DB2 Version 9.5

for Linux, UNIX, and Windows

(10)

L
‘11 F r'

SQL Reference, Volume 2

Updated March, 2008

SC23-5862-01

DB2 Version 9.5

for Linux, UNIX, and Windows

(10)

L
‘11 F r'

SQL Reference, Volume 2

Updated March, 2008

SC23-5862-01

Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|

[page 1007

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

¢ To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2008. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book
Who should use this book.
How this book is structured .
How to read the syntax diagrams .
Conventions used in this manual .
Error conditions
Highlighting Conventlons
Related documentation .

Statements

SQL statements

How SQL statements are mVOked .
About SQL control statements .

Function, method, and procedure de51gnators

ALLOCATE CURSOR .

ALTER AUDIT POLICY .

ALTER BUFFERPOOL.

ALTER DATABASE PARTITION GROUP
ALTER DATABASE.

ALTER FUNCTION .
ALTER HISTOGRAM TEMPLATE
ALTER METHOD .

ALTER NICKNAME

ALTER PROCEDURE (External)
ALTER PROCEDURE (Sourced)
ALTER PROCEDURE (SQL) .

ALTER SECURITY LABEL COMPONENT .

ALTER SECURITY POLICY .
ALTER SEQUENCE

ALTER SERVER . .
ALTER SERVICE CLASS .
ALTER TABLE

ALTER TABLESPACE

ALTER THRESHOLD

ALTER TRUSTED CONTEXT .
ALTER TYPE (Structured) .
ALTER USER MAPPING
ALTER VIEW .
ALTER WORK ACTION SET .
ALTER WORK CLASS SET.
ALTER WORKLOAD.

ALTER WRAPPER

ALTER XSROBJECT .
ASSOCIATE LOCATORS
AUDIT .
BEGIN DECLARE SECTION .
CALL .

CASE .

CLOSE

COMMENT .

COMMIT.

Compound SQL (Dynamlc)
Compound SQL (Embedded) .
Compound SQL (Procedure)
CONNECT (Type 1) .

© Copyright IBM Corp. 1993, 2008

. vi
. viii
. viii
. viii
. viii

.10
.14
.17
.21
.23
. 26
. 29
. 33
. 36
. 38
. 40
.41
. 49
.52
. 54
. 56
. 59
. 63
. 67
.70
. .76
. 121
. 131
. 137
. 145
. 152
. 154
. 156
. 167
. 172
. 178
. 180
. 181
. 183
. 187
. 189
. 194
. 197
. 199
. 211
. 213
. 218
. 222
. 231

CONNECT (Type 2) .

CREATE ALIAS

CREATE AUDIT POLICY

CREATE BUFFERPOOL .

CREATE DATABASE PARTITION GROUP
CREATE EVENT MONITOR .

CREATE FUNCTION. .

CREATE FUNCTION (External Scalar)
CREATE FUNCTION (External Table) .

CREATE FUNCTION (OLE DB External Table) .
CREATE FUNCTION (Sourced or Template) .
CREATE FUNCTION (SQL Scalar, Table, or Row)

CREATE FUNCTION MAPPING.
CREATE HISTOGRAM TEMPLATE .
CREATE INDEX

CREATE INDEX EXTENSION
CREATE METHOD

CREATE NICKNAME

CREATE PROCEDURE . .
CREATE PROCEDURE (External)
CREATE PROCEDURE (Sourced).
CREATE PROCEDURE (SQL)
CREATE ROLE. .
CREATE SCHEMA

CREATE SECURITY LABEL COMPONENT .

CREATE SECURITY LABEL
CREATE SECURITY POLICY .
CREATE SEQUENCE.
CREATE SERVICE CLASS .
CREATE SERVER .

CREATE TABLE

CREATE TABLESPACE .
CREATE THRESHOLD .
CREATE TRANSFORM .
CREATE TRIGGER

CREATE TRUSTED CONTEXT
CREATE TYPE (Array) .
CREATE TYPE (Distinct)
CREATE TYPE (Structured)
CREATE TYPE MAPPING .
CREATE USER MAPPING .
CREATE VARIABLE .
CREATE VIEW. .
CREATE WORK ACTION SET
CREATE WORK CLASS SET .
CREATE WORKLOAD .
CREATE WRAPPER .
DECLARE CURSOR . .
DECLARE GLOBAL TEMPORARY TABLE
DELETE .

DESCRIBE

DESCRIBE INPUT.

DESCRIBE OUTPUT .
DISCONNECT .

DROP . .

END DECLARE SECTION

. 238
. 245
. 248
. 251
. 255
. 257
. 276
. 277
. 301
. 319
. 328

340

. 350
. 354
. 356
. 372
. 378
. 384
. 396
. 397
. 411
. 416
. 422
. 423
. 426
. 429
. 431
. 433
. 438
. 445
. 449
. 517
. 531
. 539
. 543
. 554
. 561
. 563
. 569
. 592
. 598
. 600
. 603
. 617
. 625
. 630
. 638
. 640
. 646
. 654
. 660
. 661
. 664
. 668
. 671
. 702

iii

EXECUTE IMMEDIATE .

EXECUTE

EXPLAIN

FETCH

FLUSH EVENT MONITOR . .
FLUSH OPTIMIZATION PROFILE CACHE .
FLUSH PACKAGE CACHE

FOR .

FREE LOCATOR .

GET DIAGNOSTICS .

GOTO.

GRANT (Database Authorltles)
GRANT (Exemption) .

GRANT (Global Variable Prlvrleges)
GRANT (Index Privileges) .

GRANT (Package Privileges) .

GRANT (Role) .

GRANT (Routine Prlvrleges)

GRANT (Schema Privileges)

GRANT (Security Label).

GRANT (Sequence Privileges) .
GRANT (Server Privileges) .

GRANT (SETSESSIONUSER Pr1v11ege)
GRANT (Table Space Privileges) . .
GRANT (Table, View, or Nickname Perlleges)
GRANT (Workload Privileges). .
GRANT (XSR Ob]ect Pr1v1leges)

IF . . .

INCLUDE

INSERT

ITERATE .

LEAVE

LOCK TABLE .

LOOP .

MERGE .

OPEN .

PREPARE.

REFRESH TABLE .

RELEASE (Connection) .

RELEASE SAVEPOINT .

RENAME TABLESPACE.

RENAME

REPEAT .

RESIGNAL .

RETURN . .

REVOKE (Database Authorltles)
REVOKE (Exemption)

REVOKE (Global Variable Pr1V11eges)
REVOKE (Index Privileges).

REVOKE (Package Privileges) .
REVOKE (Role) .

REVOKE (Routine Pr1v11eges)

REVOKE (Schema Privileges) .

REVOKE (Security Label)

REVOKE (Sequence Privileges)
REVOKE (Server Privileges)

REVOKE (SETSESSIONUSER Pr1v11ege)
REVOKE (Table Space Privileges).

REVOKE (Table, View, or Nickname Pr1v11eges)

REVOKE (Workload Privileges)
REVOKE (XSR Object Privileges) .

iv SQL Reference, Volume 2

. 703
. 706
. 712
. 717
. 720
. 721
. 723
. 724
. 727
. 728
. 731
. 733
. 737
. 740
. 742
. 744
. 747
. 750
. 754
. 757
. 760
. 762
. 764
. 766
. 768
. 775
. 777
. 778
. 780
. 782
. 791
. 792
. 794
. 796
. 798
. 807
. 811
. 820
. 823
. 825
. 826
. 827
. 829
. 831
. 833
. 835
. 839
. 841
. 843
. 845
. 848
. 851
. 855
. 857
. 859
. 861
. 863
. 865

867

. 872
. 874

ROLLBACK.87
SAVEPOINT.878
SELECTINTO881
SELECT 883
SET COMPILATION ENVIRONMENT 884
SET CONNECTION 885

SET CURRENT DECFLOAT ROUNDING MODE 887
SET CURRENT DEFAULT TRANSFORM GROUP 889

SET CURRENTDEGREE89
SET CURRENT EXPLAIN MODE892
SET CURRENT EXPLAIN SNAPSHOT.89
SET CURRENT FEDERATED ASYNCHRONY . . 897
SET CURRENT IMPLICIT XMLPARSE OPTION 899
SET CURRENT ISOLATION900
SET CURRENT LOCK TIMEOUT 901
SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION903
SET CURRENT MDC ROLLOUT MODE905
SET CURRENT OPTIMIZATION PROFILE . . . 907
SET CURRENT PACKAGE PATH910
SET CURRENT PACKAGESET914
SET CURRENT QUERY OPTIMIZATION . . .916
SET CURRENT REFRESHAGE919
SET ENCRYPTION PASSWORD921
SET EVENT MONITOR STATE922
SET INTEGRITY94
SET PASSTHRU942
SETPATH9%4
SETROLE96
SET SCHEMA9%47
SET SERVER OPTION 99
SET SESSION AUTHORIZATION95
SET variable.94
SIGNAL R * [|
TRANSFER OWNERSHIP O (oY
UPDATE.979
VALUES INTO.98
VALUES91
WHENEVER99
WHILE99

Appendix A. Overview of the DB2

technical information 997
DB2 technical library in hardcopy or PDF format 998
Ordering printed DB2 books 1000
Displaying SQL state help from the command lme
processor 1001
Accessing drfferent versions of the DBZ
Information Center 1001
Displaying topics in your preferred language in
the DB2 Information Center1001
Updating the DB2 Information Center 1nstalled on
your computer or intranet server 1002
DB2 tutorials1003
DB2 troubleshooting 1nformat10n1004
Terms and Conditions 1004
Appendix B. Notices . . 1007
Index10M

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2®
Database for Linux®, UNIX®, and Windows®. It includes:

 Information about relational database concepts, language elements, functions,
and the forms of queries (Volume 1)

* Information about the syntax and semantics of SQL statements (Volume 2)

Who should use this book

This book is intended for anyone who wants to use the Structured Query
Language (SQL) to access a database. It is primarily for programmers and database
administrators, but it can also be used by those who access databases through the
command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be writing
application programs and therefore presents the full functions of the database
manager.

How this book is structured

The second volume of the SQL Reference contains information about the syntax
and semantics of SQL statements.

¢ “Statements” contains syntax diagrams, semantic descriptions, rules, and
examples of all SQL statements, including SQL procedure statements.

© IBM Corporation 1993, 2008 A\

How to read the syntax diagrams

How to read the syntax diagrams

vi

Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a syntax diagram.

The — symbol indicates that the syntax is continued on the next line.

The »— symbol indicates that the syntax is continued from the previous line.
The —>< symbol indicates the end of a syntax diagram.

Syntax fragments start with the |— symbol and end with the — symbol.

Required items appear on the horizontal line (the main path).

»>—required item ><

Optional items appear below the main path.

\4
A

»>—required_item
I—optional_item—l

If an optional item appears above the main path, that item has no effect on
execution, and is used only for readability.

A\
A

ptional item
»>—required_item |—0 —l

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequ ired choicel ><
requi red_choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

»>—required_item ><
i:optional_choice]:‘

optional_choicez

If one of the items is the default, it will appear above the main path, and the
remaining choices will be shown below.

SQL Reference, Volume 2

How to read the syntax diagrams

default_choice
»>—required_item rizz _l

ptional_choice:l
ptional choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

v

»>—required_item repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

v

v
A

»>—required_item repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For
example, in the following diagram, the variable parameter-block represents the
whole syntax fragment that is labeled parameter-block:

»—r‘equired_item—' parameter-block i ><
parameter-block:

parameterl }
parameter? par‘m77eter3:|J

|:parame terd

Adjacent segments occurring between “large bullets” (@) may be specified in any
sequence.

»>—required_item—iteml—@—item?—@—item3—@—item4 »><

The above diagram shows that item?2 and item3 may be specified in either order.
Both of the following are valid:

required_item iteml item2 item3 item4
required_item iteml item3 item2 item4

About this book Vil

How to read the syntax diagrams

Conventions used in this manual

Error conditions

An error condition is indicated within the text of the manual by listing the
SQLSTATE associated with the error in parentheses. For example:

A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions

The following conventions are used in this book.

Bold Indicates commands, keywords, and other items whose names are
predefined by the system.

Italics Indicates one of the following:
* Names or values (variables) that must be supplied by the user
* General emphasis
* The introduction of a new term

* A reference to another source of information

Monospace Indicates one of the following:
* Files and directories

¢ Information that you are instructed to type at a command prompt or in a
window

¢ Examples of specific data values
¢ Examples of text similar to what might be displayed by the system

* Examples of system messages

Related documentation

The following publications might prove useful when you are preparing
applications:

* Getting Started with Database Application Development

— Provides an introduction to DB2 application development, including platform
prerequisites; supported development software; and guidance on the benefits
and limitations of the supported programming APIs.

* DB2 for i5/0S SQL Reference

— This book defines SQL as supported by DB2 Query Manager and SQL
Development Kit on System i . It contains reference information for the tasks
of system administration, database administration, application programming,
and operation. This manual includes syntax, usage notes, keywords, and
examples for each of the SQL statements used on i5/0S® systems running
DB2.

* DB2 for z/OS SQL Reference
— This book defines SQL used in DB2 for z/OS®. It provides query forms, SQL
statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog
tables, and SQL reserved words for z/OS systems running DB2.
* DB2 Spatial Extender User’s Guide and Reference

— This book discusses how to write applications to create and use a geographic
information system (GIS). Creating and using a GIS involves supplying a
database with resources and then querying the data to obtain information
such as locations, distances, and distributions within areas.

viii SQL Reference, Volume 2

Related documentation

IBM SQL Reference

— This book contains all the common elements of SQL that span IBM’s database
products. It provides limits and rules that assist in preparing portable
programs using IBM® databases. This manual provides a list of SQL
extensions and incompatibilities among the following standards and products:
SQLI92E, XPG4-SQL, IBM-SQL, and the IBM relational database products.

American National Standard X3.135-1992, Database Language SQL
— Contains the ANSI standard definition of SQL.

ISO/IEC 9075:1992, Database Language SQL

— Contains the 1992 ISO standard definition of SQL.

ISO/IEC 9075-2:2003, Information technology -- Database Languages -- SQL -- Part 2:
Foundation (SQL/Foundation)

— Contains a large portion of the 2003 ISO standard definition of SQL.

ISO/IEC 9075-4:2003, Information technology -- Database Languages -- SQL -- Part 4:
Persistent Stored Modules (SQL/PSM)

— Contains the 2003 ISO standard definition for SQL procedure control
statements.

About this book 1X

Related documentation

X SQL Reference, Volume 2

Statements

© Copyright IBM Corp. 1993, 2008

SQL statements

SQL statements

The following tables list the SQL statements classified by type:

SQL schema statements (Table 1)

SQL data change statements (Table 2 on page 6)
SQL data statements (Table 3 on page 6)
SQL transaction statements (Table 4 on page 6)

SQL connection statements (Table 5 on page 7)

SQL dynamic statements (Table 6 on page 7)

SQL session statements (Table 7 on page 7)

SQL embedded host language statements (Table 8 on page §)

SQL control statements (Table 9 on page 8)

Table 1. SQL schema statements

SQL Statement Purpose

[“ALTER AUDIT POLICY” on page 23| Modifies the definition of an audit policy at the current server.
[“ALTER BUFFERPOOL” on page 26| Changes the definition of a buffer pool.

[“ALTER DATABASE” on page 33| Adds new storage paths to the collection of paths that are used for

automatic storage table spaces.

