authorization ID of the statement is different from the authorization name

that is being mapped to the data source, the privileges held by the authorization

ID of the statement must include SYSADM or DBADM authority. Otherwise, if the

authorization ID and the authorization name match, no authorities or privileges

are required.

Syntax

�� CREATE USER MAPPING FOR authorization-name

USER
 SERVER server-name �

�

�

 ,

ADD

OPTIONS

(

user-mapping-option-name

string-constant

)

��

Description

authorization-name

Specifies the authorization name under which a user or application connects to

a federated database. The authorization_name is mapped to the

REMOTE_AUTHID user mapping option.

USER

The value in the USER special register. When USER is specified, the

authorization ID issuing the CREATE USER MAPPING statement is mapped to

the REMOTE_AUTHID user mapping option.

SERVER server-name

Names the server object for the data source that the authorization-name can

access. The server-name is the local name for the remote server that is registered

with the federated database.

OPTIONS

Indicates the options that are enabled when the user mapping is created.

ADD

Enables one or more user mapping options.

user-mapping-option-name

Specifies the name of the option.

CREATE USER MAPPING

598 SQL Reference, Volume 2

string-constant

Specifies the setting for the user-mapping-option-name as a character string

constant.

Notes

v User mappings are required only for the following data sources: the DB2 family

of products, Documentum, Informix, Microsoft SQL Server, ODBC, Oracle,

Sybase, and Teradata.

v The REMOTE_PASSWORD option is always required for a user mapping.

Examples

Example 1: Register a user mapping to the DB2 for z/OS data source server object

SERVER390. Map the authorization name for the local federated database to the

user ID and password for SERVER390. The authorization name is RSPALTEN. The

user ID for SERVER390 is SYSTEM. The password for SERVER390 is MANAGER.

 CREATE USER MAPPING FOR RSPALTEN

 SERVER SERVER390

 OPTIONS

 (REMOTE_AUTHID ’SYSTEM’,

 REMOTE_PASSWORD ’MANAGER’)

Example 2: Register a user mapping to the Oracle data source server object

ORACLE1. MARCR is the authorization name for the local federated database and

the user ID for ORACLE1. Because the authorization name and the user ID are the

same, the REMOTE_AUTHID option does not need to be specified in the user

mapping. The password for MARCR on ORACLE1 is NZXCZY .

 CREATE USER MAPPING FOR MARCR

 SERVER ORACLE1

 OPTIONS

 (REMOTE_PASSWORD ’NZXCZY’)

CREATE USER MAPPING

Statements 599

CREATE VARIABLE

The CREATE VARIABLE statement defines a global variable.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name of the variable does not exist

v CREATEIN privilege on the schema, if the schema name of the variable refers to

an existing schema

v SYSADM or DBADM authority

and any privileges that are necessary to execute the default expression.

Syntax

�� CREATE VARIABLE variable-name data-type �

�
 DEFAULT NULL

DEFAULT

constant

special-register

global-variable

(

expression

)

��

data-type:

 built-in-data-type

distinct-data-type

reference-type-name

Description

variable-name

Names the global variable. The name, including an implicit or explicit qualifier,

must not identify a global variable that already exists at the current server

(SQLSTATE 42710). If a qualifier is not specified, the current schema is

implicitly assigned.

data-type

Specifies the data type of the global variable. The data type can be a built-in

data type, a distinct type, or a reference type.

built-in-data-type

Specifies a built-in data type. See “CREATE TABLE” for the description of

built-in data types. Note that CLOB, DBCLOB, BLOB, LONG VARCHAR,

CREATE VARIABLE

600 SQL Reference, Volume 2

LONG VARGRAPHIC, XML, ARRAY, or structured types cannot be

specified for global variables (SQLSTATE 42611).

 FOR BIT DATA can be specified as part of character string data types.

distinct-type-name

Specifies a distinct type. The length, precision, and scale of the global

variable are, respectively, the length, precision, and scale of the source type

of the distinct type. If a distinct-type-name is specified without a schema

name, the distinct-type-name is resolved by searching the schemas in the

SQL path. The same limitations that apply to build-in types apply to the

source type of the distinct type.

reference-type-name

Specifies a reference type. The length, precision, and scale of the global

variable are, respectively, the length, precision, and scale of the source type

of the reference type. If a reference-type-name is specified without a schema

name, the reference-type-name is resolved by searching the schemas in the

SQL path. The same limitations that apply to build-in types apply to the

source type of the reference type.

DEFAULT

Specifies a default value for the global variable. The value can be a constant, a

special register, a global variable, an expression, or the keyword NULL. The

expression can be any expression of the type described in “Expressions”. If a

default value is not specified, the variable is initialized to the null value. The

maximum size of the expression is 64K.

 The default expression must not modify SQL data (SQLSTATE 428FL) or

perform external action (SQLSTATE 42845). The expression must be

assignment-compatible with the data type of the variable.

Notes

v Global variables have a session scope. This means that, although they are

available to all sessions that are active on the database, their value is private for

each session.

v Modifications to the value of a global variable are not under transaction control.

The value of the global variable is preserved when a transaction ends with either

a COMMIT or a ROLLBACK statement.

v Privileges to use a global variable: An attempt to read from or to write to a

global variable created by this statement requires that the authorization ID

attempting this action hold the appropriate privilege on the global variable. The

definer of the variable is implicitly granted all privileges on the variable.

v Setting of the default value: A created global variable is instantiated to its

default value when it is first referenced within its given scope. Note that if a

global variable is referenced in a statement, it is instantiated independently of

the control flow for that statement.

v Using a newly created session global variable: If a global variable is created

within a session, it cannot be used by other sessions until the unit of work has

committed. However, the new global variable can be used within the session

that created the variable before the unit of work commits.

Examples

Example 1: Create a global variable to indicate what printer to use for the session.

 CREATE VARIABLE MYSCHEMA.MYJOB_PRINTER VARCHAR(30)

 DEFAULT ’Default printer’

CREATE VARIABLE

Statements 601

Example 2: Create a global variable to indicate the department where an employee

works.

 CREATE VARIABLE SCHEMA1.GV_DEPTNO INTEGER

 DEFAULT ((SELECT DEPTNO FROM HR.EMPLOYEES

 WHERE EMPUSER = SESSION_USER))

Example 3: Create a global variable to indicate the security level of the current user.

 CREATE VARIABLE SCHEMA2.GV_SECURITY_LEVEL INTEGER

 DEFAULT (GET_SECURITY_LEVEL (SESSION_USER))

CREATE VARIABLE

602 SQL Reference, Volume 2

CREATE VIEW

The CREATE VIEW statement defines a view on one or more tables, views or

nicknames.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v For each table, view, or nickname identified in any fullselect:

– CONTROL privilege on that table or view, or

– SELECT privilege on that table or view

and at least one of the following:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the view does not exist

– CREATEIN privilege on the schema, if the schema name of the view refers to

an existing schema
If creating a subview, the authorization ID of the statement must:

– Be the same as the owner of the root table of the table hierarchy

– Have SELECT WITH GRANT privilege on the underlying table of the

subview, or the superview must not have SELECT privilege granted to any

user other than the view definer

If WITH ROW MOVEMENT is specified:

– UPDATE privilege on that table or view
v SYSADM or DBADM authority

Group privileges are not considered for any table or view specified in the CREATE

VIEW statement.

Privileges are not considered when defining a view on a federated database

nickname. Authorization requirements of the data source for the table or view

referenced by the nickname are applied when the query is processed. The

authorization ID of the statement can be mapped to a different remote

authorization ID.

If a view definer can only create the view because the definer has SYSADM

authority, the definer is granted explicit DBADM authority for the purpose of

creating the view.

Syntax

CREATE VIEW

Statements 603

�� CREATE VIEW view-name

�

,

(

column-name

)

OF

type-name

root-view-definition

subview-definition

 �

� AS

�

 fullselect

,

WITH

common-table-expression

 * �

�

CASCADED

WITH

CHECK OPTION

LOCAL

*

 WITH NO ROW MOVEMENT

WITH ROW MOVEMENT

*

��

root-view-definition:

 MODE DB2SQL (oid-column)

,

with-options

subview-definition:

 MODE DB2SQL under-clause

(

with-options

)

EXTEND

oid-column:

 REF IS oid-column-name USER GENERATED

UNCHECKED

with-options:

�

�

 ,

,

column-name

WITH OPTIONS

SCOPE

typed-table-name

typed-view-name

READ ONLY

under-clause:

 UNDER superview-name INHERIT SELECT PRIVILEGES

Description

view-name

Names the view. The name, including the implicit or explicit qualifier, must

CREATE VIEW

604 SQL Reference, Volume 2

not identify a table, view, nickname or alias described in the catalog. The

qualifier must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE

42939).

 The name can be the same as the name of an inoperative view (see Inoperative

views). In this case the new view specified in the CREATE VIEW statement

will replace the inoperative view. The user will get a warning (SQLSTATE

01595) when an inoperative view is replaced. No warning is returned if the

application was bound with the bind option SQLWARN set to NO.

column-name

Names the columns in the view. If a list of column names is specified, it must

consist of as many names as there are columns in the result table of the

fullselect. Each column-name must be unique and unqualified. If a list of

column names is not specified, the columns of the view inherit the names of

the columns of the result table of the fullselect.

 A list of column names must be specified if the result table of the fullselect has

duplicate column names or an unnamed column (SQLSTATE 42908). An

unnamed column is a column derived from a constant, function, expression, or

set operation that is not named using the AS clause of the select list.

OF type-name

Specifies that the columns of the view are based on the attributes of the

structured type identified by type-name. If type-name is specified without a

schema name, the type name is resolved by searching the schemas on the SQL

path (defined by the FUNCPATH preprocessing option for static SQL and by

the CURRENT PATH register for dynamic SQL). The type name must be the

name of an existing user-defined type (SQLSTATE 42704) and it must be a

structured type that is instantiable (SQLSTATE 428DP).

MODE DB2SQL

This clause is used to specify the mode of the typed view. This is the only

valid mode currently supported.

UNDER superview-name

Indicates that the view is a subview of superview-name. The superview must be

an existing view (SQLSTATE 42704) and the view must be defined using a

structured type that is the immediate supertype of type-name (SQLSTATE

428DB). The schema name of view-name and superview-name must be the same

(SQLSTATE 428DQ). The view identified by superview-name must not have any

existing subview already defined using type-name (SQLSTATE 42742).

 The columns of the view include the object identifier column of the superview

with its type modified to be REF(type-name), followed by columns based on the

attributes of type-name (remember that the type includes the attributes of its

supertype).

INHERIT SELECT PRIVILEGES

Any user or group holding a SELECT privilege on the superview will be

granted an equivalent privilege on the newly created subview. The subview

definer is considered to be the grantor of this privilege.

OID-column

Defines the object identifier column for the typed view.

REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the view as

the first column. An OID is required for the root view of a view hierarchy

(SQLSTATE 428DX). The view must be a typed view (the OF clause must

be present) that is not a subview (SQLSTATE 42613). The name for the

CREATE VIEW

Statements 605

column is defined as OID-column-name and cannot be the same as the

name of any attribute of the structured type type-name (SQLSTATE 42711).

The first column specified in fullselect must be of type REF(type-name) (you

may need to cast it so that it has the appropriate type). If UNCHECKED is

not specified, it must be based on a not nullable column on which

uniqueness is enforced through an index (primary key, unique constraint,

unique index, or OID-column). This column will be referred to as the object

identifier column or OID column. The keywords USER GENERATED indicate

that the initial value for the OID column must be provided by the user

when inserting a row. Once a row is inserted, the OID column cannot be

updated (SQLSTATE 42808).

UNCHECKED

Defines the object identifier column of the typed view definition to assume

uniqueness even though the system can not prove this uniqueness. This is

intended for use with tables or views that are being defined into a typed

view hierarchy where the user knows that the data conforms to this

uniqueness rule but it does not comply with the rules that allow the

system to prove uniqueness. UNCHECKED option is mandatory for view

hierarchies that range over multiple hierarchies or legacy tables or views

By specifying UNCHECKED, the user takes responsibility for ensuring that

each row of the view has a unique OID. If the user fails to ensure this

property, and a view contains duplicate OID values, then a path-expression

or DEREF operator involving one of the non-unique OID values may result

in an error (SQLSTATE 21000).

with-options

Defines additional options that apply to columns of a typed view.

column-name WITH OPTIONS

Specifies the name of the column for which additional options are

specified. The column-name must correspond to the name of an attribute

defined in (not inherited by) the type-name of the view. The column must

be a reference type (SQLSTATE 42842). It cannot correspond to a column

that also exists in the superview (SQLSTATE 428DJ). A column name can

only appear in one WITH OPTIONS SCOPE clause in the statement

(SQLSTATE 42613).

SCOPE

Identifies the scope of the reference type column. A scope must be

specified for any column that is intended to be used as the left operand of

a dereference operator or as the argument of the DEREF function.

 Specifying the scope for a reference type column may be deferred to a

subsequent ALTER VIEW statement (if the scope is not inherited) to allow

the target table or view to be defined, usually in the case of mutually

referencing views and tables. If no scope is specified for a reference type

column of the view and the underlying table or view column was scoped,

then the underlying column’s scope is inherited by the reference type

column. The column remains unscoped if the underlying table or view

column did not have a scope. See “Notes” on page 610 for more

information about scope and reference type columns.

typed-table-name

The name of a typed table. The table must already exist or be the same

as the name of the table being created (SQLSTATE 42704). The data

type of column-name must be REF(S), where S is the type of

typed-table-name (SQLSTATE 428DM). No checking is done of any

CREATE VIEW

606 SQL Reference, Volume 2

existing values in column-name to ensure that the values actually

reference existing rows in typed-table-name.

typed-view-name

The name of a typed view. The view must already exist or be the same

as the name of the view being created (SQLSTATE 42704). The data

type of column-name must be REF(S), where S is the type of

typed-view-name (SQLSTATE 428DM). No checking is done of any

existing values in column-name to ensure that the values actually

reference existing rows in typed-view-name.

READ ONLY

Identifies the column as a read-only column. This option is used to force a

column to be read-only so that subview definitions can specify an

expression for the same column that is implicitly read-only.

AS

Identifies the view definition.

WITH common-table-expression

Defines a common table expression for use with the fullselect that follows. A

common table expression cannot be specified when defining a typed view.

fullselect

Defines the view. At any time, the view consists of the rows that would result

if the SELECT statement were executed. The fullselect must not reference host

variables, parameter markers, or declared temporary tables. However, a

parameterized view can be created as an SQL table function.

 The fullselect cannot include an SQL data change statement in the FROM

clause (SQLSTATE 428FL).

For Typed Views and Subviews: The fullselect must conform to the following

rules otherwise an error is returned (SQLSTATE 428EA unless otherwise

specified).

v The fullselect must not include references to the DBPARTITIONNUM or

HASHEDVALUE functions, non-deterministic functions, or functions defined

to have external action.

v The body of the view must consist of a single subselect, or a UNION ALL of

two or more subselects. Let each of the subselects participating directly in

the view body be called a branch of the view. A view may have one or more

branches.

v The FROM-clause of each branch must consist of a single table or view (not

necessarily typed), called the underlying table or view of that branch.

v The underlying table or view of each branch must be in a separate hierarchy

(that is, a view cannot have multiple branches with their underlying tables

or views in the same hierarchy).

v None of the branches of a typed view definition may specify GROUP BY or

HAVING.

v If the view body contains UNION ALL, the root view in the hierarchy must

specify the UNCHECKED option for its OID column.

For a hierarchy of views and subviews: Let BR1 and BR2 be any branches that

appear in the definitions of views in the hierarchy. Let T1 be the underlying

table or view of BR1, and let T2 be the underlying table or view of BR2. Then:

v If T1 and T2 are not in the same hierarchy, then the root view in the view

hierarchy must specify the UNCHECKED option for its OID column.

CREATE VIEW

Statements 607

v If T1 and T2 are in the same hierarchy, then BR1 and BR2 must contain

predicates or ONLY-clauses that are sufficient to guarantee that their

row-sets are disjoint.

For typed subviews defined using EXTEND AS: For every branch in the body

of the subview:

v The underlying table of each branch must be a (not necessarily proper)

subtable of some underlying table of the immediate superview.

v The expressions in the SELECT list must be assignable to the non-inherited

columns of the subview (SQLSTATE 42854).

For typed subviews defined using AS without EXTEND:

v For every branch in the body of the subview, the expressions in the

SELECT-list must be assignable to the declared types of the inherited and

non-inherited columns of the subview (SQLSTATE 42854).

v The OID-expression of each branch over a given hierarchy in the subview

must be equivalent (except for casting) to the OID-expression in the branch

over the same hierarchy in the root view.

v The expression for a column not defined (implicitly or explicitly) as READ

ONLY in a superview must be equivalent in all branches over the same

underlying hierarchy in its subviews.

WITH CHECK OPTION

Specifies the constraint that every row that is inserted or updated through the

view must conform to the definition of the view. A row that does not conform

to the definition of the view is a row that does not satisfy the search conditions

of the view.

 WITH CHECK OPTION must not be specified if any of the following

conditions is true:

v The view is read-only (SQLSTATE 42813). If WITH CHECK OPTION is

specified for an updatable view that does not allow inserts, the constraint

applies to updates only.

v The view references the DBPARTITIONNUM or HASHEDVALUE function, a

non-deterministic function, or a function with external action (SQLSTATE

42997).

v A nickname is the update target of the view.

v A view that has an INSTEAD OF trigger defined on it is the update target of

the view (SQLSTATE 428FQ).

If WITH CHECK OPTION is omitted, the definition of the view is not used in

the checking of any insert or update operations that use the view. Some

checking might still occur during insert or update operations if the view is

directly or indirectly dependent on another view that includes WITH CHECK

OPTION. Because the definition of the view is not used, rows might be

inserted or updated through the view that do not conform to the definition of

the view.

CASCADED

The WITH CASCADED CHECK OPTION constraint on a view V means

that V inherits the search conditions as constraints from any updatable

view on which V is dependent. Furthermore, every updatable view that is

dependent on V is also subject to these constraints. Thus, the search

conditions of V and each view on which V is dependent are ANDed

together to form a constraint that is applied for an insert or update of V or

of any view dependent on V.

CREATE VIEW

608 SQL Reference, Volume 2

LOCAL

The WITH LOCAL CHECK OPTION constraint on a view V means the

search condition of V is applied as a constraint for an insert or update of V

or of any view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the following

example. Consider the following updatable views (substituting for Y from

column headings of the table that follows):

 V1 defined on table T

 V2 defined on V1 WITH Y CHECK OPTION

 V3 defined on V2

 V4 defined on V3 WITH Y CHECK OPTION

 V5 defined on V4

The following table shows the search conditions against which inserted or

updated rows are checked:

 Y is LOCAL Y is CASCADED

V1 checked against: no view no view

V2 checked against: V2 V2, V1

V3 checked against: V2 V2, V1

V4 checked against: V2, V4 V4, V3, V2, V1

V5 checked against: V2, V4 V4, V3, V2, V1

Consider the following updatable view which shows the impact of the WITH

CHECK OPTION using the default CASCADED option:

 CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

 CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

 CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not

have a WITH CHECK OPTION and V1 is not dependent on any other view

that has a WITH CHECK OPTION.

 INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because V2

has a WITH CHECK OPTION and the insert would produce a row that did

not conform to the definition of V2.

 INSERT INTO V2 VALUES(5)

The following INSERT statement using V3 will result in an error even though

it does not have WITH CHECK OPTION because V3 is dependent on V2

which does have a WITH CHECK OPTION (SQLSTATE 44000).

 INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it does

not conform to the definition of V3 (V3 does not have a WITH CHECK

OPTION); it does conform to the definition of V2 which does have a WITH

CHECK OPTION.

 INSERT INTO V3 VALUES(200)

WITH NO ROW MOVEMENT or WITH ROW MOVEMENT

Specifies the action to take for an updatable UNION ALL view when a row is

updated in a way that violates a check constraint on the underlying table. The

default is WITH NO ROW MOVEMENT.

CREATE VIEW

Statements 609

WITH NO ROW MOVEMENT

Specifies that an error (SQLSTATE 23513) is to be returned if a row is

updated in a way that violates a check constraint on the underlying table.

WITH ROW MOVEMENT

Specifies that an updated row is to be moved to the appropriate

underlying table, even if it violates a check constraint on that table.

 Row movement involves deletion of the rows that violate the check

constraint, and insertion of those rows back into the view. The WITH ROW

MOVEMENT clause can only be specified for UNION ALL views whose

columns are all updatable (SQLSTATE 429BJ). If a row is inserted (perhaps

after trigger activation) into the same underlying table from which it was

deleted, an error is returned (SQLSTATE 23524). A view defined using the

WITH ROW MOVEMENT clause must not contain nested UNION ALL

operations, except in the outermost fullselect (SQLSTATE 429BJ).

Notes

v Creating a view with a schema name that does not already exist will result in

the implicit creation of that schema provided the authorization ID of the

statement has IMPLICIT_SCHEMA authority. The schema owner is SYSIBM. The

CREATEIN privilege on the schema is granted to PUBLIC.

v View columns inherit the NOT NULL WITH DEFAULT attribute from the base

table or view except when columns are derived from an expression. When a row

is inserted or updated into an updatable view, it is checked against the

constraints (primary key, referential integrity, and check) if any are defined on

the base table.

v A new view cannot be created if it uses an inoperative view in its definition.

(SQLSTATE 51024).

v This statement does not support declared temporary tables (SQLSTATE 42995).

v Deletable views: A view is deletable if an INSTEAD OF trigger for the delete

operation has been defined for the view, or if all of the following are true:

– each FROM clause of the outer fullselect identifies only one base table (with

no OUTER clause), deletable view (with no OUTER clause), deletable nested

table expression, or deletable common table expression (cannot identify a

nickname)

– the outer fullselect does not include a VALUES clause

– the outer fullselect does not include a GROUP BY clause or HAVING clause

– the outer fullselect does not include column functions in the select list

– the outer fullselect does not include SET operations (UNION, EXCEPT or

INTERSECT) with the exception of UNION ALL

– the base tables in the operands of a UNION ALL must not be the same table

and each operand must be deletable

– the select list of the outer fullselect does not include DISTINCT
v Updatable views: A column of a view is updatable if an INSTEAD OF trigger for

the update operation has been defined for the view, or if all of the following are

true:

– the view is deletable (independent of an INSTEAD OF trigger for delete), the

column resolves to a column of a base table (not using a dereference

operation), and the READ ONLY option is not specified

– all the corresponding columns of the operands of a UNION ALL have exactly

matching data types (including length or precision and scale) and matching

default values if the fullselect of the view includes a UNION ALL

CREATE VIEW

610 SQL Reference, Volume 2

A view is updatable if any column of the view is updatable.

v Insertable views:

– A view is insertable if an INSTEAD OF trigger for the insert operation has

been defined for the view, or at least one column of the view is updatable

(independent of an INSTEAD OF trigger for update), and the fullselect of the

view does not include UNION ALL.

– A given row can be inserted into a view (including a UNION ALL) if, and

only if, it fulfills the check constraints of exactly one of the underlying base

tables.

– To insert into a view that includes non-updatable columns, those columns

must be omitted from the column list.
v Read-only views: A view is read-only if it is not deletable, updatable, or

insertable.

The READONLY column in the SYSCAT.VIEWS catalog view indicates if a view

is read-only without considering INSTEAD OF triggers.

v Common table expressions and nested table expressions follow the same set of

rules for determining whether they are deletable, updatable, insertable, or

read-only.

v Inoperative views: An inoperative view is a view that is no longer available for

SQL statements. A view becomes inoperative if:

– A privilege, upon which the view definition is dependent, is revoked.

– An object such as a table, nickname, alias or function, upon which the view

definition is dependent, is dropped.

– A view, upon which the view definition is dependent, becomes inoperative.

– A view that is the superview of the view definition (the subview) becomes

inoperative.
In practical terms, an inoperative view is one in which the view definition has

been unintentionally dropped. For example, when an alias is dropped, any view

defined using that alias is made inoperative. All dependent views also become

inoperative and packages dependent on the view are no longer valid.

Until the inoperative view is explicitly recreated or dropped, a statement using

that inoperative view cannot be compiled (SQLSTATE 51024) with the exception

of the CREATE ALIAS, CREATE VIEW, DROP VIEW, and COMMENT ON

TABLE statements. Until the inoperative view has been explicitly dropped, its

qualified name cannot be used to create another table or alias (SQLSTATE

42710).

An inoperative view may be recreated by issuing a CREATE VIEW statement

using the definition text of the inoperative view. This view definition text is

stored in the TEXT column of the SYSCAT.VIEWS catalog. When recreating an

inoperative view, it is necessary to explicitly grant any privileges required on

that view by others, due to the fact that all authorization records on a view are

deleted if the view is marked inoperative. Note that there is no need to explicitly

drop the inoperative view in order to recreate it. Issuing a CREATE VIEW

statement with the same view-name as an inoperative view will cause that

inoperative view to be replaced, and the CREATE VIEW statement will return a

warning (SQLSTATE 01595).

Inoperative views are indicated by an X in the VALID column of the

SYSCAT.VIEWS catalog view and an X in the STATUS column of the

SYSCAT.TABLES catalog view.

v Privileges:

CREATE VIEW

Statements 611

The definer of a view always receives the SELECT privilege on the view as well

as the right to drop the view. The definer of a view will get CONTROL privilege

on the view only if the definer has CONTROL privilege on every base table,

view, or nickname identified in the fullselect, or if the definer has SYSADM or

DBADM authority.

The definer of the view is granted INSERT, UPDATE, column level UPDATE or

DELETE privileges on the view if the view is not read-only and the definer has

the corresponding privileges on the underlying objects.

For a view defined WITH ROW MOVEMENT, the definer acquires the UPDATE

privilege on the view only if the definer has the UPDATE privilege on all

columns of the view, as well as INSERT and DELETE privileges on all

underlying tables or views.

The definer of a view only acquires privileges if the privileges from which they

are derived exist at the time the view is created. The definer must have these

privileges either directly or because PUBLIC has these privilege. Privileges are

not considered when defining a view on a federated server nickname. However,

when using a view on a nickname, the user’s authorization ID must have valid

select privileges on the table or view that the nickname references at the data

source. Otherwise, an error is returned. Privileges held by groups of which the

view definer is a member, are not considered.

When a subview is created, the SELECT privileges held on the immediate

superview are automatically granted on the subview.

v Scope and REF columns:

When selecting a reference type column in the fullselect of a view definition,

consider the target type and scope that is required.

– If the required target type and scope is the same as the underlying table or

view, the column can simply be selected.

– If the scope needs to be changed, use the WITH OPTIONS SCOPE clause to

define the required scope table or view.

– If the target type of the reference needs to be changed, the column must be

cast first to the representation type of the reference and then to the new

reference type. The scope in this case can be specified in the cast to the

reference type or using the WITH OPTIONS SCOPE clause. For example,

assume you select column Y defined as REF(TYP1) SCOPE TAB1. You want

this to be defined as REF(VTYP1) SCOPE VIEW1. The select list item would

be as follows:

 CAST(CAST(Y AS VARCHAR(16) FOR BIT DATA) AS REF(VTYP1) SCOPE VIEW1)

v Identity columns: A column of a view is considered an identity column, if the

element of the corresponding column in the fullselect of the view definition is

the name of an identity column of a table, or the name of a column of a view

which directly or indirectly maps to the name of an identity column of a base

table.

In all other cases, the columns of a view will not get the identity property. For

example:

– the select-list of the view definition includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)

– the view definition involves a join

– a column in the view definition includes an expression that refers to an

identity column

– the view definition includes a UNION

CREATE VIEW

612 SQL Reference, Volume 2

When inserting into a view for which the select list of the view definition

directly or indirectly includes the name of an identity column of a base table, the

same rules apply as if the INSERT statement directly referenced the identity

column of the base table.

v Federated views: A federated view is a view that includes a reference to a

nickname somewhere in the fullselect. The presence of such a nickname changes

the authorization model used for the view when the view is subsequently

referenced in a query.

When the view is created, no privilege checking is done to determine whether

the view definer has access to the underlying data source table or view of a

nickname. Privilege checking of references to tables or views at the federated

database are handled as usual, requiring the view definer to have at least

SELECT privilege on such objects.

When a federated view is subsequently referenced in a query, the nicknames

result in queries against the data source, and the authorization ID that issued the

query (or the remote authorization ID to which it maps) must have the

necessary privileges to access the data source table or view. The authorization ID

that issues the query referencing the federated view is not required to have any

additional privileges on tables or views (non-federated) that exist at the

federated server.

v ROW MOVEMENT, triggers and constraints: When a view that is defined using

the WITH ROW MOVEMENT clause is updated, the sequence of trigger and

constraints operations is as follows:

 1. BEFORE UPDATE triggers are activated for all rows being updated,

including rows that will eventually be moved.

 2. The update operation is processed.

 3. Constraints are processed for all updated rows.

 4. AFTER UPDATE triggers (both row-level and statement-level) are activated

in creation order, for all rows that satisfy the constraints after the update

operation. Because this is an UPDATE statement, all UPDATE

statement-level triggers are activated for all underlying tables.

 5. BEFORE DELETE triggers are activated for all rows that did not satisfy the

constraints after the update operation (these are the rows that are to be

moved).

 6. The delete operation is processed.

 7. Constraints are processed for all deleted rows.

 8. AFTER DELETE triggers (both row-level and statement-level) are activated

in creation order, for all deleted rows. Statement-level triggers are activated

for only those tables that are involved in the delete operation.

 9. BEFORE INSERT triggers are activated for all rows being inserted (that is,

the rows being moved). The new transition tables for the BEFORE INSERT

triggers contain the input data provided by the user.

10. The insert operation is processed.

11. Constraints are processed for all inserted rows.

12. AFTER INSERT triggers (both row-level and statement-level) are activated

in creation order, for all inserted rows. Statement-level triggers are activated

for only those tables that are involved in the insert operation.
v Nested UNION ALL views: A view defined with UNION ALL and based, either

directly or indirectly, on a view that is also defined with UNION ALL cannot be

updated if either view is defined using the WITH ROW MOVEMENT clause

(SQLSTATE 429BK).

CREATE VIEW

Statements 613

v Considerations for implicitly hidden columns: It is possible that the result table

of the fullselect will include a column of the base table that is defined as

implicitly hidden. This can occur when the implicitly hidden column is explicitly

referenced in the fullselect of the view definition. However, the corresponding

column of the view does not inherit the implicitly hidden attribute. Columns of

a view cannot be defined as hidden.

v Compatibilities:

– For compatibility with previous versions of DB2:

- The FEDERATED keyword can be specified between the keywords

CREATE and VIEW. The FEDERATED keyword is ignored, however,

because a warning is no longer returned if federated objects are used in the

view definition.

Examples

Example 1: Create a view named MA_PROJ upon the PROJECT table that contains

only those rows with a project number (PROJNO) starting with the letters ‘MA’.

 CREATE VIEW MA_PROJ AS SELECT *

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 2: Create a view as in example 1, but select only the columns for project

number (PROJNO), project name (PROJNAME) and employee in charge of the

project (RESPEMP).

 CREATE VIEW MA_PROJ

 AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 3: Create a view as in example 2, but, in the view, call the column for the

employee in charge of the project IN_CHARGE.

 CREATE VIEW MA_PROJ

 (PROJNO, PROJNAME, IN_CHARGE)

 AS SELECTPROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though only one of the column names is being changed, the names of

all three columns in the view must be listed in the parentheses that follow

MA_PROJ.

Example 4: Create a view named PRJ_LEADER that contains the first four columns

(PROJNO, PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together

with the last name (LASTNAME) of the person who is responsible for the project

(RESPEMP). Obtain the name from the EMPLOYEE table by matching EMPNO in

EMPLOYEE to RESPEMP in PROJECT.

 CREATE VIEW PRJ_LEADER

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO

Example 5: Create a view as in example 4, but in addition to the columns

PROJNO, PROJNAME, DEPTNO, RESPEMP, and LASTNAME, show the total pay

(SALARY + BONUS + COMM) of the employee who is responsible. Also select

only those projects with mean staffing (PRSTAFF) greater than one.

CREATE VIEW

614 SQL Reference, Volume 2

CREATE VIEW PRJ_LEADER

 (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO

 AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression

SALARY+BONUS+COMM as TOTAL_PAY in the fullselect.

 CREATE VIEW PRJ_LEADER

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,

 LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6: Given the set of tables and views shown in the following figure:

 User ZORPIE (who does not have either DBADM or SYSADM authority) has been

granted the privileges shown in brackets below each object:

1. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VA AS SELECT * FROM S1.V1

because she has CONTROL on S1.V1. (CONTROL on S1.V1 must have been

granted to ZORPIE by someone with DBADM or SYSADM authority.) It does

not matter which, if any, privileges she has on the underlying base table.

2. ZORPIE will not be allowed to create the view:

 CREATE VIEW VB AS SELECT * FROM S1.V2

because she has neither CONTROL nor SELECT on S1.V2. It does not matter

that she has CONTROL on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VC (COLA, COLB, COLC, COLD)

 AS SELECT * FROM S1.V1, S1.T2

 WHERE COLA = COLC

because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2 and

she has CONTROL on both of these. Note that the view VC is read-only, so

ZORPIE does not get INSERT, UPDATE or DELETE privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:

 CREATE VIEW VD (COLA,COLB, COLE, COLF)

 AS SELECT * FROM S1.V1, S1.V3

 WHERE COLA = COLE

COLA COLB

INTEGERCHAR(5)

COLC COLD

INTEGERCHAR(5)

COLE COLF

INTEGERCHAR(5)

...SELECT * FROM S1.T1 ...SELECT * FROM S1.T2 ...SELECT * FROM S1.T3

table: S1.T1 table: S1.T2 table: S1.T3

view: S1.V1 view: S1.V2 view: S1.V3

(SELECT, INSERT) (CONTROL) (SELECT)

(CONTROL) (none) (SELECT)

Figure 1. Tables and Views for Example 6

CREATE VIEW

Statements 615

because the fullselect of ZORPIE.VD references the two views S1.V1 and S1.V3,

one on which she has only SELECT privilege, and one on which she has

CONTROL privilege. She is given the lesser of the two privileges, SELECT, on

ZORPIE.VD.

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT

OPTION and SELECT privilege on the view VE in the following view

definition.

 CREATE VIEW VE

 AS SELECT * FROM S1.V1

 WHERE COLA > ANY

 (SELECT COLE FROM S1.V3)

ZORPIE’s privileges on VE are determined primarily by her privileges on

S1.V1. Since S1.V3 is only referenced in a subquery, she only needs SELECT

privilege on S1.V3 to create the view VE. The definer of a view only gets

CONTROL on the view if they have CONTROL on all objects referenced in the

view definition. ZORPIE does not have CONTROL on S1.V3, consequently she

does not get CONTROL on VE.

CREATE VIEW

616 SQL Reference, Volume 2

CREATE WORK ACTION SET

The CREATE WORK ACTION SET statement defines a work action set and work

actions within the work action set.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE WORK ACTION SET work-action-set-name �

� FOR DATABASE

SERVICE CLASS

service-superclass-name
 �

� USING WORK CLASS SET work-class-set-name �

�

�

,

(

work-action-definition

)

 ENABLE

DISABLE

��

work-action-definition:

 WORK ACTION work-action-name ON WORK CLASS work-class-name �

�

action-types-clause

histogram-template-clause
 ENABLE

DISABLE

action-types-clause:

CREATE WORK ACTION SET

Statements 617

WITH NESTED

MAP ACTIVITY

TO

service-subclass-name

WITHOUT NESTED

WHEN

threshold-types-clause

threshold-exceeded-actions

PREVENT EXECUTION

COUNT ACTIVITY

WITHOUT DETAILS

COLLECT ACTIVITY DATA

WITH DETAILS

AND VALUES

BASE

COLLECT AGGREGATE ACTIVITY DATA

EXTENDED

threshold-types-clause:

 (1) AND QUEUEDACTIVITIES > 0

CONCURRENTDBCOORDACTIVITIES

>

integer

AND QUEUEDACTIVITIES

>

integer

AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE

>

integer

K

M

G

SQLROWSRETURNED

>

integer

ESTIMATEDSQLCOST

>

bigint

ACTIVITYTOTALTIME

>

integer

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

threshold-exceeded-actions:

 COLLECT ACTIVITY DATA NONE

WITHOUT DETAILS

COLLECT ACTIVITY DATA

WITH DETAILS

AND VALUES

�

� STOP EXECUTION

CONTINUE

histogram-template-clause:

 ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE

template-name

�

CREATE WORK ACTION SET

618 SQL Reference, Volume 2

�
 ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE

template-name

�

�
 ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name

Notes:

1 Only one work action of the same threshold type can be applied to a single

work class at a time.

Description

work-action-set-name

Names the work action set. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The work-action-set-name must not identify a

work action set that already exists at the current server (SQLSTATE 42710). The

name must not begin with the characters ’SYS’ (SQLSTATE 42939).

FOR

Specifies the database manager object to which the actions in this work action

set will apply. Each database manager object can have only one work action set

defined for it (SQLSTATE 5U017).

DATABASE

The actions in this work action set are to apply to the database. If

DATABASE is specified, the MAP ACTIVITY action cannot be specified

(SQLSTATE 5U034).

SERVICE CLASS service-superclass-name

The actions in this work action set are to apply to service-superclass-name. If

SERVICE CLASS is specified, threshold actions cannot be specified

(SQLSTATE 5U034). The service-superclass-name must exist at the current

server (SQLSTATE 42704). The service-superclass-name must not be a service

subclass and cannot be any of the following classes (SQLSTATE 5U032):

v The system service class (SYSDEFAULTSYSTEMCLASS)

v The maintenance service class (SYSDEFAULTMAINTENANCECLASS)

v The default user service class (SYSDEFAULTUSERCLASS)

USING WORK CLASS SET work-class-set-name

Specifies the work class set containing the work classes that will classify

database activities on which to perform actions. The work-class-set-name must

exist at the current server (SQLSTATE 42704).

work-action-definition

Specifies the definition of the work action.

WORK ACTION work-action-name

Names the work action. The work-action-name must not identify a work

action that already exists at the current server under this work action set

(SQLSTATE 42710). The work-action-name cannot begin with ’SYS’

(SQLSTATE 42939).

ON WORK CLASS work-class-name

Specifies the work class that identifies the database activities to which this

work action will apply. The work-class-name must exist in the

work-class-set-name at the current server (SQLSTATE 42704).

CREATE WORK ACTION SET

Statements 619

MAP ACTIVITY

Specifies a work action of mapping the activity. This action can only be

specified if the object for which this work action set is defined is a service

superclass (SQLSTATE 5U034).

WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity

are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED

All database activities that have a nesting level of zero that are

classified under the work class, and all database activities nested

under this activity, are mapped to the service subclass; that is,

activities with a nesting level greater than zero are run under the

same service class as activities with a nesting level of zero.

WITHOUT NESTED

Only database activities that have a nesting level of zero that are

classified under the work class are mapped to the service subclass.

Database activities that are nested under this activity are handled

according to their activity type.

TO service-subclass-name

Specifies the service subclass to which activities are to be mapped. The

service-subclass-name must already exist in the service-superclass-name at

the current server (SQLSTATE 42704). The service-subclass-name cannot

be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE

5U018).

WHEN

Specifies the threshold that will be applied to the database activity that is

associated with the work class for which this work action is defined. A

threshold can only be specified if the database manager object for which

this work action set is defined is a database (SQLSTATE 5U034). None of

these thresholds apply to internal database activities initiated by the

database manager or to database activities generated by administrative

SQL routines.

threshold-types-clause

For a description of valid threshold types, see “CREATE

THRESHOLD” statement.

threshold-exceeded-actions

For a description of valid threshold-exceeded actions, see “CREATE

THRESHOLD” statement.

PREVENT EXECUTION

Specifies that none of the database activities associated with the work

class for which this work action is defined will be allowed to run

(SQLSTATE 5U033).

COUNT ACTIVITY

Specifies that all of the database activities associated with the work

class for which this work action is defined are to be run and that each

time one is run, the counter for the work class will be incremented.

COLLECT ACTIVITY DATA

Specifies that data about each activity associated with the work class

for which this work action is defined is to be sent to the applicable

event monitor when the activity completes. The default is COLLECT

ACTIVITY DATA WITHOUT DETAILS.

CREATE WORK ACTION SET

620 SQL Reference, Volume 2

WITHOUT DETAILS

Specifies that data about each activity associated with the work

class for which this work action is defined is to be sent to the

applicable event monitor when the activity completes. Statement

and compilation environment information is not sent to the event

monitor.

WITH DETAILS

Specifies that statement and compilation environment information

is to be sent to the applicable event monitor for those activities that

have them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data is to be captured for activities that

are associated with the work class for which this work action is

defined and sent to the applicable event monitor. This information is

collected periodically on an interval that is specified by the

wlm_collect_int database configuration parameter. The default is

COLLECT AGGREGATE ACTIVITY DATA BASE. This clause cannot

be specified for a work action defined in a work action set that is

applied to a database.

BASE

Specifies that basic aggregate activity data should be captured for

activities associated with the work class for which this work action

is defined and sent to the applicable event monitor. Basic aggregate

activity data includes:

v Estimated activity cost high watermark

v Rows returned high watermark

v Temporary table space usage high watermark

v Activity life time histogram

v Activity queue time histogram

v Activity execution time histogram

EXTENDED

Specifies that all aggregate activity data should be captured for

activities associated with the work class for which this work action

is defined and sent to the applicable event monitor. This includes

all basic aggregate activity data plus:

v Activity data manipulation language (DML) estimated cost

histogram

v Activity DML inter-arrival time histogram

ENABLE or DISABLE

Specifies whether or not the work action is to be considered when

database activities are submitted. The default is ENABLE.

ENABLE

Specifies that the work action is enabled and will be considered

when database activities are submitted.

DISABLE

Specifies that the work action is disabled and will not be

considered when database activities are submitted.

CREATE WORK ACTION SET

Statements 621

ENABLE or DISABLE

Specifies whether or not the work action set is to be considered when

database activities are submitted. The default is ENABLE.

ENABLE

Specifies that the work action set is enabled and will be considered

when database activities are submitted.

DISABLE

Specifies that the work action set is disabled and will not be

considered when database activities are submitted.

histogram-template-clause

Specifies histogram templates to use when collecting aggregate activity data for

activities associated with the work class to which this work action is assigned.

Aggregate activity data is only collected for the work class when the work

action type is COLLECT AGGREGATE ACTIVITY DATA.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the duration, in microseconds, of DB2 activities—associated

with the work class to which this work action is assigned—running during

a specific interval. This time includes both time queued and time

executing. The default is SYSDEFAULTHISTOGRAM. This information is

only collected when the COLLECT AGGREGATE ACTIVITY DATA clause

is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are queued during a specific interval. The default is

SYSDEFAULTHISTOGRAM. This information is only collected when the

COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either

the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, that DB2

activities—associated with the work class to which this work action is

assigned—are executing during a specific interval. This time does not

include the time spent queued. Activity execution time is collected in this

histogram at each database partition where the activity executes. On the

activity’s coordinator database partition, this is the end-to-end execution

time (that is, the life time less the time spent queued). On non-coordinator

database partitions, this is the time that these partitions spend working on

behalf of the activity. During the execution of a given activity, DB2 might

present work to a remote database partition more than once, and each time

the remote partition will collect the execution time for that occurrence of

the activity. Therefore, the counts in the execution time histogram might

not represent the actual number of unique activities that executed on a

database partition. The default is SYSDEFAULTHISTOGRAM. This

information is only collected when the COLLECT AGGREGATE ACTIVITY

DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the estimated cost, in timerons, of DML activities associated

with the work class to which this work action is assigned. The default is

CREATE WORK ACTION SET

622 SQL Reference, Volume 2

SYSDEFAULTHISTOGRAM. This information is only collected when the

COLLECT AGGREGATE ACTIVITY DATA clause is specified with the

EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical

data about the length of time, in microseconds, between the arrival of one

DML activity and the arrival of the next DML activity, for any activity

associated with the work class to which this work action is assigned. The

default is SYSDEFAULTHISTOGRAM. This information is only collected

when the COLLECT AGGREGATE ACTIVITY DATA clause is specified

with the EXTENDED option.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Examples

Example 1: Create a work action set named DATABASE_ACTIONS to apply to all

database activities. Use the LARGE_QUERIES work class set and define the

following work actions. Work action ONE_CONCURRENT_QUERY has a

threshold action that allows one concurrent query to run on the system at a time

for queries that fall within the LARGE_ESTIMATED_COST work class. If that

threshold is exceeded, the database manager is to queue the activity, but is not to

allow more than one database activity to be queued at a time. If the queue

threshold is exceeded, the database activity is not to be allowed to run. Work

action TWO_CONCURRENT_QUERIES has a threshold action that allows two

concurrent queries to execute at the same time for queries that fall within the

LARGE_CARDINALITY work class, and allows no more than two to be queued. If

more than two queries are to be queued, the database activity is to continue

putting the queries in the queue and is to collect the database activity data in the

event monitor.

 CREATE WORK ACTION SET DATABASE_ACTIONS

 FOR DATABASE USING WORK CLASS SET LARGE_QUERIES

 (WORK ACTION ONE_CONCURRENT_QUERY ON WORK CLASS LARGE_ESTIMATED_COST

CREATE WORK ACTION SET

Statements 623

WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 1

 STOP EXECUTION,

 WORK ACTION TWO_CONCURRENT_QUERIES ON WORK CLASS LARGE_CARDINALITY

 WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 2

 COLLECT ACTIVITY DATA CONTINUE)

Example 2: Create a work action set named ADMIN_APPS_ACTIONS with one

work action named MAP_SELECTS that is to apply to database activities that run

under service superclass ADMIN_APPS. The work action is to map all database

activity that falls within the SELECT_CLASS work class to service subclass

SELECTS_SERVICE_CLASS, which is in the DML_SELECTS work class set.

 CREATE WORK ACTION SET ADMIN_APPS_ACTIONS

 FOR SERVICE CLASS ADMIN_APPS USING

 WORK CLASS SET DML_SELECTS

 (WORK ACTION MAP_SELECTS ON WORK CLASS SELECT_CLASS

 MAP TO SELECTS_SERVICE_CLASS)

CREATE WORK ACTION SET

624 SQL Reference, Volume 2

CREATE WORK CLASS SET

The CREATE WORK CLASS SET statement defines a work class set.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE WORK CLASS SET work-class-set-name �

�

�

,

(

work-class-definition

)

 ��

work-class-definition:

 WORK CLASS

work-class-name

work-attributes

position-clause

work-attributes:

 WORK TYPE READ

for-from-to-clause

WRITE

for-from-to-clause

CALL

schema-clause

DML

for-from-to-clause

DDL

LOAD

ALL

for-from-to-clause

schema-clause

for-from-to-clause:

 TO UNBOUNDED

FOR

TIMERONCOST

FROM

from-value

CARDINALITY

TO

to-value

schema-clause:

 ROUTINES IN SCHEMA schema-name

CREATE WORK CLASS SET

Statements 625

position-clause:

 POSITION LAST

POSITION BEFORE

work-class-name

POSITION AFTER

work-class-name

POSITION AT

position

Description

work-class-set-name

Names the work class set. This is a one-part name. It is an SQL identifier

(either ordinary or delimited). The work-class-set-name must not identify a work

class set that already exists at the current server (SQLSTATE 42710). The name

must not begin with the characters ’SYS’ (SQLSTATE 42939).

work-class-definition

Specifies the definition of the work class.

WORK CLASS work-class-name

Names the work class. The work-class-name must not identify a work class

that already exists within the work class set at the current server

(SQLSTATE 42710). The work-class-name cannot begin with ’SYS’

(SQLSTATE 42939).

work-attributes

The attributes of the database activity must match all of the attributes

specified in this work class if that activity is to be associated with this

work class.

WORK TYPE

Specifies the type of database activity.

READ

This activity includes the following statements:

v All SELECT or SELECT INTO statements that do not contain a

DELETE, INSERT, MERGE, or UPDATE statement, and all

VALUES INTO statements

v All XQuery statements

WRITE

This activity includes the following statements:

v UPDATE

v DELETE

v INSERT

v MERGE

v All SELECT statements that contain a DELETE, INSERT, or

UPDATE statement, and all VALUES INTO statements

v All XQuery statements

CALL

Includes the CALL statement. A CALL statement is considered for

a work class with a work type of CALL or ALL.

DML

Includes the statements listed under READ and WRITE.

CREATE WORK CLASS SET

626 SQL Reference, Volume 2

DDL

This activity includes the following statements:

v ALTER

v CREATE

v COMMENT

v DECLARE GLOBAL TEMPORARY TABLE

v DROP

v FLUSH PACKAGE CACHE

v GRANT

v REFRESH TABLE

v RENAME

v REVOKE

v SET INTEGRITY

LOAD

DB2 load operations.

ALL

All recognized workload management (WLM) activity that falls

under any one of the keywords described above.

FOR

Indicates the type of information that is being specified in the FROM

from-value TO to-value clause. The FOR clause is only used for the

following work types:

v READ

v WRITE

v DML

v ALL

TIMERONCOST

The estimated cost of the work, in timerons. This value is used to

determine whether the work falls within the range specified in the

FROM from-value TO to-value clause.

CARDINALITY

The estimated cardinality of the work. This value is used to

determine whether the work falls within the range specified in the

FROM from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value

Specifies the range of either timeron value (for estimated cost) or

cardinality within which the database activity must fall if it is to be

part of this work class. The range is inclusive of from-value and to-value.

If this clause is not specified for the work class, all work that falls

within the specified work type will be included (that is, the default is

FROM 0 TO UNBOUNDED). This range is only used for the following

work types:

v READ

v WRITE

v DML

v ALL

CREATE WORK CLASS SET

Statements 627

FROM from-value TO UNBOUNDED

The from-value must be zero or a positive DOUBLE value

(SQLSTATE 5U019). The range has no upper bound.

FROM from-value TO to-value

The from-value must be zero or a positive DOUBLE value and the

to-value must be a positive DOUBLE value. The from-value must be

smaller than or equal to the to-value (SQLSTATE 5U019).

schema-clause

ROUTINES IN SCHEMA schema-name

Specifies the schema name of the procedure that the CALL

statement will be calling. This clause is only used if the work type

is CALL or ALL and the database activity is a CALL statement. If

no value is specified, all schemas are included.

position-clause

POSITION

Specifies where this work class is to be placed within the work class

set, which determines the order in which work classes are evaluated.

When performing work class assignment at run time, the database

manager first determines the work class set that is associated with the

object, either the database or a service superclass. The first matching

work class within that work class set is then selected. If this keyword

is not specified, the work class is placed in the last position.

LAST

Specifies that the work class is to be placed last in the ordered list

of work classes within the work class set. This is the default.

BEFORE work-class-name

Specifies that the work class is to be placed before work class

work-class-name in the list. The work-class-name must identify a work

class in the work class set that exists at the current server

(SQLSTATE 42704).

AFTER work-class-name

Specifies that the work class is to be placed after work class

work-class-name in the list. The work-class-name must identify a work

class in the work class set that exists at the current server

(SQLSTATE 42704).

AT position

Specifies the absolute position at which the work class is to be

placed within the work class set in the ordered list of work classes.

This value can be any positive integer value (SQLSTATE 42615). If

position is greater than the number of existing work classes plus

one, the work class is placed at the last position within the work

class set.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

CREATE WORK CLASS SET

628 SQL Reference, Volume 2

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

Examples

Example 1: Create a work class set named LARGE_QUERIES that has a set of work

classes representing all DML with an estimated cost greater than 9999 and an

estimated cardinality greater than 1000.

 CREATE WORK CLASS SET LARGE_QUERIES

 (WORK CLASS LARGE_ESTIMATED_COST WORK TYPE DML

 FOR TIMERONCOST FROM 9999 TO UNBOUNDED,

 WORK CLASS LARGE_CARDINALITY WORK TYPE DML

 FOR CARDINALITY FROM 1000 TO UNBOUNDED)

Example 2: Create a work class set named DML_SELECTS that has a work class

representing all DML SELECT statements that do not contain a DELETE, INSERT,

MERGE, or UPDATE statement.

 CREATE WORK CLASS SET DML_SELECTS

 (WORK CLASS SELECT_CLASS WORK TYPE READ)

CREATE WORK CLASS SET

Statements 629

CREATE WORKLOAD

The CREATE WORKLOAD statement defines a workload.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

��

CREATE WORKLOAD

workload-name

�

connection-attributes

�

�
 POSITION LAST

workload-attributes

POSITION

BEFORE

workload-name

AFTER

workload-name

AT

position

�

�
 COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA

collect-on-clause

collect-detail-clause

��

connection-attributes:

CREATE WORKLOAD

630 SQL Reference, Volume 2

�

�

�

�

�

�

�

�

�

(1)

APPLNAME

(

’application-name’

)

SYSTEM_USER

(

’authorization-name’

)

SESSION_USER

(

’authorization-name’

)

SESSION_USER GROUP

(

’authorization-name’

)

SESSION_USER ROLE

(

’authorization-name’

)

CURRENT CLIENT_USERID

(

’user-id’

)

CURRENT CLIENT_APPLNAME

(

’client-application-name’

)

CURRENT CLIENT_WRKSTNNAME

(

’workstation-name’

)

CURRENT CLIENT_ACCTNG

(

’accounting-string’

)

workload-attributes:

 ENABLE

DISABLE

 ALLOW DB ACCESS

DISALLOW DB ACCESS

�

�
 SERVICE CLASS SYSDEFAULTUSERCLASS

SERVICE CLASS

service-class-name

UNDER

service-superclass-name

collect-on-clause:

 DATABASE PARTITION

ON COORDINATOR

DATABASE PARTITIONS

ON ALL

collect-detail-clause:

 WITHOUT DETAILS

WITH DETAILS

AND VALUES

Notes:

1 Each connection attribute clause can only be specified once.

CREATE WORKLOAD

Statements 631

Description

workload-name

Names the workload. This is a one-part name. It is an SQL identifier (either

ordinary or delimited). The workload-name must not identify a workload that

already exists at the current server (SQLSTATE 42710). The name must not

begin with the characters ’SYS’ (SQLSTATE 42939).

connection-attributes

The attributes of the connection must match all attributes specified in this

workload definition if it is to be associated with this workload when the

connection is established. If a list of values is specified for a connection

attribute in the workload definition, the corresponding attribute of the

connection must match at least one of the values in the list. If a connection

attribute is not specified in the workload definition, the connection can have

any value for the corresponding connection attribute.

APPLNAME (’application-name’, ...)

Specifies one or more applications for the APPLNAME connection

attribute. An application name cannot appear more than once in the list

(SQLSTATE 42713). The application-name is case sensitive and is equivalent

to the value shown in the “Application name” field in system monitor

output and in output from the LIST APPLICATIONS command.

SYSTEM_USER (’authorization-name’, ...)

Specifies one or more authorization IDs for the SYSTEM USER connection

attribute. An authorization ID cannot appear more than once in the list

(SQLSTATE 42713).

SESSION_USER (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION USER connection

attribute. An authorization ID cannot appear more than once in the list

(SQLSTATE 42713).

SESSION_USER GROUP (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION_USER GROUP

connection attribute. An authorization ID cannot appear more than once in

the list (SQLSTATE 42713).

SESSION_USER ROLE (’authorization-name’, ...)

Specifies one or more authorization IDs for the SESSION_USER ROLE

connection attribute. The roles of a session authorization ID in this context

refer to all the roles that are available to the session authorization ID,

regardless of how the roles were obtained. An authorization ID cannot

appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID (’user-id’, ...)

Specifies one or more client user IDs for the CURRENT CLIENT_USERID

connection attribute. A client user ID cannot appear more than once in the

list (SQLSTATE 42713).

CURRENT CLIENT_APPLNAME (’client-application-name’, ...)

Specifies one or more applications for the CURRENT

CLIENT_APPLNAME connection attribute. An application name cannot

appear more than once in the list (SQLSTATE 42713). The

client-application-name is case sensitive and is equivalent to the value shown

in the “TP Monitor client application name” field in system monitor

output.

CURRENT CLIENT_WRKSTNNAME (’workstation-name’, ...)

Specifies one or more client workstation names for the CURRENT

CREATE WORKLOAD

632 SQL Reference, Volume 2

CLIENT_WRKSTNNAME connection attribute. A client workstation name

cannot appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_ACCTNG (’accounting-string’, ...)

Specifies one or more client accounting strings for the CURRENT

CLIENT_ACCTNG connection attribute. A client accounting string cannot

appear more than once in the list (SQLSTATE 42713).

workload-attributes

Specifies attributes of the workload.

ENABLE or DISABLE

Specifies whether or not this workload will be considered when a

workload is chosen. The default is ENABLE.

ENABLE

Specifies that the workload is enabled and will be considered when a

workload is chosen.

DISABLE

Specifies that the workload is disabled and will not be considered

when a workload is chosen.

ALLOW DB ACCESS or DISALLOW DB ACCESS

Specifies whether or not a workload occurrence associated with this

workload is allowed access to the database. The default is ALLOW DB

ACCESS.

ALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are

allowed access to the database.

DISALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are

not allowed access to the database. The next unit of work associated

with this workload will be rejected (SQLSTATE 5U020). Workload

occurrences that are already running are allowed to complete.

SERVICE CLASS service-class-name

Specifies that requests associated with this workload are to be executed in

the service class service-class-name. The service-class-name must identify a

service class that exists at the current server (SQLSTATE 42704). The

service-class-name cannot be ’SYSDEFAULTSUBCLASS’,

’SYSDEFAULTSYSTEMCLASS’, or ’SYSDEFAULTMAINTENANCECLASS’

(SQLSTATE 5U032). The default is SYSDEFAULTUSERCLASS.

UNDER service-superclass-name

This clause is used when specifying a service subclass. The

service-superclass-name identifies the service superclass of

service-class-name. The service-superclass-name must identify a service

superclass that exists at the current server (SQLSTATE 42704). The

service-superclass-name cannot be ’SYSDEFAULTSYSTEMCLASS’ or

’SYSDEFAULTMAINTENANCECLASS’ (SQLSTATE 5U032).

POSITION

Specifies where this workload is to be placed within the ordered list of

workloads. At run time, this list is searched in order for the first workload that

matches the required connection attributes. The default is LAST.

CREATE WORKLOAD

Statements 633

LAST

Specifies that the workload is to be last in the list, before the default

workloads SYSDEFAULTUSERWORKLOAD and

SYSDEFAULTADMWORKLOAD.

BEFORE relative-workload-name

Specifies that the workload is to be placed before workload

relative-workload-name in the list. The relative-workload-name must identify a

workload that exists at the current server (SQLSTATE 42704). The BEFORE

option cannot be specified if relative-workload-name is

’SYSDEFAULTUSERWORKLOAD’ or ’SYSDEFAULTADMWORKLOAD’

(SQLSTATE 42832).

AFTER relative-workload-name

Specifies that the workload is to be placed after workload

relative-workload-name in the list. The relative-workload-name must identify a

workload that exists at the current server (SQLSTATE 42704). The AFTER

option cannot be specified if relative-workload-name is

’SYSDEFAULTUSERWORKLOAD’ or ’SYSDEFAULTADMWORKLOAD’

(SQLSTATE 42832).

AT position

Specifies the absolute position at which the workload is to be placed in the

list. This value can be any positive integer value (SQLSTATE 42615). If

position is greater than the number of existing workloads plus one, the

workload is placed at the last position, just before

SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

COLLECT ACTIVITY DATA

Specifies that data about each activity associated with this workload is to be

sent to the applicable event monitor when the activity completes. The default

is COLLECT ACTIVITY DATA NONE.

collect-on-clause

Specifies where the activity data is to be collected. The default is ON

COORDINATOR DATABASE PARTITION.

ON COORDINATOR DATABASE PARTITION

Specifies that the activity data is to be collected only at the database

partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS

Specifies that the activity data is to be collected at all database

partitions on which the activity is processed; however any activity

details or values will be collected only at the database partition of the

coordinator of the activity.

NONE

Specifies that activity data should not be collected for each activity that is

associated with this workload.

collect-detail-clause

Specifies what type of activity data is to be collected. The default is

WITHOUT DETAILS.

WITHOUT DETAILS

Specifies that data about each activity that is associated with this

workload is to be sent to the applicable event monitor when the

activity completes execution. Statement and compilation environment

are not sent to the event monitor.

CREATE WORKLOAD

634 SQL Reference, Volume 2

WITH DETAILS

Specifies that statement and compilation environment information are

to be sent to the applicable event monitor for those activities that have

them.

AND VALUES

Specifies that input data values are to be sent to the applicable

event monitor for those activities that have them.

Rules

v A workload management (WLM)-exclusive SQL statement must be followed by

a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL

statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP

(WORK ACTION SET)

– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK

CLASS SET)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v A WLM-exclusive SQL statement cannot be issued within a global transaction

(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

v Changes are written to the system catalog, but do not take effect until they are

committed, even for the connection that issues the statement.

v When a database connection is established, the database manager looks for a

matching workload based on the connection attributes that were specified in the

POSITION clause (in order of specification). If a matching workload is found,

the database manager checks whether the current session user has USAGE

privilege on that workload. If the session user does not have USAGE privilege

on the workload, the database manager looks for the next matching workload. If

the session user has USAGE privilege on this workload, the connection is

associated with the workload. If a matching workload is not found, the

connection is associated with the default user workload,

SYSDEFAULTUSERWORKLOAD. If the session user does not have USAGE

privilege on SYSDEFAULTUSERWORKLOAD, an error is returned (SQLSTATE

42501).

v The workload association is re-evaluated at the beginning of each new unit of

work if the database manager detects one of the following conditions.

– The connection attributes have changed. This can happen if any of the

following events has occurred:

- The set client information API (sqleseti) has been invoked and it changed

the connection attributes that were included in the workload definition.

Note that although the client information can be set by the end user so that

it could initiate a workload re-evaluation, the workload remapping itself

cannot happen if the session user does not have the USAGE privilege on

the workload.

CREATE WORKLOAD

Statements 635

- The SET SESSION AUTHORIZATION statement has been invoked and it

changed the current session user.

- The roles that are available to a session user have changed.
– A workload is created.

– A workload is dropped.

– A workload is altered.

– The USAGE privilege on a workload is granted to a user, group, or role.

– The USAGE privilege on a workload is revoked from a user, group, or role.

If the workload re-evaluation results in no workload reassignment, the current

workload occurrence continues to run; that is, a new workload occurrence will

not be started.

v A connection cannot be reassigned to a different workload when an activity is

still active. Examples of such activities are a load operation, an executing

procedure, or statements that maintain resources across multiple units of work,

such as an open WITH HOLD cursor. The current workload occurrence

continues to run until all executing activities complete. Workload reassignment

occurs at the beginning of the next unit of work.

v After a service class has been referenced by a workload, it cannot be dropped

until it is no longer referenced by any workload. Either of the following actions

can be taken to remove a service class reference from a workload:

– Alter the workload to change the service class name

– Drop the workload
v After a role has been referenced by a workload, it cannot be dropped until it is

no longer referenced by any workload. Either of the following actions can be

taken to remove a role reference from a workload:

– Alter the workload to remove the role

– Drop the workload

Examples

Example 1: Create a workload named CAMPAIGN for requests that are submitted

by a session user belonging to group FINANCE. These requests are to be executed

in the default user service class SYSDEFAULTUSERCLASS.

 CREATE WORKLOAD CAMPAIGN

 SESSION_USER GROUP (’FINANCE’)

Example 2: Create a workload named PAYROLL for a session user with role HR

that has the CURRENT CLIENT_APPLNAME special register set to SALARYSYS.

Units of work associated with this workload are to be executed in service class

MEDIUMSC that is under the service superclass HRSC. When a workload is

chosen at run time, this workload should be evaluated only after the workload

CAMPAIGN has been evaluated and determined to not match.

 CREATE WORKLOAD PAYROLL

 SESSION_USER ROLE (’HR’)

 CURRENT CLIENT_APPLNAME (’SALARYSYS’) SERVICE CLASS MEDIUMSC

 UNDER HRSC POSITION AFTER CAMPAIGN

Example 3: An occurrence of workload CAMPAIGN (from example 1) is currently

running on the system. Create a workload named NEWCAMPAIGN, also for

requests that are submitted by a session user belonging to group FINANCE, but

only those requests submitted through application DB2BP.EXE. Requests associated

with this workload are to be executed in service class MARKETINGSC.

NEWCAMPAIGN should be evaluated before CAMPAIGN.

CREATE WORKLOAD

636 SQL Reference, Volume 2

CREATE WORKLOAD NEWCAMPAIGN

 SESSION_USER GROUP (’FINANCE’)

 APPLNAME (’DB2BP.EXE’) SERVICE CLASS MARKETINGSC

 POSITION BEFORE CAMPAIGN

The running workload occurrence of CAMPAIGN continues to run until the

current unit of work completes, at which time a workload re-evaluation takes

place, and the connection could then be remapped to workload NEWCAMPAIGN.

Example 4: Create a workload named REPORTS for requests that are submitted

through application appl1, appl2, or appl3 by system user BOB or MARY.

 CREATE WORKLOAD REPORTS

 APPLNAME (’appl1’, ’appl2’, ’appl3’)

 SYSTEM_USER (’BOB’, ’MARY’)

CREATE WORKLOAD

Statements 637

CREATE WRAPPER

The CREATE WRAPPER statement registers a wrapper with a federated server. A

wrapper is a mechanism by which a federated server can interact with certain

types of data sources.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� CREATE WRAPPER wrapper-name

LIBRARY

library-name
 �

�

�

,

ADD

OPTIONS

(

wrapper-option-name

string-constant

)

 ��

Description

wrapper-name

Names the wrapper. It can be:

v A predefined name. If a predefined name is specified, the federated server

automatically assigns a default value to library-name.

v A user-supplied name. If a user-supplied name is provided, it is necessary to

also specify the appropriate library-name to be used with that wrapper and

operating system.

LIBRARY library-name

Names the file that contains the wrapper library module.

 The library name can be specified as an absolute path name or simply the base

name (without the path). If only the base name is specified, the library should

reside in the lib (UNIX) or the bin (Windows) subdirectory of the DB2 install

path. The library-name must be enclosed in single quotation marks.

The LIBRARY option is only necessary when a user-supplied wrapper-name is

used. This option should not be used when a predefined wrapper-name is given.

OPTIONS (ADD wrapper-option-name string-constant, ...)

Wrapper options are used to configure the wrapper or to define how DB2 uses

the wrapper. The wrapper-option-name is the name of the option. The

string-constant specifies the setting for the wrapper option. The string-constant

must be enclosed in single quotation marks. Some wrapper options can be

used by all wrappers and some options are specific to a particular wrapper.

CREATE WRAPPER

638 SQL Reference, Volume 2

Examples

Example 1: Register the NET8 wrapper on a federated server to access Oracle data

sources. NET8 is the predefined name for one of the two wrappers that you can

use to access Oracle data sources.

 CREATE WRAPPER NET8

Example 2: Register a wrapper on a DB2 federated server that uses the Linux

operating system to access ODBC data sources. Assign the name odbc to the

wrapper that is being registered in the federated database. The full path of the

library that contains the ODBC Driver Manager is defined in the wrapper option

MODULE ‘/usr/lib/odbc.so’.

 CREATE WRAPPER odbc OPTIONS (MODULE ‘/usr/lib/odbc.so’)

Example 3: Register a wrapper on a DB2 federated server that uses the Windows

operating system to access ODBC data sources. The library name for the ODBC

wrapper is ‘db2rcodbc.dll’.

 CREATE WRAPPER odbc LIBRARY ‘db2rcodbc.dll’

Example 4: Register a wrapper on a DB2 federated server that uses the AIX

operating system to access Entrez data sources. Designate entrez_wrapper as the

name for the wrapper. On AIX federated servers, libdb2lsentrez.a is the library file

for the Entrez wrapper. The EMAIL option is required when an Entrez wrapper is

registered with the federated server.

 CREATE WRAPPER entrez_wrapper LIBRARY ‘libdb2lsentrez.a’

 OPTIONS (EMAIL ‘jeff@someplace.com’)

CREATE WRAPPER

Statements 639

DECLARE CURSOR

The DECLARE CURSOR statement defines a cursor.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is not an executable statement and cannot be

dynamically prepared.

Authorization

The term “SELECT statement of the cursor” is used to specify the authorization

rules. The SELECT statement of the cursor is one of the following:

v The prepared select-statement identified by statement-name

v The specified select-statement

For each table or view identified (either directly or by using an alias) in the

SELECT statement of the cursor, the privileges held by the authorization ID of the

statement must include at least one of the following:

v For each table or view identified in the select-statement:

– SELECT privilege on the table or view, or

– CONTROL privilege on the table or view
v SYSADM or DBADM authority

If the select-statement contains an SQL data change statement, the authorization

requirements of that statement also apply to the DECLARE CURSOR statement.

If statement-name is specified:

v The authorization ID of the statement is the run-time authorization ID.

v The authorization check is performed when the select-statement is prepared.

v The cursor cannot be opened unless the select-statement is successfully prepared.

If select-statement is specified:

v GROUP privileges are not checked.

v The authorization ID of the statement is the authorization ID specified during

program preparation.

Syntax

�� DECLARE cursor-name CURSOR * holdability * returnability * �

� FOR select-statement

statement-name
 ��

holdability:

 WITHOUT HOLD

WITH HOLD

DECLARE CURSOR

640 SQL Reference, Volume 2

returnability:

 WITHOUT RETURN

TO CALLER

WITH RETURN

TO CLIENT

Description

cursor-name

Specifies the name of the cursor created when the source program is run. The

name must not be the same as the name of another cursor declared in the

source program. The cursor must be opened before use.

WITHOUT HOLD or WITH HOLD

Specifies whether or not the cursor should be prevented from being closed as a

consequence of a commit operation.

WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a

commit operation. This is the default.

WITH HOLD

Maintains resources across multiple units of work. The effect of the WITH

HOLD cursor attribute is as follows:

v For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is

positioned before the next logical row of the results table.

If a DISCONNECT statement is issued after a COMMIT statement for

a connection with WITH HOLD cursors, the held cursors must be

explicitly closed or the connection will be assumed to have performed

work (simply by having open WITH HELD cursors even though no

SQL statements were issued) and the DISCONNECT statement will

fail.

– All locks are released, except locks protecting the current cursor

position of open WITH HOLD cursors. The locks held include the

locks on the table, and for parallel environments, the locks on rows

where the cursors are currently positioned. Locks on packages and

dynamic SQL sections (if any) are held.

– Valid operations on cursors defined WITH HOLD immediately

following a COMMIT request are:

- FETCH: Fetches the next row of the cursor.

- CLOSE: Closes the cursor.
– UPDATE and DELETE CURRENT OF CURSOR are valid only for

rows that are fetched within the same unit of work.

– LOB locators are freed.

– The set of rows modified by:

- A data change statement

- Routines that modify SQL data embedded within open WITH

HOLD cursors

is committed.
v For units of work ending with ROLLBACK:

DECLARE CURSOR

Statements 641

– All open cursors are closed.

– All locks acquired during the unit of work are released.

– LOB locators are freed.
v For special COMMIT case:

– Packages can be recreated either explicitly, by binding the package, or

implicitly, because the package has been invalidated and then

dynamically recreated the first time it is referenced. All held cursors

are closed during package rebind. This might result in errors during

subsequent execution.

WITHOUT RETURN or WITH RETURN

Specifies whether or not the result table of the cursor is intended to be used as

a result set that will be returned from a procedure.

WITHOUT RETURN

Specifies that the result table of the cursor is not intended to be used as a

result set that will be returned from a procedure.

WITH RETURN

Specifies that the result table of the cursor is intended to be used as a

result set that will be returned from a procedure. WITH RETURN is

relevant only if the DECLARE CURSOR statement is contained with the

source code for a procedure. In other cases, the precompiler might accept

the clause, but it has no effect.

 Within an SQL procedure, cursors declared using the WITH RETURN

clause that are still open when the SQL procedure ends, define the result

sets from the SQL procedure. All other open cursors in an SQL procedure

are closed when the SQL procedure ends. Within an external procedure

(one not defined using LANGUAGE SQL), the default for all cursors is

WITH RETURN TO CALLER. Therefore, all cursors that are open when

the procedure ends will be considered result sets. Cursors that are returned

from a procedure cannot be declared as scrollable cursors.

TO CALLER

Specifies that the cursor can return a result set to the caller. For

example, if the caller is another procedure, the result set is

returned to that procedure. If the caller is a client application, the

result set is returned to the client application.

TO CLIENT

Specifies that the cursor can return a result set to the client

application. This cursor is invisible to any intermediate nested

procedures. If a function, method, or trigger called the procedure

either directly or indirectly, result sets cannot be returned to the

client and the cursor will be closed after the procedure finishes.

select-statement

Identifies the SELECT statement of the cursor. The select-statement must not

include parameter markers, but can include references to host variables. The

declarations of the host variables must precede the DECLARE CURSOR

statement in the source program.

statement-name

The SELECT statement of the cursor is the prepared SELECT statement

identified by the statement-name when the cursor is opened. The statement-name

must not be identical to a statement-name specified in another DECLARE

CURSOR statement of the source program.

DECLARE CURSOR

642 SQL Reference, Volume 2

For an explanation of prepared SELECT statements, see “PREPARE”.

Notes

v A program called from another program, or from a different source file within

the same program, cannot use the cursor that was opened by the calling

program.

v Unnested procedures, with LANGUAGE other than SQL, will have WITH

RETURN TO CALLER as the default behavior if DECLARE CURSOR is

specified without a WITH RETURN clause, and the cursor is left open in the

procedure. This provides compatibility with procedures from previous versions

that allow procedures to return result sets to applicable client applications. To

avoid this behavior, close all cursors opened in the procedure.

v If the SELECT statement of a cursor contains CURRENT DATE, CURRENT

TIME, or CURRENT TIMESTAMP, all references to these special registers will

yield the same respective datetime value on each FETCH. This value is

determined when the cursor is opened.

v For more efficient processing of data, the database manager can block data for

read-only cursors when retrieving data from a remote server. The use of the FOR

UPDATE clause helps the database manager decide whether a cursor is

updatable or not. Updatability is also used to determine the access path selection

as well. If a cursor is not going to be used in a Positioned UPDATE or DELETE

statement, it should be declared as FOR READ ONLY.

v A cursor in the open state designates a result table and a position relative to the

rows of that table. The table is the result table specified by the SELECT

statement of the cursor.

v A cursor is deletable if each of the following is true:

– each FROM clause of the outer fullselect identifies only one base table or

deletable view (cannot identify a nested or common table expression or a

nickname) without use of the OUTER clause

– the outer fullselect does not include a VALUES clause

– the outer fullselect does not include a GROUP BY clause or HAVING clause

– the outer fullselect does not include column functions in the select list

– the outer fullselect does not include SET operations (UNION, EXCEPT, or

INTERSECT) with the exception of UNION ALL

– the select list of the outer fullselect does not include DISTINCT

– the outer fullselect does not include an ORDER BY clause (even if the ORDER

BY clause is nested in a view), and the FOR UPDATE clause has not been

specified

– the select-statement does not include a FOR READ ONLY clause

– the FROM clause of the outer fullselect does not include a

data-change-table-reference

– one or more of the following is true:

- the FOR UPDATE clause is specified

- the cursor is statically defined, unless the STATICREADONLY bind option

is YES

- the LANGLEVEL bind option is MIA or SQL92E
A column in the select list of the outer fullselect associated with a cursor is

updatable if each of the following is true:

– the cursor is deletable

– the column resolves to a column of the base table

DECLARE CURSOR

Statements 643

– the LANGLEVEL bind option is MIA, SQL92E or the select-statement includes

the FOR UPDATE clause (the column must be specified explicitly or implicitly

in the FOR UPDATE clause)
A cursor is read-only if it is not deletable.

A cursor is ambiguous if each of the following is true:

– the select-statement is dynamically prepared

– the select-statement does not include either the FOR READ ONLY clause or

the FOR UPDATE clause

– the LANGLEVEL bind option is SAA1

– the cursor otherwise satisfies the conditions of a deletable cursor
An ambiguous cursor is considered read-only if the BLOCKING bind option is

ALL, otherwise it is considered updatable.

v Cursors in procedures that are called by application programs written using CLI

can be used to define result sets that are returned directly to the client

application. Cursors in SQL procedures can also be returned to a calling SQL

procedure only if they are defined using the WITH RETURN clause.

v Cursors declared in routines that are invoked directly or indirectly from a cursor

declared WITH HOLD, do not inherit the WITH HOLD option. Thus, unless the

cursor in the routine is explicitly defined WITH HOLD, a COMMIT in the

application will close it.

Consider the following application and two UDFs:

Application:

 DECLARE APPCUR CURSOR WITH HOLD FOR SELECT UDF1() ...

 OPEN APPCUR

 FETCH APPCUR ...

 COMMIT

UDF1:

 DECLARE UDF1CUR CURSOR FOR SELECT UDF2() ...

 OPEN UDF1CUR

 FETCH UDF1CUR ...

UDF2:

 DECLARE UDF2CUR CURSOR WITH HOLD FOR SELECT UDF2() ...

 OPEN UDF2CUR

 FETCH UDF2CUR ...

After the application fetches cursor APPCUR, all three cursors are open. When

the application issues the COMMIT statement, APPCUR remains open, because

it was declared WITH HOLD. In UDF1, however, the cursor UDF1CUR is

closed, because it was not defined with the WITH HOLD option. When the

cursor UDF1CUR is closed, all routine invocations in the corresponding

select-statement complete (receiving a final call, if so defined). UDF2 completes,

which causes UDF2CUR to close.

Examples

Example 1: The DECLARE CURSOR statement associates the cursor name C1 with

the results of the SELECT.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPARTMENT

 WHERE ADMRDEPT = ’A00’;

DECLARE CURSOR

644 SQL Reference, Volume 2

Example 2: Assume that the EMPLOYEE table has been altered to add a generated

column, WEEKLYPAY, that calculates the weekly pay based on the yearly salary.

Declare a cursor to retrieve the system-generated column value from a row to be

inserted.

 EXEC SQL DECLARE C2 CURSOR FOR

 SELECT E.WEEKLYPAY

 FROM NEW TABLE

 (INSERT INTO EMPLOYEE

 (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL, SALARY)

 VALUES(’000420’, ’Peter’, ’U’, ’Bender’, 16, 31842) AS E;

DECLARE CURSOR

Statements 645

DECLARE GLOBAL TEMPORARY TABLE

The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary

table for the current session. The declared temporary table description does not

appear in the system catalog. It is not persistent and cannot be shared with other

sessions. Each session that defines a declared global temporary table of the same

name has its own unique description of the temporary table. When the session

terminates, the rows of the table are deleted, and the description of the temporary

table is dropped.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v USE privilege on the USER TEMPORARY table space

v SYSADM or DBADM authority

When defining a table using LIKE or a fullselect, the privileges held by the

authorization ID of the statement must also include at least one of the following on

each identified table or view:

v SELECT privilege on the table or view

v CONTROL privilege on the table or view

v SYSADM or DBADM authority

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

�

�

 ,

(

column-definition

)

LIKE

table-name1

view-name

copy-options

AS

(

fullselect

)

DEFINITION ONLY

copy-options

�

�
 ON COMMIT DELETE ROWS

*

ON COMMIT PRESERVE ROWS

*

�

DECLARE GLOBAL TEMPORARY TABLE

646 SQL Reference, Volume 2

�
ON ROLLBACK DELETE ROWS

NOT LOGGED

ON ROLLBACK PRESERVE ROWS

 *

WITH REPLACE
 �

� *

IN

tablespace-name
 �

�

�

 * *

,

USING HASHING

PARTITIONING KEY

(

column-name

)

 ��

column-definition:

 column-name data-type

column-options

column-options:

 * * *

NOT NULL

default-clause

GENERATED

ALWAYS

AS

IDENTITY

BY DEFAULT

identity-attributes

copy-options:

 COLUMN ATTRIBUTES

EXCLUDING IDENTITY

*

*

*

COLUMN

COLUMN ATTRIBUTES

INCLUDING

DEFAULTS

INCLUDING IDENTITY

EXCLUDING

Description

table-name

Names the temporary table. The qualifier, if specified explicitly, must be

SESSION, otherwise an error is returned (SQLSTATE 428EK). If the qualifier is

not specified, SESSION is implicitly assigned.