“ALTER DATABASE PARTITION GROUP” on| Changes the definition of a database partition group.

page 29|

[“ALTER FUNCTION” on page 36 Modifies an existing function by changing the properties of the

function.

“ALTER HISTOGRAM TEMPLATE” on page] Modifies the template describing the type of histogram that can be

Bg used to override one or more of the default histograms of a service
class or a work class.

["ALTER METHOD” on page 40| Modifies an existing method by changing the method body
associated with the method.

[“ALTER NICKNAME” on page 41| Changes the definition of a nickname.

[“ALTER PROCEDURE (External)” on page 49| Modifies an existing external procedure by changing the properties of

the procedure.

["ALTER PROCEDURE (Sourced)” on page 52| Modifies an existing sourced procedure by changing the data type of

one or more parameters of the sourced procedure.

["ALTER PROCEDURE (SQL)” on page 54| Modifies an existing SQL procedure by changing the properties of the

procedure.
“ALTER SECURITY LABEL COMPONENT”| Modifies a security label component.
on page 5§|
[“ALTER SECURITY POLICY” on page 59| Modifies a security policy.
[“ALTER SEQUENCE” on page 63| Changes the definition of a sequence.
[“ALTER SERVER” on page 67| Changes the definition of a data source in a federated system.
[“ALTER SERVICE CLASS” on page 70| Changes the definition of a service class.
[“ALTER TABLE” on page 76| Changes the definition of a table.
[“ALTER TABLESPACE” on page 121] Changes the definition of a table space.
[“ALTER THRESHOLD” on page 131 Changes the definition of a threshold.
[“ALTER TRUSTED CONTEXT” on page 137] Changes the definition of a trusted context at the current server.
[“ALTER TYPE (Structured)” on page 145| Changes the definition of a structured type.
2 SQL Reference, Volume 2

Table 1. SQL schema statements (continued)
SQL Statement

SQL statements

Purpose

[“ALTER USER MAPPING” on page 152

Changes the definition of a user authorization mapping.

["ALTER VIEW” on page 154

Changes the definition of a view by altering a reference type column
to add a scope.

[“ALTER WORK ACTION SET” on page 156|

Adds, alters, or drops work actions within a work action set.

[“ALTER WORK CLASS SET” on page 167

Adds, alters, or drops work classes within a work class set.

[“ALTER WORKLOAD” on page 172|

Changes a workload.

[“ALTER WRAPPER” on page 178|

Updates the options that, along with a wrapper module, are used to
access data sources of a specific type.

["ALTER XSROBJECT” on page 18]

Enables or disables decomposition support for a specific XML
schema.

[“AUDIT” on page 183]

Determines the audit policy that is to be used for a particular
database or database object at the current server.

[“COMMENT” on page 199|

Replaces or adds a comment to the description of an object.

['CREATE ALIAS” on page 245|

Defines an alias for a table, view, or another alias.

["CREATE AUDIT POLICY” on page 248|

Defines an auditing policy at the current server.

['CREATE BUEFERPOOL” on page 251|

Creates a new buffer pool.

“CREATE DATABASE PARTITION GROUP”|

on page 255|

Defines a database partition group.

['CREATE EVENT MONITOR” on page 25/

Specifies events in the database to monitor.

[FCREATE FUNCTION” on page 276

Registers a user-defined function.

“CREATE FUNCTION (External Scalar)” onl|

page 272]

Registers a user-defined external scalar function.

“CREATE FUNCTION (External Table)” on|

page 301

Registers a user-defined external table function.

“CREATE FUNCTION (OLE DB Externall
Table)” on page 319

Registers a user-defined OLE DB external table function.

“CREATE FUNCTION (Sourced or Template)”|

on page 328|

Registers a user-defined sourced function.

“CREATE FUNCTION (SQL Scalar, Table, or
Row)” on page 340

Registers and defines a user-defined SQL function.

“CREATE FUNCTION MAPPING” on pagd
B350

Defines a function mapping.

“CREATE HISTOGRAM TEMPLATE” on page

554]

Defines a template describing the type of histogram that can be used
to override one or more of the default histograms of a service class or
a work class.

[“CREATE INDEX” on page 356|

Defines an index on a table.

['CREATE INDEX EXTENSION” on page 372

Defines an extension object for use with indexes on tables with
structured or distinct type columns.

["CREATE METHOD” on page 378

Associates a method body with a previously defined method
specification.

[“CREATE NICKNAME” on page 384|

Defines a nickname.

[“CREATE PROCEDURE” on page 396|

Registers a procedure.

“CREATE PROCEDURE (External)” on page|

597]

Registers an external procedure.

Statements 3

SQL statements

Table 1. SQL schema statements (continued)

SQL Statement Purpose
“CREATE PROCEDURE (Sourced)” on page] Registers a procedure (the sourced procedure) that is based on
411 another procedure (the source procedure). In a federated system, a

federated procedure is a sourced procedure whose source procedure
is at a supported data source.

['CREATE PROCEDURE (SQL)” on page 416] Registers an SQL procedure.

[CREATE ROLE” on page 422| Defines a role at the current server.

[“CREATE SCHEMA” on page 423)| Defines a schema.

“CREATE SECURITY LABEL COMPONENT”| Creates a component that is to be used as part of a security policy.

on page 426|

[“CREATE SECURITY LABEL” on page 429| Creates a security label.

[“CREATE SECURITY POLICY” on page 431] Creates a security policy.

[“CREATE SEQUENCE” on page 433] Defines a sequence.

[“CREATE SERVER” on page 445 Defines a data source to a federated database.

[“CREATE SERVICE CLASS” on page 438 Defines a service class.

[CREATE TABLE” on page 449| Defines a table.

[“CREATE TABLESPACE” on page 517 Defines a table space.

[“CREATE THRESHOLD” on page 531] Defines a threshold.

[“CREATE TRANSFORM” on page 539 Defines transformation functions.

[“CREATE TRIGGER” on page 543 Defines a trigger.

[“CREATE TRUSTED CONTEXT” on page 554 Defines a trusted context at the current server.

[“CREATE TYPE (Array)” on page 561 Defines an array type.

[“CREATE TYPE (Distinct)” on page 563 Defines a distinct data type.

[“CREATE TYPE (Structured)” on page 569 Defines a structured data type.

[“CREATE TYPE MAPPING” on page 592| Defines a mapping between data types.

['CREATE USER MAPPING” on page 59§ Defines a mapping between user authorizations.

[“CREATE VARIABLE” on page 600 Defines a global variable.

["CREATE VIEW” on page 603 Defines a view of one or more table, view or nickname.

[“CREATE WORK ACTION SET” on page 617| Defines a work action set and work actions within the work action
set.

[“CREATE WORK CLASS SET” on page 625 Defines a work class set.

[“CREATE WORKLOAD” on page 630 Defines a workload.

[CREATE WRAPPER” on page 638 Registers a wrapper.

[“DROP” on page 671] Deletes objects in the database.

["GRANT (Database Authorities)” on page 733] Grants authorities on the entire database.

[“GRANT (Exemption)” on page 737| Grants an exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“GRANT (Global Variable Privileges)” on| Grants one or more privileges on a created global variable.

page 740|

['GRANT (Index Privileges)” on page 742 Grants the CONTROL privilege on indexes in the database.

['GRANT (Package Privileges)” on page 744] Grants privileges on packages in the database.

["GRANT (Role)” on page 747] Grants roles to users, groups, or to other roles.

[“GRANT (Routine Privileges)” on page 750| Grants privileges on a routine (function, method, or procedure).

4 SQL Reference, Volume 2

Table 1. SQL schema statements (continued)
SQL Statement

SQL statements

Purpose

[“GRANT (Schema Privileges)” on page 754|

Grants privileges on a schema.

[“GRANT (Security Label)” on page 757

Grants a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

[“GRANT (Sequence Privileges)” on page 760|

Grants privileges on a sequence.

['GRANT (Server Privileges)” on page 762|

Grants privileges to query a specific data source.

“GRANT (SETSESSIONUSER Privilege)” or]

page 76@]

Grants the privilege to use the SET SESSION AUTHORIZATION
statement.

“GRANT (Table Space Privileges)” on pagel
766

Grants privileges on a table space.

“GRANT (Table, View, or Nickname]
Privileges)” on page 768§

Grants privileges on tables, views and nicknames.

[“GRANT (Workload Privileges)” on page 775|

Grants the USAGE privilege on a workload.

“GRANT (XSR Object Privileges)” on pagel

777

Grants the USAGE privilege on an XSR object.

['REFRESH TABLE” on page 820

Refreshes the data in a materialized query table.

['RENAME” on page 827

Renames an existing table.

[FRENAME TABLESPACE” on page 826|

Renames an existing table space.

“REVOKE (Database Authorities)” on page|
835

Revokes authorities from the entire database.

["'REVOKE (Exemption)” on page 839|

Revokes the exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“REVOKE (Global Variable Privileges)” on|

page 841|

Revokes one or more privileges on a created global variable.

[“'REVOKE (Index Privileges)” on page 843

Revokes the CONTROL privilege on given indexes.

["'REVOKE (Package Privileges)” on page 845|

Revokes privileges from given packages in the database.

["'REVOKE (Role)” on page 848

Revokes roles from users, groups, or other roles.

["'REVOKE (Routine Privileges)” on page 851

Revokes privileges on a routine (function, method, or procedure).

["'REVOKE (Schema Privileges)” on page 855|

Revokes privileges on a schema.

["'REVOKE (Security Label)” on page 857

Revokes a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

["'REVOKE (Sequence Privileges)” on page 859

Revokes privileges on a sequence.

['/REVOKE (Server Privileges)” on page 861

Revokes privileges to query a specific data source.

“REVOKE (SETSESSIONUSER Privilege)” o]

[page 863|

Revokes the privilege to use the SET SESSION AUTHORIZATION
statement.

“REVOKE (Table Space Privileges)” on pagel
865

Revokes the USE privilege on a given table space.

“REVOKE (Table, View, or Nickname|
Privileges)” on page 867

Revokes privileges from given tables, views or nicknames.

["'REVOKE (Workload Privileges)” on page 872

Revokes the USAGE privilege on a workload.

“REVOKE (XSR Object Privileges)” on page
37

Revokes the USAGE privilege on an XSR object.

[“SET INTEGRITY” on page 924|

Sets the set integrity pending state and checks data for constraint
violations.

["'TRANSFER OWNERSHIP” on page 964

Transfers ownership of a database object.

Statements D

SQL statements

Table 2. SQL data change statements
SQL Statement

Purpose

['DELETE” on page 654|

Deletes one or more rows from a table.

[“INSERT” on page 782|

Inserts one or more rows into a table.

['MERGE” on page 798|

Updates a target (a table or view) using data from a source (result of
a table reference).

['UPDATE” on page 979

Table 3. SQL data statements
SQL Statement

Updates the values of one or more columns in one or more rows of a
table.

Purpose

[FALLOCATE CURSOR” on page 21|

Allocates a cursor for the result set identified by the result set locator
variable.

["ASSOCIATE LOCATORS” on page 18]

Gets the result set locator value for each result set returned by a
procedure.

[“CLOSE” on page 197

Closes a cursor.

[FDECLARE CURSOR” on page 640|

Defines an SQL cursor.

[“DELETE” on page 654

Deletes one or more rows from a table.

[“FETCH” on page 717

Assigns values of a row to host variables.

[“FLUSH EVENT MONITOR” on page 720|

Writes out the active internal buffer of an event monitor.

[“FLUSH PACKAGE CACHE” on page 723)|

Removes all cached dynamic SQL statements currently in the
package cache.

[“FREE LOCATOR” on page 727

Removes the association between a locator variable and its value.

[“INSERT” on page 782|

Inserts one or more rows into a table.

[“LOCK TABLE” on page 794|

Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

["'MERGE” on page 798|

Updates a target (a table or view) using data from a source (result of
a table reference).

[“OPEN" on page 807]

Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

[“SELECT INTO” on page 881|

Specifies a result table of no more than one row and assigns the
values to host variables.

[“SET variable” on page 954|

Assigns values to NEW transition variables.

[“UPDATE” on page 979

Updates the values of one or more columns in one or more rows of a
table.

[“VALUES INTO” on page 989

Table 4. SQL transaction statements
SQL Statement

Specifies a result table of no more than one row and assigns the
values to host variables.

Purpose

[“COMMIT” on page 211|

Terminates a unit of work and commits the database changes made
by that unit of work.

['RELEASE SAVEPOINT” on page 825|

Releases a savepoint within a transaction.

['ROLLBACK” on page 875|

Terminates a unit of work and backs out the database changes made
by that unit of work.

[“SAVEPOINT” on page 878|

6 SQL Reference, Volume 2

Sets a savepoint within a transaction.

Table 5. SQL connection statements
SQL Statement

SQL statements

Purpose

[“CONNECT (Type 1)” on page 231|

Connects to an application server according to the rules for remote
unit of work.

[“CONNECT (Type 2)” on page 238

Connects to an application server according to the rules for
application-directed distributed unit of work.

[“DISCONNECT” on page 668|

Terminates one or more connections when there is no active unit of
work.

[“'RELEASE (Connection)” on page 823]

Places one or more connections in the release-pending state.

[“SET CONNECTION” on page 885

Table 6. SQL dynamic statements
SQL Statement

Changes the state of a connection from dormant to current, making
the specified location the current server.

Purpose

[“DESCRIBE” on page 660|

Obtains information about an object.

[“DESCRIBE INPUT” on page 661

Obtains information about the input parameter markers of a
prepared statement.

["“DESCRIBE OUTPUT” on page 664]

Obtains information about a prepared statement or information about
the select list columns in a prepared SELECT statement.

[“EXECUTE” on page 706

Executes a prepared SQL statement.

[“EXECUTE IMMEDIATE” on page 703|

Prepares and executes an SQL statement.

[“PREPARE” on page 811|

Table 7. SQL session statements

SQL Statement

Prepares an SQL statement (with optional parameters) for execution.

Purpose

“DECLARE GLOBAL TEMPORARY TABLE"|

on page 646|

Defines the Global Temporary Table.

[“"EXPLAIN” on page 712|

Captures information about the chosen access plan.

“SET COMPILATION ENVIRONMENT” onf

page 881_11

Changes the current compilation environment in the connection to
match the values contained in the compilation environment provided
by a deadlock event monitor.

“SET CURRENT DECFLOAT ROUNDING

MODE” on page 887

Verifies that the specified rounding mode is the value that is
currently set for the CURRENT DECFLOAT ROUNDING MODE
special register.

“SET CURRENT DEFAULT TRANSFORM|

IGROUP” on page 889

Changes the value of the CURRENT DEFAULT TRANSFORM
GROUP special register.

[’'SET CURRENT DEGREE” on page 890|

Changes the value of the CURRENT DEGREE special register.

"SET CURRENT EXPLAIN MODE” on pagd

892

Changes the value of the CURRENT EXPLAIN MODE special
register.

“SET CURRENT EXPLAIN SNAPSHOT” on|

page 895|

Changes the value of the CURRENT EXPLAIN SNAPSHOT special
register.

“SET CURRENT FEDERATED)]
[ASYNCHRONY” on page 897

Changes the value of the CURRENT FEDERATED ASYNCHRONY
special register.

“SET CURRENT IMPLICIT XMLPARSE]

(OPTION” on page 899

Changes the value of the CURRENT IMPLICIT XMLPARSE OPTION
special register.

['SET CURRENT ISOLATION” on page 900

Changes the value of the CURRENT ISOLATION special register.

Statements 7

SQL statements

Table 7. SQL session statements (continued)

SQL Statement

Purpose

“SET CURRENT LOCK TIMEOUT” on page]
001

Changes the value of the CURRENT LOCK TIMEOUT special
register.

“SET CURRENT MAINTAINED TABLE|
TYPES FOR OPTIMIZATION” on page 903

Changes the value of the CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION special register.

“SET CURRENT MDC ROLLOUT MODE” on|

page 905|

Assigns a value to the CURRENT MDC ROLLOUT MODE special
register.

“SET CURRENT OPTIMIZATION PROFILE”|

on page 902]

Assigns a value to the CURRENT OPTIMIZATION PROFILE special
register.

“SET CURRENT PACKAGE PATH” on page|
910,

Assigns a value to the CURRENT PACKAGE PATH special register.

[“SET CURRENT PACKAGESET” on page 914|

Sets the schema name for package selection.

“SET CURRENT QUERY OPTIMIZATION”|

on page 916|

Changes the value of the CURRENT QUERY OPTIMIZATION special
register.

[“SET CURRENT REFRESH AGE” on page 919|

Changes the value of the CURRENT REFRESH AGE special register.

“SET ENCRYPTION PASSWORD” on page]
921

Sets the password for encryption.

['SET EVENT MONITOR STATE” on page 922]

Activates or deactivates an event monitor.

[“SET PASSTHRU” on page 942|

Opens a session for submitting data source native SQL directly to the
data source.

[“SET PATH” on page 944|

Changes the value of the CURRENT PATH special register.

[“SET ROLE” on page 946|

Verifies that the authorization ID of the session is a member of a
specific role.

[“SET SCHEMA” on page 947]

Changes the value of the CURRENT SCHEMA special register.

[“SET SERVER OPTION” on page 949|

Sets server option settings.

“SET SESSION AUTHORIZATION” on page

951

Changes the value of the SESSION USER special register.

Table 8. SQL embedded host language statements

SQL Statement

Purpose

['BEGIN DECLARE SECTION” on page 187]

Marks the beginning of a host variable declaration section.

[“END DECLARE SECTION” on page 702|

Marks the end of a host variable declaration section.

[“GET DIAGNOSTICS” on page 728

Used to obtain information about the previously executed SQL
statement.

['INCLUDE” on page 780|

Inserts code or declarations into a source program.

["'RESIGNAL” on page 831|

Used to resignal an error or warning condition.

[“SIGNAL” on page 961

Used to signal an error or warning condition.

[“WHENEVER” on page 992|

Table 9. SQL control statements
SQL Statement

Defines actions to be taken on the basis of SQL return codes.

Purpose

[“CALL” on page 189

Calls a procedure.

[“CASE” on page 194

Selects an execution path based on multiple conditions.

[“Compound SQL (Dynamic)” on page 213|

8 SQL Reference, Volume 2

Combines one or more other SQL statements into an dynamic block.

Table 9. SQL control statements (continued)
SQL Statement

SQL statements

Purpose

[“Compound SQL (Embedded)” on page 218|

Combines one or more other SQL statements into an executable
block.

[“Compound SQL (Procedure)” on page 222|

Groups other statements together in an SQL procedure.

[“FOR” on page 724|

Executes a statement or group of statements for each row of a table.

["GOTO” on page 731|

Used to branch to a user-defined label within an SQL procedure.

“IF” on page 778

Selects an execution path based on the evaluation of a condition.

[“ITERATE” on page 791|

Causes the flow of control to return to the beginning of a labelled
loop.

['LEAVE” on page 792|

Transfers program control out of a loop or a compound statement.

["LOOP” on page 79¢|

Repeats the execution of a statement or a group of statements.

[“'REPEAT” on page 829

Executes a statement or group of statements until a search condition
is true.

['RESIGNAL” on page 831|

Used to resignal an error or warning condition.

['RETURN” on page 833]

Used to return from a routine.

[“SIGNAL” on page 961|

Used to signal an error or warning condition.

["WHILE” on page 994

Repeats the execution of a statement or group of statements while a
specified condition is true.

Statements 9

How SQL statements are invoked

How SQL statements are invoked

10

SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:
* Embedded in an application program

* Embedded in an SQL procedure.

* Prepared and executed dynamically

* Issued interactively

Depending on the statement, some or all of these methods can be used.
(Statements embedded in REXX'" are prepared and executed dynamically.)

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be
invoked in three ways. It can be:

* Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and
CLOSE (static invocation)

* Prepared dynamically, referenced in DECLARE CURSOR, and executed
implicitly by OPEN, FETCH and CLOSE (dynamic invocation)

* Issued interactively
Embedding a statement in an application program

SQL statements can be included in a source program that will be submitted to a
precompiler. Such statements are said to be embedded in the program. An
embedded statement can be placed anywhere in the program where a host
language statement is allowed. Each embedded statement must be preceded by the
keywords EXEC SQL.

An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if it were specified in the
same place. Thus, a statement within a loop is executed every time the loop is
executed, and a statement within a conditional construct is executed only when the
condition is satisfied.

An embedded statement can contain references to host variables. A host variable
referenced in this way can be used in two ways. It can be used:

* As input (the current value of the host variable is used in the execution of the
statement)

* As output (the variable is assigned a new value as a result of executing the
statement)

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input.

All executable statements should be followed by a test of the SQL return code.
Alternatively, the WHENEVER statement (which is itself non-executable) can be
used to change the flow of control immediately after the execution of an embedded
statement.

SQL Reference, Volume 2

How SQL statements are invoked

All objects referenced in data manipulation language (DML) statements must exist
when the statements are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The
precompiler reports any errors encountered in the statement. The statement is never
processed during program execution; therefore, such statements should not be
followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE
PROCEDURE statement. Such statements are said to be embedded in the SQL
procedure. Whenever an SQL statement description refers to a host-variable, an
SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution

An application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, input from a workstation). The
statement (not a select-statement) constructed can be prepared for execution by
means of the (embedded) PREPARE statement, and executed by means of the
(embedded) EXECUTE statement. Alternatively, an (embedded) EXECUTE
IMMEDIATE statement can be used to prepare and execute the statement in one
step.

A statement that is going to be dynamically prepared must not contain references
to host variables. It can instead contain parameter markers. (For rules concerning
parameter markers, see “PREPARE”.) When the prepared statement is executed,
the parameter markers are effectively replaced by current values of the host
variables specified in the EXECUTE statement. Once prepared, a statement can be
executed several times with different values for the host variables. Parameter
markers are not allowed in the EXECUTE IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of
an SQL return code in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE)
statement completes. The SQL return code should be checked, as described above.
For more information, see [“SQL return codes (SQLCODE and SQLSTATE)” on|

Static invocation of a select-statement

A select-statement can be included as a part of the (non-executable) DECLARE
CURSOR statement. Such a statement is executed every time the cursor is opened
by means of the (embedded) OPEN statement. After the cursor is open, the result
table can be retrieved, one row at a time, by successive executions of the FETCH
statement.

Used in this way, the select-statement can contain references to host variables.
These references are effectively replaced by the values that the variables have when
the OPEN statement executes.

Dynamic invocation of a select-statement

An application program can dynamically build a select-statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, a query obtained from a

workstation). The statement so constructed can be prepared for execution by

Statements 11

How SQL statements are invoked

12

means of the (embedded) PREPARE statement, and referenced by a
(non-executable) DECLARE CURSOR statement. The statement is then executed
every time the cursor is opened by means of the (embedded) OPEN statement.
After the cursor is open, the result table can be retrieved, one row at a time, by
successive executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables.
It can contain parameter markers instead. The parameter markers are effectively
replaced by the values of the host variables specified in the OPEN statement.

Interactive invocation

A capability for entering SQL statements from a workstation is part of the
architecture of the database manager. A statement entered in this way is said to be
issued interactively. Such a statement must be an executable statement that does
not contain parameter markers or references to host variables, because these make
sense only in the context of an application program.

SQL use with other host systems

SQL statement syntax exhibits minor variations among different types of host
systems (DB2 for z/OS, DB2 for System i, DB2 Database for Linux, UNIX, and
Windows). Regardless of whether the SQL statements in an application are static or
dynamic, it is important — if the application is meant to access different database
host systems — to ensure that the SQL statements and precompile/bind options
are supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found
in the DB2 for i5/0S SQL Reference and the DB2 for z/OS SQL Reference.

SQL return codes (SQLCODE and SQLSTATE)

An application program containing executable SQL statements can use either
SQLCODE or SQLSTATE values to handle return codes from SQL statements.
There are two ways in which an application can get access to these values.

* Include a structure named SQLCA. The SQLCA includes an integer variable
named SQLCODE and a character string variable named SQLSTATE. In REXX,
an SQLCA is provided automatically. In other languages, an SQLCA can be
obtained by using the INCLUDE SQLCA statement.

» If LANGLEVEL SQLOI2E is specified as a precompile option, a variable named
SQLCODE or SQLSTATE can be declared in the SQL declare section of the
program. If neither of these variables is declared in the SQL declare section, it is
assumed that a variable named SQLCODE is declared elsewhere in the program.
With LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA
statement.

An SQLCODE is set by the database manager after each SQL statement executes.
All database managers conform to the ISO/ANSI SQL standard, as follows:

e If SQLCODE = 0 and SQLWARNO is blank, execution was successful.

* If SQLCODE = 100, “no data” was found. For example, a FETCH statement
returned no data, because the cursor was positioned after the last row of the
result table.

* If SQLCODE > 0 and not = 100, execution was successful with a warning.

SQL Reference, Volume 2

How SQL statements are invoked

e If SQLCODE = 0 and SQLWARNO = "W’, execution was successful, but one or
more warning indicators were set.

* If SQLCODE < 0, execution was not successful.
The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes.
Application programs can check the execution of SQL statements by testing
SQLSTATE instead of SQLCODE. SQLSTATE provides common codes for common
error conditions. Application programs can test for specific errors or classes of
errors. The coding scheme is the same for all IBM database managers, and is based
on the ISO/ANSI SQL92 standard.

SQL comments

Static SQL statements can include host language or SQL comments. Dynamic SQL
statements can include SQL comments. There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--) and end
with the end of line.

bracketed comments
Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:

¢ The two hyphens must be on the same line and must not be separated by a
space.

* Simple comments can be started wherever a space is valid (except within a
delimiter token or between 'EXEC” and "SQL).

* Simple comments cannot be continued to the next line.

¢ In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:
* The /* must be on the same line and must not be separated by a space.
* The */ must be on the same line and must not be separated by a space.

* Bracketed comments can be started wherever a space is valid (except within a
delimiter token or between "EXEC” and "SQL).

* Bracketed comments can be continued to subsequent lines.

Example 1: This example shows how to include simple comments in a statement:

CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL
AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT
FROM PROJECT
WHERE DEPTNO = 'E21' -- SYSTEMS SUPPORT DEPT CODE
AND PRSTAFF > 1

Example 2: This example shows how to include bracketed comments in a statement:

CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT
PERSONNEL */
AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT =/
FROM PROJECT
WHERE DEPTNO = 'E21' /* SYSTEMS SUPPORT DEPT CODE =/
AND PRSTAFF > 1

Statements 13

About SQL control statements

About SQL control statements

14

Control statements are SQL statements that allow structured query language to be
used in a manner similar to writing a program in a structured programming
language. SQL control statements provide the capability to control the logic flow,
declare, and set variables, and handle warnings and exceptions. Some SQL control
statements include other nested SQL statements. SQL control statements can be
used in the body of a routine, trigger or a dynamic compound statement.

References to SQL parameters, SQL variables, and global
variables

SQL parameters, SQL variables, and global variables can be referenced anywhere in
an SQL procedure statement where an expression or variable can be specified. Host
variables cannot be specified in SQL routines, SQL triggers or dynamic compound
statements. SQL parameters can be referenced anywhere in the routine, and can be
qualified with the routine name. SQL variables can be referenced anywhere in the
compound statement in which they are declared, and can be qualified with the
label name specified at the beginning of the compound statement. Global variables
can be referenced within any expression as long as the expression is not required
to be deterministic. The following scenarios require deterministic expressions,
which preclude the use of global variables:

* Check constraints
* Definitions of generated columns
* Refresh immediate MQTs

All SQL parameters, SQL variables, and global variables are considered nullable.
The name of an SQL parameter, SQL variable, or global variable in an SQL routine
can be the same as the name of a column in a table or view referenced in the
routine. The name of an SQL variable can also be the same as the name of another
SQL variable declared in the same routine. This can occur when the two SQL
variables are declared in different compound statements. The compound statement
that contains the declaration of an SQL variable determines the scope of that
variable. For more information, see “Compound SQL (Procedure)”.

The name of an SQL variable or SQL parameter in an SQL routine can be the same
as the name of an identifier used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to the identifier or
to the SQL parameter or SQL variable:

e In the SET PATH and SET SCHEMA statements, the name is checked as an SQL
parameter or SQL variable. If not found as an SQL variable or SQL parameter, it
is used as an identifier.

e In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION
statements, the name is used as an identifier.

Names that are the same should be explicitly qualified. Qualifying a name clearly
indicates whether the name refers to a column, SQL variable, SQL parameter, or
global variable. If the name is not qualified, or qualified but still ambiguous, the
following rules describe whether the name refers to a column, an SQL variable, an
SQL parameter, or a global variable:

* If the tables and views specified in an SQL routine body exist at the time the
routine is created, the name is first checked as a column name. If not found as a
column, it is then checked as an SQL variable in the compound statement, then
checked as an SQL parameter, and then, finally, checked as a global variable.

SQL Reference, Volume 2

About SQL control statements

e If the referenced tables or views do not exist at the time the routine is created,
the name is first checked as an SQL variable in the compound statement, then as
an SQL parameter, and then as a global variable. The variable can be declared
within the compound statement that contains the reference, or within a
compound statement in which that compound statement is nested. If two SQL
variables are within the same scope and have the same name, which can happen
if they are declared in different compound statements, the SQL variable that is
declared in the innermost compound statement is used. If not found, it is
assumed to be a column.

References to labels

Labels can be specified on most SQL procedure statements. The compound
statement that contains the statement that defines a label determines the scope of
that label name. A label name must be unique within the compound statement in
which it is defined, including any labels defined in compound statements that are
nested within that compound statement (SQLSTATE 42734). The label must not be
the same as a label specified on the compound statement itself (SQLSTATE 42734),
or the same as the name of the routine that contains the SQL procedure statement
(SQLSTATE 42734).

A label name can only be referenced within the compound statement in which it is
defined, including any compound statements that are nested within that
compound statement. A label can be used to qualify the name of an SQL variable,
or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names

The name of an SQL condition can be the same as the name of another SQL
condition declared in the same routine. This can occur when the two SQL
conditions are declared in different compound statements. The compound
statement that contains the declaration of an SQL condition name determines the
scope of that condition name. A condition name must be unique within the
compound statement in which it is declared, excluding any declarations in
compound statements that are nested within that compound statement (SQLSTATE
42734). A condition name can only be referenced within the compound statement
in which it is declared, including any compound statements that are nested within
that compound statement. When there is a reference to a condition name, the
condition that is declared in the innermost compound statement is the condition
that is used. For more information, see “Compound SQL (Procedure)”.