 Each session that defines a declared global temporary table with the same

table-name has its own unique description of that declared global temporary

table. The WITH REPLACE clause must be specified if table-name identifies a

declared temporary table that already exists in the session (SQLSTATE 42710).

It is possible that a table, view, alias, or nickname already exists in the catalog,

with the same name and the schema name SESSION. In this case:

v A declared global temporary table table-name may still be defined without

any error or warning

DECLARE GLOBAL TEMPORARY TABLE

Statements 647

v Any references to SESSION.table-name will resolve to the declared global

temporary table rather than the SESSION.table-name already defined in the

catalog.

column-definition

Defines the attributes of a column of the temporary table.

column-name

Names a column of the table. The name cannot be qualified, and the same

name cannot be used for more than one column of the table (SQLSTATE

42711).

 A table may have the following:

v A 4K page size with a maximum of 500 columns, where the byte counts

of the columns must not be greater than 4 005.

v An 8K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 8 101.

v A 16K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 16 293.

v A 32K page size with a maximum of 1 012 columns, where the byte

counts of the columns must not be greater than 32 677.

For more details, see “Row Size” in “CREATE TABLE”.

data-type

For allowable types, see data-type in “CREATE TABLE”. Note that BLOB,

CLOB, DBCLOB, LONG VARCHAR, LONG VARGRAPHIC, XML,

reference, and structured types cannot be used with declared global

temporary tables (SQLSTATE 42962). This restriction includes distinct types

that are sourced on these types.

 FOR BIT DATA can be specified as part of character string data types.

column-options

Defines additional options related to the columns of the table.

NOT NULL

Prevents the column from containing null values. For specification of

null values, see NOT NULL in “CREATE TABLE”.

default-clause

For specification of defaults, see default-clause in “CREATE TABLE”.

IDENTITY and identity-attributes

For specification of identity columns, see IDENTITY and

identity-attributes in “CREATE TABLE”.

LIKE table-name1 or view-name

Specifies that the columns of the table have exactly the same name and

description as the columns of the identified table (table-name1) or view

(view-name), or nickname (nickname). The name specified after LIKE must

identify a table, view or nickname that exists in the catalog or a declared

temporary table. A typed table or typed view cannot be specified (SQLSTATE

428EC).

 The use of LIKE is an implicit definition of n columns, where n is the number

of columns in the identified table (including implicitly hidden columns) or

view. A column of the new table that corresponds to an implicitly hidden

column in the existing table is also defined as implicitly hidden.

DECLARE GLOBAL TEMPORARY TABLE

648 SQL Reference, Volume 2

v If a table is identified, then the implicit definition includes the column name,

data type and nullability characteristic of each of the columns of table-name1.

If EXCLUDING COLUMN DEFAULTS is not specified, then the column

default is also included.

v If a view is identified, then the implicit definition includes the column name,

data type, and nullability characteristic of each of the result columns of the

fullselect defined in view-name.

Column default and identity column attributes may be included or excluded,

based on the copy-attributes clauses.

If a protected table is identified in the LIKE clause, the new table is not made a

protected table.

When a table is identified in the LIKE clause and that table contains a ROW

CHANGE TIMESTAMP column, the corresponding column of the new table

inherits only the data type of the ROW CHANGE TIMESTAMP column. The

new column is not considered to be a generated column.

The names used for table-name1 and view-name cannot be the same as the name

of the global temporary table that is being created (SQLSTATE 428EC).

AS (fullselect) DEFINITION ONLY

Specifies that the columns of the table have the same name and description as

the columns that would appear in the derived result table of the fullselect if

the fullselect were to be executed. The use of AS (fullselect) is an implicit

definition of n columns for the declared global temporary table, where n is the

number of columns that would result from the fullselect.

 The implicit definition includes the following attributes of the n columns (if

applicable to the data type):

v Column name

v Data type, length, precision, and scale

v Nullability

The following attributes are not included (the default value and identity

attributes can be included by using the copy-options):

v Default value

v Identity attributes

v ROW CHANGE TIMESTAMP

The implicit definition does not include any other optional attributes of the

tables or views referenced in the fullselect.

Every select list element must have a unique name (SQLSTATE 42711). The AS

clause can be used in the select clause to provide unique names. The fullselect

must not result in a column having a LOB data type. The fullselect must not

refer to host variables or include parameter markers.

copy-options

These options specify whether or not to copy additional attributes of the

source result table definition (table, view, or fullselect).

INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table

definition are copied. Columns that are not updatable will not have a

default defined in the corresponding column of the created table.

DECLARE GLOBAL TEMPORARY TABLE

Statements 649

If LIKE table-name1 is specified, and table-name1 identifies a base table or

declared temporary table, then INCLUDING COLUMN DEFAULTS is the

default.

EXCLUDING COLUMN DEFAULTS

Column defaults are not copied from the source result table definition.

 This clause is the default, except when LIKE table-name is specified and

table-name identifies a base table or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES

If available, identity column attributes (START WITH, INCREMENT BY,

and CACHE values) are copied from the source’s result table definition. It

is possible to copy these attributes if the element of the corresponding

column in the table, view, or fullselect is the name of a column of a table,

or the name of a column of a view, which directly or indirectly maps to the

column name of a base table with the identity property. In all other cases,

the columns of the new temporary table will not get the identity property.

For example:

v the select list of the fullselect includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)

v the select list of the fullselect includes multiple identity columns (that is,

it involves a join)

v the identity column is included in an expression in the select list

v the fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES

Identity column attributes are not copied from the source result table

definition.

ON COMMIT

Specifies the action taken on the global temporary table when a COMMIT

operation is performed.

DELETE ROWS

All rows of the table will be deleted if no WITH HOLD cursor is open on

the table. This is the default.

PRESERVE ROWS

Rows of the table will be preserved.

NOT LOGGED

Specifies that insert, update, or delete operations against the table are not to be

logged, but that the creation or dropping of the table is to be logged. During a

ROLLBACK (or ROLLBACK TO SAVEPOINT) operation:

v If the table had been created within a unit of work (or savepoint), the table

is dropped

v If the table had been dropped within a unit of work (or savepoint), the table

is recreated, but without any data

ON ROLLBACK

Specifies the action that is to be taken on the not logged global temporary table

when a ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is performed.

DELETE ROWS

If the table data has been changed, all the rows will be deleted. This is the

default.

PRESERVE ROWS

Rows of the table will be preserved.

DECLARE GLOBAL TEMPORARY TABLE

650 SQL Reference, Volume 2

WITH REPLACE

Indicates that, in the case that a declared global temporary table already exists

with the specified name, the existing table is replaced with the temporary table

defined by this statement (and all rows of the existing table are deleted).

 When WITH REPLACE is not specified, then the name specified must not

identify a declared global temporary table that already exists in the current

session (SQLSTATE 42710).

IN tablespace-name

Identifies the table space in which the global temporary table will be

instantiated. The table space must exist and be a USER TEMPORARY table

space (SQLSTATE 42838), over which the authorization ID of the statement has

USE privilege (SQLSTATE 42501). If this clause is not specified, a table space

for the table is determined by choosing the USER TEMPORARY table space

with the smallest sufficient page size over which the authorization ID of the

statement has USE privilege. When more than one table space qualifies,

preference is given according to who was granted the USE privilege:

1. the authorization ID

2. a group to which the authorization ID belongs

3. PUBLIC

If more than one table space still qualifies, the final choice is made by the

database manager. When no USER TEMPORARY table space qualifies, an error

is raised (SQLSTATE 42727).

Determination of the table space may change when:

v table spaces are dropped or created

v USE privileges are granted or revoked.

The sufficient page size of a table is determined by either the byte count of the

row or the number of columns. For more details, see “Row Size” in “CREATE

TABLE”.

PARTITIONING KEY (column-name,...)

Specifies the distribution key that is to be used when data in the table is

distributed. Each column-name must identify a column of the table and the

same column must not be identified more than once.

 If this clause is not specified, and this table resides in a multiple partition

database partition group, then the distribution key is defined as the first

column of declared temporary table.

For declared temporary tables, in table spaces defined on single-partition

database partition groups, any collection of columns can be used to define the

distribution key. If you do not specify this parameter, no distribution key is

created.

USING HASHING

Specifies the use of the hashing function as the method for data

distribution. This is the only supported distribution method.

Notes

v A user temporary table space must exist before a user-defined temporary table

can be declared (SQLSTATE 42727).

v Referencing a declared global temporary table: The description of a declared

global temporary table does not appear in the DB2 catalog (SYSCAT.TABLES);

therefore, it is not persistent and is not shareable across database connections.

DECLARE GLOBAL TEMPORARY TABLE

Statements 651

This means that each session that defines a declared global temporary table

called table-name has its own possibly unique description of that declared global

temporary table.

In order to reference the declared global temporary table in an SQL statement

(other than the DECLARE GLOBAL TEMPORARY TABLE statement), the table

must be explicitly or implicitly qualified by the schema name SESSION. If

table-name is not qualified by SESSION, declared global temporary tables are not

considered when resolving the reference.

A reference to SESSION.table-name in a connection that has not declared a global

temporary table by that name will attempt to resolve from persistent objects in

the catalog. If no such object exists, an error occurs (SQLSTATE 42704).

v When binding a package that has static SQL statements that refer to tables

implicitly or explicitly qualified by SESSION, those statements will not be bound

statically. When these statements are invoked, they will be incrementally bound,

regardless of the VALIDATE option chosen while binding the package. At

runtime, each table reference will be resolved to a declared temporary table, if it

exists, or a permanent table. If neither exists, an error will be raised (SQLSTATE

42704).

v Privileges: When a declared global temporary table is defined, the definer of the

table is granted all table privileges on the table, including the ability to drop the

table. Additionally, these privileges are granted to PUBLIC. (None of the

privileges are granted with the GRANT option, and none of the privileges

appear in the catalog table.) This enables any SQL statement in the session to

reference a declared global temporary table that has already been defined in that

session.

v Instantiation and Termination: For the explanations below, P denotes a session

and T is a declared global temporary table in the session P:

– An empty instance of T is created as a result of the DECLARE GLOBAL

TEMPORARY TABLE statement that is executed in P.

– Any SQL statement in P can make reference to T; and any reference to T in P

is a reference to that same instance of T.

– If a DECLARE GLOBAL TEMPORARY TABLE statement is specified within

the SQL procedure compound statement (defined by BEGIN and END), the

scope of the declared global temporary table is the connection, not just the

compound statement, and the table is known outside of the compound

statement. The table is not implicitly dropped at the END of the compound

statement. A declared global temporary table cannot be defined multiple

times by the same name in other compound statements in that session, unless

the table has been explicitly dropped.

– Assuming that the ON COMMIT DELETE ROWS clause was specified

implicitly or explicitly, then when a commit operation terminates a unit of

work in P, and there is no open WITH HOLD cursor in P that is dependent

on T, the commit includes the operation DELETE FROM SESSION.T.

– When a rollback operation terminates a unit of work or a savepoint in P, and

that unit of work or savepoint includes a modification to SESSION.T:

- If NOT LOGGED was specified, the rollback includes the operation

DELETE from SESSION.T unless ON ROLLBACK PRESERVE ROWS was

also specified

- If NOT LOGGED was not specified, the changes to T are undone
When a rollback operation terminates a unit of work or a savepoint in P, and

that unit of work or savepoint includes the declaration of SESSION.T, then

the rollback includes the operation DROP SESSION.T.

DECLARE GLOBAL TEMPORARY TABLE

652 SQL Reference, Volume 2

If a rollback operation terminates a unit of work or a savepoint in P, and that

unit of work or savepoint includes the drop of a declared temporary table

SESSION.T, then the rollback will undo the drop of the table. If NOT

LOGGED was specified, then the table will also have been emptied.

– When the application process that declared T terminates or disconnects from

the database, T is dropped and its instantiated rows are destroyed.

– When the connection to the server at which T was declared terminates, T is

dropped and its instantiated rows are destroyed.
v Restrictions on the Use of Declared Global Temporary Tables: Declared global

temporary tables cannot:

– Be specified in an ALTER, COMMENT, GRANT, LOCK, RENAME or

REVOKE statement (SQLSTATE 42995).

– Be referenced in a CREATE ALIAS, CREATE FUNCTION (SQL Scalar, Table,

or Row), CREATE TRIGGER, or CREATE VIEW statement (SQLSTATE 42995).

– Be specified in referential constraints (SQLSTATE 42995).
v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is accepted as the default behavior:

v CCSID ASCII

v CCSID UNICODE

DECLARE GLOBAL TEMPORARY TABLE

Statements 653

DELETE

The DELETE statement deletes rows from a table, nickname, or view, or the

underlying tables, nicknames, or views of the specified fullselect. Deleting a row

from a nickname deletes the row from the data source object to which the

nickname refers. Deleting a row from a view deletes the row from the table on

which the view is based if no INSTEAD OF trigger is defined for the delete

operation on this view. If such a trigger is defined, the trigger will be executed

instead.

There are two forms of this statement:

v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).

v The Positioned DELETE form is used to delete exactly one row (as determined by

the current position of a cursor).

Invocation

A DELETE statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared.

Authorization

To execute either form of this statement, the privileges held by the authorization

ID of the statement must include at least one of the following:

v DELETE privilege on the table, view, or nickname from which rows are to be

deleted

v CONTROL privilege on the table, view, or nickname from which rows are to be

deleted

v SYSADM or DBADM authority

To execute a Searched DELETE statement, the privileges held by the authorization

ID of the statement must also include at least one of the following for each table,

view, or nickname referenced by a subquery:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

If the package used to process the statement is precompiled with SQL92 rules

(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of a

DELETE statement includes a reference to a column of the table or view in the

search-condition, the privileges held by the authorization ID of the statement must

also include at least one of the following:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

If the specified table or view is preceded by the ONLY keyword, the privileges

held by the authorization ID of the statement must also include the SELECT

privilege for every subtable or subview of the specified table or view.

Group privileges are not checked for static DELETE statements.

DELETE

654 SQL Reference, Volume 2

If the target of the delete operation is a nickname, the privileges on the object at

the data source are not considered until the statement is executed at the data

source. At this time, the authorization ID that is used to connect to the data source

must have the privileges required for the operation on the object at the data

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

searched-delete:

�� DELETE FROM table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause
 �

�
include-columns

assignment-clause
 �

�
WHERE

search-condition

WITH

RR

RS

CS

UR

 ��

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

positioned-delete:

�� DELETE FROM table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause
 �

� WHERE CURRENT OF cursor-name ��

correlation-clause:

 AS

correlation-name

(

column-name

)

Description

FROM table-name, view-name, nickname, or (fullselect)

Identifies the object of the delete operation. The name must identify a table or

DELETE

Statements 655

view that exists in the catalog, but it must not identify a catalog table, a

catalog view, a system-maintained materialized query table, or a read-only

view.

 If table-name is a typed table, rows of the table or any of its proper subtables

may get deleted by the statement.

If view-name is a typed view, rows of the underlying table or underlying tables

of the view’s proper subviews may get deleted by the statement. If view-name

is a regular view with an underlying table that is a typed table, rows of the

typed table or any of its proper subtables may get deleted by the statement.

If the object of the delete operation is a fullselect, the fullselect must be

deletable, as defined in the “Deletable views” Notes item in the description of

the CREATE VIEW statement.

Only the columns of the specified table can be referenced in the WHERE

clause. For a positioned DELETE, the associated cursor must also have

specified the table or view in the FROM clause without using ONLY.

FROM ONLY (table-name)

Applicable to typed tables, the ONLY keyword specifies that the statement

should apply only to data of the specified table and rows of proper subtables

cannot be deleted by the statement. For a positioned DELETE, the associated

cursor must also have specified the table in the FROM clause using ONLY. If

table-name is not a typed table, the ONLY keyword has no effect on the

statement.

FROM ONLY (view-name)

Applicable to typed views, the ONLY keyword specifies that the statement

should apply only to data of the specified view and rows of proper subviews

cannot be deleted by the statement. For a positioned DELETE, the associated

cursor must also have specified the view in the FROM clause using ONLY. If

view-name is not a typed view, the ONLY keyword has no effect on the

statement.

correlation-clause

Can be used within the search-condition to designate a table, view, nickname, or

fullselect. For a description of correlation-clause, see “table-reference” in the

description of “Subselect”.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the DELETE

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the DELETE statement.

column-name

Specifies a column of the intermediate result table of the DELETE

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

DELETE

656 SQL Reference, Volume 2

assignment-clause

See the description of assignment-clause under the UPDATE statement. The

same rules apply. The include-columns are the only columns that can be set

using the assignment-clause (SQLSTATE 42703).

WHERE

Specifies a condition that selects the rows to be deleted. The clause can be

omitted, a search condition specified, or a cursor named. If the clause is

omitted, all rows of the table or view are deleted.

search-condition

Each column-name in the search condition, other than in a subquery must

identify a column of the table or view.

 The search-condition is applied to each row of the table, view, or nickname,

and the deleted rows are those for which the result of the search-condition is

true.

If the search condition contains a subquery, the subquery can be thought of

as being executed each time the search condition is applied to a row, and the

results used in applying the search condition. In actuality, a subquery with

no correlated references is executed once, whereas a subquery with a

correlated reference may have to be executed once for each row. If a

subquery refers to the object table of a DELETE statement or a dependent

table with a delete rule of CASCADE or SET NULL, the subquery is

completely evaluated before any rows are deleted.

CURRENT OF cursor-name

Identifies a cursor that is defined in a DECLARE CURSOR statement of the

program. The DECLARE CURSOR statement must precede the DELETE

statement.

 The table, view, or nickname named must also be named in the FROM

clause of the SELECT statement of the cursor, and the result table of the

cursor must not be read-only. (For an explanation of read-only result

tables, see “DECLARE CURSOR”.)

When the DELETE statement is executed, the cursor must be positioned on

a row: that row is the one deleted. After the deletion, the cursor is

positioned before the next row of its result table. If there is no next row,

the cursor is positioned after the last row.

WITH

Specifies the isolation level used when locating the rows to be deleted.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

DELETE

Statements 657

Rules

v Triggers: DELETE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the deleted rows. If a DELETE statement on a view causes an INSTEAD OF

trigger to fire, referential integrity will be checked against the updates

performed in the trigger, and not against the underlying tables of the view that

caused the trigger to fire.

v Referential Integrity: If the identified table or the base table of the identified

view is a parent, the rows selected for delete must not have any dependents in a

relationship with a delete rule of RESTRICT, and the DELETE must not cascade

to descendent rows that have dependents in a relationship with a delete rule of

RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected

rows are deleted. Any rows that are dependents of the selected rows are also

affected:

– The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to the

null value.

– Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the above rules apply, in turn, to those rows.
The delete rule of NO ACTION is checked to enforce that any non-null foreign

key refers to an existing parent row after the other referential constraints have

been enforced.

v Security Policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns (SQLSTATE 42512)

– Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)

Notes

v If an error occurs during the execution of a multiple row DELETE, no changes

are made to the database.

v Unless appropriate locks already exist, one or more exclusive locks are acquired

during the execution of a successful DELETE statement. Issuing a COMMIT or

ROLLBACK statement will release the locks. Until the locks are released by a

commit or rollback operation, the effect of the delete operation can only be

perceived by:

– The application process that performed the deletion

– Another application process using isolation level UR.

The locks can prevent other application processes from performing operations on

the table.

v If an application process deletes a row on which any of its cursors are

positioned, those cursors are positioned before the next row of their result table.

Let C be a cursor that is positioned before row R (as a result of an OPEN, a

DELETE through C, a DELETE through some other cursor, or a searched

DELETE). In the presence of INSERT, UPDATE, and DELETE operations that

affect the base table from which R is derived, the next FETCH operation

referencing C does not necessarily position C on R. For example, the operation

can position C on R’, where R’ is a new row that is now the next row of the

result table.

DELETE

658 SQL Reference, Volume 2

v SQLERRD(3) in the SQLCA shows the number of rows that qualified for the

delete operation. In the context of an SQL procedure statement, the value can be

retrieved using the ROW_COUNT variable of the GET DIAGNOSTICS

statement. SQLERRD(5) in the SQLCA shows the number of rows affected by

referential constraints and by triggered statements. It includes rows that were

deleted as a result of a CASCADE delete rule and rows in which foreign keys

were set to NULL as the result of a SET NULL delete rule. With regards to

triggered statements, it includes the number of rows that were inserted,

updated, or deleted.

v If an error occurs that prevents deleting all rows matching the search condition

and all operations required by existing referential constraints, no changes are

made to the table and the error is returned.

v For nicknames, the external server option iud_app_svpt_enforce poses an

additional limitation. Refer to the Federated documentation for more

information.

v For some data sources, the SQLCODE -20190 may be returned on a delete

against a nickname because of potential data inconsistency. Refer to the

Federated documentation for more information.

Examples

Example 1: Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

 DELETE FROM DEPARTMENT

 WHERE DEPTNO = ’D11’

Example 2: Delete all the departments from the DEPARTMENT table (that is,

empty the table).

 DELETE FROM DEPARTMENT

Example 3: Delete from the EMPLOYEE table any sales rep or field rep who didn’t

make a sale in 1995.

 DELETE FROM EMPLOYEE

 WHERE LASTNAME NOT IN

 (SELECT SALES_PERSON

 FROM SALES

 WHERE YEAR(SALES_DATE)=1995)

 AND JOB IN (’SALESREP’,’FIELDREP’)

Example 4: Delete all the duplicate employee rows from the EMPLOYEE table. An

employee row is considered to be a duplicate if the last names match. Keep the

employee row with the smallest first name in lexical order.

 DELETE FROM

 (SELECT ROWNUMBER() OVER (PARTITION BY LASTNAME ORDER BY FIRSTNME)

 FROM EMPLOYEE) AS E(RN)

 WHERE RN = 1

DELETE

Statements 659

DESCRIBE

The DESCRIBE statement obtains information about an object. There are two types

of information that can be obtained with this statement. Each of these is described

separately.

v Input parameter markers of a prepared statement. Gets information about the

input parameter markers in a prepared statement. This information is put into a

descriptor.

v The output of a prepared statement. Gets information about a prepared

statement or information about the select list columns in a prepared SELECT

statement. This information is put into a descriptor.

DESCRIBE

660 SQL Reference, Volume 2

DESCRIBE INPUT

The DESCRIBE INPUT statement obtains information about the input parameter

markers of a prepared statement.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

�� DESCRIBE INPUT statement-name INTO descriptor-name ��

Description

statement-name

Identifies the prepared statement. When the DESCRIBE INPUT statement is

executed, the name must identify a statement that has been prepared by the

application process at the current server.

 For a CALL statement, the information returned describes the input

parameters, defined as IN or INOUT, of the procedure. Input parameter

markers are always considered nullable, regardless of usage.

INTO descriptor-name

Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE INPUT

statement is executed, the following variable in the SQLDA must be set:

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.

SQLN must be set to a value greater than or equal to zero before the

DESCRIBE INPUT statement is executed.

When the DESCRIBE INPUT statement is executed, the database manager assigns

values to the variables of the SQLDA as follows:

SQLDAID

The first 6 bytes are set to ’SQLDA ’ (that is, 5 letters followed by the space

character).

 The seventh byte, defined as SQLDOUBLED, is set based on the parameter

markers described:

v If the SQLDA contains two SQLVAR entries for every input parameter,

the seventh byte is set to ’2’. This technique is used to accommodate

LOB or structured type input parameters.

v Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room

in the SQLDA to contain the description of all input parameter markers.

The eighth byte is set to the space character.

SQLDABC

Length of the SQLDA in bytes.

DESCRIBE INPUT

Statements 661

SQLD The number of IN and INOUT parameters of the procedure.

SQLVAR

If the value of SQLD is 0, or greater than the value of SQLN, no values are

assigned to occurrences of SQLVAR.

 If the value of SQLD is n, where n is greater than 0 but less than or equal

to the value of SQLN, values are assigned to the first n occurrences of

SQLVAR. The values describe parameter markers for the input parameters

of the procedure. The first occurrence of SQLVAR describes the first input

parameter marker, the second occurrence of SQLVAR describes the second

input parameter marker, and so on.

Base SQLVAR

SQLTYPE

A code showing the data type of the parameter and whether or not

it can contain null values.

SQLLEN

A length value depending on the data type of the parameter.

SQLLEN is 0 for LOB data types.

SQLNAME

If the SQLVAR corresponds to a parameter marker that is not part

of an expression in the parameter list of a procedure, sqlname

contains the name of the parameter if one was specified on the

CREATE PROCEDURE statement.

Secondary SQLVAR

These variables are only used if the number of SQLVAR entries are

doubled to accommodate LOB, distinct type, structured type, or reference

type parameters.

SQLLONGLEN

The length attribute of a BLOB, CLOB, or DBCLOB parameter.

SQLDATATYPE_NAME

For any user-defined type (distinct or structured) parameter, the

database manager sets this to the fully qualified user-defined type

name. For a reference type parameter, the database manager sets

this to the fully qualified user-defined type name of the target type

of the reference. Otherwise, schema name is SYSIBM and the type

name is the name in the TYPENAME column of the

SYSCAT.DATATYPES catalog view.

Notes

v Preparing the SQLDA: Before the DESCRIBE INPUT statement is executed, the

SQLDA must be allocated and the value of SQLN must be set to a value greater

than or equal to zero to indicate how many occurrences of SQLVAR are

provided in the SQLDA. Enough storage must be allocated to contain SQLN

occurrences. To obtain the description of the input parameter markers in the

prepared statement, the number of occurrences of SQLVAR must not be less than

the number of input parameter markers. Furthermore, if the input parameter

markers include LOBs or structured types, the number of occurrences of

SQLVAR should be two times the number of input parameter markers.

v Code page conversions between extended UNIX code (EUC) code pages and

DBCS code pages, or between Unicode and non-Unicode code pages, can result

in expansion or contraction of character lengths.

DESCRIBE INPUT

662 SQL Reference, Volume 2

v If a structured type is being selected, but no FROM SQL transform is defined

(either because no TRANSFORM GROUP was specified using the CURRENT

DEFAULT TRANSFORM GROUP special register (SQLSTATE 428EM), or

because the named group does not have a FROM SQL transform function

defined (SQLSTATE 42744)), an error is returned.

v Allocating the SQLDA: Among the possible ways to allocate the SQLDA are

the three described below.

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to

accommodate any select list that the application will have to process. If the table

contains any LOB, distinct type, structured type, or reference type columns, the

number of SQLVARs should be double the maximum number of columns;

otherwise the number should be the same as the maximum number of columns.

Having done the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even

when most of this storage is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE INPUT statement with an SQLDA that has no

occurrences of SQLVAR; that is, an SQLDA for which SQLN is zero. The

value returned for SQLD is the number of columns in the result table. This is

either the required number of occurrences of SQLVAR or half the required

number. Because there were no SQLVAR entries, a warning with SQLSTATE

01005 will be issued. If the SQLCODE accompanying that warning is equal

to one of +237, +238 or +239, the number of SQLVAR entries should be

double the value returned in SQLD. (The return of these positive SQLCODEs

assumes that the SQLWARN bind option setting was YES (return positive

SQLCODEs). If SQLWARN was set to NO, +238 is still returned to indicate

that the number of SQLVAR entries must be double the value returned in

SQLD.)

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the

DESCRIBE statement again, using this new SQLDA.
This technique allows better storage management than the first technique, but it

doubles the number of DESCRIBE INPUT statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and

perhaps all, select lists but is also reasonably small. Execute DESCRIBE INPUT

and check the SQLD value. Use the SQLD value for the number of occurrences

of SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its

effectiveness depends on a good choice of size for the original SQLDA.

Example

Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR

occurrences to describe any number of input parameters a prepared statement

might have. Assume that five parameter markers at most will need to be described

and that the input data does not contain LOBs.

 /* STMT1_STR contains INSERT statement with VALUES clause */

 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

 ... /* code to set SQLN to 5 and to allocate the SQLDA */

 EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;

 .

 .

 .

This example uses the first technique described under “Allocating the SQLDA” in

“DESCRIBE OUTPUT”.

DESCRIBE INPUT

Statements 663

DESCRIBE OUTPUT

The DESCRIBE OUTPUT statement obtains information about a prepared

statement.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��
 OUTPUT

DESCRIBE

statement-name

INTO

descriptor-name

��

Description

statement-name

Identifies the prepared statement. When the DESCRIBE OUTPUT statement is

executed, the name must identify a statement that has been prepared by the

application process at the current server.

 If the prepared statement is a SELECT or VALUES INTO statement, the

information returned describes the columns in its result table. If the prepared

statement is a CALL statement, the information returned describes the output

parameters, defined as OUT or INOUT, of the procedure.

INTO descriptor-name

Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE OUTPUT

statement is executed, the following variable in the SQLDA must be set:

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.

SQLN must be set to a value greater than or equal to zero before the

DESCRIBE OUTPUT statement is executed.

When the DESCRIBE OUTPUT statement is executed, the database manager

assigns values to the variables of the SQLDA as follows:

SQLDAID

The first 6 bytes are set to ’SQLDA ’ (that is, 5 letters followed by the space

character).

 The seventh byte, defined as SQLDOUBLED, is set based on the results

columns or parameter markers described:

v If the SQLDA contains two SQLVAR entries for every column or output

parameter, the seventh byte is set to ’2’. This technique is used to

accommodate LOB, distinct type, structured type, or reference type

columns, or output parameters.

v Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room

in the SQLDA to contain the description of all result columns or output

parameter markers.

DESCRIBE OUTPUT

664 SQL Reference, Volume 2

The eighth byte is set to the space character.

SQLDABC

Length of the SQLDA in bytes.

SQLD If the prepared statement is a SELECT, SQLD is set to the number of

columns in its result table. If the prepared statement is a CALL statement,

SQLD is set to the number of OUT and INOUT parameters of the

procedure. Otherwise, SQLD is set to 0.

SQLVAR

If the value of SQLD is 0, or greater than the value of SQLN, no values are

assigned to occurrences of SQLVAR.

 If the value of SQLD is n, where n is greater than 0 but less than or equal

to the value of SQLN, values are assigned to SQLTYPE, SQLLEN,

SQLNAME, SQLLONGLEN, and SQLDATATYPE_NAME for the first n

occurrences of SQLVAR. These values describe either columns of the result

table or parameter markers for the output parameters of the procedure.

The first occurrence of SQLVAR describes the first column or output

parameter marker, the second occurrence of SQLVAR describes the second

column or output parameter marker, and so on.

Base SQLVAR

SQLTYPE

A code showing the data type of the column or parameter and

whether or not it can contain null values.

SQLLEN

A length value depending on the data type of the column or

parameter. SQLLEN is 0 for LOB data types.

SQLNAME

The sqlname is derived as follows:

v If the SQLVAR corresponds to a derived column for a simple

column reference in the select list of a select-statement, sqlname

is the name of the column.

v If the SQLVAR corresponds to a parameter marker that is not

part of an expression in the parameter list of a procedure,

sqlname contains the name of the parameter if one was specified

on CREATE PROCEDURE.

v Otherwise sqlname contains an ASCII numeric literal value that

represents the SQLVAR’s position within the SQLDA.

Secondary SQLVAR

These variables are only used if the number of SQLVAR entries is doubled

to accommodate LOB, distinct type, structured type, or reference type

columns or parameters.

SQLLONGLEN

The length attribute of a BLOB, CLOB, or DBCLOB column or

parameter.

SQLDATATYPE_NAME

For any user-defined type (distinct or structured) column or

parameter, the database manager sets this to the fully qualified

user-defined type name. For a reference type column or parameter,

the database manager sets this to the fully qualified user-defined

type name of the target type of the reference. Otherwise, schema

DESCRIBE OUTPUT

Statements 665

name is SYSIBM and the type name is the name in the

TYPENAME column of the SYSCAT.DATATYPES catalog view.

Notes

v Before the DESCRIBE OUTPUT statement is executed, the value of SQLN must

be set to indicate how many occurrences of SQLVAR are provided in the SQLDA

and enough storage must be allocated to contain SQLN occurrences. For

example, to obtain the description of the columns of the result table of a

prepared SELECT statement, the number of occurrences of SQLVAR must not be

less than the number of columns.

v If a LOB of a large size is expected, then remember that manipulating this large

object will affect application memory. Given this condition, consider using

locators or file reference variables. Modify the SQLDA after the DESCRIBE

OUTPUT statement is executed but prior to allocating storage so that an

SQLTYPE of SQL_TYP_xLOB is changed to SQL_TYP_xLOB_LOCATOR or

SQL_TYP_xLOB_FILE with corresponding changes to other fields such as

SQLLEN. Then allocate storage based on SQLTYPE and continue.

v Code page conversions between extended UNIX code (EUC) code pages and

DBCS code pages, or between Unicode and non-Unicode code pages, can result

in the expansion and contraction of character lengths.

v If a structured type is being selected, but no FROM SQL transform is defined

(either because no TRANSFORM GROUP was specified using the CURRENT

DEFAULT TRANSFORM GROUP special register (SQLSTATE 428EM), or

because the named group does not have a FROM SQL transform function

defined (SQLSTATE 42744)), an error is returned.

v Allocating the SQLDA: Among the possible ways to allocate the SQLDA are

the three described below.

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to

accommodate any select list that the application will have to process. If the table

contains any LOB, distinct type, structured type, or reference type columns, the

number of SQLVARs should be double the maximum number of columns;

otherwise the number should be the same as the maximum number of columns.

Having done the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even

when most of this storage is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE OUTPUT statement with an SQLDA that has no

occurrences of SQLVAR; that is, an SQLDA for which SQLN is zero. The

value returned for SQLD is the number of columns in the result table. This is

either the required number of occurrences of SQLVAR or half the required

number. Because there were no SQLVAR entries, a warning with SQLSTATE

01005 will be issued. If the SQLCODE accompanying that warning is equal

to one of +237, +238 or +239, the number of SQLVAR entries should be

double the value returned in SQLD. (The return of these positive SQLCODEs

assumes that the SQLWARN bind option setting was YES (return positive

SQLCODEs). If SQLWARN was set to NO, +238 is still returned to indicate

that the number of SQLVAR entries must be double the value returned in

SQLD.)

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the

DESCRIBE OUTPUT statement again, using this new SQLDA.
This technique allows better storage management than the first technique, but it

doubles the number of DESCRIBE OUTPUT statements.

DESCRIBE OUTPUT

666 SQL Reference, Volume 2

Third Technique: Allocate an SQLDA that is large enough to handle most, and

perhaps all, select lists but is also reasonably small. Execute DESCRIBE and

check the SQLD value. Use the SQLD value for the number of occurrences of

SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its

effectiveness depends on a good choice of size for the original SQLDA.

v Considerations for implicitly hidden columns: A DESCRIBE OUTPUT statement

returns only information about an implicitly hidden column if the column is

explicitly specified as part of the SELECT list of the final result table of the

query being described. If implicitly hidden columns are not part of the result

table of a query, a DESCRIBE OUTPUT statement that returns information about

that query will not contain information about any implicitly hidden columns.

Example

In a C program, execute a DESCRIBE OUTPUT statement with an SQLDA that has

no occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate

an SQLDA with the necessary number of occurrences of SQLVAR and then execute

a DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;

 char stmt1_str[200];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 ... /* code to prompt user for a query, then to generate */

 /* a select-statement in the stmt1_str */

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 ... /* code to set SQLN to zero and to allocate the SQLDA */

 EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

 ... /* code to check that SQLD is greater than zero, to set */

 /* SQLN to SQLD, then to re-allocate the SQLDA */

 EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

 ... /* code to prepare for the use of the SQLDA */

 /* and allocate buffers to receive the data */

 EXEC SQL OPEN DYN_CURSOR;

 ... /* loop to fetch rows from result table */

 EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;

 .

 .

 .

DESCRIBE OUTPUT

Statements 667

DISCONNECT

The DISCONNECT statement destroys one or more connections when there is no

active unit of work (that is, after a commit or rollback operation). If a single

connection is the target of the DISCONNECT statement, the connection is

destroyed only if the database has participated in an existing unit of work,

regardless of whether there is an active unit of work. For example, if several other

databases have done work, but the target in question has not, it can still be

disconnected without destroying the connection.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

None required.

Syntax

��

DISCONNECT
 (1)

server-name

host-variable

CURRENT

SQL

ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only be

identified by a host variable.

Description

server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

The specified database-alias or the database-alias contained in the host variable

must identify an existing connection of the application process. If the

database-alias does not identify an existing connection, an error (SQLSTATE

08003) is raised.

CURRENT

Identifies the current connection of the application process. The application

process must be in the connected state. If not, an error (SQLSTATE 08003) is

raised.

DISCONNECT

668 SQL Reference, Volume 2

ALL

Indicates that all existing connections of the application process are to be

destroyed. An error or warning does not occur if no connections exist when

the statement is executed. The optional keyword SQL is included to be

consistent with the syntax of the RELEASE statement.

Rules

v Generally, the DISCONNECT statement cannot be executed while within a unit

of work. If attempted, an error (SQLSTATE 25000) is raised. The exception to this

rule is if a single connection is specified to be disconnected and the database has

not participated in an existing unit of work. In this case, it does not matter if

there is an active unit of work when the DISCONNECT statement is issued.

v The DISCONNECT statement cannot be executed at all in the Transaction

Processing (TP) Monitor environment (SQLSTATE 25000). It is used when the

SYNCPOINT precompiler option is set to TWOPHASE.

Notes

v If the DISCONNECT statement is successful, each identified connection is

destroyed.

If the DISCONNECT statement is unsuccessful, the connection state of the

application process and the states of its connections are unchanged.

v If DISCONNECT is used to destroy the current connection, the next executed

SQL statement should be CONNECT or SET CONNECTION.

v Type 1 CONNECT semantics do not preclude the use of DISCONNECT.

However, though DISCONNECT CURRENT and DISCONNECT ALL can be

used, they will not result in a commit operation like a CONNECT RESET

statement would do.

If server-name or host-variable is specified in the DISCONNECT statement, it must

identify the current connection because Type 1 CONNECT only supports one

connection at a time. Generally, DISCONNECT will fail if within a unit of work

with the exception noted in “Rules”.

v Resources are required to create and maintain remote connections. Thus, a

remote connection that is not going to be reused should be destroyed as soon as

possible.

v Connections can also be destroyed during a commit operation because the

connection option is in effect. The connection option could be AUTOMATIC,

CONDITIONAL, or EXPLICIT, which can be set as a precompiler option or

through the SET CLIENT API at run time. For information about the

specification of the DISCONNECT option, see “Distributed relational databases”.

Examples

Example 1: The SQL connection to IBMSTHDB is no longer needed by the

application. The following statement should be executed after a commit or rollback

operation to destroy the connection.

 EXEC SQL DISCONNECT IBMSTHDB;

Example 2: The current connection is no longer needed by the application. The

following statement should be executed after a commit or rollback operation to

destroy the connection.

 EXEC SQL DISCONNECT CURRENT;

DISCONNECT

Statements 669

Example 3: The existing connections are no longer needed by the application. The

following statement should be executed after a commit or rollback operation to

destroy all the connections.

 EXEC SQL DISCONNECT ALL;

DISCONNECT

670 SQL Reference, Volume 2

DROP

The DROP statement deletes an object. Any objects that are directly or indirectly

dependent on that object are either deleted or made inoperative. Whenever an

object is deleted, its description is deleted from the catalog, and any packages that

reference the object are invalidated.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

When dropping objects that allow two-part names, the privileges held by the

authorization ID of the statement must include at least one of the following:

v DROPIN privilege on the schema for the object

v Owner of the object, as recorded in the OWNER column of the catalog view for

the object

v CONTROL privilege on the object (applicable only to indexes, index

specifications, nicknames, packages, tables, and views)

v Owner of the user-defined type, as recorded in the OWNER column of the

SYSCAT.DATATYPES catalog view (applicable only when dropping a method

that is associated with a user-defined type)

v SYSADM or DBADM authority

When dropping a table or view hierarchy, the privileges held by the authorization

ID of the statement must include one of the above privileges for each of the tables

or views in the hierarchy.

When dropping a schema, the authorization ID of the statement must hold

SYSADM or DBADM authority, or be the schema owner, as recorded in the

OWNER column of the SYSCAT.SCHEMATA catalog view.

When dropping a buffer pool, database partition group, histogram template, or

table space, the authorization ID of the statement must hold SYSADM or SYSCTRL

authority.

When dropping a data type mapping, event monitor, function mapping, server

definition, service class, work action set, work class set, workload, threshold,

histogram, or wrapper, the authorization ID of the statement must hold SYSADM

or DBADM authority.

When dropping a user mapping, the authorization ID of the statement must hold

SYSADM or DBADM authority, if this authorization ID is different from the

federated database authorization name within the mapping. Otherwise, if the

authorization ID and the authorization name match, no authorities or privileges

are required.

When dropping a transform, the authorization ID of the statement must hold

SYSADM or DBADM authority, or must be the owner of type-name.

DROP

Statements 671

When dropping an audit policy, a role, a security label, a security label component,

a security policy, or a trusted context, the authorization ID of the statement must

hold SECADM authority.

Syntax

�� DROP �

DROP

672 SQL Reference, Volume 2

�

�

�

�

�

 ALIAS alias-name

AUDIT POLICY

policy-name

BUFFERPOOL

bufferpool-name

EVENT MONITOR

event-monitor-name

RESTRICT

FUNCTION

function-name

(

)

,

data-type

RESTRICT

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

HISTOGRAM TEMPLATE

template-name

(1)

INDEX

index-name

INDEX EXTENSION

index-extension-name

RESTRICT

RESTRICT

METHOD

method-name

FOR

type-name

(

)

,

datatype

RESTRICT

SPECIFIC METHOD

specific-name

NICKNAME

nickname

DATABASE PARTITION GROUP

db-partition-group-name

PACKAGE

package-id

schema-name.

VERSION

version-id

RESTRICT

PROCEDURE

procedure-name

(

)

,

data-type

ROLE

role-name

RESTRICT

SPECIFIC PROCEDURE

specific-name

SCHEMA

schema-name

RESTRICT

RESTRICT

SECURITY LABEL

security-label-name

RESTRICT

SECURITY LABEL COMPONENT

sec-label-comp-name

RESTRICT

SECURITY POLICY

security-policy-name

RESTRICT

SEQUENCE

sequence-name

SERVER

server-name

service-class

TABLE

table-name

TABLE HIERARCHY

root-table-name

,

TABLESPACE

tablespace-name

TABLESPACES

TRANSFORM

ALL

FOR

type-name

TRANSFORMS

group-name

THRESHOLD

threshold-name

TRIGGER

trigger-name

TRUSTED CONTEXT

context-name

TYPE

type-name

RESTRICT

TYPE MAPPING

type-mapping-name

USER MAPPING FOR

authorization-name

SERVER

server-name

USER

RESTRICT

VARIABLE

variable-name

VIEW

view-name

VIEW HIERARCHY

root-view-name

WORK ACTION SET

work-action-set-name

RESTRICT

WORK CLASS SET

work-class-set-name

WORKLOAD

workload-name

WRAPPER

wrapper-name

XSROBJECT

xsrobject-name

 ��

DROP

Statements 673

service-class:

 SERVICE CLASS service-class-name

UNDER

service-superclass-name
 �

�
 RESTRICT

Notes:

1 Index-name can be the name of either an index or an index specification.

Description

ALIAS alias-name

Identifies the alias that is to be dropped. The alias-name must identify an alias

that is described in the catalog (SQLSTATE 42704). The specified alias is

deleted.

 All tables, views, and triggers that reference the alias are made inoperative.

(This includes both the table referenced in the ON clause of the CREATE

TRIGGER statement, and all tables referenced within the triggered SQL

statements.)

AUDIT POLICY policy-name

Identifies the audit policy that is to be dropped. The policy-name must identify

an audit policy that exists at the current server (SQLSTATE 42704). The audit

policy must not be associated with any database objects (SQLSTATE 42893).

The specified audit policy is deleted from the catalog.

BUFFERPOOL bufferpool-name

Identifies the buffer pool that is to be dropped. The bufferpool-name must

identify a buffer pool that is described in the catalog (SQLSTATE 42704). There

can be no table spaces assigned to the buffer pool (SQLSTATE 42893). The

IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE 42832). Buffer

pool memory is released immediately, to be used by DB2. Disk storage may

not be released until the next connection to the database.

EVENT MONITOR event-monitor-name

Identifies the event monitor that is to be dropped. The event-monitor-name must

identify an event monitor that is described in the catalog (SQLSTATE 42704).

 If the identified event monitor is active, an error is returned (SQLSTATE

55034); otherwise, the event monitor is deleted. Note that if an event monitor

has been previously activated using the SET EVENT MONITOR STATE

statement, and the database has been deactivated and subsequently reactivated,

use the SET EVENT MONITOR STATE statement to deactivate the event

monitor before issuing the DROP statement.

If there are event files in the target path of a WRITE TO FILE event monitor

that is being dropped, the event files are not deleted. However, if a new event

monitor that specifies the same target path is created, the event files are

deleted.

When dropping WRITE TO TABLE event monitors, table information is

removed from the SYSCAT.EVENTTABLES catalog view, but the tables

themselves are not dropped.

DROP

674 SQL Reference, Volume 2

FUNCTION

Identifies an instance of a user-defined function (either a complete function or

a function template) that is to be dropped. The function instance specified

must be a user-defined function described in the catalog. Functions implicitly

generated by the CREATE TYPE (Distinct) statement cannot be dropped.

 There are several different ways available to identify the function instance:

FUNCTION function-name

Identifies the particular function, and is valid only if there is exactly one

function instance with the function-name. The function thus identified may

have any number of parameters defined for it. In dynamic SQL statements,

the CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If no function by this name exists in the named or implied

schema, an error is returned (SQLSTATE 42704). If there is more than one

specific instance of the function in the named or implied schema, an error

is returned (SQLSTATE 42725).

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function to

be dropped. The function selection algorithm is not used.

function-name

Gives the function name of the function to be dropped. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier

for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

FUNCTION statement in the corresponding position. The number of

data types, and the logical concatenation of the data types is used to

identify the specific function instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that

specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

RESTRICT

The RESTRICT keyword enforces the rule that the function is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the function.

v A view uses the function.

DROP

Statements 675

v A trigger uses the function.

v A materialized query table uses the function in its definition.

RESTRICT is the default behavior.

If no function with the specified signature exists in named or implied schema,

an error is returned (SQLSTATE 42883).

SPECIFIC FUNCTION specific-name

Identifies the particular user-defined function that is to be dropped, using the

specific name either specified or defaulted to at function creation time. In

dynamic SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific function

instance in the named or implied schema; otherwise, an error is returned

(SQLSTATE 42704).

RESTRICT

The RESTRICT keyword enforces the rule that the function is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the function.

v A view uses the function.

v A trigger uses the function.

RESTRICT is the default behavior.

 It is not possible to drop a function that is in the SYSIBM, SYSFUN, or the

SYSPROC schema (SQLSTATE 42832).

Other objects can be dependent upon a function. All such dependencies must

be removed before the function can be dropped, with the exception of

packages which are marked inoperative. An attempt to drop a function with

such dependencies will result in an error (SQLSTATE 42893). See “Rules” on

page 689 for a list of these dependencies.

If the function can be dropped, it is dropped.

Any package dependent on the specific function being dropped is marked as

inoperative. Such a package is not implicitly rebound. It must either be

rebound by use of the BIND or REBIND command, or it must be re-prepared

by use of the PREP command.

FUNCTION MAPPING function-mapping-name

Identifies the function mapping that is to be dropped. The

function-mapping-name must identify a user-defined function mapping that is

described in the catalog (SQLSTATE 42704). The function mapping is deleted

from the database.

 Default function mappings cannot be dropped, but can be disabled by using

the CREATE FUNCTION MAPPING statement. Dropping a user-defined

function mapping that was created to override a default function mapping

reinstates the default function mapping.

Packages having a dependency on a dropped function mapping are

invalidated.

HISTOGRAM TEMPLATE template-name

Identifies the histogram template that is to be dropped. The template-name must

identify a histogram template that exists at the current server (SQLSTATE

DROP

676 SQL Reference, Volume 2

42704). The template-name cannot be SYSDEFAULTHISTOGRAM (SQLSTATE

42832). The histogram template cannot be dropped if a service class or a work

action is dependent on it (SQLSTATE 42893). The specified histogram template

is deleted from the catalog.

INDEX index-name

Identifies the index or index specification that is to be dropped. The index-name

must identify an index or index specification that is described in the catalog

(SQLSTATE 42704). It cannot be an index that is required by the system for a

primary key or unique constraint, for a replicated materialized query table, or

for an XML column (SQLSTATE 42917). The specified index or index

specification is deleted.

 Packages having a dependency on a dropped index or index specification are

invalidated.

INDEX EXTENSION index-extension-name RESTRICT

Identifies the index extension that is to be dropped. The index-extension-name

must identify an index extension that is described in the catalog (SQLSTATE

42704). The RESTRICT keyword enforces the rule that no index can be defined

that depends on this index extension definition (SQLSTATE 42893).

METHOD

Identifies a method body that is to be dropped. The method body specified

must be a method described in the catalog (SQLSTATE 42704). Method bodies

that are implicitly generated by the CREATE TYPE statement cannot be

dropped.

 DROP METHOD deletes the body of a method, but the method specification

(signature) remains as a part of the definition of the subject type. After

dropping the body of a method, the method specification can be removed from

the subject type definition by ALTER TYPE DROP METHOD.

There are several ways available to identify the method body to be dropped:

METHOD method-name

Identifies the particular method to be dropped, and is valid only if there is

exactly one method instance with name method-name and subject type

type-name. Thus, the method identified may have any number of

parameters. If no method by this name exists for the type type-name, an

error is returned (SQLSTATE 42704). If there is more than one specific

instance of the method for the named data type, an error is returned

(SQLSTATE 42725).

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method to be

dropped. The method selection algorithm is not used.

method-name

The method name of the method to be dropped for the specified type.

The name must be an unqualified identifier.

(data-type, ...)

Must match the data types that were specified in the corresponding

positions of the method-specification of the CREATE TYPE or ALTER

TYPE statement. The number of data types and the logical

concatenation of the data types are used to identify the specific method

instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path.

DROP

Statements 677

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the named data

type, an error is returned (SQLSTATE 42883).

FOR type-name

Names the type for which the specified method is to be dropped. The

name must identify a type already described in the catalog (SQLSTATE

42704). In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names.

RESTRICT

The RESTRICT keyword enforces the rule that the method is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the method.

v A view uses the method.

v A trigger uses the method.

RESTRICT is the default behavior.

SPECIFIC METHOD specific-name

Identifies the particular method that is to be dropped, using a name either

specified or defaulted to at CREATE TYPE or ALTER TYPE time. If the specific

name is unqualified, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified specific name in dynamic SQL. In static SQL

statements the QUALIFIER precompile/bind option implicitly specifies the

qualifier for an unqualified specific name. The specific-name must identify a

method; otherwise, an error is returned (SQLSTATE 42704).

RESTRICT

The RESTRICT keyword enforces the rule that the method is not to be

dropped if any of the following dependencies exists:

v Another routine is sourced on the method.

v A view uses the method.

v A trigger uses the function.

RESTRICT is the default method.

 Other objects can be dependent upon a method. All such dependencies must

be removed before the method can be dropped, with the exception of packages

which will be marked inoperative if the drop is successful. An attempt to drop

a method with such dependencies will result in an error (SQLSTATE 42893).

If the method can be dropped, it will be dropped.

DROP

678 SQL Reference, Volume 2

Any package dependent on the specific method being dropped is marked as

inoperative. Such a package is not implicitly re-bound. Either it must be

re-bound by use of the BIND or REBIND command, or it must be re-prepared

by use of the PREP command.

If the specific method being dropped overrides another method, all packages

dependent on the overridden method — and on methods that override this

method in supertypes of the specific method being dropped — are invalidated.

NICKNAME nickname

Identifies the nickname that is to be dropped. The nickname must be listed in

the catalog (SQLSTATE 42704). The nickname is deleted from the database.

 All information about the columns and indexes associated with the nickname

is deleted from the catalog. Any materialized query tables that are dependent

on the nickname are dropped. Any index specifications that are dependent on

the nickname are dropped. Any views that are dependent on the nickname are

marked inoperative. Any packages that are dependent on the dropped index

specifications or inoperative views are invalidated. The data source table that

the nickname references is not affected.

If an SQL function or method is dependent on a nickname, that nickname

cannot be dropped (SQLSTATE 42893).

DATABASE PARTITION GROUP db-partition-group-name

Identifies the database partition group that is to be dropped. The

db-partition-group-name parameter must identify a database partition group that

is described in the catalog (SQLSTATE 42704). This is a one-part name.

 Dropping a database partition group drops all table spaces defined in the

database partition group. All existing database objects with dependencies on

the tables in the table spaces (such as packages, referential constraints, and so

on) are dropped or invalidated (as appropriate), and dependent views and

triggers are made inoperative.

System-defined database partition groups cannot be dropped (SQLSTATE

42832).

If a DROP DATABASE PARTITION GROUP statement is issued against a

database partition group that is currently undergoing a data redistribution, the

drop database partition group operation fails, and an error is returned

(SQLSTATE 55038). However, a partially redistributed database partition group

can be dropped. A database partition group can become partially redistributed

if a REDISTRIBUTE DATABASE PARTITION GROUP command does not

execute to completion. This can happen if it is interrupted by either an error or

a FORCE APPLICATION ALL command. (For a partially redistributed

database partition group, the REBALANCE_PMAP_ID in the

SYSCAT.DBPARTITIONGROUPS catalog is not -1.)

PACKAGE schema-name.package-id

Identifies the package that is to be dropped. If a schema name is not specified,

the package identifier is implicitly qualified by the default schema. The schema

name and package identifier, together with the implicitly or explicitly specified

version identifier, must identify a package that is described in the catalog

(SQLSTATE 42704). The specified package is deleted. If the package being

dropped is the only package identified by schema-name.package-id (that is, there

are no other versions), all privileges on the package are also deleted.

VERSION version-id

Identifies which package version is to be dropped. If a value is not

specified, the version defaults to the empty string. If multiple packages

DROP

Statements 679

with the same package name but different versions exist, only one package

version can be dropped in one invocation of the DROP statement. Delimit

the version identifier with double quotation marks when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

PROCEDURE

Identifies an instance of a procedure that is to be dropped. The procedure

instance specified must be a procedure described in the catalog.

 There are several different ways available to identify the procedure instance:

PROCEDURE procedure-name

Identifies the particular procedure to be dropped, and is valid only if there

is exactly one procedure instance with the procedure-name in the schema.

The procedure thus identified may have any number of parameters defined

for it. If no procedure by this name exists in the named or implied schema,

an error is returned (SQLSTATE 42704). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified

object names. If there is more than one specific instance of the procedure in

the named or implied schema, an error (SQLSTATE 42725) is returned.

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure

to be dropped. The procedure selection algorithm is not used. For

federated procedures, the signature information is not specified on the

CREATE PROCEDURE statement, but the information is available in the

system catalog.

procedure-name

Gives the procedure name of the procedure to be dropped. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a

qualifier for an unqualified object name. In static SQL statements the

QUALIFIER precompile/bind option implicitly specifies the qualifier

for unqualified object names.

(data-type,...)

Must match the data types that were specified on the CREATE

PROCEDURE statement in the corresponding position, except for

federated procedures, where the data type must match what is stored

in the local catalog for the corresponding parameter. The number of

data types, and the logical concatenation of the data types is used to

identify the specific procedure instance which is to be dropped.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision or scale for the

parameterized data types. Instead, an empty set of parentheses may be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

DROP

680 SQL Reference, Volume 2

FLOAT() cannot be used (SQLSTATE 42601) since the parameter value

indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement or, for

federated procedures, it must exactly match what is stored in the local

catalog for the corresponding parameter.

A type of FLOAT(n) does not need to match the defined value for n

since 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

RESTRICT

The RESTRICT keyword prevents the procedure from being dropped if a

trigger definition, an SQL function, or an SQL method contains a CALL

statement with the name of the procedure. RESTRICT is the default

behavior.

If no procedure with the specified signature exists in named or implied

schema, an error (SQLSTATE 42883) is returned.

ROLE role-name

Identifies the role that is to be dropped. The role-name must identify a role that

already exists at the current server (SQLSTATE 42704). The role-name must not

identify a role, or a role that contains role-name, if the role has either EXECUTE

privilege on a routine or USAGE privilege on a sequence, and an SQL object

other than a package is dependent on the routine or sequence (SQLSTATE

42893). The owner of the SQL object is either authorization-name or any user

who is a member of authorization-name, where authorization-name is a role.

 A DROP ROLE statement fails (SQLSTATE 42893) if any of the following is

true for the role to be dropped:

v A workload exists such that one of the values for the connection attribute

SESSION_USER ROLE is role-name

v A trusted context using role-name exists

The specified role is deleted from the catalog.

SPECIFIC PROCEDURE specific-name

Identifies the particular procedure that is to be dropped, using the specific

name either specified or defaulted to at procedure creation time. In dynamic

SQL statements, the CURRENT SCHEMA special register is used as a qualifier

for an unqualified object name. In static SQL statements the QUALIFIER

precompile/bind option implicitly specifies the qualifier for unqualified object

names. The specific-name must identify a specific procedure instance in the

named or implied schema; otherwise, an error is returned (SQLSTATE 42704).

RESTRICT

The RESTRICT keyword prevents the procedure from being dropped if a

trigger definition, an SQL function, or an SQL method contains a CALL

statement with the name of the procedure. RESTRICT is the default

behavior.

 It is not possible to drop a procedure that is in the SYSIBM, SYSFUN, or the

SYSPROC schema (SQLSTATE 42832).

SCHEMA schema-name RESTRICT

Identifies the particular schema to be dropped. The schema-name must identify

a schema that is described in the catalog (SQLSTATE 42704). The RESTRICT

DROP

Statements 681

keyword enforces the rule that no objects can be defined in the specified

schema for the schema to be deleted from the database (SQLSTATE 42893).

SECURITY LABEL security-label-name

Identifies the security label to be dropped. The name must be qualified with a

security policy (SQLSTATE 42704) and must identify a security label that exists

at the current server (SQLSTATE 42704).

RESTRICT

This option, which is the default, prevents the security label from being

dropped if any of the following dependencies exist (SQLSTATE 42893):

v One or more authorization IDs currently hold the security label for read

access

v One or more authorization IDs currently hold the security label for write

access

v The security label is currently being used to protect one or more

columns

SECURITY LABEL COMPONENT sec-label-comp-name

Identifies the security label component to be dropped. The sec-label-comp-name

must identify a security label component that is described in the catalog

(SQLSTATE 42704).

RESTRICT

This option, which is the default, prevents the security label component

from being dropped if any of the following dependencies exist (SQLSTATE

42893):

v One or more security policies that include the security label component

are currently defined

SECURITY POLICY security-policy-name

Identifies the security policy to be dropped. The security-policy-name must

identify a security policy that exists at the current server (SQLSTATE 42704).

RESTRICT

This option, which is the default, prevents the security policy from being

dropped if any of the following dependencies exist (SQLSTATE 42893):

v One or more tables are associated with this security policy

v One or more authorization IDs hold an exemption on one of the rules in

this security policy

v One or more security labels are defined for this security policy

SEQUENCE sequence-name

Identifies the particular sequence that is to be dropped. The sequence-name,

along with the implicit or explicit schema name, must identify an existing

sequence at the current server. If no sequence by this name exists in the

explicitly or implicitly specified schema, an error is returned (SQLSTATE

42704).

RESTRICT

This option, which is the default, prevents the sequence from being

dropped if any of the following dependencies exist:

v A trigger exists such that a NEXT VALUE or PREVIOUS VALUE

expression in the trigger specifies the sequence (SQLSTATE 42893).

v An SQL function or an SQL method exists such that a NEXT VALUE

expression in the routine body specifies the sequence (SQLSTATE 42893).

DROP

682 SQL Reference, Volume 2

SERVER server-name

Identifies the data source whose definition is to be dropped from the catalog.

The server-name must identify a data source that is described in the catalog

(SQLSTATE 42704). The definition of the data source is deleted.

 All nicknames for tables and views residing at the data source are dropped.

Any index specifications dependent on these nicknames are dropped. Any

user-defined function mappings, user-defined type mappings, and user

mappings that are dependent on the dropped server definition are also

dropped. All packages dependent on the dropped server definition, function

mappings, nicknames, and index specifications are invalidated. All federated

procedures that are dependent on the server definition are also dropped.

SERVICE CLASS service-class-name

Identifies the service class to be dropped. The service-class-name must identify a

service class that is described in the catalog (SQLSTATE 42704). To drop a

service subclass, the service-superclass-name must be specified using the UNDER

clause.

UNDER service-superclass-name

Specifies the service superclass of the service subclass when dropping a

service subclass. The service-superclass-name must identify a service

superclass that is described in the catalog (SQLSTATE 42704).

RESTRICT

This keyword enforces the rule that the service class is not to be dropped if

any of the following dependencies exists:

v The service class is a service superclass and there is a user defined

service subclass under the service class (SQLSTATE 5U031). The service

subclass must first be dropped.

v The service class is a service superclass and there is a work action set

mapping to the service class (SQLSTATE 5U031). The work action set

must first be dropped.

v The service class is a service subclass and there is a work action

mapping to the service class (SQLSTATE 5U031). The work action must

first be dropped.

v The service class has a workload mapping (SQLSTATE 5U031). The

workload mapping must first be removed. Remove the workload

mapping by dropping the workload or altering the workload to not map

to the service class.

v The service class has an associated threshold (SQLSTATE 5U031). The

threshold must first be dropped.

v The service class must be disabled (SQLSTATE 5U031).

RESTRICT is the default behavior.

TABLE table-name

Identifies the base table or declared temporary table that is to be dropped. The

table-name must identify a table that is described in the catalog or, if it is a

declared temporary table, the table-name must be qualified by the schema name

SESSION and exist in the application (SQLSTATE 42704). The subtables of a

typed table are dependent on their supertables. All subtables must be dropped

before a supertable can be dropped (SQLSTATE 42893). The specified table is

deleted from the database.

 All indexes, primary keys, foreign keys, check constraints, materialized query

tables, and staging tables referencing the table are dropped. All views and

triggers that reference the table are made inoperative. (This includes both the

DROP

Statements 683

table referenced in the ON clause of the CREATE TRIGGER statement, and all

tables referenced within the triggered SQL statements.) All packages depending

on any object dropped or marked inoperative will be invalidated. This includes

packages dependent on any supertables above the subtable in the hierarchy.

Any reference columns for which the dropped table is defined as the scope of

the reference become unscoped.

Packages are not dependent on declared temporary tables, and therefore are

not invalidated when such a table is dropped.

In a federated system, a remote table that was created using transparent DDL

can be dropped. Dropping a remote table also drops the nickname associated

with that table, and invalidates any packages that are dependent on that

nickname.

When a subtable is dropped from a table hierarchy, the columns associated

with the subtable are no longer accessible although they continue to be

considered with respect to limits on the number of columns and size of the

row. Dropping a subtable has the effect of deleting all the rows of the subtable

from the supertables. This may result in activation of triggers or referential

integrity constraints defined on the supertables.

When a declared temporary table is dropped, and its creation preceded the

active unit of work or savepoint, then the table will be functionally dropped

and the application will not be able to access the table. However, the table will

still reserve some space in its table space and will prevent that USER

TEMPORARY table space from being dropped or the database partition group

of the USER TEMPORARY table space from being redistributed until the unit

of work is committed or savepoint is ended. Dropping a declared temporary

table causes the data in the table to be destroyed, regardless of whether DROP

is committed or rolled back.

A table cannot be dropped if it has the RESTRICT ON DROP attribute.

A newly detached table is initially inaccessible. This prevents the table from

being read, modified, or dropped until the SET INTEGRITY statement can be

run to incrementally refresh MQTs or to complete any processing for foreign

key constraints. After the SET INTEGRITY statement executes against all

dependent tables, the table is fully accessible, its detached attribute is reset,

and it can be dropped.

TABLE HIERARCHY root-table-name

Identifies the typed table hierarchy that is to be dropped. The root-table-name

must identify a typed table that is the root table in the typed table hierarchy

(SQLSTATE 428DR). The typed table identified by root-table-name and all of its

subtables are deleted from the database.

 All indexes, materialized query tables, staging tables, primary keys, foreign

keys, and check constraints referencing the dropped tables are dropped. All

views and triggers that reference the dropped tables are made inoperative. All

packages depending on any object dropped or marked inoperative will be

invalidated. Any reference columns for which one of the dropped tables is

defined as the scope of the reference become unscoped.

Unlike dropping a single subtable, dropping the table hierarchy does not result

in the activation of delete triggers of any tables in the hierarchy nor does it log

the deleted rows.

DROP

684 SQL Reference, Volume 2

TABLESPACE or TABLESPACES tablespace-name

Identifies the table spaces that are to be dropped; tablespace-name must identify

a table space that is described in the catalog (SQLSTATE 42704). This is a

one-part name.

 The table spaces will not be dropped (SQLSTATE 55024) if there is any table

that stores at least one of its parts in a table space being dropped, and has one

or more of its parts in another table space that is not being dropped (these

tables would need to be dropped first), or if any table that resides in the table

space has the RESTRICT ON DROP attribute.

Objects whose names are prefixed with ’SYS’ are system-defined objects and,

with the exception of the SYSTOOLSPACE and SYSTOOLSTMPSPACE table

spaces, cannot be dropped (SQLSTATE 42832).

A SYSTEM TEMPORARY table space cannot be dropped (SQLSTATE 55026) if

it is the only temporary table space that exists in the database. A USER

TEMPORARY table space cannot be dropped if there is a declared temporary

table created in it (SQLSTATE 55039). Even if a declared temporary table has

been dropped, the USER TEMPORARY table space will still be considered to

be in use until the unit of work containing the DROP TABLE statement has

been committed.

Dropping a table space drops all objects that are defined in the table space. All

existing database objects with dependencies on the table space, such as

packages, referential constraints, and so on, are dropped or invalidated (as

appropriate), and dependent views and triggers are made inoperative.

Containers that were created by a user are not deleted. Any directories in the

path of the container name that were created by the database manager during

CREATE TABLESPACE execution are deleted. All containers that are below the

database directory are deleted. When the DROP TABLESPACE statement is

committed, the DMS file containers or SMS containers for the specified table

space are deleted, if possible. If the containers cannot be deleted (because they

are being kept open by another agent, for example), the files are truncated to

zero length. After all connections are terminated, or the DEACTIVATE

DATABASE command is issued, these zero-length files are deleted.

THRESHOLD threshold-name

Identifies the threshold that is to be dropped. The threshold-name must identify

a threshold that exists at the current server (SQLSTATE 42704). This is a

one-part name. Thresholds with a queue, for example

TOTALSCPARTITIONCONNECTIONS and

CONCURRENTDBCOORDACTIVITIES, must be disabled before they can be

dropped (SQLSTATE 5U025). The specified threshold is deleted from the

catalog.

TRIGGER trigger-name

Identifies the trigger that is to be dropped. The trigger-name must identify a

trigger that is described in the catalog (SQLSTATE 42704). The specified trigger

is deleted.

 Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may

depend on that trigger through an update against the view.

TRANSFORM ALL FOR type-name

Indicates that all transforms groups defined for the user-defined data type

type-name are to be dropped. The transform functions referenced in these

groups are not dropped. In dynamic SQL statements, the CURRENT SCHEMA

DROP

Statements 685

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names. The type-name must identify a

user-defined type described in the catalog (SQLSTATE 42704).

 If there are not transforms defined for type-name, an error is returned

(SQLSTATE 42740).

DROP TRANSFORM is the inverse of CREATE TRANSFORM. It causes the

transform functions associated with certain groups, for a given datatype, to

become undefined. The functions formerly associated with these groups still

exist and can still be called explicitly, but they no longer have the transform

property, and are no longer invoked implicitly for exchanging values with the

host language environment.

The transform group is not dropped if there is a user-defined function (or

method) written in a language other than SQL that has a dependency on one

of the group’s transform functions defined for the user-defined type type-name

(SQLSTATE 42893). Such a function has a dependency on the transform

function associated with the referenced transform group defined for type

type-name. Packages that depend on a transform function associated with the

named transform group are marked inoperative.

TRANSFORMS group-name FOR type-name

Indicates that the specified transform group for the user-defined data type

type-name is to be dropped. The transform functions referenced in this group

are not dropped. In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified object names. The type-name must identify a

user-defined type described in the catalog (SQLSTATE 42704), and the

group-name must identify an existing transform group for type-name.

TRIGGER trigger-name

Identifies the trigger that is to be dropped. The trigger-name must identify a

trigger that is described in the catalog (SQLSTATE 42704). The specified trigger

is deleted.

 Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may

depend on that trigger through an update against the view.

TRUSTED CONTEXT context-name

Identifies the trusted context that is to be dropped. The context-name must

identify a trusted context that exists at the current server (SQLSTATE 42704). If

the trusted context is dropped while trusted connections for this context are

active, those connections remain trusted until they terminate or until the next

reuse attempt. If an attempt is made to switch the user on these trusted

connections, an error is returned (SQLSTATE 42517). The specified trusted

context is deleted from the catalog.

TYPE type-name

Identifies the user-defined type to be dropped. In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an unqualified

object name. In static SQL statements the QUALIFIER precompile/bind option

implicitly specifies the qualifier for unqualified object names. For a structured

type, the associated reference type is also dropped. The type-name must identify

a user-defined type described in the catalog.

DROP

686 SQL Reference, Volume 2

RESTRICT

The type is not dropped (SQLSTATE 42893) if any of the following is true:

v The type is used as the type of a column of a table or view.

v The type has a subtype.

v The type is a structured type used as the data type of a typed table or a

typed view.

v The type is an attribute of another structured type.

v There exists a column of a table whose type might contain an instance of

type-name. This can occur if type-name is the type of the column or is

used elsewhere in the column’s associated type hierarchy. More formally,

for any type T, T cannot be dropped if there exists a column of a table

whose type directly or indirectly uses type-name.

v The type is the target type of a reference-type column of a table or view,

or a reference-type attribute of another structured type.

v The type, or a reference to the type, is a parameter type or a return

value type of a function or method.

v The type is a parameter type or is used in the body of an SQL

procedure.

v The type, or a reference to the type, is used in the body of an SQL

function or method, but it is not a parameter type or a return value

type.

v The type is used in a check constraint, trigger, view definition, or index

extension.

 If RESTRICT is not specified, the behavior is the same as RESTRICT, except for

functions and methods that use the type.

Functions that use the type: If the user-defined type can be dropped, then for

every function, F (with specific name SF), that has parameters or a return value

of the type being dropped or a reference to the type being dropped, the

following DROP FUNCTION statement is effectively executed:

 DROP SPECIFIC FUNCTION SF

It is possible that this statement also would cascade to drop dependent

functions. If all of these functions are also in the list to be dropped because of

a dependency on the user-defined type, the drop of the user-defined type will

succeed (otherwise it fails with SQLSTATE 42893).

Methods that use the type: If the user-defined type can be dropped, then for

every method, M of type T1 (with specific name SM), that has parameters or a

return value of the type being dropped or a reference to the type being

dropped, the following statements are effectively executed:

 DROP SPECIFIC METHOD SM

 ALTER TYPE T1 DROP SPECIFIC METHOD SM

The existence of objects that are dependent on these methods may cause the

DROP TYPE operation to fail.

All packages that are dependent on methods defined in supertypes of the type

being dropped, and that are eligible for overriding, are invalidated.

TYPE MAPPING type-mapping-name

Identifies the user-defined data type mapping to be dropped. The

type-mapping-name must identify a data type mapping that is described in the

catalog (SQLSTATE 42704). The data type mapping is deleted from the

database.

DROP

Statements 687

No additional objects are dropped.

USER MAPPING FOR authorization-name | USER SERVER server-name

Identifies the user mapping to be dropped. This mapping associates an

authorization name that is used to access the federated database with an

authorization name that is used to access a data source. The first of these two

authorization names is either identified by the authorization-name or referenced

by the special register USER. The server-name identifies the data source that the

second authorization name is used to access.

 The authorization-name must be listed in the catalog (SQLSTATE 42704). The

server-name must identify a data source that is described in the catalog

(SQLSTATE 42704). The user mapping is deleted.

No additional objects are dropped.

VARIABLE variable-name

Identifies the global variable that is to be dropped. The variable-name must

identify a global variable that exists at the current server (SQLSTATE 42704).

RESTRICT

This keyword enforces the rule that the global variable cannot be dropped

if it is referenced in a function, method, trigger, or view (SQLSTATE

42893). RESTRICT is the default behavior.

VIEW view-name

Identifies the view that is to be dropped. The view-name must identify a view

that is described in the catalog (SQLSTATE 42704). The subviews of a typed

view are dependent on their superviews. All subviews must be dropped before

a superview can be dropped (SQLSTATE 42893).

 The specified view is deleted. The definition of any view or trigger that is

directly or indirectly dependent on that view is marked inoperative. Any

materialized query table or staging table that is dependent on any view that is

marked inoperative is dropped. Any packages dependent on a view that is

dropped or marked inoperative will be invalidated. This includes packages

dependent on any superviews above the subview in the hierarchy. Any

reference columns for which the dropped view is defined as the scope of the

reference become unscoped.

VIEW HIERARCHY root-view-name

Identifies the typed view hierarchy that is to be dropped. The root-view-name

must identify a typed view that is the root view in the typed view hierarchy

(SQLSTATE 428DR). The typed view identified by root-view-name and all of its

subviews are deleted from the database.

 The definition of any view or trigger that is directly or indirectly dependent on

any of the dropped views is marked inoperative. Any packages dependent on

any view or trigger that is dropped or marked inoperative will be invalidated.

Any reference columns for which a dropped view or view marked inoperative

is defined as the scope of the reference become unscoped.

WORK ACTION SET work-action-set-name

Identifies the work action set that is to be dropped. The work-action-set-name

must identify a work action set that exists at the current server (SQLSTATE

42704). All work actions that are contained by the work-action-set-name are also

dropped.

WORK CLASS SET work-class-set-name

Identifies the work class set that is to be dropped. The work-class-set-name must

DROP

688 SQL Reference, Volume 2

identify a work class set that exists at the current server (SQLSTATE 42704). All

work classes that are contained by the work-class-set-name are also dropped.

RESTRICT

This keyword enforces the rule that the work class set is not to be dropped

if it is associated with any work action set (SQLSTATE 42893). RESTRICT is

the default behavior.

WORKLOAD workload-name

Identifies the workload that is to be dropped. This is a one-part name. The

workload-name must identify a workload that exists at the current server

(SQLSTATE 42704). SYSDEFAULTUSERWORKLOAD or

SYSDEFAULTADMWORKLOAD cannot be dropped (SQLSTATE 42832). A

workload must be disabled and must not have active workload occurrences

associated with it before it can be dropped (SQLSTATE 5U023). The specified

workload is deleted from the catalog.

WRAPPER wrapper-name

Identifies the wrapper to be dropped. The wrapper-name must identify a

wrapper that is described in the catalog (SQLSTATE 42704). The wrapper is

deleted.

 All server definitions, user-defined function mappings, and user-defined data

type mappings that are dependent on the wrapper are dropped. All

user-defined function mappings, nicknames, user-defined data type mappings,

and user mappings that are dependent on the dropped server definitions are

also dropped. Any index specifications dependent on the dropped nicknames

are dropped, and any views dependent on these nicknames are marked

inoperative. All packages dependent on the dropped objects and inoperative

views are invalidated. All federated procedures that are dependent on the

dropped server definitions are also dropped.

XSROBJECT xsrobject-name

Identifies the XSR object to be dropped. The xsrobject-name must identify an

XSR object that is described in the catalog (SQLSTATE 42704).

 Check constraints that reference the XSR object are dropped. All triggers and

views referencing the XSR object are marked inoperative. Packages having a

dependency on a dropped XSR object are invalidated.

Rules

Dependencies: Table 28 on page 690 shows the dependencies that objects have on

each other. Not all dependencies are explicitly recorded in the catalog. For

example, there is no record of the constraints on which a package has

dependencies. Four different types of dependencies are shown:

R Restrict semantics. The underlying object cannot be dropped as long as the

object that depends on it exists.

C Cascade semantics. Dropping the underlying object causes the object that

depends on it (the depending object) to be dropped as well. However, if

the depending object cannot be dropped because it has a Restrict

dependency on some other object, the drop of the underlying object will

fail.

X Inoperative semantics. Dropping the underlying object causes the object

that depends on it to become inoperative. It remains inoperative until a

user takes some explicit action.

A Automatic Invalidation/Revalidation semantics. Dropping the underlying

DROP

Statements 689

object causes the object that depends on it to become invalid. The database

manager attempts to revalidate the invalid object.

 A package used by a function or a method, or by a procedure that is called

directly or indirectly from a function or method, will only be automatically

revalidated if the routine is defined as MODIFIES SQL DATA. If the

routine is not MODIFIES SQL DATA, an error is returned (SQLSTATE

56098).

Some DROP statement parameters and objects are not shown in Table 28 because

they would result in blank rows or columns:

v EVENT MONITOR, PACKAGE, PROCEDURE, SCHEMA, TYPE MAPPING, and

USER MAPPING DROP statements do not have object dependencies.

v Alias, buffer pool, distribution key, privilege, and procedure object types do not

have DROP statement dependencies.

v A DROP SERVER, DROP FUNCTION MAPPING, or DROP TYPE MAPPING

statement in a given unit of work (UOW) cannot be processed under either of

the following conditions:

– The statement references a single data source, and the UOW already includes

a SELECT statement that references a nickname for a table or view within this

data source (SQLSTATE 55006).

– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes a

SELECT statement that references a nickname for a table or view within one

of these data sources (SQLSTATE 55006).

 Table 28. Dependencies

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

ALTER

FUNCTION

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER METHOD - - - - - - - - - A - - - - - - - - - - - - - -

ALTER

NICKNAME,

altering the local

name or the local

type

R33 R - - - - R - - A - - R - - - - - - R - - - -

DROP

690 SQL Reference, Volume 2

Table 28. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

ALTER

NICKNAME,

altering a column

option or a

nickname option

- - - - - - - - - A - - R - - - - - - - - - - -

ALTER

NICKNAME,

adding, altering,

or dropping a

constraint

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER

PROCEDURE

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER SERVER - - - - - - - - - A - - - - - - - - - - - - - -

ALTER TABLE

ALTER COLUMN

- A - A - - - - - A - - - - - A - - - A - - - X34

ALTER TABLE

DROP COLUMN

C C - C C - - - - - - - - - - C - - - C - - - X34

ALTER TABLE

DROP

CONSTRAINT

C - - - - - - - - A1 - - - - - - - - - - - - - -

ALTER TABLE

DROP

PARTITIONING

KEY

- - - - - - - - R20 A1 - - - - - - - - - - - - - -

ALTER TYPE

ADD ATTRIBUTE

- - - - - R - - - A23 - - R24 - - - - - - R14 - - - -

ALTER TYPE

ALTER METHOD

- - - - - - - - - A - - - - - - - - - - - - - -

ALTER TYPE

DROP

ATTRIBUTE

- - - - - R - - - A23 - - R24 - - - - - - R14 - - - -

ALTER TYPE

ADD METHOD

-

ALTER TYPE

DROP METHOD

- - - - - - R27 - - - - - - - - - - - - - - - - -

CREATE

METHOD

- - - - - - - - - A28 - - - - - - - - - - - - - -

CREATE TYPE - - - - - - - - - A29 - - - - - - - - - - - - - -

DROP

Statements 691

Table 28. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

DROP ALIAS - R - R - - - - - A3 - - R3 - - X3 - - - X3 - - - -

DROP

BUFFERPOOL

- - - - - - - - - - - - - R - - - - - - - - - -

DROP

DATABASE

PARTITION

GROUP

- - - - - - - - - - - - - C - - - - - - - - - -

DROP

FUNCTION

R R7 R R - R R7 - - X - - R - - R - - - R - - - -

DROP

FUNCTION

MAPPING

- - - - - - - - - A - - - - - - - - - - - - - -

DROP INDEX R - - - - - - - - A - - - - - - - - - R17 - - - -

DROP INDEX

EXTENSION

- R - R R - - - - - - - - - - - - - - - - - - -

DROP METHOD R R7 R R - R R - - X/A30 - - R - - R - - - R - - - -

DROP

NICKNAME

- R - R C - R - - A - - C11 - - - - - - X16 - - - -

DROP

PROCEDURE

- R7 - R - - R7 - - A - - - - - R - - - - - - - -

DROP

SEQUENCE

- R - - - - R - - A - - - - - R - - - - - - - -

DROP SERVER - C21 C19 - - - - C - A - - - - - - - C19 C - - - - -

DROP SERVICE

CLASS

- - - - - - - - - - - R35 - - R35 - - - - - R35 - R35 -

DROP TABLE32 C R - R C - - - - A9 - - RC11 - - X16 - - - X16 - - - X34

DROP TABLE

HIERARCHY

C R - R C - - - - A9 - - RC11 - - X16 - - - X16 - - - -

DROP

TABLESPACE

- - - - C6 - - - - - - - CR6 - - - - - - - - - - -

DROP

TRANSFORM

- R - - - - - - - X - - - - - - - - - - - - - -

DROP TRIGGER - - - - - - - - - A1 - - - - - X26 - - - - - - - -

DROP TYPE R13 R5 - R - R - - - A12 - - R18 - - R13 R4 - - R14 - - - -

DROP VARIABLE - - R R - - R - - A - - - - - R - - - R - - - -

DROP VIEW - R - R - - - - - A2 - - - - - X16 - - - X15 - - - -

DROP

692 SQL Reference, Volume 2

Table 28. Dependencies (continued)

Object Type

Statement

 C

O

N

S

T

R

A

I

N

T

 F

U

N

C

T

I

O

N

 F

U

N

C

T

I

O

N

M

A

P

P

I

N

G

G

L

O

B

A

L

V

A

R

I

A

B

L

E

 I

N

D

E

X

 I

N

D

E

X

E

X

T

E

N

S

I

O

N

 M

E

T

H

O

D

 N

I

C

K

N

A

M

E

 D

B

P

A

R

T

I

T

I

O

N

G

R

O

U

P

 P

A

C

K

A

G

E31

 S

E

R

V

E

R

S

E

R

V

I

C

E

C

L

A

S

S

 T

A

B

L

E

 T

A

B

L

E

S

P

A

C

E

T

H

R

E

S

H

O

L

D

 T

R

I

G

G

E

R

 T

Y

P

E

 T

Y

P

E

M

A

P

P

I

N

G

 U

S

E

R

M

A

P

P

I

N

G

 V

I

E

W

W

O

R

K

A

C

T

I

O

N

W

O

R

K

A

C

T

I

O

N

S

E

T

W

O

R

K

L

O

A

D

 X

S

R

O

B

J

E

C

T

DROP VIEW

HIERARCHY

- R - R - - - - - A2 - - - - - X16 - - - X16 - - - -

DROP WORK

CLASS SET

- R36 - -

DROP WRAPPER - - C - - - - - - - C - - - - - - C - - - - - -

DROP

XSROBJECT

C - - - - - - - - A - - - - - X - - - X - - - -

REVOKE a

privilege10

- CR25 - - - - CR25 - - A1 - - CX8 - - X - - - X8 - - - -

1 This dependency is implicit in depending on a table with these constraints,

triggers, or a distribution key.

2 If a package has an INSERT, UPDATE, or DELETE statement acting upon a

view, then the package has an insert, update or delete usage on the

underlying base table of the view. In the case of UPDATE, the package has

an update usage on each column of the underlying base table that is

modified by the UPDATE.

 If a package has a statement acting on a typed view, creating or dropping

any view in the same view hierarchy will invalidate the package.

3 If a package, materialized query table, staging table, view, or trigger uses

an alias, it becomes dependent both on the alias and the object that the

alias references. If the alias is in a chain, a dependency is created on each

alias in the chain.

 Aliases themselves are not dependent on anything. It is possible for an

alias to be defined on an object that does not exist.

4 A user-defined type T can depend on another user-defined type B, if T:

v names B as the data type of an attribute

v has an attribute of REF(B)

v has B as a supertype.
5 Dropping a user-defined type cascades to dropping the functions and

methods that use the type as a parameter, a result type, or in the function

or method body. If the user-defined type is a structured type, any methods

that are associated with the type are also dropped. Dropping these

DROP

Statements 693

functions and methods will not be prevented by the fact that the type and

function or method depend on each other.

6 Dropping a table space or a list of table spaces causes all the tables that are

completely contained within the given table space or list to be dropped.

However, if a table spans table spaces (indexes, long columns, or data

partitions in different table spaces) and those table spaces are not in the list

being dropped, the table spaces cannot be dropped as long as the table

exists.

7 A function can depend on another specific function if the depending

function names the base function in a SOURCE clause. A function or

method can also depend on another specific function or method if the

depending routine is written in SQL and uses the base routine in its body.

An external method, or an external function with a structured type

parameter or returns type will also depend on one or more transform

functions.

8 Only loss of SELECT privilege will cause a materialized query table to be

dropped or a view to become inoperative. If the view that is made

inoperative is included in a typed view hierarchy, all of its subviews also

become inoperative.

9 If a package has an INSERT, UPDATE, or DELETE statement acting on

table T, then the package has an insert, update or delete usage on T. In the

case of UPDATE, the package has an update usage on each column of T

that is modified by the UPDATE.

 If a package has a statement acting on a typed table, creating or dropping

any table in the same table hierarchy will invalidate the package.

10 Dependencies do not exist at the column level because privileges on

columns cannot be revoked individually.

 If a package, trigger or view includes the use of OUTER(Z) in the FROM

clause, there is a dependency on the SELECT privilege on every subtable

or subview of Z. Similarly, if a package, trigger, or view includes the use of

DEREF(Y) where Y is a reference type with a target table or view Z, there

is a dependency on the SELECT privilege on every subtable or subview of

Z.

11 A materialized query table is dependent on the underlying tables or

nicknames specified in the fullselect of the table definition.

 Cascade semantics apply to dependent materialized query tables.

A subtable is dependent on its supertables up to the root table. A

supertable cannot be dropped until all of its subtables are dropped.

12 A package can depend on structured types as a result of using the TYPE

predicate or the subtype-treatment expression (TREAT expression AS

data-type). The package has a dependency on the subtypes of each

structured type specified in the right side of the TYPE predicate, or the

right side of the TREAT expression. Dropping or creating a structured type

that alters the subtypes on which the package is dependent causes

invalidation.

 All packages that are dependent on methods defined in supertypes of the

type being dropped, and that are eligible for overriding, are invalidated.

13 A check constraint or trigger is dependent on a type if the type is used

DROP

694 SQL Reference, Volume 2

anywhere in the constraint or trigger. There is no dependency on the

subtypes of a structured type used in a TYPE predicate within a check

constraint or trigger.

14 A view is dependent on a type if the type is used anywhere in the view

definition (this includes the type of typed view). There is no dependency

on the subtypes of a structured type used in a TYPE predicate within a

view definition.

15 A subview is dependent on its superview up to the root view. A superview

cannot be dropped until all its subviews are dropped. Refer to

16 for

additional view dependencies.

16 A trigger or view is also dependent on the target table or target view of a

dereference operation or DEREF function. A trigger or view with a FROM

clause that includes OUTER(Z) is dependent on all the subtables or

subviews of Z that existed at the time the trigger or view was created.

17 A typed view can depend on the existence of a unique index to ensure the

uniqueness of the object identifier column.

18 A table may depend on a user defined data type (distinct or structured)

because the type is:

v used as the type of a column

v used as the type of the table

v used as an attribute of the type of the table

v used as the target type of a reference type that is the type of a column of

the table or an attribute of the type of the table

v directly or indirectly used by a type that is the column of the table.
19 Dropping a server cascades to drop the function mappings and type

mappings created for that named server.

20 If the distribution key is defined on a table in a multiple partition database

partition group, the distribution key is required.

21 If a dependent OLE DB table function has ″R″ dependent objects (see

DROP FUNCTION), then the server cannot be dropped.

22 An SQL function or method can depend on the objects referenced by its

body.

23 When an attribute A of type TA of type-name T is dropped, the following

DROP statements are effectively executed:

 Mutator method: DROP METHOD A (TA) FOR T

 Observer method: DROP METHOD A () FOR T

 ALTER TYPE T

 DROP METHOD A(TA)

 DROP METHOD A()

24 A table may depend on an attribute of a user-defined structured data type

in the following cases:

1. The table is a typed table that is based on type-name or any of its

subtypes.

2. The table has an existing column of a type that directly or indirectly

refers to type-name.
25 A REVOKE of SELECT privilege on a table or view that is used in the

body of an SQL function or method body causes an attempt to drop the

function or method body, if the function or method body defined no longer

has the SELECT privilege. If such a function or method body is used in a

DROP

Statements 695

view, trigger, function, or method body, it cannot be dropped, and the

REVOKE is restricted as a result. Otherwise, the REVOKE cascades and

drops such functions.

26 A trigger depends on an INSTEAD OF trigger when it modifies the view

on which the INSTEAD OF trigger is defined, and the INSTEAD OF

trigger fires.

27 A method declaration of an original method that is overridden by other

methods cannot be dropped.(SQLSTATE -2).

28 If the method of the method body being created is declared to override

another method, all packages dependent on the overridden method, and

on methods that override this method in supertypes of the method being

created, are invalidated.

29 When a new subtype of an existing type is created, all packages dependent

on methods that are defined in supertypes of the type being created, and

that are eligible for overriding (for example, no mutators or observers), are

invalidated.

30 If the specific method of the method body being dropped is declared to

override another method, all packages dependent on the overridden

method, and on methods that override this method in supertypes of the

specific method being dropped, are invalidated.

31 Cached dynamic SQL has the same semantics as packages.

32 When a remote base table is dropped using the DROP TABLE statement,

both the nickname and the remote base table are dropped.

33 A primary key or unique keys that are not referenced by a foreign key do

not restrict the altering of a nickname local name or local type.

34 An XSROBJECT can become inoperative for decomposition as a result of

changes to a table that is associated with the XML schema for

decomposition. Changes that could impact decomposition are: dropping

the table or dropping a column of the table, or changing a column of the

table. The decomposition status of the XML schema can be reset by issuing

an ALTER XSROBJECT statement to enable or disable decomposition for

the XML schema.

35

v A service class cannot be dropped if any threshold is mapped to it

(SQLSTATE 5U031).

v A service class cannot be dropped if any workload is mapped to it

(SQLSTATE 5U031).

v A service superclass cannot be dropped until all of its user-defined

service subclasses have been dropped (SQLSTATE 5U031).

v A service superclass cannot be dropped if any work action set is mapped

to it (SQLSTATE 5U031).

v A service subclass cannot be dropped if any work action is mapped to it

(SQLSTATE 5U031).
36 A work class set cannot be dropped until the work action set that is

defined on it has been dropped.

DROP

696 SQL Reference, Volume 2

Notes

v It is valid to drop a user-defined function while it is in use. Also, a cursor can be

open over a statement which contains a reference to a user-defined function, and

while this cursor is open the function can be dropped without causing the

cursor fetches to fail.

v If a package which depends on a user-defined function is executing, it is not

possible for another authorization ID to drop the function until the package

completes its current unit of work. At that point, the function is dropped and

the package becomes inoperative. The next request for this package results in an

error indicating that the package must be explicitly rebound.

v The removal of a function body (this is very different from dropping the

function) can occur while an application which needs the function body is

executing. This may or may not cause the statement to fail, depending on

whether the function body still needs to be loaded into storage by the database

manager on behalf of the statement.

v In addition to the dependencies recorded for any explicitly specified UDF, the

following dependencies are recorded when transforms are implicitly required:

1. When the structured type parameter or result of a function or method

requires a transform, a dependency is recorded for the function or method

on the required TO SQL or FROM SQL transform function.

2. When an SQL statement included in a package requires a transform function,

a dependency is recorded for the package on the designated TO SQL or

FROM SQL transform function.
Since the above describes the only circumstances under which dependencies are

recorded due to implicit invocation of transforms, no objects other than

functions, methods, or packages can have a dependency on implicitly invoked

transform functions. On the other hand, explicit calls to transform functions (in

views and triggers, for example) do result in the usual dependencies of these

other types of objects on transform functions. As a result, a DROP TRANSFORM

statement may also fail due to these ″explicit″ type dependencies of objects on

the transform(s) being dropped (SQLSTATE 42893).

v Since the dependency catalogs do not distinguish between depending on a

function as a transform versus depending on a function by explicit function call,

it is suggested that explicit calls to transform functions are not written. In such

an instance, the transform property on the function cannot be dropped, or

packages will be marked inoperative, simply because they contain explicit

invocations in an SQL expression.

v System created sequences for IDENTITY columns cannot be dropped using the

DROP SEQUENCE statement.

v When a sequence is dropped, all privileges on the sequence are also dropped

and any packages that refer to the sequence are invalidated.

v For relational nicknames, the DROP NICKNAME statement within a given unit

of work (UOW) cannot be processed under either of the following conditions

(SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– Either an INSERT, DELETE, or UPDATE statement is already issued in the

same UOW against the nickname that is referenced in this statement
v For non-relational nicknames, the DROP NICKNAME statement within a given

unit of work (UOW) cannot be processed under any of the following conditions

(SQLSTATE 55007):

DROP

Statements 697

– A nickname referenced in this statement has a cursor open on it in the same

UOW

– A nickname referenced in this statement is already referenced by a SELECT

statement in the same UOW

– Either an INSERT, DELETE, or UPDATE statement has already been issued in

the same UOW against the nickname that is referenced in this statement
v A DROP SERVER statement (SQLSTATE 55006), or a DROP FUNCTION

MAPPING or DROP TYPE MAPPING statement (SQLSTATE 55007) within a

given unit of work (UOW) cannot be processed under either of the following

conditions:

– The statement references a single data source, and the UOW already includes

one of the following:

- A SELECT statement that references a nickname for a table or view within

this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within this data source
– The statement references a category of data sources (for example, all data

sources of a specific type and version), and the UOW already includes one of

the following:

- A SELECT statement that references a nickname for a table or view within

one of these data sources

- An open cursor on a nickname for a table or view within one of these data

sources

- Either an INSERT, DELETE, or UPDATE statement issued against a

nickname for a table or view within one of these data sources
v The DROP WORKLOAD statement does not take effect until it is committed,

even for the connection that issues the statement.

v Only one of these statements can be issued by any application at a time, and

only one of these statements is allowed within any one unit of work. Each

statement must be followed by a COMMIT or a ROLLBACK statement before

another one of these statements can be issued (SQLSTATE 5U021).

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or

DROP (HISTOGRAM TEMPLATE)

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE

CLASS)

– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

– CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK

ACTION)

– CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

– GRANT (Workload Privileges) or REVOKE (Workload Privileges)
v Compatibilities

– For compatibility with previous versions of DB2:

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

- DISTINCT TYPE type-name can be specified in place of TYPE type-name

- DATA TYPE type-name can be specified in place of TYPE type-name

– For compatibility with DB2 for z/OS:

DROP

698 SQL Reference, Volume 2

- SYNONYM can be specified in place of ALIAS

- PROGRAM can be specified in place of PACKAGE

Examples

Example 1: Drop table TDEPT.

 DROP TABLE TDEPT

Example 2: Drop the view VDEPT.

 DROP VIEW VDEPT

Example 3: The authorization ID HEDGES attempts to drop an alias.

 DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.

Example 4: Hedges attempts to drop an alias, but specifies T1 as the alias-name,

where T1 is the name of an existing table (not the name of an alias).

 DROP ALIAS T1

This statement fails (SQLSTATE 42809).

Example 5:

Drop the BUSINESS_OPS database partition group. To drop the database partition

group, the two table spaces (ACCOUNTING and PLANS) in the database partition

group must first be dropped.

 DROP TABLESPACE ACCOUNTING

 DROP TABLESPACE PLANS

 DROP DATABASE PARTITION GROUP BUSINESS_OPS

Example 6: Pellow wants to drop the CENTRE function, which he created in his

PELLOW schema, using the signature to identify the function instance to be

dropped.

 DROP FUNCTION CENTRE (INT,FLOAT)

Example 7: McBride wants to drop the FOCUS92 function, which she created in

the PELLOW schema, using the specific name to identify the function instance to

be dropped.

 DROP SPECIFIC FUNCTION PELLOW.FOCUS92

Example 8: Drop the function ATOMIC_WEIGHT from the CHEM schema, where

it is known that there is only one function with that name.

 DROP FUNCTION CHEM.ATOMIC_WEIGHT

Example 9: Drop the trigger SALARY_BONUS, which caused employees under a

specified condition to receive a bonus to their salary.

 DROP TRIGGER SALARY_BONUS

Example 10: Drop the distinct data type named shoesize, if it is not currently in

use.

 DROP TYPE SHOESIZE

Example 11: Drop the SMITHPAY event monitor.

DROP

Statements 699

DROP EVENT MONITOR SMITHPAY

Example 12: Drop the schema from Example 2 under CREATE SCHEMA using

RESTRICT. Notice that the table called PART must be dropped first.

 DROP TABLE PART

DROP SCHEMA INVENTRY RESTRICT

Example 13: Macdonald wants to drop the DESTROY procedure, which he created

in the EIGLER schema, using the specific name to identify the procedure instance

to be dropped.

 DROP SPECIFIC PROCEDURE EIGLER.DESTROY

Example 14: Drop the procedure OSMOSIS from the BIOLOGY schema, where it is

known that there is only one procedure with that name.

 DROP PROCEDURE BIOLOGY.OSMOSIS

Example 15: User SHAWN used one authorization ID to access the federated

database and another to access the database at an Oracle data source called

ORACLE1. A mapping was created between the two authorizations, but SHAWN

no longer needs to access the data source. Drop the mapping.

 DROP USER MAPPING FOR SHAWN SERVER ORACLE1

Example 16: An index of a data source table that a nickname references has been

deleted. Drop the index specification that was created to let the optimizer know

about this index.

 DROP INDEX INDEXSPEC

Example 17: Drop the MYSTRUCT1 transform group.

 DROP TRANSFORM MYSTRUCT1 FOR POLYGON

Example 18: Drop the method BONUS for the EMP data type in the PERSONNEL

schema.

 DROP METHOD BONUS (SALARY DECIMAL(10,2)) FOR PERSONNEL.EMP

Example 19: Drop the sequence ORG_SEQ, with restrictions.

 DROP SEQUENCE ORG_SEQ

Example 20: A remote table EMPLOYEE was created in a federated system using

transparent DDL. Access to the table is no longer needed. Drop the remote table

EMPLOYEE.

 DROP TABLE EMPLOYEE

Example 21: Drop the function mapping BONUS_CALC and reinstate the default

function mapping (if one exists).

 DROP FUNCTION MAPPING BONUS_CALC

Example 22: Drop the security label component LEVEL.

 DROP SECURITY LABEL COMPONENT LEVEL

Example 23: Drop the security label EMPLOYEESECLABEL of the security policy

DATA_ACCESS.

 DROP SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

Example 24: Drop the security policy DATA_ACCESS.

DROP

700 SQL Reference, Volume 2

DROP SECURITY POLICY DATA_ACCESS

Example 25: Drop the security label component GROUPS.

 DROP SECURITY LABEL COMPONENT GROUPS

Example 26: Drop the XML schema EMPLOYEE located in the SQL schema HR.

 DROP XSROBJECT HR.EMPLOYEE

Example 27: Drop service subclass DOGSALES under service superclass PETSALES.

 DROP SERVICE CLASS DOGSALES UNDER PETSALES

Example 28: Drop service superclass PETSALES, which has no user-defined service

subclasses. The default subclass for service class PETSALES is automatically

dropped.

 DROP SERVICE CLASS PETSALES

DROP

Statements 701

END DECLARE SECTION

The END DECLARE SECTION statement marks the end of a host variable declare

section.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It must not be specified in REXX.

Authorization

None required.

Syntax

�� END DECLARE SECTION ��

Description

The END DECLARE SECTION statement can be coded in the application program

wherever declarations can appear according to the rules of the host language. It

indicates the end of a host variable declaration section. A host variable section

starts with a BEGIN DECLARE SECTION statement.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements

must be paired and may not be nested.

Host variable declarations can be specified by using the SQL INCLUDE statement.

Otherwise, a host variable declaration section must not contain any statements

other than host variable declarations.

Host variables referenced in SQL statements must be declared in a host variable

declare section in all host languages, other than REXX. Furthermore, the

declaration of each variable must appear before the first reference to the variable.

Variables declared outside a declare section should not have the same name as

variables declared within a declare section.

END DECLARE SECTION

702 SQL Reference, Volume 2

EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement:

v Prepares an executable form of an SQL statement from a character string form of

the statement.

v Executes the SQL statement.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and

EXECUTE statements. It can be used to prepare and execute SQL statements that

contain neither host variables nor parameter markers.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES

bind option.

Syntax

�� EXECUTE IMMEDIATE host-variable ��

Description

host-variable

A host variable must be specified, and it must identify a host variable that is

described in the program in accordance with the rules for declaring

character-string variables. It must be a character-string variable that is less than

the maximum statement size of 2 097 152 bytes. Note that a CLOB(2097152)

can contain a maximum size statement, but a VARCHAR cannot. The value of

the identified host variable is called the statement string.

 The statement string must be one of the following SQL statements:

v ALTER

v CALL

v COMMENT

v COMMIT

v CREATE

v DECLARE GLOBAL TEMPORARY TABLE

v DELETE

v DROP

v GRANT

v INSERT

v LOCK TABLE

v REFRESH TABLE

v RELEASE SAVEPOINT

EXECUTE IMMEDIATE

Statements 703

v RENAME TABLE

v RENAME TABLESPACE

v REVOKE

v ROLLBACK

v SAVEPOINT

v SET CURRENT DEFAULT TRANSFORM GROUP

v SET CURRENT DEGREE

v SET CURRENT EXPLAIN MODE

v SET CURRENT EXPLAIN SNAPSHOT

v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

v SET CURRENT QUERY OPTIMIZATION

v SET CURRENT REFRESH AGE

v SET ENCRYPTION PASSWORD

v SET EVENT MONITOR STATE

v SET INTEGRITY

v SET PASSTHRU

v SET PATH

v SET SCHEMA

v SET SERVER OPTION

v UPDATE

The statement string must not include parameter markers or references to host

variables, and must not begin with EXEC SQL. It must not contain a statement

terminator, with the exception of the CREATE TRIGGER and CREATE

PROCEDURE statements. A CREATE TRIGGER statement can contain

semi-colons (;) to separate triggered SQL statements. A CREATE PROCEDURE

statement can contain semi-colons to separate SQL statements in the SQL

procedure body. The procedure named in a CALL statement must not have any

OUT or INOUT parameters (SQLSTATE 07007).

When an EXECUTE IMMEDIATE statement is executed, the specified

statement string is parsed and checked for errors. If the SQL statement is

invalid, it is not executed, and the error condition that prevents its execution is

reported in the SQLCA. If the SQL statement is valid, but an error occurs

during its execution, that error condition is reported in the SQLCA.

Notes

v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

Example

Use C program statements to move an SQL statement to the host variable qstring

(char[80]), and prepare and execute whatever SQL statement is in the host variable

qstring.

 if (strcmp(accounts,"BIG") == 0)

 strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *

 FROM EMP_ACT WHERE ACTNO < 100");

 else

 strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *

 FROM EMP_ACT WHERE ACTNO >= 100");

EXECUTE IMMEDIATE

704 SQL Reference, Volume 2

.

 .

 .

 EXEC SQL EXECUTE IMMEDIATE :qstring;

EXECUTE IMMEDIATE

Statements 705

EXECUTE

The EXECUTE statement executes a prepared SQL statement.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

For statements where authorization checking is performed at statement execution

time (DDL, GRANT, and REVOKE statements), the privileges held by the

authorization ID of the statement must include those required to execute the SQL

statement specified by the PREPARE statement. The authorization ID of the

statement might be affected by the DYNAMICRULES bind option.

For statements where authorization checking is performed at statement preparation

time (DML), no authorization is required to use this statement.

Syntax

�� EXECUTE statement-name

�

,

INTO

result-host-variable

DESCRIPTOR

result-descriptor-name

 �

�

�

,

USING

input-host-variable

DESCRIPTOR

input-descriptor-name

 ��

Description

statement-name

Identifies the prepared statement to be executed. The statement-name must

identify a statement that was previously prepared, and the prepared statement

cannot be a SELECT statement.

INTO

Introduces a list of host variables which are used to receive values from output

parameter markers (question marks) in the prepared statement.

 For a dynamic CALL statement, parameter markers appearing in OUT and

INOUT arguments to the procedure are output parameter markers. If any

output parameter markers appear in the statement, the INTO clause must be

specified (SQLSTATE 07007).

result-host-variable, ...

Identifies a host variable that is declared in the program in accordance

with the rules for declaring host variables. The number of variables must

be the same as the number of output parameter markers in the prepared

statement. The nth variable corresponds to the nth parameter marker in the

prepared statement. Locator variables and file reference variables, where

appropriate, can be provided as the destination for parameter markers.

EXECUTE

706 SQL Reference, Volume 2

DESCRIPTOR result-descriptor-name

Identifies an output SQLDA that must contain a valid description of host

variables.

 Before the EXECUTE statement is processed, the user must set the

following fields in the input SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement

v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.

If LOB or structured data type output data must be accommodated, there

must be two SQLVAR entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or

equal to SQLN.

USING

Introduces a list of host variables for which values are substituted for the input

parameter markers (question marks) in the prepared statement.

 For a dynamic CALL statement, parameter markers appearing in IN and

INOUT arguments to the procedure are input parameter markers. For all other

dynamic statements, all the parameter markers are input parameter markers. If

any output parameter markers appear in the statement, the USING clause must

be specified (SQLSTATE 07004).

input-host-variable, ...

Identifies a host variable that is declared in the program in accordance

with the rules for declaring host variables. The number of variables must

be the same as the number of input parameter markers in the prepared

statement. The nth variable corresponds to the nth parameter marker in the

prepared statement. Locator variables and file reference variables, where

appropriate, can be provided as the source of values for parameter

markers.

DESCRIPTOR input-descriptor-name

Identifies an input SQLDA that must contain a valid description of host

variables.

 Before the EXECUTE statement is processed, the user must set the

following fields in the input SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement

v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.

Therefore, the value in SQLDABC must be greater than or equal to 16 +

SQLN*(N), where N is the length of an SQLVAR occurrence.

EXECUTE

Statements 707

If LOB or structured data type input data must be accommodated, there

must be two SQLVAR entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or

equal to SQLN.

Notes

v Before the prepared statement is executed, each input parameter marker is

effectively replaced by the value of its corresponding host variable. For a typed

parameter marker, the attributes of the target variable are those specified by the

CAST specification. For an untyped parameter marker, the attributes of the

target variable are determined according to the context of the parameter marker.

Let V denote an input host variable that corresponds to parameter marker P. The

value of V is assigned to the target variable for P in accordance with the rules

for assigning a value to a column. Thus:

– V must be compatible with the target.

– If V is a string, its length must not be greater than the length attribute of the

target.

– If V is a number, the absolute value of its integral part must not be greater

than the maximum absolute value of the integral part of the target.

– If the attributes of V are not identical to the attributes of the target, the value

is converted to conform to the attributes of the target.
When the prepared statement is executed, the value used in place of P is the

value of the target variable for P. For example, if V is CHAR(6) and the target is

CHAR(8), the value used in place of P is the value of V padded with two

blanks.

v For a dynamic CALL statement, after the prepared statement is executed, the

returned value of each OUT and INOUT argument is assigned to the host

variable corresponding to the output parameter marker used for the argument.

For a typed parameter marker, the attributes of the target variable are those

specified by the CAST specification. For an untyped parameter marker, the

attributes of the target variable are those specified by the definition of the

parameter of the procedure.

Let V denote an output host variable that corresponds to parameter marker P,

which is used for argument A of a procedure. The value of A is assigned to V in

accordance with the rules for retrieving a value from a column. Thus:

– V must be compatible with A.

– If V is a string, its length must not be less than the length of A, or the value

of A will be truncated.

– If V is a number, the maximum absolute value of its integral part must not be

less than the absolute value of the integral part of A.

– If the attributes of V are not identical to the attributes of A, the value of A is

converted to conform to the attributes of V.
v Dynamic SQL Statement Caching: The information required to execute dynamic

and static SQL statements is placed in the database package cache when static

SQL statements are first referenced or when dynamic SQL statements are first

prepared. This information stays in the package cache until it becomes invalid,

the cache space is required for another statement, or the database is shut down.

When an SQL statement is executed or prepared, the package information

relevant to the application issuing the request is loaded from the system catalog

into the package cache. The actual executable section for the individual SQL

statement is also placed into the cache: static SQL sections are read in from the

system catalog and placed in the package cache when the statement is first

EXECUTE

708 SQL Reference, Volume 2

referenced; dynamic SQL sections are placed directly in the cache after they have

been created. Dynamic SQL sections can be created by an explicit statement,

such as PREPARE or EXECUTE IMMEDIATE. Once created, sections for

dynamic SQL statements may be recreated by an implicit prepare of the

statement by the system if the original section has been deleted for space

management reasons, or has become invalid due to changes in the environment.

Each SQL statement is cached at the database level and can be shared among

applications. Static SQL statements are shared among applications using the

same package; dynamic SQL statements are shared among applications using the

same compilation environment, and the exact same statement text. The text of

each SQL statement issued by an application is cached locally within the

application for use if an implicit prepare is required. Each PREPARE statement

in the application program can cache one statement. All EXECUTE IMMEDIATE

statements in an application program share the same space, and only one cached

statement exists for all these EXECUTE IMMEDIATE statements at a time. If the

same PREPARE or any EXECUTE IMMEDIATE statement is issued multiple

times with a different SQL statement each time, only the last statement will be

cached for reuse. The optimal use of the cache is to issue a number of different

PREPARE statements once at the start of the application, and then to issue an

EXECUTE or OPEN statement as required.

With the caching of dynamic SQL statements, once a statement has been created,

it can be reused over multiple units of work without the need to prepare the

statement again. The system will recompile the statement, as required, if

environment changes occur.

The following events are examples of environment or data object changes that

can cause cached dynamic statements to be implicitly prepared on the next

PREPARE, EXECUTE, EXECUTE IMMEDIATE, or OPEN request:

– ALTER FUNCTION

– ALTER METHOD

– ALTER NICKNAME

– ALTER PROCEDURE

– ALTER SERVER

– ALTER TABLE

– ALTER TABLESPACE

– ALTER TYPE

– CREATE FUNCTION

– CREATE FUNCTION MAPPING

– CREATE INDEX

– CREATE METHOD

– CREATE PROCEDURE

– CREATE TABLE

– CREATE TEMPORARY TABLESPACE

– CREATE TRIGGER

– CREATE TYPE

– DROP (all objects)

– RUNSTATS on any table or index

– Any action that causes a view to become inoperative

– UPDATE of statistics in any system catalog table

– SET CURRENT DEGREE

EXECUTE

Statements 709

– SET PATH

– SET QUERY OPTIMIZATION

– SET SCHEMA

– SET SERVER OPTION
The following list outlines the behavior that can be expected from cached

dynamic SQL statements:

– PREPARE Requests: Subsequent preparations of the same statement will not

incur the cost of compiling the statement if the section is still valid. The cost

and cardinality estimates for the current cached section will be returned.

These values may differ from the values returned from any previous

PREPARE for the same SQL statement. There will be no need to issue a

PREPARE statement subsequent to a COMMIT or ROLLBACK statement.

– EXECUTE Requests: EXECUTE statements may occasionally incur the cost of

implicitly preparing the statement if it has become invalid since the original

PREPARE. If a section is implicitly prepared, it will use the current

environment and not the environment of the original PREPARE statement.

– EXECUTE IMMEDIATE Requests: Subsequent EXECUTE IMMEDIATE

statements for the same statement will not incur the cost of compiling the

statement if the section is still valid.

– OPEN Requests: OPEN requests for dynamically defined cursors may

occasionally incur the cost of implicitly preparing the statement if it has

become invalid since the original PREPARE statement. If a section is

implicitly prepared, it will use the current environment and not the

environment of the original PREPARE statement.

– FETCH Requests: No behavior changes should be expected.

– ROLLBACK: Only those dynamic SQL statements prepared or implicitly

prepared during the unit of work affected by the rollback operation will be

invalidated.

– COMMIT: Dynamic SQL statements will not be invalidated, but any acquired

locks will be freed. Cursors not defined as WITH HOLD cursors will be

closed and their locks freed. Open WITH HOLD cursors will hold onto their

package and section locks to protect the active section both during and after

commit processing.
If an error occurs during an implicit prepare, an error will be returned for the

request causing the implicit prepare (SQLSTATE 56098).

Examples

Example 1: In this C example, an INSERT statement with parameter markers is

prepared and executed. Host variables h1 - h4 correspond to the format of TDEPT.

 strcpy (s,"INSERT INTO TDEPT VALUES(?,?,?,?)");

 EXEC SQL PREPARE DEPT_INSERT FROM :s;

 .

 .

 (Check for successful execution and put values into :h1, :h2, :h3, :h4)

 .

 .

 EXEC SQL EXECUTE DEPT_INSERT USING :h1, :h2,

 :h3, :h4;

Example 2: This EXECUTE statement uses an SQLDA.

 EXECUTE S3 USING DESCRIPTOR :sqlda3

Example 3: Given a procedure to award an employee a bonus:

EXECUTE

710 SQL Reference, Volume 2

CREATE PROCEDURE GIVE_BONUS (IN EMPNO INTEGER,

 IN DEPTNO INTEGER,

 OUT CHEQUE INTEGER,

 INOUT BONUS DEC(6,0))

 ...

Dynamically call the procedure from a C application. The procedure takes the

following host variables as input:

v employee, the ID number of the employee

v dept, the department number

v bonus, the desired bonus for the employee

The procedure returns the following values to the host variables:

v cheque_no, the ID number from the cheque

v bonus, the actual bonus amount (after any adjustments)
 strcpy (s, "CALL GIVE_BONUS(?, ?, ?, ?)");

 EXEC SQL PREPARE DO_BONUS FROM :s;

 .

 .

 /* Check for successful execution and put values into

 :employee, :dept, and :bonus */

 .

 .

 EXEC SQL EXECUTE DO_BONUS INTO :cheque_no, :bonus

 USING :employee, :dept, :bonus;

 .

 .

 /* Check for successful execution and process the

 values returned in :cheque_no and :bonus */

EXECUTE

Statements 711

EXPLAIN

The EXPLAIN statement captures information about the access plan chosen for the

supplied explainable statement and places this information into the explain tables.

An explainable statement can either be a valid XQuery statement or one of the

following SQL statements: CALL, Compound SQL (Dynamic), DELETE, INSERT,

MERGE, REFRESH, SELECT, SELECT INTO, SET INTEGRITY, UPDATE, VALUES,

or VALUES INTO.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

The statement to be explained is not executed.

Authorization

The authorization rules are those defined for the query statement specified in the

EXPLAIN statement. For example, if a DELETE statement is used as the

explainable statement, the authorization rules for the DELETE statement are

applied when the DELETE statement is explained.

The authorization rules for static EXPLAIN statements are those that apply to static

versions of the statement passed as the explainable statement. Dynamically

prepared EXPLAIN statements use the authorization rules for the dynamic

preparation of the statement passed as the explainable statement.

The current authorization ID must have INSERT privilege on the explain tables.

Syntax

�� EXPLAIN PLAN SELECTION

ALL

(1)

PLAN

FOR

SNAPSHOT

WITH

WITH REOPT ONCE
 �

�
SET QUERYNO =

integer

SET QUERYTAG =

string-constant
 �

� FOR explainable-sql-statement

XQUERY

’explainable-xquery-statement’
 ��

Notes:

1 The PLAN option is supported only for syntax toleration of existing DB2 for

z/OS EXPLAIN statements. There is no PLAN table. Specifying PLAN is

equivalent to specifying PLAN SELECTION.

Description

PLAN SELECTION

Indicates that the information from the plan selection phase of query

compilation is to be inserted into the explain tables.

EXPLAIN

712 SQL Reference, Volume 2

ALL

Specifying ALL is equivalent to specifying PLAN SELECTION.

PLAN

The PLAN option provides syntax toleration for existing database applications

from other systems. Specifying PLAN is equivalent to specifying PLAN

SELECTION.

FOR SNAPSHOT

This clause indicates that only an explain snapshot is to be taken and placed

into the SNAPSHOT column of the EXPLAIN_STATEMENT table. No other

explain information is captured other than that present in the

EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

 The explain snapshot information is intended for use with Visual Explain.

WITH SNAPSHOT

This clause indicates that, in addition to the regular explain information, an

explain snapshot is to be taken.

 The default behavior of the EXPLAIN statement is to only gather regular

explain information and not the explain snapshot.

The explain snapshot information is intended for use with Visual Explain.

default (neither FOR SNAPSHOT nor WITH SNAPSHOT specified)

Puts explain information into the explain tables. No snapshot is taken for use

with Visual Explain.

WITH REOPT ONCE

This clause indicates that the specified explainable statement is to be reoptimized

using the values for host variables, parameter markers, special registers, or

global variables that were previously used to reoptimize this statement with

REOPT ONCE. The explain tables will be populated with the new access plan.

If the user has DBADM authority, or the database registry variable

DB2_VIEW_REOPT_VALUES is set to YES, the EXPLAIN_PREDICATE table

will also be populated with the values if they are used to reoptimize the

statement.

SET QUERYNO = integer

Associates integer, via the QUERYNO column in the EXPLAIN_STATEMENT

table, with the explainable statement. The integer value supplied must be a

positive value.

 If this clause is not specified for a dynamic EXPLAIN statement, a default

value of one (1) is assigned. For a static EXPLAIN statement, the default value

assigned is the statement number assigned by the precompiler.

SET QUERYTAG = string-constant

Associates string-constant, via the QUERYTAG column in the

EXPLAIN_STATEMENT table, with the explainable statement. string-constant can

be any character string up to 20 bytes in length. If the value supplied is less

than 20 bytes in length, the value is padded on the right with blanks to the

required length.

 If this clause is not specified for an EXPLAIN statement, blanks are used as the

default value.

FOR explainable-sql-statement

Specifies the SQL statement to be explained. This statement can be any valid

CALL, Compound SQL (Dynamic), DELETE, INSERT, MERGE, REFRESH,

SELECT, SELECT INTO, SET INTEGRITY, UPDATE, VALUES, or VALUES

EXPLAIN

Statements 713

INTO SQL statement. If the EXPLAIN statement is embedded in a program,

the explainable-sql-statement can contain references to host variables (these

variables must be defined in the program). Similarly, if EXPLAIN is being

dynamically prepared, the explainable-sql-statement can contain parameter

markers.

 The explainable-sql-statement must be a valid SQL statement that could be

prepared and executed independently of the EXPLAIN statement. It cannot be

a statement name or host variable. SQL statements referring to cursors defined

through CLP are not valid for use with this statement.

To explain dynamic SQL within an application, the entire EXPLAIN statement

must be dynamically prepared.

FOR XQUERY ’explainable-xquery-statement’

Specifies the XQUERY statement to be explained. This statement can be any

valid XQUERY statement.

 If the EXPLAIN statement is embedded in a program, the

’explainable-xquery-statement’ can contain references to host variables, provided

that the host variables are not used in the top level XQUERY statement, but are

passed in through an XMLQUERY function, by an XMLEXISTS predicate, or by

an XMLTABLE function. The host variables must be defined in the program.

Similarly, if EXPLAIN is being dynamically prepared, the ’explainable-xquery-
statement’ can contain parameter markers, provided that the same restrictions

as for passing host variables are followed.

Alternatively, the DB2 XQUERY function db2-fn:sqlquery can be used to

embed SQL statements with references to host variables and parameter

markers.

The ’explainable-xquery-statement’ must be a valid XQUERY statement that could

be prepared and executed independently of the EXPLAIN statement. Query

statements referring to cursors defined through CLP are not valid for use with

this statement.

Notes

The Explain facility uses the following IDs as the schema when qualifying explain

tables that it is populating:

v The session authorization ID for dynamic SQL

v The statement authorization ID for static SQL

The schema can be associated with a set of explain tables, or aliases that point to a

set of explain tables under a different schema. If no explain tables are found under

the schema, the Explain facility checks for explain tables under the SYSTOOLS

schema and attempts to use those tables.

The following table shows the interaction of the snapshot keywords and the

explain information.

Keyword Specified

Capture Explain

Information?

Take Snapshot for Visual

Explain?

none Yes No

FOR SNAPSHOT No Yes

WITH SNAPSHOT Yes Yes

EXPLAIN

714 SQL Reference, Volume 2

If neither the FOR SNAPSHOT nor the WITH SNAPSHOT clause is specified, an

explain snapshot is not taken.

The explain tables must be created by the user prior to invocation of the EXPLAIN

statement. The information generated by this statement is stored in the explain

tables, in the schema that is designated at the time the statement is compiled.

If any errors occur during the compilation of the explainable statement supplied,

then no information is stored in the explain tables.

The access plan generated for the explainable statement is not saved and thus,

cannot be invoked at a later time. The explain information for the explainable

statement is inserted when the EXPLAIN statement itself is compiled.

For a static EXPLAIN query statement, the information is inserted into the explain

tables at bind time and during an explicit rebind. During precompilation, the static

EXPLAIN statements are commented out in the modified application source file. At

bind time, the EXPLAIN statements are stored in the SYSCAT.STATEMENTS

catalog. When the package is run, the EXPLAIN statement is not executed. Note

that the section numbers for all statements in the application will be sequential and

will include the EXPLAIN statements. An alternative to using a static EXPLAIN

statement is to use a combination of the EXPLAIN and EXPLSNAP BIND or PREP

options. Static EXPLAIN statements can be used to cause the explain tables to be

populated for one specific static query statement out of many; simply prefix the

target statement with the appropriate EXPLAIN statement syntax and bind the

application without using either of the explain BIND or PREP options. The

EXPLAIN statement can also be used when it is advantageous to set the

QUERYNO or QUERYTAG field at the time of the actual explain invocation.

Static EXPLAIN statements in an SQL procedure are evaluated when the procedure

is compiled.

For an incremental bind EXPLAIN query statement, the explain tables are

populated when the EXPLAIN statement is submitted for compilation. When the

package is run, the EXPLAIN statement performs no processing (though the

statement will be successful). When populating the explain tables, the explain table

qualifier and authorization ID used during population will be those of the package

owner. The EXPLAIN statement can also be used when it is advantageous to set

the QUERYNO or QUERYTAG field at the time of the actual explain invocation.

For dynamic EXPLAIN statements, the explain tables are populated at the time the

EXPLAIN statement is submitted for compilation. An EXPLAIN statement can be

prepared with the PREPARE statement but, if executed, will perform no processing

(though the statement will be successful). An alternative to issuing dynamic

EXPLAIN statements is to use a combination of the CURRENT EXPLAIN MODE

and CURRENT EXPLAIN SNAPSHOT special registers to explain dynamic query

statements. The EXPLAIN statement should be used when it is advantageous to set

the QUERYNO or QUERYTAG field at the time of the actual EXPLAIN invocation.

If the REOPT bind option is set to ONCE, and either the CURRENT EXPLAIN

MODE or the CURRENT EXPLAIN SNAPSHOT special register is set to REOPT,

the execution of static and dynamic query statements containing host variables,

special registers, parameter markers, or global variables will cause explain

information to be captured for the statement only when the statement is

reoptimized. Alternatively, if the REOPT bind option is set to ALWAYS, explain

information will be captured every time these statements are executed.

EXPLAIN

Statements 715

Examples

Example 1: Explain a simple SELECT statement and tag with QUERYNO = 13.

 EXPLAIN PLAN SET QUERYNO = 13

 FOR SELECT C1

 FROM T1

Example 2: Explain a simple SELECT statement and tag with QUERYTAG =

’TEST13’.

 EXPLAIN PLAN SELECTION SET QUERYTAG = ’TEST13’

 FOR SELECT C1

 FROM T1

Example 3: Explain a simple SELECT statement and tag with QUERYNO = 13 and

QUERYTAG = ’TEST13’.

 EXPLAIN PLAN SELECTION SET QUERYNO = 13 SET QUERYTAG = ’TEST13’

 FOR SELECT C1

 FROM T1

Example 4: Attempt to get explain information when explain tables do not exist.

 EXPLAIN ALL FOR SELECT C1

 FROM T1

This statement will fail because the explain tables have not been defined

(SQLSTATE 42704).

Example 5: The following statement will succeed if it is found in the package cache

and has already been compiled using REOPT ONCE.

 EXPLAIN ALL WITH REOPT ONCE FOR SELECT C1

 FROM T1

 WHERE C1 = :<host variable>

Example 6: The following example uses the db2-fn:xmlcolumn function, which takes

the case- sensitive name of an XML column as an argument and returns an XML

sequence that is the concatenation of XML column values.

Consider a table called BUSINESS.CUSTOMER with an XML column called INFO.

A simple XQuery that returns all documents from the INFO column is :

 EXPLAIN PLAN SELECTION

 FOR XQUERY ’db2-fn:xmlcolumn ("BUSINESS.CUSTOMER.INFO")’

If a column value is null, then the resulting return sequence for that row will be

empty.

EXPLAIN

716 SQL Reference, Volume 2

FETCH

The FETCH statement positions a cursor on the next row of its result table and

assigns the values of that row to host variables.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Syntax

��

FETCH

cursor-name

FROM

�

 ,

INTO

host-variable

USING DESCRIPTOR

descriptor-name

��

Description

cursor-name

Identifies the cursor to be used in the fetch operation. The cursor-name must

identify a declared cursor, as explained in “DECLARE CURSOR”. The

DECLARE CURSOR statement must precede the FETCH statement in the

source program. When the FETCH statement is executed, the cursor must be in

the open state.

 If the cursor is currently positioned on or after the last row of the result table:

v SQLCODE is set to +100, and SQLSTATE is set to ’02000’.

v The cursor is positioned after the last row.

v Values are not assigned to host variables.

If the cursor is currently positioned before a row, it will be repositioned on that

row, and values will be assigned to host variables as specified by INTO or

USING.

If the cursor is currently positioned on a row other than the last row, it will be

repositioned on the next row and values of that row will be assigned to host

variables as specified by INTO or USING.

INTO host-variable, ...

Identifies one or more host variables that must be described in accordance with

the rules for declaring host variables. The first value in the result row is

assigned to the first host variable in the list, the second value to the second

host variable, and so on. For LOB values in the select-list, the target can be a

regular host variable (if it is large enough), a locator variable, or a file-reference

variable.

USING DESCRIPTOR descriptor-name

Identifies an SQLDA that must contain a valid description of zero or more host

variables.

FETCH

Statements 717

Before the FETCH statement is processed, the user must set the following

fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.

v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.

Therefore, the value in SQLDABC must be greater than or equal to 16 +

SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB or structured type result columns need to be accommodated, there must

be two SQLVAR entries for every select-list item (or column of the result table).

SQLD must be set to a value greater than or equal to zero and less than or

equal to SQLN.

The nth variable identified by the INTO clause or described in the SQLDA

corresponds to the nth column of the result table of the cursor. The data type of

each variable must be compatible with its corresponding column.

Each assignment to a variable is made according to specific rules. If the number of

variables is less than the number of values in the row, the SQLWARN3 field of the

SQLDA is set to ’W’. Note that there is no warning if there are more variables than

the number of result columns. If an assignment error occurs, the value is not

assigned to the variable, and no more values are assigned to variables. Any values

that have already been assigned to variables remain assigned.

Notes

v An open cursor has three possible positions:

– Before a row

– On a row

– After the last row.
v If a cursor is on a row, that row is called the current row of the cursor. A cursor

referenced in an UPDATE or DELETE statement must be positioned on a row. A

cursor can only be on a row as a result of a FETCH statement.

v When retrieving into LOB locators in situations where it is not necessary to

retain the locator across FETCH statements, it is good practice to issue a FREE

LOCATOR statement before issuing the next FETCH statement, as locator

resources are limited.

v It is possible for an error to occur that makes the state of the cursor

unpredictable.

v It is possible that a warning may not be returned on a FETCH. It is also possible

that the returned warning applies to a previously fetched row. This occurs as a

result of optimizations such as the use of system temporary tables or pushdown

operators.

v Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

v DB2 CLI supports additional fetching capabilities. For instance when a cursor’s

result table is read-only, the SQLFetchScroll() function can be used to position

the cursor at any spot within that result table.

v For an updatable cursor, a lock is obtained on a row when it is fetched.

FETCH

718 SQL Reference, Volume 2

v If the cursor definition contains an SQL data change statement or invokes a

routine that modifies SQL data, an error during the fetch operation does not

cause the modified rows to be rolled back, even if the error results in the cursor

being closed.

Examples

Example 1: In this C example, the FETCH statement fetches the results of the

SELECT statement into the program variables dnum, dname, and mnum. When no

more rows remain to be fetched, the not found condition is returned.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

 WHERE ADMRDEPT = ’A00’;

 EXEC SQL OPEN C1;

 while (SQLCODE==0) {

 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 }

 EXEC SQL CLOSE C1;

Example 2: This FETCH statement uses an SQLDA.

 FETCH CURS USING DESCRIPTOR :sqlda3

FETCH

Statements 719

FLUSH EVENT MONITOR

The FLUSH EVENT MONITOR statement writes current database monitor values

for all active monitor types associated with event monitor event-monitor-name to the

event monitor I/O target. Hence, at any time a partial event record is available for

event monitors that have low record generation frequency (such as a database

event monitor). Such records are noted in the event monitor log with a partial

record identifier.

When an event monitor is flushed, its active internal buffers are written to the

event monitor output object.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� FLUSH EVENT MONITOR event-monitor-name

BUFFER
 ��

Description

event-monitor-name

Name of the event monitor. This is a one-part name. It is an ordinary identifier.

BUFFER

Indicates that the event monitor buffers are to be written out. If BUFFER is

specified, then a partial record is not generated. Only the data already present

in the event monitor buffers are written out.

Notes

v Flushing out the event monitor will not cause the event monitor values to be

reset. This means that the event monitor record that would have been generated

if no flush was performed, will still be generated when the normal monitor

event is triggered.

FLUSH EVENT MONITOR

720 SQL Reference, Volume 2

FLUSH OPTIMIZATION PROFILE CACHE

Multiple statements can be compiled using the same optimization profile. To make

optimization profile processing more efficient, the optimization profile is processed

the first time it is used to optimize a statement, and the output is stored in the

optimization profile cache. Subsequent references to the optimization profile use

the processed version in the optimization profile cache.

An optimization profile should be removed from the optimization profile cache

when the version stored in SYSTOOLS.OPT_PROFILE has been updated. When the

old version is removed from the cache, the new version will be used upon

optimization of subsequent statements that use the optimization profile.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include either

SYSADM or DBADM authority (SQLSTATE 42502).

Syntax

��
 ALL

FLUSH OPTIMIZATION PROFILE CACHE

optimization-profile-name

��

Description

optimization-profile-name

Specifies the name of the optimization profile to be flushed from the

optimization profile cache. If the name specified is unqualified, the value of the

CURRENT DEFAULT SCHEMA register is used as the implicit qualifier.

ALL

Specifies that all profiles on all active database partitions be flushed from the

optimization profile cache.

Notes

v The FLUSH OPTIMIZATION PROFILE CACHE statement removes all or a

single optimization profile from the optimization profile cache. It also causes the

logical invalidation of any cached dynamic SQL statements that were prepared

with that optimization profile.

v New access plans for any invalidated dynamic plans are regenerated when the

next request for the same SQL statement is made.

v Packages that reference an optimization profile removed from the optimization

profile cache by this statement must be explicitly bound again to allow new

access plans to be generated.

FLUSH OPTIMIZATION PROFILE CACHE

Statements 721

Examples

Example 1: The optimization profile ″Rick″.″Foo″ is flushed from the optimization

profile cache.

 SET CURRENT SCHEMA = ’"Rick"’

 FLUSH OPTIMIZATION PROFILE CACHE "Foo"

Example 2: The optimization profile JOHN.ALL is removed from the optimization

profile cache.

 SET CURRENT SCHEMA = ’"Rick"’

 FLUSH OPTIMIZATION PROFILE CACHE JOHN.ALL

Messages

v No errors are issued if the optimization profile cache is empty or if the specified

optimization profiles (specified explicitly or implicitly) do not exist in the

optimization profile cache.

FLUSH OPTIMIZATION PROFILE CACHE

722 SQL Reference, Volume 2

FLUSH PACKAGE CACHE

The FLUSH PACKAGE CACHE statement removes all cached dynamic SQL

statements currently in the package cache. This statement causes the logical

invalidation of any cached dynamic SQL statement and forces the next request for

the same SQL statement to be implicitly compiled by DB2.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� FLUSH PACKAGE CACHE DYNAMIC ��

Notes

v This statement affects all cached dynamic SQL entries in the package cache on

all active database partitions.

v As cached dynamic SQL statements are invalidated, the package cache memory

used for the cached entry will be freed if the entry is not in use when the

FLUSH PACKAGE CACHE statement executes.

v Any cached dynamic SQL statement currently in use will be allowed to continue

to exist in the package cache until it is no longer needed by the its current user;

the next new user of the same statement will force an implicit prepare of the

statement by DB2, and the new user will execute the new version of the cached

dynamic SQL statement.

FLUSH PACKAGE CACHE

Statements 723

FOR

The FOR statement executes a statement or group of statements for each row of a

table.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the FOR statement. However, the

authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements that are embedded in the FOR statement. For the authorization

required to use a cursor, see “DECLARE CURSOR”.

Syntax

��

label:
 FOR for-loop-name AS �

�
WITHOUT HOLD

(1)

cursor-name

CURSOR

FOR

WITH HOLD

 select-statement DO �

� SQL-routine-statement END FOR

label
 ��

SQL-routine-statement:

�

�

SQL-procedure-statement

;

SQL-function-statement

;

SQL-function-statement:

FOR

724 SQL Reference, Volume 2

�

 CALL

FOR

fullselect

,

WITH

common-table-expression

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:

1 This option can only be used in the context of an SQL procedure.

Description

label

Specifies the label for the FOR statement. If the beginning label is specified,

that label can be used in LEAVE and ITERATE statements. If the ending label

is specified, it must be the same as the beginning label.

for-loop-name

Specifies a label for the implicit compound statement generated to implement

the FOR statement. It follows the rules for the label of a compound statement

except that it cannot be used with an ITERATE or LEAVE statement within the

FOR statement. The for-loop-name is used to qualify the column names returned

by the specified select-statement.

cursor-name

Names the cursor that is used to select rows from the result table of the

SELECT statement. If not specified, DB2 generates a unique cursor name. For a

description of WITHOUT HOLD or WITH HOLD, see “DECLARE CURSOR”.

select-statement

Specifies the SELECT statement of the cursor. All columns in the select list

must have a name and there cannot be two columns with the same name.

 In a trigger, function, method, or dynamic compound statement, the

select-statement must consist of only a fullselect with optional common table

expressions.

SQL-procedure-statement

Specifies one or more statements to be invoked for each row of the table.

SQL-procedure-statement is only applicable when in the context of an SQL

procedure. See SQL-procedure-statement in “Compound SQL (Procedure)”.

SQL-function-statement

Specifies one or more statements to be invoked for each row of the table. A

searched-update, searched-delete, or INSERT operation on nicknames is not

supported. SQL-function-statement is only applicable when in the context of an

SQL function or SQL method.

FOR

Statements 725

Rules

v The select list must consist of unique column names and the table specified in

the select list must exist when the procedure is created, or it must be a table

created in a previous SQL procedure statement.

v The cursor specified in a for-statement cannot be referenced outside the

for-statement and cannot be specified in an OPEN, FETCH, or CLOSE statement.

Examples

In the following example, the for-statement is used to iterate over the entire

employee table. For each row in the table, the SQL variable fullname is set to the

last name of the employee, followed by a comma, the first name, a blank space,

and the middle initial. Each value for fullname is inserted into table tnames.

 BEGIN ATOMIC

 DECLARE fullname CHAR(40);

 FOR vl AS

 SELECT firstnme, midinit, lastname FROM employee

 DO

 SET fullname = lastname CONCAT ’,’

 CONCAT firstnme CONCAT ’ ’ CONCAT midinit;

 INSERT INTO tnames VALUES (fullname);

 END FOR;

 END

FOR

726 SQL Reference, Volume 2

FREE LOCATOR

The FREE LOCATOR statement removes the association between a locator variable

and its value.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��

FREE

LOCATOR

�

 ,

variable-name

��

Description

LOCATOR variable-name, ...

Identifies one or more locator variables that must be declared in accordance

with the rules for declaring locator variables.

 The locator-variable must currently have a locator assigned to it. That is, a

locator must have been assigned during this unit of work (by a CALL, FETCH,

SELECT INTO, or VALUES INTO statement) and must not subsequently have

been freed (by a FREE LOCATOR statement); otherwise, an error is returned

(SQLSTATE 0F001).

If more than one locator is specified, all locators that can be freed will be freed,

regardless of errors detected in other locators in the list.

Example

In a COBOL program, free the BLOB locator variables TKN-VIDEO and TKN-BUF

and the CLOB locator variable LIFE-STORY-LOCATOR.

 EXEC SQL

 FREE LOCATOR :TKN-VIDEO, :TKN-BUF, :LIFE-STORY-LOCATOR

 END-EXEC.

FREE LOCATOR

Statements 727

GET DIAGNOSTICS

The GET DIAGNOSTICS statement is used to obtain information about the

previously executed SQL statement.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� GET DIAGNOSTICS SQL-variable-name = ROW_COUNT

DB2_RETURN_STATUS

condition-information

 ��

condition-information:

EXCEPTION

1

�

 ,

SQL-variable-name

=

MESSAGE_TEXT

DB2_TOKEN_STRING

Description

SQL-variable-name

Identifies the variable that is the assignment target. If ROW_COUNT or

DB2_RETURN_STATUS is specified, the variable must be an integer variable.

Otherwise, the variable must be CHAR or VARCHAR. SQL variables can be

defined in a compound statement.

ROW_COUNT

Identifies the number of rows associated with the previous SQL statement. If

the previous SQL statement is a DELETE, INSERT, or UPDATE statement,

ROW_COUNT identifies the number of rows that qualified for the operation. If

the previous statement is a PREPARE statement, ROW_COUNT identifies the

estimated number of result rows in the prepared statement.

DB2_RETURN_STATUS

Identifies the status value returned from the procedure associated with the

previously executed SQL statement, provided that the statement was a CALL

statement invoking a procedure that returns a status. If the previous statement

is not such a statement, then the value returned has no meaning and could be

any integer.

condition-information

Specifies that the error or warning information for the previously executed

SQL statement is to be returned. If information about an error is needed, the

GET DIAGNOSTICS statement must be the first statement specified in the

handler that will handle the error. If information about a warning is needed,

and if the handler will get control of the warning condition, the GET

DIAGNOSTICS statement must be the first statement specified in that handler.

GET DIAGNOSTICS

728 SQL Reference, Volume 2

If the handler will not get control of the warning condition, the GET

DIAGNOSTICS statement must be the next statement executed. This option

can only be specified in the context of an SQL Procedure (SQLSTATE 42601).

MESSAGE_TEXT

Identifies any error or warning message text returned from the previously

executed SQL statement. The message text is returned in the language of

the database server where the statement is processed. If the statement

completed with an SQLCODE of zero, an empty string is returned for a

VARCHAR variable or blanks are returned for a CHAR variable.

DB2_TOKEN_STRING

Identifies any error or warning message tokens returned from the

previously executed SQL statement. If the statement completed with an

SQLCODE of zero, or if the SQLCODE had no tokens, an empty string is

returned for a VARCHAR variable or blanks are returned for a CHAR

variable.

Notes

v The GET DIAGNOSTICS statement does not change the contents of the

diagnostics area (SQLCA). If an SQLSTATE or SQLCODE special variable is

declared in the SQL procedure, these are set to the SQLSTATE or SQLCODE

returned from issuing the GET DIAGNOSTICS statement.

v Compatibilities

– For compatibility with previous versions of DB2:

- RETURN_STATUS can be specified in place of DB2_RETURN_STATUS.

Examples

In an SQL procedure, execute a GET DIAGNOSTICS statement to determine how

many rows were updated.

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))

 LANGUAGE SQL

 BEGIN

 DECLARE SQLSTATE CHAR(5);

 DECLARE rcount INTEGER;

 UPDATE CORPDATA.PROJECT

 SET PRSTAFF = PRSTAFF + 1.5

 WHERE DEPTNO = deptnbr;

 GET DIAGNOSTICS rcount = ROW_COUNT;

-- At this point, rcount contains the number of rows that were updated.

...

 END

Within an SQL procedure, handle the returned status value from the invocation of

a procedure called TRYIT that could either explicitly RETURN a positive value

indicating a user failure, or encounter SQL errors that would result in a negative

return status value. If the procedure is successful, it returns a value of zero.

CREATE PROCEDURE TESTIT ()

 LANGUAGE SQL

 A1:BEGIN

 DECLARE RETVAL INTEGER DEFAULT 0;

 ...

 CALL TRYIT;

 GET DIAGNOSTICS RETVAL = DB2_RETURN_STATUS;

 IF RETVAL <> 0 THEN

 ...

 LEAVE A1;

GET DIAGNOSTICS

Statements 729

ELSE

 ...

 END IF;

 END A1

GET DIAGNOSTICS

730 SQL Reference, Volume 2

GOTO

The GOTO statement is used to branch to a user-defined label within an SQL

procedure.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� GOTO label ��

Description

label

Specifies a labelled statement where processing is to continue. The labelled

statement and the GOTO statement must be in the same scope:

v If the GOTO statement is defined in a FOR statement, label must be defined

inside the same FOR statement, excluding a nested FOR statement or nested

compound statement

v If the GOTO statement is defined in a compound statement, label must be

defined inside the same compound statement, excluding a nested FOR

statement or nested compound statement

v If the GOTO statement is defined in a handler, label must be defined in the

same handler, following the other scope rules

v If the GOTO statement is defined outside of a handler, label must not be

defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an

error is returned (SQLSTATE 42736).

Notes

v It is recommended that the GOTO statement be used sparingly. This statement

interferes with normal processing sequences, thus making a routine more

difficult to read and maintain. Before using a GOTO statement, determine

whether another statement, such as IF or LEAVE, can be used in place, to

eliminate the need for a GOTO statement.

Examples

In the following compound statement, the parameters rating and v_empno are

passed into the procedure, which then returns the output parameter return_parm as

a date duration. If the employee’s time in service with the company is less than 6

months, the GOTO statement transfers control to the end of the procedure, and

new_salary is left unchanged.

 CREATE PROCEDURE adjust_salary

 (IN v_empno CHAR(6),

 IN rating INTEGER)

GOTO

Statements 731

OUT return_parm DECIMAL (8,2))

 MODIFIES SQL DATA

 LANGUAGE SQL

 BEGIN

 DECLARE new_salary DECIMAL (9,2)

 DECLARE service DECIMAL (8,2)

 SELECT SALARY, CURRENT_DATE - HIREDATE

 INTO new_salary, service

 FROM EMPLOYEE

 WHERE EMPNO = v_empno

 IF service < 600

 THEN GOTO EXIT

 END IF

 IF rating = 1

 THEN SET new_salary = new_salary + (new_salary * .10)

 ELSE IF rating = 2

 THEN SET new_salary = new_salary + (new_salary * .05)

 END IF

 UPDATE EMPLOYEE

 SET SALARY = new_salary

 WHERE EMPNO = v_empno

 EXIT: SET return_parm = service

 END

GOTO

732 SQL Reference, Volume 2

GRANT (Database Authorities)

This form of the GRANT statement grants authorities that apply to the entire

database (rather than privileges that apply to specific objects within the database).

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

To grant DBADM authority or SECADM authority, SYSADM is required. To grant

other authorities, either DBADM or SYSADM authority is required.

Syntax

��

GRANT

�

 ,

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

IMPLICIT_SCHEMA

DBADM

LOAD

QUIESCE_CONNECT

SECADM

ON DATABASE

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

BINDADD

Grants the authority to create packages. The creator of a package automatically

has the CONTROL privilege on that package and retains this privilege even if

the BINDADD authority is subsequently revoked.

CONNECT

Grants the authority to access the database.

CREATETAB

Grants the authority to create base tables. The creator of a base table

automatically has the CONTROL privilege on that table. The creator retains

this privilege even if the CREATETAB authority is subsequently revoked.

 There is no explicit authority required for view creation. A view can be created

at any time if the authorization ID of the statement used to create the view has

either CONTROL or SELECT privilege on each base table of the view.

GRANT (Database Authorities)

Statements 733

CREATE_EXTERNAL_ROUTINE

Grants the authority to register external routines. Care must be taken that

routines so registered will not have adverse side effects. (For more information,

see the description of the THREADSAFE clause on the CREATE or ALTER

routine statements.)

 Once an external routine has been registered, it continues to exist, even if

CREATE_EXTERNAL_ROUTINE is subsequently revoked.

CREATE_NOT_FENCED_ROUTINE

Grants the authority to register routines that execute in the database manager’s

process. Care must be taken that routines so registered will not have adverse

side effects. (For more information, see the description of the FENCED clause

on the CREATE or ALTER routine statements.)

 Once a routine has been registered as not fenced, it continues to run in this

manner, even if CREATE_NOT_FENCED_ROUTINE is subsequently revoked.

CREATE_EXTERNAL_ROUTINE is automatically granted to an

authorization-name that is granted CREATE_NOT_FENCED_ROUTINE

authority.

IMPLICIT_SCHEMA

Grants the authority to implicitly create a schema.

DBADM

Grants the database administrator authority and all other database authorities

except for security administrator authority (SECADM). A database

administrator holds nearly all privileges on nearly all objects in the database.

The only exceptions are those privileges that are part of the security

administrator authority.

 A database administrator can grant any privilege that is part of database

administrator authority to others.

All database authorities except for SECADM are implicitly and automatically

granted to an authorization-name that is granted DBADM authority.

LOAD

Grants the authority to load in this database. This authority gives a user the

right to use the LOAD utility in this database. SYSADM and DBADM also

have this authority by default. However, if a user only has LOAD authority

(not SYSADM or DBADM), the user is also required to have table-level

privileges. In addition to LOAD privilege, the user is required to have:

v INSERT privilege on the table for LOAD with mode INSERT, TERMINATE

(to terminate a previous LOAD INSERT), or RESTART (to restart a previous

LOAD INSERT)

v INSERT and DELETE privilege on the table for LOAD with mode

REPLACE, TERMINATE (to terminate a previous LOAD REPLACE), or

RESTART (to restart a previous LOAD REPLACE)

v INSERT privilege on the exception table, if such a table is used as part of

LOAD

QUIESCE_CONNECT

Grants the authority to access the database while it is quiesced.

SECADM

Grants the security administrator authority. The SECADM authority can only

be granted to a user. It cannot be granted to a group, a role (SQLSTATE 42521),

or to PUBLIC (SQLSTATE 42508). The authority allows the holder to:

GRANT (Database Authorities)

734 SQL Reference, Volume 2

v Create and drop security objects such as audit policies, roles, security labels,

security label components, security policies, and trusted contexts

v Grant and revoke roles, security labels, and exemptions

v Grant and revoke the SETSESSIONUSER privilege

v Execute TRANSFER OWNERSHIP on objects owned by others

Unlike other database authorities, the SYSADM authority does not allow the

holder to perform the preceding actions.

TO

Specifies to whom the authorities are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the authorities to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

DBADM cannot be granted to PUBLIC.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Notes

v DBADM authority cannot be granted to the special group PUBLIC. Therefore,

granting DBADM authority to a role role-name fails if role-name is granted to

PUBLIC either directly or indirectly (SQLSTATE 42508).

– Role role-name is granted directly to PUBLIC if the following statement has

been issued:

 GRANT ROLE role-name TO PUBLIC

GRANT (Database Authorities)

Statements 735

– Role role-name is granted indirectly to PUBLIC if the following statements

have been issued:

 GRANT ROLE role-name TO ROLE role-name2

 GRANT ROLE role-name2 TO PUBLIC

v Compatibilities

– For compatibility with previous versions of DB2:

- CREATE_NOT_FENCED can be specified in place of

CREATE_NOT_FENCED_ROUTINE

Examples

Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to

connect to the database.

 GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

Example 2: Grant BINDADD authority on the database to a group named D024.

There is both a group and a user called D024 in the system.

 GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will

occur since both a user and a group named D024 exist. Any member of the D024

group will be allowed to bind packages in the database, but the D024 user will not

be allowed (unless this user is also a member of the group D024, had been granted

BINDADD authority previously, or BINDADD authority had been granted to

another group of which D024 was a member).

Example 3: Give user Walid security administrator authority.

 GRANT SECADM ON DATABASE TO USER Walid

GRANT (Database Authorities)

736 SQL Reference, Volume 2

GRANT (Exemption)

This form of the GRANT statement grants to a user, group, or role an exemption

on an access rule for a specified label-based access control (LBAC) security policy.

When the user holding the exemption accesses data in a table protected by that

security policy the indicated rule will not be enforced when deciding if they can

access the data.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� GRANT EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY

WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

 �

�

FOR

policy-name

�

 ,

TO

authorization-name

USER

GROUP

ROLE

��

Description

EXEMPTION ON RULE

Grants an exemption on an access rule.

DB2LBACREADARRAY

Grants an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET

Grants an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE

Grants an exemption on the predefined DB2LBACREADTREE rule.

DB2LBACWRITEARRAY

Grants an exemption on the predefined DB2LBACWRITEARRAY rule.

WRITEDOWN

Specifies that the exemption only applies to write down.

GRANT (Exemption)

Statements 737

WRITEUP

Specifies that the exemption only applies to write up.

DB2LBACWRITESET

Grants an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE

Grants an exemption on the predefined DB2LBACWRITETREE rule.

ALL

Grants an exemption on all of the predefined rules.

FOR policy-name

Identifies the security policy for which the exemption is being granted. The

exemption will only be effective for tables that are protected by this security

policy. The name must identify a security policy already described in the

catalog (SQLSTATE 42704).

TO

Specifies to whom the exemption is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v If the security policy is not defined to consider access through groups or roles,

any exemption granted to a group or role is ignored when access is attempted.

Notes

v By default when a security policy is created, only exemptions granted to an

individual user are considered. To have groups or roles considered for the

GRANT (Exemption)

738 SQL Reference, Volume 2

security policy, you must issue the ALTER SECURITY POLICY statement and

specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as

applicable.

Examples

Example 1: Grant an exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS to user WALID.

 GRANT EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS TO USER WALID

Example 2: Grant an exemption on access rule DB2LBACWRITEARRAY with the

WRITEDOWN option for security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN

 FOR DATA_ACCESS TO USER BOBBY

Example 3: Grant an exemption on access rule DB2LBACWRITEARRAY with the

WRITEUP option for security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP

 FOR DATA_ACCESS TO USER BOBBY

GRANT (Exemption)

Statements 739

GRANT (Global Variable Privileges)

This form of the GRANT statement grants one or more privileges on a created

global variable.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for each identified privilege on the global variable

v SYSADM or DBADM authority

Syntax

��

�

 PRIVILEGES

GRANT

ALL

ON

VARIABLE

variable-name

,

READ

WRITE

�

�

�

 ,

TO

authorization-name

USER

WITH GRANT OPTION

GROUP

ROLE

PUBLIC

��

Description

ALL PRIVILEGES

Grants all privileges on the specified global variable.

READ

Grants the privilege to read the value of the specified global variable.

WRITE

Grants the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name

Identifies the global variable on which one or more privileges are to be

granted. The variable-name, including an implicit or explicit qualifier, must

identify a global variable that exists at the current server (SQLSTATE 42704).

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

GRANT (Global Variable Privileges)

740 SQL Reference, Volume 2

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Grants the specified privileges to a set of users (authorization IDs). For

more information, see “Authorization, privileges, and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to grant the privileges to others. If the

WITH GRANT OPTION clause is omitted, the specified authorization-name

cannot grant the privileges to others unless that authority has been received

from some other source.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE

56092).

– If the authorization-name is defined as both USER and GROUP according to

the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security

plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security

plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Example

Grant the READ and WRITE privilege on global variable

MYSCHEMA.MYJOB_PRINTER to user ZUBIRI.

 GRANT READ, WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER TO ZUBIRI

GRANT (Global Variable Privileges)

Statements 741

GRANT (Index Privileges)

This form of the GRANT statement grants the CONTROL privilege on indexes.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

�� GRANT CONTROL ON INDEX index-name �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

CONTROL

Grants the privilege to drop the index. This is the CONTROL authority for

indexes, which is automatically granted to creators of indexes.

ON INDEX index-name

Identifies the index for which the CONTROL privilege is to be granted.

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

GRANT (Index Privileges)

742 SQL Reference, Volume 2

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Example

 GRANT CONTROL ON INDEX DEPTIDX TO USER KIESLER

GRANT (Index Privileges)

Statements 743

GRANT (Package Privileges)

This form of the GRANT statement grants privileges on a package.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced package

v The WITH GRANT OPTION for each identified privilege on package-name

v SYSADM or DBADM authority

SYSADM or DBADM authority is required to grant the CONTROL privilege.

Syntax

��

GRANT

�

 ,

BIND

CONTROL

(1)

EXECUTE

�

�
 (2)

ON

PACKAGE

package-id

schema-name.

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND

Grants the privilege to bind a package. The BIND privilege allows a user to

re-issue the BIND command against that package, or to issue the REBIND

command. It also allows a user to create a new version of an existing package.

GRANT (Package Privileges)

744 SQL Reference, Volume 2

In addition to the BIND privilege, a user must hold the necessary privileges on

each table referenced by static DML statements contained in a program. This is

necessary, because authorization on static DML statements is checked at bind

time.

CONTROL

Grants the privilege to rebind, drop, or execute the package, and extend

package privileges to other users. The CONTROL privilege for packages is

automatically granted to creators of packages. A package owner is the package

binder, or the ID specified with the OWNER option at bind/precompile time.

 BIND and EXECUTE are automatically granted to an authorization-name that is

granted CONTROL privilege.

CONTROL grants the ability to grant the above privileges (except for

CONTROL) to others.

EXECUTE

Grants the privilege to execute the package.

ON PACKAGE schema-name.package-id

Specifies the name of the package on which privileges are to be granted. If a

schema name is not specified, the package ID is implicitly qualified by the

default schema. The granting of a package privilege applies to all versions of

the package (that is, to all packages that share the same package ID and

package schema).

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to GRANT the privileges to others.

 If the specified privileges include CONTROL, the WITH GRANT OPTION

applies to all of the applicable privileges except for CONTROL (SQLSTATE

01516).

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

GRANT (Package Privileges)

Statements 745

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Notes

v Package privileges apply to all versions of a package (that is, all packages that

share the same package ID and package schema). It is not possible to restrict

access to only one version. Because CONTROL privilege is implicitly granted to

the binder of a package, if two different users bind two versions of a package,

then both users will implicitly be granted access to each other’s package.

Examples

Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA to

PUBLIC.

 GRANT EXECUTE

 ON PACKAGE CORPDATA.PKGA

 TO PUBLIC

Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a user

named EMPLOYEE. There is neither a group nor a user called EMPLOYEE.

 GRANT EXECUTE ON PACKAGE

 CORPDATA.PKGA TO EMPLOYEE

or

 GRANT EXECUTE ON PACKAGE

 CORPDATA.PKGA TO USER EMPLOYEE

GRANT (Package Privileges)

746 SQL Reference, Volume 2

GRANT (Role)

This form of the GRANT statement grants roles to users, groups, or to other roles.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH ADMIN OPTION on the role

v SECADM authority

SECADM authority is required to grant the WITH ADMIN OPTION to an

authorization-name.

Syntax

��

�

 ,

ROLE

GRANT

role-name

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

�

�
WITH ADMIN OPTION

 ��

Description

ROLE role-name,...

Identifies one or more roles to be granted. Each role-name must identify an

existing role at the current server (SQLSTATE 42704).

TO

Specifies to whom the role is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

GRANT (Role)

Statements 747

PUBLIC

Grants the specified roles to a set of users (authorization IDs). For more

information, see “Authorization, privileges, and object ownership”.

WITH ADMIN OPTION

Allows the specified authorization-name to grant or revoke the role-name to or

from others, or to associate a comment with the role. It does not allow the

specified authorization-name to drop the role.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE

56092).

– If the authorization-name is defined as both USER and GROUP according to

the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security

plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security

plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v Hierarchies of roles can be built by granting one role to another role. However,

cycles are not allowed (SQLSTATE 428GF). For example, if role R1 is granted to

another role R2, then role R2 (or some other role Rn that contains R2) cannot be

granted back to R1, because this would produce a cycle.

Notes

v When role R1 is granted to another role R2, then R2 contains R1.

v DBADM authority cannot be granted to PUBLIC. Therefore:

– Granting role R1 to PUBLIC fails (SQLSTATE 42508) if role R1 holds DBADM

authority either directly or indirectly.

- Role R1 holds DBADM authority directly if the following statement has

been issued:

GRANT DBADM ON DATABASE TO ROLE R1

- Role R1 holds DBADM authority indirectly if the following statements have

been issued:

GRANT DBADM ON DATABASE TO ROLE R2

GRANT ROLE R2 TO ROLE R1

– Granting role R1, which holds DBADM authority, to role R2 fails (SQLSTATE

42508) if role R2 is granted to PUBLIC either directly or indirectly.

- Role R2 is granted to PUBLIC directly if the following statement has been

issued:

GRANT ROLE R2 TO PUBLIC

- Role R2 is granted to PUBLIC indirectly if the following statements have

been issued:

GRANT (Role)

748 SQL Reference, Volume 2

GRANT ROLE R2 TO ROLE R3

GRANT ROLE R3 TO PUBLIC

Examples

Example 1: Grant role INTERN to role DOCTOR and role DOCTOR to role

SPECIALIST.

 GRANT ROLE INTERN TO ROLE DOCTOR

 GRANT ROLE DOCTOR TO ROLE SPECIALIST

Example 2: Grant role INTERN to PUBLIC.

 GRANT ROLE INTERN TO PUBLIC

Example 3: Grant role SPECIALIST to user BOB and group TORONTO.

 GRANT ROLE SPECIALIST TO USER BOB, GROUP TORONTO

GRANT (Role)

Statements 749

GRANT (Routine Privileges)

This form of the GRANT statement grants privileges on a routine (function,

method, or procedure).

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for EXECUTE on the routine

v SYSADM or DBADM authority

To grant all routine EXECUTE privileges in the schema or type, the privileges held

by the authorization ID of the statement must include at least one of the following:

v The WITH GRANT OPTION for EXECUTE on all existing and future routines

(of the specified type) in the specified schema

v SYSADM or DBADM authority

Syntax

�� GRANT EXECUTE ON function-designator

FUNCTION

*

schema.

method-designator

METHOD * FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

 �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

EXECUTE

Grants the privilege to run the identified user-defined function, method, or

procedure.

function-designator

Uniquely identifies the function.

GRANT (Routine Privileges)

750 SQL Reference, Volume 2

FUNCTION schema.*

Identifies all the functions in the schema, including any functions that may be

created in the future. In dynamic SQL statements, if a schema is not specified,

the schema in the CURRENT SCHEMA special register will be used. In static

SQL statements, if a schema is not specified, the schema in the QUALIFIER

precompile/bind option will be used.

method-designator

Uniquely identifies the method.

METHOD *

Identifies all the methods for the type type-name, including any methods that

may be created in the future.

FOR type-name

Names the type in which the specified method is found. The name must

identify a type already described in the catalog (SQLSTATE 42704). In

dynamic SQL statements, the value of the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names. An asterisk (*) can be used in place of

type-name to identify all types in the schema, including any types that may

be created in the future.

procedure-designator

Uniquely identifies the procedure.