References to SQL statement names

The name of an SQL statement can be the same as the name of another SQL
statement declared in the same routine. This can occur when the two SQL
statements are declared in different compound statements. The compound
statement that contains the declaration of an SQL statement name determines the
scope of that statement name. A statement name must be unique within the
compound statement in which it is declared, excluding any declarations in
compound statements that are nested within that compound statement (SQLSTATE
42734). A statement name can only be referenced within the compound statement
in which it is declared, including any compound statements that are nested within
that compound statement. When there is a reference to a statement name, the
statement that is declared in the innermost compound statement is the statement
that is used. For more information, see “Compound SQL (Procedure)”.

Statements 15

About SQL control statements

16

References to SQL cursor names

The name of an SQL cursor can be the same as the name of another SQL cursor
declared in the same routine. This can occur when the two SQL cursors are
declared in different compound statements. The compound statement that contains
the declaration of an SQL cursor determines the scope of that cursor name. A
cursor name must be unique within the compound statement in which it is
declared, excluding any declarations in compound statements that are nested
within that compound statement (SQLSTATE 42734). A cursor name can only be
referenced within the compound statement in which it is declared, including any
compound statements that are nested within that compound statement. When there
is a reference to a cursor name, the cursor that is declared in the innermost
compound statement is the cursor that is used. For more information, see
“Compound SQL (Procedure)”.

SQL Reference, Volume 2

Function, method, and procedure designators

Function, method, and procedure designators

The following sections describe syntax fragments that are used to uniquely identify
a function, method, or procedure.

Function designator

A function designator uniquely identifies a single function. Function designators
typically appear in DDL statements for functions (such as DROP or ALTER).

function-designator:

FUNCTION—;function-name |
L)] !

Ldata—type

SPECIFIC FUNCTION—specific-name

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one function
instance with the name function-name in the schema. The identified function
can have any number of parameters defined for it. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no function by this name exists in the named or implied schema, an
error (SQLSTATE 42704) is raised. If there is more than one instance of the
function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function. The
function resolution algorithm is not used.

function-name
Specifies the name of the function. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE FUNCTION statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific function instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

Statements 17

Function, method, and procedure designators

18

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no function with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name

Identifies a particular user-defined function, using the name that is specified or
defaulted to at function creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified
object name. In static SQL statements, the QUALIFIER precompile/bind option
implicitly specifies the qualifier for unqualified object names. The specific-name
must identify a specific function instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

Method designator

A method designator uniquely identifies a single method. Method designators
typically appear in DDL statements for methods (such as DROP or ALTER).

method-designator:

|_

—METHOD—method-name |_ _| FOR—type-name i
()

Ldata- type

ME

ME

SQL Reference, Volume 2

—SPECIFIC METHOD—specific-name

THOD method-name

Identifies a particular method, and is valid only if there is exactly one method
instance with the name method-name for the type type-name. The identified
method can have any number of parameters defined for it. If no method by
this name exists for the type, an error (SQLSTATE 42704) is raised. If there is
more than one instance of the method for the type, an error (SQLSTATE 42725)
is raised.

THOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The
method resolution algorithm is not used.

method-name
Specifies the name of the method for the type fype-name.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE TYPE statement. The number of data types, and
the logical concatenation of the data types, is used to identify the specific
method instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

Function, method, and procedure designators

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for #,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named
or implied schema, an error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated. The
name must identify a type already described in the catalog (SQLSTATE
42704). In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or defaulted to
at method creation time. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static
SQL statements, the QUALIFIER precompile/bind option implicitly specifies
the qualifier for unqualified object names. The specific-name must identify a
specific method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

Procedure designator
A procedure designator uniquely identifies a single procedure. Procedure

designators typically appear in DDL statements for procedures (such as DROP or
ALTER).

procedure-designator:

PROCEDURE—procedure-name |
L) !

Lduta- type

SPECIFIC PROCEDURE—specific-name

PROCEDURE procedure-name
Identifies a particular procedure, and is valid only if there is exactly one
procedure instance with the name procedure-name in the schema. The identified
procedure can have any number of parameters defined for it. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object
names. If no procedure by this name exists in the named or implied schema,

Statements 19

Function, method, and procedure designators

20

an error (SQLSTATE 42704) is raised. If there is more than one instance of the
procedure in the named or implied schema, an error (SQLSTATE 42725) is
raised.

PROCEDURE procedure-name (data-type,...)

Provides the procedure signature, which uniquely identifies the procedure. The
procedure resolution algorithm is not used.

procedure-name
Specifies the name of the procedure. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified
object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding
position) on the CREATE PROCEDURE statement. The number of data
types, and the logical concatenation of the data types, is used to identify
the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the
schemas on the SQL path. This also applies to data type names specified
for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can be
coded to indicate that these attributes are to be ignored when looking for a
data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that
specified in the CREATE PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n,
because 0 < n < 25 means REAL, and 24 < n < 54 means DOUBLE.
Matching occurs on the basis of whether the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name

SQL Reference, Volume 2

Identifies a particular procedure, using the name that is specified or defaulted
to at procedure creation time. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name.
In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name must
identify a specific procedure instance in the named or implied schema;
otherwise, an error (SQLSTATE 42704) is raised.

ALLOCATE CURSOR

ALLOCATE CURSOR

The ALLOCATE CURSOR statement allocates a cursor for the result set identified
by the result set locator variable. For more information about result set locator
variables, see the description of the ASSOCIATE LOCATORS statement.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization
None required.
Syntax

»»>—ALLOCATE—cursor-name—CURSOR FOR RESULT SET—rs-locator-variable———— >«

Description

cursor-name
Names the cursor. The name must not identify a cursor that has already been
declared in the source SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

Names a result set locator variable that has been declared in the source SQL
procedure, according to the rules for declaring result set locator variables. For
more information on declaring SQL variables, see “Compound SQL (Procedure)
statement”.

The result set locator variable must contain a valid result set locator value, as
returned by the ASSOCIATE LOCATORS SQL statement (SQLSTATE 0F001).

Rules
* The following rules apply when using an allocated cursor:

— An allocated cursor cannot be opened with the OPEN statement (SQLSTATE
24502).

— An allocated cursor cannot be used in a positioned UPDATE or DELETE
statement (SQLSTATE 42828).

— An allocated cursor can be closed with the CLOSE statement. Closing an
allocated cursor closes the associated cursor.

— Only one cursor can be allocated to each result set.

* Allocated cursors last until a rollback operation, an implicit close, or an explicit
close.

* A commit operation destroys allocated cursors that are not defined WITH
HOLD.

* Destroying an allocated cursor closes the associated cursor in the SQL procedure.
Examples

This SQL procedure example defines and associates cursor C1 with the result set
locator variable LOC1 and the related result set returned by the SQL procedure:

Statements 21

ALLOCATE CURSOR

ALLOCATE C1 CURSOR FOR RESULT SET LOCI;

22 SQL Reference, Volume 2

ALTER AUDIT POLICY

ALTER AUDIT POLICY

The ALTER AUDIT POLICY statement modifies the definition of an audit policy at
the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»>—ALTER AUDIT POLICY—policy-name >

(1) [|

! CATEGORIES—Y ALL: STATUS BOTH.
—AUDIT FAILURE
—CHECKING: NONE.
—CONTEXT————— SUCCESS

WITHOUT DATA
—EXECUTEH
WITH DATA

—OBJMAINT.
—SECMAINT
—SYSADMIN
—VALIDATE

>«

—ERROR TYPE NORMAL.

_[AUDIT—I

Notes:

1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most
once (SQLSTATE 42614).

2 Each category can be specified at most once (SQLSTATE 42614), and no other
category can be specified if ALL is specified (SQLSTATE 42601).

Description

policy-name
Identifies the audit policy that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited). The name must uniquely identify
an existing audit policy at the current server (SQLSTATE 42704).

CATEGORIES
A list of one or more audit categories for which a new status value is specified.
If ALL is not specified, the STATUS of any category that is not explicitly
specified remains unchanged.

ALL
Sets all categories to the same status. The EXECUTE category is WITHOUT
DATA.

Statements 23

ALTER AUDIT POLICY

AUDIT
Generates records when audit settings are changed or when the audit log
is accessed.

CHECKING
Generates records during authorization checking of attempts to access or
manipulate database objects or functions.

CONTEXT
Generates records to show the operation context when a database
operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.

WITHOUT DATA or WITH DATA
Specifies whether or not input data values provided for any host
variables and parameter markers should be logged as part of the
EXECUTE category.

WITHOUT DATA
Input data values provided for any host variables and parameter
markers are not logged as part of the EXECUTE category.

WITH DATA
Input data values provided for any host variables and parameter
markers are logged as part of the EXECUTE category. Not all input
values are logged; specifically, LOB, LONG, XML, and structured
type parameters appear as the null value. Date, time, and
timestamp fields are logged in ISO format. The input data values
are converted to the database code page before being logged. If
code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM
authority is granted or revoked. Records are also generated when the
database manager security configuration parameters sysadm_group,
sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or
SYSCTRL authority are performed.

VALIDATE
Generates records when users are authenticated or when system security
information related to a user is retrieved.

STATUS
Specifies a status for the specified category.

BOTH
Successful and failing events will be audited.

FAILURE
Only failing events will be audited.

SUCCESS
Only successful events will be audited.

24 SQL Reference, Volume 2

ALTER AUDIT POLICY

NONE
No events in this category will be audited.

ERROR TYPE

Specifies whether audit errors are to be returned or ignored.

NORMAL
Any errors generated by the audit are ignored and only the SQLCODEs for
errors associated with the operation being performed are returned to the
application.

AUDIT
All errors, including errors occurring within the audit facility itself, are
returned to the application.

Rules

An AUDIT-exclusive SQL statement must be followed by a COMMIT or
ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

- AUDIT
— CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT

POLICY)

— DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context

is associated with an audit policy

An AUDIT-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time
across all database partitions. If an uncommitted AUDIT-exclusive SQL
statement is executing, subsequent AUDIT-exclusive SQL statements wait until
the current AUDIT-exclusive SQL statement commits or rolls back.

Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

If the audit policy that is being altered is currently associated with a database
object, the changes do not take effect until the next unit of work for the
application that is affected by the change. For example, if the audit policy is in
use for the database, no current units of work will see the change to the policy
until after a COMMIT or a ROLLBACK statement for that unit of work
completes.

Example

Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy
named DBAUDPRF to audit both successes and failures.

ALTER AUDIT POLICY DBAUDPRF
CATEGORIES SECMAINT STATUS BOTH,
CHECKING STATUS BOTH,
VALIDATE STATUS BOTH

Statements 25

ALTER BUFFERPOOL

ALTER BUFFERPOOL

The ALTER BUFFERPOOL statement is used to do the following:

* Modify the size of the buffer pool on all database partitions or on a single
database partition

* Enable or disable automatic sizing of the buffer pool
* Add this buffer pool definition to a new database partition group
* Modify the block area of the buffer pool for block-based 1/0

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

»»—ALTER BUFFERPOOL—bufferpool-nam >

IMMEDIATE:

> SIZE—l—number—of—page >«
l—DEFERRED—| I—DBPARTITIONNUM—db—partition—numberJ "UTOMATICJ

I—number—of—pagesJ

ADD DATABASE PARTITION GROUP—db-partition-group-nam
NUMBLOCKPAGES—number-of-pages

I—BLOCKSIZE—number—of—pagesJ

BLOCKSIZE—number-of-page.

Description

bufferpool-name
Names the buffer pool. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). It must be a buffer pool described in the catalog.

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool size will be changed immediately.

IMMEDIATE
The buffer pool size will be changed immediately. If there is not enough
reserved space in the database shared memory to allocate new space
(SQLSTATE 01657), the statement is executed as DEFERRED.

DEFERRED
The buffer pool size will be changed when the database is reactivated (all
applications need to be disconnected from the database). Reserved memory
space is not needed; DB2 will allocate the required memory from the
system at activation time.

DBPARTITIONNUM db-partition-number
Specifies the database partition on which the size of the buffer pool is
modified. An exception entry is created in the
SYSCAT.BUFFERPOOLDBPARTITIONS system catalog view. The database
partition must be in one of the database partition groups for the buffer pool
(SQLSTATE 42729). If this clause is not specified, the size of the buffer pool is

26 SQL Reference, Volume 2

ALTER BUFFERPOOL

modified on all database partitions except those that have an exception entry
in SYSCAT.BUFFERPOOLDBPARTITIONS.

SIZE
Specifies a new size for the buffer pool, or enables or disables self tuning for
this buffer pool.

number-of-pages
The number of pages for the new buffer pool size. If the buffer pool is
already a self-tuning buffer pool, and the SIZE number-of-pages clause is
specified, the alter operation disables self-tuning for this buffer pool.

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the
size of the buffer pool in response to workload requirements. When
AUTOMATIC is specified, the DBPARTITIONNUM clause cannot be
specified (SQLSTATE 42601).

ADD DATABASE PARTITION GROUP db-partition-group-name
Adds this database partition group to the list of database partition groups to
which the buffer pool definition is applicable. For any database partition in the
database partition group that does not already have the buffer pool defined,
the buffer pool is created on the database partition using the default size
specified for the buffer pool. Table spaces in db-partition-group-name may
specify this buffer pool. The database partition group must currently exist in
the database (SQLSTATE 42704).

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area. The
number of pages must not be greater than 98 percent of the number of pages
for the buffer pool (SQLSTATE 54052). Specifying the value 0 disables block
I/0. The actual value of NUMBLOCKPAGES used will be a multiple of
BLOCKSIZE.

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value
between 2 and 256 (SQLSTATE 54053). The default value is 32.

Notes

* Only the buffer pool size can be changed dynamically (immediately). All other
changes are deferred, and will only come into effect after the database is
reactivated.

e If the statement is executed as deferred, the following is true: Although the
buffer pool definition is transactional and the changes to the buffer pool
definition will be reflected in the catalog tables on commit, no changes to the
actual buffer pool will take effect until the next time the database is started. The
current attributes of the buffer pool will exist until then, and there will not be
any impact to the buffer pool in the interim. Tables created in table spaces of
new database partition groups will use the default buffer pool. The statement is
IMMEDIATE by default when that keyword applies.

¢ There should be enough real memory on the machine for the total of all the
buffer pools, as well as for the rest of the database manager and application
requirements.

* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM

Statements 27

ALTER BUFFERPOOL

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

28 SQL Reference, Volume 2

ALTER DATABASE PARTITION GROUP

ALTER DATABASE PARTITION GROUP

The ALTER DATABASE PARTITION GROUP statement is used to:
* add one or more database partitions to a database partition group
* drop one or more database partitions from a database partition group.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

Syntax

»>—ALTER DATABASE PARTITION GROUP—db-partition

T ADD—EDBPARTITIONNU db-partitions-clause i | >
DBPARTITIONNUMS |:LIKE DBPARTITIONNUM—db-partition-number—|

WITHOUT TABLESPACES:
DROP—EDBPARTITIONNUM—J—' db-partitions-clause
DBPARTITIONNUMS: I

db-partitions-clause:

—(—"—db-partition-numberl B]
TO—db-partition-number?2

Description

db-partition-name
Names the database partition group. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). It must be a database partition group
described in the catalog. IBMCATGROUP and IBMTEMPGROUP cannot be
specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database
partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must not already be defined in the database
partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database
partition group. DBPARTITIONNUMS is a synonym for DBPARTITIONNUM.
Any specified database partition must already be defined in the database
partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.