PROCEDURE schema.*

Identifies all the procedures in the schema, including any procedures that may

be created in the future. In dynamic SQL statements, if a schema is not

specified, the schema in the CURRENT SCHEMA special register will be used.

In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

TO

Specifies to whom the EXECUTE privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC

Grants the EXECUTE privilege to a set of users (authorization IDs). For

more information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the EXECUTE privilege to

others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only grant the EXECUTE privilege to others if they:

v have SYSADM or DBADM authority or

v received the ability to grant the EXECUTE privilege from some other source.

GRANT (Routine Privileges)

Statements 751

Rules

v It is not possible to grant the EXECUTE privilege on a function or method

defined with schema ’SYSIBM’ or ’SYSFUN’ (SQLSTATE 42832).

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If the package

used for processing the statement was precompiled with LANGLEVEL set to

SQL92E or MIA, and no privileges were granted, a warning is returned

(SQLSTATE 01007). If the grantor has no privileges on the object of the grant

operation, an error is returned (SQLSTATE 42501).

Examples

Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user

JONES. Assume that there is only one function in the schema with function name

CALC_SALARY.

 GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES

Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all

users at the current server.

 GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC

Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the

administrative assistant and give the assistant the ability to grant the EXECUTE

privilege on this function to others. The function has the specific name

DEPT85_TOT. Assume that the schema has more than one function named

DEPT_TOTALS.

 GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT

 TO ADMIN_A WITH GRANT OPTION

Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR

(Human Resources). The function has two input parameters of type INTEGER and

CHAR(10), respectively. Assume that the schema has more than one function

named NEW_DEPT_HIRES.

 GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10)) TO HR

Example 5: Grant the EXECUTE privilege on method SET_SALARY of type

EMPLOYEE to user JONES.

GRANT (Routine Privileges)

752 SQL Reference, Volume 2

GRANT EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE TO JONES

GRANT (Routine Privileges)

Statements 753

GRANT (Schema Privileges)

This form of the GRANT statement grants privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for each identified privilege on schema-name

v SYSADM or DBADM authority

No user can grant privileges on any of the following schema names: SYSIBM,

SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42501).

Syntax

��

GRANT

�

 ,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

schema-name

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

ALTERIN

Grants the privilege to alter or comment on all objects in the schema. The

owner of an explicitly created schema automatically receives ALTERIN

privilege.

CREATEIN

Grants the privilege to create objects in the schema. Other authorities or

privileges required to create the object (such as CREATETAB) are still required.

The owner of an explicitly created schema automatically receives CREATEIN

privilege. An implicitly created schema has CREATEIN privilege automatically

granted to PUBLIC.

DROPIN

Grants the privilege to drop all objects in the schema. The owner of an

explicitly created schema automatically receives DROPIN privilege.

ON SCHEMA schema-name

Identifies the schema on which the privileges are to be granted.

GRANT (Schema Privileges)

754 SQL Reference, Volume 2

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the privileges to others.

 If the WITH GRANT OPTION is omitted, the specified authorization-names can

only grant the privileges to others if they:

v have DBADM authority or

v received the ability to grant privileges from some other source.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If no privileges

were granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E for

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.)

GRANT (Schema Privileges)

Statements 755

Examples

Example 1: Grant user JSINGLETON to the ability to create objects in schema

CORPDATA.

 GRANT CREATEIN ON SCHEMA CORPDATA TO JSINGLETON

Example 2: Grant user IHAKES the ability to create and drop objects in schema

CORPDATA.

 GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO IHAKES

GRANT (Schema Privileges)

756 SQL Reference, Volume 2

GRANT (Security Label)

This form of the GRANT statement grants a label-based access control (LBAC)

security label to a user, group, or role for read access, write access, or for both read

and write access.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� GRANT SECURITY LABEL security-label-name �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

FOR ALL ACCESS

FOR READ ACCESS

FOR WRITE ACCESS

��

Description

SECURITY LABEL security-label-name

Grants the security label security-label-name. The name must be qualified with a

security policy (SQLSTATE 42704) and must identify a security label that exists

at the current server (SQLSTATE 42704).

TO

Specifies to whom the specified security label is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

FOR ALL ACCESS

Indicates that the security label is to be granted for both read access and write

access.

GRANT (Security Label)

Statements 757

FOR READ ACCESS

Indicates that the security label is to be granted for read access only.

FOR WRITE ACCESS

Indicates that the security label is to be granted for write access only.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v For any given security policy, an authorization-name can be granted at most one

security label from that policy for read access and one for write access. If the

grantee already holds a security label for the type of access (read or write)

indicated and that is part of the security policy that qualifies security-label-name,

an error is returned (SQLSTATE 428GR).

v If the security policy is not defined to consider access through groups or roles,

any security label granted to a group or role is ignored when access is

attempted.

v If an authorization-name holds different security labels for read access and write

access, the security labels must meet the following criteria (SQLSTATE 428GQ):

– If any component in the security labels is of type ARRAY then the value for

that component must be the same in both security labels.

– If any component in the security labels is of type SET then every element in

the value for that component in the write security label must also be part of

the value for that component in the read security label.

– If any component in the security labels is of type TREE then every element in

the value for that component in the write security label must be the same as

or a descendent of one of the elements in the value for that same component

in the read security label.

Notes

v By default when a security policy is created, only security labels granted to an

individual user are considered. To have groups or roles considered for the

security policy, you must issue the ALTER SECURITY POLICY statement and

specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION as

applicable.

Examples

Example 1: The following statement grants two security labels to user GUYLAINE.

The security label EMPLOYEESECLABELREAD is granted for read access and the

GRANT (Security Label)

758 SQL Reference, Volume 2

security label EMPLOYEESECLABELWRITE is granted for write access. Both

security labels are part of the security policy DATA_ACCESS.

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD

 TO USER GUYLAINE FOR READ ACCESS

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE

 TO USER GUYLAINE FOR WRITE ACCESS

The same user is now granted the security label BEGINNER for both read and

write access. This does not cause an error, because BEGINNER is part of the

security policy CLASSPOLICY, and the security labels already held are part of the

security policy DATA_ACCESS.

 GRANT SECURITY LABEL CLASSPOLICY.BEGINNER

 TO USER GUYLAINE FOR ALL ACCESS

GRANT (Security Label)

Statements 759

GRANT (Sequence Privileges)

This form of the GRANT statement grants privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for each identified privilege on sequence-name

v SYSADM or DBADM authority

Syntax

��

GRANT

�

 ,

USAGE

ALTER

ON SEQUENCE

sequence-name

�

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

USAGE

Grants the privilege to reference a sequence using nextval-expression or

prevval-expression.

ALTER

Grants the privilege to alter sequence properties using the ALTER SEQUENCE

statement.

ON SEQUENCE sequence-name

Identifies the sequence on which the specified privileges are to be granted. The

sequence name, including an implicit or explicit schema qualifier, must

uniquely identify an existing sequence at the current server. If no sequence by

this name exists, an error (SQLSTATE 42704) is returned.

TO

Specifies to whom the specified privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

GRANT (Sequence Privileges)

760 SQL Reference, Volume 2

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC

Grants the specified privileges to a set of users (authorization IDs). For

more information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to grant the specified privileges to

others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only grant the specified privileges to others if they:

v have SYSADM or DBADM authority or

v received the ability to grant the specified privileges from some other source.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges is not granted. If no privileges are

granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E or

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.)

Example

Example 1: Grant any user the USAGE privilege on a sequence called ORG_SEQ.

 GRANT USAGE ON SEQUENCE ORG_SEQ TO PUBLIC

Example 2: Grant user BOBBY the ability to alter a sequence called GENERATE_ID,

and to grant this privilege to others.

 GRANT ALTER ON SEQUENCE GENERATE_ID TO BOBBY WITH GRANT OPTION

GRANT (Sequence Privileges)

Statements 761

GRANT (Server Privileges)

This form of the GRANT statement grants the privilege to access and use a

specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

�� GRANT PASSTHRU ON SERVER server-name TO �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

server-name

Names the data source for which the privilege to use in pass-through mode is

being granted. server-name must identify a data source that is described in the

catalog.

TO

Specifies to whom the privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

GRANT (Server Privileges)

762 SQL Reference, Volume 2

PUBLIC

Grants to a set of users (authorization IDs) the privilege to pass through to

server-name. For more information, see “Authorization, privileges and

object ownership”.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Examples

Example 1: Give R. Smith and J. Jones the privilege to pass through to data source

SERVALL. Their authorization IDs are RSMITH and JJONES.

 GRANT PASSTHRU ON SERVER SERVALL

TO USER RSMITH,

USER JJONES

Example 2: Grant the privilege to pass through to data source EASTWING to a

group whose authorization ID is D024. There is a user whose authorization ID is

also D024.

 GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

The GROUP keyword must be specified; otherwise, an error will occur because

D024 is a user’s ID as well as the specified group’s ID (SQLSTATE 56092). Any

member of group D024 will be allowed to pass through to EASTWING. Therefore,

if user D024 belongs to the group, this user will be able to pass through to

EASTWING.

GRANT (Server Privileges)

Statements 763

GRANT (SETSESSIONUSER Privilege)

This form of the GRANT statement grants the SETSESSIONUSER privilege to one

or more authorization IDs. The privilege allows the holder to use the SET SESSION

AUTHORIZATION statement to set the session authorization to one of a set of

specified authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

�

 ,

GRANT SETSESSIONUSER ON

USER

session-authorization-name

TO

PUBLIC

�

�

�

 ,

USER

authorization-name

GROUP

��

Description

SETSESSIONUSER ON

Grants the privilege to assume the identity of a new authorization ID.

USER session-authorization-name

Specifies the authorization ID that the authorization-name will be able to

assume, using the SET SESSION AUTHORIZATION statement. The

session-authorization-name must identify a user, not a group.

PUBLIC

Specifies that the grantee will be able to assume any valid authorization ID,

using the SET SESSION AUTHORIZATION statement.

TO

Specifies to whom the privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

authorization-name,...

Lists the authorization IDs of one or more users or groups.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

GRANT (SETSESSIONUSER Privilege)

764 SQL Reference, Volume 2

Rules

v For each authorization-name specified, if neither USER nor GROUP is specified,

then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

Examples

Example 1: The following statement grants user PAUL the ability to set the session

authorization to user WALID and therefore to execute statements as WALID.

 GRANT SETSESSIONUSER ON USER WALID

 TO USER PAUL

Example 2: The following statement grants user GUYLAINE the ability to set the

session authorization to user BOBBY. It also grants her the ability to set the session

authorization to users RICK and KEVIN.

 GRANT SETSESSIONUSER ON USER BOBBY, USER RICK, USER KEVIN

 TO USER GUYLAINE

Example 3: The following statement grants user WALID and everyone in the groups

ADMINS and ACCTG the ability to set the session authorization to any user.

 GRANT SETSESSIONUSER ON PUBLIC TO USER WALID, GROUP ADMINS, ACCTG

GRANT (SETSESSIONUSER Privilege)

Statements 765

GRANT (Table Space Privileges)

This form of the GRANT statement grants privileges on a table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH GRANT OPTION for use of the table space

v SYSADM, SYSCTRL, or DBADM authority

Syntax

�� GRANT USE OF TABLESPACE tablespace-name TO �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

WITH GRANT OPTION

��

Description

USE

Grants the privilege to specify or default to the table space when creating a

table. The creator of a table space automatically receives USE privilege with

grant option.

OF TABLESPACE tablespace-name

Identifies the table space on which the USE privilege is to be granted. The

table space cannot be SYSCATSPACE (SQLSTATE 42838) or a system

temporary table space (SQLSTATE 42809).

TO

Specifies to whom the USE privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

GRANT (Table Space Privileges)

766 SQL Reference, Volume 2

authorization-name

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Grants the USE privilege to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

WITH GRANT OPTION

Allows the specified authorization-name to GRANT the USE privilege to others.

 If the WITH GRANT OPTION is omitted, the specified authorization-name can

only GRANT the USE privilege to others if they:

v have SYSADM or DBADM authority or

v received the ability to GRANT the USE privilege from some other source.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Examples

Example 1: Grant user BOBBY the ability to create tables in table space PLANS

and to grant this privilege to others.

 GRANT USE OF TABLESPACE PLANS TO BOBBY WITH GRANT OPTION

GRANT (Table Space Privileges)

Statements 767

GRANT (Table, View, or Nickname Privileges)

This form of the GRANT statement grants privileges on a table, view, or nickname.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced table, view, or nickname

v The WITH GRANT OPTION for each identified privilege. If ALL is specified,

the authorization ID must have some grantable privilege on the identified table,

view, or nickname.

v SYSADM or DBADM authority

DBADM or SYSADM authority is required to grant the CONTROL privilege, or to

grant privileges on catalog tables and views.

Syntax

��

GRANT

�

�

�

 PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

,

(

column-name

)

SELECT

UPDATE

,

(

column-name

)

�

�

TABLE

ON

table-name

(1)

view-name

nickname

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

�

GRANT (Table, View, or Nickname Privileges)

768 SQL Reference, Volume 2

�
WITH GRANT OPTION

 ��

Notes:

1 ALTER, INDEX, and REFERENCES privileges are not applicable to views.

Description

ALL or ALL PRIVILEGES

Grants all the appropriate privileges, except CONTROL, on the base table,

view, or nickname named in the ON clause.

 If the authorization ID of the statement has CONTROL privilege on the table,

view, or nickname, or DBADM or SYSADM authority, then all the privileges

applicable to the object (except CONTROL) are granted. Otherwise, the

privileges granted are all those grantable privileges that the authorization ID of

the statement has on the identified table, view, or nickname.

If ALL is not specified, one or more of the keywords in the list of privileges

must be specified.

ALTER

Grants the privilege to:

v Add columns to a base table definition.

v Create or drop a primary key or unique constraint on a base table.

v Create or drop a foreign key on a base table.

The REFERENCES privilege on each column of the parent table is also

required.

v Create or drop a check constraint on a base table.

v Create a trigger on a base table.

v Add, reset, or drop a column option for a nickname.

v Change a nickname column name or data type.

v Add or change a comment on a base table or a nickname.

CONTROL

Grants:

v All of the appropriate privileges in the list, that is:

– ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES, SELECT,

and UPDATE to base tables

– CONTROL, DELETE, INSERT, SELECT, and UPDATE to views

– ALTER, CONTROL, INDEX, and REFERENCES to nicknames
v The ability to grant the above privileges (except for CONTROL) to others.

v The ability to drop the base table, view, or nickname.

This ability cannot be extended to others on the basis of holding CONTROL

privilege. The only way that it can be extended is by granting the

CONTROL privilege itself and that can only be done by someone with

SYSADM or DBADM authority.

v The ability to execute the RUNSTATS utility on the table and indexes.

v The ability to execute the REORG utility on the table.

v The ability to issue the SET INTEGRITY statement against a base table,

materialized query table, or staging table.

GRANT (Table, View, or Nickname Privileges)

Statements 769

The definer of a base table, materialized query table, staging table, or nickname

automatically receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if the

definer holds the CONTROL privilege on all tables, views, and nicknames

identified in the fullselect.

DELETE

Grants the privilege to delete rows from the table or updatable view.

INDEX

Grants the privilege to create an index on a table, or an index specification on

a nickname. This privilege cannot be granted on a view. The creator of an

index or index specification automatically has the CONTROL privilege on the

index or index specification (authorizing the creator to drop the index or index

specification). In addition, the creator retains the CONTROL privilege even if

the INDEX privilege is revoked.

INSERT

Grants the privilege to insert rows into the table or updatable view and to run

the IMPORT utility.

REFERENCES

Grants the privilege to create and drop a foreign key referencing the table as

the parent.

 If the authorization ID of the statement has one of:

v DBADM or SYSADM authority

v CONTROL privilege on the table

v REFERENCES WITH GRANT OPTION on the table

then the grantee(s) can create referential constraints using all columns of the

table as parent key, even those added later using the ALTER TABLE statement.

Otherwise, the privileges granted are all those grantable column REFERENCES

privileges that the authorization ID of the statement has on the identified table.

The privilege can be granted on a nickname, although foreign keys cannot be

defined to reference nicknames.

REFERENCES (column-name,...)

Grants the privilege to create and drop a foreign key using only those columns

specified in the column list as a parent key. Each column-name must be an

unqualified name that identifies a column of the table identified in the ON

clause. Column level REFERENCES privilege cannot be granted on typed

tables, typed views, or nicknames (SQLSTATE 42997).

SELECT

Grants the privilege to:

v Retrieve rows from the table or view.

v Create views on the table.

v Run the EXPORT utility against the table or view.

UPDATE

Grants the privilege to use the UPDATE statement on the table or updatable

view identified in the ON clause.

 If the authorization ID of the statement has one of:

v DBADM or SYSADM authority

v CONTROL privilege on the table or view

v UPDATE WITH GRANT OPTION on the table or view

GRANT (Table, View, or Nickname Privileges)

770 SQL Reference, Volume 2

then the grantee(s) can update all updatable columns of the table or view on

which the grantor has with grant privilege as well as those columns added

later using the ALTER TABLE statement. Otherwise, the privileges granted are

all those grantable column UPDATE privileges that the authorization ID of the

statement has on the identified table or view.

UPDATE (column-name,...)

Grants the privilege to use the UPDATE statement to update only those

columns specified in the column list. Each column-name must be an unqualified

name that identifies a column of the table or view identified in the ON clause.

Column level UPDATE privilege cannot be granted on typed tables, typed

views, or nicknames (SQLSTATE 42997).

ON TABLE table-name or view-name or nickname

Specifies the table, view, or nickname on which privileges are to be granted.

 No privileges may be granted on an inoperative view or an inoperative

materialized query table (SQLSTATE 51024). No privileges may be granted on

a declared temporary table (SQLSTATE 42995).

TO

Specifies to whom the privileges are granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. (Previous

restrictions on grants to the authorization ID of the user issuing the

statement have been removed.)

 A privilege that is granted to a group is not used for authorization

checking:

v On static DML statements in a package

v On a base table while processing a CREATE VIEW statement

v On a base table while processing a CREATE TABLE statement for a

materialized query table

In DB2 Database for Linux, UNIX, and Windows, table privileges granted

to groups only apply to statements that are dynamically prepared. For

example, if the INSERT privilege on the PROJECT table has been granted

to group D204 but not UBIQUITY (a member of D204) UBIQUITY could

issue the statement:

 EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

where the content of the string is:

 INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

but could not precompile or bind a program with the statement:

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3114’, ’TOOL PROGRAMMING’, ’D21’, ’000260’);

GRANT (Table, View, or Nickname Privileges)

Statements 771

PUBLIC

Grants the privileges to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

(Previous restrictions on the use of privileges granted to PUBLIC for static

SQL statements and the CREATE VIEW statement have been removed.)

WITH GRANT OPTION

Allows the specified authorization-names to GRANT the privileges to others.

 If the specified privileges include CONTROL, the WITH GRANT OPTION

applies to all the applicable privileges except for CONTROL (SQLSTATE

01516).

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either

GROUP or USER according to the security plug-in in effect, an error is

returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as both USER and GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect

as USER only, or if it is undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect

as GROUP only, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.
v In general, the GRANT statement will process the granting of privileges that the

authorization ID of the statement is allowed to grant, returning a warning

(SQLSTATE 01007) if one or more privileges was not granted. If no privileges

were granted, an error is returned (SQLSTATE 42501). (If the package used for

processing the statement was precompiled with LANGLEVEL set to SQL92E or

MIA, a warning is returned (SQLSTATE 01007), unless the grantor has no

privileges on the object of the grant operation.) If CONTROL privilege is

specified, privileges will only be granted if the authorization ID of the statement

has SYSADM or DBADM authority (SQLSTATE 42501).

Notes

v Privileges may be granted independently at every level of a table hierarchy. A

user with a privilege on a supertable may affect the subtables. For example, an

update specifying the supertable T may show up as a change to a row in the

subtable S of T done by a user with UPDATE privilege on T but without

UPDATE privilege on S. A user can only operate directly on the subtable if the

necessary privilege is held on the subtable.

v Granting nickname privileges has no effect on data source object (table or view)

privileges. Typically, data source privileges are required for the table or view

that a nickname references when attempting to retrieve data.

v Compatibilities

– For compatibility with DB2 for z/OS:

- The following syntax is tolerated and ignored:

v PUBLIC AT ALL LOCATIONS

GRANT (Table, View, or Nickname Privileges)

772 SQL Reference, Volume 2

Examples

Example 1: Grant all privileges on the table WESTERN_CR to PUBLIC.

 GRANT ALL ON WESTERN_CR

 TO PUBLIC

Example 2: Grant the appropriate privileges on the CALENDAR table so that users

PHIL and CLAIRE can read it and insert new entries into it. Do not allow them to

change or remove any existing entries.

 GRANT SELECT, INSERT ON CALENDAR

 TO USER PHIL, USER CLAIRE

Example 3: Grant all privileges on the COUNCIL table to user FRANK and the

ability to extend all privileges to others.

 GRANT ALL ON COUNCIL

 TO USER FRANK WITH GRANT OPTION

Example 4: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a user

named JOHN. There is a user called JOHN and no group called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT

 ON CORPDATA.EMPLOYEE TO USER JOHN

Example 5: GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a

group named JOHN. There is a group called JOHN and no user called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

Example 6: GRANT INSERT and SELECT on table T1 to both a group named D024

and a user named D024.

 GRANT INSERT, SELECT ON TABLE T1

 TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be

allowed to INSERT into and SELECT from the table T1. Also, there would be two

rows added to the SYSCAT.TABAUTH catalog view.

Example 7: GRANT INSERT, SELECT, and CONTROL on the CALENDAR table to

user FRANK. FRANK must be able to pass the privileges on to others.

 GRANT CONTROL ON TABLE CALENDAR

 TO FRANK WITH GRANT OPTION

The result of this statement is a warning (SQLSTATE 01516) that CONTROL was

not given the WITH GRANT OPTION. Frank now has the ability to grant any

privilege on CALENDAR including INSERT and SELECT as required. FRANK

cannot grant CONTROL on CALENDAR to other users unless he has SYSADM or

DBADM authority.

Example 8: User JON created a nickname for an Oracle table that had no index.

The nickname is ORAREM1. Later, the Oracle DBA defined an index for this table.

User SHAWN now wants DB2 to know that this index exists, so that the optimizer

GRANT (Table, View, or Nickname Privileges)

Statements 773

can devise strategies to access the table more efficiently. SHAWN can inform DB2

of the index by creating an index specification for ORAREM1. Give SHAWN the

index privilege on this nickname, so that he can create the index specification.

 GRANT INDEX ON NICKNAME ORAREM1

 TO USER SHAWN

GRANT (Table, View, or Nickname Privileges)

774 SQL Reference, Volume 2

GRANT (Workload Privileges)

This form of the GRANT statement grants the USAGE privilege on a workload.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� GRANT USAGE ON WORKLOAD workload-name �

�

�

 ,

TO

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

USAGE

Grants the privilege to use a workload. Units of work that are submitted by a

user will only be mapped to a workload on which the user has USAGE

privilege. A user with SYSADM or DBADM authority automatically has

USAGE privilege on any workload that exists at the current server.

ON WORKLOAD workload-name

Identifies the workload on which the USAGE privilege is to be granted. This is

a one-part name. The workload-name must identify a workload that exists at the

current server (SQLSTATE 42704). The name cannot be

’SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

TO

Specifies to whom the USAGE privilege is granted.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

GRANT (Workload Privileges)

Statements 775

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Grants the USAGE privilege to a set of users (authorization IDs). For more

information, see “Authorization, privileges, and object ownership”.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of

the authorization-name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either

GROUP or USER in the operating system, an error is returned (SQLSTATE

56092).

– If the authorization-name is defined as both USER and GROUP according to

the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security

plug-in in effect, or if it is undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security

plug-in in effect, GROUP is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is

assumed.

Notes

v The GRANT statement does not take effect until it is committed, even for the

connection that issues the statement.

v If the database is created with the RESTRICT option, the USAGE privilege of the

default user workload, SYSDEFAULTUSERWORKLOAD, must be granted

explicitly by a user that has DBADM authority. If the database is created without

the RESTRICT option, the USAGE privilege of SYSDEFAULTUSERWORKLOAD

is granted to PUBLIC at database creation time.

Example

Grant user LISA the ability to use the workload CAMPAIGN.

 GRANT USAGE ON WORKLOAD CAMPAIGN TO USER LISA

GRANT (Workload Privileges)

776 SQL Reference, Volume 2

GRANT (XSR Object Privileges)

This form of the GRANT statement grants USAGE privilege on an XSR object.

Invocation

The GRANT statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared only if the DYNAMICRULES run behavior is in effect for

the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:

v SYSADM or DBADM

v Ownership of the XSR object

Syntax

�� GRANT USAGE ON XSROBJECT xsrobject-name TO PUBLIC ��

Description

ON XSROBJECT xsrobject-name

This name identifies the XSR object for which the USAGE privilege is granted.

The xsrobject-name, including the implicit or explicit schema qualifier, must

uniquely identify an existing XSR object at the current server. If no XSR object

by this name exists, an error is returned (SQLSTATE 42704).

TO PUBLIC

Grants the USAGE privilege to a set of users (authorization IDs). For more

information, see “Authorization, privileges and object ownership”.

Example

Grant every user the usage privilege on the XML schema MYSCHEMA:

GRANT USAGE ON XSROBJECT MYSCHEMA TO PUBLIC

GRANT (XSR Object Privileges)

Statements 777

IF

The IF statement selects an execution path based on the evaluation of a condition.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the IF statement. However, the authorization

ID of the statement must hold the necessary privileges to invoke the SQL

statements and search conditions that are embedded in the IF statement.

Syntax

�� IF search-condition THEN SQL-routine-statement �

�

�

ELSEIF

search-condition

THEN

SQL-routine-statement

�

�
ELSE

SQL-routine-statement
 END IF ��

SQL-routine-statement:

�

�

SQL-procedure-statement

;

SQL-function-statement

;

Description

search-condition

Specifies the condition for which an SQL statement should be invoked. If the

condition is unknown or false, processing continues to the next search

condition, until either a condition is true or processing reaches the ELSE

clause.

SQL-procedure-statement

Specifies the statement to be invoked if the preceding search-condition is true.

SQL-procedure-statement is only applicable when in the context of an SQL

procedure. See SQL-procedure-statement in “Compound SQL (Procedure)”.

SQL-function-statement

Specifies the statement to be invoked if the preceding search-condition is true.

IF

778 SQL Reference, Volume 2

SQL-function-statement is only applicable when in the context of an SQL

function or SQL method. See SQL-function-statement in “FOR”.

Examples

The following SQL procedure accepts two IN parameters: an employee number

employee_number and an employee rating rating. Depending on the value of rating,

the employee table is updated with new values in the salary and bonus columns.

 CREATE PROCEDURE UPDATE_SALARY_IF

 (IN employee_number CHAR(6), INOUT rating SMALLINT)

 LANGUAGE SQL

 BEGIN

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE EXIT HANDLER FOR not_found

 SET rating = -1;

 IF rating = 1

 THEN UPDATE employee

 SET salary = salary * 1.10, bonus = 1000

 WHERE empno = employee_number;

 ELSEIF rating = 2

 THEN UPDATE employee

 SET salary = salary * 1.05, bonus = 500

 WHERE empno = employee_number;

 ELSE UPDATE employee

 SET salary = salary * 1.03, bonus = 0

 WHERE empno = employee_number;

 END IF;

 END

IF

Statements 779

INCLUDE

The INCLUDE statement inserts declarations into a source program.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement.

Authorization

None required.

Syntax

�� INCLUDE SQLCA

SQLDA

name

 ��

Description

SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be

included.

SQLDA

Indicates the description of an SQL descriptor area (SQLDA) is to be included.

name

Identifies an external file containing text that is to be included in the source

program being precompiled. It can be an SQL identifier without a file name

extension or a literal enclosed by single quotation marks (’ ’). An SQL identifier

assumes the filename extension of the source file being precompiled. If a file

name extension is not provided by a literal enclosed by quotation marks, none

is assumed.

Notes

v When a program is precompiled, the INCLUDE statement is replaced by source

statements. Thus, the INCLUDE statement should be specified at a point in the

program such that the resulting source statements are acceptable to the compiler.

v The external source file must be written in the host language specified by name.

If it is greater than 18 bytes or contains characters that are not allowed in an

SQL identifier, it must be enclosed by single quotation marks. INCLUDE name

statements may be nested though not cyclical (for example, if A and B are

modules and A contains an INCLUDE name statement, then it is not valid for A

to call B and then B to call A).

v When the LANGLEVEL precompile option is specified with the SQL92E value,

INCLUDE SQLCA should not be specified. SQLSTATE and SQLCODE variables

may be defined within the host variable declare section.

Example

Include an SQLCA in a C program.

INCLUDE

780 SQL Reference, Volume 2

EXEC SQL INCLUDE SQLCA;

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT

 WHERE ADMRDEPT = ’A00’;

 EXEC SQL OPEN C1;

 while (SQLCODE==0) {

 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 (Print results)

 }

 EXEC SQL CLOSE C1;

INCLUDE

Statements 781

INSERT

The INSERT statement inserts rows into a table, nickname, or view, or the

underlying tables, nicknames, or views of the specified fullselect. Inserting a row

into a nickname inserts the row into the data source object to which the nickname

refers. Inserting a row into a view also inserts the row into the table on which the

view is based, if no INSTEAD OF trigger is defined for the insert operation on this

view. If such a trigger is defined, the trigger will be executed instead.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v INSERT privilege on the target table, view, or nickname

v CONTROL privilege on the target table, view, or nickname

v SYSADM or DBADM authority

In addition, for each table, view, or nickname referenced in any fullselect used in

the INSERT statement, the privileges held by the authorization ID of the statement

must include at least one of the following:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

GROUP privileges are not checked for static INSERT statements.

If the target of the insert operation is a nickname, the privileges on the object at

the data source are not considered until the statement is executed at the data

source. At this time, the authorization ID that is used to connect to the data source

must have the privileges required for the operation on the object at the data

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

�� INSERT INTO table-name

view-name

nickname

(

fullselect

)

�

,

(

column-name

)

 �

�
include-columns

 �

INSERT

782 SQL Reference, Volume 2

�

�

�

�

 ,

VALUES

expression

NULL

DEFAULT

,

(

expression

)

NULL

DEFAULT

fullselect

,

WITH

common-table-expression

WITH

RR

RS

CS

UR

��

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

Description

INTO table-name, view-name, nickname, or (fullselect)

Identifies the object of the insert operation. The name must identify a table,

view or nickname that exists at the application server, but it must not identify

a catalog table, a system-maintained materialized query table, a view of a

catalog table, or a read-only view, unless an INSTEAD OF trigger is defined for

the insert operation on the subject view. Rows inserted into a nickname are

placed in the data source object to which the nickname refers.

 If the object of the insert operation is a fullselect, the fullselect must be

insertable, as defined in the “Insertable views” Notes item in the description of

the CREATE VIEW statement.

If no INSTEAD OF trigger exists for the insert operation on this view, a value

cannot be inserted into a view column that is derived from:

v A constant, expression, or scalar function

v The same base table column as some other column of the view

If the object of the insert operation is a view with such columns, a list of

column names must be specified, and the list must not identify these columns.

A row can be inserted into a view or a fullselect that is defined using a

UNION ALL if the row satisfies the check constraints of exactly one of the

underlying base tables. If a row satisfies the check constraints of more than one

table, or no table at all, an error is returned (SQLSTATE 23513).

(column-name,...)

Specifies the columns for which insert values are provided. Each name must

identify a column of the specified table, view, or nickname, or a column in the

fullselect. The same column must not be identified more than once. A column

that cannot accept inserted values (for example, a column based on an

expression) must not be identified.

 Omission of the column list is an implicit specification of a list in which every

column of the table (that is not implicitly hidden) or view, or every item in the

select-list of the fullselect is identified in left-to-right order. This list is

INSERT

Statements 783

established when the statement is prepared and, therefore, does not include

columns that were added to a table after the statement was prepared.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the INSERT

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the INSERT statement. This clause can only be specified if the INSERT

statement is nested in the FROM clause of a fullselect.

column-name

Specifies a column of the intermediate result table of the INSERT

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

VALUES

Introduces one or more rows of values to be inserted.

 Each host variable named must be described in the program in accordance

with the rules for declaring host variables.

The number of values for each row must equal the number of names in the

implicit or explicit column list and the columns identified in the INCLUDE

clause. The first value is inserted in the first column in the list, the second

value in the second column, and so on.

expression

An expression can be any expression defined in “Expressions”.

NULL

Specifies the null value and should only be specified for nullable columns.

DEFAULT

Specifies that the default value is to be used. The result of specifying

DEFAULT depends on how the column was defined, as follows:

v If the column was defined as a generated column based on an

expression, the column value is generated by the system, based on that

expression.

v If the IDENTITY clause is used, the value is generated by the database

manager.

v If the ROW CHANGE TIMESTAMP clause is used, the value for each

inserted row is generated by the database manager as a timestamp that

is unique for the table partition within the database partition.

v If the WITH DEFAULT clause is used, the value inserted is as defined

for the column (see default-clause in “CREATE TABLE”).

v If the NOT NULL clause is used and the GENERATED clause is not

used, or the WITH DEFAULT clause is not used or DEFAULT NULL is

used, the DEFAULT keyword cannot be specified for that column

(SQLSTATE 23502).

INSERT

784 SQL Reference, Volume 2

v When inserting into a nickname, the DEFAULT keyword will be passed

through the INSERT statement to the data source only if the data source

supports the DEFAULT keyword in its query language syntax.

WITH common-table-expression

Defines a common table expression for use with the fullselect that follows.

fullselect

Specifies a set of new rows in the form of the result table of a fullselect. There

may be one, more than one, or none. If the result table is empty, SQLCODE is

set to +100 and SQLSTATE is set to ’02000’.

 When the base object of the INSERT and the base object of the fullselect or any

subquery of the fullselect, are the same table, the fullselect is completely

evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in

the column list. The value of the first column of the result is inserted in the

first column in the list, the second value in the second column, and so on.

WITH

Specifies the isolation level at which the fullselect is executed.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

Rules

v Triggers: INSERT statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the inserted values. If an insert operation into a view causes an INSTEAD OF

trigger to fire, validity, referential integrity, and constraints will be checked

against the updates that are performed in the trigger, and not against the view

that caused the trigger to fire, or its underlying tables.

v Default values: The value inserted in any column that is not in the column list is

either the default value of the column or null. Columns that do not allow null

values and are not defined with NOT NULL WITH DEFAULT must be included

in the column list. Similarly, if you insert into a view, the value inserted into any

column of the base table that is not in the view is either the default value of the

column or null. Hence, all columns of the base table that are not in the view

must have either a default value or allow null values. The only value that can be

inserted into a generated column defined with the GENERATED ALWAYS clause

is DEFAULT (SQLSTATE 428C9).

v Length: If the insert value of a column is a number, the column must be a

numeric column with the capacity to represent the integral part of the number. If

the insert value of a column is a string, the column must either be a string

column with a length attribute at least as great as the length of the string, or a

datetime column if the string represents a date, time, or timestamp.

INSERT

Statements 785

v Assignment: Insert values are assigned to columns in accordance with specific

assignment rules.

v Validity: If the table named, or the base table of the view named, has one or

more unique indexes, each row inserted into the table must conform to the

constraints imposed by those indexes. If a view whose definition includes WITH

CHECK OPTION is named, each row inserted into the view must conform to

the definition of the view. For an explanation of the rules governing this

situation, see “CREATE VIEW”.

v Referential Integrity: For each constraint defined on a table, each non-null insert

value of the foreign key must be equal to a primary key value of the parent

table.

v Check Constraint: Insert values must satisfy the check conditions of the check

constraints defined on the table. An INSERT to a table with check constraints

defined has the constraint conditions evaluated once for each row that is

inserted.

v XML values: A value that is inserted into an XML column must be a

well-formed XML document (SQLSTATE 2200M).

v Security Policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns for which a data value is explicitly

provided (SQLSTATE 42512)

– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

– A value for the DB2SECURITYLABEL column is not explicitly provided

– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option

Notes

v After execution of an INSERT statement, the value of the third variable of the

SQLERRD(3) portion of the SQLCA indicates the number of rows that were

passed to the insert operation. In the context of an SQL procedure statement, the

value can be retrieved using the ROW_COUNT variable of the GET

DIAGNOSTICS statement. SQLERRD(5) contains the count of all triggered insert,

update and delete operations.

v Unless appropriate locks already exist, one or more exclusive locks are acquired

at the execution of a successful INSERT statement. Until the locks are released,

an inserted row can only be accessed by:

– The application process that performed the insert.

– Another application process using isolation level UR through a read-only

cursor, SELECT INTO statement, or subselect used in a subquery.
v For further information about locking, see the description of the COMMIT,

ROLLBACK, and LOCK TABLE statements.

v If an application is running against a partitioned database, and it is bound with

option INSERT BUF, then INSERT with VALUES statements which are not

processed using EXECUTE IMMEDIATE may be buffered. DB2 assumes that

INSERT

786 SQL Reference, Volume 2

such an INSERT statement is being processed inside a loop in the application’s

logic. Rather than execute the statement to completion, it attempts to buffer the

new row values in one or more buffers. As a result the actual insertions of the

rows into the table are performed later, asynchronous with the application’s

INSERT logic. Be aware that this asynchronous insertion may cause an error

related to an INSERT to be returned on some other SQL statement that follows

the INSERT in the application.

This has the potential to dramatically improve INSERT performance, but is best

used with clean data, due to the asynchronous nature of the error handling.

v When a row is inserted into a table that has an identity column, DB2 generates a

value for the identity column.

– For a GENERATED ALWAYS identity column, DB2 always generates the

value.

– For a GENERATED BY DEFAULT column, if a value is not explicitly specified

(with a VALUES clause, or subselect), DB2 generates a value.

The first value generated by DB2 is the value of the START WITH specification

for the identity column.

v When a value is inserted for a user-defined distinct type identity column, the

entire computation is done in the source type, and the result is cast to the

distinct type before the value is actually assigned to the column. (There is no

casting of the previous value to the source type prior to the computation.)

v When inserting into a GENERATED ALWAYS identity column, DB2 will always

generate a value for the column, and users must not specify a value at insertion

time. If a GENERATED ALWAYS identity column is listed in the column-list of

the INSERT statement, with a non-DEFAULT value in the VALUES clause, an

error occurs (SQLSTATE 428C9).

For example, assuming that EMPID is defined as an identity column that is

GENERATED ALWAYS, then the command:

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)

 VALUES (:hv_valid_emp_id, :hv_name, :hv_addr)

will result in an error.

v When inserting into a GENERATED ALWAYS ROW CHANGE TIMESTAMP

column, DB2 will always generate a value for the column, and users must not

specify a value at insertion time (SQLSTATE 428C9) . The value generated by

DB2 is unique for each row inserted on the database partition.

v When inserting into a GENERATED BY DEFAULT column, DB2 will allow an

actual value for the column to be specified within the VALUES clause, or from a

subselect. However, when a value is specified in the VALUES clause, DB2 does

not perform any verification of the value. To guarantee uniqueness of IDENTITY

column values, a unique index on the identity column must be created.

When inserting into a table with a GENERATED BY DEFAULT identity column,

without specifying a column list, the VALUES clause can specify the DEFAULT

keyword to represent the value for the identity column. DB2 will generate the

value for the identity column.

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)

 VALUES (DEFAULT, :hv_name, :hv_addr)

In this example, EMPID is defined as an identity column, and thus the value

inserted into this column is generated by DB2.

INSERT

Statements 787

v The rules for inserting into an identity column with a subselect are similar to

those for an insert with a VALUES clause. A value for an identity column may

only be specified if the identity column is defined as GENERATED BY

DEFAULT.

For example, assume T1 and T2 are tables with the same definition, both

containing columns intcol1 and identcol2 (both are type INTEGER and the second

column has the identity attribute). Consider the following insert:

 INSERT INTO T2

 SELECT *

 FROM T1

This example is logically equivalent to:

 INSERT INTO T2 (intcol1,identcol2)

 SELECT intcol1, identcol2

 FROM T1

In both cases, the INSERT statement is providing an explicit value for the

identity column of T2. This explicit specification can be given a value for the

identity column, but the identity column in T2 must be defined as GENERATED

BY DEFAULT. Otherwise, an error will result (SQLSTATE 428C9).

If there is a table with a column defined as a GENERATED ALWAYS identity, it

is still possible to propagate all other columns from a table with the same

definition. For example, given the example tables T1 and T2 described above,

the intcol1 values from T1 to T2 can be propagated with the following SQL:

 INSERT INTO T2 (intcol1)

 SELECT intcol1

 FROM T1

Note that, because identcol2 is not specified in the column-list, it will be filled in

with its default (generated) value.

v When inserting a row into a single column table where the column is defined as

a GENERATED ALWAYS identity column or a ROW CHANGE TIMESTAMP

column, it is possible to specify a VALUES clause with the DEFAULT keyword.

In this case, the application does not provide any value for the table, and DB2

generates the value for the identity or ROW CHANGE TIMESTAMP column.

 INSERT INTO IDTABLE

 VALUES(DEFAULT)

Assuming the same single column table for which the column has the identity

attribute, to insert multiple rows with a single INSERT statement, the following

INSERT statement could be used:

 INSERT INTO IDTABLE

 VALUES (DEFAULT), (DEFAULT), (DEFAULT), (DEFAULT)

v When DB2 generates a value for an identity column, that generated value is

consumed; the next time that a value is needed, DB2 will generate a new value.

This is true even when an INSERT statement involving an identity column fails

or is rolled back.

For example, assume that a unique index has been created on the identity

column. If a duplicate key violation is detected in generating a value for an

identity column, an error occurs (SQLSTATE 23505) and the value generated for

the identity column is considered to be consumed. This can occur when the

identity column is defined as GENERATED BY DEFAULT and the system tries

to generate a new value, but the user has explicitly specified values for the

identity column in previous INSERT statements. Reissuing the same INSERT

statement in this case can lead to success. DB2 will generate the next value for

INSERT

788 SQL Reference, Volume 2

the identity column, and it is possible that this next value will be unique, and

that this INSERT statement will be successful.

v If the maximum value for the identity column is exceeded (or minimum value

for a descending sequence) in generating a value for an identity column, an

error occurs (SQLSTATE 23522). In this situation, the user would have to DROP

and CREATE a new table with an identity column having a larger range (that is,

change the data type or increment value for the column to allow for a larger

range of values).

For example, an identity column may have been defined with a data type of

SMALLINT, and eventually the column runs out of assignable values. To

redefine the identity column as INTEGER, the data would need to be unloaded,

the table would have to be dropped and recreated with a new definition for the

column, and then the data would be reloaded. When the table is redefined, it

needs to specify a START WITH value for the identity column such that the next

value generated by DB2 will be the next value in the original sequence. To

determine the end value, issue a query using MAX of the identity column (for

an ascending sequence), or MIN of the identity column (for a descending

sequence), before unloading the data.

Examples

Example 1: Insert a new department with the following specifications into the

DEPARTMENT table:

v Department number (DEPTNO) is ‘E31’

v Department name (DEPTNAME) is ‘ARCHITECTURE’

v Managed by (MGRNO) a person with number ‘00390’

v Reports to (ADMRDEPT) department ‘E01’.
 INSERT INTO DEPARTMENT

 VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

Example 2: Insert a new department into the DEPARTMENT table as in example 1,

but do not assign a manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

Example 3: Insert two new departments using one statement into the

DEPARTMENT table as in example 2, but do not assign a manager to the new

department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES (’B11’, ’PURCHASING’, ’B01’),

 (’E41’, ’DATABASE ADMINISTRATION’, ’E01’)

Example 4: Create a temporary table MA_EMP_ACT with the same columns as the

EMP_ACT table. Load MA_EMP_ACT with the rows from the EMP_ACT table

with a project number (PROJNO) starting with the letters ‘MA’.

 CREATE TABLE MA_EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DEC(5,2),

 EMSTDATE DATE,

 EMENDATE DATE)

 INSERT INTO MA_EMP_ACT

 SELECT * FROM EMP_ACT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

INSERT

Statements 789

Example 5: Use a C program statement to add a skeleton project to the PROJECT

table. Obtain the project number (PROJNO), project name (PROJNAME),

department number (DEPTNO), and responsible employee (RESPEMP) from host

variables. Use the current date as the project start date (PRSTDATE). Assign a

NULL value to the remaining columns in the table.

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

 VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

Example 6: Specify an INSERT statement as the data-change-table-reference within a

SELECT statement. Define an extra include column whose values are specified in

the VALUES clause, which is then used as an ordering column for the inserted

rows.

 SELECT inorder.ordernum

 FROM (INSERT INTO orders(custno)INCLUDE (insertnum integer)

 VALUES(:cnum1, 1), (:cnum2, 2)) InsertedOrders

 ORDER BY insertnum;

Example 7: Use a C program statement to add a document to the DOCUMENTS

table. Obtain values for the document ID (DOCID) column and the document data

(XMLDOC) column from a host variable that binds to an SQL TYPE IS XML AS

BLOB_FILE.

 EXEC SQL INSERT INTO DOCUMENTS

 (DOCID, XMLDOC) VALUES (:docid, :xmldoc)

Example 8: For the following INSERT statements, assume that table SALARY_INFO

is defined with three columns, and that the last column is an implicitly hidden

ROW CHANGE TIMESTAMP column. In the following statement, the implicitly

hidden column is explicitly referenced in the column list and a value is provided

for it in the VALUES clause.

 INSERT INTO SALARY_INFO (LEVEL, SALARY, UPDATE_TIME)

 VALUES (2, 30000, CURRENT TIMESTAMP)

The following INSERT statement uses an implicit column list. An implicit column

list does not include implicitly hidden columns, so the VALUES clause only

contains values for the other two columns.

 INSERT INTO SALARY_INFO VALUES (2, 30000)

In this case, the UPDATE_TIME column must be defined to have a default value,

and that default value is used for the row that is inserted.

INSERT

790 SQL Reference, Volume 2

ITERATE

The ITERATE statement causes the flow of control to return to the beginning of a

labelled loop.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� ITERATE label ��

Description

label

Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which

DB2 passes the flow of control.

Examples

This example uses a cursor to return information for a new department. If the

not_found condition handler was invoked, the flow of control passes out of the

loop. If the value of v_dept is ’D11’, an ITERATE statement passes the flow of

control back to the top of the LOOP statement. Otherwise, a new row is inserted

into the DEPARTMENT table.

 CREATE PROCEDURE ITERATOR()

 LANGUAGE SQL

 BEGIN

 DECLARE v_dept CHAR(3);

 DECLARE v_deptname VARCHAR(29);

 DECLARE v_admdept CHAR(3);

 DECLARE at_end INTEGER DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR

 SELECT deptno, deptname, admrdept

 FROM department

 ORDER BY deptno;

 DECLARE CONTINUE HANDLER FOR not_found

 SET at_end = 1;

 OPEN c1;

 ins_loop:

 LOOP

 FETCH c1 INTO v_dept, v_deptname, v_admdept;

 IF at_end = 1 THEN

 LEAVE ins_loop;

 ELSEIF v_dept = ’D11’ THEN

 ITERATE ins_loop;

 END IF;

 INSERT INTO department (deptno, deptname, admrdept)

 VALUES (’NEW’, v_deptname, v_admdept);

 END LOOP;

 CLOSE c1;

 END

ITERATE

Statements 791

LEAVE

The LEAVE statement transfers program control out of a loop or a compound

statement.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� LEAVE label ��

Description

label

Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE

statement to exit.

Notes

v When a LEAVE statement transfers control out of a compound statement, all

open cursors in the compound statement, except cursors that are used to return

result sets, are closed.

Examples

This example contains a loop that fetches data for cursor c1. If the value of SQL

variable at_end is not zero, the LEAVE statement transfers control out of the loop.

 CREATE PROCEDURE LEAVE_LOOP(OUT counter INTEGER)

 LANGUAGE SQL

 BEGIN

 DECLARE v_counter INTEGER;

 DECLARE v_firstnme VARCHAR(12);

 DECLARE v_midinit CHAR(1);

 DECLARE v_lastname VARCHAR(15);

 DECLARE at_end SMALLINT DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR

 SELECT firstnme, midinit, lastname

 FROM employee;

 DECLARE CONTINUE HANDLER for not_found

 SET at_end = 1;

 SET v_counter = 0;

 OPEN c1;

 fetch_loop:

 LOOP

 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;

 IF at_end <> 0 THEN LEAVE fetch_loop;

 END IF;

 SET v_counter = v_counter + 1;

LEAVE

792 SQL Reference, Volume 2

END LOOP fetch_loop;

 SET counter = v_counter;

 CLOSE c1;

 END

LEAVE

Statements 793

LOCK TABLE

The LOCK TABLE statement prevents concurrent application processes from using

or changing a table.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SELECT privilege on the table

v CONTROL privilege on the table

v SYSADM or DBADM authority

Syntax

�� LOCK TABLE table-name

nickname
 IN SHARE MODE

EXCLUSIVE
 ��

Description

table-name or nickname

Identifies the table or nickname. The table-name must identify a table that exists

at the application server, but it must not identify a catalog table, or a declared

temporary table (SQLSTATE 42995). If the table-name is a typed table, it must

be the root table of the table hierarchy (SQLSTATE 428DR). When a nickname

is specified, DB2 will lock the underlying object (that is, a table or view) of the

data source to which the nickname refers.

IN SHARE MODE

Prevents concurrent application processes from executing any but read-only

operations on the table.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations on

the table. Note that EXCLUSIVE MODE does not prevent concurrent

application processes that are running at isolation level Uncommitted Read

(UR) from executing read-only operations on the table.

Notes

v Locking is used to prevent concurrent operations. A lock is not necessarily

acquired during execution of the LOCK TABLE statement if a suitable lock

already exists. The lock that prevents concurrent operations is held at least until

termination of the unit of work.

v In a partitioned database, a table lock is first acquired at the first database

partition in the database partition group (the database partition with the lowest

number) and then at other database partitions. If the LOCK TABLE statement is

interrupted, the table may be locked on some database partitions but not on

LOCK TABLE

794 SQL Reference, Volume 2

others. If this occurs, either issue another LOCK TABLE statement to complete

the locking on all database partitions, or issue a COMMIT or ROLLBACK

statement to release the current locks.

v This statement affects all database partitions in the database partition group.

v For partitioned tables, the only lock acquired for the LOCK TABLE statement is

at the table level; no data partition locks are acquired.

Example

Obtain a lock on the table EMP. Do not allow other programs to read or update the

table.

 LOCK TABLE EMP IN EXCLUSIVE MODE

LOCK TABLE

Statements 795

LOOP

The LOOP statement repeats the execution of a statement or a group of statements.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the LOOP statement. However, the

authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements that are embedded in the LOOP statement.

Syntax

�� LOOP SQL-routine-statement END LOOP

label:

label
 ��

SQL-routine-statement:

�

�

SQL-procedure-statement

;

SQL-function-statement

;

Description

label

Specifies the label for the LOOP statement. If the beginning label is specified,

that label can be specified on LEAVE and ITERATE statements. If the ending

label is specified, a matching beginning label must be specified.

SQL-procedure-statement

Specifies the SQL statements that are to be invoked in the loop.

SQL-procedure-statement is only applicable when in the context of an SQL

procedure. See SQL-procedure-statement in “Compound SQL (Procedure)”.

SQL-function-statement

Specifies the SQL statements that are to be invoked in the loop.

SQL-function-statement is only applicable when in the context of an SQL

function or SQL method. See SQL-function-statement in “FOR”.

Examples

This procedure uses a LOOP statement to fetch values from the employee table.

Each time the loop iterates, the OUT parameter counter is incremented and the

value of v_midinit is checked to ensure that the value is not a single space (’ ’). If

v_midinit is a single space, the LEAVE statement passes the flow of control outside

of the loop.

 CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)

 LANGUAGE SQL

 BEGIN

LOOP

796 SQL Reference, Volume 2

DECLARE v_counter INTEGER DEFAULT 0;

 DECLARE v_firstnme VARCHAR(12);

 DECLARE v_midinit CHAR(1);

 DECLARE v_lastname VARCHAR(15);

 DECLARE c1 CURSOR FOR

 SELECT firstnme, midinit, lastname

 FROM employee;

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 SET counter = -1;

 OPEN c1;

 fetch_loop:

 LOOP

 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;

 IF v_midinit = ’ ’ THEN

 LEAVE fetch_loop;

 END IF;

 SET v_counter = v_counter + 1;

 END LOOP fetch_loop;

 SET counter = v_counter;

 CLOSE c1;

 END

LOOP

Statements 797

MERGE

The MERGE statement updates a target (a table or view, or the underlying tables

or views of a fullselect) using data from a source (result of a table reference). Rows

in the target that match the source can be deleted or updated as specified, and

rows that do not exist in the target can be inserted. Updating, deleting or inserting

a row in a view updates, deletes or inserts the row in the tables on which the view

is based.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v If an insert operation is specified, INSERT privilege on the table or view; if a

delete operation is specified, DELETE privilege on the table or view; and if an

update operation is specified, either:

– UPDATE privilege on the table or view

– UPDATE privilege on each column that is to be updated
v CONTROL privilege on the table

v SYSADM or DBADM authority

The privileges held by the authorization ID of the statement must also include at

least one of the following:

v SELECT privilege on every table or view identified in the table-reference

v CONTROL privilege on the tables or views identified in the table-reference

v SYSADM or DBADM authority

If search-condition, insert-operation, or assignment-clause includes a subquery, the

privileges held by the authorization ID of the statement must also include at least

one of the following:

v SELECT privilege on every table or view identified in the subquery

v CONTROL privilege on the tables or views identified in the subquery

v SYSADM or DBADM authority

If an expression that refers to a function is specified, the privilege set must include

any authority that is necessary to execute the function.

Syntax

�� MERGE INTO table-name

view-name

(

fullselect

)

correlation-clause
 �

MERGE

798 SQL Reference, Volume 2

� USING table-reference ON search-condition �

�

�

WHEN

matching-condition

THEN

modification-operation

signal-statement

�

�
 ELSE IGNORE

��

correlation-clause:

 AS

correlation-name

�

,

(

column-name

)

matching-condition:

 MATCHED

NOT

AND

search-condition

modification-operation:

 UPDATE SET assignment-clause

DELETE

insert-operation

assignment-clause:

�

�

�

 ,

column-name

=

expression

DEFAULT

NULL

,

,

(

column-name

)

=

(

expression

)

DEFAULT

NULL

MERGE

Statements 799

insert-operation:

�

 INSERT

,

(

column-name

)

�

 VALUES expression

DEFAULT

NULL

,

(

expression

)

DEFAULT

NULL

Description

table-name, view-name, or (fullselect)

Identifies the target of the update, delete, or insert operations of the merge.

The name must identify a table or view that exists at the current server, but it

must not identify a catalog table, a system-maintained materialized query

table, a view of a catalog table, a read-only view, or a view that directly or

indirectly contains a WHERE clause that references a subquery or a routine

defined with NOT DETERMINISTIC or EXTERNAL ACTION (SQLSTATE

42807).

 If the target of the merge operation is a fullselect, the fullselect must be

updatable, deletable, or insertable as defined in the “Updatable views”,

“Deletable views”, or “Insertable views” Notes items in the description of the

CREATE VIEW statement.

correlation-clause

Can be used within search-condition or on the right side of an assignment-clause

to designate a table, view, or fullselect. For a description of correlation-clause,

see “table-reference” in the description of “Subselect”.

USING table-reference

Specifies a set of rows as a result table to be merged into the target. If the

result table is empty, a warning is returned (SQLSTATE 02000).

ON search-condition

Specifies which rows from table-reference are to be used in the update and

delete operation of the merge, and which rows are to be used in the insert

operation of the merge. The search-condition is applied to each row of the target

table and result table of the table-reference. For those rows of the result table of

the table-reference where the result of the search-condition is true, the specified

update or delete operation is performed. For those rows of the result table of

the table-reference where the result of the search-condition is not true, the

specified insert operation is performed.

 The search-condition has the following restrictions (SQLSTATE 42972):

v It cannot contain any subqueries, scalar or otherwise

v It cannot include any dereference operations or the DEREF function where

the reference value is other than the object identifier column

v It cannot include an SQL function

v It cannot include an XMLQUERY or XMLEXISTS expression

v Any column that is referenced in an expression of the search-condition must

be a column of the target table, view, or table-reference

v Any function that is referenced in an expression of the join-condition of a full

outer join must be deterministic and have no external action

MERGE

800 SQL Reference, Volume 2

WHEN matching-condition

Specifies the condition under which the modification-operation or the

signal-statement is executed. Each matching-condition is evaluated in order of

specification. Rows for which the matching-condition evaluates to true are not

considered in subsequent matching conditions.

MATCHED

Indicates the operation to be performed on the rows where the ON search

condition is true. Only UPDATE, DELETE, or signal-statement can be

specified after THEN.

AND search-condition

Specifies a further search condition to be applied against the rows that

matched the ON search condition for the operation to be performed

after THEN.

NOT MATCHED

Indicates the operation to be performed on the rows where the ON search

condition is false or unknown. Only INSERT or signal-statement can be

specified after THEN.

AND search-condition

Specifies a further search condition to be applied against the rows that

did not match the ON search condition for the operation to be

performed after THEN.

THEN modification-operation

Specifies the operation to execute when the matching-condition evaluates to true.

UPDATE SET

Specifies the update operation to be executed for the rows where the

matching-condition evaluates to true.

assignment-clause

Specifies a list of column updates.

column-name

Identifies a column to be updated. The column-name must identify

a column of the specified table or view, but not a view column

derived from a scalar function, constant, or expression. A column

must not be specified more than once (SQLSTATE 42701).

 A view column derived from the same column as another column

of the view can be updated, but both columns cannot be updated

in the same MERGE statement (SQLSTATE 42701).

expression

Indicates the new value of the column. The expression must not

include a column function (SQLSTATE 42903).

 An expression can contain references to columns of the table-name or

view-name. For each row that is updated, the value of such a

column in an expression is the value of the column in the row

before the row is updated.

DEFAULT

The default value assigned to the column. DEFAULT can be

specified only for columns that have a default value. For

information about default values of data types, see the description

of the DEFAULT clause in the “CREATE TABLE” statement.

MERGE

Statements 801

DEFAULT must be specified for a column that was defined as

GENERATED ALWAYS. A valid value can be specified for a

column that was defined as GENERATED BY DEFAULT.

NULL

Specifies the null value as the new value of the column. Specify

NULL only for nullable columns (SQLSTATE 23502).

DELETE

Specifies the delete operation to be executed for the rows where the

matching-condition evaluates to true.

insert-operation

Specifies the insert operation to be executed for the rows where the

matching-condition evaluates to true.

INSERT

Introduces a list of column names and row value expressions to be

used for the insert operation.

 The number of values for the row in the row value expression must

equal the number of names in the insert column list. The first value is

inserted in the first column in the list, the second value in the second

column, and so on.

(column-name,...)

Specifies the columns for which the insert values are provided.

Each name must identify a column of the table or view. The same

column must not be identified more than once (SQLSTATE 42701).

A view column that cannot accept insert values must not be

identified. A value cannot be inserted into a view column that is

derived from:

v A constant, expression, or scalar function

v The same base table column as some other column of the view

If the object of the operation is a view with such columns, a list of

column names must be specified, and the list must not identify

these columns.

Omission of the column list is an implicit specification of a list in

which every column of the table (that is not defined as implicitly

hidden) or view is identified in left-to-right order. This list is

established when the statement is prepared, and therefore does not

include columns that were added to a table after the statement was

prepared.

VALUES

Introduces one or more rows of values to be inserted.

expression

Any expression that does not include a column name (SQLSTATE

42703).

DEFAULT

The default value assigned to the column. DEFAULT can be

specified only for columns that have a default value. For

information about default values of data types, see the description

of the DEFAULT clause in the “CREATE TABLE” statement.

MERGE

802 SQL Reference, Volume 2

DEFAULT must be specified for a column that was defined as

GENERATED ALWAYS. A valid value can be specified for a

column that was defined as GENERATED BY DEFAULT.

NULL

Specifies the null value as the value of the column. Specify NULL

only for nullable columns (SQLSTATE 23502).

signal-statement

Specifies the SIGNAL statement that is to be executed to return an error when

the matching-condition evaluates to true.

ELSE IGNORE

Specifies that no action is to be taken for the rows where no matching-condition

evaluates to true.

Rules

v More than one modification-operation (UPDATE SET, DELETE, or insert-operation),

or signal-statement can be specified in a single MERGE statement.

v Each row in the target can only be operated on once. A row in the target can

only be identified as MATCHED with one row in the result table of the

table-reference (SQLSTATE 21506). A nested SQL operation (RI or trigger except

INSTEAD OF trigger) cannot specify the target table (or a table within the same

table hierarchy) as a target of an UPDATE, DELETE, INSERT, or MERGE

statement (SQLSTATE 27000).

v Security Policy: If the identified target table or the base table of the identified

target view is protected with a security policy, the session authorization ID must

have the label-based access control (LBAC) credentials that allow the following

types of access.

– For the update operation:

- Write access to all protected columns that are being updated (SQLSTATE

42512)

- Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

- Read and write access to all rows that are being updated (SQLSTATE

42519)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

- The DB2SECURITYLABEL column is not included in the list of columns

that are to be updated (and so it will be implicitly updated to the security

label for write access of the session authorization ID)

- A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option
– For the delete operation:

- Write access to all protected columns (SQLSTATE 42512)

- Read and write access to all of the rows that are selected for deletion

(SQLSTATE 42519)
– For the insert operation:

- Write access to all protected columns for which a data value is explicitly

provided (SQLSTATE 42512)

MERGE

Statements 803

- Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

- A value for the DB2SECURITYLABEL column is not explicitly provided

- A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option

For other rules that affect the update, insert, or delete operation portion of the

MERGE statement, see the ″Rules″ section of the corresponding statement

description.

Notes

v Order of processing:

1. Determine the set of rows to be processed from the source and target. If

CURRENT TIMESTAMP is used in this statement, only one clock reading is

done for the whole statement.

2. Use the ON clause to classify these rows as either MATCHED or NOT

MATCHED.

3. Evaluate any matching-condition in the WHEN clauses.

4. Evaluate any expression in any assignment-clause and insert-operation.

5. Execute each signal-statement.

6. Apply each modification-operation to the applicable rows in the order of

specification. The constraints and triggers activated by each

modification-operation are executed for the modification-operation.

Statement-level triggers are activated even if no rows satisfy the

modification-operation. Each modification-operation can affect the triggers and

referential constraints of each subsequent modification-operation.
v Statement level atomicity: If an error occurs during execution of the MERGE

statement, the whole statement is rolled back.

v Number of rows updated: When a MERGE statement completes execution, the

value of the ROW_COUNT item for GET DIAGNOSTICS and SQLERRD(3) in

the SQLCA is the number of rows operated on by the MERGE statement,

excluding rows identified by the ELSE IGNORE clause. The value in

SQLERRD(3) does not include the number of rows that were operated on as a

result of constraints or triggers. The value in SQLERRD(5) includes the number

of these rows.

v Inserted row cannot also be updated: No attempt is made to update a row in the

target that did not already exist before the MERGE statement was executed; that

is, there are no updates of rows that were inserted by the MERGE statement.

v INSTEAD OF triggers: If a view is specified as the target of the MERGE

statement, either no INSTEAD OF triggers should be defined for the view, or an

INSTEAD OF trigger should be defined for each of the update, delete, and insert

operations (SQLSTATE 428FZ).

MERGE

804 SQL Reference, Volume 2

Examples

Example 1: For activities whose description has been changed, update the

description in the archive table. For new activities, insert into the archive table. The

archive and activities table both have activity as a primary key.

 MERGE INTO archive ar

 USING (SELECT activity, description FROM activities) ac

 ON (ar.activity = ac.activity)

 WHEN MATCHED THEN

 UPDATE SET

 description = ac.description

 WHEN NOT MATCHED THEN

 INSERT

 (activity, description)

 VALUES (ac.activity, ac.description)

Example 2: Using the shipment table, merge rows into the inventory table,

increasing the quantity by part count in the shipment table for rows that match;

else insert the new partno into the inventory table.

 MERGE INTO inventory AS in

 USING (SELECT partno, description, count FROM shipment

 WHERE shipment.partno IS NOT NULL) AS sh

 ON (in.partno = sh.partno)

 WHEN MATCHED THEN

 UPDATE SET

 description = sh.description,

 quantity = in.quantity + sh.count

 WHEN NOT MATCHED THEN

 INSERT

 (partno, description, quantity)

 VALUES (sh.partno, sh.description, sh.count)

Example 3: Using the transaction table, merge rows into the account table, updating

the balance from the set of transactions against an account ID and inserting new

accounts from the consolidated transactions where they do not already exist.

 MERGE INTO account AS a

 USING (SELECT id, sum(amount) sum_amount FROM transaction

 GROUP BY id) AS t

 ON a.id = t.id

 WHEN MATCHED THEN

 UPDATE SET

 balance = a.balance + t.sum_amount

 WHEN NOT MATCHED THEN

 INSERT

 (id, balance)

 VALUES (t.id, t.sum_amount)

Example 4: Using the transaction_log table, merge rows into the employee_file

table, updating the phone and office with the latest transaction_log row based on

the transaction time, and inserting the latest new employee_file row where the row

does not already exist.

 MERGE INTO employee_file AS e

 USING (SELECT empid, phone, office

 FROM (SELECT empid, phone, office,

 ROW_NUMBER() OVER (PARTITION BY empid

 ORDER BY transaction_time DESC) rn

 FROM transaction_log) AS nt

 WHERE rn = 1) AS t

 ON e.empid = t.empid

 WHEN MATCHED THEN

 UPDATE SET

 (phone, office) =

MERGE

Statements 805

(t.phone, t.office)

 WHEN NOT MATCHED THEN

 INSERT

 (empid, phone, office)

 VALUES (t.empid, t.phone, t.office)

Example 5: Using dynamically supplied values for an employee row, update the

master employee table if the data corresponds to an existing employee, or insert

the row if the data is for a new employee. The following example is a fragment of

code from a C program.

 hv1 =

 "MERGE INTO employee AS t

 USING TABLE(VALUES(CAST (? AS CHAR(6)), CAST (? AS VARCHAR(12)),

 CAST (? AS CHAR(1)), CAST (? AS VARCHAR(15)),

 CAST (? AS SMALLINT), CAST (? AS INTEGER)))

 s(empno, firstnme, midinit, lastname, edlevel, salary)

 ON t.empno = s.empno

 WHEN MATCHED THEN

 UPDATE SET

 salary = s.salary

 WHEN NOT MATCHED THEN

 INSERT

 (empno, firstnme, midinit, lastname, edlevel, salary)

 VALUES (s.empno, s.firstnme, s.midinit, s.lastname, s.edlevel,

 s.salary)";

 EXEC SQL PREPARE s1 FROM :hv1;

 EXEC SQL EXECUTE s1 USING ’000420’, ’SERGE’, ’K’, ’FIELDING’, 18, 39580;

Example 6: Update the list of activities organised by Group A in the archive table.

Delete all outdated activities and update the activities information (description and

date) in the archive table if they have been changed. For new upcoming activities,

insert into the archive. Signal an error if the date of the activity is not known. The

date of the activities in the archive table must be specified. Each group has an

activities table. For example, activities_groupA contains all activities that they

organize, and the archive table contains all upcoming activities organized by

different groups in a company. The archive table has (group, activity) as the

primary key, and date is not nullable. All activities tables have activity as the

primary key. The last_modified column in the archive is defined with CURRENT

TIMESTAMP as the default value.

 MERGE INTO archive ar

 USING (SELECT activity, description, date, last_modified

 FROM activities_groupA) ac

 ON (ar.activity = ac.activity) AND ar.group = ’A’

 WHEN MATCHED AND ac.date IS NULL THEN

 SIGNAL SQLSTATE ’70001’

 SET MESSAGE_TEXT =

 ac.activity CONCAT ’ cannot be modified. Reason: Date is not known’

 WHEN MATCHED AND ac.date < CURRENT DATE THEN

 DELETE

 WHEN MATCHED AND ar.last_modified < ac.last_modified THEN

 UPDATE SET

 (description, date, last_modified) = (ac.description, ac.date, DEFAULT)

 WHEN NOT MATCHED AND ac.date IS NULL THEN

 SIGNAL SQLSTATE ’70002’

 SET MESSAGE_TEXT =

 ac.activity CONCAT ’ cannot be inserted. Reason: Date is not known’

 WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN

 INSERT

 (group, activity, description, date)

 VALUES (’A’, ac.activity, ac.description, ac.date)

 ELSE IGNORE

MERGE

806 SQL Reference, Volume 2

OPEN

The OPEN statement opens a cursor so that it can be used to fetch rows from its

result table.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

For the authorization required to use a cursor, see “DECLARE CURSOR”.

Syntax

�� OPEN cursor-name

�

,

USING

host-variable

USING DESCRIPTOR

descriptor-name

 ��

Description

cursor-name

Names a cursor that is defined in a DECLARE CURSOR statement that was

stated earlier in the program. When the OPEN statement is executed, the

cursor must be in the closed state.

 The DECLARE CURSOR statement must identify a SELECT statement, in one

of the following ways:

v Including the SELECT statement in the DECLARE CURSOR statement

v Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating the SELECT statement.

The evaluation uses the current values of any special registers, global variables,

or PREVIOUS VALUE expressions specified in the SELECT statement, and the

current values of any host variables specified in the SELECT statement or the

USING clause of the OPEN statement. The rows of the result table may be

derived during the execution of the OPEN statement, and a temporary table

may be created to hold them; or they may be derived during the execution of

subsequent FETCH statements. In either case, the cursor is placed in the open

state and positioned before the first row of its result table. If the table is empty,

the state of the cursor is effectively “after the last row”.

USING

Introduces a list of host variables whose values are substituted for the

parameter markers (question marks) of a prepared statement. If the DECLARE

CURSOR statement names a prepared statement that includes parameter

markers, USING must be used. If the prepared statement does not include

parameter markers, USING is ignored.

host-variable

Identifies a variable described in the program in accordance with the rules

for declaring host variables. The number of variables must be the same as

OPEN

Statements 807

the number of parameter markers in the prepared statement. The nth

variable corresponds to the nth parameter marker in the prepared

statement. Where appropriate, locator variables and file reference variables

can be provided as the source of values for parameter markers.

DESCRIPTOR descriptor-name

Identifies an SQLDA that must contain a valid description of host

variables.

 Before the OPEN statement is processed, the user must set the following

fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement

v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.

Therefore, the value in SQLDABC must be greater than or equal to 16 +

SQLN*(N), where N is the length of an SQLVAR occurrence.

If LOB result columns need to be accommodated, there must be two

SQLVAR entries for every select-list item (or column of the result table).

SQLD must be set to a value greater than or equal to zero and less than or

equal to SQLN.

Rules

v When the SELECT statement of the cursor is evaluated, each parameter marker

in the statement is effectively replaced by its corresponding host variable. For a

typed parameter marker, the attributes of the target variable are those specified

by the CAST specification. For an untyped parameter marker, the attributes of

the target variable are determined according to the context of the parameter

marker.

v Let V denote a host variable that corresponds to parameter marker P. The value

of V is assigned to the target variable for P in accordance with the rules for

assigning a value to a column. Thus:

– V must be compatible with the target.

– If V is a string, its length (excluding trailing blanks for strings that are not

long strings) must not be greater than the length attribute of the target.

– If V is a number, the absolute value of its integral part must not be greater

than the maximum absolute value of the integral part of the target.

– If the attributes of V are not identical to the attributes of the target, the value

is converted to conform to the attributes of the target.
When the SELECT statement of the cursor is evaluated, the value used in place

of P is the value of the target variable for P. For example, if V is CHAR(6), and

the target is CHAR(8), the value used in place of P is the value of V padded

with two blanks.

v The USING clause is intended for a prepared SELECT statement that contains

parameter markers. However, it can also be used when the SELECT statement of

the cursor is part of the DECLARE CURSOR statement. In this case the OPEN

statement is executed as if each host variable in the SELECT statement were a

parameter marker, except that the attributes of the target variables are the same

OPEN

808 SQL Reference, Volume 2

as the attributes of the host variables in the SELECT statement. The effect is to

override the values of the host variables in the SELECT statement of the cursor

with the values of the host variables specified in the USING clause.

v SQL data change statements and routines that modify SQL data embedded in

the cursor definition are completely executed, and the result set is stored in a

temporary table when the cursor opens. If statement execution is successful, the

SQLERRD(3) field contains the sum of the number of rows that qualified for

insert, update, and delete operations. If an error occurs during execution of an

OPEN statement involving a cursor that contains a data change statement within

a fullselect, the results of that data change statement are rolled back.

Explicit rollback of an OPEN statement, or rollback to a savepoint before an

OPEN statement, closes the cursor. If the cursor definition contains a data

change statement within the FROM clause of a fullselect, the results of the data

change statement are rolled back.

Changes to rows in a table that is targeted by a data change statement nested

within a SELECT statement or a SELECT INTO statement are processed when

the cursor opens, and are not undone if an error occurs during a fetch operation

against that cursor.

Notes

v Closed state of cursors: All cursors in a program are in the closed state when

the program is initiated and when it initiates a ROLLBACK statement.

All cursors, except open cursors declared WITH HOLD, are in a closed state

when a program issues a COMMIT statement.

A cursor can also be in the closed state because a CLOSE statement was

executed or an error was detected that made the position of the cursor

unpredictable.

v To retrieve rows from the result table of a cursor, execute a FETCH statement

when the cursor is open. The only way to change the state of a cursor from

closed to open is to execute an OPEN statement.

v Effect of temporary tables: In some cases, the result table of a cursor is derived

during the execution of FETCH statements. In other cases, the temporary table

method is used instead. With this method the entire result table is transferred to

a temporary table during the execution of the OPEN statement. When a

temporary table is used, the results of a program can differ in these ways:

– An error can occur during OPEN that would otherwise not occur until some

later FETCH statement.

– INSERT, UPDATE, and DELETE statements executed in the same transaction

while the cursor is open cannot affect the result table.

– Any NEXT VALUE expressions in the SELECT statement are evaluated for

every row of the result table during OPEN.
Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE

statements executed while the cursor is open can affect the result table if issued

from the same unit of work, and any NEXT VALUE expressions in the SELECT

statement are evaluated as each row is fetched. This result table can also be

affected by operations executed by the same unit of work, and the effect of such

operations is not always predictable. For example, if cursor C is positioned on a

row of its result table defined as SELECT * FROM T, and a new row is inserted

into T, the effect of that insert on the result table is not predictable because its

rows are not ordered. Thus a subsequent FETCH C may or may not retrieve the

new row of T.

v Statement caching affects cursors declared open by the OPEN statement.

OPEN

Statements 809

Examples

Example 1: Write the embedded statements in a COBOL program that will:

1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)

department ‘A00’.

2. Place the cursor C1 before the first row to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPARTMENT

 WHERE ADMRDEPT = ’A00’

 END-EXEC.

 EXEC SQL OPEN C1

 END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a

dynamically defined select-statement in a C program. Assuming two parameter

markers are used in the predicate of the select-statement, two host variable

references are supplied with the OPEN statement to pass integer and varchar(64)

values between the application and the database. (The related host variable

definitions, PREPARE statement, and DECLARE CURSOR statement are also

shown in the example below.)

 EXEC SQL BEGIN DECLARE SECTION;

 static short hv_int;

 char hv_vchar64[65];

 char stmt1_str[200];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number

and data types of the parameter markers in the WHERE clause are not known.

 EXEC SQL BEGIN DECLARE SECTION;

 char stmt1_str[200];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

OPEN

810 SQL Reference, Volume 2

PREPARE

The PREPARE statement is used by application programs to dynamically prepare

an SQL statement for execution. The PREPARE statement creates an executable

SQL statement, called a prepared statement, from a character string form of the

statement, called a statement string.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

For statements where authorization checking is performed at statement preparation

time (DML), the privileges held by the authorization ID of the statement must

include those required to execute the SQL statement specified by the PREPARE

statement. The authorization ID of the statement might be affected by the

DYNAMICRULES bind option.

For statements where authorization checking is performed at statement execution

time (DDL, GRANT, and REVOKE statements), no authorization is required to use

this statement; however, the authorization is checked when the prepared statement

is executed.

For statements involving tables that are protected with a security policy, the rules

associated with the security policy are always evaluated at statement execution

time.

Syntax

�� PREPARE statement-name

OUTPUT

INTO

result-descriptor-name

 �

�
INPUT INTO

input-descriptor-name
 FROM host-variable ��

Description

statement-name

Names the prepared statement. If the name identifies an existing prepared

statement, that previously prepared statement is destroyed. The name must not

identify a prepared statement that is the SELECT statement of an open cursor.

OUTPUT INTO

If OUTPUT INTO is used, and the PREPARE statement executes successfully,

information about the output parameter markers in the prepared statement is

placed in the SQLDA specified by result-descriptor-name.

result-descriptor-name

Specifies the name of an SQLDA. (The DESCRIBE statement may be used

as an alternative to this clause.)

INPUT INTO

If INPUT INTO is used, and the PREPARE statement executes successfully,

information about the input parameter markers in the prepared statement is

PREPARE

Statements 811

placed in the SQLDA specified by input-descriptor-name. Input parameter

markers are always considered nullable, regardless of usage.

input-descriptor-name

Specifies the name of an SQLDA. (The DESCRIBE statement may be used

as an alternative to this clause.)

FROM

Introduces the statement string. The statement string is the value of the

specified host variable.

host-variable

Specifies a host variable that is described in the program in accordance

with the rules for declaring character string variables. It must be a

fixed-length or varying-length character-string variable that is less than the

maximum statement size of 2 097 152 bytes. Note that a CLOB(2097152)

can contain a maximum size statement, but a VARCHAR cannot.

Rules

v Rules for statement strings: The statement string must be an executable

statement that can be dynamically prepared. It must be one of the following SQL

statements:

– ALTER

– CALL

– COMMENT

– COMMIT

– CREATE

– DECLARE GLOBAL TEMPORARY TABLE

– DELETE

– DROP

– EXPLAIN

– FLUSH EVENT MONITOR

– FLUSH PACKAGE CACHE

– GRANT

– INSERT

– LOCK TABLE

– REFRESH TABLE

– RELEASE SAVEPOINT

– RENAME TABLE

– RENAME TABLESPACE

– REVOKE

– ROLLBACK

– SAVEPOINT

– select-statement

– SET CURRENT DEFAULT TRANSFORM GROUP

– SET CURRENT DEGREE

– SET CURRENT EXPLAIN MODE

– SET CURRENT EXPLAIN SNAPSHOT

– SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

– SET CURRENT QUERY OPTIMIZATION

PREPARE

812 SQL Reference, Volume 2

– SET CURRENT REFRESH AGE

– SET ENCRYPTION PASSWORD

– SET EVENT MONITOR STATE

– SET INTEGRITY

– SET PASSTHRU

– SET PATH

– SET SCHEMA

– SET SERVER OPTION

– SET Variable

– UPDATE

Notes

v Parameter markers: Although a statement string cannot include references to

host variables, it can include parameter markers. These can be replaced by the

values of host variables when the prepared statement is executed. In the case of

a CALL statement, a parameter marker can also be used for OUT and INOUT

arguments to the procedure. After the CALL is executed, the returned value for

the argument will be assigned to the host variable corresponding to the

parameter marker.

A parameter marker is a question mark (?) that is used where a host variable

could be used if the statement string were a static SQL statement. For an

explanation of how parameter markers are replaced by values, see “OPEN” and

“EXECUTE”.

There are two types of parameter markers:

Typed parameter marker

A parameter marker that is specified along with its target data type. It has

the general form:

 CAST(? AS data-type)

This notation is not a function call, but a “promise” that the type of the

parameter at run time will be of the data type specified or some data type

that can be converted to the specified data type. For example, in:

 UPDATE EMPLOYEE

SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))

WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be provided at

run time. The data type of that value will either be VARCHAR(12), or some

type that can be converted to VARCHAR(12).

Untyped parameter marker

A parameter marker that is specified without its target data type. It has the

form of a single question mark. The data type of an untyped parameter

marker is provided by context. For example, the untyped parameter marker

in the predicate of the above update statement is the same as the data type

of the EMPNO column.
Typed parameter markers can be used in dynamic SQL statements wherever a

host variable is supported and the data type is based on the promise made in

the CAST function.

Untyped parameter markers can be used in dynamic SQL statements in selected

locations where host variables are supported. These locations and the resulting

data type are shown in the following tables. The locations are grouped into

PREPARE

Statements 813

expressions, predicates, built-in functions, and user-defined routines to assist in

determining the applicability of an untyped parameter marker. When an

untyped parameter marker is used in a function (including arithmetic operators,

CONCAT, and datetime operators) with an unqualified function name, the

qualifier is set to ’SYSIBM’ for the purpose of function resolution.

 Table 29. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and

VALUES)

Untyped Parameter Marker Location Data Type

Alone in a select list Error

Both operands of a single arithmetic

operator, after considering operator

precedence and order of operation rules

Includes cases such as:

 ? + ? + 10

Error

One operand of a single operator in an

arithmetic expression (not a datetime

expression)

Includes cases such as:

 ? + ? * 10

The data type of the other operand

Labelled duration within a datetime

expression. (Note that the portion of a

labelled duration that indicates the type of

units cannot be a parameter marker.)

DECIMAL(15,0)

Any other operand of a datetime expression

(for example, ’timecol + ?’ or ’? - datecol’)

Error

Both operands of a CONCAT operator Error

One operand of a CONCAT operator when

the other operand is a non-CLOB character

data type

If one operand is either CHAR(n) or

VARCHAR(n), where n is less than 128, the

other is VARCHAR(254 - n); in all other

cases, the data type is VARCHAR(254)

One operand of a CONCAT operator, when

the other operand is a non-DBCLOB graphic

data type

If one operand is either GRAPHIC(n) or

VARGRAPHIC(n), where n is less than 64,

the other is VARCHAR(127 - n); in all other

cases, the data type is VARCHAR(127)

One operand of a CONCAT operator, when

the other operand is a large object string

Same as that of the other operand

As a value on the right hand side of a SET

clause of an UPDATE statement

The data type of the column. If the column is

defined as a user-defined distinct type, it is

the source data type of the user-defined

distinct type. If the column is defined as a

user-defined structured type, it is the

structured type, also indicating the return

type of the transform function.

The expression following the CASE keyword

in a simple CASE expression

Error

At least one of the result-expressions in a

CASE expression (both simple and searched),

with the rest of the result-expressions either

untyped parameter marker or NULL

Error

PREPARE

814 SQL Reference, Volume 2

Table 29. Untyped Parameter Marker Usage in Expressions (Including Select List, CASE, and

VALUES) (continued)

Untyped Parameter Marker Location Data Type

Any or all expressions following WHEN in a

simple CASE expression

Result of applying the “Rules for result data

types” to the expression following CASE and

the expressions following WHEN that are not

untyped parameter markers

A result-expression in a CASE expression

(both simple and searched), when at least

one result-expression is not NULL and not

an untyped parameter marker

Result of applying the “Rules for result data

types” to all result-expressions that are other

than NULL or untyped parameter markers

Alone as a column-expression in a single-row

VALUES clause that is not within an INSERT

statement

Error

Alone as a column-expression in a multi-row

VALUES clause that is not within an INSERT

statement, and for which the

column-expressions in the same position in

all other row-expressions are untyped

parameter markers

Error

Alone as a column-expression in a multi-row

VALUES clause that is not within an INSERT

statement, and for which the expression in

the same position of at least one other

row-expression is not an untyped parameter

marker or NULL

Result of applying the “Rules for result data

types” on all operands that are other than

untyped parameter markers

Alone as a column-expression in a single-row

VALUES clause within an INSERT statement

The data type of the column. If the column is

defined as a user-defined distinct type, it is

the source data type of the user-defined

distinct type. If the column is defined as a

user-defined structured type, it is the

structured type, also indicating the return

type of the transform function.

Alone as a column-expression in a multi-row

VALUES clause within an INSERT statement

The data type of the column. If the column is

defined as a user-defined distinct type, it is

the source data type of the user-defined

distinct type. If the column is defined as a

user-defined structured type, it is the

structured type, also indicating the return

type of the transform function.

As a value on the right side of a SET special

register statement

The data type of the special register

 Table 30. Untyped Parameter Marker Usage in Predicates

Untyped Parameter Marker Location Data Type

Both operands of a comparison operator Error

One operand of a comparison operator, when

the other operand is other than an untyped

parameter marker

The data type of the other operand

All operands of a BETWEEN predicate Error

PREPARE

Statements 815

Table 30. Untyped Parameter Marker Usage in Predicates (continued)

Untyped Parameter Marker Location Data Type

Either the

v first and second, or the

v first and third

operands of a BETWEEN predicate

Same as that of the only non-parameter

marker

Remaining BETWEEN situations (that is, one

untyped parameter marker only)

Result of applying the “Rules for result data

types” on all operands that are other than

untyped parameter markers

All operands of an IN predicate Error

The first operand of an IN predicate, when

the right hand side is not a subselect; for

example, ? IN (?,A,B), or ? IN (A,?,B,?)

Result of applying the “Rules for result data

types” on all operands of the IN list

(operands to the right of IN keyword) that

are other than untyped parameter markers

The first operand of an IN predicate, when

the right hand side is a fullselect

Data type of the selected column

Any or all operands of the IN list of the IN

predicate

Results of applying the “Rules for result data

types” on all operands of the IN predicate

(operands to the left and right of the IN

predicate) that are other than untyped

parameter markers

All three operands of the LIKE predicate Match expression (operand 1) and pattern

expression (operand 2) are

VARCHAR(32672); escape expression

(operand 3) is VARCHAR(2)

The match expression of the LIKE predicate

when either the pattern expression or the

escape expression is other than an untyped

parameter marker

Either VARCHAR(32672) or

VARGRAPHIC(16336), depending on the

data type of the first operand that is not an

untyped parameter marker

The pattern expression of the LIKE predicate

when either the match expression or the

escape expression is other than an untyped

parameter marker

Either VARCHAR(32672) or

VARGRAPHIC(16336), depending on the

data type of the first operand that is not an

untyped parameter marker; if the data type

of the match expression is BLOB, the data

type of the pattern expression is assumed to

be BLOB(32672)

The escape expression of the LIKE predicate

when either the match expression or the

pattern expression is other than an untyped

parameter marker

Either VARCHAR(2) or VARGRAPHIC(1),

depending on the data type of the first

operand that is not an untyped parameter

marker; if the data type of the match

expression or pattern expression is BLOB, the

data type of the escape expression is

assumed to be BLOB(1)

Operand of the NULL predicate Error

 Table 31. Untyped Parameter Marker Usage in Built-in Functions

Untyped Parameter Marker Location Data Type

All operands of COALESCE (also called

VALUE) or NULLIF

Error

Any operand of COALESCE or NULLIF,

when at least the first operand is other than

an untyped parameter marker

Result of applying the “Rules for result data

types” on all operands that are other than

untyped parameter markers

PREPARE

816 SQL Reference, Volume 2

Table 31. Untyped Parameter Marker Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

POSSTR (both operands) Both operands are VARCHAR(32672)

POSSTR (one operand, when the other

operand is a character data type)

VARCHAR(32672)

POSSTR (one operand, when the other

operand is a graphic data type)

VARGRAPHIC(16336)

POSSTR (the search-string operand, when the

other operand is a BLOB)

BLOB(32672)

SUBSTR (first operand) VARCHAR(32672)

SUBSTR (second and third operands) INTEGER

The first operand of the TRANSLATE scalar

function

Error

The second and third operands of the

TRANSLATE scalar function

VARCHAR(32672) if the first operand is a

character type; VARGRAPHIC(16336) if the

first operand is a graphic type

The fourth operand of the TRANSLATE

scalar function

VARCHAR(1) if the first operand is a

character type; VARGRAPHIC(1) if the first

operand is a graphic type

The second operand of the TIMESTAMP

scalar function

TIME

Unary minus DOUBLE

Unary plus DOUBLE

First operand of the VARCHAR_FORMAT

function

TIMESTAMP

First operand of the TIMESTAMP_FORMAT

function

VARCHAR (length of a short string)

First operand of the XMLVALIDATE function XML

All other operands of all other scalar

functions

Error

Operand of a column function Error

 Table 32. Untyped Parameter Marker Usage in User-defined Routines

Untyped Parameter Marker Location Data Type

Argument of a function Error

Argument of a method Error

Argument of a procedure The data type of the parameter, as defined

when the procedure was created

v When a PREPARE statement is executed, the statement string is parsed and

checked for errors. If the statement string is invalid, the error condition is

reported in the SQLCA. Any subsequent EXECUTE or OPEN statement that

references this statement will also receive the same error (due to an implicit

prepare done by the system) unless the error has been corrected.

v Prepared statements can be referred to in the following kinds of statements, with

the restrictions shown:

In... The prepared statement...

PREPARE

Statements 817

DESCRIBE

can be any statement

DECLARE CURSOR

must be SELECT

EXECUTE

must not be SELECT
v A prepared statement can be executed many times. Indeed, if a prepared

statement is not executed more than once and does not contain parameter

markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather

than the PREPARE and EXECUTE statements.

v Statement caching affects repeated preparations.

Examples

Example 1: Prepare and execute a non-select-statement in a COBOL program.

Assume the statement is contained in a host variable HOLDER and that the

program will place a statement string into the host variable based on some

instructions from the user. The statement to be prepared does not have any

parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER

END-EXEC.

EXEC SQL EXECUTE STMT_NAME

END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except

code it for a C program. Also assume the statement to be prepared can contain any

number of parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :holder;

EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :insert_da;

Assume that the following statement is to be prepared:

INSERT INTO DEPT VALUES(?, ?, ?, ?)

The columns in the DEPT table are defined as follows:

DEPT_NO CHAR(3) NOT NULL, -- department number

DEPTNAME VARCHAR(29), -- department name

MGRNO CHAR(6), -- manager number

ADMRDEPT CHAR(3) -- admin department number

To insert department number G01 named COMPLAINTS, which has no manager

and reports to department A00, the structure INSERT_DA should have the values

in Table 33 before issuing the EXECUTE statement.

 Table 33.

SQLDA field Value

SQLDAID SQLDA

SQLDABC 192 (See note 1.)

SQLN 4

SQLD 4

SQLTYPE 452

SQLLEN 3

PREPARE

818 SQL Reference, Volume 2

Table 33. (continued)

SQLDA field Value

SQLDATA pointer to G01

SQLIND (See note 2.)

SQLNAME

SQLTYPE 449

SQLLEN 29

SQLDATA pointer to COMPLAINTS

SQLIND pointer to 0

SQLNAME

SQLTYPE 453

SQLLEN 6

SQLDATA (See note 3.)

SQLIND pointer to -1

SQLNAME

SQLTYPE 453

SQLLEN 3

SQLDATA pointer to A00

SQLIND pointer to 0

SQLNAME

Note:

1. This value is for a PREPARE done from a 32-bit application. If the PREPARE was done

in a 64-bit application, then SQLDABC would have the value 240.

2. The value in SQLIND for this SQLVAR is ignored because the SQLTYPE identifies a

non-nullable data type.

3. The value in SQLDATA for this SQLVAR is ignored because the value of SQLIND

indicates this is a NULL value.

PREPARE

Statements 819

REFRESH TABLE

The REFRESH TABLE statement refreshes the data in a materialized query table.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the table

v SYSADM or DBADM authority

Syntax

��

�

 ,

REFRESH TABLE

table-name

online-options

query-optimization-options

�

�
INCREMENTAL

NOT INCREMENTAL

 ��

online-options:

 ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

query-optimization-options:

ALLOW QUERY OPTIMIZATION

WITH REFRESH AGE ANY

USING REFRESH DEFERRED TABLES

Description

table-name

Identifies the table to be refreshed.

 The name, including the implicit or explicit schema, must identify a table that

already exists at the current server. The table must allow the REFRESH TABLE

statement (SQLSTATE 42809). This includes materialized query tables defined

with:

v REFRESH IMMEDIATE

v REFRESH DEFERRED

online-options

Specifies the accessibility of the table while it is being processed.

REFRESH TABLE

820 SQL Reference, Volume 2

ALLOW NO ACCESS

Specifies that no other users can access the table while it is being refreshed,

except if they are using the Uncommitted Read isolation level.

ALLOW READ ACCESS

Specifies that other users have read-only access to the table while it is

being refreshed.

ALLOW WRITE ACCESS

Specifies that other users have read and write access to the table while it is

being refreshed.

To prevent a rollback of the entire statement because of a lock timeout when

using the ALLOW READ ACCESS or the ALLOW WRITE ACCESS option, it is

recommended that you issue a SET CURRENT LOCK TIMEOUT statement

(specifying the WAIT option) before executing the REFRESH TABLE statement,

and to reset the special register to its previous value afterwards. Note,

however, that the CURRENT LOCK TIMEOUT register only impacts a specific

set of lock types, not all lock types.

query-optimization-options

Specifies the query optimization options for the refresh of REFRESH

DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES

WITH REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register is set to

’ANY’, the refresh of table-name will allow REFRESH DEFERRED

materialized query tables to be used to optimize the query that is used to

refresh table-name. If table-name is not a REFRESH DEFERRED materialized

query table, an error is returned (SQLSTATE 428FH). REFRESH

IMMEDIATE materialized query tables are always considered for query

optimization.

INCREMENTAL

Specifies an incremental refresh for the table by considering only the delta

portion (if any) of its underlying tables or the content of an associated staging

table (if one exists and its contents are consistent). If such a request cannot be

satisfied (that is, the system detects that the materialized query table definition

needs to be fully recomputed), an error (SQLSTATE 55019) is returned.

NOT INCREMENTAL

Specifies a full refresh for the table by recomputing the materialized query

table definition.

If neither INCREMENTAL nor NOT INCREMENTAL is specified, the system will

determine whether incremental processing is possible; if not, full refresh will be

performed. If a staging table is present for the materialized query table that is to be

refreshed, and incremental processing is not possible because the staging table is in

a pending state, an error is returned (SQLSTATE 428A8). Full refresh will be

performed if the staging table or the materialized query table is in an inconsistent

state; otherwise, the contents of the staging table will be used for incremental

processing.

Rules

v If REFRESH TABLE is issued on a materialized query table that references one

or more nicknames, the authorization ID of the statement must have authority to

select from the tables at the data source (SQLSTATE 42501).

REFRESH TABLE

Statements 821

Notes

v When the statement is used to refresh a REFRESH IMMEDIATE materialized

query table whose underlying tables have been loaded, attached, or detached,

the system might choose to incrementally refresh the materialized query table

with the delta portions of its underlying tables. When the statement is used to

refresh a REFRESH DEFERRED materialized query table with a supporting

staging table, the system might choose to incrementally refresh the materialized

query table with the delta portions of its underlying tables that have been

captured in the staging table. However, there are some situations in which this

optimization is not possible, and a full refresh (that is, a recomputation of the

materialized query table definition) is necessary to ensure data integrity. You can

explicitly request incremental maintenance by specifying the INCREMENTAL

option; if this optimization is not possible, the system returns an error

(SQLSTATE 55019).

v If the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES

WITH REFRESH AGE ANY option is used, ensure that the refresh order is

correct for REFRESH DEFERRED materialized query tables. For example,

consider two materialized query tables, MQT1 and MQT2, whose materialized

queries share the same underlying tables. The materialized query for MQT2 can

be calculated using MQT1, instead of the underlying tables. If separate

statements are used to refresh these two materialized query tables, and MQT2 is

refreshed first, the system might choose to use the contents of MQT1, which

have not yet been refreshed, to refresh MQT2. In this case, MQT1 would contain

current data, but MQT2 could still contain stale data, even though both were

refreshed at almost the same time. The correct refresh order, if two REFRESH

statements are used instead of one, is to refresh MQT1 first.

v If the materialized query table has an associated staging table, the staging table

is pruned when the refresh is successfully performed.

REFRESH TABLE

822 SQL Reference, Volume 2

RELEASE (Connection)

The RELEASE (Connection) statement places one or more connections in the

release-pending state.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

None required.

Syntax

��

RELEASE
 (1)

server-name

host-variable

CURRENT

SQL

ALL

��

Notes:

1 Note that an application server named CURRENT or ALL can only be

identified by a host variable or a delimited identifier.

Description

server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

The specified database-alias or the database-alias contained in the host variable

must identify an existing connection of the application process. If the

database-alias does not identify an existing connection, an error (SQLSTATE

08003) is raised.

CURRENT

Identifies the current connection of the application process. The application

process must be in the connected state. If not, an error (SQLSTATE 08003) is

raised.

ALL or ALL SQL

Identifies all existing connections of the application process. This form of the

RELEASE statement places all existing connections of the application process

in the release-pending state. All connections will therefore be destroyed during

RELEASE (Connection)

Statements 823

the next commit operation. An error or warning does not occur if no

connections exist when the statement is executed.

Examples

Example 1: The SQL connection to IBMSTHDB is no longer needed by the

application. The following statement will cause it to be destroyed during the next

commit operation:

 EXEC SQL RELEASE IBMSTHDB;

Example 2: The current connection is no longer needed by the application. The

following statement will cause it to be destroyed during the next commit

operation:

 EXEC SQL RELEASE CURRENT;

Example 3: If an application has no need to access the databases after a commit

but will continue to run for a while, then it is better not to tie up those connections

unnecessarily. The following statement can be executed before the commit to

ensure all connections will be destroyed at the commit:

 EXEC SQL RELEASE ALL;

RELEASE (Connection)

824 SQL Reference, Volume 2

RELEASE SAVEPOINT

The RELEASE SAVEPOINT statement is used to indicate that the application no

longer wishes to have the named savepoint maintained. After this statement has

been invoked, rollback to the savepoint is no longer possible.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 TO

RELEASE

SAVEPOINT

savepoint-name

��

Description

savepoint-name

Specifies the savepoint that is to be released. Any savepoints nested within the

named savepoint are also released. Rollback to that savepoint, or any savepoint

nested within it, is no longer possible. If the named savepoint does not exist in

the current savepoint level (see the “Rules” section in the description of the

SAVEPOINT statement), an error is returned (SQLSTATE 3B001). The specified

savepoint-name cannot begin with ’SYS’ (SQLSTATE 42939).

Notes

v The name of the savepoint that was released can now be reused in another

SAVEPOINT statement, regardless of whether the UNIQUE keyword was

specified on an earlier SAVEPOINT statement specifying this same savepoint

name.

Example

Example 1: Release a savepoint named SAVEPOINT1.

 RELEASE SAVEPOINT SAVEPOINT1

RELEASE SAVEPOINT

Statements 825

RENAME TABLESPACE

The RENAME TABLESPACE statement renames an existing table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include either

SYSCTRL or SYSADM authority.

Syntax

�� RENAME TABLESPACE source-tablespace-name TO target-tablespace-name ��

Description

source-tablespace-name

Specifies the existing table space that is to be renamed, as a one-part name. It

is an SQL identifier (either ordinary or delimited). The table space name must

identify a table space that already exists in the catalog (SQLSTATE 42704).

target-tablespace-name

Specifies the new name for the table space, as a one-part name. It is an SQL

identifier (either ordinary or delimited). The new table space name must not

identify a table space that already exists in the catalog (SQLSTATE 42710), and

it cannot start with ’SYS’ (SQLSTATE 42939).

Rules

v The SYSCATSPACE table space cannot be renamed (SQLSTATE 42832).

v Any table spaces with ″rollforward pending″ or ″rollforward in progress″ states

cannot be renamed (SQLSTATE 55039)

Notes

v Renaming a table space will update the minimum recovery time of a table space

to the point in time when the rename took place. This implies that a roll forward

at the table space level must be to at least this point in time.

v The new table space name must be used when restoring a table space from a

backup image, where the rename was done after the backup was created.

Example

Change the name of the table space USERSPACE1 to DATA2000:

 RENAME TABLESPACE USERSPACE1 TO DATA2000

RENAME TABLESPACE

826 SQL Reference, Volume 2

RENAME

The RENAME statement renames an existing table or index.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the table or index

v ALTERIN privilege on the schema

v SYSADM or DBADM authority

Syntax

��
 TABLE

RENAME

source-table-name

TO

target-identifier

INDEX

source-index-name

��

Description

TABLE source-table-name

Names the existing table that is to be renamed. The name, including the

schema name, must identify a table that already exists in the database

(SQLSTATE 42704). It must not be the name of a catalog table (SQLSTATE

42832), a materialized query table, a typed table (SQLSTATE 42997), a declared

global temporary table (SQLSTATE 42995), a nickname, or an object other than

a table or an alias (SQLSTATE 42809). The TABLE keyword is optional.

INDEX source-index-name

Names the existing index that is to be renamed. The name, including the

schema name, must identify an index that already exists in the database

(SQLSTATE 42704). It must not be the name of an index on a declared global

temporary table (SQLSTATE 42995). The schema name must not be SYSIBM,

SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42832).

target-identifier

Specifies the new name for the table or index without a schema name. The

schema name of the source object is used to qualify the new name for the

object. The qualified name must not identify a table, view, alias, or index that

already exists in the database (SQLSTATE 42710).

Rules

When renaming a table, the source table must not:

v Be referenced in any existing view definitions or materialized query table

definitions

v Be referenced in any triggered SQL statements in existing triggers or be the

subject table of an existing trigger

RENAME

Statements 827

v Be referenced in an SQL function

v Have any check constraints

v Have any generated columns other than the identity column

v Be a parent or dependent table in any referential integrity constraints

v Be the scope of any existing reference column

v Be referenced by an XSR object that has been enabled for decomposition

An error (SQLSTATE 42986) is returned if the source table violates one or more of

these conditions.

When renaming an index:

v The source index must not be a system-generated index for an implementation

table on which a typed table is based (SQLSTATE 42858).

Notes

v Catalog entries are updated to reflect the new table or index name.

v All authorizations associated with the source table or index name are transferred

to the new table or index name (the authorization catalog tables are updated

appropriately).

v Indexes defined over the source table are transferred to the new table (the index

catalog tables are updated appropriately).

v RENAME TABLE invalidates any packages that are dependent on the source

table. RENAME INDEX invalidates any packages that are dependent on the

source index.

v If an alias is used for the source-table-name, it must resolve to a table name. The

table is renamed within the schema of this table. The alias is not changed by the

RENAME statement and continues to refer to the old table name.

v A table with primary key or unique constraints can be renamed if none of the

primary key or unique constraints are referenced by any foreign key.

Examples

Change the name of the EMP table to EMPLOYEE.

 RENAME TABLE EMP TO EMPLOYEE

 RENAME TABLE ABC.EMP TO EMPLOYEE

Change the name of the index NEW-IND to IND.

 RENAME INDEX NEW-IND TO IND

 RENAME INDEX ABC.NEW-IND TO IND

RENAME

828 SQL Reference, Volume 2

REPEAT

The REPEAT statement executes a statement or group of statements until a search

condition is true.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the REPEAT statement. However, the

authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements and search condition that are embedded in the REPEAT statement.

Syntax

��

label:
 REPEAT SQL-routine-statement UNTIL search-condition �

� END REPEAT

label
 ��

SQL-routine-statement:

�

�

SQL-procedure-statement

;

SQL-function-statement

;

Description

label

Specifies the label for the REPEAT statement. If the beginning label is specified,

that label can be specified on LEAVE and ITERATE statements. If an ending

label is specified, a matching beginning label also must be specified.

SQL-procedure-statement

Specifies the SQL statements to execute within the loop. SQL-procedure-
statement is only applicable when in the context of an SQL procedure. See

SQL-procedure-statement in “Compound SQL (Procedure)”.

SQL-function-statement

Specifies the SQL statements to execute within the loop. SQL-function-statement

is only applicable when in the context of an SQL function or SQL method. See

SQL-function-statement in “FOR”.

search-condition

The search-condition is evaluated after each execution of the REPEAT loop. If

the condition is true, the loop will exit. If the condition is unknown or false,

the looping continues.

REPEAT

Statements 829

Examples

A REPEAT statement fetches rows from a table until the not_found condition

handler is invoked.

 CREATE PROCEDURE REPEAT_STMT(OUT counter INTEGER)

 LANGUAGE SQL

 BEGIN

 DECLARE v_counter INTEGER DEFAULT 0;

 DECLARE v_firstnme VARCHAR(12);

 DECLARE v_midinit CHAR(1);

 DECLARE v_lastname VARCHAR(15);

 DECLARE at_end SMALLINT DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR

 SELECT firstnme, midinit, lastname

 FROM employee;

 DECLARE CONTINUE HANDLER FOR not_found

 SET at_end = 1;

 OPEN c1;

 fetch_loop:

 REPEAT

 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;

 SET v_counter = v_counter + 1;

 UNTIL at_end > 0

 END REPEAT fetch_loop;

 SET counter = v_counter;

 CLOSE c1;

 END

REPEAT

830 SQL Reference, Volume 2

RESIGNAL

The RESIGNAL statement is used within a condition handler to resignal the

condition that activated the handler, or to raise an alternate condition so that it can

be processed at a higher level. It causes an exception, warning, or not found

condition to be returned, along with optional message text.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable

statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

�� RESIGNAL �

�
VALUE

SQLSTATE

sqlstate-string-constant

variable-name

signal-information

condition-name

 ��

signal-information:

 SET MESSAGE_TEXT = variable-name

diagnostic-string-constant

Description

SQLSTATE VALUE sqlstate-string-constant

The specified string constant represents an SQLSTATE. It must be a character

string constant with exactly 5 characters that follow the rules for SQLSTATEs:

v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’)

v The SQLSTATE class (first two characters) cannot be ’00’, since this

represents successful completion.

If the SQLSTATE does not conform to these rules, an error is raised

(SQLSTATE 428B3).

SQLSTATE VALUE variable-name

The specified variable name must be of type CHAR(5). Its value at statement

execution time must conform to the same rules that are described for

sqlstate-string-constant. If the SQLSTATE does not conform to these rules, an

error is returned (SQLSTATE 428B3).

condition-name

Specifies the name of the condition.

SET MESSAGE_TEXT =

Specifies a string that describes the error or warning. The string is returned in

the sqlerrmc field of the SQLCA. If the actual string is longer than 70 bytes, it

is truncated without warning.

RESIGNAL

Statements 831

variable-name

Identifies an SQL variable that must be declared within the compound

statement. The SQL variable must be defined as a CHAR or VARCHAR

data type.

diagnostic-string-constant

Specifies a character string constant that contains the message text.

Notes

v If the RESIGNAL statement is specified without an SQLSTATE clause or a

condition-name, the identical condition that invoked the handler is returned. The

SQLSTATE, SQLCODE and the SQLCA associated with the condition are

unchanged.

v If a RESIGNAL statement is issued, and an SQLSTATE or condition-name was

specified, the SQLCODE returned is based on the SQLSTATE value as follows:

– If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found

condition is returned and the SQLCODE is set to +438.

– Otherwise, an exception condition is returned and the SQLCODE is set to

-438.

The other fields of the SQLCA are set as follows:

– sqlerrd fields are set to zero

– sqlwarn fields are set to blank

– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT

– sqlerrml is set to the length of sqlerrmc, or to zero if no SET MESSAGE_TEXT

clause is specified

– sqlerrp is set to ROUTINE.
v Refer to the ″Notes″ section under ″SIGNAL statement″ for further information

on SQLSTATE values.

Example

This example detects a division by zero error. The IF statement uses a SIGNAL

statement to invoke the overflow condition handler. The condition handler uses a

RESIGNAL statement to return a different SQLSTATE value to the client

application.

 CREATE PROCEDURE divide (IN numerator INTEGER,

 IN denominator INTEGER,

 OUT result INTEGER)

 LANGUAGE SQL

 BEGIN

 DECLARE overflow CONDITION FOR SQLSTATE ’22003’;

 DECLARE CONTINUE HANDLER FOR overflow

 RESIGNAL SQLSTATE ’22375’;

 IF denominator = 0 THEN

 SIGNAL overflow;

 ELSE

 SET result = numerator / denominator;

 END IF;

 END

RESIGNAL

832 SQL Reference, Volume 2

RETURN

The RETURN statement is used to return from a routine. For SQL functions or

methods, it returns the result of the function or method. For an SQL procedure, it

optionally returns an integer status value.

Invocation

This statement can be embedded in an SQL function, SQL method, or SQL

procedure. It is not an executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the RETURN statement. However, the

authorization ID of the statement must hold the necessary privileges to invoke any

expression or fullselect that is embedded in the RETURN statement.

Syntax

��

�

 RETURN

expression

NULL

fullselect

,

WITH

common-table-expression

 ��

Description

expression

Specifies a value that is returned from the routine:

v If the routine is a function or method, one of expression, NULL, or fullselect

must be specified (SQLSTATE 42631) and the data type of the result must be

assignable to the RETURNS type of the routine (SQLSTATE 42866).

v If the routine is a table function, a scalar expression (other than a scalar

fullselect) cannot be specified (SQLSTATE 428F1).

v If the routine is a procedure, the data type of expression must be INTEGER

(SQLSTATE 428F2). A procedure cannot return NULL or a fullselect.

NULL

Specifies that the function or method returns a null value of the data type

defined in the RETURNS clause. NULL cannot be specified for a RETURN

from a procedure.

WITH common-table-expression

Defines a common table expression for use with the fullselect that follows.

fullselect

Specifies the row or rows to be returned for the function. The number of

columns in the fullselect must match the number of columns in the function

result (SQLSTATE 42811). In addition, the static column types of the

fullselect must be assignable to the declared column types of the function

result, using the rules for assignment to columns (SQLSTATE 42866).

 The fullselect cannot be specified for a RETURN from a procedure.

RETURN

Statements 833

If the routine is a scalar function or method, then the fullselect must return

one column (SQLSTATE 42823) and, at most, one row (SQLSTATE 21000).

If the routine is a row function, it must return, at most, one row

(SQLSTATE 21505). However, one or more columns can be returned.

If the routine is a table function, it can return zero or more rows with one

or more columns.

Rules

v The execution of an SQL function or method must end with a RETURN

statement (SQLSTATE 42632).

v In an SQL table or row function using a dynamic-compound-statement, the only

RETURN statement allowed is the one at the end of the compound statement.

(SQLSTATE 429BD).

v In an SQL procedure, a RETURN statement is not allowed in the body of a

condition handler (SQLSTATE 42601).

Notes

v When a value is returned from a procedure, the caller can access the value:

– using the GET DIAGNOSTICS statement to retrieve the

DB2_RETURN_STATUS when the SQL procedure was called from another

SQL procedure

– using the parameter bound for the return value parameter marker in the

escape clause CALL syntax (?=CALL...) in a CLI application

– directly from the sqlerrd[0] field of the SQLCA, after processing the CALL of

an SQL procedure. This field is only valid if the SQLCODE is zero or positive

(assume a value of -1 otherwise).

Examples

Use a RETURN statement to return from an SQL procedure with a status value of

zero if successful, and -200 if not.

 BEGIN

 ...

 GOTO FAIL

 ...

 SUCCESS: RETURN 0

 FAIL: RETURN -200

 END

RETURN

834 SQL Reference, Volume 2

REVOKE (Database Authorities)

This form of the REVOKE statement revokes authorities that apply to the entire

database.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

SYSADM authority is required to revoke any of the following authorities:

v DBADM

v SECADM

Syntax

��

REVOKE

�

 ,

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

IMPLICIT_SCHEMA

DBADM

LOAD

QUIESCE_CONNECT

SECADM

ON DATABASE

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

BINDADD

Revokes the authority to create packages. The creator of a package

automatically has the CONTROL privilege on that package and retains this

privilege even if his BINDADD authority is subsequently revoked.

 The BINDADD authority cannot be revoked from an authorization-name holding

DBADM authority without also revoking the DBADM authority.

CONNECT

Revokes the authority to access the database.

REVOKE (Database Authorities)

Statements 835

Revoking the CONNECT authority from a user does not affect any privileges

that were granted to that user on objects in the database. If the user is

subsequently granted the CONNECT authority again, all previously held

privileges are still valid (assuming they were not explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name

holding DBADM authority without also revoking the DBADM authority

(SQLSTATE 42504).

CREATETAB

Revokes the authority to create tables. The creator of a table automatically has

the CONTROL privilege on that table, and retains this privilege even if his

CREATETAB authority is subsequently revoked.

 The CREATETAB authority cannot be revoked from an authorization-name

holding DBADM authority without also revoking the DBADM authority

(SQLSTATE 42504).

CREATE_EXTERNAL_ROUTINE

Revokes the authority to register external routines. Once an external routine

has been registered, it continues to exist, even if

CREATE_EXTERNAL_ROUTINE is subsequently revoked from the

authorization ID that registered the routine.

 CREATE_EXTERNAL_ROUTINE authority cannot be revoked from an

authorization-name holding DBADM or CREATE_NOT_FENCED_ROUTINE

authority without also revoking DBADM or

CREATE_NOT_FENCED_ROUTINE authority (SQLSTATE 42504).

CREATE_NOT_FENCED_ROUTINE

Revokes the authority to register routines that execute in the database

manager’s process. Once a routine has been registered as not fenced, it

continues to run in this manner, even if CREATE_NOT_FENCED_ROUTINE is

subsequently revoked from the authorization ID that registered the routine.

 CREATE_NOT_FENCED_ROUTINE authority cannot be revoked from an

authorization-name holding DBADM authority without also revoking the

DBADM authority (SQLSTATE 42504).

IMPLICIT_SCHEMA

Revokes the authority to implicitly create a schema. It does not affect the

ability to create objects in existing schemas or to process a CREATE SCHEMA

statement.

DBADM

Revokes the DBADM authority.

 DBADM authority cannot be revoked from PUBLIC (because it cannot be

granted to PUBLIC).

CAUTION:

Revoking DBADM authority does not automatically revoke any privileges

that were held by the authorization-name on objects in the database, nor does

it revoke any of the other database authorities that were implicitly and

automatically granted when DBADM authority was originally granted.

LOAD

Revokes the authority to LOAD in this database.

QUIESCE_CONNECT

Revokes the authority to access the database while it is quiesced.

REVOKE (Database Authorities)

836 SQL Reference, Volume 2

SECADM

Revokes the security administrator authority.

FROM

Indicates from whom the authorities are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the authorities from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.DBAUTH catalog view

where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

an action. A user can proceed with a task if other privileges are held by PUBLIC,

a group, or a role, or if the user holds a higher level authority, such as DBADM.

v Compatibilities

For compatibility with versions earlier than Version 8, the option

CREATE_NOT_FENCED can be substituted for

CREATE_NOT_FENCED_ROUTINE.

Examples

Example 1: Given that USER6 is only a user and not a group, revoke the privilege

to create tables from the user USER6.

 REVOKE CREATETAB ON DATABASE FROM USER6

Example 2: Revoke BINDADD authority on the database from a group named

D024. There are two rows in the SYSCAT.DBAUTH catalog view for this grantee;

one with a GRANTEETYPE of U and one with a GRANTEETYPE of G.

REVOKE (Database Authorities)

Statements 837

REVOKE BINDADD ON DATABASE FROM GROUP D024

In this case, the GROUP keyword must be specified; otherwise an error will occur

(SQLSTATE 56092).

Example 3: Revoke security administrator authority from user Walid.

 REVOKE SECADM ON DATABASE FROM USER Walid

REVOKE (Database Authorities)

838 SQL Reference, Volume 2

REVOKE (Exemption)

This form of the REVOKE statement revokes an exemption to a label-based access

control (LBAC) access rule.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� REVOKE EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY

WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

 �

�

FOR

policy-name

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

��

Description

EXEMPTION ON RULE

Revokes the exemption on an access rule.

DB2LBACREADARRAY

Revokes an exemption on the predefined DB2LBACREADARRAY rule.

DB2LBACREADSET

Revokes an exemption on the predefined DB2LBACREADSET rule.

DB2LBACREADTREE

Revokes an exemption on the predefined DB2LBACREADTREE rule.

DB2LBACWRITEARRAY

Revokes an exemption on the predefined DB2LBACWRITEARRAY rule.

WRITEDOWN

Specifies that the exemption only applies to write down.

WRITEUP

Specifies that the exemption only applies to write up.

REVOKE (Exemption)

Statements 839

DB2LBACWRITESET

Revokes an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE

Revokes an exemption on the predefined DB2LBACWRITETREE rule.

ALL

Revokes the exemptions on all of the predefined rules.

FOR policy-name

Specifies the name of the security policy on which exemptions are to be

revoked.

FROM

Specifies from whom the exemption is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the

SYSCAT.SECURITYPOLICYEXEMPTIONS catalog view where the grantee is

authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke the exemption on access rule DB2LBACREADSET for security

policy DATA_ACCESS from user WALID.

 REVOKE EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS

 FROM USER WALID

Example 2: Revoke an exemption on access rule DB2LBACWRITEARRAY with the

WRITEDOWN option for security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN

 FOR DATA_ACCESS FROM USER BOBBY

Example 3: Revoke an exemption on access rule DB2LBACWRITEARRAY with the

WRITEUP option for security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP

 FOR DATA_ACCESS FROM USER BOBBY

REVOKE (Exemption)

840 SQL Reference, Volume 2

REVOKE (Global Variable Privileges)

This form of the REVOKE statement revokes one or more privileges on a created

global variable.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

��

�

 PRIVILEGES

REVOKE

ALL

ON

VARIABLE

variable-name

,

READ

WRITE

�

�

�

 ,

BY ALL

RESTRICT

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

ALL PRIVILEGES

Revokes all privileges held by an authorization-name for the specified global

variable. If ALL is not specified, READ or WRITE must be specified. READ or

WRITE must not be specified more than once.

READ

Revokes the privilege to read the value of the specified global variable.

WRITE

Revokes the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name

Identifies the global variable on which one or more privileges are to be

revoked. The variable-name must identify a global variable that exists at the

current server (SQLSTATE 42704).

FROM

Specifies from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

REVOKE (Global Variable Privileges)

Statements 841

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Revokes the specified privileges from PUBLIC.

BY ALL

Revokes each specified privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

RESTRICT

Specifies that the statement is to fail if any objects depend on the privileges

being revoked. This is the default behavior.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the

SYSCAT.VARIABLEAUTH catalog view where the grantee is authorization-name:

– If GRANTEETYPE is ’U’, USER is assumed.

– If GRANTEETYPE is ’G’, GROUP is assumed.

– If GRANTEETYPE is ’R’, ROLE is assumed.

– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.
v If any SQL function, SQL method, procedure, view, trigger, or another global

variable contains a global variable and depends on the privilege being revoked,

the revoke operation will fail (SQLSTATE 42893).

Notes

v If the READ privilege on a global variable is revoked, packages with a

dependency to write the value of the global variable (for example, by the SET

statement) are not affected, because writing to a global variable is controlled by

the WRITE privilege on that global variable.

v If the WRITE privilege on a global variable is revoked, packages with a

dependency to read the value of the global variable are not affected, because

reading from a global variable is controlled by the READ privilege on that

global variable.

v Revoking a privilege does not necessarily impair the ability to perform the

action. A user might be able to proceed if the required privilege is held through

membership in a different group or role, or by PUBLIC.

Example

Revoke the WRITE privilege on global variable MYSCHEMA.MYJOB_PRINTER

from user ZUBIRI.

 REVOKE WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER FROM ZUBIRI

REVOKE (Global Variable Privileges)

842 SQL Reference, Volume 2

REVOKE (Index Privileges)

This form of the REVOKE statement revokes the CONTROL privilege on an index.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

�� REVOKE CONTROL ON INDEX index-name �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

CONTROL

Revokes the privilege to drop the index. This is the CONTROL privilege for

indexes, which is automatically granted to creators of indexes.

ON INDEX index-name

Specifies the name of the index on which the CONTROL privilege is to be

revoked.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

REVOKE (Index Privileges)

Statements 843

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.INDEXAUTH catalog view

where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds authorities such as ALTERIN on

the schema of an index.

Examples

Example 1: Given that USER4 is only a user and not a group, revoke the privilege

to drop an index DEPTIDX from the user USER4.

 REVOKE CONTROL ON INDEX DEPTIDX FROM KIESLER

Example 2: Revoke the privilege to drop an index LUNCHITEMS from the user

CHEF and the group WAITERS.

 REVOKE CONTROL ON INDEX LUNCHITEMS

 FROM USER CHEF, GROUP WAITERS

REVOKE (Index Privileges)

844 SQL Reference, Volume 2

REVOKE (Package Privileges)

This form of the REVOKE statement revokes CONTROL, BIND, and EXECUTE

privileges against a package.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced package

v SYSADM or DBADM authority

DBADM or SYSADM authority is required to revoke the CONTROL privilege.

Syntax

��

REVOKE

�

 ,

BIND

CONTROL

(1)

EXECUTE

�

�
 (2)

ON

PACKAGE

package-id

schema-name.

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Notes:

1 RUN can be used as a synonym for EXECUTE.

2 PROGRAM can be used as a synonym for PACKAGE.

Description

BIND

Revokes the privilege to execute BIND or REBIND on—or to add a new

version of— the referenced package.

 The BIND privilege cannot be revoked from an authorization-name that holds

CONTROL privilege on the package, without also revoking the CONTROL

privilege.

REVOKE (Package Privileges)

Statements 845

CONTROL

Revokes the privilege to drop the package and to extend package privileges to

other users.

 Revoking CONTROL does not revoke the other package privileges.

EXECUTE

Revokes the privilege to execute the package.

 The EXECUTE privilege cannot be revoked from an authorization-name that

holds CONTROL privilege on the package without also revoking the

CONTROL privilege.

ON PACKAGE schema-name.package-id

Specifies the name of the package on which privileges are to be revoked. If a

schema name is not specified, the package ID is implicitly qualified by the

default schema. The revoking of a package privilege applies to all versions of

the package.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.PACKAGEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

REVOKE (Package Privileges)

846 SQL Reference, Volume 2

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on

the schema of a package.

Examples

Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA from

PUBLIC.

 REVOKE EXECUTE

 ON PACKAGE CORPDATA.PKGA

 FROM PUBLIC

Example 2: Revoke CONTROL authority on the RRSP_PKG package for the user

FRANK and for PUBLIC.

 REVOKE CONTROL

 ON PACKAGE RRSP_PKG

 FROM USER FRANK, PUBLIC

REVOKE (Package Privileges)

Statements 847

REVOKE (Role)

This form of the REVOKE statement revokes roles from users, groups, or other

roles.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v The WITH ADMIN OPTION on the role

v SECADM authority

SECADM authority is required to revoke the ADMIN OPTION FOR role-name from

an authorization-name or to revoke a role-name from an authorization-name that has

the WITH ADMIN OPTION on that role.

Syntax

��

�

 ,

ROLE

REVOKE

role-name

ADMIN OPTION FOR

�

�

�

 ,

BY ALL

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

ADMIN OPTION FOR

Revokes the WITH ADMIN OPTION on role-name. The WITH ADMIN

OPTION on role-name must be held by authorization-name or by PUBLIC, if

PUBLIC is specified (SQLSTATE 42504). If the ADMIN OPTION FOR clause is

specified, only the WITH ADMIN OPTION on ROLE role-name is revoked, not

the role itself.

ROLE role-name

Specifies the role that is to be revoked. The role-name must identify an existing

role at the current server (SQLSTATE 42704) that has been granted to

authorization-name or to PUBLIC, if PUBLIC is specified (SQLSTATE 42504).

FROM

Specifies from whom the role is revoked.

USER

Specifies that the authorization-name identifies a user.

REVOKE (Role)

848 SQL Reference, Volume 2

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

PUBLIC

Revokes the specified roles from PUBLIC.

BY ALL

Revokes the role-name from each specified authorization-name that was explicitly

granted that role, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the

SYSCAT.ROLEAUTH catalog view where the grantee is authorization-name:

– If GRANTEETYPE is ’U’, USER is assumed.

– If GRANTEETYPE is ’G’, GROUP is assumed.

– If GRANTEETYPE is ’R’, ROLE is assumed.

– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.
v The role-name must not identify a role, or a role that contains role-name, if the

role has either EXECUTE privilege on a routine or USAGE privilege on a

sequence, and an SQL object other than a package is dependent on the routine

or sequence (SQLSTATE 42893). The owner of the SQL object is either

authorization-name or any user that is a member of authorization-name, where

authorization-name is a role.

Notes

v If a role is revoked from an authorization-name or from PUBLIC, all privileges

that the role held are no longer available to the authorization-name or to PUBLIC

through that role.

v Revoking a role does not necessarily revoke the ability to perform a particular

action by way of a privilege that was granted to that role. A user might still be

able to proceed if other privileges are held by PUBLIC, by a group to which the

user belongs, by another role granted to the user, or if the user has a higher

level authority, such as DBADM.

Examples

Example 1: Revoke the role INTERN from the role DOCTOR and the role DOCTOR

from the role SPECIALIST.

 REVOKE ROLE INTERN FROM ROLE DOCTOR

 REVOKE ROLE DOCTOR FROM ROLE SPECIALIST

Example 2: Revoke the role INTERN from PUBLIC.

 REVOKE ROLE INTERN FROM PUBLIC

REVOKE (Role)

Statements 849

Example 3: Revoke the role SPECIALIST from user BOB and group TORONTO.

 REVOKE ROLE SPECIALIST FROM USER BOB, GROUP TORONTO BY ALL

REVOKE (Role)

850 SQL Reference, Volume 2

REVOKE (Routine Privileges)

This form of the REVOKE statement revokes privileges on a routine (function,

method, or procedure).

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

�� REVOKE EXECUTE ON function-designator

FUNCTION

*

schema.

method-designator

METHOD * FOR

type-name

*

schema.

procedure-designator

PROCEDURE

*

schema.

 �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

RESTRICT

��

Description

EXECUTE

Revokes the privilege to run the identified user-defined function, method, or

procedure.

function-designator

Uniquely identifies the function.

FUNCTION schema.*

Identifies the explicit grant for all the existing and future functions in the

schema. Revoking the schema.* privilege does not revoke any privileges that

were granted on a specific function. In dynamic SQL statements, if a schema is

not specified, the schema in the CURRENT SCHEMA special register will be

used. In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

REVOKE (Routine Privileges)

Statements 851

method-designator

Uniquely identifies the method.

METHOD *

Identifies the explicit grant for all the existing and future methods for the type

type-name. Revoking the * privilege does not revoke any privileges that were

granted on a specific method.

FOR type-name

Names the type in which the specified method is found. The name must

identify a type already described in the catalog (SQLSTATE 42704). In

dynamic SQL statements, the value of the CURRENT SCHEMA special

register is used as a qualifier for an unqualified type name. In static SQL

statements, the QUALIFIER precompile/bind option implicitly specifies the

qualifier for unqualified type names. An asterisk (*) can be used in place of

type-name to identify the explicit grant on all existing and future methods

for all existing and future types in the schema. Revoking the privilege

using an asterisk for method and type-name does not revoke any privileges

that were granted on a specific method or on all methods for a specific

type.

procedure-designator

Uniquely identifies the procedure.

PROCEDURE schema.*

Identifies the explicit grant for all the existing and future procedures in the

schema. Revoking the schema.* privilege does not revoke any privileges that

were granted on a specific procedure. In dynamic SQL statements, if a schema

is not specified, the schema in the CURRENT SCHEMA special register will be

used. In static SQL statements, if a schema is not specified, the schema in the

QUALIFIER precompile/bind option will be used.

FROM

Specifies from whom the EXECUTE privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the EXECUTE privilege from PUBLIC.

BY ALL

Revokes the EXECUTE privilege from all named users who were explicitly

granted the privilege, regardless of who granted it. This is the default behavior.

RESTRICT

Specifies that the EXECUTE privilege cannot be revoked if both of the

following are true (SQLSTATE 42893):

REVOKE (Routine Privileges)

852 SQL Reference, Volume 2

v The specified routine is used in a view, trigger, constraint, index extension,

SQL function, SQL method, transform group, or is referenced as the

SOURCE of a sourced function.

v The loss of the EXECUTE privilege would cause the owner of the view,

trigger, constraint, index extension, SQL function, SQL method, transform

group, or sourced function to no longer be able to execute the specified

routine.

Rules

v It is not possible to revoke the EXECUTE privilege on a function or method

defined with schema ’SYSIBM’ or ’SYSFUN’ (SQLSTATE 42832).

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.ROUTINEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v If a package depends on a routine (function, method, or procedure), and the

EXECUTE privilege on that routine is revoked from PUBLIC, a user, or a role,

the package becomes inoperative if the routine is a function or a method, and

the package becomes invalid if the routine is a procedure, unless the package

owner still holds the EXECUTE privilege on the routine. The package owner can

still hold the EXECUTE privilege if:

– The package owner was explicitly granted the EXECUTE privilege

– The package owner is a member of a role that holds the EXECUTE privilege

– The EXECUTE privilege was granted to PUBLIC

Because group privileges are not considered for static packages, the package

becomes inoperative (in the case of a function or a method) or invalid (in the

case of a procedure) even if a group to which the package owner belongs holds

the EXECUTE privilege.

Examples

Example 1: Revoke the EXECUTE privilege on function CALC_SALARY from user

JONES. Assume that there is only one function in the schema with function name

CALC_SALARY.

 REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES RESTRICT

Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from

all users at the current server.

 REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC RESTRICT

Example 3: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES from

HR (Human Resources). The function has two input parameters of type INTEGER

and CHAR(10), respectively. Assume that the schema has more than one function

named NEW_DEPT_HIRES.

REVOKE (Routine Privileges)

Statements 853

REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))

 FROM HR RESTRICT

Example 4: Revoke the EXECUTE privilege on method SET_SALARY for type

EMPLOYEE from user Jones.

 REVOKE EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE FROM JONES RESTRICT

REVOKE (Routine Privileges)

854 SQL Reference, Volume 2

REVOKE (Schema Privileges)

This form of the REVOKE statement revokes the privileges on a schema.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

��

REVOKE

�

 ,

ALTERIN

CREATEIN

DROPIN

ON SCHEMA

schema-name

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

ALTERIN

Revokes the privilege to alter or comment on objects in the schema.

CREATEIN

Revokes the privilege to create objects in the schema.

DROPIN

Revokes the privilege to drop objects in the schema.

ON SCHEMA schema-name

Specifies the name of the schema on which privileges are to be revoked.

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

REVOKE (Schema Privileges)

Statements 855

The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.SCHEMAAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds a higher level authority such as

DBADM.

Examples

Example 1: Given that USER4 is only a user and not a group, revoke the privilege

to create objects in schema DEPTIDX from the user USER4.

 REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

Example 2: Revoke the privilege to drop objects in schema LUNCH from the user

CHEF and the group WAITERS.

 REVOKE DROPIN ON SCHEMA LUNCH

 FROM USER CHEF, GROUP WAITERS

REVOKE (Schema Privileges)

856 SQL Reference, Volume 2

REVOKE (Security Label)

This form of the REVOKE statement revokes a label-based access control (LBAC)

security label.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

�� REVOKE SECURITY LABEL security-label-name �

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

��

Description

SECURITY LABEL security-label-name

Revokes the security label security-label-name. The name must be qualified with

a security policy (SQLSTATE 42704) and must identify a security label that

exists at the current server (SQLSTATE 42704), and that is held by

authorization-name (SQLSTATE 42504).

FROM

Specifies from whom the specified security label is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name. The role name

must exist at the current server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

REVOKE (Security Label)

Statements 857

– For all rows for the specified object in the SYSCAT.SECURITYLABELACCESS

catalog view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke the security label EMPLOYEESECLABEL, which is part of the

security policy DATA_ACCESS, from user WALID.

 REVOKE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

 FROM USER WALID

REVOKE (Security Label)

858 SQL Reference, Volume 2

REVOKE (Sequence Privileges)

This form of the REVOKE statement revokes privileges on a sequence.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared. However, if the bind option DYNAMICRULES BIND

applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

��

REVOKE

�

 ,

ALTER

USAGE

ON SEQUENCE

sequence-name

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

RESTRICT

��

Description

ALTER

Revokes the privilege to change the properties of a sequence or to restart

sequence number generation using the ALTER SEQUENCE statement.

USAGE

Revokes the privilege to reference a sequence using nextval-expression or

prevval-expression.

ON SEQUENCE sequence-name

Identifies the sequence on which the specified privileges are to be revoked. The

sequence name, including an implicit or explicit schema qualifier, must

uniquely identify an existing sequence at the current server. If no sequence by

this name exists, an error is returned (SQLSTATE 42704).

FROM

Specifies from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

REVOKE (Sequence Privileges)

Statements 859

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the specified privileges from PUBLIC.

RESTRICT

This optional keyword indicates that the statement will fail if any objects

depend on the privilege being revoked.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.SEQUENCEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking a privilege on a sequence from the authorization ID under which a

package was bound will cause the package to become invalid if the

authorization ID does not continue to hold the privilege on the sequence

through different means; for example, through membership in a role that holds

the privilege.

v Revoking a specific privilege does not necessarily remove the ability to perform

an action. A user can proceed if other privileges are held by PUBLIC or by a

group to which the user belongs, or if the user has a higher level of authority,

such as DBADM.

Examples

Example 1: Revoke the USAGE privilege on a sequence called GENERATE_ID from

user ENGLES. There is one row in the SYSCAT.SEQUENCEAUTH catalog view for

this sequence and grantee, and the GRANTEETYPE value is U.

 REVOKE USAGE ON SEQUENCE GENERATE_ID FROM ENGLES

Example 2: Revoke alter privileges on sequence GENERATE_ID that were

previously granted to all local users. (Grants to specific users are not affected.)

 REVOKE ALTER ON SEQUENCE GENERATE_ID FROM PUBLIC

Example 3: Revoke all privileges on sequence GENERATE_ID from users PELLOW

and MLI, and from group PLANNERS.

 REVOKE ALTER, USAGE ON SEQUENCE GENERATE_ID

 FROM USER PELLOW, USER MLI, GROUP PLANNERS

REVOKE (Sequence Privileges)

860 SQL Reference, Volume 2

REVOKE (Server Privileges)

This form of the REVOKE statement revokes the privilege to access and use a

specified data source in pass-through mode.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

�� REVOKE PASSTHRU ON SERVER server-name FROM �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

SERVER server-name

Names the data source for which the privilege to use in pass-through mode is

being revoked. server-name must identify a data source that is described in the

catalog.

FROM

Specifies from whom the privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes from PUBLIC the privilege to pass through to server-name.

REVOKE (Server Privileges)

Statements 861

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.PASSTHRUAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Examples

Example 1: Revoke USER6’s privilege to pass through to data source MOUNTAIN.

 REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

Example 2: Revoke group D024’s privilege to pass through to data source

EASTWING.

 REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will no longer be able to use their group ID to pass

through to EASTWING. But if any members have the privilege to pass through to

EASTWING under their own user IDs, they will retain this privilege.

REVOKE (Server Privileges)

862 SQL Reference, Volume 2

REVOKE (SETSESSIONUSER Privilege)

This form of the REVOKE statement revokes one or more SETSESSIONUSER

privileges from one or more authorization IDs.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SECADM authority.

Syntax

��

�

 ,

REVOKE SETSESSIONUSER ON

USER

session-authorization-name

FROM

PUBLIC

�

�

�

 ,

USER

authorization-name

GROUP

��

Description

SETSESSIONUSER ON

Revokes the privilege to assume the identity of a new authorization ID.

USER session-authorization-name

Specifies the authorization ID that the authorization-name is able to assume,

using the SET SESSION AUTHORIZATION statement. The

session-authorization-name must identify a user that the authorization-name can

assume, not a group (SQLSTATE 42504).

PUBLIC

Specifies that all privileges to set the session authorization will be revoked.

FROM

Specifies from whom the privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

authorization-name,...

Lists the authorization IDs of one or more users or groups.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

REVOKE (SETSESSIONUSER Privilege)

Statements 863

Examples

Example 1: User PAUL holds the privilege to set the session authorization to

WALID and therefore to execute SQL statements as user WALID. The following

statement revokes that privilege.

 REVOKE SETSESSIONUSER ON USER WALID

 FROM USER PAUL

Example 2: User GUYLAINE holds the privilege to set the session authorization to

BOBBY, RICK, or KEVIN and therefore to execute SQL statements as BOBBY,

RICK, or KEVIN. The following statement revokes the privilege to use two of those

authorization IDs. After this statement executes, GUYLAINE will only be able to

set the session authorization to KEVIN.

 REVOKE SETSESSIONUSER ON USER BOBBY, USER RICK

 FROM USER GUYLAINE

Example 3: The group ACCTG and user WALID can set session authorization to

any authorization ID. The following statement revokes that privilege from both

ACCTG and WALID.

 REVOKE SETSESSIONUSER ON PUBLIC

 FROM USER WALID, GROUP ACCTG

REVOKE (SETSESSIONUSER Privilege)

864 SQL Reference, Volume 2

REVOKE (Table Space Privileges)

This form of the REVOKE statement revokes the USE privilege on a table space.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

DBADM, SYSCTRL, or SYSADM authority.

Syntax

�� REVOKE USE OF TABLESPACE tablespace-name FROM �

�

�

 ,

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

USE

Revokes the privilege to specify or default to the table space when creating a

table.

OF TABLESPACE tablespace-name

Specifies the table space on which the USE privilege is to be revoked. The table

space cannot be SYSCATSPACE (SQLSTATE 42838) or a SYSTEM

TEMPORARY table space (SQLSTATE 42809).

FROM

Indicates from whom the USE privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name

Lists the authorization IDs of one or more users, groups, or roles.

 The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

REVOKE (Table Space Privileges)

Statements 865

PUBLIC

Revokes the USE privilege from PUBLIC.

BY ALL

Revokes the privilege from all named users who were explicitly granted that

privilege, regardless of who granted it. This is the default behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.TBSPACEAUTH catalog

view where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v Revoking the USE privilege does not necessarily revoke the ability to create

tables in that table space. A user may still be able to create tables in that table

space if the USE privilege is held by PUBLIC or a group, or if the user has a

higher level authority, such as DBADM.

Examples

Example 1: Revoke the privilege to create tables in table space PLANS from the

user BOBBY.

 REVOKE USE OF TABLESPACE PLANS FROM USER BOBBY

REVOKE (Table Space Privileges)

866 SQL Reference, Volume 2

REVOKE (Table, View, or Nickname Privileges)

This form of the REVOKE statement revokes privileges on a table, view, or

nickname.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v CONTROL privilege on the referenced table, view, or nickname

v SYSADM or DBADM authority

DBADM or SYSADM authority is required to revoke the CONTROL privilege, or

to revoke privileges on catalog tables and views.

Syntax

��

REVOKE

�

 PRIVILEGES

ALL

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

ON
 TABLE

table-name

view-name

nickname

�

�

�

 ,

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

BY ALL

��

Description

ALL or ALL PRIVILEGES

Revokes all privileges (except CONTROL) held by an authorization-name for

the specified tables, views, or nicknames.

 If ALL is not used, one or more of the keywords listed below must be used.

Each keyword revokes the privilege described, but only as it applies to the

tables, views, or nicknames named in the ON clause. The same keyword must

not be specified more than once.

REVOKE (Table, View, or Nickname Privileges)

Statements 867

ALTER

Revokes the privilege to add columns to the base table definition; create or

drop a primary key or unique constraint on the table; create or drop a foreign

key on the table; add/change a comment on the table, view, or nickname;

create or drop a check constraint; create a trigger; add, reset, or drop a column

option for a nickname; or, change nickname column names or data types.

CONTROL

Revokes the ability to drop the table, view, or nickname, and the ability to

execute the RUNSTATS utility on the table and indexes.

 Revoking CONTROL privilege from an authorization-name does not revoke

other privileges granted to the user on that object.

DELETE

Revokes the privilege to delete rows from the table, updatable view, or

nickname.

INDEX

Revokes the privilege to create an index on the table or an index specification

on the nickname. The creator of an index or index specification automatically

has the CONTROL privilege over the index or index specification (authorizing

the creator to drop the index or index specification). In addition, the creator

retains this privilege even if the INDEX privilege is revoked.

INSERT

Revokes the privileges to insert rows into the table, updatable view, or

nickname, and to run the IMPORT utility.

REFERENCES

Revokes the privilege to create or drop a foreign key referencing the table as

the parent. Any column level REFERENCES privileges are also revoked.

SELECT

Revokes the privilege to retrieve rows from the table or view, to create a view

on a table, and to run the EXPORT utility against the table or view.

 Revoking SELECT privilege may cause some views to be marked inoperative.

(For information on inoperative views, see “CREATE VIEW”.)

UPDATE

Revokes the privilege to update rows in the table, updatable view, or

nickname. Any column level UPDATE privileges are also revoked.

ON TABLE table-name or view-name or nickname

Specifies the table, view, or nickname on which privileges are to be revoked.

The table-name cannot be a declared temporary table (SQLSTATE 42995).

FROM

Indicates from whom the privileges are revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group name.

ROLE

Specifies that the authorization-name identifies a role name.

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

REVOKE (Table, View, or Nickname Privileges)

868 SQL Reference, Volume 2

The list of authorization IDs cannot include the authorization ID of the

user issuing the statement (SQLSTATE 42502).

PUBLIC

Revokes the privileges from PUBLIC.

BY ALL

Revokes each named privilege from all named users who were explicitly

granted those privileges, regardless of who granted them. This is the default

behavior.

Rules

v For each authorization-name specified, if neither USER, GROUP, nor ROLE is

specified, then:

– For all rows for the specified object in the SYSCAT.TABAUTH and

SYSCAT.COLAUTH catalog views where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of ’U’, USER is assumed.

- If all rows have a GRANTEETYPE of ’G’, GROUP is assumed.

- If all rows have a GRANTEETYPE of ’R’, ROLE is assumed.

- If all rows do not have the same value for GRANTEETYPE, an error is

returned (SQLSTATE 56092).

Notes

v If a privilege is revoked from the authorization-name that is the owner of the view

(as recorded in the OWNER column in SYSCAT.VIEWS), that privilege is also

revoked from any dependent views.

v If the owner of the view loses a SELECT privilege on some object on which the

view definition depends (or an object upon which the view definition depends is

dropped, or made inoperative in the case of another view), the view will be

made inoperative.

However, if a DBADM or SYSADM explicitly revokes all privileges on the view

from the owner, then the record of the OWNER will not appear in

SYSCAT.TABAUTH but nothing will happen to the view - it remains operative.

v Privileges on inoperative views cannot be revoked.

v A package might become invalid when the authorization ID under which the

package was bound loses a privilege on an object on which the package

depends. The privilege can be lost in one of the following ways:

– The privilege is revoked from the authorization ID

– The privilege is revoked from a role of which the authorization ID is a

member

– The privilege is revoked from PUBLIC

A package remains invalid until a bind or rebind operation on the application is

successfully executed, or the application is executed and the database manager

successfully rebinds the application (using information stored in the catalogs).

Packages marked invalid due to a revoke may be successfully rebound without

any additional grants.

For example, if a package owned by USER1 contains a SELECT from table T1,

and the SELECT privilege on table T1 is revoked from USER1, the package will

be marked invalid. If SELECT authority is granted again, or if the user holds

DBADM authority, the package is successfully rebound when executed.

Another example is a package owned by USER1, who is a member of role R1.

The package contains a SELECT from table T1, and the SELECT privilege on

REVOKE (Table, View, or Nickname Privileges)

Statements 869

table T1 is revoked from role R1. The package will be marked invalid, assuming

USER1 does not hold the SELECT privilege on table T1 by other means.

v Packages, triggers or views that include the use of OUTER(Z) in the FROM

clause, are dependent on having SELECT privilege on every subtable or subview

of Z. Similarly, packages, triggers, or views that include the use of DEREF(Y)

where Y is a reference type with a target table or view Z, are dependent on

having SELECT privilege on every subtable or subview of Z. Such packages

might become invalid, and such triggers or views made inoperative when the

authorization ID under which the packages were bound, or the owner of the

triggers or views loses the SELECT privilege. The SELECT privilege can be lost

in one of the following ways:

– SELECT privilege is revoked from the authorization ID

– SELECT privilege is revoked from a role of which the authorization ID is a

member

– SELECT privilege is revoked from PUBLIC
v Table, view, or nickname privileges cannot be revoked from an authorization-name

with CONTROL on the object without also revoking the CONTROL privilege

(SQLSTATE 42504).

v Revoking a specific privilege does not necessarily revoke the ability to perform

the action. A user can proceed with a task if other privileges are held by

PUBLIC, a group, or a role, or if the user holds privileges such as ALTERIN on

the schema of a table or a view.

v If the owner of the materialized query table loses a SELECT privilege on a table

on which the materialized query table definition depends (or a table upon which

the materialized query table definition depends is dropped), the materialized

query table will be dropped.

However, if a DBADM or SYSADM explicitly revokes all privileges on the

materialized query table from the owner, then the record in SYSTABAUTH for

the OWNER will be deleted, but nothing will happen to the materialized query

table - it remains operative.

v Revoking nickname privileges has no affect on data source object (table or view)

privileges.

v Revoking the SELECT privilege for a table or view that is directly or indirectly

referenced in an SQL function or method body may fail if the SQL function or

method body cannot be dropped because some other object is dependent on it

(SQLSTATE 42893).

v Revoking the SELECT privilege causes an SQL function or method body to be

dropped when:

– The owner of the SQL function or method body loses the SELECT privilege

on some object on which the SQL function or method body definition

depends; note that the privilege can be lost because of a revoke from PUBLIC

or from a role of which the owner is a member

– An object on which the SQL function or method body definition depends is

dropped

However, the revoke fails if another object depends on the function or method

(SQLSTATE 42893).

Examples

Example 1: Revoke SELECT privilege on table EMPLOYEE from user ENGLES.

There is one row in the SYSCAT.TABAUTH catalog view for this table and grantee

and the GRANTEETYPE value is U.

REVOKE (Table, View, or Nickname Privileges)

870 SQL Reference, Volume 2

REVOKE SELECT

 ON TABLE EMPLOYEE

 FROM ENGLES

Example 2: Revoke update privileges on table EMPLOYEE previously granted to

all local users. Note that grants to specific users are not affected.

 REVOKE UPDATE

 ON EMPLOYEE

 FROM PUBLIC

Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and

MLI and from group PLANNERS.

 REVOKE ALL

 ON EMPLOYEE

 FROM USER PELLOW, USER MLI, GROUP PLANNERS

Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a

user named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for

this table and grantee and the GRANTEETYPE value is U.

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM JOHN

or

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result in

an error, since the privilege was not previously granted to GROUP JOHN.

Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a

group named JOHN. There is one row in the SYSCAT.TABAUTH catalog view for

this table and grantee and the GRANTEETYPE value is G.

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM JOHN

or

 REVOKE SELECT

 ON CORPDATA.EMPLOYEE FROM GROUP JOHN

Example 6: Revoke user SHAWN’s privilege to create an index specification on

nickname ORAREM1.

 REVOKE INDEX

 ON ORAREM1 FROM USER SHAWN

REVOKE (Table, View, or Nickname Privileges)

Statements 871

REVOKE (Workload Privileges)

This form of the REVOKE statement revokes the USAGE privilege on a workload.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.

Syntax

�� REVOKE USAGE ON WORKLOAD workload-name �

�

�

 ,

BY ALL

FROM

authorization-name

USER

GROUP

ROLE

PUBLIC

��

Description

USAGE

Revokes the privilege to use a workload.

ON WORKLOAD workload-name

Identifies the workload on which the USAGE privilege is to be revoked. This is

a one-part name. The workload-name must identify a workload that exists at the

current server (SQLSTATE 42704). The name cannot be

’SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

FROM

Specifies from whom the USAGE privilege is revoked.

USER

Specifies that the authorization-name identifies a user.

GROUP

Specifies that the authorization-name identifies a group.

ROLE

Specifies that the authorization-name identifies an existing role at the current

server (SQLSTATE 42704).

authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles. The list

of authorization IDs cannot include the authorization ID of the user issuing

the statement (SQLSTATE 42502).

REVOKE (Workload Privileges)

872 SQL Reference, Volume 2

PUBLIC

Revokes the USAGE privilege from PUBLIC.

BY ALL

Revokes the USAGE privilege from all named users who were explicitly

granted that privilege, regardless of who granted it. This is the default

behavior.

Rules

v For each authorization-name specified, if none of the keywords USER, GROUP, or

ROLE is specified, then for all rows for the specified object in the

SYSCAT.WORKLOADAUTH catalog view where the grantee is

authorization-name:

– If GRANTEETYPE is ’U’, USER is assumed.

– If GRANTEETYPE is ’G’, GROUP is assumed.

– If GRANTEETYPE is ’R’, ROLE is assumed.

– If GRANTEETYPE does not have the same value, an error is returned

(SQLSTATE 56092.

Notes

v The REVOKE statement does not take effect until it is committed, even for the

connection that issues the statement.

Example

Revoke the privilege to use the workload CAMPAIGN from user LISA.

 REVOKE USAGE ON WORKLOAD CAMPAIGN FROM USER LISA

REVOKE (Workload Privileges)

Statements 873

REVOKE (XSR Object Privileges)

This form of the REVOKE statement revokes USAGE privilege on an XSR object.

Invocation

The REVOKE statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared only if the DYNAMICRULES run behavior is in effect for

the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:

v SYSADM or DBADM

Syntax

��

REVOKE USAGE ON

XSROBJECT

xsrobject-name

FROM

PUBLIC
 BY ALL

��

Description

ON XSROBJECT xsrobject-name

This name identifies the XSR object for which the USAGE privilege is revoked.

The xsrobject-name, including the implicit or explicit schema qualifier, must

uniquely identify an existing XSR object at the current server. If no XSR object

by this name exists in the specified schema, an error is raised (SQLSTATE

42704).

FROM PUBLIC

Revokes the USAGE privilege from PUBLIC.

BY ALL

Revokes each named privilege from all users who were explicitly granted those

privileges, regardless of who granted them. This is the default behavior.

Example

Revoke usage privileges on the XML schema MYSCHEMA from PUBLIC:

 REVOKE USAGE ON XSROBJECT MYSCHEMA FROM PUBLIC

REVOKE (XSR Object Privileges)

874 SQL Reference, Volume 2

ROLLBACK

The ROLLBACK statement is used to back out of the database changes that were

made within a unit of work or a savepoint.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 WORK

ROLLBACK

TO SAVEPOINT

savepoint-name

��

Description

The unit of work in which the ROLLBACK statement is executed is terminated and

a new unit of work is initiated. All changes made to the database during the unit

of work are backed out.

The following statements, however, are not under transaction control, and changes

made by them are independent of the ROLLBACK statement:

v SET CONNECTION

v SET CURRENT DEFAULT TRANSFORM GROUP

v SET CURRENT DEGREE

v SET CURRENT EXPLAIN MODE

v SET CURRENT EXPLAIN SNAPSHOT

v SET CURRENT LOCK TIMEOUT

v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

v SET CURRENT PACKAGESET

v SET CURRENT QUERY OPTIMIZATION

v SET CURRENT REFRESH AGE

v SET ENCRYPTION PASSWORD

v SET EVENT MONITOR STATE

v SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control,

the passthru session initiated by the statement is under transaction control.

v SET PATH

v SET SCHEMA

v SET SERVER OPTION

ROLLBACK

Statements 875

The generation of sequence and identity values is not under transaction control.

Values generated and consumed by the nextval-expression or by inserting rows into

a table that has an identity column are independent of issuing the ROLLBACK

statement. Also, issuing the ROLLBACK statement does not affect the value

returned by the prevval-expression, nor the IDENTITY_VAL_LOCAL function.

Modification of the values of global variables is not under transaction control.

ROLLBACK statements do not affect the values assigned to global variables.

TO SAVEPOINT

Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be

performed. If no savepoint is active in the current savepoint level (see the

“Rules” section in the description of the SAVEPOINT statement), an error is

returned (SQLSTATE 3B502). After a successful rollback, the savepoint

continues to exist, but any nested savepoints are released and no longer exist.

The nested savepoints, if any, are considered to have been rolled back and then

released as part of the rollback to the current savepoint. If a savepoint-name is

not provided, rollback occurs to the most recently set savepoint within the

current savepoint level.

 If this clause is omitted, the ROLLBACK statement rolls back the entire

transaction. Furthermore, savepoints within the transaction are released.

savepoint-name

Specifies the savepoint that is to be used in the rollback operation. The

specified savepoint-name cannot begin with ’SYS’ (SQLSTATE 42939). After a

successful rollback operation, the named savepoint continues to exist. If the

savepoint name does not exist, an error (SQLSTATE 3B001) is returned. Data

and schema changes made since the savepoint was set are undone.

Notes

v All locks held are released on a ROLLBACK of the unit of work. All open

cursors are closed. All LOB locators are freed.

v Executing a ROLLBACK statement does not affect either the SET statements that

change special register values or the RELEASE statement.

v If the program terminates abnormally, the unit of work is implicitly rolled back.

v Statement caching is affected by the rollback operation.

v The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends

on the statements within the savepoint

– If the savepoint contains DDL on which a cursor is dependent, the cursor is

marked invalid. Attempts to use such a cursor results in an error (SQLSTATE

57007).

– Otherwise:

- If the cursor is referenced in the savepoint, the cursor remains open and is

positioned before the next logical row of the result table. (A FETCH must

be performed before a positioned UPDATE or DELETE statement is issued.)

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it

remains open and positioned).
v Dynamically prepared statement names are still valid, although the statement

may be implicitly prepared again, as a result of DDL operations that are rolled

back within the savepoint.

v A ROLLBACK TO SAVEPOINT operation will drop any declared temporary

tables named within the savepoint. If a declared temporary table is modified

within the savepoint, then all rows in the table are deleted.

ROLLBACK

876 SQL Reference, Volume 2

v All locks are retained after a ROLLBACK TO SAVEPOINT statement.

v All LOB locators are preserved following a ROLLBACK TO SAVEPOINT

operation.

Example

Delete the alterations made since the last commit point or rollback.

 ROLLBACK WORK

ROLLBACK

Statements 877

SAVEPOINT

Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation

This statement can be imbedded in an application program (including a stored

procedure) or issued interactively. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

�� SAVEPOINT savepoint-name

UNIQUE
 ON ROLLBACK RETAIN CURSORS �

�
 ON ROLLBACK RETAIN LOCKS

��

Description

savepoint-name

Specifies the name of a savepoint. The specified savepoint-name cannot begin

with ’SYS’ (SQLSTATE 42939). If a savepoint by this name has already been

defined as UNIQUE within this savepoint level, an error is returned

(SQLSTATE 3B501).

UNIQUE

Specifies that the application does not intend to reuse this savepoint name

while the savepoint is active within the current savepoint level. If

savepoint-name already exists within this savepoint level, an error is returned

(SQLSTATE 3B501).

ON ROLLBACK RETAIN CURSORS

Specifies system behavior upon rollback to this savepoint with respect to open

cursor statements processed after the SAVEPOINT statement. This clause

indicates that, whenever possible, the cursors are unaffected by a rollback to

savepoint operation. For situations where the cursors are affected by the

rollback to savepoint, see “ROLLBACK”.

ON ROLLBACK RETAIN LOCKS

Specifies system behavior upon rollback to this savepoint with respect to locks

acquired after the setting of the savepoint. Locks acquired since the savepoint

are not tracked, and are not rolled back (released) upon rollback to the

savepoint.

Rules

v Savepoint-related statements must not be used within trigger definitions

(SQLSTATE 42987).

v A new savepoint level starts when one of the following occurs:

– A new unit of work (UOW) starts.

– A procedure defined with the NEW SAVEPOINT LEVEL clause is called.

SAVEPOINT

878 SQL Reference, Volume 2

– An atomic compound SQL statement starts.
v A savepoint level ends when the event that caused its creation is finished or

removed. When a savepoint level ends, all savepoints contained within it are

released. Any open cursors, DDL actions, or data modifications are inherited by

the parent savepoint level (that is, the savepoint level within which the one that

just ended was created), and are subject to any savepoint-related statements

issued against the parent savepoint level.

v The following rules apply to actions within a savepoint level:

– Savepoints can only be referenced within the savepoint level in which they

are established. You cannot release, destroy, or roll back to a savepoint

established outside of the current savepoint level.

– All active savepoints established within the current savepoint level are

automatically released when the savepoint level ends.

– The uniqueness of savepoint names is only enforced within the current

savepoint level. The names of savepoints that are active in other savepoint

levels can be reused in the current savepoint level without affecting those

savepoints in other savepoint levels.

Notes

v Once a SAVEPOINT statement has been issued, insert, update, or delete

operations on nicknames are not allowed.

v Omitting the UNIQUE clause specifies that savepoint-name can be reused within

the savepoint level by another savepoint. If a savepoint of the same name

already exists within the savepoint level, the existing savepoint is destroyed and

a new savepoint with the same name is created at the current point in

processing. The new savepoint is considered to be the last savepoint established

by the application. Note that the destruction of a savepoint through the reuse of

its name by another savepoint simply destroys that one savepoint and does not

release any savepoints established after the destroyed savepoint. These

subsequent savepoints can only be released by means of the RELEASE

SAVEPOINT statement, which releases the named savepoint and all savepoints

established after the named savepoint.

v If the UNIQUE clause is specified, savepoint-name can only be reused after an

existing savepoint with the same name has been released.

v Within a savepoint, if a utility, SQL statement, or DB2 command performs

intermittent commits during processing, the savepoint will be implicitly released.

v If the SET INTEGRITY statement is rolled back within the savepoint,

dynamically prepared statement names are still valid, although the statement

might be implicitly prepared again.

v If inserts are buffered (that is, the application was precompiled with the INSERT

BUF option), the buffer will be flushed when SAVEPOINT, ROLLBACK, or

RELEASE TO SAVEPOINT statements are issued.

Example

Example 1: Perform a rollback operation for nested savepoints. First, create a table

named DEPARTMENT. Insert a row before starting SAVEPOINT1; insert another

row and start SAVEPOINT2; then, insert a third row and start SAVEPOINT3.

 CREATE TABLE DEPARTMENT (

 DEPTNO CHAR(6),

 DEPTNAME VARCHAR(20),

 MGRNO INTEGER)

 INSERT INTO DEPARTMENT VALUES (’A20’, ’MARKETING’, 301)

SAVEPOINT

Statements 879

SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES (’B30’, ’FINANCE’, 520)

 SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES (’C40’, ’IT SUPPORT’, 430)

 SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES (’R50’, ’RESEARCH’, 150)

At this point, the DEPARTMENT table exists with rows A20, B30, C40, and R50. If

you now issue:

 ROLLBACK TO SAVEPOINT SAVEPOINT3

row R50 is no longer in the DEPARTMENT table. If you then issue:

 ROLLBACK TO SAVEPOINT SAVEPOINT1

the DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was

established (B30 and C40) are no longer in the table.

SAVEPOINT

880 SQL Reference, Volume 2

SELECT INTO

The SELECT INTO statement produces a result table consisting of at most one row,

and assigns the values in that row to host variables. If the table is empty, the

statement assigns +100 to SQLCODE and ’02000’ to SQLSTATE and does not

assign values to the host variables. If more than one row satisfies the search

condition, statement processing is terminated, and an error occurs (SQLSTATE

21000).

Invocation

This statement can be embedded only in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v SELECT privilege on the table, view, or nickname

v CONTROL privilege on the table, view, or nickname

v SYSADM or DBADM authority

GROUP privileges are not checked for static SELECT INTO statements.

If the target of the SELECT INTO statement is a nickname, privileges on the object

at the data source are not considered until the statement is executed at the data

source. At this time, the authorization ID that is used to connect to the data source

must have the privileges that are required for the operation on the object at the

data source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

��

select-clause

INTO

�

 ,

host-variable

global-variable

from-clause

�

�
where-clause

group-by-clause

having-clause
 �

�
order-by-clause

fetch-first-clause

isolation-clause
 ��

Description

For a description of the select-clause, from-clause, where-clause, group-by-clause,

having-clause, order-by-clause, fetch-first-clause, and isolation-clause, see “Queries” in

the SQL Reference, Volume 1.

SELECT INTO

Statements 881

INTO

Introduces a list of host variables or global variables.

host-variable

Identifies a variable that is described in the program under the rules for

declaring host variables.

global-variable

Identifies a global variable that exists at the current server.