Statements 29

ALTER DATABASE PARTITION GROUP

30

db-partition-number1
Specify a specific database partition number.

TO db-partition-number2
Specify a range of database partition numbers. The value of
db-partition-number2 must be greater than or equal to the value of
db-partition-number]l (SQLSTATE 428A9).

LIKE DBPARTITIONNUM db-partition-number

Specifies that the containers for the existing table spaces in the database
partition group will be the same as the containers on the specified
db-partition-number. The specified database partition must be a partition that
existed in the database partition group prior to this statement, and that is not
included in a DROP DBPARTITIONNUM clause of the same statement.

For table spaces that are defined to use automatic storage (that is, table spaces
that were created with the MANAGED BY AUTOMATIC STORAGE clause of
the CREATE TABLESPACE statement, or for which no MANAGED BY clause
was specified at all), the containers will not necessarily match those from the
specified partition. Instead, containers will automatically be assigned by the
database manager based on the storage paths that are associated with the
database, and this might or might not result in the same containers being used.
The size of each table space is based on the initial size that was specified when
the table space was created, and might not match the current size of the table
space on the specified partition.

WITHOUT TABLESPACES

Specifies that the containers for existing table spaces in the database partition
group are not created on the newly added database partition or partitions. The
ALTER TABLESPACE statement using the db-partitions-clause must be used to
define containers for use with the table spaces that are defined on this
database partition group. If this option is not specified, the default containers
are specified on newly added database partitions for each table space defined
on the database partition group.

This option is ignored for table spaces that are defined to use automatic
storage (that is, table spaces that were created with the MANAGED BY
AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement, or for
which no MANAGED BY clause was specified at all). There is no way to defer
container creation for these table spaces. Containers will automatically be
assigned by the database manager based on the storage paths that are
associated with the database. The size of each table space will be based on the
initial size that was specified when the table space was created.

Rules

* Each database partition specified by number must be defined in the
db2nodes.cfg file (SQLSTATE 42729).

* Each db-partition-number listed in the db-partitions-clause must be for a unique
database partition (SQLSTATE 42728).

* Avalid database partition number is between 0 and 999 inclusive (SQLSTATE
42729).

* A database partition cannot appear in both the ADD and DROP clauses
(SQLSTATE 42728).

¢ There must be at least one database partition remaining in the database partition
group. The last database partition cannot be dropped from a database partition
group (SQLSTATE 428C0).

SQL Reference, Volume 2

ALTER DATABASE PARTITION GROUP

¢ If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT
TABLESPACES clause is specified when adding a database partition, the default
is to use the lowest database partition number of the existing database partitions
in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to
be used as the default, it must have containers defined for all the table spaces in
the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEEF is not "T").

Notes

* When a database partition is added to a database partition group, a catalog
entry is made for the database partition (see
SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator
(IN_USE) that the database partition is in the distribution map if either:

— no table spaces are defined in the database partition group or

— no tables are defined in the table spaces defined in the database partition
group and the WITHOUT TABLESPACES clause was not specified.

The distribution map is not changed and the indicator (IN_USE) is set to
indicate that the database partition is not included in the distribution map if
either:

— Tables exist in table spaces in the database partition group or

— Table spaces exist in the database partition group and the WITHOUT
TABLESPACES clause was specified (unless all of the table spaces are defined
to use automatic storage, in which case the WITHOUT TABLESPACES clause
is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION

GROUP command must be used. This redistributes any data, changes the

distribution map, and changes the indicator. Table space containers need to be

added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

* When a database partition is dropped from a database partition group, the
catalog entry for the database partition (see SYSCAT.DBPARTITIONGROUPDEF)
is updated. If there are no tables defined in the table spaces defined in the
database partition group, the distribution map is changed immediately to
exclude the dropped database partition and the entry for the database partition
in the database partition group is dropped. If tables exist, the distribution map is
not changed and the indicator (IN_USE) is set to indicate that the database
partition is waiting to be dropped. The REDISTRIBUTE DATABASE PARTITION
GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

* Compatibilities
— For compatibility with previous versions of DB2:
- NODE can be specified in place of DBPARTITIONNUM
- NODES can be specified in place of DBPARTITIONNUMS

- NODEGROUP can be specified in place of DATABASE PARTITION
GROUP

Example
Assume that you have a six-partition database that has the following database

partitions: 0, 1, 2, 5, 7, and 8. Two database partitions (3 and 6) are added to the
system.

Statements 31

ALTER DATABASE PARTITION GROUP

* Assume that you want to add database partitions 3 and 6 to a database partition
group called MAXGROUP, and have table space containers like those on
database partition 2. The statement is as follows:

ALTER DATABASE PARTITION GROUP MAXGROUP
ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

¢ Assume that you want to drop database partition 1 and add database partition 6
to database partition group MEDGROUP. You will define the table space
containers separately for database partition 6 using ALTER TABLESPACE. The
statement is as follows:

ALTER DATABASE PARTITION GROUP MEDGROUP

ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
DROP DBPARTITIONNUM(1)

32 SQL Reference, Volume 2

ALTER DATABASE

ALTER DATABASE

The ALTER DATABASE statement adds new storage paths to the collection of
paths that are used for automatic storage table spaces. An automatic storage table
space is a table space that has been created using automatic storage; that is, the
MANAGED BY AUTOMATIC STORAGE clause has been specified on the CREATE
TABLESPACE statement, or no MANAGED BY clause has been specified at all. If a
database is enabled for automatic storage, container and space management
characteristics of its table spaces can be completely determined by the database
manager.

Invocation

The statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include either
SYSADM or SYSCTRL authority.

Syntax

»>—ALTER DATABASE ADD STORAGE ON——'storage-location’ ———»<

I—database-name—|

Description

database-name
An optional value specifying the name of the database that is to be altered. If
specified, the value must match the name of the database to which the
application is currently connected (not the alias that the client might have
cataloged); otherwise, an error is returned (SQLSTATE 42961).

ADD STORAGE ON
Specifies that one or more new storage locations are to be added to the
collection of storage locations that are used for automatic storage table spaces.

"storage-location’
A string constant that specifies either an absolute path or the letter name of
a drive (Windows operating systems only) on which containers for
automatic storage table spaces are to be created.

Rules

* If automatic storage is not defined for the database (that is, the AUTOMATIC
STORAGE NO clause was specified on the CREATE DATABASE command),
new storage paths cannot be added (SQLSTATE 55060).

* The storage path must exist and be accessible (SQLSTATE 57019). Similarly, in a
partitioned database environment, the storage path must exist and be accessible
on every database partition (SQLSTATE 57019).

Statements 33

ALTER DATABASE

Notes
* When adding new storage paths:

— Existing regular and large table spaces using automatic storage will not
initially use these new paths. The database manager might choose to create
new table space containers on these paths only if an out-of-space condition
occurs.

— Existing temporary table spaces using automatic storage might use these new
paths immediately. If a temporary table space is not in use at the time of an
ADD STORAGE ON operation, new containers might be created on those
storage paths immediately. However, if the temporary table space is in use,
new containers will not be created until there are no more users of the table
space.

* Although ADD STORAGE is an operation that is logged, whether or not it is

redone during a rollforward operation depends on how the database was
restored. If the restore operation does not redefine the storage paths that are
associated with the database, the log record that contains the storage path
definition is redone, and the storage paths that are described in the log record
are added during the rollforward operation. However, if the storage paths are
redefined during the restore operation, the rollforward operation will not redo
this log record, because it is assumed that you have already set up the storage
paths. This behavior also applies to high availability disaster recovery (HADR)
environments: the log record will not be redone if the storage paths were
redefined when the standby system was set up.

Do not use the ADD STORAGE clause to add storage paths to a database while
a new database partition is being added. If new storage paths are added during
or after a database partition has been added, but before that new partition has
been started, the new storage paths will not be reflected on the new database
partition, and the database partitions will be out of synchronization.

When free space is calculated for a storage path on a database partition, the
database manager checks for the existence of the following directories or mount
points within the storage path, and will use the first one that is found.

<storage path>/<instance name>/NODE####/<database name>

<storage path>/<instance name>/NODE####

<storage path>/<instance name>

<storage path>

Where:
— <storage path> is a storage path associated with the database
— <instance name> is the instance under which the database resides

— NODE#### corresponds to the database partition number (for example,
NODEO0000 or NODE0001)

— <database name> is the name of the database

File systems can be mounted at a point beneath the storage path, and the
database manager will recognize that the actual amount of free space available
for table space containers might not be the same amount that is associated with
the storage path directory itself.

Consider an example in which two logical database partitions exist on one
physical machine, and there is a single storage path (/db2data). Each database
partition will use this storage path, but you might want to isolate the data from
each partition within its own file system. In this case, a separate file system can
be created for each partition and it can be mounted at /db2data/<instance>/
NODE####. When creating containers on the storage path and determining free

34 SQL Reference, Volume 2

ALTER DATABASE

space, the database manager will not retrieve free space information for
/db2data, but instead will retrieve it for the corresponding /db2data/
<instance>/NODE#### directory.

* In general, the same storage paths must be used for each partition in a
multi-partition database. One exception to this is the case in which database
partition expressions are used within the storage path. Doing this allows the
database partition number to be reflected in the storage path, such that the
resulting path name is different on each partition.

You use the argument “ $N” ([blank]$N) to indicate a database partition
expression. A database partition expression can be used anywhere in the storage
path, and multiple database partition expressions can be specified. Terminate the
database partition expression with a space character; whatever follows the space
is appended to the storage path after the database partition expression is
evaluated. If there is no space character in the storage path after the database
partition expression, it is assumed that the rest of the string is part of the
expression. The argument can only be used in one of the following forms.

Table 10. Arguments for Creating Storage Paths. Operators are evaluated from left to right.
The database partition number in the examples is assumed to be 10.

Syntax Example Value
[blank]$N " $N" 10
[blank]$N+[number] " $N+100" 110
[blank]$N%[number] " $N%5" 0
[blank]$N+[number]%[number] " $N+1%5" 1
[blank]$N%[number]+[number] " $N%4+2" 4
* % represents the modulus operator.

Examples

Example 1: Add two paths under the /db2 directory (/db2/filesysteml and
/db2/filesystem2) and a third path named /filesystem3 to the space for
automatic storage table spaces that is associated with the currently connected
database.

ALTER DATABASE ADD STORAGE ON '/db2/filesysteml', '/db2/filesystem2',
'/filesystem3'

Example 2: Add drives D and E to the space for automatic storage table spaces that
is associated with the SAMPLE database.

ALTER DATABASE SAMPLE ADD STORAGE ON 'D:', 'E:\'

Example 3: Add directory F:\DB2DATA and drive G to the space for automatic storage
table spaces that is associated with the currently connected database.

ALTER DATABASE ADD STORAGE ON 'F:\DB2DATA', 'G:'

Example 4: Add a storage path that uses a database partition expression to
differentiate the storage paths on each of the database partitions.

ALTER DATABASE ADD STORAGE ON '/dataForPartition $N'
The storage path that would be used on database partition 0 is

/dataForPartitiond; on database partition 1, it would be /dataForPartitionl; and
SO on.

Statements 35

ALTER FUNCTION

ALTER FUNCTION

The ALTER FUNCTION statement modifies the properties of an existing function.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTERIN privilege on the schema of the function

* Owner of the function, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* SYSADM or DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the
authorization ID of the statement must also include at least one of the following:

* CREATE_EXTERNAL_ROUTINE authority on the database
* SYSADM or DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority

To alter a function to be fenced, no additional authorities or privileges are
required.

Syntax
»»>—ALTER function-designator Y EXTERNAL NAME—[’string’ ><
_I identifierJ
FENCED _|
NOT FENCED
THREADSAFE _|
NOT THREADSAFE
Description

function-designator
Uniquely identifies the function to be altered. For more information, see
[‘Function, method, and procedure designators” on page 17|

EXTERNAL NAME ’string’ or identifier
Identifies the name of the user-written code that implements the function. This
option can only be specified when altering external functions (SQLSTATE
42849).

36 SQL Reference, Volume 2

ALTER FUNCTION

FENCED or NOT FENCED
Specifies whether the function is considered safe to run in the database
manager operating environment’s process or address space (NOT FENCED), or
not (FENCED). Most functions have the option of running as FENCED or NOT
FENCED.

If a function is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the function. In
general, a function running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for functions that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent failures that
might occur, but cannot guarantee complete integrity when NOT FENCED
user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with
the NO SQL option, the function cannot be altered to be FENCED (SQLSTATE
42613).

This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions
(SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as
other routines (THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE and OLEDB:

¢ If the function is defined as THREADSAFE, the database manager can
invoke the function in the same process as other routines. In general, to be
threadsafe, a function should not use any global or static data areas. Most

programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

¢ If the function is defined as NOT THREADSAFE, the database manager will
never simultaneously invoke the function in the same process as another
routine. Only a fenced function can be NOT THREADSAFE (SQLSTATE
42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions
(SQLSTATE 42849).

Notes

* It is not possible to alter a function that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

* Functions declared as LANGUAGE SQL, sourced functions, or template
functions cannot be altered (SQLSTATE 42917).

Example

The function MAIL() has been thoroughly tested. To improve its performance, alter
the function to be not fenced.

ALTER FUNCTION MAIL() NOT FENCED

Statements 37

ALTER HISTOGRAM TEMPLATE

ALTER HISTOGRAM TEMPLATE

38

The ALTER HISTOGRAM TEMPLATE statement is used to modify the template
describing the type of histogram that can be used to override one or more of the
default histograms of a service class or a work class.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax

»»>—ALTER HISTOGRAM TEMPLATE—template-name—HIGH BIN VALUE—bigint-constant——>«

Description

template-name
Names the histogram template. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The name must identify an existing histogram
template at the current server (SQLSTATE 42704). The template name can be
the default system histogram template SYSDEFAULTHISTOGRAM.

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded
top value). The units depend on how the histogram is used. The maximum
value is 268 435 456.

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

— CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
— GRANT (Workload Privileges) or REVOKE (Workload Privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

SQL Reference, Volume 2

ALTER HISTOGRAM TEMPLATE

Notes

* Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

* Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Example
Change the high bin value of a histogram template named LIFETIMETEMP.

ALTER HISTOGRAM TEMPLATE LIFETIMETEMP
HIGH BIN VALUE 90000

Statements 39

ALTER METHOD

ALTER METHOD

The ALTER METHOD statement modifies an existing method by changing the
method body associated with the method.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:
— ALTERIN privilege on the schema of the type

— Owner of the type, as recorded in the OWNER column of the
SYSCAT.DATATYPES catalog view

¢ SYSADM or DBADM authority

Syntax

»»—ALTER method-designator EXTERNAL NAME—E’string’ ><
I | identifier—l

Description

method-designator
Uniquely identifies the method to be altered. For more information, see
[“Function, method, and procedure designators” on page 17|

EXTERNAL NAME ’'string’ or identifier
Identifies the name of the user-written code that implements the method. This
option can only be specified when altering external methods (SQLSTATE
42849).

Notes

e It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

* Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).
* Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).

* The specified method must have a body before it can be altered (SQLSTATE
42704).