 The first value in the result row is assigned to the first variable in the list, the

second value to the second variable, and so on. If the number of variables is

less than the number of column values, the value ’W’ is assigned to the

SQLWARN3 field of the SQLCA.

Each assignment to a variable is made in sequence through the list. If an error

occurs, no value is assigned to any variable.

Rules

v Global variables cannot be assigned inside triggers, functions, methods, or

dynamic compound statements, or inside a procedure that is directly or

indirectly called by one of these objects (SQLSTATE 428GX).

Examples

Example 1: This C example puts the maximum salary in the EMP table into the host

variable MAXSALARY.

 EXEC SQL SELECT MAX(SALARY)

 INTO :MAXSALARY

 FROM EMP;

Example 2: This C example puts the row for employee 528671 (from the EMP table)

into host variables.

 EXEC SQL SELECT * INTO :h1, :h2, :h3, :h4

 FROM EMP

 WHERE EMPNO = ’528671’;

Example 3: This SQLJ example puts the row for employee 528671 (from the EMP

table) into host variables. That row will later be updated using a searched update,

and should be locked when the query executes.

 #sql { SELECT * INTO :FIRSTNAME, :LASTNAME, :EMPNO, :SALARY

 FROM EMP

 WHERE EMPNO = ’528671’

 WITH RS USE AND KEEP EXCLUSIVE LOCKS };

Example 4: This C example puts the maximum salary in the EMP table into the

global variable GV_MAXSALARY.

 EXEC SQL SELECT MAX(SALARY)

 INTO GV_MAXSALARY

 FROM EMP;

SELECT INTO

882 SQL Reference, Volume 2

SELECT

The SELECT statement is a form of query. It can be embedded in an application

program or issued interactively.

SELECT

Statements 883

SET COMPILATION ENVIRONMENT

The SET COMPILATION ENVIRONMENT statement changes the current

compilation environment in the connection to match the values contained in the

compilation environment provided by an event monitor. This statement changes

the values of one or more special registers; these changes, in turn, will affect the

compilation of any subsequent dynamic SQL statement.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program. It is an executable

statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

COMPILATION ENVIRONMENT

host-variable

��

Description

host-variable

A variable of type BLOB containing a compilation environment provided by an

event monitor. It cannot be set to null. If host-variable has an associated

indicator variable, the value of that indicator variable must not indicate a null

value (SQLSTATE 42815). If the format of the compilation environment is

incorrect, an error is returned, and the connection settings remain unmodified

(SQLSTATE 51040).

Notes

v To reset the compilation environment to the original default values, terminate

and then restart the connection. You can achieve the same effect by issuing this

statement within an SQL routine, so that any special register changes are not

reflected in the connection upon return from that routine.

v Use the COMPILATION_ENV table function to look at the individual elements

that are contained within the compilation environment.

Examples

Example 1: Set the current session’s compilation environment to the values

contained in a compilation environment that was previously captured by a

deadlock event monitor. A deadlock event monitor that is created specifying the

WITH DETAILS HISTORY option will capture the compilation environment for

dynamic SQL statements. This captured environment is what is accepted as input

to the statement.

 SET COMPILATION ENVIRONMENT = :hv1

SET COMPILATION ENVIRONMENT

884 SQL Reference, Volume 2

SET CONNECTION

The SET CONNECTION statement changes the state of a connection from dormant

to current, making the specified location the current server. It is not under

transaction control.

Invocation

Although an interactive SQL facility might provide an interface that gives the

appearance of interactive execution, this statement can only be embedded within

an application program. It is an executable statement that cannot be dynamically

prepared.

Authorization

None required.

Syntax

�� SET CONNECTION server-name

host-variable
 ��

Description

server-name or host-variable

Identifies the application server by the specified server-name or a host-variable

which contains the server-name.

 If a host-variable is specified, it must be a character string variable with a length

attribute that is not greater than 8, and it must not include an indicator

variable. The server-name that is contained within the host-variable must be

left-justified and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server.

It must be listed in the application requester’s local directory.

The server-name or the host-variable must identify an existing connection of the

application process. If they do not identify an existing connection, an error

(SQLSTATE 08003) is raised.

If SET CONNECTION is to the current connection, the states of all connections

of the application process are unchanged.

Successful Connection

If the SET CONNECTION statement executes successfully:

v No connection is made. The CURRENT SERVER special register is updated

with the specified server-name.

v The previously current connection, if any, is placed into the dormant state

(assuming a different server-name is specified).

v The CURRENT SERVER special register and the SQLCA are updated in the

same way as documented under “CONNECT (Type 1)”.

Unsuccessful Connection

If the SET CONNECTION statement fails:

v No matter what the reason for failure, the connection state of the application

process and the states of its connections are unchanged.

SET CONNECTION

Statements 885

v As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the

SQLCA is set to the name of the module that detected the error.

Notes

v The use of type 1 CONNECT statements does not preclude the use of SET

CONNECTION, but the statement will always fail (SQLSTATE 08003), unless the

SET CONNECTION statement specifies the current connection, because dormant

connections cannot exist.

v The SQLRULES(DB2) connection option (see “Options that Govern Distributed

Unit of Work Semantics”) does not preclude the use of SET CONNECTION, but

the statement is unnecessary, because type 2 CONNECT statements can be used

instead.

v When a connection is used, made dormant, and then restored to the current

state in the same unit of work, that connection reflects its last use by the

application process with regard to the status of locks, cursors, and prepared

statements.

Examples

Execute SQL statements at IBMSTHDB, execute SQL statements at IBMTOKDB,

and then execute more SQL statements at IBMSTHDB.

 EXEC SQL CONNECT TO IBMSTHDB;

 /* Execute statements referencing objects at IBMSTHDB */

 EXEC SQL CONNECT TO IBMTOKDB;

 /* Execute statements referencing objects at IBMTOKDB */

 EXEC SQL SET CONNECTION IBMSTHDB;

 /* Execute statements referencing objects at IBMSTHDB */

Note that the first CONNECT statement creates the IBMSTHDB connection, the

second CONNECT statement places it in the dormant state, and the SET

CONNECTION statement returns it to the current state.

SET CONNECTION

886 SQL Reference, Volume 2

SET CURRENT DECFLOAT ROUNDING MODE

The SET CURRENT DECFLOAT ROUNDING MODE statement verifies that the

specified rounding mode is the value that is currently set for the CURRENT

DECFLOAT ROUNDING MODE special register.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

None required.

Syntax

��
 =

SET CURRENT DECFLOAT ROUNDING MODE

ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_EVEN

ROUND_HALF_UP

string-constant

host-variable

��

Description

ROUND_CEILING

Round the value towards positive infinity. If all of the discarded digits are zero

or if the sign is negative, the result is unchanged (except for the removal of the

discarded digits). Otherwise, the result coefficient is incremented by 1.

ROUND_DOWN

Round the value towards 0 (truncation). The discarded digits are ignored.

ROUND_FLOOR

Round the value towards negative infinity. If all of the discarded digits are

zero or if the sign is positive, the result is unchanged (except for the removal

of the discarded digits). Otherwise, the sign is negative and the result

coefficient is incremented by 1.

ROUND_HALF_EVEN

Round the value to the nearest value. If the values are equidistant, round the

value so that the final digit is even. If the discarded digits represent more than

half of the value of a number in the next left position, the result coefficient is

incremented by 1. If they represent less than half, the result coefficient is not

adjusted (that is, the discarded digits are ignored). Otherwise, the result

coefficient is unaltered if its rightmost digit is even, or incremented by 1 if its

rightmost digit is odd (to make an even digit).

ROUND_HALF_UP

Round the value to the nearest value. If the values are equidistant, round the

value up. If the discarded digits represent half or more than half of the value

of a number in the next left position, the result coefficient is incremented by 1.

Otherwise, the discarded digits are ignored.

SET CURRENT DECFLOAT ROUNDING MODE

Statements 887

string-constant

A character string constant with a maximum length of 15 bytes, after trailing

blanks have been removed. The value must be a left-justified string that

specifies one of the five rounding mode keywords (case insensitive).

host-variable

A variable of type CHAR or VARCHAR. The value of the host variable must

be a left-justified string that specifies one of the five rounding mode keywords

(case insensitive). The actual length of the contents of host-variable must not be

greater than 15 bytes, after trailing blanks have been removed. The value must

be padded on the right with blanks when using a fixed-length character host

variable. The host variable cannot be set to the null value.

Rules

v The specified rounding mode value must be the same as the value of the

CURRENT DECFLOAT ROUNDING MODE special register (SQLSTATE 42815).

Notes

v This statement does not change the value of the CURRENT DECFLOAT

ROUNDING MODE special register on a DB2 for Linux, UNIX, and Windows

server. However, when the statement is processed by a DB2 for z/OS server or a

DB2 for i5/OS server, it can be used to change the value of the CURRENT

DECFLOAT ROUNDING MODE special register on that server.

Example

Example 1: The following statement verifies whether the specified rounding mode

value for the client matches the rounding mode value that is currently set on the

server.

 SET CURRENT DECFLOAT ROUNDING MODE = ROUND_CEILING

SET CURRENT DECFLOAT ROUNDING MODE

888 SQL Reference, Volume 2

SET CURRENT DEFAULT TRANSFORM GROUP

The SET CURRENT DEFAULT TRANSFORM GROUP statement changes the value

of the CURRENT DEFAULT TRANSFORM GROUP special register. This statement

is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 CURRENT

SET

DEFAULT TRANSFORM GROUP
 =

group-name

��

Description

group-name

Specifies a one-part name that identifies a transform group defined for all

structured types. This name can be referenced in subsequent statements (or

until the special register value is changed again using another SET CURRENT

DEFAULT TRANSFORM GROUP statement).

 The name must be an SQL identifier, up to 128 bytes in length (SQLSTATE

42815). No validation that the group-name is defined for any structured type is

made when the special register is set. Only when a structured type is

specifically referenced is the definition of the named transform group checked

for validity.

Rules

v If the value specified does not conform to the rules for a group-name, an error is

raised (SQLSTATE 42815)

v The TO SQL and FROM SQL functions defined in the group-name transform

group are used for exchanging user-defined structured type data with a host

program.

Notes

v The initial value of the CURRENT DEFAULT TRANSFORM GROUP special

register is the empty string.

Examples

Example 1: Set the default transform group to MYSTRUCT1. The TO SQL and

FROM SQL functions defined in the MYSTRUCT1 transform group will be used

for exchanging user-defined structured type variables with the current host

program.

 SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

SET CURRENT DEFAULT TRANSFORM GROUP

Statements 889

SET CURRENT DEGREE

The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE

special register. This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

CURRENT

DEGREE

string-constant

host-variable

��

Description

The value of CURRENT DEGREE is replaced by the value of the string constant or

host variable. The value must be a character string that is not longer than 5 bytes.

The value must be the character string representation of an integer between 1 and

32 767 inclusive or ’ANY’.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL

statement is dynamically prepared, the execution of that statement will not use

intra-partition parallelism.

If the value of CURRENT DEGREE is a number when an SQL statement is

dynamically prepared, the execution of that statement can involve intra-partition

parallelism with the specified degree.

If the value of CURRENT DEGREE is ’ANY’ when an SQL statement is

dynamically prepared, the execution of that statement can involve intra-partition

parallelism using a degree determined by the database manager.

host-variable

The host-variable must be of data type CHAR or VARCHAR and the length

must not exceed 5. If a longer field is provided, an error will be returned

(SQLSTATE 42815). If the actual value provided is larger than the replacement

value specified, the input must be padded on the right with blanks. Leading

blanks are not allowed (SQLSTATE 42815). All input values are treated as

being case-insensitive. If a host-variable has an associated indicator variable, the

value of that indicator variable must not indicate a null value (SQLSTATE

42815).

string-constant

The string-constant length must not exceed 5.

SET CURRENT DEGREE

890 SQL Reference, Volume 2

Notes

The degree of intra-partition parallelism for static SQL statements can be controlled

using the DEGREE option of the PREP or BIND command.

The actual runtime degree of intra-partition parallelism will be the lower of:

v Maximum query degree (max_querydegree) configuration parameter

v Application runtime degree

v SQL statement compilation degree

The intra_parallel database manager configuration parameter must be on to use

intra-partition parallelism. If it is set to off, the value of this register will be

ignored and the statement will not use intra-partition parallelism for the purpose

of optimization (SQLSTATE 01623).

Some SQL statements cannot use intra-partition parallelism.

Example

Example 1: The following statement sets the CURRENT DEGREE to inhibit

intra-partition parallelism.

 SET CURRENT DEGREE = ’1’

Example 2: The following statement sets the CURRENT DEGREE to allow

intra-partition parallelism.

 SET CURRENT DEGREE = ’ANY’

SET CURRENT DEGREE

Statements 891

SET CURRENT EXPLAIN MODE

The SET CURRENT EXPLAIN MODE statement changes the value of the

CURRENT EXPLAIN MODE special register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET CURRENT EXPLAIN MODE

NO

YES

EXPLAIN

REOPT

RECOMMEND INDEXES

EVALUATE INDEXES

RECOMMEND PARTITIONINGS

EVALUATE PARTITIONINGS

host-variable

��

Description

NO

Disables the Explain facility. No Explain information is captured. NO is the

initial value of the special register.

YES

Enables the Explain facility and causes Explain information to be inserted into

the Explain tables for eligible dynamic SQL statements. All dynamic SQL

statements are compiled and executed normally.

EXPLAIN

Enables the Explain facility and causes Explain information to be captured for

any eligible dynamic SQL statement that is prepared. However, dynamic

statements are not executed.

REOPT

Enables the Explain facility and causes Explain information to be captured for

a static or dynamic SQL statement during statement reoptimization at

execution time; that is, when actual values for the host variables, special

registers, global variables, or parameter markers are available.

RECOMMEND INDEXES

Enables the SQL compiler to recommend indexes. All queries that are executed

in this explain mode will populate the ADVISE_INDEX table with

recommended indexes. In addition, Explain information will be captured in the

Explain tables to reveal how the recommended indexes are used, but the

statements are neither compiled nor executed.

EVALUATE INDEXES

Enables the SQL compiler to evaluate indexes. The indexes to be evaluated are

SET CURRENT EXPLAIN MODE

892 SQL Reference, Volume 2

read from the ADVISE_INDEX table, and must be marked with EVALUATE =

Y. The optimizer generates virtual indexes based on the values from the

catalogs. All queries that are executed in this explain mode will be compiled

and optimized using estimated statistics based on the virtual indexes. The

statements are not executed.

RECOMMEND PARTITIONINGS

Specifies that the compiler is to recommend the best database partition for each

table that is accessed by a specific query. The best database partitions are then

written to an ADVISE_PARTITION table. The query is not executed.

EVALUATE PARTITIONINGS

Specifies that the compiler is to obtain the estimated performance of a query

using the virtual database partitions specified in the ADVISE_PARTITION

table.

host-variable

The host-variable must be of data type CHAR or VARCHAR and the length

must not exceed 254. If a longer field is provided, an error will be returned

(SQLSTATE 42815). The value specified must be NO, YES, EXPLAIN,

RECOMMEND INDEXES, or EVALUATE INDEXES. If the actual value

provided is larger than the replacement value specified, the input must be

padded on the right with blanks. Leading blanks are not allowed (SQLSTATE

42815). All input values are treated as being case-insensitive. If a host-variable

has an associated indicator variable, the value of that indicator variable must

not indicate a null value (SQLSTATE 42815).

Notes

v The Explain facility uses the following IDs as the schema when qualifying

Explain tables that it is populating:

– The session authorization ID for dynamic SQL

– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point

to a set of Explain tables under a different schema. If no Explain tables are

found under the schema, the Explain facility checks for Explain tables under the

SYSTOOLS schema and attempts to use those tables.

v Explain information for static SQL statements can be captured by using the

EXPLAIN option of the PREP or BIND command. If the ALL value of the

EXPLAIN option is specified, and the CURRENT EXPLAIN MODE register

value is NO, explain information will be captured for dynamic SQL statements

at run time. If the value of the CURRENT EXPLAIN MODE register is not NO,

the value of the EXPLAIN bind option is ignored.

v RECOMMEND INDEXES and EVALUATE INDEXES are special modes which

can only be set with the SET CURRENT EXPLAIN MODE statement. These

modes cannot be set using PREP or BIND options, and they do not work with

the SET CURRENT EXPLAIN SNAPSHOT statement.

v If the Explain facility is activated, the current authorization ID must have

INSERT privilege for the Explain tables, or an error (SQLSTATE 42501) is raised.

v When SQL statements are explained from a routine, the routine must be defined

with an SQL data access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

v If the special register is set to REOPT, and the SQL statement does not qualify

for reoptimization at execution time (that is, if the statement does not have input

variables, or if the REOPT bind option is set to NONE), then no Explain

information will be captured. If the REOPT bind option is set to ONCE, Explain

information will be captured only once when the statement is initially

SET CURRENT EXPLAIN MODE

Statements 893

reoptimized. After the statement is cached, no further Explain information will

be acquired for this statement on subsequent executions.

v If the Explain facility is enabled, the REOPT bind option is set to ONCE, and

you attempt to execute an SQL statement that is already cached, the statement

will be compiled and reoptimized with the current values of the input variables,

and the Explain tables will be populated accordingly. The newly generated

access plan for this statement will not be cached or executed. Other applications

that are concurrently executing this cached statement will continue to execute,

and new requests to execute this statement will pick up the already cached

access plan.

v A value of REOPT for the CURRENT EXPLAIN MODE and CURRENT

EXPLAIN SNAPSHOT special registers will override the value of the EXPLAIN

and EXPLSNAP bind options at bind time if a static or dynamic SQL statement

has input variables, and the REOPT bind option is set to ONCE or ALWAYS.

Example

The following statement sets the CURRENT EXPLAIN MODE special register, so

that Explain information will be captured for any subsequent eligible dynamic SQL

statements and the statement will not be executed.

 SET CURRENT EXPLAIN MODE = EXPLAIN

SET CURRENT EXPLAIN MODE

894 SQL Reference, Volume 2

SET CURRENT EXPLAIN SNAPSHOT

The SET CURRENT EXPLAIN SNAPSHOT statement changes the value of the

CURRENT EXPLAIN SNAPSHOT special register. It is not under transaction

control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET CURRENT EXPLAIN SNAPSHOT

NO

YES

EXPLAIN

REOPT

host-variable

��

Description

NO

Disables the Explain snapshot facility. No snapshot is taken. NO is the initial

value of the special register.

YES

Enables the Explain snapshot facility, creating a snapshot of the internal

representation for each eligible dynamic SQL statement. This information is

inserted in the SNAPSHOT column of the EXPLAIN_STATEMENT table.

 The EXPLAIN SNAPSHOT facility is intended for use with Visual Explain.

EXPLAIN

Enables the Explain snapshot facility, creating a snapshot of the internal

representation for each eligible dynamic SQL statement that is prepared.

However, dynamic statements are not executed.

REOPT

Enables the Explain facility and causes Explain information to be captured for

a static or dynamic SQL statement during statement reoptimization at

execution time; that is, when actual values for the host variables, special

registers, global variables, or parameter markers are available.

host-variable

The host-variable must be of data type CHAR or VARCHAR and the length of

its contents must not exceed 8. If a longer field is provided, an error will be

returned (SQLSTATE 42815). The value contained in this register must be either

NO, YES, or EXPLAIN. If the actual value provided is larger than the

replacement value specified, the input must be padded on the right with

blanks. Leading blanks are not allowed (SQLSTATE 42815). All input values are

treated as being case-insensitive. If host-variable has an associated indicator

variable, the value of that indicator variable must not indicate a null value

(SQLSTATE 42815).

SET CURRENT EXPLAIN SNAPSHOT

Statements 895

Notes

v The Explain facility uses the following IDs as the schema when qualifying

Explain tables that it is populating:

– The session authorization ID for dynamic SQL

– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point

to a set of Explain tables under a different schema. If no Explain tables are

found under the schema, the Explain facility checks for Explain tables under the

SYSTOOLS schema and attempts to use those tables.

v Explain snapshots for static SQL statements can be captured by using the

EXPLSNAP option of the PREP or BIND command. If the ALL value of the

EXPLSNAP option is specified, and the CURRENT EXPLAIN SNAPSHOT

register value is NO, Explain snapshots will be captured for dynamic SQL

statements at run time. If the value of the CURRENT EXPLAIN SNAPSHOT

register is not NO, the EXPLSNAP option is ignored.

v If the Explain snapshot facility is activated, the current authorization ID must

have INSERT privilege for the Explain tables or an error (SQLSTATE 42501) is

raised.

v When SQL statements are explained from a routine, the routine must be defined

with an SQL data access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

v If the special register is set to REOPT, and the SQL statement does not qualify

for reoptimization at execution time (that is, if the statement does not have input

variables, or if the REOPT bind option is set to NONE), then no Explain

information will be captured. If the REOPT bind option is set to ONCE, Explain

snapshot information will be captured only once when the statement is initially

reoptimized. After the statement is cached, no further Explain information will

be acquired for this statement on subsequent executions.

v If the Explain facility is enabled, the REOPT bind option is set to ONCE, and

you attempt to execute a reoptimizable SQL statement that is already cached, the

statement will be compiled and reoptimized with the current values of the input

variables, and the Explain snapshot will be captured accordingly. The newly

generated access plan for this statement will not be cached or executed. Other

applications that are concurrently executing this cached statement will continue

to execute, and new requests to execute this statement will pick up the already

cached access plan.

v The value REOPT for the CURRENT EXPLAIN MODE and CURRENT

EXPLAIN SNAPSHOT special registers will override the value of the EXPLAIN

and EXPLSNAP bind options at bind time if a static or dynamic SQL statement

has input variables, and the REOPT bind option is set to ONCE or ALWAYS.

Examples

Example 1: The following statement sets the CURRENT EXPLAIN SNAPSHOT

special register, so that an Explain snapshot will be taken for any subsequent

eligible dynamic SQL statements and the statement will be executed.

 SET CURRENT EXPLAIN SNAPSHOT = YES

Example 2: The following example retrieves the current value of the CURRENT

EXPLAIN SNAPSHOT special register into the host variable called SNAP.

 EXEC SQL VALUES (CURRENT EXPLAIN SNAPSHOT) INTO :SNAP;

SET CURRENT EXPLAIN SNAPSHOT

896 SQL Reference, Volume 2

SET CURRENT FEDERATED ASYNCHRONY

The SET CURRENT FEDERATED ASYNCHRONY statement assigns a value to the

CURRENT FEDERATED ASYNCHRONY special register. It is not under

transaction control.

Invocation

The statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

CURRENT

FEDERATED ASYNCHRONY

ANY

integer-constant

host-variable

��

Description

ANY

Specifies a CURRENT FEDERATED ASYNCHRONY value of -1, which means

that the execution of statements can involve asynchrony using a degree that is

determined by the database manager.

integer-constant

Specifies an integer value between 0 and 32 767, inclusive. The execution of

statements can involve asynchrony using the specified degree. If the value is 0

when an SQL statement is dynamically prepared, the execution of that

statement will not use asynchrony.

host-variable

A variable of type INTEGER. The value must be between 0 and 32 767,

inclusive, or -1 (representing ANY). If host-variable has an associated indicator

variable, the value of that indicator variable must not indicate a null value

(SQLSTATE 42815).

Notes

v The degree of asynchrony for static SQL statements can be controlled using the

FEDERATED_ASYNCHRONY option of the PREP or BIND command.

v The initial value of the CURRENT FEDERATED ASYNCHRONY special register

is determined by the federated_async database manager configuration

parameter if the dynamic statement is issued through the command line

processor (CLP). The initial value is determined by the

FEDERATED_ASYNCHRONY bind option if the dynamic statement is part of an

application that is being bound.

SET CURRENT FEDERATED ASYNCHRONY

Statements 897

Examples

Example 1: The following statement disables asynchrony by setting the value of the

CURRENT FEDERATED ASYNCHRONY special register to 0.

 SET CURRENT FEDERATED ASYNCHRONY = 0

Example 2: The following statement sets the degree of asynchrony to 5.

 SET CURRENT FEDERATED ASYNCHRONY 5

Example 3: The following statement sets the value of the CURRENT FEDERATED

ASYNCHRONY special register to -1, which specifies that the database manager is

to determine the degree of asynchrony.

 SET CURRENT FEDERATED ASYNCHRONY ANY

SET CURRENT FEDERATED ASYNCHRONY

898 SQL Reference, Volume 2

SET CURRENT IMPLICIT XMLPARSE OPTION

The SET CURRENT IMPLICIT XMLPARSE OPTION statement changes the value

of the CURRENT IMPLICIT XMLPARSE OPTION special register. This statement is

not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

CURRENT IMPLICIT XMLPARSE OPTION

string-constant

host-variable

��

Description

string-constant

A character string constant. The value must be a left justified string that is

either ’PRESERVE WHITESPACE’ or ’STRIP WHITESPACE’ (case insensitive)

with no additional blank characters between the keywords.

host-variable

A variable of type CHAR or VARCHAR. The value of the host variable must

be a left justified string that is either ’PRESERVE WHITESPACE’ or ’STRIP

WHITESPACE’ (case insensitive) with no additional blank characters between

the keywords. The value must be padded on the right with blanks when using

a fixed-length character host-variable. The host variable cannot be set to null.

Notes

v The initial value of the CURRENT IMPLICIT XMLPARSE OPTION special

register is ’STRIP WHITESPACE’.

v Both dynamic and static SQL statements are affected by this special register.

Example

Set the value of the CURRENT IMPLICIT XMLPARSE OPTION special register to

’PRESERVE WHITESPACE’.

 SET CURRENT IMPLICIT XMLPARSE OPTION = ’PRESERVE WHITESPACE’

SET CURRENT IMPLICIT XMLPARSE OPTION

Statements 899

SET CURRENT ISOLATION

The SET CURRENT ISOLATION statement assigns a value to the CURRENT

ISOLATION special register. This statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 CURRENT =

SET

ISOLATION

UR

CS

RR

RS

RESET

��

Description

The value of the CURRENT ISOLATION special register is replaced by the

specified value or set to blanks if RESET is specified.

Notes

v Compatibilities

– The following syntax is also supported:

- TO can be specified in place of the equal sign (=)

- DIRTY READ can be specified in place of UR

- READ UNCOMMITTED can be specified in place of UR

- READ COMMITTED is recognized and upgraded to CS

- CURSOR STABILITY can be specified in place of CS

- REPEATABLE READ can be specified in place of RR

- SERIALIZABLE can be specified in place of RR

SET CURRENT ISOLATION

900 SQL Reference, Volume 2

SET CURRENT LOCK TIMEOUT

The SET CURRENT LOCK TIMEOUT statement changes the value of the

CURRENT LOCK TIMEOUT special register. It is not under transaction control.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 CURRENT =

SET

LOCK TIMEOUT

WAIT

NOT WAIT

NULL

WAIT

integer-constant

host-variable

��

Description

The specified value must be an integer between -1 and 32767, inclusive (SQLSTATE

428B7), or the null value.

WAIT

Specifies a CURRENT LOCK TIMEOUT value of -1, which means that the

database manager is to wait until a lock is released, or a deadlock is detected

(SQLSTATE 40001 or SQLSTATE 57033).

NOT WAIT

Specifies a CURRENT LOCK TIMEOUT value of 0, which means that the

database manager is not to wait for locks that cannot be obtained, and an error

(SQLSTATE 40001 or SQLSTATE 57033) will be returned.

NULL

Specifies that the CURRENT LOCK TIMEOUT value is to be unset, and that

the value of the locktimeout database configuration parameter is to be used

when waiting for a lock. The value that is returned for the special register will

change as the value of locktimeout changes.

WAIT integer-constant

Specifies an integer value between -1 and 32767. A value of -1 is equivalent to

specifying the WAIT keyword without an integer value. A value of 0 is

equivalent to specifying the NOT WAIT clause. If the value is between 1 and

32767, the database manager will wait that number of seconds (if a lock cannot

be obtained) before an error (SQLSTATE 40001 or SQLSTATE 57033) is

returned.

host-variable

A variable of type INTEGER. The value must be between -1 and 32767. If

host-variable has an associated indicator variable, and the value of that indicator

SET CURRENT LOCK TIMEOUT

Statements 901

variable specifies a null value, the CURRENT LOCK TIMEOUT value is unset.

This is equivalent to specifying the NULL keyword.

Notes

v An updated value of the special register takes effect immediately upon

successful execution of this statement. Because the special register value that is

to be used during statement execution is fixed at the beginning of statement

execution, an updated value of the CURRENT LOCK TIMEOUT special register

will only be returned by statements that start execution after the SET LOCK

TIMEOUT statement has completed successfully.

v Compatibilities

– For compatibility with Informix:

- MODE can be specified in place of TIMEOUT.

- TO can be specified in place of the equals (=) operator.

- SET LOCK WAIT can be specified in place of SET CURRENT LOCK

TIMEOUT WAIT.

- SET LOCK NO WAIT can be specified in place of SET CURRENT LOCK

TIMEOUT NOT WAIT.

Examples

Example 1: Set the lock timeout value to wait for 30 seconds before returning an

error.

 SET CURRENT LOCK TIMEOUT 30

Example 2: Unset the lock timeout value, so that the locktimeout database

configuration parameter value will be used instead.

 SET CURRENT LOCK TIMEOUT NULL

SET CURRENT LOCK TIMEOUT

902 SQL Reference, Volume 2

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement

changes the value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��

SET

CURRENT MAINTAINED
 TABLE

TYPES
 FOR OPTIMIZATION =

�

�

�

 ALL

NONE

host-variable

,

FEDERATED_TOOL

SYSTEM

USER

TABLE

FOR OPTIMIZATION

CURRENT MAINTAINED

TYPES

 ��

Description

ALL

Specifies that all possible types of maintained tables controlled by this special

register, now and in the future, are to be considered when optimizing the

processing of dynamic SQL queries.

NONE

Specifies that none of the object types that are controlled by this special

register are to be considered when optimizing the processing of dynamic SQL

queries.

FEDERATED_TOOL

Specifies that refresh-deferred materialized query tables that are maintained by

a federated tool can be considered to optimize the processing of dynamic SQL

queries, provided the value of the CURRENT QUERY OPTIMIZATION special

register is 2 or greater than 5.

SYSTEM

Specifies that system-maintained refresh-deferred materialized query tables can

be considered to optimize the processing of dynamic SQL queries. (Immediate

materialized query tables are always available.)

USER

Specifies that user-maintained refresh-deferred materialized query tables can be

considered to optimize the processing of dynamic SQL queries.

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Statements 903

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register before this statement executes.

host-variable

A variable of type CHAR or VARCHAR. The length of the contents of the host

variable must not exceed 254 bytes (SQLSTATE 42815). It cannot be set to null.

If host-variable has an associated indicator variable, the value of that indicator

variable must not indicate a null value (SQLSTATE 42815).

 The characters of host-variable must be left justified. The contents of host-variable

must be a string that is a comma-separated list of keywords matching what

can be specified as keywords for the special register. These keywords must be

specified in the exact case intended, because there is no conversion to

uppercase characters. The value must be padded on the right with blanks if its

length is less than that of the host variable.

Notes

v The initial value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register is SYSTEM.

v The CURRENT REFRESH AGE special register must be set to a value other than

zero for the specified table types to be considered when optimizing the

processing of dynamic SQL queries.

Examples

Example 1: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

special register.

 SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION SYSTEM = USER

Example 2: Retrieve the current value of the CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION special register into a host variable called

CURMAINTYPES.

 EXEC SQL VALUES (CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION)

 INTO :CURMAINTYPES

Example 3: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

special register to have no value.

 SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = NONE

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

904 SQL Reference, Volume 2

SET CURRENT MDC ROLLOUT MODE

The SET CURRENT MDC ROLLOUT MODE statement assigns a value to the

CURRENT MDC ROLLOUT MODE special register. The value specifies the type of

rollout cleanup that is to be performed on qualifying DELETE statements for

multidimensional clustering (MDC) tables.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

�� SET CURRENT MDC ROLLOUT MODE NONE

IMMEDIATE

DEFERRED

host-variable

 ��

Description

NONE

Specifies that MDC rollout optimization during delete operations is not to be

used. The DELETE statement is processed in the same way as a DELETE

statement that does not qualify for rollout.

IMMEDIATE

Specifies that MDC rollout optimization is to be used if the DELETE statement

qualifies. If the table has RID indexes, the indexes are updated immediately

during delete processing. The deleted blocks are available for reuse after the

transaction commits.

DEFERRED

Specifies that MDC rollout optimization is to be used if the DELETE statement

qualifies. If the table has RID indexes, index updates are deferred until after

the transactions commits. With this option, delete processing is faster and uses

less log space, but the deleted blocks are not available for reuse until after the

index updates are complete.

host-variable

A variable of type VARCHAR. The length of host-variable must be less than or

equal to 17 bytes (SQLSTATE 42815). The value of the host variable must be a

left-justified string that is one of ’NONE’, ’IMMEDIATE’, or ’DEFERRED’ (case

insensitive). If host-variable has an associated indicator variable, the value of

that indicator variable must not indicate a null value (SQLSTATE 42815).

Notes

v Subsequent DELETE statements that are eligible for rollout processing respect

the setting of the CURRENT MDC ROLLOUT MODE special register. Currently

executing sections are not affected by a change to this special register.

SET CURRENT MDC ROLLOUT MODE

Statements 905

v The effects of executing the SET CURRENT MDC ROLLOUT MODE statement

are not rolled back if the unit of work in which the statement is executed is

rolled back.

Example

Specify deferred cleanup behavior for the next DELETE statement that qualifies for

rollout processing.

 SET CURRENT MDC ROLLOUT MODE IMMEDIATE

SET CURRENT MDC ROLLOUT MODE

906 SQL Reference, Volume 2

SET CURRENT OPTIMIZATION PROFILE

The SET CURRENT OPTIMIZATION PROFILE statement assigns a value to the

CURRENT OPTIMIZATION PROFILE special register. The value specifies the

optimization profile the optimizer should use when preparing dynamic DML

statements. The statement is not under transaction control.

When the statement is evaluated, the name of the optimization profile is checked

for validity, but the profile is not processed until the optimizer encounters a

dynamic DML statement.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET CURRENT OPTIMIZATION PROFILE

optimization-profile-name

host-variable

string-constant

NULL

��

Description

optimization-profile-name

The two-part name of the optimization profile. The name can be specified with

a literal, host variable, or special register. The name specified is the name

entered into the CURRENT OPTIMIZATION PROFILE special register.

 If the specified optimization-profile-name is unqualified, the value of the

CURRENT DEFAULT SCHEMA register is used as the implicit qualifier. The

default value of the special register is null.

host-variable

A variable of type CHAR or VARCHAR that includes the name of the

optimization profile. A host variable that includes a null indicator indicates

that the value of the OPTPROFILE bind option is to be used if that value is

specified for the current package. A host variable of zero length, or of white

space only, indicates that no optimization profile is to be used.

 The host variable must meet the following characteristics:

v The content of the string is a single or two-part identifier (separated by a

period), with no leading blanks.

v The identifier or identifiers can be delimited or non-delimited.

v The content of the string is not folded to upper case.

v Lower case and special characters cannot be used in non-delimited strings.

SET CURRENT OPTIMIZATION PROFILE

Statements 907

v If the first character is a double quotation mark, a closing double quotation

mark must either precede a period or be the last non-blank character in the

string.

v If the first character following a period is a double quotation mark, then a

double quotation mark must be the last non-blank character in the string.

v If the identifier is delimited, then to include double quotation marks in the

identifier, specify the character twice.

v Any period that is not inside a delimited identifier is treated as a separator,

and only one period separator can exist in the string.

string-constant

Specifies a constant as a character string that is the name of the optimization

profile. The content of a string constant must meet the same characteristics as a

host variable.

NULL

Sets the CURRENT OPTIMIZATION PROFILE register to null.

Table 34 provides examples of string literals and identifiers that might be used to

assign the register as per the optimization profile naming rules. The value in the

SCHEMA and NAME column represent an optimization profile name as it might

appear in the OPT_PROFILE table. The valid string literals column shows string

literals that match the optimization profile named by the corresponding SCHEMA

and NAME column values. The valid identifiers column shows identifiers that

would identify that same optimization profile.

 Table 34. Examples of string literals and identifiers

SCHEMA NAME Valid string literals Valid identifiers

SIMMEN BIG_PROF ’BIG_PROF’

’SIMMEN.BIG_PROF’

’″BIG_PROF″’

’″SIMMEN″.″BIG_PROF″’

BIG_PROF

SIMMEN.BIG_PROF

″BIG_PROF″

″SIMMEN″.″BIG_PROF″

SIMMEN low_profile ’″low_profile″’

’SIMMEN.″low_profile″’

’″SIMMEN″.″low_profile″’

″low_profile″

SIMMEN.″low_profile″

″SIMMEN″.″low_profile″

eliaz DBA3 ’DBA3’

’″DBA3″’

’″eliaz″.DBA3’

’″eliaz″.″DBA3″’

DBA3

″eliaz″.DBA3

″eliaz″.″DBA3″

SNOW PROFILE1.0 ’″PROFILE1.0″’

’SNOW.″PROFILE1.0″’

’″SNOW″.″PROFILE1.0″’

″PROFILE1.0″

SNOW.″PROFILE1.0″

″SNOW″.″PROFILE1.0″

Notes

v If the value of the register specifies the name of an existing optimization profile,

the specified optimization profile is used when preparing subsequent dynamic

DML statements.

SET CURRENT OPTIMIZATION PROFILE

908 SQL Reference, Volume 2

v If the value of the register is null, the optimization profile specified by the

OPTPROFILE bind option, if any, is used when preparing subsequent dynamic

DML statements.

v If the value of the register is null, and the OPTPROFILE bind option is not set,

no optimization profile is used when preparing subsequent dynamic DML

statements.

v If the value of the register is the empty string (“”), then no optimization profile

is used when preparing subsequent dynamic DML statements, regardless of

whether the OPTPROFILE bind option is set.

v Subsequent changes to CURRENT DEFAULT SCHEMA do not have any effect

on the optimization profile. The CURRENT OPTIMIZATION PROFILE register

value is set with the two part name that is in effect at the time SET CURRENT

OPTIMIZATION PROFILE statement is evaluated. Only another SET CURRENT

OPTIMIZATION PROFILE statement can change the optimization profile that is

used.

Examples

Example 1: The optimization profile RICK.FOO is used for statements 1, 2, and 3.

TOM.FOO is used for statement 4.

 SET CURRENT SCHEMA = ’RICK’

 SET CURRENT OPTIMIZATION PROFILE = ’FOO’

 statement 1

 statement 2

 SET CURRENT SCHEMA = ’TOM’

 statement 3

 SET CURRENT OPTIMIZATION PROFILE = ’FOO’

 statement 4

Example 2: An application with the following statements was bound with the

options OPTPROFILE(″Foo″) and QUALIFIER(″John″). The optimization profile

KAAREL.BAR is used for statement 1 and optimization profile ″John″.″Foo″ is used

for statement 2.

 SET CURRENT SCHEMA = ’KAAREL’

 SET CURRENT OPTIMIZATION PROFILE = ’BAR’

 statement 1

 SET CURRENT SCHEMA = "Tom"

 SET CURRENT OPTIMIZATION PROFILE NULL

 statement 2

Example 3: The empty string is a special value that indicates that no optimization

profile is to be used. Optimization profile ″Hamid″.″Foo″ is used for statement 1

and no optimization profile is used for statement 2.

 SET CURRENT OPTIMIZATION PROFILE = ’"Hamid"."Foo"’

 statement 1

 SET CURRENT OPTIMIZATION PROFILE = ’’

 statement 2

SET CURRENT OPTIMIZATION PROFILE

Statements 909

SET CURRENT PACKAGE PATH

The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT

PACKAGE PATH special register. It is not under transaction control.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��

=

SET CURRENT PACKAGE PATH

�

 ,

schema-name

CURRENT PACKAGE PATH

CURRENT PATH

CURRENT_PATH

CURRENT USER

CURRENT_USER

SESSION_USER

SYSTEM_USER

USER

host-variable

string-constant

��

Description

schema-name

Identifies a schema. The name must not be a delimited identifier that is empty

or that contains only blanks (SQLSTATE 42815).

CURRENT PACKAGE PATH

The value of the CURRENT PACKAGE PATH special register before this

statement executes.

CURRENT PATH

The value of the CURRENT PATH special register.

CURRENT USER

The value of the CURRENT USER special register.

SESSION_USER

The value of the SESSION_USER special register.

SYSTEM_USER

The value of the SYSTEM_USER special register.

USER

The value of the USER special register.

host-variable

Contains one or more schema names, separated by commas. The host variable

must:

SET CURRENT PACKAGE PATH

910 SQL Reference, Volume 2

v Be a character-string variable (CHAR or VARCHAR). The actual length of

the contents of the host variable must not exceed the length of the

CURRENT PACKAGE PATH special register.

v Not be the null value. If an indicator variable is provided, its value must not

indicate a null value.

v Contain an empty or blank string, or one or more schema names separated

by commas.

v Be padded on the right with blanks if the actual length of the host variable

is greater than the content.

v Not contain CURRENT PACKAGE PATH, CURRENT PATH,

CURRENT_PATH, CURRENT USER, CURRENT_USER, SESSION_USER,

SYSTEM_USER, PATH, or USER.

v Not contain a delimited identifier that is empty or that contains only blanks.

string-constant

Specifies a character string constant that contains zero, one, or more schema

names that are separated by commas. The string constant must:

v Have a length that does not exceed the maximum length of the CURRENT

PACKAGE PATH special register.

v Not contain CURRENT PACKAGE PATH, CURRENT PATH,

CURRENT_PATH, CURRENT USER, CURRENT_USER, SESSION_USER,

SYSTEM_USER, PATH, or USER.

v Not contain a delimited identifier that is empty or that contains only blanks.

Rules

v If the same schema appears more than once in the list, the first occurrence of the

schema is used (SQLSTATE 01625).

v The number of schemas that can be specified is limited by the total length of the

CURRENT PACKAGE PATH special register. The special register string is built

by taking each specified schema name and removing trailing blanks, delimiting

the name with double quotation marks, and separating the schema names with

commas. The length of the resulting list cannot exceed the maximum length of

the special register (SQLSTATE 0E000).

v A schema name that does not conform to the rules for an ordinary identifier (for

example, a schema name that contains lowercase characters or characters that

cannot be specified in an ordinary identifier), must be specified as a delimited

schema name, and must not be specified within a host variable or string

constant.

v To indicate that the current value of a special register (specified as a single

keyword) is to be used in the package path, specify the name of the special

register as a keyword. If the name of the special register is specified as a

delimited identifier instead (for example, ″USER″), it is interpreted as a schema

name of that value (’USER’).

v The following rules are used to determine whether a value specified in a SET

CURRENT PACKAGE PATH statement is a variable or a schema name:

– If name is the same as a parameter or SQL variable in the SQL procedure,

name is interpreted as a parameter or SQL variable, and the value in name is

assigned to the package path.

– If name is not the same as a parameter or SQL variable in the SQL procedure,

name is interpreted as a schema name, and the value in name is assigned to

the package path.

SET CURRENT PACKAGE PATH

Statements 911

Notes

v Transaction Considerations: The SET CURRENT PACKAGE PATH statement is

not a commitable operation. ROLLBACK has no effect on the CURRENT

PACKAGE PATH special register.

v Existence Checking of Schemas: No validation that the specified schemas exist is

made at the time that the CURRENT PACKAGE PATH special register is set. For

example, a schema that is misspelled is not detected, which could affect the way

subsequent SQL operates. At package execution time, authorization to a

matching package is checked, and if this authorization check fails, an error is

returned (SQLSTATE 42501).

v Contents of Host Variable or String Constant: The contents of a host variable or

a string constant are interpreted as a list of schema names. If multiple schema

names are specified, they must be separated by commas. Each schema name in

the list must conform to the rules for forming an ordinary identifier, or be

specified as a delimited identifier. The contents of the host variable or string

constant are not folded to uppercase.

v Restrictions specific to embedded SQL for COBOL applications: A maximum of

ten literal (non-host variable) values can appear on the right side of a SET

CURRENT PACKAGE PATH statement. Such values can have a maximum

length of 130 (non-delimited) or 128 (delimited).

Examples

Example 1: Set the CURRENT PACKAGE PATH special register to the following list

of schemas: MYPKGS, ’ABC E’, SYSIBM

 SET CURRENT PACKAGE PATH = MYPKGS, ’ABC E’, SYSIBM

The following statement sets a host variable to the value of the resulting list:

 SET :hvpklist = CURRENT PACKAGE PATH

The value of the host variable is: ″MYPKGS″, ″ABC E″, ″SYSIBM″.

Example 2: Set the CURRENT PACKAGE PATH special register to the following list

of schemas: ″SCH4″,″SCH5″, where :hvar1 contains ’SCH4,SCH5’.

 SET CURRENT PACKAGE PATH :hvar1

The value of the CURRENT PACKAGE PATH special register after this statement

executes is: ″SCH4″,″SCH5″.

Example 3: Set the CURRENT PACKAGE PATH special register to the following list

of schemas: ″SCH1″,″SCH#2″,″SCH3″,″SCH4″,″SCH5″, where :hvar1 contains

’SCH4,SCH5’.

 SET CURRENT PACKAGE PATH = SCH1,’SCH#2’,"SCH3",:hvar1

The value of the CURRENT PACKAGE PATH special register after this statement

executes is: ″SCH1″,″SCH#2″,″SCH3″,″SCH4″,″SCH5″.

Example 4: Clear the CURRENT PACKAGE PATH special register.

 SET CURRENT PACKAGE PATH = ’’

Example 5: Temporarily append the ″SCH_PROD″ schema (contained in the

:prodschema host variable) and the ″SCH_PROD2″ schema (contained in the

:prod2schema host variable) to the end of the CURRENT PACKAGE PATH special

SET CURRENT PACKAGE PATH

912 SQL Reference, Volume 2

register for execution of the SUMMARIZE procedure. Then, switch the CURRENT

PACKAGE PATH special register back to its previous value.

 SET :oldCPP = CURRENT PACKAGE PATH

 SET CURRENT PACKAGE PATH = CURRENT PACKAGE PATH,:prodschema,:prod2schema

 CALL SUMMARIZE(:V1,:V2)

 SET CURRENT PACKAGE PATH = :oldCPP

Example 6: Set the CURRENT PACKAGE PATH special register to a list of

delimited schema names: ″MY.SCHEMA″ (imbedded period), ″OLD SCHEMA″

(imbedded blank). Use a single host variable containing both delimited identifiers:

 hv = ’"MY.SCHEMA", "OLD SCHEMA"’

 SET CURRENT PACKAGE PATH = :hv

or use a single string constant containing both delimited identifiers:

 SET CURRENT PACKAGE PATH = ’"MY.SCHEMA", "OLD SCHEMA"’

or use a list of delimited schemas:

 SET CURRENT PACKAGE PATH = ’MY.SCHEMA’, ’OLD SCHEMA’

SET CURRENT PACKAGE PATH

Statements 913

SET CURRENT PACKAGESET

The SET CURRENT PACKAGESET statement sets the schema name (collection

identifier) that will be used to select the package to use for subsequent SQL

statements. This statement is not under transaction control.

Invocation

This statement can be embedded only in an application program. It is an

executable statement that cannot be dynamically prepared. This statement is not

supported in REXX.

Authorization

None required.

Syntax

��
 =

SET

CURRENT PACKAGESET

string-constant

host-variable

��

Description

string-constant

A character string constant. If the value exceeds 128 bytes, only the first 128

bytes are used.

host-variable

A variable of type CHAR or VARCHAR. It cannot be set to null. If the value

exceeds 128 bytes, only the first 128 bytes are used.

Notes

v This statement allows an application to specify the schema name used when

selecting a package for an executable SQL statement. The statement is processed

at the client and does not flow to the application server.

v The COLLECTION bind option can be used to create a package with a specified

schema name.

v Unlike DB2 for z/OS, the SET CURRENT PACKAGESET statement is

implemented without support for a special register called CURRENT

PACKAGESET.

Example

Assume an application called TRYIT is precompiled by user ID PRODUSA, making

’PRODUSA’ the default schema name in the bind file. The application is then

bound twice with different bind options. The following command line processor

commands were used:

 DB2 CONNECT TO SAMPLE USER PRODUSA

 DB2 BIND TRYIT.BND DATETIME USA

 DB2 CONNECT TO SAMPLE USER PRODEUR

 DB2 BIND TRYIT.BND DATETIME EUR COLLECTION ’PRODEUR’

SET CURRENT PACKAGESET

914 SQL Reference, Volume 2

This creates two packages called TRYIT. The first bind command created the

package in the schema named ’PRODUSA’. The second bind command created the

package in the schema named ’PRODEUR’ based on the COLLECTION option.

Assume the application TRYIT contains the following statements:

 EXEC SQL CONNECT TO SAMPLE;

 .

 .

 EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO=’000010’; 1

 .

 .

 EXEC SQL SET CURRENT PACKAGESET ’PRODEUR’; 2

 .

 .

 EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO=’000010’; 3

1 This statement will run using the PRODUSA.TRYIT package because it is

the default package for the application. The date is therefore returned in

USA format.

2 This statement sets the schema name to ’PRODEUR’ for package selection.

3 This statement will run using the PRODEUR.TRYIT package as a result of

the SET CURRENT PACKAGESET statement. The date is therefore

returned in EUR format.

SET CURRENT PACKAGESET

Statements 915

SET CURRENT QUERY OPTIMIZATION

The SET CURRENT QUERY OPTIMIZATION statement assigns a value to the

CURRENT QUERY OPTIMIZATION special register. The value specifies the

current class of optimization techniques enabled when preparing dynamic SQL

statements. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

CURRENT

QUERY

OPTIMIZATION

0

1

2

3

5

7

9

host-variable

��

Description

optimization-class

optimization-class can be specified either as an integer constant or as the name

of a host variable that will contain the appropriate value at run time. An

overview of the classes follows.

0 Specifies that a minimal amount of optimization is performed to

generate an access plan. This class is most suitable for simple dynamic

SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Version 1 is

performed to generate an access plan.

2 Specifies a level of optimization higher than that of DB2 Version 1, but

at significantly less optimization cost than levels 3 and above,

especially for very complex queries.

3 Specifies that a moderate amount of optimization is performed to

generate an access plan.

5 Specifies a significant amount of optimization is performed to generate

an access plan. For complex dynamic SQL queries, heuristic rules are

used to limit the amount of time spent selecting an access plan. Where

possible, queries will use materialized query tables instead of the

underlying base tables.

7 Specifies a significant amount of optimization is performed to generate

an access plan. Similar to 5 but without the heuristic rules.

SET CURRENT QUERY OPTIMIZATION

916 SQL Reference, Volume 2

9 Specifies a maximal amount of optimization is performed to generate

an access plan. This can greatly expand the number of possible access

plans that are evaluated. This class should be used to determine if a

better access plan can be generated for very complex and very

long-running queries using large tables. Explain and performance

measurements can be used to verify that a better plan has been

generated.

host-variable

The data type is INTEGER. The value must be in the range 0 to 9

(SQLSTATE 42815) but should be 0, 1, 2, 3, 5, 7, or 9. If host-variable has

an associated indicator variable, the value of that indicator variable

must not indicate a null value (SQLSTATE 42815).

Notes

v When the CURRENT QUERY OPTIMIZATION register is set to a particular

value, a set of query rewrite rules are enabled, and certain optimization

variables take on particular values. This class of optimization techniques is then

used during preparation of dynamic SQL statements.

v In general, changing the optimization class impacts the execution time of the

application, the compilation time, and resources required. Most statements will

be adequately optimized using the default query optimization class. Lower

query optimization classes, especially classes 1 and 2, may be appropriate for

dynamic SQL statements for which the resources consumed by the dynamic

PREPARE are a significant portion of those required to execute the query. Higher

optimization classes should be chosen only after considering the additional

resources that may be consumed and verifying that a better access plan has been

generated.

v Query optimization classes must be in the range 0 to 9. Classes outside this

range will return an error (SQLSTATE 42815). Unsupported classes within this

range will return a warning (SQLSTATE 01608) and will be replaced with the

next lowest query optimization class. For example, a query optimization class of

6 will be replaced by 5.

v Dynamically prepared statements use the class of optimization that was set by

the most recently executed SET CURRENT QUERY OPTIMIZATION statement.

In cases where a SET CURRENT QUERY OPTIMIZATION statement has not yet

been executed, the query optimization class is determined by the value of the

dft_queryopt database configuration parameter.

v Statically bound statements do not use the CURRENT QUERY OPTIMIZATION

special register; therefore this statement has no effect on them. The QUERYOPT

option is used during preprocessing or binding to specify the desired class of

optimization for statically bound statements. If QUERYOPT is not specified then,

the default value specified by the dft_queryopt database configuration

parameter is used.

v The results of executing the SET CURRENT QUERY OPTIMIZATION statement

are not rolled back if the unit of work in which it is executed is rolled back.

Examples

Example 1: This example shows how the highest degree of optimization can be

selected.

 SET CURRENT QUERY OPTIMIZATION 9

Example 2: The following example shows how the CURRENT QUERY

OPTIMIZATION special register can be used within a query.

SET CURRENT QUERY OPTIMIZATION

Statements 917

Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with

the same setting as the current value of the CURRENT QUERY OPTIMIZATION

special register.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES

 WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

SET CURRENT QUERY OPTIMIZATION

918 SQL Reference, Volume 2

SET CURRENT REFRESH AGE

The SET CURRENT REFRESH AGE statement changes the value of the CURRENT

REFRESH AGE special register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

CURRENT REFRESH AGE

numeric-constant

ANY

host-variable

��

Description

numeric-constant

A DECIMAL(20,6) value representing a timestamp duration. The value must be

0 or 99 999 999 999 999 (the microseconds portion of the value is ignored and

can therefore be any value).

ANY

This is a shorthand for 99 999 999 999 999.

host-variable

A variable of type DECIMAL(20,6) or another type that is assignable to

DECIMAL(20,6). It cannot be set to null. If host-variable has an associated

indicator variable, the value of that indicator variable must not indicate a null

value (SQLSTATE 42815). The value of host-variable must be 0 or

99 999 999 999 999.

Notes

v The initial value of the CURRENT REFRESH AGE special register is zero.

v The value of CURRENT REFRESH AGE is replaced by the specified value. The

value must be 0 or 99 999 999 999 999. The value 99 999 999 999 999

represents 9999 years, 99 months, 99 days, 99 hours, 99 minutes, and 99 seconds.

If the value of CURRENT REFRESH AGE is 0, the materialized query tables

affected by this special register will not be used to optimize the processing of a

query. If the value of CURRENT REFRESH AGE is 99 999 999 999 999, the

materialized query tables affected by this special register can be used to

optimize the processing of a query, but only if the value of CURRENT

MAINTAINED TABLE TYPES FOR OPTIMIZATION special register includes

them, and the CURRENT QUERY OPTIMIZATION special register is set to 2 or

a value greater than or equal to 5. The materialized query tables affected by this

special register are REFRESH DEFERRED MAINTAINED BY USER and

REFRESH DEFERRED MAINTAINED BY SYSTEM.

SET CURRENT REFRESH AGE

Statements 919

REFRESH IMMEDIATE MAINTAINED BY SYSTEM materialized query tables

can always be used to optimize the processing of a query if the CURRENT

QUERY OPTIMIZATION special register is set to 2 or a value greater than or

equal to 5.

REFRESH DEFERRED MAINTAINED BY FEDERATED_TOOL materialized

query tables are used for optimization if the CURRENT QUERY

OPTIMIZATION special register is set to 2 or a value greater than or equal to 5,

and the value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register is set to ALL or includes FEDERATED_TOOL.

v Setting the CURRENT REFRESH AGE special register to a value other than zero

should be done with caution. A table type specified by the CURRENT

MAINTAINED TABLE TYPES FOR OPTIMIZATION special register might not

represent the values of the underlying base table. If such a table is used to

optimize the processing of a query, the query result might not accurately

represent the data in the underlying table. This might be reasonable if you know

that the underlying data has not changed, or if you are willing to accept a

degree of error in the results, based on your knowledge of the cached data.

v The CURRENT REFRESH AGE value of 99 999 999 999 999 cannot be used in

timestamp arithmetic operations, because the result would be outside of the

valid range for dates (SQLSTATE 22008).

Examples

Example 1: The following statement sets the CURRENT REFRESH AGE special

register.

 SET CURRENT REFRESH AGE ANY

Example 2: The following example retrieves the value of the CURRENT REFRESH

AGE special register into a host variable called CURMAXAGE. The value, set by

the previous example, is 99999999999999.000000.

 EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

SET CURRENT REFRESH AGE

920 SQL Reference, Volume 2

SET ENCRYPTION PASSWORD

The SET ENCRYPTION PASSWORD statement sets the password that will be used

by the ENCRYPT, DECRYPT_BIN and DECRYPT_CHAR functions. The password

is not tied to DB2 authentication, and is used for data encryption and decryption

only.

This statement is not under transaction control.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 =

SET

ENCRYPTION PASSWORD

host-variable

string-constant

��

Description

The ENCRYPTION PASSWORD can be used by the ENCRYPT, DECRYPT_BIN,

and DECRYPT_CHAR built-in functions for password based encryption. The

length must be between 6 and 127 bytes. All characters must be specified in the

exact case intended as there is no automatic conversion to uppercase characters.

host-variable

A variable of type CHAR or VARCHAR. The length of the host-variable must be

between 6 and 127 bytes (SQLSTATE 428FC). It cannot be set to null. All

characters are specified in the exact case intended, as there is no conversion to

uppercase characters.

string-constant

A character string constant. The length must be between 6 and 127 bytes

(SQLSTATE 428FC).

Notes

v The initial value of the ENCRYPTION PASSWORD is the empty string (’’).

v The host-variable or string-constant is transmitted to the database server using

normal DB2 mechanisms.

Examples

Example 1: The following statement sets the ENCRYPTION PASSWORD.

 SET ENCRYPTION PASSWORD = ’Gre89Ea’

SET ENCRYPTION PASSWORD

Statements 921

SET EVENT MONITOR STATE

The SET EVENT MONITOR STATE statement activates or deactivates an event

monitor. The current state of an event monitor (active or inactive) is determined by

using the EVENT_MON_STATE built-in function. The SET EVENT MONITOR

STATE statement is not under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM

or SYSADM authority.

Syntax

��

SET

EVENT

MONITOR

event-monitor-name

STATE
 =

0

1

host-variable

��

Description

event-monitor-name

Identifies the event monitor to activate or deactivate. The name must identify

an event monitor that exists in the catalog (SQLSTATE 42704).

new-state

new-state can be specified either as an integer constant or as the name of a host

variable that will contain the appropriate value at run time. The following may

be specified:

0 Indicates that the specified event monitor should be deactivated.

1 Indicates that the specified event monitor should be activated. The

event monitor should not already be active; otherwise a warning

(SQLSTATE 01598) is issued.

host-variable

The data type is INTEGER. The value specified must be 0 or 1

(SQLSTATE 42815). If host-variable has an associated indicator variable,

the value of that indicator variable must not indicate a null value

(SQLSTATE 42815).

Rules

v Although an unlimited number of event monitors may be defined, there is a

limit of 32 event monitors that can be simultaneously active (SQLSTATE 54030).

v In order to activate an event monitor, the transaction in which the event monitor

was created must have been committed (SQLSTATE 55033). This rule prevents

(in one unit of work) creating an event monitor, activating the monitor, then

rolling back the transaction.

SET EVENT MONITOR STATE

922 SQL Reference, Volume 2

v If the number or size of the event monitor files exceeds the values specified for

MAXFILES or MAXFILESIZE on the CREATE EVENT MONITOR statement, an

error (SQLSTATE 54031) is raised.

v If the target path of the event monitor (that was specified on the CREATE

EVENT MONITOR statement) is already in use by another event monitor, an

error (SQLSTATE 51026) is raised.

Notes

v Activating an event monitor performs a reset of any counters associated with it.

v When a WRITE TO TABLE event monitor is started using SET EVENT

MONITOR STATE, it updates the EVMON_ACTIVATES column of the

SYSCAT.EVENTMONITORS catalog view. If the unit of work in which the set

operation was performed is rolled back for any reason, that catalog update is

lost. When the event monitor is restarted, it will reuse the EVMON_ACTIVATES

value that was rolled back.

v If the database partition on which the event monitor is to run is not active, event

monitor activation occurs when that database partition next activates.

v After an event monitor is activated, it behaves like an autostart event monitor

until that event monitor is explicitly deactivated or the instance is recycled. That

is, if an event monitor is active when a database partition is deactivated, and

that database partition is subsequently reactivated, the event monitor is also

explicitly reactivated.

Examples

Example 1: Activate an event monitor named SMITHPAY.

 SET EVENT MONITOR SMITHPAY STATE = 1

Example 2: Assume that MYSAMPLE is a multiple partition database with two

database partitions, 0 and 2. Partition 2 is not yet active.

On database partition 0:

 CONNECT TO MYSAMPLE;

 CREATE EVENT MONITOR MYEVMON ON DBPARTITIONNUM 2;

 SET EVENT MONITOR MYEVMON STATE 1;

MYEVMON automatically activates whenever MYSAMPLE activates on database

partition 2. This occurs until SET EVENT MONITOR MYEVMON STATE 0 is issued, or

partition 2 is stopped.

SET EVENT MONITOR STATE

Statements 923

SET INTEGRITY

The SET INTEGRITY statement is used to:

v Bring one or more tables out of set integrity pending state (previously known as

″check pending state″) by performing required integrity processing on those

tables.

v Bring one or more tables out of set integrity pending state without performing

required integrity processing on those tables.

v Place one or more tables in set integrity pending state.

v Place one or more tables into full access state.

v Prune the contents of one or more staging tables.

When the statement is used to perform integrity processing for a table after it has

been loaded or attached, the system can incrementally process the table by

checking only the appended portion for constraints violations. If the subject table is

a materialized query table or a staging table, and load, attach, or detach operations

are performed on its underlying tables, the system can incrementally refresh the

materialized query table or incrementally propagate to the staging table with only

the delta portions of its underlying tables. However, there are some situations in

which the system will not be able to perform such optimizations and will instead

perform full integrity processing to ensure data integrity. Full integrity processing

is done by checking the entire table for constraints violations, recomputing a

materialized query table’s definition, or marking a staging table as inconsistent.

The latter implies that a full refresh of its associated materialized query table is

required. There is also a situation in which you might want to explicitly request

incremental processing by specifying the INCREMENTAL option.

The SET INTEGRITY statement is under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges required to execute the SET INTEGRITY statement depend on the

purpose, as outlined below.

v Bringing tables out of set integrity pending state and performing the required

integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The tables on which integrity processing is performed and, if exception

tables are provided for one or more of those tables, INSERT privilege on

the exception tables

- All descendent foreign key tables, descendent immediate materialized

query tables, and descendent immediate staging tables that will implicitly

be placed in set integrity pending state by the statement
– LOAD authority (with conditions). The following conditions must all be met

before LOAD authority can be considered as providing valid privileges:

SET INTEGRITY

924 SQL Reference, Volume 2

- The required integrity processing does not involve the following actions:

v Refreshing a materialized query table

v Propagating to a staging table

v Updating a generated or identity column
- If exception tables are provided for one or more tables, the required access

is granted for the duration of the integrity processing to the tables on

which integrity processing is performed, and to the associated exception

tables. That is:

v SELECT and DELETE privilege on each table on which integrity

processing is performed, and

v INSERT privilege on the exception tables
– SYSADM or DBADM authority

v Bringing tables out of set integrity pending state without performing the

required integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are being processed; CONTROL

privilege on each descendent foreign key table, descendent immediate

materialized query table, and descendent immediate staging table that will

implicitly be placed in set integrity pending state by the statement

– LOAD authority

– SYSADM or DBADM authority
v Placing tables in set integrity pending state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The specified tables, and

- The descendent foreign key tables that will be placed in set integrity

pending state by the statement, and

- The descendent immediate materialized query tables that will be placed in

set integrity pending state by the statement, and

- The descendent immediate staging tables that will be placed in set integrity

pending state by the statement
– LOAD authority

– SYSADM or DBADM authority
v Place a table into the full access state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are placed into the full access state

– LOAD authority

– SYSADM or DBADM authority
v Prune a staging table.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the table being pruned

– SYSADM or DBADM authority

SET INTEGRITY

Statements 925

Syntax

�� SET INTEGRITY �

�

�

�

�

 ,

FOR

table-name

OFF

access-mode-clause

cascade-clause

FULL ACCESS

PRUNE

,

FOR

table-name

table-checked-options

IMMEDIATE CHECKED

check-options

,

FOR

table-name

table-unchecked-options

IMMEDIATE UNCHECKED

��

access-mode-clause:

 NO ACCESS

READ ACCESS

cascade-clause:

 CASCADE IMMEDIATE to-descendent-types

CASCADE DEFERRED

to-descendent-types:

�

 TO ALL TABLES

,

TO

MATERIALIZED QUERY TABLES

FOREIGN KEY TABLES

STAGING TABLES

table-checked-options:

�

 ,

online-options

GENERATE IDENTITY

query-optimization-options

online-options:

 ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

SET INTEGRITY

926 SQL Reference, Volume 2

query-optimization-options:

ALLOW QUERY OPTIMIZATION

WITH REFRESH AGE ANY

USING REFRESH DEFERRED TABLES

check-options:

 * incremental-options *

FORCE GENERATED
 *

PRUNE
 �

� *

FULL ACCESS
 *

exception-clause

incremental-options:

INCREMENTAL

NOT INCREMENTAL

exception-clause:

FOR EXCEPTION

�

 ,

in-table-use-clause

in-table-use-clause:

 IN table-name USE table-name

table-unchecked-options:

�

 ,

integrity-options

FULL ACCESS

integrity-options:

�

 ALL

,

FOREIGN KEY

CHECK

MATERIALIZED QUERY

GENERATED COLUMN

STAGING

Description

FOR table-name

Identifies one or more tables for integrity processing. It must be a table

described in the catalog and must not be a view, catalog table, or typed table.

SET INTEGRITY

Statements 927

OFF

Specifies that the tables are placed in set integrity pending state. Only very

limited activity is allowed on a table that is in set integrity pending state.

access-mode-clause

Specifies the readability of the table while it is in set integrity pending state.

NO ACCESS

Specifies that the table is to be put in set integrity pending no access state,

which does not allow read or write access to the table.

READ ACCESS

Specifies that the table is to be put in set integrity pending read access

state, which allows read access to the non-appended portion of the table.

This option is not allowed on a table that is in set integrity pending no

access state (SQLSTATE 428FH).

cascade-clause

Specifies whether the set integrity pending state of the table referenced in the

SET INTEGRITY statement is to be immediately cascaded to descendent tables.

CASCADE IMMEDIATE

Specifies that the set integrity pending state is to be immediately extended

to descendent tables.

to-descendent-types

Specifies the type of descendent tables to which the set integrity pending

state is immediately cascaded.

TO ALL TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to all descendent tables of the tables in the invocation list.

Descendent tables include all descendent foreign key tables, immediate

staging tables, and immediate materialized query tables that are

descendants of the tables in the invocation list, or descendants of

descendent foreign key tables.

 Specifying TO ALL TABLES is equivalent to specifying TO FOREIGN

KEY TABLES, TO MATERIALIZED QUERY TABLES, and TO

STAGING TABLES, all in the same statement.

TO MATERIALIZED QUERY TABLES

If only TO MATERIALIZED QUERY TABLES is specified, the set

integrity pending state is to be immediately cascaded only to

descendent immediate materialized query tables. Other descendent

tables might later be put in set integrity pending state, if necessary,

when the table is brought out of set integrity pending state. If both TO

FOREIGN KEY TABLES and TO MATERIALIZED QUERY TABLES are

specified, the set integrity pending state will be immediately cascaded

to all descendent foreign key tables, all descendent immediate

materialized query tables of the tables in the invocation list, and to all

immediate materialized query tables that are descendants of the

descendent foreign key tables.

TO FOREIGN KEY TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent foreign key tables. Other descendent tables

might later be put in set integrity pending state, if necessary, when the

table is brought out of set integrity pending state.

SET INTEGRITY

928 SQL Reference, Volume 2

TO STAGING TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent staging tables. Other descendent tables might

later be put in set integrity pending state, if necessary, when the table

is brought out of set integrity pending state. If both TO FOREIGN KEY

TABLES and TO STAGING TABLES are specified, the set integrity

pending state will be immediately cascaded to all descendent foreign

key tables, all descendent immediate staging tables of the tables in the

invocation list, and to all immediate staging tables that are descendants

of the descendent foreign key tables.

CASCADE DEFERRED

Specifies that only the tables in the invocation list are to be put in set

integrity pending state. The states of the descendent tables will remain

unchanged. Descendent foreign key tables might later be implicitly put in

set integrity pending state when their parent tables are checked for

constraints violations. Descendent immediate materialized query tables and

descendent immediate staging tables might be implicitly put in set

integrity pending state when one of their underlying tables is checked for

integrity violations.

If cascade-clause is not specified, the set integrity pending state is immediately

cascaded to all descendent tables.

IMMEDIATE CHECKED

Specifies that the table is to be taken out of set integrity pending state by

performing required integrity processing on the table. This is done in

accordance with the information set in the STATUS and CONST_CHECKED

columns of the SYSCAT.TABLES catalog view. That is:

v The value in the STATUS column must be ’C’ (the table is in set integrity

pending state), or an error is returned (SQLSTATE 51027), unless the table is

a descendent foreign key table, descendent materialized query table, or

descendent staging table of a table that is specified in the list, is in set

integrity pending state, and whose intermediate ancestors are also in the list.

v If the table being checked is in set integrity pending state, the value in

CONST_CHECKED indicates which integrity options are to be checked.

When the table is taken out of set integrity pending state, its descendent tables

are, if necessary, put in set integrity pending state. A warning to indicate that

descendent tables have been put in set integrity pending state is returned

(SQLSTATE 01586).

If the table is a system-maintained materialized query table, the data is

checked against the query and refreshed as necessary. (IMMEDIATE

CHECKED cannot be used for user-maintained materialized query tables.) If

the table is a staging table, the data is checked against its query definition and

propagated as necessary.

When the integrity of a child table is checked:

v None of its parents can be in set integrity pending state, or

v Each of its parents must be checked for constraints violations in the same

SET INTEGRITY statement

When an immediate materialized query table is refreshed, or deltas are

propagated to a staging table:

v None of its underlying tables can be in set integrity pending state, or

SET INTEGRITY

Statements 929

v Each of its underlying tables must be checked in the same SET INTEGRITY

statement

Otherwise, an error is returned (SQLSTATE 428A8).

table-checked-options

online-options

Specifies the accessibility of the table while it is being processed.

ALLOW NO ACCESS

Specifies that no other users can access the table while it is being

processed, except if they are using the Uncommitted Read isolation

level.

ALLOW READ ACCESS

Specifies that other users have read-only access to the table while it

is being processed.

ALLOW WRITE ACCESS

Specifies that other users have read and write access to the table

while it is being processed.

GENERATE IDENTITY

Specifies that if the table includes an identity column, the values are

generated by the SET INTEGRITY statement. By default, when the

GENERATE IDENTITY option is specified, only attached rows will

have their identity column values generated by the SET INTEGRITY

statement. The NOT INCREMENTAL option must be specified in

conjunction with the GENERATE IDENTITY option to have the SET

INTEGRITY statement generate identity column values for all rows in

the table, including attached rows, loaded rows, and existing rows. If

the GENERATE IDENTITY option is not specified, the current identity

column values for all rows in the table are left unchanged.

query-optimization-options

Specifies the query optimization options for the maintenance of

REFRESH DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register

is set to ’ANY’, the maintenance of table-name will allow REFRESH

DEFERRED materialized query tables to be used to optimize the

query that maintains table-name. If table-name is not a REFRESH

DEFERRED materialized query table, an error is returned

(SQLSTATE 428FH). REFRESH IMMEDIATE materialized query

tables are always considered during query optimization.

check-options

incremental-options

INCREMENTAL

Specifies the application of integrity processing on the appended

portion (if any) of the table. If such a request cannot be satisfied

(that is, the system detects that the whole table needs to be

checked for data integrity), an error is returned (SQLSTATE 55019).

NOT INCREMENTAL

Specifies the application of integrity processing on the whole table.

If the table is a materialized query table, the materialized query

SET INTEGRITY

930 SQL Reference, Volume 2

table definition is recomputed. If the table has at least one

constraint defined on it, this option causes full processing of

descendent foreign key tables and descendent immediate

materialized query tables. If the table is a staging table, it is set to

an inconsistent state.

If the incremental-options clause is not specified, the system determines

whether incremental processing is possible; if not, the whole table is

checked.

FORCE GENERATED

If the table includes generated by expression columns, the values are

computed on the basis of the expression and stored in the column. If

this option is not specified, the current values are compared to the

computed value of the expression, as though an equality check

constraint were in effect. If the table is processed for integrity

incrementally, generated columns are computed only for the appended

portion.

PRUNE

This option can be specified for staging tables only. Specifies that the

content of the staging table is to be pruned, and that the staging table

is to be set to an inconsistent state. If any table in the table-name list is

not a staging table, an error is returned (SQLSTATE 428FH). If the

INCREMENTAL check option is also specified, an error is returned

(SQLSTATE 428FH).

FULL ACCESS

Specifies that the table is to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table (that has dependent immediate materialized

query tables or dependent immediate staging tables) in the invocation

list is incrementally processed, the underlying table is put in no data

movement state, as required, after the SET INTEGRITY statement

executes. When all incrementally refreshable dependent immediate

materialized query tables and staging tables are taken out of set

integrity pending state, the underlying table is automatically brought

out of the no data movement state into the full access state. If the

FULL ACCESS option is specified with the IMMEDIATE CHECKED

option, the underlying table is put directly in full access state

(bypassing the no data movement state). Dependent immediate

materialized query tables that have not been refreshed might undergo

a full recomputation in the subsequent REFRESH TABLE statement,

and dependent immediate staging tables that have not had the

appended portions of the table propagated to them might be flagged

as inconsistent.

When an underlying table in the invocation list requires full

processing, or does not have dependent immediate materialized query

tables, or dependent immediate staging tables, the underlying table is

put directly into full access state after the SET INTEGRITY statement

executes, regardless of whether the FULL ACCESS option was

specified.

exception-clause

FOR EXCEPTION

Specifies that any row that is in violation of a constraint being

SET INTEGRITY

Statements 931

checked is to be moved to an exception table. Even if errors are

detected, the table is taken out of set integrity pending state. A

warning to indicate that one or more rows have been moved to the

exception tables is returned (SQLSTATE 01603).

 If the FOR EXCEPTION option is not specified and any constraints

are violated, only the first detected violation is returned

(SQLSTATE 23514). If there is a violation in any table, all of the

tables are left in set integrity pending state.

It is recommended to always use the FOR EXCEPTION option

when checking for constraints violations to prevent a rollback of

the SET INTEGRITY statement if a violation is found.

IN table-name

Specifies the table from which rows that violate constraints are to

be moved. There must be one exception table specified for each

table being checked. This clause cannot be specified for a

materialized query table or a staging table (SQLSTATE 428A7).

USE table-name

Specifies the exception table into which error rows are to be

moved.

FULL ACCESS

If the FULL ACCESS option is specified as the only operation of the statement,

the table is placed into the full access state without being rechecked for

integrity violations. However, dependent immediate materialized query tables

that have not been refreshed might require a full recomputation in subsequent

REFRESH TABLE statements, and dependent immediate staging tables that

have not had the delta portions of the table propagated to them might be

changed to incomplete state. This option can only be specified for a table that

is in the no data movement state or the no access state, but not in the set

integrity pending state (SQLSTATE 428FH).

PRUNE

This option can be specified for staging tables only. Specifies that the content of

the staging table is to be pruned, and that the staging table is to be set to an

inconsistent state. If any table in the table-name list is not a staging table, an

error is returned (SQLSTATE 428FH).

table-unchecked-options

integrity-options

Used to define the types of required integrity processing that are to be

bypassed when the table is taken out of the set integrity pending state.

ALL

The table will be immediately taken out of set integrity pending state

without any of its required integrity processing being performed.

FOREIGN KEY

Required foreign key constraints checking will not be performed when

the table is brought out of set integrity pending state.

CHECK

Required check constraints checking will not be performed when the

table is brought out of set integrity pending state.

MATERIALIZED QUERY

Required refreshing of a materialized query table will not be

performed when the table is brought out of set integrity pending state.

SET INTEGRITY

932 SQL Reference, Volume 2

GENERATED COLUMN

Required generated column constraints checking will not be performed

when the table is brought out of set integrity pending state.

STAGING

Required propagation of data to a staging table will not be performed

when the table is brought out of set integrity pending state.

 If no other types of integrity processing are required on the table after a

specific type of integrity processing has been marked as bypassed, the

table is immediately taken out of set integrity pending state.

FULL ACCESS

Specifies that the tables are to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table in the invocation list is incrementally processed,

and it has dependent immediate materialized query tables or dependent

immediate staging tables, the underlying table is placed, as required, in the

no data movement state after the SET INTEGRITY statement executes.

When all incrementally refreshable dependent immediate materialized

query tables and staging tables have been taken out of set integrity

pending state, the underlying table is automatically brought out of the no

data movement state into the full access state. If the FULL ACCESS option

is specified with the IMMEDIATE UNCHECKED option, the underlying

table is placed directly in full access state (it bypasses the no data

movement state). Dependent immediate materialized query tables that

have not been refreshed might undergo a full recomputation in the

subsequent REFRESH TABLE statement, and dependent immediate staging

tables that have not had the appended portions of the table propagated to

them mIGHT be flagged as inconsistent.

When an underlying table in the invocation list requires full processing, or

does not have dependent immediate materialized query tables, or

dependent immediate staging tables, the underlying table is placed directly

in full access state after the SET INTEGRITY statement executes, regardless

of whether the FULL ACCESS option has been specified.

If the FULL ACCESS option has been specified with the IMMEDIATE

UNCHECKED option, and the statement does not bring the table out of set

integrity pending state, an error is returned (SQLSTATE 428FH).

IMMEDIATE UNCHECKED

Specifies one of the following:

v The table is to be brought out of set integrity pending state immediately

without any required integrity processing.

v The table is to have one or more types of required integrity processing

bypassed when the table is brought out of set integrity pending state by a

subsequent SET INTEGRITY statement using the IMMEDIATE CHECKED

option.

Consider the data integrity implications of this option before using it. See the

“Notes” section below.

Notes

v Effects on tables in one of the restricted set integrity-related states:

– Use of INSERT, UPDATE, or DELETE is disallowed on a table that is in read

access state or in no access state. Furthermore, any statement that requires

SET INTEGRITY

Statements 933

this type of modification to a table that is in such a state will be rejected. For

example, deletion of a row in a parent table that cascades to a dependent

table that is in the no access state is not allowed.

– Use of SELECT is disallowed on a table that is in the no access state.

Furthermore, any statement that requires read access to a table that is in the

no access state will be rejected.

– New constraints added to a table are normally enforced immediately.

However, if the table is in set integrity pending state, the checking of any

new constraints is deferred until the table is taken out of set integrity pending

state. If the table is in set integrity pending state, addition of a new constraint

places the table into set integrity pending no access state, because validity of

data is at risk.

– The CREATE INDEX statement cannot reference any table that is in read

access state or in no access state. Similarly, an ALTER TABLE statement to

add a primary key or a unique constraint cannot reference any table that is in

read access state or in no access state.

– The import utility is not allowed to operate on a table that is in read access

state or in no access state.

– The export utility is not allowed to operate on a table that is in no access

state, but is allowed to operate on a table that is in read access state. If a table

is in read access state, the export utility will only export the data that is in the

non-appended portion.

– Operations (like REORG, REDISTRIBUTE, update distribution key, update

multidimensional clustering key, update range clustering key, update table

partitioning key, and so on) that might involve data movement within a table

are not allowed on a table that is in any of the following states: read access,

no access, or no data movement.

– The load, backup, restore, update statistics, runstats, reorgchk, list history, and

rollforward utilities are allowed on a table that is in any of the following

states: full access, read access, no access, or no data movement.

– The ALTER TABLE, COMMENT, DROP TABLE, CREATE ALIAS, CREATE

TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET INTEGRITY

statements can reference a table that is in any of the following states: full

access, read access, no access, or no data movement. However, they might

cause the table to be put into no access state.

– Packages, views, and any other objects that depend on a table that is in no

access state will return an error when the table is accessed at run time.

Packages that depend on a table that is in read access state will return an

error when an insert, update, or delete operation is attempted on the table at

run time.
The removal of violating rows by the SET INTEGRITY statement is not a delete

event. Therefore, triggers are never activated by a SET INTEGRITY statement.

Similarly, updating generated columns using the FORCE GENERATED option

does not activate triggers.

v Incremental processing will be used whenever the situation allows it, because it

is more efficient. The INCREMENTAL option is not needed in most cases. It is

needed, however, to ensure that integrity checks are indeed processed

incrementally. If the system detects that full processing is needed to ensure data

integrity, an error is returned (SQLSTATE 55019).

v Warning about the use of the IMMEDIATE UNCHECKED clause:

– This clause is intended to be used by utility programs, and its use by

application programs is not recommended. If there is data in the table that

SET INTEGRITY

934 SQL Reference, Volume 2

does not meet the integrity specifications that were defined for the table, and

the IMMEDIATE UNCHECKED option is used, incorrect query results might

be returned.

The fact that the table was taken out of the set integrity pending state without

performing the required integrity processing will be recorded in the catalog

(the respective byte in the CONST_CHECKED column in the

SYSCAT.TABLES view will be set to ’U’). This indicates that the user has

assumed responsibility for data integrity with respect to the specific

constraints. This value remains unchanged until either:

- The table is put back into set integrity pending state (by referencing the

table in a SET INTEGRITY statement with the OFF option), at which time

’U’ values in the CONST_CHECKED column are changed to ’W’ values,

indicating that the user had previously assumed responsibility for data

integrity, and the system needs to verify the data.

- All unchecked constraints for the table are dropped.
The ’W’ state differs from the ’N’ state in that it records the fact that integrity

was previously checked by the user, but not yet by the system. If the user

issues the SET INTEGRITY ... IMMEDIATE CHECKED statement with the

NOT INCREMENTAL option, the system rechecks the whole table for data

integrity (or performs a full refresh on a materialized query table), and then

changes the ’W’ state to the ’Y’ state. If IMMEDIATE UNCHECKED is

specified, or if NOT INCREMENTAL is not specified, the ’W’ state is changed

back to the ’U’ state to record the fact that some data has still not been

verified by the system. In the latter case (when the NOT INCREMENTAL is

not specified), a warning is returned (SQLSTATE 01636).

If an underlying table’s integrity has been checked using the IMMEDIATE

UNCHECKED clause, the ’U’ values in the CONST_CHECKED column of the

underlying table will be propagated to the corresponding CONST_CHECKED

column of:

- Dependent immediate materialized query tables

- Dependent deferred materialized query tables

- Dependent staging tables
For a dependent immediate materialized query table, this propagation is done

whenever the underlying table is brought out of set integrity pending state,

and whenever the materialized query table is refreshed. For a dependent

deferred materialized query table, this propagation is done whenever the

materialized query table is refreshed. For dependent staging tables, this

propagation is done whenever the underlying table is brought out of set

integrity pending state. These propagated ’U’ values in the

CONST_CHECKED columns of dependent materialized query tables and

staging tables record the fact that these materialized query tables and staging

tables depend on some underlying table whose required integrity processing

has been bypassed using the IMMEDIATE UNCHECKED option.

For a materialized query table, the ’U’ value in the CONST_CHECKED

column that was propagated by the underlying table will remain until the

materialized query table is fully refreshed and none of its underlying tables

have a ’U’ value in their corresponding CONST_CHECKED column. After

such a refresh, the ’U’ value in the CONST_CHECKED column for the

materialized query table will be changed to ’Y’.

For a staging table, the ’U’ value in the CONST_CHECKED column that was

propagated by the underlying table will remain until the corresponding

SET INTEGRITY

Statements 935

deferred materialized query table of the staging table is refreshed. After such

a refresh, the ’U’ value in the CONST_CHECKED column for the staging

table will be changed to ’Y’.

– If a child table and its parent table are checked in the same SET INTEGRITY

statement with the IMMEDIATE CHECKED option, and the parent table

requires full checking of its constraints, the child table will have its foreign

key constraints checked, independently of whether or not the child table has a

’U’ value in the CONST_CHECKED column for foreign key constraints.
v After appending data using LOAD INSERT or ALTER TABLE ATTACH, the SET

INTEGRITY statement with the IMMEDIATE CHECKED option checks the table

for constraints violations. The system determines whether incremental

processing on the table is possible. If so, only the appended portion is checked

for integrity violations. If not, the system checks the whole table for integrity

violations.

v Consider the statement:

 SET INTEGRITY FOR T IMMEDIATE CHECKED

Situations in which the system will require a full refresh, or will check the whole

table for integrity (the INCREMENTAL option cannot be specified) are:

– When new constraints have been added to T itself while it is in the set

integrity pending state

– When a LOAD REPLACE operation against T, it parents, or its underlying

tables has taken place

– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on T, its parents, or its underlying

tables

– The cascading effect of full processing, when any parent of T (or underlying

table, if T is a materialized query table or a staging table) has been checked

for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a

materialized query table or a staging table) has been rolled forward to a point

in time, and the table and its parent (or underlying table if the table is a

materialized query table or a staging table) reside in different table spaces

– When T is a materialized query table, and a LOAD REPLACE or LOAD

INSERT operation directly into T has taken place after the last refresh
v If the conditions for full processing described in the previous bullet are not

satisfied, the system will attempt to check only the appended portion for

integrity, or perform an incremental refresh (if it is a materialized query table)

when the user does not specify the NOT INCREMENTAL option for the

statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

v If an error occurs during integrity processing, all the effects of the processing

(including deleting from the original and inserting into the exception tables) will

be rolled back.

v If a SET INTEGRITY statement issued with the FORCE GENERATED option

fails because of a lack of log space, increase available active log space and

reissue the SET INTEGRITY statement. Alternatively, use the SET INTEGRITY

statement with the GENERATED COLUMN and IMMEDIATE UNCHECKED

options to bypass generated column checking for the table. Then, issue a SET

INTEGRITY statement with the IMMEDIATE CHECKED option and without the

FORCE GENERATED option to check the table for other integrity violations (if

applicable) and to bring it out of set integrity pending state. After the table is

out of the set integrity pending state, the generated columns can be updated to

their default (generated) values by assigning them to the keyword DEFAULT in

SET INTEGRITY

936 SQL Reference, Volume 2

an UPDATE statement. This is accomplished by using either multiple searched

update statements based on ranges (each followed by a commit), or a

cursor-based approach using intermittent commits. A “with hold” cursor should

be used if locks are to be retained after intermittent commits using the

cursor-based approach.

v A table that was put into set integrity pending state using the CASCADE

DEFERRED option of the SET INTEGRITY statement or the LOAD command, or

through the ALTER TABLE statement with the ATTACH clause, and that is

checked for integrity violations using the IMMEDIATE CHECKED option of the

SET INTEGRITY statement, will have its descendent foreign key tables,

descendent immediate materialized query tables, and descendent immediate

staging tables put in set integrity pending state, as required:

– If the entire table is checked for integrity violations, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table is checked for integrity violations incrementally, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table requires no checking at all, its descendent immediate materialized

query tables, descendent staging tables, and descendent foreign key tables

will remain in their original states.
v A table that was put in set integrity pending state using the CASCADE

DEFERRED option (of the SET INTEGRITY statement or the LOAD command),

and that is brought out of set integrity pending state using the IMMEDIATE

UNCHECKED option of the SET INTEGRITY statement, will have its descendent

foreign key tables, descendent immediate materialized query tables, and

descendent immediate staging tables put in set integrity pending state, as

required:

– If the table has been loaded using the REPLACE mode, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table has been loaded using the INSERT mode, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table has not been loaded, its descendent immediate materialized query

tables, descendent staging tables, and its descendent foreign key tables will

remain in their original states.
v SET INTEGRITY is usually a long running statement. In light of this, to reduce

the risk of a rollback of the entire statement because of a lock timeout, you can

issue the SET CURRENT LOCK TIMEOUT statement with the WAIT option

before executing the SET INTEGRITY statement, and then reset the special

register to its previous value after the transaction commits. Note, however, that

the CURRENT LOCK TIMEOUT special register only impacts a specific set of

lock types.

v If you use the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY option, ensure that the maintenance order

is correct for REFRESH DEFERRED materialized query tables. For example,

consider two materialized query tables, MQT1 and MQT2, whose materialized

queries share the same underlying tables. The materialized query for MQT2 can

be calculated using MQT1, instead of the underlying tables. If separate

statements are used to maintain these two materialized query tables, and MQT2

SET INTEGRITY

Statements 937

is maintained first, the system might choose to use the contents of MQT1, which

has not yet been maintained, to maintain MQT2. In this case, MQT1 would

contain current data, but MQT2 could still contain stale data, even though both

were maintained at almost the same time. The correct maintenance order, if two

SET INTEGRITY statements are used instead of one, is to maintain MQT1 first.

v When using the SET INTEGRITY statement to perform integrity processing on a

base table that has been loaded or attached, it is recommended that you process

its dependent REFRESH IMMEDIATE materialized query tables and its

PROPAGATE IMMEDIATE staging tables in the same SET INTEGRITY

statement to avoid putting these dependent tables in set integrity pending no

access state at the end of SET INTEGRITY processing. Note that for base tables

that have a large number of dependent REFRESH IMMEDIATE materialized

query tables and PROPAGATE IMMEDIATE staging tables, memory constraints

might make it impossible to process all of the dependents in the same statement

as the base table.

v If the FORCE GENERATED or the GENERATE IDENTITY option is specified,

and the column that is generated is part of a unique index, the SET INTEGRITY

statement returns an error (SQLSTATE 23505) and rolls back if it detects

duplicate keys in the unique index. This error is returned even if there is an

exception table for the table being processed.

This scenario can occur under the following circumstances:

– The SET INTEGRITY statement runs after a LOAD command against the

table, and the GENERATEDOVERRIDE or the IDENTITYOVERRIDE file type

modifier is specified during the load operation. To prevent this scenario, it is

recommended that you use the GENERATEDIGNORE or the

GENERATEDMISSING file type modifer instead of GENERATEDOVERRIDE,

and that you use the IDENTITYIGNORE or the IDENTITYMISSING modifier

instead of IDENTITYOVERRIDE. Using the recommended modifiers will

prevent the need for any generated by expression column or identity column

processing during SET INTEGRITY statement execution.

– The SET INTEGRITY statement is run after an ALTER TABLE statement that

alters the expression of a generated by expression column.
To bring a table out of the set integrity pending state after encountering such a

scenario:

– Do not use the FORCE GENERATED or the GENERATE IDENTITY option to

regenerate the column values. Instead, use the IMMEDIATE CHECKED

option in conjunction with the FOR EXCEPTION option to move any rows

that violate the generated column expression to an exception table. Then,

re-insert the rows into the table from the exception table, which will generate

the correct expression and perform unique key checking. This prevents

having to reprocess the entire table, because only those rows that violated the

generated column expression will need to be processed again.

– If the table being processed has attached partitions, detach those partitions

before performing the actions that are described in the previous bullet. Then,

re-attach the partitions and execute a SET INTEGRITY statement to process

integrity on the attached partitions seperately.
v If a protected table is specified for the SET INTEGRITY statement along with an

exception table, all of the following table criteria must be met; otherwise, an

error is returned (SQLSTATE 428A5):

– The tables must be protected by the same security policy.

– If a column in the protected table has data type DB2SECURITYLABEL, the

corresponding column in the exception table must also have data type

DB2SECURITYLABEL.

SET INTEGRITY

938 SQL Reference, Volume 2

– If a column in the protected table is protected by a security label, the

corresponding column in the exception table must also be protected by the

same security label.
v Compatibilities

– For compatibility with previous versions of DB2:

- SET CONSTRAINTS can be specified in place of SET INTEGRITY

- SUMMARY can be specified in place of MATERIALIZED QUERY

Examples

Example 1: The following is an example of a query that provides information about

the set integrity pending state and the set integrity-related access restriction states

of tables. SUBSTR is used to extract individual bytes of the CONST_CHECKED

column of SYSCAT.TABLES. The first byte represents foreign key constraints; the

second byte represents check constraints; the fifth byte represents materialized

query table integrity; the sixth byte represents generated column constraints; the

seventh byte represents staging table integrity; and the eighth byte represents data

partitioning constraints. STATUS gives the set integrity pending state, and

ACCESS_MODE gives the set integrity-related access restriction state.

 SELECT TABNAME, STATUS, ACCESS_MODE,

 SUBSTR(CONST_CHECKED,1,1) AS FK_CHECKED,

 SUBSTR(CONST_CHECKED,2,1) AS CC_CHECKED,

 SUBSTR(CONST_CHECKED,5,1) AS MQT_CHECKED,

 SUBSTR(CONST_CHECKED,6,1) AS GC_CHECKED,

 SUBSTR(CONST_CHECKED,7,1) AS STG_CHECKED,

 SUBSTR(CONST_CHECKED,8,1) AS DP_CHECKED

 FROM SYSCAT.TABLES

Example 2: Put the PARENT table in set integrity pending no access state, and

immediately cascade the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 NO ACCESS CASCADE IMMEDIATE

Example 3: Put the PARENT table in set integrity pending read access state without

immediately cascading the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 READ ACCESS CASCADE DEFERRED

Example 4: Check integrity for a table named FACT_TABLE. If there are no

integrity violations detected, the table is brought out of set integrity pending state.

If any integrity violations are detected, the entire statement is rolled back, and the

table remains in set integrity pending state.

 SET INTEGRITY FOR FACT_TABLE IMMEDIATE CHECKED

Example 5: Check integrity for the SALES and PRODUCTS tables, and move the

rows that violate integrity into exception tables named SALES_EXCEPTIONS and

PRODUCTS_EXCEPTIONS. Both the SALES and PRODUCTS tables are brought

out of set integrity pending state, whether or not there are any integrity violations.

 SET INTEGRITY FOR SALES, PRODUCTS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS,

 IN PRODUCTS USE PRODUCTS_EXCEPTIONS

Example 6: Enable FOREIGN KEY constraint checking in the MANAGER table, and

CHECK constraint checking in the EMPLOYEE table, to be bypassed with the

IMMEDIATE UNCHECKED option.

SET INTEGRITY

Statements 939

SET INTEGRITY FOR MANAGER FOREIGN KEY,

 EMPLOYEE CHECK IMMEDIATE UNCHECKED

Example 7: Add a check constraint and a foreign key to the EMP_ACT table, using

two ALTER TABLE statements. The SET INTEGRITY statement with the OFF

option is used to put the table in set integrity pending state, so that the constraints

are not checked immediately upon execution of the two ALTER TABLE statements.

The single SET INTEGRITY statement with the IMMEDIATE CHECKED option is

used to check both of the added constraints during a single pass through the table.

 SET INTEGRITY FOR EMP_ACT OFF;

 ALTER TABLE EMP_ACT ADD CHECK

 (EMSTDATE <= EMENDATE);

 ALTER TABLE EMP_ACT ADD FOREIGN KEY

 (EMPNO) REFERENCES EMPLOYEE;

 SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED

 FOR EXCEPTION IN EMP_ACT USE EMP_ACT_EXCEPTIONS

Example 8: Update generated columns with the correct values.

 SET INTEGRITY FOR SALES IMMEDIATE CHECKED

 FORCE GENERATED

Example 9: Append (using LOAD INSERT) from different sources into an

underlying table (SALES) of a REFRESH IMMEDIATE materialized query table

(SALES_SUMMARY). Check SALES incrementally for data integrity, and refresh

SALES_SUMMARY incrementally. In this scenario, integrity checking for SALES

and refreshing of SALES_SUMMARY are incremental, because the system chooses

incremental processing. The ALLOW READ ACCESS option is used on the SALES

table to allow concurrent reads of existing data while integrity checking of the

loaded portion of the table is taking place.

 LOAD FROM 2000_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 LOAD FROM 2001_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 SET INTEGRITY FOR SALES ALLOW READ ACCESS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS;

 REFRESH TABLE SALES_SUMMARY;

Example 10: Attach a new partition to a data partitioned table named SALES.

Incrementally check for constraints violations in the attached data of the SALES

table and incrementally refresh the dependent SALES_SUMMARY table. The

ALLOW WRITE ACCESS option is used on both tables to allow concurrent

updates while integrity checking is taking place.

 ALTER TABLE SALES

 ATTACH PARTITION STARTING (100) ENDING (200)

 FROM SOURCE;

 SET INTEGRITY FOR SALES ALLOW WRITE ACCESS, SALES_SUMMARY ALLOW WRITE ACCESS

 IMMEDIATE CHECKED FOR EXCEPTION IN SALES

 USE SALES_EXCEPTIONS;

Example 11: Detach a partition from a data partitioned table named SALES.

Incrementally refresh the dependent SALES_SUMMARY table.

 ALTER TABLE SALES

 DETACH PARTITION 2000_PART INTO ARCHIVE_TABLE;

 SET INTEGRITY FOR SALES_SUMMARY

 IMMEDIATE CHECKED;

Example 12: Bring a new user-maintained materialized query table out of set

integrity pending state.

SET INTEGRITY

940 SQL Reference, Volume 2

CREATE TABLE YEARLY_SALES

 AS (SELECT YEAR, SUM(SALES)AS SALES

 FROM FACT_TABLE GROUP BY YEAR)

 DATA INITIALLY DEFERRED REFRESH DEFERRED MAINTAINED BY USER

 SET INTEGRITY FOR YEARLY_SALES

 ALL IMMEDIATE UNCHECKED

SET INTEGRITY

Statements 941

SET PASSTHRU

The SET PASSTHRU statement opens and closes a session for submitting a data

source’s native SQL directly to that data source. The statement is not under

transaction control.

Invocation

This statement can be issued interactively. It is an executable statement that can be

dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must provide

authorization to:

v Pass through to the data source

v Satisfy security measures at the data source

Syntax

�� SET PASSTHRU server-name

RESET
 ��

Description

server-name

Names the data source for which a pass-through session is to be opened.

server-name must identify a data source that is described in the catalog.

RESET

Closes a pass-through session.

Notes

v The following restrictions apply to Microsoft SQL Server, Sybase, and Oracle

data sources:

– User-defined transactions cannot be used for Microsoft SQL Server and

Sybase data sources in pass-through mode, because Microsoft SQL Server and

Sybase restrict which SQL statements can be specified within a user-defined

transaction. Because SQL statements that are processed in pass-through mode

are not parsed by DB2, it is not possible to detect whether the user specified

an SQL statement that is permitted within a user-defined transaction.

– The COMPUTE clause is not supported on Microsoft SQL Server and Sybase

data sources.

– DDL statements are not subject to transaction semantics on Microsoft SQL

Server, Oracle and Sybase data sources. The operation, when complete, is

automatically committed by Microsoft SQL Server, Oracle or Sybase. If a

rollback occurs, the DDL is not rolled back.

Examples

Example 1: Start a pass-through session to data source BACKEND.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");

 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

SET PASSTHRU

942 SQL Reference, Volume 2

Example 2: Start a pass-through session with a PREPARE statement.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");

 EXEC SQL PREPARE STMT FROM :PASS_THRU;

 EXEC SQL EXECUTE STMT;

Example 3: End a pass-through session.

 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");

 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

Example 4: Use the PREPARE and EXECUTE statements to end a pass-through

session.

 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");

 EXEC SQL PREPARE STMT FROM :PASS_THRU_RESET;

 EXEC SQL EXECUTE STMT;

Example 5: Open a session to pass through to a data source, create a clustered index

for a table at this data source, and close the pass-through session.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");

 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

 EXEC SQL PREPARE STMT pass-through mode

 FROM "CREATE UNIQUE

 CLUSTERED INDEX TABLE_INDEX

 ON USER2.TABLE table is not an

 WITH IGNORE DUP KEY"; alias

 EXEC SQL EXECUTE STMT;

 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");

 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

SET PASSTHRU

Statements 943

SET PATH

The SET PATH statement changes the value of the CURRENT PATH special

register. It is not under transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��

SET

CURRENT

PATH

CURRENT_PATH

=

�

 ,

schema-name

SYSTEM PATH

USER

CURRENT PATH

CURRENT_PATH

CURRENT PACKAGE PATH

host-variable

string-constant

��

Description

schema-name

This one-part name identifies a schema that exists at the application server. No

validation that the schema exists is made at the time that the path is set. If a

schema-name is, for example, misspelled, the error will not be caught, and it

could affect the way subsequent SQL operates.

SYSTEM PATH

This value is the same as specifying the schema names

″SYSIBM″,″SYSFUN″,″SYSPROC″,″SYSIBMADM″.

USER

The value of the USER special register.

CURRENT PATH

The value of the CURRENT PATH special register before this statement

executes.

CURRENT PACKAGE PATH

The value of the CURRENT PACKAGE PATH special register.

host-variable

A variable of type CHAR or VARCHAR. The length of the contents of the

host-variable must not exceed 128 bytes (SQLSTATE 42815). It cannot be set to

null. If host-variable has an associated indicator variable, the value of that

indicator variable must not indicate a null value (SQLSTATE 42815).

 The characters of the host-variable must be left justified. When specifying the

schema-name with a host-variable, all characters must be specified in the exact

case intended as there is no conversion to uppercase characters.

SET PATH

944 SQL Reference, Volume 2

string-constant

A character string constant with a maximum length of 128 bytes.

Rules

v A schema name cannot appear more than once in the SQL path (SQLSTATE

42732).

v The number of schemas that can be specified is limited by the total length of the

CURRENT PATH special register. The special register string is built by taking

each schema name specified and removing trailing blanks, delimiting with

double quotes, doubling quotes within the schema name as necessary, and then

separating each schema name by a comma. The length of the resulting string

cannot exceed 2048 bytes (SQLSTATE 42907).

Notes

v The initial value of the CURRENT PATH special register is

″SYSIBM″,″SYSFUN″,″SYSPROC″,″SYSIBMADM″,″X″ where X is the value of the

USER special register.

v The schema SYSIBM does not need to be specified. If it is not included in the

SQL path, it is implicitly assumed as the first schema (in this case, it is not

included in the CURRENT PATH special register).

v The CURRENT PATH special register specifies the SQL path used to resolve

user-defined data types, procedures and functions in dynamic SQL statements.

The FUNCPATH bind option specifies the SQL path to be used for resolving

user-defined data types and functions in static SQL statements.

v Compatibilities

– For compatibility with previous versions of DB2:

- CURRENT FUNCTION PATH can be specified in place of CURRENT

PATH

Examples

Example 1: The following statement sets the CURRENT PATH special register.

 SET PATH = FERMAT, "McDrw #8", SYSIBM

Example 2: The following example retrieves the current value of the CURRENT

PATH special register into the host variable called CURPATH.

 EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be ″FERMAT″,″McDrw #8″,″SYSIBM″ if set by the previous

example.

SET PATH

Statements 945

SET ROLE

The SET ROLE statement verifies that the authorization ID of the session is a

member of a specific role. An authorization ID acquires membership in a role

when the role is granted to the authorization ID, or to a group or role in which the

authorization ID is a member.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

None required.

Syntax

��
 =

SET ROLE

role-name

��

Description

role-name

Specifies a role in whose membership the authorization ID of the session is to

be verified. The role-name must identify an existing role at the current server

(SQLSTATE 42704). If the authorization ID of the session is not a member of

role-name, an error is returned (SQLSTATE 42501).

Notes

v All roles that have been granted to an authorization ID are used for

authorization checking. The SET ROLE statement does not affect which roles are

used for this authorization checking. Use the GRANT ROLE and REVOKE

ROLE statements to change the roles in which an authorization ID has

membership.

Examples

Example 1: User WALID has been granted the role EDITOR, but not the role

AUTHOR. Verify that WALID is a member of the EDITOR role.

 SET ROLE EDITOR

Example 2: Verify that WALID is not a member of the AUTHOR role. The following

statement returns an error (SQLSTATE 42501).

 SET ROLE AUTHOR

SET ROLE

946 SQL Reference, Volume 2

SET SCHEMA

The SET SCHEMA statement changes the value of the CURRENT SCHEMA special

register. It is not under transaction control. If the package is bound with the

DYNAMICRULES BIND option, this statement does not affect the qualifier used

for unqualified database object references.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

��
 CURRENT =

SET

SCHEMA

schema-name

USER

SESSION_USER

SYSTEM_USER

CURRENT_USER

host-variable

string-constant

��

Description

schema-name

This one-part name identifies a schema that exists at the application server. The

length must not exceed 128 bytes (SQLSTATE 42815). No validation that the

schema exists is made at the time that the schema is set. If a schema-name is

misspelled, the error will not be caught, and that could affect the way that

subsequent SQL statements execute.

USER

The value in the USER special register.

SESSION_USER

The value in the SESSION_USER special register.

SYSTEM_USER

The value in the SYSTEM_USER special register.

CURRENT_USER

The value in the CURRENT_USER special register.

host-variable

A variable of type CHAR or VARCHAR. The length of the contents of the

host-variable must not exceed 128 bytes (SQLSTATE 42815). It cannot be set to

null. If host-variable has an associated indicator variable, the value of that

indicator variable must not indicate a null value (SQLSTATE 42815).

 The characters of the host-variable must be left justified. When specifying the

schema-name with a host-variable, all characters must be specified in the exact

case intended as there is no conversion to uppercase characters.

SET SCHEMA

Statements 947

string-constant

A character string constant with a maximum length of 128 bytes.

Rules

v If the value specified does not conform to the rules for a schema-name, an error

(SQLSTATE 3F000) is raised.

v The value of the CURRENT SCHEMA special register is used as the schema

name in all dynamic SQL statements, with the exception of the CREATE

SCHEMA statement, where an unqualified reference to a database object exists.

v The QUALIFIER bind option specifies the schema name for use as the qualifier

for unqualified database object names in static SQL statements.

Notes

v The initial value of the CURRENT SCHEMA special register is equivalent to

USER.

v Setting the CURRENT SCHEMA special register does not effect the CURRENT

PATH special register. Hence, the CURRENT SCHEMA will not be included in

the SQL path and functions, procedures and user-defined type resolution may

not find these objects. To include the current schema value in the SQL path,

whenever the SET SCHEMA statement is issued, also issue the SET PATH

statement including the schema name from the SET SCHEMA statement.

v CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the

effect of a SET CURRENT SQLID statement will be identical to that of a SET

CURRENT SCHEMA statement. No other effects, such as statement

authorization changes, will occur.

Examples

Example 1: The following statement sets the CURRENT SCHEMA special register.

 SET SCHEMA RICK

Example 2: The following example retrieves the current value of the CURRENT

SCHEMA special register into the host variable called CURSCHEMA.

 EXEC SQL VALUES (CURRENT SCHEMA) INTO :CURSCHEMA;

The value would be RICK, set by the previous example.

SET SCHEMA

948 SQL Reference, Volume 2

SET SERVER OPTION

The SET SERVER OPTION statement specifies a server option setting that is to

remain in effect while a user or application is connected to the federated database.

When the connection ends, this server option’s previous setting is reinstated. This

statement is not under transaction control.

Invocation

This statement can be issued interactively. It is an executable statement that can be

dynamically prepared.

Authorization

None required.

Syntax

�� SET SERVER OPTION server-option-name TO string-constant �

� FOR SERVER server-name ��

Description

server-option-name

Names the server option that is to be set.

TO string-constant

Specifies the setting for server-option-name as a character string constant.

SERVER server-name

Names the data source to which server-option-name applies. It must be a server

described in the catalog.

Notes

v Server option names can be entered in uppercase or lowercase.

v One or more SET SERVER OPTION statements can be submitted when a user or

application connects to the federated database. The statement (or statements)

must be specified at the start of the first unit of work that is processed after the

connection is established.

v SYSCAT.SERVEROPTIONS will not be updated based on a SET SERVER

OPTION statement, because this change only affects the current connection.

v For static SQL, using the SET SERVER OPTION statement affects only the

execution of the static SQL statement. Using the SET SERVER OPTION

statement has no effect on the plans that are generated by the optimizer.

Examples

Example 1: An Oracle data source called ORASERV is defined to a federated

database called DJDB. ORASERV is configured to disallow plan hints. However,

the DBA would like plan hints to be enabled for a test run of a new application.

When the run is over, plan hints will be disallowed again.

 CONNECT TO DJDB;

 strcpy(stmt,"set server option plan_hints to ’Y’ for server oraserv");

 EXEC SQL EXECUTE IMMEDIATE :stmt;

SET SERVER OPTION

Statements 949

strcpy(stmt,"select c1 from ora_t1 where c1 > 100"); /*Generate plan hints*/

 EXEC SQL PREPARE s1 FROM :stmt;

 EXEC SQL DECLARE c1 CURSOR FOR s1;

 EXEC SQL OPEN c1;

 EXEC SQL FETCH c1 INTO :hv;

Example 2: You have set the server option PASSWORD to ‘Y’ (validating passwords

at the data source) for all Oracle 8 data sources. However, for a particular session

in which an application is connected to the federated database in order to access a

specific Oracle 8 data source—one defined to the federated database DJDB as

ORA8A—passwords will not need to be validated.

 CONNECT TO DJDB;

 strcpy(stmt,"set server option password to ’N’ for server ora8a");

 EXEC SQL PREPARE STMT_NAME FROM :stmt;

 EXEC SQL EXECUTE STMT_NAME FROM :stmt;

 strcpy(stmt,"select max(c1) from ora8a_t1");

 EXEC SQL PREPARE STMT_NAME FROM :stmt;

 EXEC SQL DECLARE c1 CURSOR FOR STMT_NAME;

 EXEC SQL OPEN c1; /*Does not validate password at ora8a*/

 EXEC SQL FETCH c1 INTO :hv;

SET SERVER OPTION

950 SQL Reference, Volume 2

SET SESSION AUTHORIZATION

The SET SESSION AUTHORIZATION statement changes the value of the

SESSION_USER special register. The statement is not under transaction control.

The SET SESSION AUTHORIZATION statement is intended to provide support for

a single user assuming different authorization IDs on the same connection, and

should not be used for scenarios in which different users reuse the same

connection, commonly referred to as connection pooling.

Invocation

The statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include

SETSESSIONUSER on the authorization ID value to which the special register is

being set.

Syntax

��
 =

SET

SESSION AUTHORIZATION

SESSION_USER

authorization-name

USER

CURRENT_USER

SYSTEM_USER

host-variable

string-constant

�

�
ALLOW ADMINISTRATION

 ��

Description

authorization-name

Specifies the authorization ID that is to be used as the new value for the

SESSION_USER special register.

USER

The value in the USER special register.

CURRENT_USER

The value in the CURRENT USER special register.

SYSTEM_USER

The value in the SYSTEM_USER special register.

host-variable

A variable of type CHAR or VARCHAR. The length of the contents of

host-variable must not exceed 128 bytes (SQLSTATE 28000). It cannot be set to

null. If host-variable has an associated indicator variable, the value of that

indicator variable must not indicate a null value (SQLSTATE 28000).

 The characters of host-variable must be left justified. When specifying

authorization-name with a host variable, all characters must be specified in

uppercase, because there is no conversion to uppercase characters.

SET SESSION AUTHORIZATION

Statements 951

string-constant

A character string constant with a maximum length of 128 bytes.

ALLOW ADMINISTRATION

Specifies that SQL schema statements can be specified prior to this statement in

the same unit of work.

Rules

v The value specified for the SESSION_USER special register must conform to the

rules for an authorization ID of type USER (SQLSTATE 42602).

v The OWNER bind option specifies the authorization ID that is to be used for

static SQL statements.

v This statement can only be issued as the first statement (other than a SET special

register statement) in a new unit of work without any open WITH HOLD

cursors (SQLSTATE 25001). This restriction includes any PREPARE request for a

statement other than a SET special register statement.

v The value of the SESSION_USER special register is used as the authorization ID

for all dynamic SQL statements in a package bound with the

DYNAMICRULES(RUN) bind option. (This includes INVOKERUN and

DEFINERUN when the package is not used by a routine). If a package is using

owner, invoker, or definer authorization based on the DYNAMICRULES option,

this statement has no effect on dynamic SQL statements issued from within that

package.

Notes

v The SET SESSION AUTHORIZATION statement lets you change the session

authorization ID. The session authorization ID represents the current user of the

connection and is the authorization ID that DB2 considers for all authorization

checking relative to dynamic SQL within a DYNAMICRULES run package. The

SESSION_USER special register can be used to see the current value of this

session authorization ID.

v The initial value of the SESSION_USER special register for a new connection is

the same as the value of the SYSTEM_USER special register.

v The group information for the session authorization ID specified in this

statement is acquired at the time of statement execution.

v Setting the SESSION_USER special register does not effect either the CURRENT

SCHEMA or the CURRENT PATH special register.

v If any error occurs during the setting of the SESSION_USER special register, the

register reverts to its previous value.

v This statement should not be used to allow multiple, different users to reuse the

same connection, because each user will inherit the ability to change the value of

the SESSION_USER special register that the original connection owner had. This

statement is dependent upon the value of SYSTEM_USER for privileges

checking, and the initial connection authorization ID is not changed by the SET

SESSION AUTHORIZATION statement. Moreover, the following behaviors

impacting connection reuse are not addressed by this statement:

– The CONNECT privilege is not checked for the new authorization ID

– The content of any updatable special register is not reset; in particular, the

content of the ENCRYPTION PASSWORD special register is not modified and

is available to the new authorization ID for encryption or decryption

– The content of any declared global temporary table is not affected, and is

accessible to the new authorization ID

– Any existing links to remote servers are not reset

SET SESSION AUTHORIZATION

952 SQL Reference, Volume 2

v If the ALLOW ADMINISTRATION clause is specified, the following types of

statements or operations can precede the SET SESSION AUTHORIZATION

statement:

– Data definition language (DDL), including the definition of savepoints and

the declaration of global temporary tables, but not including SET INTEGRITY

– GRANT and REVOKE statements

– LOCK TABLE statement

– COMMIT and ROLLBACK statements

– SET of special registers

– SET of global variables

Examples

Example 1: The following statement sets the SESSION_USER special register.

 SET SESSION_USER = RAJIV

Example 2: Set the session authorization ID (the SESSION_USER special register) to

be the value of the system authorization ID, which is the ID that established the

connection on which the statement has been issued.

 SET SESSION AUTHORIZATION SYSTEM_USER

SET SESSION AUTHORIZATION

Statements 953

SET variable

The SET variable statement assigns values to variables. This statement is not under

transaction control.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

To reference a transition variable, the privileges held by the authorization ID of the

trigger creator must include at least one of the following:

v UPDATE privilege on any columns referenced on the left hand side of the

assignment, and SELECT privilege on any columns referenced on the right hand

side

v CONTROL privilege on the table (subject table of the trigger)

v SYSADM or DBADM authority

If a global variable is referenced in the right hand side of the assignment

statement, the privileges held by the authorization ID of the statement must

include:

v READ privilege on the global variable

If a global variable is assigned a value in the left hand side of the assignment

statement, the privileges held by the authorization ID of the statement must

include:

v WRITE privilege on the global variable

To execute this statement with a row-fullselect as the right hand side of the

assignment, the privileges held by the authorization ID of the statement must also

include at least one of the following, for each referenced table or view:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

Syntax

�� SET �

SET variable

954 SQL Reference, Volume 2

�

�

�

�

 ,

target-variable

=

expression

NULL

DEFAULT

,

,

(

target-variable

)

=

(

expression

)

NULL

DEFAULT

row-fullselect

array-variable-name

[

subindex

]

=

expression

NULL

array-variable-name

=

array-constructor

trim-array-function

��

target-variable:

�

 global-variable-name

host-variable

parameter marker

SQL-parameter-name

SQL-variable-name

transition-variable-name

..attribute-name

array-constructor:

�

 ARRAY []

fullselect

,

element-expression

trim-array-function:

 TRIM_ARRAY (array-variable-name , expression)

Description

target-variable

Identifies the target variable of the assignment. A target-variable representing

the same variable must not be specified more than once (SQLSTATE 42701).

global-variable-name

Identifies the global variable that is the assignment target. The

global-variable-name must identify a global variable that exists at the current

server (SQLSTATE 42704).

host-variable

Identifies the host variable that is the assignment target.

parameter-marker

Identifies the parameter marker that is the assignment target.

SQL-parameter-name

Identifies the parameter that is the assignment target. The parameter must

SET variable

Statements 955

be specified in parameter-declaration in the CREATE PROCEDURE

statement, and must be defined as an OUT or INOUT parameter.

SQL-variable-name

Identifies the SQL variable that is the assignment target. SQL variables

must be declared before they are used.

transition-variable-name

Identifies the column to be updated in the transition row. A

transition-variable-name must identify a column in the subject table of a

trigger, optionally qualified by a correlation name that identifies the new

value (SQLSTATE 42703).

..attribute name

Specifies the attribute of a structured type that is set (referred to as an

attribute assignment). The SQL-variable-name or transition-variable-name

specified must be defined with a user-defined structured type (SQLSTATE

428DP). The ..attribute-name must be an attribute of the structured type

(SQLSTATE 42703). An assignment that does not involve the ..attribute name

clause is referred to as a conventional assignment.

array-variable-name

Identifies an SQL variable or parameter. The variable or parameter must be of

an array type (SQLSTATE 428H0).

[subindex]

Numeric expression that specifies which element in the array will be the

target of the assignment. The subindex must be of an exact numeric type

with scale zero (SQLSTATE 428H1); it cannot be null. Its value must be

between 1 and the maximum cardinality defined for the array (SQLSTATE

2202E).

expression

Indicates the new value of the target of the assignment. The expression is any

expression of the type described in “Expressions”. The expression cannot

include a column function except when it occurs within a scalar fullselect

(SQLSTATE 42903). In the context of a CREATE TRIGGER statement, an

expression can contain references to OLD and NEW transition variables. The

transition variables must be qualified by the correlation-name (SQLSTATE

42702).

array-constructor

The array constructor is used to compose a value for the array data type.

fullselect

A fullselect that returns a single column. The values returned by the

fullselect become the elements of the array. The cardinality of the array is

equal to the number of rows returned by the fullselect. An ORDER BY

clause in the fullselect can be used to specify the order among the elements

of the array; otherwise, the order is undefined. The base type of the array

is determined based on the “Rules for result data types”, and it must be

among the types allowed in the CREATE TYPE (Array) statement

(SQLSTATE 429C2).

element-expression

An expression defining the value of an element within the array. The

cardinality of the array is equal to the number of element expressions. The

first element-expression is assigned to the array element with subindex 1.

The second element-expression is assigned to the array element with

subindex 2, and so on. All element expressions must have compatible data

SET variable

956 SQL Reference, Volume 2

types (SQLSTATE 429C2). The base type of the array is determined based

on the “Rules for result data types”, and it must be among the types

allowed in the CREATE TYPE (Array) statement (SQLSTATE 429C2).

trim-array-function

Returns a copy of the array argument from which the specified number of

elements have been removed from the end of the array.

array-variable-name

Identifies an SQL variable or parameter. The variable or parameter must be

of an array type (SQLSTATE 428H0).

expression

A numeric expression specifying the number of elements that will be

trimmed from the copy of array-variable-name. The expression must be

between 0 and the cardinality of array-variable-name (SQLSTATE 2202E).

The cardinality of the result is decreased by the number of elements

trimmed. The result can be null; if the argument is null, the result is the

null value.

NULL

Specifies the null value. NULL cannot be the value in an attribute assignment

unless it was specifically cast to the data type of the attribute (SQLSTATE

429B9).

DEFAULT

Specifies that the default value should be used.

 In SQL procedures, the DEFAULT clause can be specified only for static SQL

statements. The exception is that the DEFAULT clause can be specified when

target-variable is a global variable in a dynamic SQL statement.

If target-variable is a column, the value inserted depends on how the column

was defined in the table.

v If the column was defined using the WITH DEFAULT clause, the value is set

to the default defined for the column (see default-clause in “ALTER TABLE”).

v If the column was defined using the IDENTITY clause, the value is

generated by the database manager.

v If the column was defined without specifying the WITH DEFAULT clause,

the IDENTITY clause, or the NOT NULL clause, the value is NULL.

v If the column was defined using the NOT NULL clause and:

– The IDENTITY clause is not used or

– The WITH DEFAULT clause was not used or

– DEFAULT NULL was used

the DEFAULT keyword cannot be specified for that column (SQLSTATE

23502).

If target-variable is an SQL variable, the value inserted is the default, as

specified or implied in the variable declaration.

If target-variable is a global variable, the value inserted is the default, as

specified in the variable creation.

If target-variable is an SQL variable or an SQL parameter in an SQL procedure,

a host variable, or a parameter marker, the DEFAULT keyword cannot be

specified (SQLSTATE 42608).

row-fullselect

A fullselect that returns a single row with the number of columns

SET variable

Statements 957

corresponding to the number of target variables specified for assignment. The

values are assigned to each corresponding target variable. If the result of the

row fullselect is no rows, null values are assigned. In the context of a CREATE

TRIGGER statement, a row-fullselect can contain references to OLD and NEW

transition variables, which must be qualified by their correlation-name to specify

which transition variable is to be used (SQLSTATE 42702). An error is returned

if there is more than one row in the result (SQLSTATE 21000).

Rules

v The number of values to be assigned from expressions, NULLs, DEFAULTs, or

the row-fullselect must match the number of target-variables specified for

assignment (SQLSTATE 42802).

v A SET variable statement cannot assign an SQL variable and a transition variable

in one statement (SQLSTATE 42997).

v Global variables cannot be assigned inside triggers, functions, methods, or

dynamic compound statements, or inside a procedure that is directly or

indirectly called by one of these objects (SQLSTATE 428GX).

v If the value being assigned is an array resulting from an array constructor or

from ARRAY_AGG, the base types of the array and of the target variable must

be identical (SQLSTATE 42821).

v If the assignment is of the form SET A[idx] = rhs, where A is an array variable

name, idx is an expression used as the subindex, and rhs is an expression of the

same type as the array element, then:

1. If array A is the null value, set A to the empty array.

2. Let C be the cardinality of array A.

3. If idx is less than or equal to C, the value in the position identified by idx is

replaced by the value of rhs.

4. If idx is greater than C, then:

a. The value in position i, for i greater than C and less than idx, is set to the

null value.

b. The value in position idx is set to the value of rhs.

c. The cardinality of A is set to idx.

Notes

v Values are assigned to target variables according to specific assignment rules.

v Assignment statements in SQL procedures must conform to the SQL assignment

rules. String assignments use retrieval assignment rules.

v If a variable has been declared with an identifier that matches the name of a

special register (such as PATH), the variable must be delimited to prevent

unintentional assignment to the special register (for example, SET "PATH" = 1;

for a variable called PATH that has been declared as an integer).

v If more than one assignment is included, each expression and row-fullselect is

evaluated before the assignments are performed. Thus, references to target

variables in an expression or row fullselect are always the value of the target

variable prior to any assignment in the single SET statement.

v When an identity column defined as a distinct type is updated, the entire

computation is done in the source type, and the result is cast to the distinct type

before the value is actually assigned to the column. (There is no casting of the

previous value to the source type prior to the computation.)

v To have DB2 generate a value on a SET statement for an identity column, use

the DEFAULT keyword:

SET variable

958 SQL Reference, Volume 2

SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value

used to update this column is generated by DB2.

v For more information on consuming values of a generated sequence for an

identity column, and for information on exceeding the maximum value for an

identity column, see “INSERT”.

Examples

Example 1: Set the salary column of the row for which the trigger action is

currently executing to 50000.

 SET NEW_VAR.SALARY = 50000;

Or:

 SET (NEW_VAR.SALARY) = (50000);

Example 2: Set the salary and the commission column of the row for which the

trigger action is currently executing to 50000 and 8000, respectively.

 SET NEW_VAR.SALARY = 50000, NEW_VAR.COMM = 8000;

Or:

 SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (50000, 8000);

Example 3: Set the salary and the commission column of the row for which the

trigger action is currently executing to the average salary and commission of

employees in the department that is associated with the updated row.

 SET (NEW_VAR.SALARY, NEW_VAR.COMM)

 = (SELECT AVG(SALARY), AVG(COMM)

 FROM EMPLOYEE E

 WHERE E.WORKDEPT = NEW_VAR.WORKDEPT);

Example 4: Set the salary and the commission column of the row for which the

trigger action is currently executing to 10000 and the original value of salary (that

is, before the SET statement was executed), respectively.

 SET NEW_VAR.SALARY = 10000, NEW_VAR.COMM = NEW_VAR.SALARY;

Or:

 SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (10000, NEW_VAR.SALARY);

Example 5: Increase the SQL variable p_salary by 10 percent.

 SET p_salary = p_salary + (p_salary * .10)

Example 6: Set the SQL variable p_salary to the null value.

 SET p_salary = NULL

Example 7: Set the SQL array variable p_phonenumbers to an array of fixed numbers.

 SET p_phonenumbers = ARRAY[9055553907, 4165554213, 4085553678]

Example 8: Set the SQL array variable p_phonenumbers to an array of numbers

retrieved from the PHONENUMBER table.

 SET p_phonenumbers = ARRAY[SELECT NUMBER

 FROM PHONENUMBERS

 WHERE EMPID = 624]

SET variable

Statements 959

Example 9: Remove the last element from the SQL array variable p_phonenumbers.

 SET p_phonenumbers = TRIM_ARRAY(p_phonenumbers, 1)

Example 10: Assign p_mynumber to the first and tenth elements of the array variable

p_phonenumbers. After the first assignment, the cardinality of p_phonenumbers is 1.

After the second assignment, the cardinality is 10, and elements 1 to 9 have been

implicitly assigned the null value.

 SET p_phonenumbers[1] = p_mynumber

 SET p_phonenumbers[10] = p_mynumber

Example 11: Given a table named SECURITY.USERS, which has a row for every

user that could connect to the database, assign the current time and the

authorization level to the global variables userinfo.gv_connect_time and

userinfo.gv_auth_level, respectively.

 SET userinfo.gv_connect_time = CURRENT TIMESTAMP,

 userinfo.gv_auth_level = (

 SELECT AUTHLEVEL FROM SECURITY.USERS

 WHERE USERID = CURRENT USER)

SET variable

960 SQL Reference, Volume 2

SIGNAL

The SIGNAL statement is used to signal an error or warning condition. It causes

an error or warning to be returned with the specified SQLSTATE, along with

optional message text.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

None required.

Syntax

��

SIGNAL
 VALUE

SQLSTATE

sqlstate-string-constant

variable-name

condition-name

�

�
signal-information

 ��

signal-information:

 SET MESSAGE_TEXT = diagnostic-string-expression

(

diagnostic-string-expression

)

Description

SQLSTATE VALUE sqlstate-string-constant

The specified string constant represents an SQLSTATE. It must be a character

string constant with exactly 5 characters that follow the rules for SQLSTATEs:

v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’).

v The SQLSTATE class (first two characters) cannot be ’00’, since this

represents successful completion.

In the context of either a dynamic compound statement, trigger, SQL function,

or SQL method, the following rules must also be applied:

v The SQLSTATE class (first two characters) cannot be ’01’ or ’02’, since these

are not error classes.

v If the SQLSTATE class starts with the numbers ’0’ through ’6’ or the letters

’A’ through ’H’, then the subclass (the last three characters) must start with

a letter in the range of ’I’ through ’Z’.

v If the SQLSTATE class starts with the numbers ’7’, ’8’, ’9’, or the letters ’I’

through ’Z’, then the subclass can be any of ’0’ through ’9’ or ’A’ through

’Z’.

If the SQLSTATE does not conform to these rules, an error is returned

(SQLSTATE 428B3).

SIGNAL

Statements 961

SQLSTATE VALUE variable-name

The specified variable name must be of type CHAR(5). Its value at statement

execution time must not be null and must conform to the same rules that are

described for sqlstate-string-constant. If the SQLSTATE does not conform to

these rules, an error is returned (SQLSTATE 428B3).

condition-name

Specifies the name of the condition. The condition name must be declared

within the compound statement that contains the SIGNAL statement or within

a compound statement in which that compound statement is nested

(SQLSTATE 42737).

SET MESSAGE_TEXT =

Specifies a string that describes the error or warning. The string is returned in

the SQLERRMC field of the SQLCA. If the actual string is longer than 70 bytes,

it is truncated without warning.

diagnostic-string-expression

An expression of type CHAR or VARCHAR that returns a character string

of up to 70 bytes to describe the error condition. If the string is longer than

70 bytes, it is truncated.

(diagnostic-string-expression)

An expression of type CHAR or VARCHAR that returns a character string of

up to 70 bytes to describe the error condition. If the string is longer than 70

bytes, it is truncated. This option is only provided within the scope of a

CREATE TRIGGER statement for compatibility with previous versions of DB2.

Regular use is not recommended.

Notes

v If a SIGNAL statement is issued, the SQLCODE returned is based on the

SQLSTATE as follows:

– If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found

condition is returned and the SQLCODE is set to +438.

– Otherwise, an exception condition is returned and the SQLCODE is set to

-438.

The other fields of the SQLCA are set as follows:

– sqlerrd fields are set to zero

– sqlwarn fields are set to blank

– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT

– sqlerrml is set to the length of sqlerrmc, or to zero if no SET MESSAGE_TEXT

clause is specified

– sqlerrp is set to ROUTINE.
v SQLSTATE values are comprised of a two-character class code value, followed

by a three-character subclass code value. Class code values represent classes of

successful and unsuccessful execution conditions.

Any valid SQLSTATE value can be used in the SIGNAL statement. However, it

is recommended that programmers define new SQLSTATEs based on ranges

reserved for applications. This prevents the unintentional use of an SQLSTATE

value that might be defined by the database manager in a future release.

– SQLSTATE classes that begin with the characters ’7’ through ’9’, or ’I’ through

’Z’ may be defined. Within these classes, any subclass may be defined.

– SQLSTATE classes that begin with the characters ’0’ through ’6’, or ’A’

through ’H’ are reserved for the database manager. Within these classes,

SIGNAL

962 SQL Reference, Volume 2

subclasses that begin with the characters ’0’ through ’H’ are reserved for the

database manager. Subclasses that begin with the characters ’I’ through ’Z’

may be defined.

Examples

An SQL procedure for an order system that signals an application error when a

customer number is not known to the application. The ORDERS table includes a

foreign key to the CUSTOMER table, requiring that the CUSTNO exist before an

order can be inserted.

 CREATE PROCEDURE SUBMIT_ORDER

 (IN ONUM INTEGER, IN CNUM INTEGER,

 IN PNUM INTEGER, IN QNUM INTEGER)

 SPECIFIC SUBMIT_ORDER

 MODIFIES SQL DATA

 LANGUAGE SQL

 BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’

 SIGNAL SQLSTATE ’75002’

 SET MESSAGE_TEXT = ’Customer number is not known’;

 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)

 VALUES (ONUM, CNUM, PNUM, QNUM);

 END

SIGNAL

Statements 963

TRANSFER OWNERSHIP

The TRANSFER OWNERSHIP statement transfers ownership of a database object.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the object

v SECADM authority

Syntax

�� TRANSFER OWNERSHIP OF objects TO new-owner PRESERVE PRIVILEGES ��

objects:

TRANSFER OWNERSHIP

964 SQL Reference, Volume 2

�

�

�

 ALIAS alias-name

CONSTRAINT

table-name.constraint-name

DATABASE PARTITION GROUP

db-partition-group-name

EVENT MONITOR

event-monitor-name

FUNCTION

function-name

(

)

,

data-type

SPECIFIC FUNCTION

specific-name

FUNCTION MAPPING

function-mapping-name

INDEX

index-name

INDEX EXTENSION

index-extension-name

METHOD

method-name

FOR

type-name

(

)

,

data-type

SPECIFIC METHOD

specific-name

NICKNAME

nickname

PACKAGE

package-id

schema-name.

VERSION

version-id

PROCEDURE

procedure-name

(

)

,

data-type

SPECIFIC PROCEDURE

specific-name

SCHEMA

schema-name

SEQUENCE

sequence-name

TABLE

table-name

TABLE HIERARCHY

root-table-name

TABLESPACE

tablespace-name

TRIGGER

trigger-name

TYPE

type-name

DISTINCT

TYPE MAPPING

type-mapping-name

VARIABLE

variable-name

VIEW

view-name

VIEW HIERARCHY

root-view-name

XSROBJECT

xsrobject-name

new-owner:

 USER authorization-name

SESSION_USER

SYSTEM_USER

Description

ALIAS alias-name

Identifies the alias that is to have its ownership transferred. The alias-name

must identify an alias that is described in the catalog (SQLSTATE 42704).

 When ownership of the alias is transferred, the value in the OWNER column

for the alias in the SYSCAT.TABLES catalog view is replaced with the

authorization ID of the new owner.

TRANSFER OWNERSHIP

Statements 965

CONSTRAINT table-name.constraint-name

Identifies the constraint that is to have its ownership transferred. The

table-name.constraint-name combination must identify a constraint and the table

that it constrains. The constraint-name must identify a constraint that is

described in the catalog (SQLSTATE 42704).

 When ownership of the constraint is transferred, the value in the OWNER

column for the constraint in the SYSCAT.TABCONST catalog view is replaced

with the authorization ID of the new owner.

v If the constraint is a FOREIGN KEY constraint, the OWNER column in the

SYSCAT.REFERENCES catalog view is replaced with the authorization ID of

the new owner.

v If the constraint is a PRIMARY KEY or UNIQUE constraint, the OWNER

column in the SYSCAT.INDEXES catalog view for the index that was created

implicitly for this constraint is replaced with the authorization ID of the new

owner. If the index existed, and it is reused in this case, the owner of the

index is not changed.

DATABASE PARTITION GROUP db-partition-group-name

Identifies the database partition group that is to have its ownership

transferred. The db-partition-group-name must identify a database partition

group that is described in the catalog (SQLSTATE 42704).

 When ownership of the database partition group is transferred, the value in

the OWNER column for the database partition group in the

SYSCAT.DBPARTITIONGROUPS catalog view is replaced with the

authorization ID of the new owner.

EVENT MONITOR event-monitor-name

Identifies the event monitor that is to have its ownership transferred. The

event-monitor-name must identify an event monitor that is described in the

catalog (SQLSTATE 42704).

 When ownership of the event monitor is transferred, the value in the OWNER

column for the event monitor in the SYSCAT.EVENTMONITORS catalog view

is replaced with the authorization ID of the new owner.

If the identified event monitor is active, an error is returned (SQLSTATE

429BT).

If there are event files in the target path of a WRITE TO FILE event monitor

whose ownership is being transferred, the event files are not deleted.

When ownership of WRITE TO TABLE event monitors is transferred, table

information in the SYSCAT.EVENTTABLES catalog view is retained.

FUNCTION

Identifies the function that is to have its ownership transferred. The specified

function instance must be a user-defined function or function template that is

described in the catalog. Ownership of functions that are implicitly generated

by the CREATE TYPE (Distinct) and CREATE TYPE (Structured) statements

cannot be transferred (SQLSTATE 429BT).

 There are several different ways to identify the function instance.

FUNCTION function-name

Identifies the particular function that is to have its ownership transferred,

and is valid only if there is exactly one function instance with that

function-name. The function thus identified can have any number of

parameters defined for it. In dynamic SQL statements, the CURRENT

SCHEMA special register is used as a qualifier for an unqualified object

TRANSFER OWNERSHIP

966 SQL Reference, Volume 2

name. In static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names. If no function

by this name exists in the named or implied schema, an error is returned

(SQLSTATE 42704). If there is more than one specific instance of the

function in the named or implied schema, an error is returned (SQLSTATE

42725).

FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function

whose ownership is to be transferred. The function selection algorithm is

not used.

function-name

Specifies the name of the function whose ownership is to be

transferred. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In

static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names.

(data-type,...)

Specified data types must match the types and positions that were

specified on the CREATE FUNCTION statement. The number of data

types and the logical concatenation of the data types are used to

identify the specific function whose ownership is to be transferred.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL, and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

The FOR BIT DATA attribute is not considered to be part of the

signature for matching purposes. So, for example, a CHAR FOR BIT

DATA specified in the signature would match a function defined with

CHAR only; the reverse would also be true.

 If no function with the specified signature exists in the named or implied

schema, an error is returned (SQLSTATE 42883).

When ownership of the function is transferred, the value in the OWNER

column for the function in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

SPECIFIC FUNCTION specific-name

Identifies the particular user-defined function that is to have its ownership

transferred, using the specific name either specified or defaulted to at function

creation time. In dynamic SQL statements, the CURRENT SCHEMA special

register is used as a qualifier for an unqualified object name. In static SQL

TRANSFER OWNERSHIP

Statements 967

statements, the QUALIFIER precompile or bind option implicitly specifies the

qualifier for unqualified object names. The specific-name must identify a specific

function instance in the named or implied schema; otherwise, an error is

returned (SQLSTATE 42704).

 When ownership of the specific function is transferred, the value in the

OWNER column for the specific function in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

FUNCTION MAPPING function-mapping-name

Identifies the function mapping that is to have its ownership transferred. The

function-mapping-name must identify a function mapping that is described in

the catalog (SQLSTATE 42704).

 When ownership of the function mapping is transferred, the value in the

OWNER column for the function mapping in the SYSCAT.FUNCMAPPINGS

catalog view is replaced with the authorization ID of the new owner.

INDEX index-name

Identifies the index or index specification that is to have its ownership

transferred. The index-name must identify an index or index specification that is

described in the catalog (SQLSTATE 42704).

 When ownership of the index is transferred, the value in the OWNER column

for the index in the SYSCAT.INDEXES catalog view is replaced with the

authorization ID of the new owner.

Ownership of an index cannot be transferred if the table on which the index is

defined is a global temporary table (SQLSTATE 429BT).

INDEX EXTENSION index-extension-name

Identifies the index extension that is to have its ownership transferred. The

index-extension-name must identify an index extension that is described in the

catalog (SQLSTATE 42704).

 When ownership of the index extension is transferred, the value in the

OWNER column for the index extension in the SYSCAT.INDEXEXTENSIONS

catalog view is replaced with the authorization ID of the new owner.

METHOD

Identifies the method that is to have its ownership transferred. The method

body specified must be a method that is described in the catalog (SQLSTATE

42704). The ownership of methods that are implicitly generated by the

CREATE TYPE statement cannot be transferred (SQLSTATE 429BT).

 There are several different ways to identify the method body.

METHOD method-name

Identifies the particular method that is to have its ownership transferred,

and is valid only if there is exactly one method instance with name

method-name and subject type type-name. Thus, the method identified can

have any number of parameters. If no method by this name exists for the

type type-name, an error is returned (SQLSTATE 42704). If there is more

than one specific instance of the method for the named data type, an error

is returned (SQLSTATE 42725).

METHOD method-name (data-type,...)

Provides the method signature, which uniquely identifies the method

whose ownership is to be transferred. The method selection algorithm is

not used.

TRANSFER OWNERSHIP

968 SQL Reference, Volume 2

method-name

Specifies the name of the method whose ownership is to be

transferred. The name must be an unqualified identifier.

(data-type, ...)

Specified data types must match the types and positions that were

specified on the CREATE TYPE or ALTER TYPE statement. The

number of data types and the logical concatenation of the data types

are used to identify the specific method instance whose ownership is

to be transferred.

 If data-type is unqualified, the type name is resolved by searching the

schemas on the SQL path.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the named data

type, an error is returned (SQLSTATE 42883).

FOR type-name

Names the type for which the specified method is to have its

ownership transferred. The name must identify a type that is described

in the catalog (SQLSTATE 42704). In dynamic SQL statements, the

CURRENT SCHEMA special register is used as a qualifier for an

unqualified type name. In static SQL statements, the QUALIFIER

precompile or bind option implicitly specifies the qualifier for

unqualified type names.

 When ownership of the method is transferred, the value in the OWNER

column for the method in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

SPECIFIC METHOD specific-name

Identifies the particular method that is to have its ownership transferred. If the

specific name is unqualified, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified specific name in dynamic SQL. In static SQL

statements, the QUALIFIER precompile or bind option implicitly specifies the

qualifier for an unqualified specific name. The specific-name must identify a

method; otherwise, an error is returned (SQLSTATE 42704).

 When ownership of the specific method is transferred, the value in the

OWNER column for the specific method in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

NICKNAME nickname

Identifies the nickname that is to have its ownership transferred. The nickname

must be a nickname that is described in the catalog (SQLSTATE 42704).

TRANSFER OWNERSHIP

Statements 969

When ownership of the nickname is transferred, the value in the OWNER

column for the nickname in the SYSCAT.TABLES catalog view is replaced with

the authorization ID of the new owner.

PACKAGE schema-name.package-id

Identifies the package that is to have its ownership transferred. If a schema

name is not specified, the package identifier is implicitly qualified by the

default schema. The schema name and package identifier, together with the

implicitly or explicitly specified version identifier, must identify a package that

is described in the catalog (SQLSTATE 42704).

VERSION version-id

Identifies which package version is to have its ownership transferred. If a

value is not specified, the version defaults to the empty string, and the

ownership of this package is transferred. If multiple packages with the

same package name but different versions exist, only the ownership of the

package whose version-id is specified in the TRANSFER OWNERSHIP

statement is transferred. Delimit the version identifier with double

quotation marks when it:

v Is generated by the VERSION(AUTO) precompiler option

v Begins with a digit

v Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt,

precede each double quotation mark delimiter with a back slash character

to ensure that the operating system does not strip the delimiters.

 When ownership of the package is transferred, the value in the BOUNDBY

column for the package in the SYSCAT.PACKAGES catalog view is replaced

with the authorization ID of the new owner.

The ownership of packages that are associated with SQL procedures cannot be

transferred (SQLSTATE 429BT).

PROCEDURE

Identifies the procedure that is to have its ownership transferred. The

procedure instance specified must be a procedure that is described in the

catalog.

 There are several different ways to identify the procedure instance.

PROCEDURE procedure-name

Identifies the particular procedure that is to have its ownership transferred,

and is valid only if there is exactly one procedure with the procedure-name

in the schema. The procedure thus identified can have any number of

parameters defined for it. In dynamic SQL statements, the CURRENT

SCHEMA special register is used as a qualifier for an unqualified object

name. In static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names. If no

procedure by this name exists in the named or implied schema, an error is

returned (SQLSTATE 42704). If there is more than one specific instance of

the procedure in the named or implied schema, an error is returned

(SQLSTATE 42725).

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure

whose ownership is to be transferred.

procedure-name

Specifies the procedure name of the procedure whose ownership is to

TRANSFER OWNERSHIP

970 SQL Reference, Volume 2

be transferred. In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In

static SQL statements, the QUALIFIER precompile or bind option

implicitly specifies the qualifier for unqualified object names.

(data-type,...)

Specified data types must match the types and positions that were

specified on the CREATE PROCEDURE statement. The number of data

types and the logical concatenation of the data types are used to

identify the specific procedure whose ownership is to be transferred.

 If the data-type is unqualified, the type name is resolved by searching

the schemas on the SQL path. This also applies to data type names

specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the

parameterized data types. Instead, an empty set of parentheses can be

coded to indicate that these attributes are to be ignored when looking

for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter

value indicates different data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly

match that specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,

because 0<n<25 means REAL and 24<n<54 means DOUBLE. Matching

occurs based on whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied

schema, an error is returned (SQLSTATE 42883).

 When ownership of the procedure is transferred, the value in the OWNER

column for the procedure in the SYSCAT.ROUTINES catalog view is replaced

with the authorization ID of the new owner.

Transferring ownership of an SQL procedure that has an associated package

also implicitly transfers ownership of the package to the new owner.

SPECIFIC PROCEDURE specific-name

Identifies the particular procedure that is to have its ownership transferred,

using the specific name either specified or defaulted to at procedure creation

time. In dynamic SQL statements, the CURRENT SCHEMA special register is

used as a qualifier for an unqualified object name. In static SQL statements, the

QUALIFIER precompile or bind option implicitly specifies the qualifier for

unqualified object names. The specific-name must identify a specific procedure

instance in the named or implied schema; otherwise, an error is returned

(SQLSTATE 42704).

 When ownership of the specific procedure is transferred, the value in the

OWNER column for the specific procedure in the SYSCAT.ROUTINES catalog

view is replaced with the authorization ID of the new owner.

SCHEMA schema-name

Identifies the schema that is to have its ownership transferred. The schema-name

must identify a schema that is described in the catalog (SQLSTATE 42704).

 When ownership of the schema is transferred, for implicitly created schemas,

the value in the DEFINER column for the schema in the SYSCAT.SCHEMATA

catalog view is replaced with the authorization ID of the new owner and the

TRANSFER OWNERSHIP

Statements 971

value in the OWNER column remains as SYSIBM. For explicitly create

schemas, the value in the OWNER column and the DEFINER column for the

schema in the SYSCAT.SCHEMATA catalog view is replaced with the

authorization ID of the new owner.

Ownership of system-defined schemas (where the definer is SYSIBM) cannot

be transferred (SQLSTATE 42832).

SEQUENCE sequence-name

Identifies the sequence that is to have its ownership transferred. The

sequence-name must identify a sequence that is described in the catalog

(SQLSTATE 42704).

 When ownership of the sequence is transferred, the value in the OWNER

column for the schema in the SYSCAT.SEQUENCES catalog view is replaced

with the authorization ID of the new owner.

TABLE table-name

Identifies the table that is to have its ownership transferred. The table-name

must identify a table that exists in the database (SQLSTATE 42704) and must

not identify a declared temporary table (SQLSTATE 42995).

 When ownership of the table is transferred:

v The value in the OWNER column for the table in the SYSCAT.TABLES

catalog view is replaced with the authorization ID of the new owner.

v The value in the OWNER column for all dependent objects on the table in

the SYSCAT.TABDEP catalog view is replaced with the authorization ID of

the new owner.

Ownership of subtables in a table hierarchy cannot be transferred (SQLSTATE

429BT).

In a federated system, ownership of a remote table that was created using

transparent DDL can be transferred. Transferring the ownership of a remote

table will not transfer ownership of the nickname that is associated with the

table. Ownership of such a nickname can be transferred explicitly using the

TRANSFER OWNERSHIP statement.

TABLE HIERARCHY root-table-name

Identifies the typed table that is the root table in a typed table hierarchy that is

to have its ownership transferred. The root-table-name must identify a typed

table that is the root table in the typed table hierarchy (SQLSTATE 428DR), and

must refer to a typed table that exists in the database (SQLSTATE 42704).

 When ownership of the table hierarchy is transferred:

v The value in the OWNER column for the root table and all of its subtables

in the SYSCAT.TABLES catalog view is replaced with the authorization ID of

the new owner.

v The value in the OWNER column for all dependent objects on the table and

all of its subtables in the SYSCAT.TABDEP catalog view is replaced with the

authorization ID of the new owner.

TABLESPACE tablespace-name

Identifies the table space that is to have its ownership transferred. The

tablespace-name must identify a table space that is described in the catalog

(SQLSTATE 42704).

 When ownership of the table space is transferred, the value in the OWNER

column for the table space in the SYSCAT.TABLESPACES catalog view is

replaced with the authorization ID of the new owner.

TRANSFER OWNERSHIP

972 SQL Reference, Volume 2

TRIGGER trigger-name

Identifies the trigger that is to have its ownership transferred. The trigger-name

must identify a trigger that is described in the catalog (SQLSTATE 42704).

 When ownership of the trigger is transferred, the value in the OWNER column

for the trigger in the SYSCAT.TRIGGERS catalog view is replaced with the

authorization ID of the new owner.

TYPE type-name

Identifies the user-defined type that is to have its ownership transferred. The

type-name must identify a type that is described in the catalog (SQLSTATE

42704). If DISTINCT is specified, type-name must identify a distinct type that is

described in the catalog (SQLSTATE 42704).

 In dynamic SQL statements, the CURRENT SCHEMA special register is used

as a qualifier for an unqualified object name. In static SQL statements, the

QUALIFIER precompile or bind option implicitly specifies the qualifier for

unqualified object names.

When ownership of the type is transferred, the value in the OWNER column

for the type in the SYSCAT.DATATYPES catalog view is replaced with the

authorization ID of the new owner.

TYPE MAPPING type-mapping-name

Identifies the user-defined data type mapping that is to have its ownership

transferred. The type-mapping-name must identify a data type mapping that is

described in the catalog (SQLSTATE 42704).

 When ownership of the type mapping is transferred, the value in the OWNER

column for the type mapping in the SYSCAT.TYPEMAPPINGS catalog view is

replaced with the authorization ID of the new owner.

VARIABLE variable-name

Indicates that the object whose ownership is to be transferred is a created

global variable. The variable-name must identify a global variable that exists at

the current server (SQLSTATE 42704).

 When the global variable is transferred, the value in the OWNER column for

the global variable in the SYSCAT.VARIABLES catalog view is replaced with

the authorization ID of the new owner.

VIEW view-name

Identifies the view that is to have its ownership transferred. The view-name

must identify a view that exists in the database (SQLSTATE 42704).

 When ownership of the view is transferred:

v The value in the OWNER column for the view in the SYSCAT.VIEWS

catalog view is replaced with the authorization ID of the new owner.

v The value in the OWNER column for all dependent objects on the view in

the SYSCAT.TABDEP catalog view is replaced with the authorization ID of

the new owner.

The ownership of a subview in a view hierarchy cannot be transferred

(SQLSTATE 429BT).

VIEW HIERARCHY root-view-name

Identifies the typed view that is the root view in a typed view hierarchy that is

to have its ownership transferred. The root-view-name must identify a typed

view that is the root view in the typed view hierarchy (SQLSTATE 428DR), and

must refer to a typed view that exists in the database (SQLSTATE 42704).

 When ownership of the view hierarchy is transferred:

TRANSFER OWNERSHIP

Statements 973

v The value in the OWNER column for the root view and all of its subviews

in the SYSCAT.VIEWS catalog view is replaced with the authorization ID of

the new owner.

v The value in the OWNER column for all dependent objects on the view and

all of its subviews in the SYSCAT.TABDEP catalog view is replaced with the

authorization ID of the new owner.

XSROBJECT xsrobject-name

Identifies the XSR object that is to have its ownership transferred. The

xsrobject-name must identify an XSR object that is described in the catalog

(SQLSTATE 42704).

 When ownership of the XSR object is transferred, the value in the OWNER

column for the XSR object in the SYSCAT.XSROBJECTS catalog view is

replaced with the authorization ID of the new owner.

USER authorization-name

Specifies the authorization ID to which ownership of the object is being

transferred.

SESSION_USER

Specifies that the value of the SESSION_USER special register is to be used as

the authorization ID to which ownership of the object is being transferred.

SYSTEM_USER

Specifies that the value of the SYSTEM_USER special register is to be used as

the authorization ID to which ownership of the object is being transferred.

PRESERVE PRIVILEGES

Specifies that the current owner of an object that is to have its ownership

transferred will continue to hold any existing privileges on the object after the

transfer. For example, any privileges that were granted to the creator of a view

when that view was created continue to be held by the original owner even

after ownership has been transferred to another user.

Rules

v Ownership of system-defined objects (where the owner is SYSIBM) cannot be

transferred (SQLSTATE 42832).

v Ownership of schemas whose name starts with ’SYS’ cannot be transferred

(SQLSTATE 42832).

v Ownership of the following objects cannot be explicitly transferred (SQLSTATE

429BT):

– Subtables in a table hierarchy (they are transferred with the root hierarchy

table)

– Subviews in a view hierarchy (they are transferred with the root hierarchy

view)

– Indexes that are defined on global temporary tables

– Methods or functions that are implicitly generated when a user-defined type

is created

– Packages that depend on SQL procedures (they are transferred with the SQL

procedure)

– Event monitors that are active (they can be transferred when they are not

active)
v An authorization ID that has SECADM authority cannot transfer the ownership

of an object to itself, if it is not already the owner of the object (SQLSTATE

42502).

TRANSFER OWNERSHIP

974 SQL Reference, Volume 2

Notes

v All privileges that the current owner has that were granted as part of the

creation of the object are transferred to the new owner. If the current owner has

had a privilege on the object revoked, and that privilege was subsequently

granted back, the privilege is not transferred.

v When the ownership of a database object is transferred, the new owner must

have the set of privileges on the base objects, as indicated by the object’s

dependencies, that are required to maintain the object’s existence unchanged.

The new owner does not need the privileges required to create the object if those

privileges are not required to maintain the object’s existence.

For example:

– Consider a view with SELECT and INSERT dependencies on an underlying

table. The privileges held by the new owner of the view must include at least

SELECT (with or without the GRANT OPTION) and INSERT (with or

without the GRANT OPTION) for the ownership transfer to be successful. If

the dependencies were SELECT WITH GRANT OPTION and INSERT WITH

GRANT OPTION, the privileges held by the new owner of the view must

include at least SELECT WITH GRANT OPTION and INSERT WITH GRANT

OPTION.

– Consider a view with a dependency on a routine. The privileges held by the

new owner of the view must include at least EXECUTE on the dependent

routine.

– Consider a trigger with a dependency on a table. The privileges held by the

new owner of the trigger must include the same set of privileges on the table

that are indicated by the trigger’s dependencies. ALTER privilege on the table

on which the trigger is defined is not required.
The following table lists the system catalog views that describe the objects on

which other database objects depend.

 Table 35. Catalog Views that Describe Objects on which Other Objects Depend

Database Object System Catalog View

CONSTRAINT SYSCAT.CONSTDEP

FUNCTION SYSCAT.ROUTINEDEP; SYSCAT.ROUTINES

(for a sourced function)

INDEX SYSCAT.INDEXDEP

INDEX EXTENSION SYSCAT.INDEXEXTENSIONDEP

METHOD SYSCAT.ROUTINEDEP

PACKAGE SYSCAT.PACKAGEDEP

PROCEDURE SYSCAT.ROUTINEDEP

TABLE SYSCAT.TABDEP

TRIGGER SYSCAT.TRIGDEP

VIEW SYSCAT.TABDEP

XSROBJECT SYSCAT.XSROBJECTDEP

If ownership of a database object that depends on another object is to be

transferred successfully, the new owner of the database object must hold certain

privileges on the dependent object of that dependency:

– If the dependent object is a sequence, the new owner must have the USAGE

privilege on that sequence.

TRANSFER OWNERSHIP

Statements 975

– If the dependent object is a function, method, or procedure, the new owner

must have the EXECUTE privilege on that function, method, or procedure.

– If the dependent object is a package, the new owner must have the EXECUTE

privilege on that package.

– If the dependent object is an XSR object, the new owner must have the

USAGE privilege on that XSR object.

For any other dependent object of a dependency, use the TABAUTH column in

the appropriate system catalog view to determine what privileges the new

owner must hold.

v If an attempt is made to transfer ownership of an object to its owner, a warning

is returned (SQLSTATE 01676).

v Ownership of the following database objects cannot be transferred, because these

objects have no owner: audit policies, buffer pools, roles, security labels, security

label components, security policies, servers, transformation functions, trusted

contexts, user mappings, and wrappers. Note that there is no OWNER column

in the SYSCAT.AUDITPOLICIES, SYSCAT.BUFFERPOOLS, SYSCAT.CONTEXTS,

SYSCAT.ROLES, SYSCAT.SECURITYLABELS,

SYSCAT.SECURITYLABELCOMPONENTS, SYSCAT.SECURITYPOLICIES,

SYSCAT.SERVERS, SYSCAT.TRANSFORMS, SYSCAT.USEROPTIONS, and

SYSCAT.WRAPPERS catalog views.

v The schema name of an object whose ownership was transferred does not

automatically change.

v Compatibilities

– For consistency with other SQL statements:

- NODEGROUP can be specified in place of DATABASE PARTITION

GROUP

Examples

Example 1: Transfer ownership of table T1 to PAUL.

 TRANSFER OWNERSHIP OF TABLE WALID.T1

 TO USER PAUL PRESERVE PRIVILEGES

The value in the OWNER column for the table WALID.T1 in the SYSCAT.TABLES

catalog view is replaced with ’PAUL’. Paul is implicitly granted the following

privileges on table WALID.T1 (assuming that the previous owner of the table did

not lose any privileges on it): CONTROL and ALTER, DELETE, INDEX, INSERT,

SELECT, UPDATE, REFERENCE (WITH GRANT OPTION).

Example 2: Assume that JOHN creates tables T1 and T2, and that MIKE holds

SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates view V1 that

depends on tables JOHN.T1 and JOHN.T2. Transfer ownership of view V1 to

HENRY, who has DBADM authority.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER HENRY PRESERVE PRIVILEGES

The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog

view is replaced with ’HENRY’. A new row is added to SYSCAT.TABAUTH with

the following values: GRANTOR = ’SYSIBM’, GRANTEE = ’HENRY’, and

TABNAME = ’V1’.

TRANSFER OWNERSHIP

976 SQL Reference, Volume 2

Example 3: Assume that HENRY, who holds DBADM authority, creates a trigger

TR1 that depends on table T1. Transfer ownership of trigger TR1 to WALID, who

does not hold DBADM authority.

 TRANSFER OWNERSHIP OF TRIGGER TR1

 TO USER WALID PRESERVE PRIVILEGES

Ownership of the trigger is transferred successfully, even though Walid does not

hold DBADM authority.

Example 4: Assume that JOHN creates tables T1 and T2, and that MIKE holds

SELECT privilege on table JOHN.T1 and CONTROL privilege on table JOHN.T2.

PAUL holds SELECT privilege on tables JOHN.T1 and JOHN.T2. MIKE creates

view V1 that depends on tables JOHN.T1 and JOHN.T2. The view has an entry for

the SELECT privilege in SYSCAT.TABAUTH and two SELECT dependencies in

SYSCAT.TABDEP for tables JOHN.T1 and JOHN.T2. Transfer ownership of view

V1 to PAUL, who is a regular user.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER PAUL PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, even though Paul does not hold

CONTROL privilege on table JOHN.T2. Paul only needs SELECT privilege on

tables JOHN.T1 and JOHN.T2 to maintain the view’s existence. (The view only has

SELECT privilege because Paul did not hold CONTROL privilege on both tables

when the view was created and, as a result, he was not granted CONTROL on the

view.) The value in the OWNER column for the view V1 in the SYSCAT.VIEWS

catalog view is replaced with ’PAUL’. The value in the OWNER column for the

view V1 in the SYSCAT.TABDEP catalog view is replaced with ’PAUL’. A new row

is added to SYSCAT.TABAUTH with the following values: GRANTOR = ’SYSIBM’,

GRANTEE = ’PAUL’, and TABNAME = ’V1’.

Example 5: Assume that JOHN creates table T1, and that PUBLIC holds SELECT

privilege on JOHN.T1. PAUL holds SELECT privilege on JOHN.T1 explicitly, and

creates view V1 that depends on table JOHN.T1. Transfer ownership of view V1 to

MIKE, who is not a DBADM, but who holds the required privileges to acquire

view ownership through the special group PUBLIC.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT

privilege on table JOHN.T1 through PUBLIC. The value in the OWNER column for

the view V1 in the SYSCAT.VIEWS catalog view is replaced with ’MIKE’. The

value in the OWNER column for the view V1 in the SYSCAT.TABDEP catalog view

is replaced with ’MIKE’. A new row is added to SYSCAT.TABAUTH with the

following values: GRANTOR = ’SYSIBM’, GRANTEE = ’MIKE’, and TABNAME =

’V1’.

Example 6: Similar to example 5, assume that JOHN creates table T1, and that role

R1 holds SELECT privilege on JOHN.T1. PAUL holds SELECT privilege on

JOHN.T1 explicitly, and creates view V1 that depends on table JOHN.T1. Transfer

ownership of view V1 to MIKE, who is not a DBADM, but who holds the required

privileges through membership in role R1 to acquire view ownership.