Example

Alter the method DISTANCE() in the structured type ADDRESS_T to use the
library newaddresslib.
ALTER METHOD DISTANCE()

FOR TYPE ADDRESS_T
EXTERNAL NAME 'newaddresslib!distance2’

40 SQL Reference, Volume 2

ALTER NICKNAME

ALTER NICKNAME

The ALTER NICKNAME statement modifies the nickname information associated
with a data source object (such as a table, view, or file). This statement modifies
the information that is stored in the federated database by:

¢ Altering the local column names for the columns of the data source object
* Altering the local data types for the columns of the data source object

¢ Adding, setting, or dropping nickname and column options

* Adding or dropping a primary key

* Adding or dropping one or more unique, referential, or check constraints
 Altering one or more referential or check constraint attributes

* Altering the caching of data at a federated server

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTER privilege on the nickname specified in the statement
¢ CONTROL privilege on the nickname specified in the statement
* ALTERIN privilege on the schema, if the schema name of the nickname exists

¢ Owner of the nickname, as recorded in the OWNER column of the
SYSCAT.TABLES catalog view

¢ SYSADM or DBADM authority
Syntax

»>—ALTER NICKNAME—nickname >

> >

f, ADD. J
LOPTIONS—(‘IjH—nickname-opt ion-name—string-constan t%)
SET
DROP—nickname-option-name

Statements 41

ALTER NICKNAME

l—COLUMN—l (1) |
ALTER column-name Y LOCAL NAME—column-name

LOCAL TYPE local-data-type
- &]
federated-column-options —
—ADD unique-constraint |
H referential-constraint ’—‘
check-constraint
—ALTER: FOREIGN KEY- constraint-name constraint-alteration |7
ECHECK——I —
—DROP. PRIMARY KEY

FOREIGN KEY——constrcrint-name—I
UNIQUE
CHECK———
CONSTRAINT—

—EALLOW CACHING .
DISALLOW CACHING

local-data-type:

built-in-type i _|
istinct-type-name

built-in-type:

42 SQL Reference, Volume 2

ALTER NICKNAME

INTEGER
Lo |

SMALLINT

BIGINT

DECIMAL

5,0)

—ENUMERIC
NU

|—DEC—I

(53)
FLOAT—|—

|_(
I

90—
integer%—)—
,integer—

I—(integer)—

REAL

CHARACTER

[PRECISION]
—DOUBLE

(1)—

T

-

r
|—CHAR—I I—(integer)—

(3)

(integer)—

—E\ERCHAR]
CHARACTER VARYING
CHAR——

FOR BIT DATAJ

'—LONG VARCHAR

(1M)

CHARACTER
CHAR——,_

LARGE OBJECTJ I—(integer)
Eki
M
G

1)——
GRAPHIC |_
I—(im.‘eger)—
VARGRAPHIC— (integer)

LONG VARGRAPHIC

(1m)
DBCLOB |_
|—(integer —)—
K—
M—|
G—!
—(1M)
BLOB
BINARY LARGE OBJECTJ

DATE

(integer)
K:
M
G

TIME
TIMESTAMP—

federated-column-options:

F—OPTIONS—(—

DROP—column-option-name

unique-constraint:

ADD

SET

column-option-name—string-constant

—

Y_column-name—

UNIQUE

|—CONSTRAINT—constraint-nameJ |—PRIMARY KEY

Statements

43

ALTER NICKNAME

>~ constraint-attributes | I

referential-constraint:

s

v

} B 7 FOREIGN KEY—(—Ycolumn-name)
CONSTRAINT—constraint-name

>ﬂ references-clause i I

references-clause:

v

REFERENCES table-name
- Dot

nickname ,

(—Y—column-name——)

> constraint-attributes | I

check-constraint:

' CHECK—(—| check-condition |—)
|
I—CONSTRAINT—constraint—name—|

>—| constraint-attributes i I

check-condition:
search-condition I
functional-dependency ’J

functional-dependency:

column-name DETERMINED BY column-name I

B B

(—Y—column-name——) (—Y—column-name——)

constraint-attributes:

|—ENABLE QUERY OPTIMIZATION——
[—@—NOT ENFORCED—@ L

(4)

DISABLE QUERY OPTIMIZATION

44 SQL Reference, Volume 2

ALTER NICKNAME

constraint-alteration:

ENABLE QUERY OPTIMIZATION _| I
DISABLE QUERY OPTIMIZATION

Notes:

1 You cannot specify both the ALTER COLUMN clause and an ADD, ALTER,
or DROP informational constraint clause in the same ALTER NICKNAME
statement.

2 If you need to specify the federated-column-options clause in addition to the
LOCAL NAME parameter, the LOCAL TYPE parameter, or both, you must
specify the federated-column-options clause last.

3 The FOR BIT DATA clause can be specified in any order with the other
column constraints that follow.

4 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary
key constraint.

Description

nickname
Identifies the nickname for the data source object (such as a table, view, or file)
that contains the column being altered. It must be a nickname described in the
catalog.

OPTIONS
Indicates the nickname options that are added, set, or dropped when the
nickname is altered.

ADD
Adds a nickname option.

SET
Changes the setting of a nickname option.

nickname-option-name
Names a nickname option that is to be added or set.

string-constant
Specifies the setting for nickname-option-name as a character string constant.

DROP nickname-option-name
Drops a nickname option.

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server’s
current name for the column of the table or view at the data source. The
column-name must identify an existing column of the nickname (SQLSTATE

42703). You cannot reference the same column name multiple times in the same
ALTER NICKNAME statement (SQLSTATE 42711).

LOCAL NAME column-name
Specifies a new name, column-name, by which the federated server is to
reference the column to be altered. The new name cannot be qualified, and the
same name cannot be used for more than one column of the nickname
(SQLSTATE 42711).

Statements 45

ALTER NICKNAME

LOCAL TYPE local-data-type
Specifies a new local data type to which the data type of the column that is to
be altered will map. The new type is denoted by local-data-type.

Some wrappers only support a subset of the SQL data types. For descriptions
of specific data types, see the description of the “CREATE TABLE” statement.

OPTIONS
Indicates what column options are to be added, set, or dropped for the column
specified after the COLUMN keyword.

ADD
Adds a column option.

SET
Changes the setting of a column option.

column-option-name
Names a column option that is to be added or set.

string-constant
Specifies the setting for colummn-option-name as a character string constant.

DROP column-option-name
Drops a column option.

ADD unique-constraint
Defines a unique constraint. See the description of the “CREATE NICKNAME”
statement.

ADD referential-constraint
Defines a referential constraint. See the description of the “CREATE
NICKNAME” statement.

ADD check-constraint
Defines a check constraint. See the description of the “CREATE NICKNAME”
statement.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. For
a description of the constraint attributes, see the “CREATE NICKNAME”

statement. The constraint-name must identify an existing referential constraint
(SQLSTATE 42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint constraint-name. The
constraint-name must identify an existing check constraint (SQLSTATE 42704).

constraint-alteration
Provides options for changing the attributes associated with referential or
check constraints.

ENABLE QUERY OPTIMIZATION
The constraint can be used for query optimization under appropriate
circumstances.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints that are
dependent upon this primary key. The nickname must have a primary key.

46 SQL Reference, Volume 2

ALTER NICKNAME

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify an existing referential constraint defined on the nickname.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints that are dependent upon this unique constraint. The constraint-name
must identify an existing unique constraint.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the nickname.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the nickname.

ALLOW CACHING or DISALLOW CACHING
Specifies whether or not data for this nickname can be cached at the federated
server.

ALLOW CACHING
Specifies that data for this nickname can be cached at the federated server.

DISALLOW CACHING
Specifies that data for this nickname cannot be cached at the federated
server. A materialized query table definition cannot refer to a nickname
that disallows caching, and this clause cannot be specified for a nickname
that is referenced in the fullselect of a materialized query table definition
(SQLSTATE 42917).

Rules

e If a nickname is used in a view, SQL method, or SQL function, or informational
constraints are defined on it, the ALTER NICKNAME statement cannot be used
to change the local names or data types for the columns in the nickname
(SQLSTATE 42893). The statement can be used, however, to add, set, or drop
column options, nickname options, or informational constraints.

* If a nickname is referenced by a materialized query table definition, the ALTER
NICKNAME statement cannot be used to change the local names, data types,
column options, or nickname options (SQLSTATE 42893). Moreover, the
statement cannot be used to disable caching (SQLSTATE 42917). The statement
can be used, however, to add, alter, or drop informational constraints.

* A column option cannot be specified more than once in the same ALTER
NICKNAME statement (SQLSTATE 42853). When a column option is enabled,
reset, or dropped, any other column options that are in use are not affected.

* For relational nicknames, the ALTER NICKNAME statement within a given unit
of work (UOW) cannot be processed under either of the following conditions
(SQLSTATE 55007):

— A nickname referenced in this statement has a cursor open on it in the same
UOW

— Either an INSERT, DELETE, or UPDATE statement is already issued in the
same UOW against the nickname that is referenced in this statement

 For non-relational nicknames, the ALTER NICKNAME statement within a given
unit of work (UOW) cannot be processed under any of the following conditions
(SQLSTATE 55007):

Statements 47

ALTER NICKNAME

— A nickname referenced in this statement has a cursor open on it in the same
UOwW

— A nickname referenced in this statement is already referenced by a SELECT
statement in the same UOW

— Either an INSERT, DELETE, or UPDATE statement has already been issued in
the same UOW against the nickname that is referenced in this statement

Notes

* If the ALTER NICKNAME statement is used to change the local name for a
column of a nickname, queries against that column must reference it by its new
name.

* When the local specification of a column’s data type is changed, the database
manager invalidates any statistics (HIGH2KEY, LOW2KEY, and so on) gathered
for that column.

* Specify the DISALLOW CACHING clause for nicknames whose data source
object is protected. This ensures that each time the nickname is used, data for
the appropriate authorization ID is returned from the data source at query
execution time.

Examples

Example 1: The nickname NICK1 references a DB2 for System i table called T1.
Also, COLI1 is the local name that references this table’s first column, C1. Rename
the local name for C1 from COL1 to NEWCOL.

ALTER NICKNAME NICK1
ALTER COLUMN COL1
LOCAL NAME NEWCOL

Example 2: The nickname EMPLOYEE references a DB2 for z/OS table called EMP.
Also, SALARY is the local name that references EMP_SAL, one of this table’s
columns. The column’s data type, FLOAT, maps to the local data type, DOUBLE.
Change the mapping so that FLOAT maps to DECIMAL (10, 5).

ALTER NICKNAME EMPLOYEE
ALTER COLUMN SALARY
LOCAL TYPE DECIMAL(10,5)

Example 3: Indicate that in an Oracle table, a column with the data type of
VARCHAR does not have trailing blanks. The nickname for the table is NICK2,
and the local name for the column is COL1.

ALTER NICKNAME NICK2
ALTER COLUMN COL1
OPTIONS (ADD VARCHAR NO_TRAILING_BLANKS 'Y')

Example 4: Alter the fully qualified path for the table-structured file, drugdatal.txt,
for the nickname DRUGDATA1. Use the FILE_PATH nickname option and change
the path from the current value of '/user/pat/drugdatal.txt’ to
"/usr/kelly/data/drugdatal.txt’.

ALTER NICKNAME DRUGDATA1
OPTIONS (SET FILE PATH '/usr/kelly/data/drugdatal.txt')

48 SQL Reference, Volume 2

ALTER PROCEDURE (External)

ALTER PROCEDURE (External)

The ALTER PROCEDURE (External) statement modifies an existing external
procedure by changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* SYSADM or DBADM authority

To alter the EXTERNAL NAME of a procedure, the privileges held by the
authorization ID of the statement must also include at least one of the following:

* CREATE_EXTERNAL_ROUTINE authority on the database
¢ SYSADM or DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following:

¢ CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority

To alter a procedure to be fenced, no additional authorities or privileges are
required.

Syntax

\4
A

»—ALTER—| procedure-designator i : EXTERNAL NAME—[’string’ _|

identifier

—[FENCED

NOT FENCED
—[EXTERNAL ACTION

NO EXTERNAL ACTION
—[THREADSAFE

NOT THREADSAFE
—NEW SAVEPOINT LEVEL

Description

procedure-designator
Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all

Statements 49

ALTER PROCEDURE (External)

privileges on the procedure are preserved. For more information, see
[“Function, method, and procedure designators” on page 17

EXTERNAL NAME ’string’ or identifier
Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED
Specifies whether the procedure is considered safe to run in the database
manager operating environment’s process or address space (NOT FENCED), or
not (FENCED). Most procedures have the option of running as FENCED or
NOT FENCED.

If a procedure is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the procedure. In
general, a procedure running as FENCED will not perform as well as a similar
one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for procedures that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2 takes some
precautions against many of the common types of inadvertent failures that
might occur, but cannot guarantee complete integrity when NOT FENCED
stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the procedure cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures
(SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

THREADSAFE or NOT THREADSAFE
Specifies whether the procedure is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

e If the procedure is defined as THREADSAFE, the database manager can
invoke the procedure in the same process as other routines. In general, to be
threadsafe, a procedure should not use any global or static data areas. Most
programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED procedures can be THREADSAFE.

* If the procedure is defined as NOT THREADSAFE, the database manager
will never invoke the procedure in the same process as another routine.
Only a fenced procedure can be NOT THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE
42849).

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A

50 SQL Reference, Volume 2

ALTER PROCEDURE (External)

savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules

e It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

Example

Alter the procedure PARTS_ON_HAND() to be not fenced.
ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

Statements 51

ALTER PROCEDURE (Sourced)

ALTER PROCEDURE (Sourced)

52

The ALTER PROCEDURE (Sourced) statement modifies an existing sourced
procedure by changing the data type of one or more parameters of the sourced
procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following;:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* SYSADM or DBADM authority

Syntax

v

»—ALTER—| procedure-designator i

»—Y ALTER PARAMETER— parameter-alteration | ><

parameter-alteration:

|—parameter—name—SET DATA TYPE—data-type I

Description

procedure-designator
Uniquely identifies the procedure to be altered. The identified procedure must
be a sourced procedure (SQLSTATE 42849). For more information, see
[“Function, method, and procedure designators” on page 17

parameter-name
Identifies the parameter to be altered. The parameter-name must identify an
existing parameter of the procedure (SQLSTATE 42703). The name must not
identify a parameter that is otherwise being altered in the same ALTER
PROCEDURE statement (SQLSTATE 42713).

data-type
Specifies the new local data type of the parameter. SQL data type specifications
and abbreviations that are valid for the data-type definition of a CREATE
TABLE statement can be specified. LONG VARCHAR, LONG VARGRAPHIC,
BLOB, CLOB, DBCLOB, DECFLOAT, XML, REFERENCE, and user-defined
types are not supported (SQLSTATE 42815).

SQL Reference, Volume 2

ALTER PROCEDURE (Sourced)

Example

Assume that federated procedure FEDEMPLOYEE has been created for a remote
Oracle procedure named "EMPLOYEE'. The data type of an input parameter
named SALARY maps to a DOUBLE(8) in DB2. Alter the data type of this
parameter to DECIMAL(5,2).