 TRANSFER OWNERSHIP OF VIEW V1

 TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT

privilege on table JOHN.T1 through membership in role R1. The value in the

TRANSFER OWNERSHIP

Statements 977

OWNER column for the view V1 in the SYSCAT.VIEWS catalog view is replaced

with ’MIKE’. The value in the OWNER column for the view V1 in the

SYSCAT.TABDEP catalog view is replaced with ’MIKE’. A new row is added to

SYSCAT.TABAUTH with the following values: GRANTOR = ’SYSIBM’, GRANTEE

= ’MIKE’, and TABNAME = ’V1’.

TRANSFER OWNERSHIP

978 SQL Reference, Volume 2

UPDATE

The UPDATE statement updates the values of specified columns in rows of a table,

view or nickname, or the underlying tables, nicknames, or views of the specified

fullselect. Updating a row of a view updates a row of its base table, if no

INSTEAD OF trigger is defined for the update operation on this view. If such a

trigger is defined, the trigger will be executed instead. Updating a row using a

nickname updates a row in the data source object to which the nickname refers.

The forms of this statement are:

v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).

v The Positioned UPDATE form is used to update exactly one row (as determined

by the current position of a cursor).

Invocation

An UPDATE statement can be embedded in an application program or issued

through the use of dynamic SQL statements. It is an executable statement that can

be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v UPDATE privilege on the target table, view, or nickname

v UPDATE privilege on each of the columns that are to be updated

v CONTROL privilege on the target table, view, or nickname

v SYSADM or DBADM authority

If a row-fullselect is included in the assignment, the privileges held by the

authorization ID of the statement must include at least one of the following for

each referenced table, view, or nickname:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

For each table, view, or nickname referenced by a subquery, the privileges held by

the authorization ID of the statement must also include at least one of the

following:

v SELECT privilege

v CONTROL privilege

v SYSADM or DBADM authority

If the package used to process the statement is precompiled with SQL92 rules

(option LANGLEVEL with a value of SQL92E or MIA), and the searched form of

an UPDATE statement includes a reference to a column of the table, view, or

nickname in the right hand side of the assignment-clause, or anywhere in the

search-condition, the privileges held by the authorization ID of the statement must

also include at least one of the following:

v SELECT privilege

v CONTROL privilege

UPDATE

Statements 979

v SYSADM or DBADM authority

If the specified table or view is preceded by the ONLY keyword, the privileges

held by the authorization ID of the statement must also include the SELECT

privilege for every subtable or subview of the specified table or view.

GROUP privileges are not checked for static UPDATE statements.

If the target of the update operation is a nickname, privileges on the object at the

data source are not considered until the statement is executed at the data source.

At this time, the authorization ID that is used to connect to the data source must

have the privileges that are required for the operation on the object at the data

source. The authorization ID of the statement can be mapped to a different

authorization ID at the data source.

Syntax

searched-update:

�� UPDATE table-name

view-name

nickname

ONLY

(

table-name

)

view-name

(

fullselect

)

correlation-clause
 �

�
include-columns

 SET assignment-clause �

�
WHERE

search-condition

WITH

RR

RS

CS

UR

 ��

positioned-update:

�� UPDATE table-name

view-name

nickname

ONLY

(

table-name

)

view-name

correlation-clause
 �

� SET assignment-clause WHERE CURRENT OF cursor-name ��

correlation-clause:

 AS

correlation-name

�

,

(

column-name

)

UPDATE

980 SQL Reference, Volume 2

include-columns:

INCLUDE

�

 ,

(

column-name

data-type

)

assignment-clause:

�

�

�

�

�

 ,

column-name

=

expression

NULL

DEFAULT

..attribute-name

,

,

(1)

(

column-name

)

=

(

expression

)

NULL

DEFAULT

..attribute-name

(2)

row-fullselect

Notes:

1 The number of expressions, NULLs and DEFAULTs must match the number

of column names.

2 The number of columns in the select list must match the number of column

names.

Description

table-name, view-name, nickname, or (fullselect)

Identifies the object of the update operation. The name must identify a table,

view, or nickname described in the catalog, but not a catalog table, a view of a

catalog table (unless it is one of the updatable SYSSTAT views), a

system-maintained materialized query table, or a read-only view that has no

INSTEAD OF trigger defined for its update operations.

 If table-name is a typed table, rows of the table or any of its proper subtables

may get updated by the statement. Only the columns of the specified table

may be set or referenced in the WHERE clause. For a positioned UPDATE, the

associated cursor must also have specified the same table, view or nickname in

the FROM clause without using ONLY.

If the object of the update operation is a fullselect, the fullselect must be

updatable, as defined in the “Updatable views” Notes item in the description

of the CREATE VIEW statement.

ONLY (table-name)

Applicable to typed tables, the ONLY keyword specifies that the statement

should apply only to data of the specified table and rows of proper subtables

cannot be updated by the statement. For a positioned UPDATE, the associated

cursor must also have specified the table in the FROM clause using ONLY. If

table-name is not a typed table, the ONLY keyword has no effect on the

statement.

ONLY (view-name)

Applicable to typed views, the ONLY keyword specifies that the statement

should apply only to data of the specified view and rows of proper subviews

cannot be updated by the statement. For a positioned UPDATE, the associated

UPDATE

Statements 981

cursor must also have specified the view in the FROM clause using ONLY. If

view-name is not a typed view, the ONLY keyword has no effect on the

statement.

correlation-clause

Can be used within search-condition or assignment-clause to designate a table,

view, nickname, or fullselect. For a description of correlation-clause, see

“table-reference” in the description of “Subselect”.

include-columns

Specifies a set of columns that are included, along with the columns of

table-name or view-name, in the intermediate result table of the UPDATE

statement when it is nested in the FROM clause of a fullselect. The

include-columns are appended at the end of the list of columns that are

specified for table-name or view-name.

INCLUDE

Specifies a list of columns to be included in the intermediate result table of

the UPDATE statement.

column-name

Specifies a column of the intermediate result table of the UPDATE

statement. The name cannot be the same as the name of another include

column or a column in table-name or view-name (SQLSTATE 42711).

data-type

Specifies the data type of the include column. The data type must be one

that is supported by the CREATE TABLE statement.

SET

Introduces the assignment of values to column names.

assignment-clause

column-name

Identifies a column to be updated. The column-name must identify an

updatable column of the specified table, view, or nickname, or identify an

INCLUDE column. The object ID column of a typed table is not updatable

(SQLSTATE 428DZ). A column must not be specified more than once,

unless it is followed by ..attribute-name (SQLSTATE 42701).

 If it specifies an INCLUDE column, the column name cannot be qualified.

For a Positioned UPDATE:

v If the update-clause was specified in the select-statement of the cursor, each

column name in the assignment-clause must also appear in the

update-clause.

v If the update-clause was not specified in the select-statement of the cursor

and LANGLEVEL MIA or SQL92E was specified when the application

was precompiled, the name of any updatable column may be specified.

v If the update-clause was not specified in the select-statement of the cursor

and LANGLEVEL SAA1 was specified either explicitly or by default

when the application was precompiled, no columns may be updated.

..attribute-name

Specifies the attribute of a structured type that is set (referred to as an

attribute assignment. The column-name specified must be defined with a

user-defined structured type (SQLSTATE 428DP). The attribute-name must

be an attribute of the structured type of column-name (SQLSTATE 42703).

An assignment that does not involve the ..attribute-name clause is referred

to as a conventional assignment.

UPDATE

982 SQL Reference, Volume 2

expression

Indicates the new value of the column. The expression is any expression of

the type described in “Expressions”. The expression cannot include a

column function except when it occurs within a scalar fullselect

(SQLSTATE 42903).

 An expression may contain references to columns of the target table of the

UPDATE statement. For each row that is updated, the value of such a

column in an expression is the value of the column in the row before the

row is updated.

An expression cannot contain references to an INCLUDE column.

NULL

Specifies the null value and can only be specified for nullable columns

(SQLSTATE 23502). NULL cannot be the value in an attribute assignment

(SQLSTATE 429B9) unless it is specifically cast to the data type of the

attribute.

DEFAULT

Specifies that the default value should be used based on how the

corresponding column is defined in the table. The value that is inserted

depends on how the column was defined.

v If the column was defined as a generated column based on an

expression, the column value will be generated by the system, based on

the expression.

v If the column was defined using the IDENTITY clause, the value is

generated by the database manager.

v If the column was defined using the WITH DEFAULT clause, the value

is set to the default defined for the column (see default-clause in “ALTER

TABLE”).

v If the column was defined using the NOT NULL clause and the

GENERATED clause was not used, or the WITH DEFAULT clause was

not used, or DEFAULT NULL was used, the DEFAULT keyword cannot

be specified for that column (SQLSTATE 23502).

v If the column was defined using the ROW CHANGE TIMESTAMP

clause, the value is generated by the database manager.

The only value that a generated column defined with the GENERATED

ALWAYS clause can be set to is DEFAULT (SQLSTATE 428C9).

The DEFAULT keyword cannot be used as the value in an attribute

assignment (SQLSTATE 429B9).

The DEFAULT keyword cannot be used as the value in an assignment for

update on a nickname where the data source does not support DEFAULT

syntax.

row-fullselect

A fullselect that returns a single row with the number of columns

corresponding to the number of column-names specified for assignment. The

values are assigned to each corresponding column-name. If the result of the

row-fullselect is no rows, then null values are assigned.

 A row-fullselect may contain references to columns of the target table of the

UPDATE statement. For each row that is updated, the value of such a

column in an expression is the value of the column in the row before the

row is updated. An error is returned if there is more than one row in the

result (SQLSTATE 21000).

UPDATE

Statements 983

WHERE

Introduces a condition that indicates what rows are updated. You can omit the

clause, give a search condition, or name a cursor. If the clause is omitted, all

rows of the table, view or nickname are updated.

search-condition

Each column-name in the search condition, other than in a subquery, must

name a column of the table, view or nickname. When the search condition

includes a subquery in which the same table is the base object of both the

UPDATE and the subquery, the subquery is completely evaluated before

any rows are updated.

 The search-condition is applied to each row of the table, view or nickname

and the updated rows are those for which the result of the

search-condition is true.

If the search condition contains a subquery, the subquery can be thought of

as being executed each time the search condition is applied to a row, and

the results used in applying the search condition. In actuality, a subquery

with no correlated references is executed only once, whereas a subquery

with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name

Identifies the cursor to be used in the update operation. The cursor-name

must identify a declared cursor, explained in “DECLARE CURSOR”. The

DECLARE CURSOR statement must precede the UPDATE statement in the

program.

 The specified table, view, or nickname must also be named in the FROM

clause of the SELECT statement of the cursor, and the result table of the

cursor must not be read-only. (For an explanation of read-only result

tables, see “DECLARE CURSOR”.)

When the UPDATE statement is executed, the cursor must be positioned

on a row; that row is updated.

This form of UPDATE cannot be used (SQLSTATE 42828) if the cursor

references:

v A view on which an INSTEAD OF UPDATE trigger is defined

v A view that includes an OLAP function in the select list of the fullselect

that defines the view

v A view that is defined, either directly or indirectly, using the WITH

ROW MOVEMENT clause

WITH

Specifies the isolation level at which the UPDATE statement is executed.

RR

Repeatable Read

RS

Read Stability

CS

Cursor Stability

UR

Uncommitted Read

UPDATE

984 SQL Reference, Volume 2

The default isolation level of the statement is the isolation level of the package

in which the statement is bound. The WITH clause has no effect on nicknames,

which always use the default isolation level of the statement.

Rules

v Triggers: UPDATE statements may cause triggers to be executed. A trigger may

cause other statements to be executed, or may raise error conditions based on

the update values. If an update operation on a view causes an INSTEAD OF

trigger to fire, validity, referential integrity, and constraints will be checked

against the updates that are performed in the trigger, and not against the view

that caused the trigger to fire, or its underlying tables.

v Assignment: Update values are assigned to columns according to specific

assignment rules.

v Validity: The updated row must conform to any constraints imposed on the

table (or on the base table of the view) by any unique index on an updated

column.

If a view is used that is not defined using WITH CHECK OPTION, rows can be

changed so that they no longer conform to the definition of the view. Such rows

are updated in the base table of the view and no longer appear in the view.

If a view is used that is defined using WITH CHECK OPTION, an updated row

must conform to the definition of the view. For an explanation of the rules

governing this situation, see “CREATE VIEW”.

v Check Constraint: Update value must satisfy the check-conditions of the check

constraints defined on the table.

An UPDATE to a table with check constraints defined has the constraint

conditions for each column updated evaluated once for each row that is

updated. When processing an UPDATE statement, only the check constraints

referring to the updated columns are checked.

v Referential Integrity: The value of the parent unique keys cannot be changed if

the update rule is RESTRICT and there are one or more dependent rows.

However, if the update rule is NO ACTION, parent unique keys can be updated

as long as every child has a parent key by the time the update statement

completes. A non-null update value of a foreign key must be equal to a value of

the primary key of the parent table of the relationship.

v XML values: When an XML column value is updated, the new value must be a

well-formed XML document (SQLSTATE 2200M).

v Security Policy: If the identified table or the base table of the identified view is

protected with a security policy, the session authorization ID must have the

label-based access control (LBAC) credentials that allow:

– Write access to all protected columns that are being updated (SQLSTATE

42512)

– Write access for any explicit value provided for a DB2SECURITYLABEL

column for security policies that were created with the RESTRICT NOT

AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE 23523)

– Read and write access to all rows that are being updated (SQLSTATE 42519)

The session authorization ID must also have been granted a security label for

write access for the security policy if an implicit value is used for a

DB2SECURITYLABEL column (SQLSTATE 23523), which can happen when:

– The DB2SECURITYLABEL column is not included in the list of columns that

are to be updated (and so it will be implicitly updated to the security label

for write access of the session authorization ID)

UPDATE

Statements 985

– A value for the DB2SECURITYLABEL column is explicitly provided but the

session authorization ID does not have write access for that value, and the

security policy is created with the OVERRIDE NOT AUTHORIZED WRITE

SECURITY LABEL option

Notes

v If an update value violates any constraints, or if any other error occurs during

the execution of the UPDATE statement, no rows are updated. The order in

which multiple rows are updated is undefined.

v An update to a view defined using the WITH ROW MOVEMENT clause could

cause a delete operation and an insert operation against the underlying tables of

the view. For details, see the description of the CREATE VIEW statement.

v When an UPDATE statement completes execution, the value of SQLERRD(3) in

the SQLCA is the number of rows that qualified for the update operation. In the

context of an SQL procedure statement, the value can be retrieved using the

ROW_COUNT variable of the GET DIAGNOSTICS statement. The SQLERRD(5)

field contains the number of rows inserted, deleted, or updated by all activated

triggers.

v Unless appropriate locks already exist, one or more exclusive locks are acquired

by the execution of a successful UPDATE statement. Until the locks are released,

the updated row can only be accessed by the application process that performed

the update (except for applications using the Uncommitted Read isolation level).

For further information on locking, see the descriptions of the COMMIT,

ROLLBACK, and LOCK TABLE statements.

v When updating the column distribution statistics for a typed table, the subtable

that first introduced the column must be specified.

v Multiple attribute assignments on the same structured type column occur in the

order specified in the SET clause and, within a parenthesized set clause, in

left-to-right order.

v An attribute assignment invokes the mutator method for the attribute of the

user-defined structured type. For example, the assignment st..a1=x has the

same effect as using the mutator method in the assignment st = st..a1(x).

v While a given column may be a target column in only one conventional

assignment, a column may be a target column in multiple attribute assignments

(but only if it is not also a target column in a conventional assignment).

v When an identity column defined as a distinct type is updated, the entire

computation is done in the source type, and the result is cast to the distinct type

before the value is actually assigned to the column. (There is no casting of the

previous value to the source type prior to the computation.)

v To have DB2 generate a value on a SET statement for an identity column, use

the DEFAULT keyword:

 SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value

used to update this column is generated by DB2.

v For more information about consuming values of a generated sequence for an

identity column, or about exceeding the maximum value for an identity column,

see “INSERT”.

v With partitioned tables, an UPDATE WHERE CURRENT OF cursor-name

operation can move a row from one data partition to another. After this occurs,

the cursor is no longer positioned on the row, and no further UPDATE WHERE

CURRENT OF cursor-name modifications to that row are possible. The next row

in the cursor can be fetched, however.

UPDATE

986 SQL Reference, Volume 2

v For a column defined using the ROW CHANGE TIMESTAMP clause, the value

is always changed on update of the row. If the column is not specified in the

SET list explicitly, the database manager still generates a value for that row. The

value is unique for each table partition within the database partition and is set

to the approximate timestamp corresponding to the row update.

Examples

v Example 1: Change the job (JOB) of employee number (EMPNO) ‘000290’ in the

EMPLOYEE table to ‘LABORER’.

 UPDATE EMPLOYEE

 SET JOB = ’LABORER’

 WHERE EMPNO = ’000290’

v Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that

department (DEPTNO) ‘D21’ is responsible for in the PROJECT table.

 UPDATE PROJECT

 SET PRSTAFF = PRSTAFF + 1.5

 WHERE DEPTNO = ’D21’

v Example 3: All the employees except the manager of department (WORKDEPT)

‘E21’ have been temporarily reassigned. Indicate this by changing their job (JOB)

to NULL and their pay (SALARY, BONUS, COMM) values to zero in the

EMPLOYEE table.

 UPDATE EMPLOYEE

 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0

 WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

This statement could also be written as follows.

 UPDATE EMPLOYEE

 SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)

 WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

v Example 4: Update the salary and the commission column of the employee with

employee number 000120 to the average of the salary and of the commission of

the employees of the updated row’s department, respectively.

 UPDATE (SELECT EMPNO, SALARY, COMM,

 AVG(SALARY) OVER (PARTITION BY WORKDEPT),

 AVG(COMM) OVER (PARTITION BY WORKDEPT)

 FROM EMPLOYEE E) AS E(EMPNO, SALARY, COMM, AVGSAL, AVGCOMM)

 SET (SALARY, COMM) = (AVGSAL, AVGCOMM)

 WHERE EMPNO = ’000120’

The previous statement is semantically equivalent to the following statement,

but requires only one access to the EMPLOYEE table, whereas the following

statement specifies the EMPLOYEE table twice.

 UPDATE EMPLOYEE EU

 SET (EU.SALARY, EU.COMM)

 =

 (SELECT AVG(ES.SALARY), AVG(ES.COMM)

 FROM EMPLOYEE ES

 WHERE ES.WORKDEPT = EU.WORKDEPT)

 WHERE EU.EMPNO = ’000120’

v Example 5: In a C program display the rows from the EMPLOYEE table and

then, if requested to do so, change the job (JOB) of certain employees to the new

job keyed in.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 FOR UPDATE OF JOB;

 EXEC SQL OPEN C1;

UPDATE

Statements 987

EXEC SQL FETCH C1 INTO ... ;

 if (strcmp (change, "YES") == 0)

 EXEC SQL UPDATE EMPLOYEE

 SET JOB = :newjob

 WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

v Example 6: These examples mutate attributes of column objects.

Assume that the following types and tables exist:

 CREATE TYPE POINT AS (X INTEGER, Y INTEGER)

 NOT FINAL WITHOUT COMPARISONS

 MODE DB2SQL

 CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)

 NOT FINAL WITHOUT COMPARISONS

 MODE DB2SQL

 CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the OWNER

column and the RADIUS attribute of the CIRCLE column where the ID is 999:

 UPDATE CIRCLES

 SET OWNER = ’Bruce’

 C..RADIUS = 5

 WHERE ID = 999

The following example transposes the X and Y coordinates of the center of the

circle identified by 999:

 UPDATE CIRCLES

 SET C..CENTER..X = C..CENTER..Y,

 C..CENTER..Y = C..CENTER..X

 WHERE ID = 999

The following example is another way of writing both of the above statements.

This example combines the effects of both of the above examples:

 UPDATE CIRCLES

 SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =

 (’Bruce’,5,C..CENTER..Y,C..CENTER..X)

 WHERE ID = 999

v Example 7: Update the XMLDOC column of the DOCUMENTS table with

DOCID ’001’ to the character string that is selected and parsed from the

XMLTEXT table.

 UPDATE DOCUMENTS SET XMLDOC =

 (SELECT XMLPARSE(DOCUMENT C1 STRIP WHITESPACE)

 FROM XMLTEXT WHERE TEXTID = ’001’)

 WHERE DOCID = ’001’

UPDATE

988 SQL Reference, Volume 2

VALUES INTO

The VALUES INTO statement produces a result table consisting of at most one

row, and assigns the values in that row to host variables.

Invocation

This statement can be embedded only in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

��

VALUES

�

expression

,

(

expression

)

INTO

�

 ,

host-variable

global-variable

��

Description

VALUES

Introduces a single row consisting of one of more columns.

expression

An expression that defines a single value of a one column result table.

(expression,...)

One or more expressions that define the values for one or more columns of

the result table.

INTO

Introduces a list of host variablesor global variables.

host-variable

Identifies a variable that is described in the program under the rules for

declaring host variables.

global-variable

Identifies a global variable that exists at the current server.

 The first value in the result row is assigned to the first variable in the list, the

second value to the second variable, and so on. If the number of variables is

less than the number of column values, the value ’W’ is assigned to the

SQLWARN3 field of the SQLCA.

Each assignment to a variable is made in sequence through the list. If an error

occurs, no value is assigned to any variable.

Rules

v Global variables cannot be assigned inside triggers, functions, methods, or

dynamic compound statements, or inside a procedure that is directly or

indirectly called by one of these objects (SQLSTATE 428GX).

VALUES INTO

Statements 989

Examples

Example 1: This C example retrieves the value of the CURRENT PATH special

register into a host variable.

 EXEC SQL VALUES(CURRENT PATH)

 INTO :hvl;

Example 2: This C example retrieves a portion of a LOB field into a host variable,

exploiting the LOB locator for deferred retrieval.

 EXEC SQL VALUES (substr(:locator1,35))

 INTO :details;

Example 3: This C example retrieves the value of the SESSION_USER special

register into a global variable.

 EXEC SQL VALUES(SESSION_USER)

 INTO GV_SESS_USER;

VALUES INTO

990 SQL Reference, Volume 2

VALUES

The VALUES statement is a form of query. It can be embedded in an application

program or issued interactively.

VALUES

Statements 991

WHENEVER

The WHENEVER statement specifies the action to be taken when a specified

exception condition occurs.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. The statement is not supported in REXX.

Authorization

None required.

Syntax

�� WHENEVER NOT FOUND

SQLERROR

SQLWARNING

 CONTINUE

GOTO

host-label

GO TO

:

 ��

Description

The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the

type of exception condition.

NOT FOUND

Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE

of ’02000’.

SQLERROR

Identifies any condition that results in a negative SQLCODE.

SQLWARNING

Identifies any condition that results in a warning condition (SQLWARN0 is

’W’), or that results in a positive SQL return code other than +100.

The CONTINUE or GO TO clause is used to specify what is to happen when the

identified type of exception condition exists.

CONTINUE

Causes the next sequential instruction of the source program to be executed.

GOTO or GO TO host-label

Causes control to pass to the statement identified by host-label. For host-label,

substitute a single token, optionally preceded by a colon. The form of the

token depends on the host language.

Notes

There are three types of WHENEVER statements:

v WHENEVER NOT FOUND

v WHENEVER SQLERROR

v WHENEVER SQLWARNING

WHENEVER

992 SQL Reference, Volume 2

Every executable SQL statement in a program is within the scope of one implicit or

explicit WHENEVER statement of each type. The scope of a WHENEVER

statement is related to the listing sequence of the statements in the program, not

their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each

type that is specified before that SQL statement in the source program. If a

WHENEVER statement of some type is not specified before an SQL statement, that

SQL statement is within the scope of an implicit WHENEVER statement of that

type in which CONTINUE is specified.

Example

In the following C example, if an error is produced, go to HANDLERR. If a

warning code is produced, continue with the normal flow of the program. If no

data is returned, go to ENDDATA.

 EXEC SQL WHENEVER SQLERROR GOTO HANDLERR;

 EXEC SQL WHENEVER SQLWARNING CONTINUE;

 EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA;

WHENEVER

Statements 993

WHILE

The WHILE statement repeats the execution of a statement or group of statements

while a specified condition is true.

Invocation

This statement can be embedded in an SQL procedure or dynamic compound

statement. It is not an executable statement and cannot be dynamically prepared.

Authorization

No privileges are required to invoke the WHILE statement. However, the

authorization ID of the statement must hold the necessary privileges to invoke the

SQL statements and search condition that are embedded in the WHILE statement.

Syntax

�� WHILE search-condition DO SQL-routine-statement END WHILE

label:

label
 ��

SQL-routine-statement:

�

�

SQL-procedure-statement

;

SQL-function-statement

;

Description

label

Specifies the label for the WHILE statement. If the beginning label is specified,

it can be specified in LEAVE and ITERATE statements. If the ending label is

specified, it must be the same as the beginning label.

search-condition

Specifies a condition that is evaluated before each execution of the loop. If the

condition is true, the SQL-procedure-statements in the loop are processed.

SQL-procedure-statement

Specifies the SQL statements to execute within the loop. SQL-procedure-
statement is only applicable when in the context of an SQL procedure. See

SQL-procedure-statement in “Compound SQL (Procedure)”.

SQL-function-statement

Specifies the SQL statements to execute within the loop. SQL-function-statement

is only applicable when in the context of an SQL function or SQL method. See

SQL-function-statement in “FOR”.

Examples

This example uses a WHILE statement to iterate through FETCH and SET

statements. While the value of SQL variable v_counter is less than half of number

of employees in the department identified by the IN parameter deptNumber, the

WHILE

994 SQL Reference, Volume 2

WHILE statement continues to perform the FETCH and SET statements. When the

condition is no longer true, the flow of control leaves the WHILE statement and

closes the cursor.

 CREATE PROCEDURE DEPT_MEDIAN

 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

 LANGUAGE SQL

 BEGIN

 DECLARE v_numRecords INTEGER DEFAULT 1;

 DECLARE v_counter INTEGER DEFAULT 0;

 DECLARE c1 CURSOR FOR

 SELECT CAST(salary AS DOUBLE)

 FROM staff

 WHERE DEPT = deptNumber

 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND

 SET medianSalary = 6666;

 SET medianSalary = 0;

 SELECT COUNT(*) INTO v_numRecords

 FROM staff

 WHERE DEPT = deptNumber;

 OPEN c1;

 WHILE v_counter < (v_numRecords / 2 + 1) DO

 FETCH c1 INTO medianSalary;

 SET v_counter = v_counter + 1;

 END WHILE;

 CLOSE c1;

 END

WHILE

Statements 995

WHILE

996 SQL Reference, Volume 2

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

© IBM Corporation 1993, 2008 997

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 36. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-01 Yes

Administrative Routines and

Views

SC23-5843-01 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-01 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-01 Yes

Command Reference SC23-5846-01 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-01 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-01 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-01 Yes

Database Security Guide SC23-5850-01 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-01 Yes

Developing Embedded SQL

Applications

SC23-5852-01 Yes

Developing Java Applications SC23-5853-01 Yes

Developing Perl and PHP

Applications

SC23-5854-01 No

Developing User-defined Routines

(SQL and External)

SC23-5855-01 Yes

Getting Started with Database

Application Development

GC23-5856-01 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-01 Yes

Internationalization Guide SC23-5858-01 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

DB2 technical library in hardcopy or PDF format

998 SQL Reference, Volume 2

http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 36. DB2 technical information (continued)

Name Form Number Available in print

Migration Guide GC23-5859-01 Yes

Net Search Extender

Administration and User’s Guide

SC23-8509-01 Yes

Partitioning and Clustering Guide SC23-5860-01 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-01 No

Quick Beginnings for DB2

Servers

GC23-5864-01 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-01 Yes

SQL Reference, Volume 1 SC23-5861-01 Yes

SQL Reference, Volume 2 SC23-5862-01 Yes

System Monitor Guide and

Reference

SC23-5865-01 Yes

Troubleshooting Guide GI11-7857-01 No

Tuning Database Performance SC23-5867-01 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-01 Yes

Workload Manager Guide and

Reference

SC23-5870-01 Yes

pureXML Guide SC23-5871-01 Yes

XQuery Reference SC23-5872-01 No

 Table 37. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-01 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-01 Yes

DB2 Connect User’s Guide SC23-5841-01 Yes

 Table 38. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

DB2 technical library in hardcopy or PDF format

Appendix A. Overview of the DB2 technical information 999

Table 38. Information Integration technical information (continued)

Name Form Number Available in print

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 998.

DB2 technical library in hardcopy or PDF format

1000 SQL Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

Displaying SQL state help from the command line processor

Appendix A. Overview of the DB2 technical information 1001

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to obtain and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

Displaying topics in your preferred language in the DB2 Information Center

1002 SQL Reference, Volume 2

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Updating the DB2 Information Center installed on your computer or intranet server

Appendix A. Overview of the DB2 technical information 1003

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

DB2 tutorials

1004 SQL Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Terms and Conditions

Appendix A. Overview of the DB2 technical information 1005

1006 SQL Reference, Volume 2

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2008 1007

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

Notices

1008 SQL Reference, Volume 2

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States, other countries, or both.

 pureXML OS/390

DB2 Connect Redbooks

z/OS System i

Informix IBM

DB2 REXX

AIX DRDA

System z ibm.com

i5/OS DataJoiner

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Microsoft, and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices

Appendix B. Notices 1009

1010 SQL Reference, Volume 2

Index

A
ALIAS clause

COMMENT statement 199

DROP statement 671

aliases
adding comments to catalog 199

CREATE ALIAS statement 245

deleting using DROP statement 671

ALL PRIVILEGES clause
GRANT statement (Table, View or Nickname) 768

REVOKE table, view or nickname privileges 867

ALLOCATE CURSOR statement
description 21

ALTER AUDIT POLICY statement 23

ALTER BUFFERPOOL statement 26

ALTER clause
GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privilege 867

ALTER DATABASE PARTITION GROUP statement 29

ALTER DATABASE statement 33

ALTER FUNCTION statement 36

ALTER HISTOGRAM TEMPLATE statement 38

ALTER METHOD statement 40

ALTER NICKNAME statement
description 41

ALTER NODEGROUP statement
see ALTER DATABASE PARTITION GROUP 29

ALTER PROCEDURE (External) statement 49

ALTER PROCEDURE (Sourced) statement 52

ALTER PROCEDURE (SQL) statement 54

ALTER SECURITY LABEL COMPONENT statement 56

ALTER SECURITY POLICY statement 59

ALTER SEQUENCE statement 63

ALTER SERVER statement 67

ALTER SERVICE CLASS statement 70

ALTER TABLE statement
authorization required 76

examples 76

syntax diagram 76

ALTER TABLESPACE statement
description 121

ALTER THRESHOLD statement 131

ALTER TRUSTED CONTEXT statement 137

ALTER TYPE (Structured) statement 145

ALTER USER MAPPING statement 152

ALTER VIEW statement
authorization 154

description 154

syntax diagram 154

ALTER WORK ACTION SET statement 156

ALTER WORK CLASS SET statement 167

ALTER WORKLOAD statement 172

ALTER WRAPPER statement 178

ALTER XSROBJECT statement 180

ambiguous cursors 640

arithmetic
parameter markers 811

AS clause
CREATE VIEW statement 603

ASC clause
CREATE INDEX statement 356

assembler application host variables 703

ASSOCIATE LOCATORS statement 181

ASUTIME
in CREATE FUNCTION (External Scalar) statement 277

in CREATE FUNCTION (External Table) statement 301

in CREATE PROCEDURE statement 397, 416

AUDIT statement 183

authorizations
granting control on database operations 733

granting control on index 742

granting create on schema 754

public control on index 742

public create on schema 754

revoking 835

B
BEGIN DECLARE SECTION statement

authorization required 187

description 187

invocation rules 187

BIGINT data type
CREATE TABLE statement 449

binary large objects (BLOBs) 449

BINDADD parameter
grant privilege 733

binding
GRANT statement 744

revoking all privileges 845

BLOBs (binary large objects)
CREATE TABLE statement 449

books
printed

ordering 1000

buffer insert 782

buffer pools 251

deleting using DROP statement 671

page size 251

setting size 26, 251

BUFFERPOOL clause
ALTER TABLESPACE statement 121

CREATE TABLESPACE statement 517

DROP statement 671

C
caching

EXECUTE statement 706

CALL statement
description 189

CASCADE delete rule 449

CASE statement 194

catalogs
COMMENT statement 199

CCSID (coded character set identifier)
CREATE TABLE statement 449

in DECLARE GLOBAL TEMPORARY TABLE

statement 646

CHAR VARYING data type 449

CHARACTER data type 449

© Copyright IBM Corp. 1993, 2008 1011

character strings
SQL statement string, rules for creating 703

SQL statement, execution as 703

CHARACTER VARYING data type 449

CHECK clause
CREATE VIEW statement 603

check constraints
ALTER TABLE statement 76

CREATE TABLE statement 449

INSERT statement 782

CLOBs (character large objects)
data type

creating columns 449

CLOSE in CREATE INDEX statement 356

CLOSE statement 197

closed state
cursors 807

CLUSTER clause
CREATE INDEX statement 356

COLLID
in CREATE FUNCTION (External Scalar) statement 277

in CREATE FUNCTION (External Table) statement 301

in CREATE PROCEDURE statement 397, 416

COLUMN clause
COMMENT statement 199

column options
CREATE TABLE statement 449

columns
adding comments to catalog 199

adding with ALTER TABLE statement 76

constraint name
FOREIGN KEY rules 449

creating index keys 356

grant add privileges 768

inserting values 782

names
INSERT statement 782

null values
in ALTER TABLE statement, prevention 76

updating 979

COMMENT statement 199

comments
in catalog table 199

SQL static statements 10

COMMIT ON RETURN
in CREATE PROCEDURE statement 397, 416

COMMIT statement
description 211

compound SQL
dynamic, variables 213

compound SQL (embedded) statement
combining statements into a block 218

concurrency control
LOCK TABLE statement 794

condition handlers
declaring 222

CONNECT parameter
GRANT...ON DATABASE statement 733

CONNECT statement
application server information 231

disconnecting from current server 231

implicit connection 231

new password information 231

Type 2 238

with no operand, returning information 231

CONNECT TO statement
successful connection 231, 238

CONNECT TO statement (continued)
unsuccessful connection 231, 238

CONSTRAINT clause 199

constraints
adding comments to catalog 199

adding with ALTER TABLE 76

dropping
with ALTER TABLE 76

container clause
CREATE TABLESPACE statement 517

containers
CREATE TABLESPACE statement 517

CONTINUE clause
WHENEVER statement 992

CONTROL clause
GRANT statement (Table, View or Nickname) 768

revoking 867

CONTROL parameter
revoking privileges for packages 845

conversions
character string to executable SQL 703

COPY
CREATE INDEX statement 356

CREATE ALIAS statement
description 245

CREATE AUDIT POLICY statement 248

CREATE BUFFERPOOL statement
description 251

except-on-db-partitions-clause 251

CREATE DATABASE PARTITION GROUP statement 255

CREATE DISTINCT TYPE statement
see CREATE TYPE (Distinct) statement 563

CREATE EVENT MONITOR statement 257

CREATE FUNCTION (External Scalar) statement 277

CREATE FUNCTION (External Table) statement 301

CREATE FUNCTION (OLE DB External Table) statement 319

CREATE FUNCTION (Source) statement 328

CREATE FUNCTION (Sourced or Template) statement 328

CREATE FUNCTION (SQL Scalar, Table or Row)

statement 340

CREATE FUNCTION MAPPING statement
description 350

CREATE FUNCTION statement
description 276

external table 301

OLE external table 319

SQL scalar, table, or row 340

CREATE HISTOGRAM TEMPLATE statement 354

CREATE INDEX EXTENSION statement 372

CREATE INDEX statement
column-names in index keys 356

description 356

XML column 356

CREATE METHOD statement
description 378

CREATE NICKNAME statement
description 384

CREATE NODEGROUP statement
CREATE DATABASE PARTITION GROUP statement 255

CREATE PROCEDURE (External) statement 397

CREATE PROCEDURE (Sourced) statement 411

CREATE PROCEDURE (SQL) statement 416

CREATE PROCEDURE statement
CASE statement 194

condition handlers 222

DECLARE statement 222

description 396

1012 SQL Reference, Volume 2

CREATE PROCEDURE statement (continued)
dynamic compound statement 213

FOR statement 724

GET DIAGNOSTICS statement 728

GOTO statement 731

handler statement 222

IF statement 778

ITERATE statement 791

LEAVE statement 792

LOOP statement 796

procedure compound statement 222

REPEAT statement 829

RESIGNAL statement 831

RETURN statement 833

SIGNAL statement 961

variables 222

WHILE statement 994

CREATE ROLE statement 422

CREATE SCHEMA statement 423

CREATE SECURITY LABEL COMPONENT statement 426

CREATE SECURITY LABEL statement 429

CREATE SECURITY POLICY statement 431

CREATE SEQUENCE statement
description 433

CREATE SERVER statement
description 445

CREATE SERVICE CLASS statement 438

CREATE TABLE statement
syntax diagram 449

CREATE TABLESPACE statement
description 517

CREATE THRESHOLD statement 531

CREATE TRANSFORM statement 539

CREATE TRIGGER statement
description 543

CREATE TRUSTED CONTEXT statement 554

CREATE TYPE (Array) statement 561

CREATE TYPE (Distinct) statement 563

CREATE TYPE (Structured) statement 569

CREATE TYPE MAPPING statement
description 592

CREATE USER MAPPING statement
description 598

CREATE VARIABLE statement 600

CREATE VIEW statement
description 603

CREATE WORK ACTION SET statement 617

CREATE WORK CLASS SET statement 625

CREATE WORKLOAD statement 630

CREATE WRAPPER statement
description 638

CREATETAB parameter
GRANT...ON DATABASE statement 733

creating
databases, granting authority 733

CURRENT DECFLOAT ROUNDING MODE special register
SET CURRENT DECFLOAT ROUNDING MODE

statement 887

CURRENT DEGREE special register
SET CURRENT DEGREE statement 890

CURRENT EXPLAIN MODE special register
SET CURRENT EXPLAIN MODE statement 892

CURRENT EXPLAIN SNAPSHOT special register
SET CURRENT EXPLAIN SNAPSHOT statement 895

CURRENT FUNCTION PATH special register
SET CURRENT FUNCTION PATH statement 944

SET CURRENT PATH statement 944

CURRENT FUNCTION PATH special register (continued)
SET PATH statement 944

CURRENT IMPLICIT XMLPARSE OPTION special register
SET CURRENT IMPLICIT XMLPARSE OPTION

statement 899

CURRENT ISOLATION special register
SET CURRENT ISOLATION statement 900

CURRENT OPTIMIZATION PROFILE special register
SET CURRENT OPTIMIZATION PROFILE statement 907

CURRENT PATH special register
SET CURRENT FUNCTION PATH statement 944

SET CURRENT PATH statement 944

SET PATH statement 944

CURRENT QUERY OPTIMIZATION special register
SET CURRENT QUERY OPTIMIZATION statement 916

CURRENT REFRESH AGE special register
SET CURRENT REFRESH AGE statement 919

CURSOR FOR RESULT SET variable 21

cursor name
ALLOCATE 21

closing, CLOSE statement 197

cursors
active set, association 807

ambiguous 640

closed state, pre-conditions 807

current row 717

declaring
SQL statement syntax 640

defining 640

deleting, search condition details 654

determining updatability 640

location in table, results of FETCH 717

moving position, using FETCH 717

opening 807

positions for open 717

preparing for application use 807

program usage 640

read-only
conditions 640

result table relationship 640

terminating for unit of work 875

unit of work
conditional states 640

WITH HOLD
lock clause of COMMIT statement, effect 211

D
data

integrity
locks 794

data types
abstract 145, 569

ALTER TYPE statement 145

CREATE TYPE (structured) statement 569

distinct
CREATE TYPE (distinct) statement 563

structured
ALTER TYPE (structured) statement 145

CREATE TYPE (structured) statement 569

user-defined
CREATE TYPE (distinct) statement 563

database authorities
granting

GRANT (database authorities) statement 733

database partition groups
adding comments to catalog 199

Index 1013

database partition groups (continued)
adding partitions 29

creating 255

distribution map creation 255

dropping partitions 29

database-managed space (DMS)
table spaces

CREATE TABLESPACE statement 517

databases
accessing

granting authority 733

CREATE TABLESPACE statement 517

DB2 Information Center
languages 1001

updating 1002

versions 1001

viewing in different languages 1001

db2nodes.cfg file
ALTER DATABASE PARTITION GROUP statement 29

CONNECT (Type 1) statement 231

CREATE DATABASE PARTITION GROUP statement 255

DB2SECURITYLABEL data type
CREATE TABLE statement 449

DBADM (database administration) authority
granting 733

DBCLOB data type
CREATE TABLE statement 449

declarations
inserting into program 780

DECLARE CURSOR statement
description 640

DECLARE GLOBAL TEMPORARY TABLE statement
description 646

DECLARE statements
BEGIN DECLARE SECTION statement 187

compound SQL 222

END DECLARE SECTION statement 702

deletable views
description 603

DELETE statement
description 654

dependent objects
DROP statement 671

DESCRIBE INPUT statement 661

DESCRIBE OUTPUT statement 664

DESCRIBE statement
description 660

overview 660

prepared statements
DESCRIBE INPUT statement 661

DESCRIBE OUTPUT statement 664

DISCONNECT statement 668

distinct types
CREATE TYPE (Distinct) statement 563

DROP statement 671

documentation
overview 997

PDF 998

printed 998

terms and conditions of use 1004

DROP statement
description 671

transforms 671

dynamic SQL
compound statements 213

cursors
DECLARE CURSOR statement 10

dynamic SQL (continued)
DESCRIBE INPUT statement

description 661

DESCRIBE OUTPUT statement
description 664

EXECUTE IMMEDIATE statement
description 703

EXECUTE statement
description 706

invoking SQL statements 10

FETCH statement
description 717

invoking SQL statements 10

invoking statements 10

OPEN statement 10

PREPARE statement
description 811

invoking SQL statements 10

using DESCRIBE 661, 664

E
embedded SQL applications

character string format statements 703

EXECUTE IMMEDIATE statement 703

overview 10

END DECLARE SECTION statement 702

error messages
FETCH statement 717

return codes 10

trigger execution 543

UPDATE statement 979

errors
cursor 807

event monitors
CREATE EVENT MONITOR statement 257

DROP statement 671

FLUSH EVENT MONITOR statement 720

SET EVENT MONITOR STATE statement 922

exception tables
SET INTEGRITY statement 924

EXCLUSIVE MODE connection 231

executable SQL statements 10

EXECUTE IMMEDIATE statement
description 703

embedded 10

EXECUTE statement
description 706

embedded 10

EXPLAIN statement
description 712

explainable statements
description 712

F
FETCH statement

cursor prerequisites for executing 717

description 717

FIELDPROC clause
in ALTER TABLE statement 76

FLOAT data type 449

FLUSH EVENT MONITOR statement 720

FLUSH OPTIMIZATION PROFILE CACHE statement 721

FLUSH PACKAGE CACHE statement 723

1014 SQL Reference, Volume 2

FOR BIT DATA clause
CREATE TABLE statement 449

FOR clause
CREATE TABLE statement 449

FOR statement 724

FOREIGN KEY clause 449

foreign keys
adding with ALTER TABLE 76

constraint name conventions 449

dropping with ALTER TABLE 76

FREE LOCATOR statement 727

FREEPAGE in CREATE INDEX statement 356

FROM clause
DELETE statement 654

fullselect
CREATE VIEW statement 603

FUNCTION clause in COMMENT ON statement 199

function designator syntax element 17

function templates
description 350

functions
adding comments to catalog 199

transform 539

G
GBPCACHE

in CREATE INDEX statement 356

generated columns
CREATE TABLE statement 449

GET DIAGNOSTICS statement 728

GO TO clause
WHENEVER statement 992

GOTO statement 731

GRANT (Exemption) statement 737

GRANT (Global Variable Privileges) statement 740

GRANT (Package Privileges) statement 744

GRANT (Role) statement 747

GRANT (Routine Privileges) statement
description 750

GRANT (Schema Privileges) statement
description 754

GRANT (Security Label) statement 757

GRANT (Sequence Privileges) statement
description 760

GRANT (Server Privileges) statement
description 762

GRANT (SETSESSIONUSER Privilege) statement 764

GRANT (Table Space Privileges) statement
description 766

GRANT (Workload Privileges) statement 775

GRANT (XSR Object Privileges) statement 777

GRANT statement
CONTROL ON INDEX

description 742

CREATE ON SCHEMA 754

database authority
description 733

Nickname Privileges 768

Package Privileges
description 744

Table Privileges 768

Table, View or Nickname Privileges
description 768

View Privileges 768

GRAPHIC data type
CREATE TABLE statement 449

H
handlers

declaring 222

hashing on partition keys 449

help
configuring language 1001

SQL statements 1001

host variables
assigning values from a row

SELECT INTO statement 881

VALUES INTO statement 989

BEGIN DECLARE SECTION statement 187

declaring
BEGIN DECLARE SECTION statement 187

cursors 640

END DECLARE SECTION statement 702

embedded SQL statements 10

END DECLARE SECTION statement 702

EXECUTE IMMEDIATE statement 703

FETCH statement 717

inserting in rows 782

linking active set with cursor 807

parameter marker substitution 706

REXX applications 187

statement strings 811

I
identity columns

CREATE TABLE statement 449

IF statement 778

implicit connections
CONNECT statement 231

implicit schemas
GRANT (Database Authorities) statement 733

REVOKE (Database Authorities) statement 835

IN
CREATE TABLE statement 449

IN EXCLUSIVE MODE clause
LOCK TABLE statement 794

IN SHARE MODE clause
LOCK TABLE statement 794

INCLUDE clause
CREATE INDEX statement 356

INCLUDE statement 780

INDEX clause
COMMENT statement 199

CREATE INDEX statement 356

GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privileges 867

INDEX keyword
DROP statement 671

index over XML data
CREATE INDEX statement 356

Syntax and option descriptions 356

indexes
catalog specification comments, adding 199

correspondence to inserted row values 782

deleting
using the DROP statement 671

grant control 742, 768

name
primary key constraint 449

unique constraint 449

primary key, use in matching 76

Index 1015

indexes (continued)
privileges

revoking 843

renaming 827

unique key, use in matching 76

indicator variables
description 703

inoperative
triggers 543

views 603

INSERT
inserting values 782

restrictions leading to failure 782

INSERT clause
GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privileges 867

INSERT statement
description 782

insertable views 603

INTEGER data type 449

integrity constraints
adding comments to catalog 199

INTO clause
DESCRIBE statement, SQLDA area name 661, 664

FETCH statement, host variable substitution 717

INSERT statement, naming table or view 782

restrictions on using 782

SELECT INTO statement 881

VALUES INTO statement 989

IS clause
COMMENT statement 199

isolation levels
in DELETE statement 654, 782, 881, 979

ITERATE statement 791

J
joins

CREATE TABLE statement 449

K
key values

start 372

stop 372

L
label-based access control (LBAC)

ALTER SECURITY LABEL COMPONENT statement 56

ALTER SECURITY POLICY statement 59

CREATE SECURITY LABEL COMPONENT statement 426

CREATE SECURITY LABEL statement 429

CREATE SECURITY POLICY statement 431

GRANT (Exemption) statement 737

GRANT (Security Label) statement 757

REVOKE (Exemption) statement 839

REVOKE (Security Label) statement 857

labels
GOTO 731

LBAC (label-based access control)
ALTER SECURITY LABEL COMPONENT statement 56

ALTER SECURITY POLICY statement 59

CREATE SECURITY LABEL COMPONENT statement 426

CREATE SECURITY LABEL statement 429

CREATE SECURITY POLICY statement 431

LBAC (label-based access control) (continued)
GRANT (Exemption) statement 737

GRANT (Security Label) statement 757

REVOKE (Exemption) statement 839

REVOKE (Security Label) statement 857

rule exemptions
GRANT (Exemption) statement 737

REVOKE (Exemption) statement 839

security label components
ALTER SECURITY LABEL COMPONENT

statement 56

CREATE SECURITY LABEL COMPONENT

statement 426

security labels
ALTER SECURITY LABEL COMPONENT

statement 56

CREATE SECURITY LABEL COMPONENT

statement 426

CREATE SECURITY LABEL statement 429

GRANT (Security Label) statement 757

REVOKE (Security Label) statement 857

security policies
ALTER SECURITY POLICY statement 59

CREATE SECURITY POLICY statement 431

LEAVE statement 792

LOAD parameter
GRANT...ON DATABASE statement 733

loading
granting database authority 733

locators
ASSOCIATE LOCATORS statement 181

FREE LOCATOR statement 727

LOCK TABLE statement
description 794

locks
COMMIT statement 211

during UPDATE 979

INSERT statement, default rules for 782

LOCK TABLE statement 794

restricting access 794

terminating for unit of work 875

logs
creating table without initial logging 449

LONG VARCHAR data type
CREATE TABLE statement 449

LOOP statement
database fundamentals 796

M
MANAGED BY clause

CREATE TABLESPACE statement 517

materialized query tables (MQTs)
definition 449

REFRESH TABLE statement 820

MERGE statement
description 798

METHOD clause
DROP statement 671

method designator syntax element 17

MODE keyword
LOCK TABLE statement 794

MQTs (materialized query tables)
definition 449

REFRESH TABLE statement 820

1016 SQL Reference, Volume 2

N
names

deleting rows 654

NICKNAME clause in DROP statements 671

nicknames
description 384

privileges
grant 768

grant control 768

revoking 867

NO ACTION delete rule 449

nonexecutable SQL statements
invoking 10

precompiler requirements 10

NOT FOUND clause
WHENEVER statement 992

NOT NULL clause
in the CREATE TABLE statement 449

notices 1007

NULL CALL
in CREATE TYPE (Structured) statement 569

O
object identifier (OID)

columns
overview 449

CREATE TABLE statement 449

CREATE VIEW statement 603

OF clause
CREATE VIEW statement 603

OID
see object identifier (OID) 449

ON clause
CREATE INDEX statement 356

ON TABLE clause
GRANT statement 768

REVOKE statement 867

ON UPDATE clause 449

on-db-partitions-clause
CREATE TABLESPACE statement 517

ONLY clause
DELETE statement 654

UPDATE statement 979

OPEN statement 807

OPTION clause
CREATE VIEW statement 603

ordering DB2 books 1000

P
packages

ALTER TABLE STATEMENT 76

authority to create
granting 733

catalog comments 199

COMMIT statement effect on cursors 211

deleting 671

privileges
granting 744

revoking using REVOKE (package privileges)

statement 845

revoking using REVOKE (table, view, or nickname

privileges) statement 867

parameter markers
EXECUTE statement 706

parameter markers (continued)
OPEN statement 807

password rules 811

PREPARE statement 811

typed 811

untyped 811

partitioning keys
adding 76

defining when creating tables 449

dropping 76

partitioning maps
creating for database partition groups 255

performance
partitioning key recommendation 449

PIECESIZE
CREATE INDEX statement 356

positional updating of columns by row 979

precompiling
external text file 780

INCLUDE statement 780

non-executable SQL statements 10

SQLCA 780

SQLDA 780

PREPARE statement
description 811

dynamically declaring 811

embedded 10

variable substitution in OPEN statement 807

prepared SQL statements
executing 706

host variable substitution 706

obtaining information
DESCRIBE INPUT statement 661

DESCRIBE OUTPUT statement 664

primary keys
adding

ALTER TABLE statement 76

CREATE TABLE statement 449

dropping 76

privileges required 768

privileges
database

revoking 855

INDEX
revoking 843

packages
revoking 845, 867

revoking
REVOKE statement 867

problem determination
information available 1004

tutorials 1004

procedure compound statement 222

procedure designator syntax element 17

procedures
authorization for creating

CREATE PROCEDURE (external) statement 397

CREATE PROCEDURE (SQL) statement 416

CALL statement 189

creating 397, 416

PROGRAM
DROP statement 671

PROGRAM TYPE
CREATE FUNCTION (external scalar) statement 277

CREATE FUNCTION (external table) statement 301

PUBLIC AT ALL LOCATIONS 768

Index 1017

Q
question mark

EXECUTE parameter marker 706

question mark (?) EXECUTE parameter marker 706

R
read-only cursors

ambiguous 640

read-only views 603

REAL SQL data type
CREATE TABLE statement 449

records
locks to row data 782

REFERENCES clause
GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privileges 867

referential constraints
adding comments to catalog 199

REFRESH TABLE statement
description 820

REFRESH DEFERRED 820

REFRESH IMMEDIATE 820

RELEASE (Connection) statement 823

RELEASE SAVEPOINT statement 825

remote access
CONNECT statement

EXCLUSIVE MODE, dedicated connection 231

ON SINGLE DBPARTITIONNUM, dedicated

connection 231

server information only, no operand 231

SHARE MODE, read-only for non-connector 231

successful connections 231

unsuccessful connections 231

RENAME statement 827

RENAME TABLESPACE statement 826

REPEAT statement 829

RESIGNAL statement 831

RESTRICT delete rule 449

result sets
returning

SQL procedures 222

RESULTSTATUS parameter 728

return codes
embedded statements 10

executable SQL statements 10

RETURN statement 833

returning result sets
from SQL procedures 222

REVOKE (Exemption) statement 839

REVOKE (Global Variable Privileges) statement 841

REVOKE (Package Privileges) statement 845

REVOKE (Role) statement 848

REVOKE (Security Label) statement 857

REVOKE (Sequence Privileges) statement
description 859

REVOKE (SETSESSIONUSER Privilege) statement 863

REVOKE (Workload Privileges) statement 872

REVOKE (XSR Object Privileges) statement 874

REVOKE statement
database authorities 835

index privileges 843

nickname privileges 867

package privileges 845

routine privileges 851

schema privileges 855

REVOKE statement (continued)
server privileges 861

table privileges 867

table space privileges 865

view privileges 867

REXX language
END DECLARE SECTION, prohibition 702

ROLLBACK statement
description 875

syntax 875

ROLLBACK TO SAVEPOINT statement
description 875

row fullselect
UPDATE statement 979

ROWCOUNT
GET DIAGNOSTICS statement 728

rows
assigning values to host variable, SELECT INTO 881

assigning values to host variable, VALUES INTO 989

cursor in FETCH statement 807

cursor, effect of closing on FETCH 197

cursor, location in result table 640

deleting 654

FETCH request, cursor row selection 640

grant privilege 768

index keys with UNIQUE clause 356

indexes 356

inserting 782

locks to row data, INSERT statement 782

locks, effect on cursor of WITH HOLD 640

restrictions leading to failure 782

updating column values, UPDATE statement 979

S
SAVEPOINT statement

description 878

savepoints
releasing 825

ROLLBACK TO SAVEPOINT 875

SCHEMA clause
COMMENT statement 199

DROP statement 671

schemas
adding comments to catalog 199

CREATE SCHEMA statement 423

implicit
granting authority 733

revoking authority 835

scope
adding with ALTER TABLE statement 76

adding with ALTER VIEW statement 154

CREATE VIEW statement 603

defining with added column 76

defining with CREATE TABLE statement 449

SCOPE clause
ALTER TABLE statement 76

ALTER VIEW statement 154

CREATE TABLE statement 449

CREATE VIEW statement 603

search conditions
with DELETE

row selection 654

with UPDATE
arguments and rules 979

1018 SQL Reference, Volume 2

SECADM
database authority

GRANT (Database Authorities) statement 733

revoking 835

parameter
GRANT (Database Authorities) statement 733

REVOKE (Database Authorities) statement 835

SECURED WITH clause
ALTER TABLE statement 76

CREATE TABLE statement 449

security
CONNECT statement 231

security administrator authority (SECADM)
GRANT (Database Authorities) statement 733

revoking 835

SECURITY LABEL clause
COMMENT statement 199

DROP statement 671

SECURITY LABEL COMPONENT clause
COMMENT statement 199

DROP statement 671

security labels (LBAC)
ALTER SECURITY LABEL COMPONENT statement 56

CREATE SECURITY LABEL COMPONENT statement 426

CREATE SECURITY LABEL statement 429

GRANT (Security Label) statement 757

policies
ALTER SECURITY POLICY statement 59

CREATE SECURITY POLICY statement 431

REVOKE (Security Label) statement 857

SECURITY POLICY clause
COMMENT statement 199

CREATE TABLE statement 449

DROP statement 671

SELECT clause
GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privileges 867

SELECT INTO statement
description 881

SELECT statement
cursor

rules regarding parameter markers 640

description 883

evaluating
for result table of OPEN statement cursor 807

select-statement SQL statement construct
definition 10

dynamic invocation 10

static invocation 10

SEQUENCE clause
COMMENT statement 199

sequences
DROP statement 671

servers
granting privileges 762

SET clause
UPDATE statement 979

SET COMPILATION ENVIRONMENT statement 884

SET CONNECTION statement 885

SET CONSTRAINTS statement 924

SET CURRENT DECFLOAT ROUNDING MODE

statement 887

SET CURRENT DEFAULT TRANSFORM GROUP

statement 889

SET CURRENT DEGREE statement 890

SET CURRENT EXPLAIN MODE statement 892

SET CURRENT EXPLAIN SNAPSHOT statement 895

SET CURRENT FEDERATED ASYNCHRONY statement 897

SET CURRENT FUNCTION PATH statement 944

SET CURRENT IMPLICIT XMLPARSE OPTION

statement 899

SET CURRENT ISOLATION statement 900

SET CURRENT LOCK TIMEOUT statement 901

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION statement 903

SET CURRENT MDC ROLLOUT MODE statement 905

SET CURRENT OPTIMIZATION PROFILE statement 907

SET CURRENT PACKAGE PATH statement 910

SET CURRENT PACKAGESET statement 914

SET CURRENT PATH statement 944

SET CURRENT QUERY OPTIMIZATION statement 916

SET CURRENT REFRESH AGE statement 919

SET CURRENT SQLID statement 947

SET ENCRYPTION PASSWORD statement 921

SET EVENT MONITOR STATE statement 922

set integrity pending state 924

SET INTEGRITY statement 924

SET NULL delete rule 449

SET PASSTHRU statement
description 942

independence from COMMIT statement 211

independence from ROLLBACK statement 875

SET PATH statement 944

SET ROLE statement 946

SET SCHEMA statement 947

SET SERVER OPTION statement
description 949

independence from COMMIT statement 211

independence from ROLLBACK statement 875

SET SESSION AUTHORIZATION statement 951

SET variable statement 954

SETSESSIONUSER privilege
GRANT (SETSESSIONUSER Privilege) statement 764

required for SET SESSION AUTHORIZATION

statement 951

REVOKE (SETSESSIONUSER Privilege) statement 863

SHARE MODE connection 231

SHARE option
LOCK TABLE statement 794

SIGNAL statement 961

single precision float data type 449

single row select 881

SMALLINT data type
static SQL 449

SMS (system managed space)
table spaces

CREATE TABLESPACE statement 517

SPECIFIC FUNCTION clause
COMMENT statement 199

SPECIFIC PROCEDURE clause
COMMENT statement 199

SQL objects
deleting 671

SQL procedures
CASE statement 194

condition handlers
declaration 222

DECLARE statement 213, 222

dynamic compound statement 213

FOR statement 724

GET DIAGNOSTICS statement 728

GOTO statement 731

IF statement 778

ITERATE statement 791

Index 1019

SQL procedures (continued)
LEAVE statement 792

LOOP statement 796

procedure compound statement 222

REPEAT statement 829

RESIGNAL statement 831

RETURN statement 833

SIGNAL statement 961

variables 213, 222

WHILE statement 994

SQL return codes 10

SQL statements
ALLOCATE CURSOR 21

ALTER AUDIT POLICY 23

ALTER BUFFERPOOL 26

ALTER DATABASE 33

ALTER DATABASE PARTITION GROUP 29

ALTER FUNCTION 36

ALTER HISTOGRAM TEMPLATE 38

ALTER METHOD 40

ALTER NICKNAME 41

ALTER NODEGROUP (see ALTER DATABASE

PARTITION GROUP) 29

ALTER PROCEDURE (External) 49

ALTER PROCEDURE (Sourced) 52

ALTER PROCEDURE (SQL) 54

ALTER SECURITY LABEL COMPONENT 56

ALTER SECURITY POLICY 59

ALTER SEQUENCE 63

ALTER SERVER 67

ALTER SERVICE CLASS 70

ALTER TABLE 76

ALTER TABLESPACE 121

ALTER THRESHOLD 131

ALTER TRUSTED CONTEXT 137

ALTER TYPE (Structured) 145

ALTER USER MAPPING 152

ALTER VIEW 154

ALTER WORK ACTION SET 156

ALTER WORK CLASS SET 167

ALTER WORKLOAD 172

ALTER XSROBJECT 180

ASSOCIATE LOCATORS 181

AUDIT 183

BEGIN DECLARE SECTION 187

CALL 189

CLOSE 197

COMMENT 199

COMMIT 211

compound SQL (embedded) 218

CONNECT (Type 1) 231

CONNECT (Type 2) 238

CONTINUE, response to exception 992

control 14

CREATE ALIAS 245

CREATE AUDIT POLICY 248

CREATE BUFFERPOOL 251

CREATE DATABASE PARTITION GROUP 255

CREATE EVENT MONITOR 257

CREATE FUNCTION (External Scalar) 277

CREATE FUNCTION (External Table) 301

CREATE FUNCTION (OLE DB External Table) 319

CREATE FUNCTION (Source) 328

CREATE FUNCTION (Sourced or Template) 328

CREATE FUNCTION (SQL Scalar, Table or Row) 340

CREATE FUNCTION MAPPING 350

CREATE FUNCTION, overview 276

SQL statements (continued)
CREATE HISTOGRAM TEMPLATE 354

CREATE INDEX 356

CREATE INDEX EXTENSION 372

CREATE METHOD 378

CREATE NICKNAME 384

CREATE NODEGROUP (see CREATE DATABASE

PARTITION GROUP) 255

CREATE PROCEDURE 396

CREATE PROCEDURE (External) 397

CREATE PROCEDURE (Sourced) 411

CREATE PROCEDURE (SQL) 416

CREATE ROLE 422

CREATE SCHEMA 423

CREATE SECURITY LABEL 429

CREATE SECURITY LABEL COMPONENT 426

CREATE SECURITY POLICY 431

CREATE SEQUENCE 433

CREATE SERVER 445

CREATE SERVICE CLASS 438

CREATE TABLE 449

CREATE TABLESPACE 517

CREATE THRESHOLD 531

CREATE TRANSFORM 539

CREATE TRIGGER 543

CREATE TRUSTED CONTEXT 554

CREATE TYPE (Array) 561

CREATE TYPE (Distinct) 563

CREATE TYPE (Structured) 569

CREATE TYPE MAPPING 592

CREATE USER MAPPING 598

CREATE VARIABLE 600

CREATE VIEW 603

CREATE WORK ACTION SET 617

CREATE WORK CLASS SET 625

CREATE WORKLOAD 630

CREATE WRAPPER 638

DECLARE CURSOR 640

DECLARE GLOBAL TEMPORARY TABLE 646

DELETE 654

DESCRIBE 660

DESCRIBE INPUT 661

DESCRIBE OUTPUT 664

DISCONNECT 668

displaying help 1001

DROP 671

DROP TRANSFORM 671

embedded 10

END DECLARE SECTION 702

EXECUTE 706

EXECUTE IMMEDIATE 703

EXPLAIN 712

FETCH 717

FLUSH EVENT MONITOR 720

FLUSH OPTIMIZATION PROFILE CACHE 721

FLUSH PACKAGE CACHE 723

FREE LOCATOR 727

GRANT (Database Authorities 733

GRANT (Exemption) 737

GRANT (Global Variable Privileges) 740

GRANT (Index Privileges) 742

GRANT (Nickname Privileges) 768

GRANT (Package Privileges) 744

GRANT (Role) 747

GRANT (Routine Privileges) 750

GRANT (Schema Privileges) 754

GRANT (Security Label) 757

1020 SQL Reference, Volume 2

SQL statements (continued)
GRANT (Sequence Privileges) 760

GRANT (Server Privileges) 762

GRANT (SETSESSIONUSER Privilege) 764

GRANT (Table Privileges) 768

GRANT (Table Space Privileges) 766

GRANT (View Privileges) 768

GRANT (Workload Privileges) 775

GRANT (XSR Object Privileges) 777

INCLUDE 780

INSERT 782

interactive entry 10

invoking 10

LOCK TABLE 794

MERGE 798

OPEN 807

PREPARE 811

REFRESH TABLE 820

RELEASE (Connection) 823

RELEASE SAVEPOINT 825

RENAME 827

RENAME TABLESPACE 826

REVOKE (Database Authorities) 835

REVOKE (Exemption) 839

REVOKE (Global Variable Privileges) 841

REVOKE (Index Privileges) 843

REVOKE (Nickname Privileges) 867

REVOKE (Package Privileges) 845

REVOKE (Role) 848

REVOKE (Routine Privileges) 851

REVOKE (Schema Privileges) 855

REVOKE (Security Label) 857

REVOKE (Sequence Privileges) 859

REVOKE (Server Privileges) 861

REVOKE (SETSESSIONUSER Privilege) 863

REVOKE (Table Privileges) 867

REVOKE (Table Space Privileges) 865

REVOKE (View Privileges) 867

REVOKE (Workload Privileges) 872

REVOKE (XSR Object Privileges) 874

ROLLBACK 875

ROLLBACK TO SAVEPOINT 875

SAVEPOINT 878

SELECT 883

SELECT INTO 881

SET COMPILATION ENVIRONMENT 884

SET CONNECTION 885

SET CONSTRAINTS 924

SET CURRENT DECFLOAT ROUNDING MODE 887

SET CURRENT DEFAULT TRANSFORM GROUP 889

SET CURRENT DEGREE 890

SET CURRENT EXPLAIN MODE 892

SET CURRENT EXPLAIN SNAPSHOT 895

SET CURRENT FEDERATED ASYNCHRONY 897

SET CURRENT FUNCTION PATH 944

SET CURRENT IMPLICIT XMLPARSE OPTION 899

SET CURRENT ISOLATION 900

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 903

SET CURRENT MDC ROLLOUT MODE 905

SET CURRENT OPTIMIZATION PROFILE 907

SET CURRENT PACKAGESET 914

SET CURRENT PATH 944

SET CURRENT QUERY OPTIMIZATION 916

SET CURRENT REFRESH AGE 919

SET ENCRYPTION PASSWORD 921

SET EVENT MONITOR STATE 922

SQL statements (continued)
SET INTEGRITY 924

SET PASSTHRU 942

SET PATH 944

SET ROLE 946

SET SCHEMA 947

SET SERVER OPTION 949

SET SESSION AUTHORIZATION 951

SET variable 954

supported 2

TRANSFER OWNERSHIP 964

UPDATE 979

VALUES 991

VALUES INTO 989

WHENEVER 992

WITH HOLD
cursor attribute 640

SQL variables 213, 222

SQL/XML
CREATE INDEX statement 356

SQL92 standard
rules for dynamic SQL 947

SQLCA (SQL communication area)
entry changed by UPDATE 979

SQLCA clause
INCLUDE statement 780

SQLCA structure
overview 10

SQLCODE
description 10

SQLDA (SQL descriptor area)
FETCH statement 717

host variable descriptions, OPEN statement 807

required variables for DESCRIBE 661, 664

SQLDA clause
INCLUDE statement 780

SQLERROR clause
WHENEVER statement 992

SQLSTATE
description 10

SQLWARNING clause of WHENEVER statement 992

standards
setting rules for dynamic SQL 947

start key value 372

statements
ALTER WRAPPER 178

LEAVE 792

SET CURRENT LOCK TIMEOUT 901

SET CURRENT PACKAGE PATH 910

strings
creating 703

PREPARE statement 811

static SQL
DECLARE CURSOR statement 10

FETCH statement 10

invoking 10

OPEN statement 10

select 10

statements 10

STAY RESIDENT
CREATE FUNCTION (external scalar) statement 277

CREATE FUNCTION (external table) statement 301

CREATE PROCEDURE statement 397, 416

stop key value 372

storage
backing out, unit of work, ROLLBACK 875

Index 1021

storage structures
ALTER BUFFERPOOL statement 26

ALTER TABLESPACE statement 121

CREATE BUFFERPOOL statement 251

CREATE TABLESPACE statement 517

stored procedures
CREATE PROCEDURE statement 396

Structured Query Language (SQL)
control statements 14

structured types
CREATE TRANSFORM statement 539

DROP statement 671

summary tables
definition 449

supported SQL statements 2

SYNONYM clause
in place of ALIAS clause 671

synonyms
CREATE ALIAS statement 245

DROP ALIAS statement 671

syntax
common elements 17

description vi

elements 17

function designator 17

method designator 17

procedure designator 17

system-containers
CREATE TABLESPACE statement 517

T
TABLE clause

COMMENT statement 199

CREATE FUNCTION (External Table) statement 301

DROP statement 671

TABLE HIERARCHY clause
DROP statement 671

table name
CREATE TABLE statement 449

table spaces
adding

comments to catalog 199

buffer pools 251

creating
CREATE TABLESPACE statement 517

deleting using DROP statement 671

dropping
DROP statement 671

grant privileges 766

identification
CREATE TABLE statement 449

index
CREATE TABLE statement 449

page size 517

renaming 826

revoking privileges 865

tables
adding

columns, ALTER TABLE 76

comments to catalog 199

alias 245, 671

altering 76

authorization for creating 449

creating
granting authority 733

SQL statement instructions 449

tables (continued)
deleting

using DROP statement 671

exception 924

generated columns 76

grant privileges 768

indexes 356

inserting rows 782

joining
partitioning key considerations 449

names
in ALTER TABLE statement 76

in LOCK TABLE statement 794

renaming 827

restricting shared access, LOCK TABLE statement 794

revoking privileges 867

schemas 423

temporary
in OPEN statement 807

typed, and triggers 543

updating by row and column, UPDATE statement 979

TABLESPACE clause
COMMENT statement 199

temporary tables
OPEN statement 807

termination
unit of work 211, 875

terms and conditions
use of publications 1004

TIME data types
CREATE TABLE statement 449

TIMESTAMP data type
CREATE TABLE statement 449

TO clause
GRANT statement

database authority 733

index priveleges 742

pacakage priveleges 744

schema priveleges 754

table priveleges 768

TRANSFER OWNERSHIP statement 964

transformations
DROP statement 671

functions
CREATE TRANSFORM statement 539

TRIGGER clause
COMMENT statement 199

triggered SQL statements
SET variable 954

triggers
adding comments to catalog 199

CREATE TRIGGER statement 543

dropping 671

error messages 543

inoperative 543

INSERT statement 782

typed tables 543

updates
UPDATE statement 979

troubleshooting
online information 1004

tutorials 1004

tutorials
problem determination 1004

troubleshooting 1004

Visual Explain 1003

type 2 indexes 356

1022 SQL Reference, Volume 2

TYPE clause
COMMENT statement 199

DROP statement 671

typed views
defining subviews 603

U
UNDER clause

CREATE VIEW statement 603

UNIQUE clause
ALTER TABLE statement 76

CREATE INDEX statement 356

CREATE TABLE statement 449

unique constraints
adding with ALTER TABLE 76

ALTER TABLE statement 76

CREATE TABLE statement 449

dropping with ALTER TABLE 76

unique keys
ALTER TABLE statement 76

CREATE TABLE statement 449

units of work (UOW)
canceling 875

COMMIT statement 211

destroying prepared statements 811

initiating closes cursors 807

referring to prepared statements 811

ROLLBACK statement, effect 875

terminating 211

terminating destroys prepared statements 811

terminating without saving changes 875

UPDATE clause
GRANT statement (Table, View or Nickname) 768

REVOKE statement, removing privileges 867

UPDATE statement
description 979

row fullselect 979

updates
DB2 Information Center 1002

updatable views 603

user-defined functions
CREATE FUNCTION statement

description 276

External Scalar 277

External Table 301

OLE DB External Table 319

Sourced or Template 328

SQL Scalar, Table, or Row 340

DROP statement 671

REVOKE (Database Authorities) statement 835

user-defined types
adding comments to catalog 199

CREATE TRANSFORM statement 539

CREATE TYPE (Distinct) statement 563

distinct data types
CREATE TABLE statement 449

structured types 449

USING clause
CREATE INDEX statement 356

FETCH statement 717

OPEN statement, listing host variables 807

USING DESCRIPTOR clause
OPEN statement 807

V
VALUES clause

loading one row 782

rules for number of values 782

VALUES INTO statement 989

VALUES statement 991

VARCHAR data type
CREATE TABLE statement 449

VARIANT
CREATE TYPE (Structured) statement 569

VIEW clause
CREATE VIEW statement 603

DROP statement 671

VIEW HIERARCHY clause
DROP statement 671

view name
in ALTER VIEW statement 154

views
adding comments to catalog 199

alias 245, 671

column names 603

control privilege
granting 768

limitations on 768

creating 603

deletable 603

deleting using DROP statement 671

grant privileges 768

inoperative 603

insertable 603

inserting rows in viewed table 782

preventing view definition loss, WITH CHECK

OPTION 979

read-only 603

revoking privileges 867

schemas 423

updatable 603

updating rows by columns 979

WITH CHECK OPTION 979

Visual Explain
tutorial 1003

W
WHENEVER statement

changing flow of control 10

description 992

WHERE clause
DELETE statement 654

UPDATE statement 979

WHILE statement
description 994

X
XML

CREATE INDEX statement 356

XML columns
CREATE INDEX statement 356

XML data
CREATE INDEX statement 356

Index 1023

1024 SQL Reference, Volume 2

����

Printed in USA

SC23-5862-01

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

SQ
L

Re
fe

re
nc

e,

Vo

lu
m

e
2

�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured
	How to read the syntax diagrams
	Conventions used in this manual
	Error conditions
	Highlighting conventions

	Related documentation

	Statements
	SQL statements
	How SQL statements are invoked
	About SQL control statements
	Function, method, and procedure designators
	ALLOCATE CURSOR
	ALTER AUDIT POLICY
	ALTER BUFFERPOOL
	ALTER DATABASE PARTITION GROUP
	ALTER DATABASE
	ALTER FUNCTION
	ALTER HISTOGRAM TEMPLATE
	ALTER METHOD
	ALTER NICKNAME
	ALTER PROCEDURE (External)
	ALTER PROCEDURE (Sourced)
	ALTER PROCEDURE (SQL)
	ALTER SECURITY LABEL COMPONENT
	ALTER SECURITY POLICY
	ALTER SEQUENCE
	ALTER SERVER
	ALTER SERVICE CLASS
	ALTER TABLE
	ALTER TABLESPACE
	ALTER THRESHOLD
	ALTER TRUSTED CONTEXT
	ALTER TYPE (Structured)
	ALTER USER MAPPING
	ALTER VIEW
	ALTER WORK ACTION SET
	ALTER WORK CLASS SET
	ALTER WORKLOAD
	ALTER WRAPPER
	ALTER XSROBJECT
	ASSOCIATE LOCATORS
	AUDIT
	BEGIN DECLARE SECTION
	CALL
	CASE
	CLOSE
	COMMENT
	COMMIT
	Compound SQL (Dynamic)
	Compound SQL (Embedded)
	Compound SQL (Procedure)
	CONNECT (Type 1)
	CONNECT (Type 2)
	CREATE ALIAS
	CREATE AUDIT POLICY
	CREATE BUFFERPOOL
	CREATE DATABASE PARTITION GROUP
	CREATE EVENT MONITOR
	CREATE FUNCTION
	CREATE FUNCTION (External Scalar)
	CREATE FUNCTION (External Table)
	CREATE FUNCTION (OLE DB External Table)
	CREATE FUNCTION (Sourced or Template)
	CREATE FUNCTION (SQL Scalar, Table, or Row)
	CREATE FUNCTION MAPPING
	CREATE HISTOGRAM TEMPLATE
	CREATE INDEX
	CREATE INDEX EXTENSION
	CREATE METHOD
	CREATE NICKNAME
	CREATE PROCEDURE
	CREATE PROCEDURE (External)
	CREATE PROCEDURE (Sourced)
	CREATE PROCEDURE (SQL)
	CREATE ROLE
	CREATE SCHEMA
	CREATE SECURITY LABEL COMPONENT
	CREATE SECURITY LABEL
	CREATE SECURITY POLICY
	CREATE SEQUENCE
	CREATE SERVICE CLASS
	CREATE SERVER
	CREATE TABLE
	CREATE TABLESPACE
	CREATE THRESHOLD
	CREATE TRANSFORM
	CREATE TRIGGER
	CREATE TRUSTED CONTEXT
	CREATE TYPE (Array)
	CREATE TYPE (Distinct)
	CREATE TYPE (Structured)
	CREATE TYPE MAPPING
	CREATE USER MAPPING
	CREATE VARIABLE
	CREATE VIEW
	CREATE WORK ACTION SET
	CREATE WORK CLASS SET
	CREATE WORKLOAD
	CREATE WRAPPER
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DELETE
	DESCRIBE
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	DISCONNECT
	DROP
	END DECLARE SECTION
	EXECUTE IMMEDIATE
	EXECUTE
	EXPLAIN
	FETCH
	FLUSH EVENT MONITOR
	FLUSH OPTIMIZATION PROFILE CACHE
	FLUSH PACKAGE CACHE
	FOR
	FREE LOCATOR
	GET DIAGNOSTICS
	GOTO
	GRANT (Database Authorities)
	GRANT (Exemption)
	GRANT (Global Variable Privileges)
	GRANT (Index Privileges)
	GRANT (Package Privileges)
	GRANT (Role)
	GRANT (Routine Privileges)
	GRANT (Schema Privileges)
	GRANT (Security Label)
	GRANT (Sequence Privileges)
	GRANT (Server Privileges)
	GRANT (SETSESSIONUSER Privilege)
	GRANT (Table Space Privileges)
	GRANT (Table, View, or Nickname Privileges)
	GRANT (Workload Privileges)
	GRANT (XSR Object Privileges)
	IF
	INCLUDE
	INSERT
	ITERATE
	LEAVE
	LOCK TABLE
	LOOP
	MERGE
	OPEN
	PREPARE
	REFRESH TABLE
	RELEASE (Connection)
	RELEASE SAVEPOINT
	RENAME TABLESPACE
	RENAME
	REPEAT
	RESIGNAL
	RETURN
	REVOKE (Database Authorities)
	REVOKE (Exemption)
	REVOKE (Global Variable Privileges)
	REVOKE (Index Privileges)
	REVOKE (Package Privileges)
	REVOKE (Role)
	REVOKE (Routine Privileges)
	REVOKE (Schema Privileges)
	REVOKE (Security Label)
	REVOKE (Sequence Privileges)
	REVOKE (Server Privileges)
	REVOKE (SETSESSIONUSER Privilege)
	REVOKE (Table Space Privileges)
	REVOKE (Table, View, or Nickname Privileges)
	REVOKE (Workload Privileges)
	REVOKE (XSR Object Privileges)
	ROLLBACK
	SAVEPOINT
	SELECT INTO
	SELECT
	SET COMPILATION ENVIRONMENT
	SET CONNECTION
	SET CURRENT DECFLOAT ROUNDING MODE
	SET CURRENT DEFAULT TRANSFORM GROUP
	SET CURRENT DEGREE
	SET CURRENT EXPLAIN MODE
	SET CURRENT EXPLAIN SNAPSHOT
	SET CURRENT FEDERATED ASYNCHRONY
	SET CURRENT IMPLICIT XMLPARSE OPTION
	SET CURRENT ISOLATION
	SET CURRENT LOCK TIMEOUT
	SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	SET CURRENT MDC ROLLOUT MODE
	SET CURRENT OPTIMIZATION PROFILE
	SET CURRENT PACKAGE PATH
	SET CURRENT PACKAGESET
	SET CURRENT QUERY OPTIMIZATION
	SET CURRENT REFRESH AGE
	SET ENCRYPTION PASSWORD
	SET EVENT MONITOR STATE
	SET INTEGRITY
	SET PASSTHRU
	SET PATH
	SET ROLE
	SET SCHEMA
	SET SERVER OPTION
	SET SESSION AUTHORIZATION
	SET variable
	SIGNAL
	TRANSFER OWNERSHIP
	UPDATE
	VALUES INTO
	VALUES
	WHENEVER
	WHILE

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