ALTER PROCEDURE FEDEMPLOYEE
ALTER PARAMETER SALARY
SET DATA TYPE DECIMAL(5,2)

Statements 53

ALTER PROCEDURE (SQL)

ALTER PROCEDURE (SQL)

54

The ALTER PROCEDURE (SQL) statement modifies an existing SQL procedure by
changing the properties of the procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTERIN privilege on the schema of the procedure

* Owner of the procedure, as recorded in the OWNER column of the
SYSCAT.ROUTINES catalog view

* SYSADM or DBADM authority

Syntax

»—ALTER—| procedure-designator A EXTERNAL ACTION ><
|:NO EXTERNAL ACTION
NEW SAVEPOINT LEVEL——

Description

procedure-designator
Identifies the procedure to alter. The procedure-designator must identify a
procedure that exists at the current server. The owner of the procedure and all
privileges on the procedure are preserved. For more information, see
[“Function, method, and procedure designators” on page 17|

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an
object not managed by the database manager (EXTERNAL ACTION), or not
(NO EXTERNAL ACTION). If NO EXTERNAL ACTION is specified, the
system can use certain optimizations that assume the procedure has no
external impact.

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A
savepoint level refers to the scope of reference for any savepoint-related
statement, as well as to the name space used for comparison and reference of
any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT
LEVEL.

Rules

e It is not possible to alter a procedure that is in the SYSIBM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

SQL Reference, Volume 2

ALTER PROCEDURE (SQL)

Example

Alter the procedure MEDIAN_RESULT_SET to indicate that it has no external
action.

ALTER PROCEDURE MEDIAN RESULT SET(DOUBLE)
NO EXTERNAL ACTION

Statements 55

ALTER SECURITY LABEL COMPONENT

ALTER SECURITY LABEL COMPONENT

56

The ALTER SECURITY LABEL COMPONENT statement modifies a security label
component.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER SECURITY LABEL COMPONENT—component—name—| add-element-clause |-—><

add-element-clause:

|—ADD ELEMENT—string-constant I
i:l array-e1ement-c1ause’;‘

tree-element-clause

array-element-clause:

BEFORE——string-constant |
AFTER

tree-element-clause:

ROOT | |
UNDER—string-constant L
Al OVER—string-constant—\J
Description

component-name
Specifies the name of the security label component to be altered. The named
component must exist at the current server (SQLSTATE 42704).

ADD ELEMENT
Specifies the element to be added to the security label component. If
array-element-clause and tree-element-clause are not specified, the element is
added to a set component.

string-constant
The string constant value to be added to the set of valid values for the

SQL Reference, Volume 2

ALTER SECURITY LABEL COMPONENT

security label component. The value cannot be the same as any other value
in the set of valid values for the security label component (SQLSTATE
42713).

BEFORE or AFTER

For an array component, specifies where the element is to be added in the
ordered set of element values for the security label component.

BEFORE
The element to be added is to be ranked immediately before the identified
existing element.

AFTER
The element to be added is to be ranked immediately after the identified
existing element.

string-constant
Specifies a string constant value of an existing element in the array
component (SQLSTATE 42704).

ROOT or UNDER

For a tree component, specifies where the element is to be added in the tree
structure of node element values for the security label component.

ROOT
The element to be added is to be considered the root node of the tree.

UNDER string-constant
The element to be added is an immediate child of the element identified by

the string-constant. The string-constant value must be an existing element in
the tree component (SQLSTATE 42704).

OVER string-constant,...
The element to be added is an immediate child of every element
identified by the list of string-constant values. Each string-constant value
must be an existing element in the tree component (SQLSTATE 42704).

Rules

Element names cannot contain any of these characters (SQLSTATE 42601):

— Opening parenthesis - (

— Closing parenthesis -)

- Comma -,

— Colon - :

An element name can have no more than 32 bytes (SQLSTATE 42622).

If a security label component is a set or a tree, no more than 64 elements can be
part of that component.

If the component is an array, it might or might not be possible to arrive at an
array whose total number of elements matches the total number of elements that
could be specified when creating a security label component of type array

(65 535). DB2 assigns an encoded value to the new element from within the
interval into which the new element is added. Depending on the pattern
followed when adding elements to an array component, the number of possible
values that can be assigned from within a particular interval might be quickly
exhausted if several elements are inserted into that interval.

BEFORE and AFTER must only be specified for a security label component that
is an array (SQLSTATE 42613).

Statements 57

ALTER SECURITY LABEL COMPONENT

* ROOT and UNDER must only be specified for a security label component that is
a tree (SQLSTATE 42613).

Notes
* For a set component, there is no order to the elements in the set.

Examples

Example 1: Add the element 'High classified” to the LEVEL security label array
component between the elements ‘Secret” and "Classified’.

ALTER SECURITY LABEL COMPONENT LEVEL
ADD ELEMENT 'High classified' BEFORE 'Classified'

Example 2: Add the element 'Funding’ to the COMPARTMENTS security label set
component.

ALTER SECURITY LABEL COMPONENT COMPARTMENTS
ADD ELEMENT 'Funding'

Example 3: Add the elements 'TENGINE” and "TOOLS’ to the GROUPS security label
array component. The following diagram shows where these new elements are to
be placed.

PROJECT

ENGINE TOOLS

TEST DEVELOPMENT

CURRENT FIELD
ALTER SECURITY LABEL COMPONENT GROUPS
ADD ELEMENT 'TOOLS' UNDER 'PROJECT'
ALTER SECURITY LABEL COMPONENT GROUPS

ADD ELEMENT 'ENGINE' UNDER 'PROJECT'
OVER 'TEST', 'DEVELOPMENT'

58 SQL Reference, Volume 2

ALTER SECURITY POLICY

ALTER SECURITY POLICY
The ALTER SECURITY POLICY statement modifies a security policy.
Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»>—ALTER SECURITY POLICY—security-policy-name >

(1)

> ADD SECURITY LABEL COMPONENT—component-name
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
USE GROUP AUTHORIZATIONS
IGNORE GROUP AUTHORIZATIONS—|
USE ROLE AUTHORIZATIONS
IGNORE ROLE AUTHORIZATIONS

A\
A

Notes:

1 Only the ADD SECURITY LABEL COMPONENT clause can be specified
more than once.

Description

security-policy-name
Specifies the name of the security policy to be altered. The name must identify
an existing security policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name
Adds a security label component to the security policy. The same security
component must not be specified more than once for the security policy
(SQLSTATE 42713). The security policy cannot currently be in use by a table
(SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT
NOT AUTHORIZED WRITE SECURITY LABEL
Specifies the action taken when a user is not authorized to write the explicitly
specified security label that is provided in the INSERT or UPDATE statement
issued against a table that is protected with this security policy. A user’s
security label and exemption credentials determine the user’s authorization to
write an explicitly provided security label.

Statements 59

ALTER SECURITY POLICY

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the value of the user’s security label, rather than the
explicitly specified security label, is used for write access during an insert
or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not

authorized to write the explicitly specified security label that is provided in
the INSERT or UPDATE statement (SQLSTATE 42519).

USE GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION
Specifies whether or not security labels and exemptions granted to groups,
directly or indirectly, are considered for any access attempt.

USE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups, directly
or indirectly, are considered.

IGNORE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups are not
considered.

USE ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION
Specifies whether or not security labels and exemptions granted to roles,
directly or indirectly, are considered for any access attempt.

USE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles, directly or
indirectly, are considered.

IGNORE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles are not
considered.

Rules

* If a user does not directly hold a security label for write access, an error is
returned in the following situations (SQLSTATE 42519):

— A value for the row security label column is not explicitly provided as part of
the SQL statement

— The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in
effect for the security policy, and the user is not allowed to write a data object
with the provided security label

Notes

* New components are logically added at the end of the existing security label
definition contained by the modified policy. Existing security labels defined for
this security policy are modified to contain the new component as part of their
definition with no element in their value for this component.

* Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY
LABEL: Changing the NOT AUTHORIZED WRITE SECURITY LABEL to a new
value will cause the invalidation of any cached dynamic or static SQL statements
that are dependent on any table that is protected by the security policy being
altered.

* Because the session authorization ID is the focus authorization ID for label-based
access control, security labels granted to groups or to roles that are accessible
through groups are eligible for consideration for all types of SQL statements,
including static SQL.

60 SQL Reference, Volume 2

ALTER SECURITY POLICY

* If more than one security label or exemption is available to a user with
associated groups or roles at the time of a read or write access attempt, those
security labels and exemptions will be evaluated for eligibility based on the
following rules:

— If the security policy enables only role authorizations for consideration, all
security labels and exemptions granted to roles of which the user
authorization ID is a direct or indirect member will be considered. Security
labels and exemptions granted to roles for which membership is only
accessible through the groups associated with the user authorization ID will
not be considered.

— If the security policy enables only group authorizations for consideration, all
security labels and exemptions granted to groups associated with the user
authorization ID will be considered. Security labels and exemptions granted
to roles for which membership is only accessible through the groups
associated with the user authorization ID will not be considered.

— If the security policy enables both group and role authorizations for
consideration, any security labels and exemptions granted to roles accessible
to the user indirectly through groups associated with the user authorization
ID will be considered.

— Role authorizations that are accessible to the user only through PUBLIC will
not be considered at any time.

* If more than one security label is eligible for consideration during an access
attempt, the values provided for each security label are merged at the individual
component level to form a security label that reflects the combination of all
available values at each component piece of the security policy. This is the
security label value that will be used for the access attempt.

The mechanisms for combining security labels vary by component type. The
components of the resultant security label are as follows:

— Set components contain the union of all unique values encountered in the
eligible security labels

— Array components contain the highest order element encountered in the
eligible security labels

— Tree components contain the union of all unique values encountered in the
eligible security labels

* If more than one exemption is eligible for consideration during an access
attempt, all found exemptions are applied to the access attempt.

Examples

Example 1: Alter a security policy named DATA_ACCESS to add a new component
named REGION.

ALTER SECURITY POLICY DATA_ACCESS
ADD COMPONENT REGION

Example 2: Alter a security policy named DATA_ACCESS to allow access through
security labels granted to roles.

ALTER SECURITY POLICY DATA_ACCESS
USE ROLE AUTHORIZATIONS

Example 3: Show the eligible security labels that would be considered depending
on the settings for group or role authorizations in a security policy. The security
policy SECUR_POL has an array component and a set component, consisting of the
following elements:

Statements 61

ALTER SECURITY POLICY

62

Array = {TS, S, C, U}
Set = {A, B, X, Y}

The following security labels are defined for SECUR_POL:

Security label L1 = C:A
Security label L2 = S:B

Security label L3 = TS:X
Security label L4 = U:Y

User Paul is a member of role R1 and group G1. Group G1 is a member of role R2.
Security label L1 is granted to Paul. Security label L2 is granted to role R1. Security
label L3 is granted to group G1. Security label L4 is granted to role R2. The
following table shows what security labels would be considered for any access
attempt by Paul, depending on the different possible settings of the security policy
SECUR_POL.

Table 11. Security labels considered as a function of security policy settings

Roles Enabled

Roles Disabled

Groups Enabled

L1, L2, L3, L4

L1, L3

Groups Disabled

L1, L2

L1

The following table shows the value of the combined security label for any access
attempt by Paul, depending on the different settings of the security policy

SECUR_POL.

Table 12. Combined security labels as a function of security policy settings

Roles Enabled

Roles Disabled

Groups Enabled

TS:(A, B, X, Y)

TS:(A, X)

Groups Disabled

S:(A, B)

C:A

SQL Reference, Volume 2

ALTER SEQUENCE

ALTER SEQUENCE

The ALTER SEQUENCE statement can be used to change a sequence in any of
these ways:

* Restarting the sequence

* Changing the increment between future sequence values

* Setting or eliminating the minimum or maximum values

* Changing the number of cached sequence numbers

* Changing the attribute that determines whether the sequence can cycle or not

* Changing whether sequence numbers must be generated in order of request
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following;:

* ALTER privilege on the sequence to be altered
* ALTERIN privilege on the schema implicitly or explicitly specified
* SYSADM or DBADM authority

Syntax
»»>—ALTER SEQUENCE—sequence-name >
(1)
> RESTART B] ><
WITH—numeric-constant
—INCREMENT BY—numeric-constant
INVALUE—numeric-constant—li
NO MINVALUE
AXVALUE—numeric-constant—li
NO MAXVALUE
CYCLE
—[NO CYCLE—|
CACHE—integer—constant—li
NO CACHE
ORDER
—[NO ORDER—|
Notes:

1 The same clause must not be specified more than once.

Statements 63

ALTER SEQUENCE

64

Description

sequence-name

Identifies the sequence that is to be changed. The name, including the implicit
or explicit schema qualifier, must uniquely identify an existing sequence at the
current server. If no sequence by this name exists in the explicitly or implicitly
specified schema, an error (SQLSTATE 42704) is returned. sequence-name must
not be a sequence generated by the system for an identity column (SQLSTATE
428FB).

RESTART

Restarts the sequence. If numeric-constant is not specified, the sequence is
restarted at the value specified implicitly or explicitly as the starting value on
the CREATE SEQUENCE statement that originally created the sequence.

WITH numeric-constant
Restarts the sequence with the specified value. This value can be any
positive or negative value that could be assigned to a column of the data
type associated with the sequence (SQLSTATE 42815), without non-zero
digits existing to the right of the decimal point (SQLSTATE 428FA).

INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the sequence. This value
can be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), and does not
exceed the value of a large integer constant (SQLSTATE 42820), without
non-zero digits existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, then this is a descending sequence. If this value is 0 or
positive, this is an ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE

Specifies the minimum value at which a descending sequence either cycles or
stops generating values, or an ascending sequence cycles to after reaching the
maximum value.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
non-zero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value
(SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the original starting value. For a
descending sequence, the value is the minimum value of the data type
associated with the sequence.

MAXVALUE or NO MAXVALUE

SQL Reference, Volume 2

Specifies the maximum value at which an ascending sequence either cycles or
stops generating values, or a descending sequence cycles to after reaching the
minimum value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can
be any positive or negative value that could be assigned to a column of the
data type associated with the sequence (SQLSTATE 42815), without
non-zero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

ALTER SEQUENCE

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data
type associated with the sequence. For a descending sequence, the value is
the original starting value.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after
reaching either its maximum or minimum value. The boundary of the sequence
can be reached either with the next value landing exactly on the boundary
condition, or by overshooting the value.

CYCLE
Specifies that values continue to be generated for this sequence after the
maximum or minimum value has been reached. If this option is used, after
an ascending sequence reaches its maximum value, it generates its
minimum value; or after a descending sequence reaches its minimum
value, it generates its maximum value. The maximum and minimum
values for the sequence determine the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated by DB2
for the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the
maximum or minimum value for the sequence has been reached.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster
access. This is a performance and tuning option.

CACHE integer-constant
Specifies the maximum number of sequence values that are preallocated
and kept in memory. Preallocating and storing values in the cache reduces
synchronous I/O to the log when values are generated for the sequence.

In the event of a system failure, all cached sequence values that have not
been used in committed statements are lost (that is, they will never be
used). The value specified for the CACHE option is the maximum number
of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures
that there is not a loss of values in the case of a system failure, shutdown
or database deactivation. When this option is specified, the values of the
sequence are not stored in the cache. In this case, every request for a new
value for the sequence results in synchronous I/O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request.

ORDER
Specifies that the sequence numbers are generated in order of request.

NO ORDER
Specifies that the sequence numbers do not need to be generated in order
of request.

Notes

* Only future sequence numbers are affected by the ALTER SEQUENCE
statement.

Statements 65

ALTER SEQUENCE

* The data type of a sequence cannot be changed. Instead, drop and recreate the
sequence specifying the desired data type for the new sequence.

* All cached values are lost when a sequence is altered.
* After restarting a sequence or changing to CYCLE, it is possible for sequence
numbers to be duplicate values of ones generated by the sequence previously.
* Compatibilities
— For compatibility with previous versions of DB2 and for consistency:
- A comma can be used to separate multiple sequence options.
— The following syntax is also supported:
- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Examples

Example 1: A possible reason for specifying RESTART without a numeric value
would be to reset the sequence to the START WITH value. In this example, the
goal is to generate the numbers from 1 up to the number of rows in the table and
then inserting the numbers into a column added to the table using temporary
tables. Another use would be to get results back where all the resulting rows are
numbered:

ALTER SEQUENCE ORG_SEQ RESTART
SELECT NEXT VALUE FOR ORG_SEQ, ORG.* FROM ORG

66 SQL Reference, Volume 2

ALTER SERVER

ALTER SERVER

The ALTER SERVER statement is used to:

* Modify the definition of a specific data source, or the definition of a category of
data sources.

* Make changes in the configuration of a specific data source, or the configuration
of a category of data sources—changes that will persist over multiple
connections to the federated database.

In this statement, the word SERVER and the parameter names that start with
server- refer only to data sources in a federated system. They do not refer to the
federated server in such a system, or to DRDA® application servers.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax
»»—ALTER SERVER >
»——Sserver-name >
—|: |—VERSION—| server-version |J

TYPE—server-type

I—VERSION—| server-version i |
I—WRAPPER—wrapper—name—l

»>. »><

|_’ ADD J
\\OPTIONS—(A4 server-option-name—string-constant)
SET
DROP—server-option-name

server-version:

version |_ I
.—mod-

version-string-constant

Description

server-name
Identifies the federated server’s name for the data source to which the changes
being requested are to apply. The data source must be one that is described in
the catalog.

Statements 67

ALTER SERVER

VERSION
After server-name, VERSION and its parameter specify a new version of the
data source that server-name denotes.

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The
value must be an integer.

mod
Specifies the number of the modification of the release denoted by release.
The value must be an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant
can be a single value (for example, ‘8i); or it can be the concatenated
values of version, release and, if applicable, mod (for example, ‘8.0.3).

TYPE server-type
Specifies the type of data source to which the changes being requested are to

apply.
VERSION

After server-type, VERSION and its parameter specify the version of the data
sources for which server options are to be enabled, reset, or dropped.

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact
with data sources of the type and version denoted by server-type and
server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the data
source denoted by server-name, or for the category of data sources denoted by
server-type and its associated parameters.

ADD
Enables a server option.

SET
Changes the setting of a server option.

server-option-name
Names a server option that is to be enabled or reset.

string-constant
Specifies the setting for server-option-name as a character string constant.

DROP server-option-name
Drops a server option.

Notes

* A server option cannot be specified more than once in the same ALTER SERVER
statement (SQLSTATE 42853). When a server option is enabled, reset, or
dropped, any other server options that are in use are not affected.

* An ALTER SERVER statement within a given unit of work (UOW) cannot be
processed (SQLSTATE 55007) under either of the following conditions:

— The statement references a single data source, and the UOW already includes
one of the following;:

68 SQL Reference, Volume 2

ALTER SERVER

- A SELECT statement that references a nickname for a table or view within
this data source

- An open cursor on a nickname for a table or view within this data source

- Either an INSERT, DELETE, or UPDATE statement issued against a
nickname for a table or view within this data source

— The statement references a category of data sources (for example, all data
sources of a specific type and version), and the UOW already includes one of
the following:

- A SELECT statement that references a nickname for a table or view within
one of these data sources

- An open cursor on a nickname for a table or view within one of these data
sources

- Either an INSERT, DELETE, or UPDATE statement issued against a
nickname for a table or view within one of these data sources

e If the server option is set to one value for a type of data source, and set to
another value for an instance of this type, the second value overrides the first
one for the instance. For example, assume that PLAN_HINTS is set to “Y” for
server type ORACLE, and to ‘N’ for an Oracle data source named DELPHI. This
configuration causes plan hints to be enabled at all Oracle data sources except
DELPHI.

* You can only alter set or alter drop server options for a category of data sources
that was enabled by a prior alter add server option operation (SQLSTATE
42704).

* When altering the server version, DB2 does not verify that the specified server
version matches the remote server version. Specifying an incorrect server version
can result in SQL errors when you access nicknames that belong to the DB2
server definition. This is most likely when you specify a server version that is
later than the remote server version. In that case, when you access nicknames
that belong to the server definition, DB2 might send SQL that the remote server
does not recognize.

Examples

Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3 data
sources, the case of the IDs will remain unchanged. Also, assume that the local
federated server CPU is twice as fast as the data source CPU. Inform the optimizer
of this statistic.
ALTER SERVER
TYPE ORACLE
VERSION 8.0.3
OPTIONS
(ADD FOLD_ID 'N',
SET CPU_RATIO '2.0")

Example 2: Indicate that the Documentum data source called DCTM_SVR_ASIA has
been changed to Version 4.

ALTER SERVER DCTM_SVR_ASIA
VERSION 4

Statements 69

ALTER SERVICE CLASS

ALTER SERVICE CLASS

70

The ALTER SERVICE CLASS statement alters the definition of a service class.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax

»»>—ALTER SERVICE CLASS—service-class-name >
I—UNDER—service-supercZass-nameJ

» Y AGENT PRIORITY DEFAULT ><

|—AGENT PRIORITY—integer—consi.‘antJ
—E)REFETCH PRIORITY DEFAULT:

PREFETCH PRIORITY HIGH—
PREFETCH PRIORITY MEDIUM—
PREFETCH PRIORITY LOW——
—EOUTBOUND CORRELATOR NONE:]
OUTBOUND CORRELATOR—string-constant

(1)
COLLECT ACTIVITY DATA—E' alter-collect-activity-data-clause
NONE '—l_
|—BASE—
—COLLECT AGGREGATE ACTIVITY DATA
EXTENDED—|
NONE——

—COLLECT AGGREGATE REQUEST DATA |
I—NONE—

(@)
———ACTIVITY LIFETIME HISTOGRAM TEMPLATE—template-name
—ACTIVITY QUEUETIME HISTOGRAM TEMPLATE—template-name
—ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE—template-name
—REQUEST EXECUTETIME HISTOGRAM TEMPLATE—template-name
—ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE—template-name
—ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE—template-name

ENABLE
—[DISABLE—l

alter-collect-activity-data-clause:

DATABASE PARTITION
[|

ON COORDINATOR WITHOUT DETAILS I |
|—DATABASE PARTITIONS—l |—WITH DETAILS

ON ALL |—AND VALUESJ

Notes:
1 The COLLECT clauses are only valid for a service subclass.
2 The HISTOGRAM TEMPLATE clauses are only valid for a service subclass.

SQL Reference, Volume 2

ALTER SERVICE CLASS

Description

service-class-name
Identifies the service class that is to be altered. This is a one-part name. It is an
SQL identifier (either ordinary or delimited).The service-class-name must
identify a service class that exists in the database (SQLSTATE 42704). To alter a
service subclass, the service-superclass-name must be specified using the UNDER
clause.

UNDER service-superclass-name
This clause is used only for altering a service subclass. The
service-superclass-name identifies the service superclass of the service subclass
and must identify a service superclass that exists in the database (SQLSTATE
42704).

AGENT PRIORITY DEFAULT or AGENT PRIORITY integer-constant
Specifies the relative (delta) operating system priority of agents running in the
service class or the normal priority of threads running in DB2. The default
value is DEFAULT. When set to DEFAULT, no special action is taken, and
agents in the service class are scheduled according to the normal priority that
the operating system schedules all DB2 threads. When this parameter is set to
a value other than DEFAULT, agents are set to a priority that is equal to the
normal priority plus AGENT PRIORITY when the next activity begins. For
example, if the normal priority is 20 and AGENT PRIORITY is set to -10, the
priority of agents in the service class is set to 20 — 10 = 10.

On UNIX operating systems and Linux, valid values are DEFAULT and -20 to
20 (SQLSTATE 42615). Negative values denote a higher relative priority.
Positive values denote a lower relative priority.

On Windows operating systems, valid values are DEFAULT and -6 to 6
(SQLSTATE 42615). Negative values denote a lower relative priority. Positive
values denote a higher relative priority.

If AGENT PRIORITY is DEFAULT for a service subclass, it inherits the AGENT
PRIORITY value of its parent superclass. AGENT PRIORITY cannot be altered
for a default subclass (SQLSTATE 5U032). AGENT PRIORITY must be set to
DEFAULT if OUTBOUND CORRELATOR is set (SQLSTATE 42613).

Note: On AIX®, the instance owner must have CAP_NUMA_ATTACH and
CAP_PROPAGATE capabilities to set a higher relative priority for agents in a
service class using AGENT PRIORITY. To grant these capabilities, logon as root
and run the following command:

chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

PREFETCH PRIORITY
This parameter controls the priority with which agents in the service class can
submit their prefetch requests. Valid values are HIGH, MEDIUM, LOW, or
DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and LOW mean that prefetch
requests will be submitted to the high, medium, and low priority queues,
respectively. Prefetchers empty the priority queue in order from high to low.
Agents in the service class submit their prefetch requests at the PREFETCH
PRIORITY level when the next activity begins. If PREFETCH PRIORITY is
altered after a prefetch request is submitted, the request priority does not
change. The default value is DEFAULT, which is internally mapped to
MEDIUM for service superclasses. If DEFAULT is set for a service subclass, it
inherits the PREFETCH PRIORITY of its parent superclass.

PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE
50U032).

Statements 71

ALTER SERVICE CLASS

OUTBOUND CORRELATOR NONE or OUTBOUND CORRELATOR
string-constant
Specifies whether or not to associate threads from this service class to an
external workload manager service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service
superclass and OUTBOUND CORRELATOR NONE is set for a service
subclass, the service subclass inherits the OUTBOUND CORRELATOR of its
parent. OUTBOUND CORRELATOR must be set to NONE if the AGENT
PRIORITY is not set to DEFAULT (SQLSTATE 42613).

OUTBOUND CORRELATOR NONE
For a service superclass, specifies that there is no external workload
manager service class association with this service class, and for a service
subclass, specifies that the external workload manager service class
association is the same as its parent.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate
threads from this service class to an external workload manager service
class. The external workload manager must be active (SQLSTATE 5U030).
The external workload manager should be set up to recognize the value of
string-constant.

COLLECT ACTIVITY DATA
Specifies that information about each activity that executes in this service class

is to be sent to the applicable event monitor when the activity completes. The
COLLECT ACTIVITY DATA clause is only valid for a service subclass.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION
Specifies that activity data is only to be collected at the database
partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS
Specifies that activity data is to be collected at all database partitions
where the activity is processed. However, activity details and values
will only be collected at the database partition of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class
should be sent to the applicable event monitor when the activity
completes execution. Statement and compilation environment are not
sent to the event monitor.

WITH DETAILS
Specifies that statement and compilation environment data is to be sent
to the applicable event monitor for those activities that have them.

AND VALUES
Specifies that input data values are to be sent to the applicable
event monitor for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
executes in this service class.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class
and sent to the applicable event monitor. This information is collected
periodically on an interval that is specified by the wlm_collect_int database

72 SQL Reference, Volume 2

ALTER SERVICE CLASS

configuration parameter. The default is COLLECT AGGREGATE ACTIVITY
DATA BASE. The COLLECT AGGREGATE ACTIVITY DATA clause is only
valid for a service subclass.

BASE
Specifies that basic aggregate activity data should be captured for this
service class and sent to the applicable event monitor. Basic aggregate
activity data includes:

* Estimated activity cost high watermark

* Rows returned high watermark

¢ Temporary table space usage high watermark
* Activity life time histogram

¢ Activity queue time histogram

* Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for this service
class and sent to the applicable event monitor. This includes all basic
aggregate activity data plus:

* Activity data manipulation language (DML) estimated cost histogram
* Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data should be captured for this service
class.

COLLECT AGGREGATE REQUEST DATA
Specifies that aggregate request data should be captured for this service class
and sent to the applicable event monitor. This information is collected
periodically on an interval specified by the wlm_collect_int database
configuration parameter. The default is COLLECT AGGREGATE ACTIVITY
DATA NONE. The COLLECT AGGREGATE ACTIVITY DATA clause is only
valid for a service subclass.

BASE
Specifies that basic aggregate request data should be captured for this
service class and sent to the applicable event monitor.

NONE
Specifies that no aggregate request data should be captured for this service
class.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the duration, in microseconds, of DB2 activities running in the
service class during a specific interval. This time includes both time queued
and time executing. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option. This clause is only valid for a service subclass.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, that DB2 activities running in
the service class are queued during a specific interval. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option. This clause is only valid
for a service subclass.

Statements 73

ALTER SERVICE CLASS

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, that DB2 activities running in
the service class are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in this
histogram at the coordinator database partition only. The time does not include
idle time. Idle time is the time between the execution of requests belonging to
the same activity when no work is being done. An example of idle time is the
time between the end of opening a cursor and the start of fetching from that
cursor. This information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option. This clause is only valid for a service subclass.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, that DB2 requests running in
the service class are executing during a specific interval. This time does not
include the time spent queued. Request execution time is collected in this
histogram on each database partition where the request executes. This
information is only collected when the COLLECT AGGREGATE REQUEST
DATA clause is specified with the BASE option. This clause is only valid for a
service subclass.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of DML activities running in the
service class. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option. This clause is only valid for a service subclass.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, between the arrival of one
DML activity and the arrival of the next DML activity. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified with the EXTENDED option. This clause is only valid for a service
subclass.

ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the
service class.

ENABLE
Connections and activities can be mapped to the service class.

DISABLE
Connections and activities cannot be mapped to the service class. New
connections or activities that are mapped to a disabled service class will be
rejected (SQLSTATE 5U028). When a service superclass is disabled, its
service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the
system catalog. A default service class cannot be disabled (SQLSTATE
50032).

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

74 SQL Reference, Volume 2

ALTER SERVICE CLASS

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

— CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)

- GRANT (Workload Privileges) or REVOKE (Workload Privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

* Only one uncommitted WLM-exclusive SQL statement at a time is allowed
across all partitions. If an uncommitted WLM-exclusive SQL statement is
executing, subsequent WLM-exclusive SQL statements will wait until the current
WLM-exclusive SQL statement commits or rolls back.

* Changes are written to the system catalog, but do not take effect until after a
COMMIT statement, even for the connection that issues the statement.

 After the ALTER SERVICE CLASS statement is committed, changes to AGENT
PRIORITY, PREFETCH PRIORITY, OUTBOUND CORRELATOR, and COLLECT
take effect for the next new activity in the service class. Existing activities in the
service class continue to complete their work using the old settings.

Examples

Example 1: Alter the agent priority of agents in service superclass PETSALES from
DEFAULT to 100.

ALTER SERVICE CLASS PETSALES AGENT PRIORITY 100

Example 2: Alter service superclass BARNSALES and add an outbound correlator
‘osLowPriority’. Threads running in the service superclass and its service
subclasses will have the outbound correlator ‘'osLowPriority” associated with them.

ALTER SERVICE CLASS BARNSALES OUTBOUND CORRELATOR 'osLowPriority'

Statements 75

ALTER TABLE

ALTER TABLE

The ALTER TABLE statement alters the definition of a table.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTER privilege on the table to be altered

* CONTROL privilege on the table to be altered
* ALTERIN privilege on the schema of the table
* SYSADM or DBADM authority

To create or drop a foreign key, the privileges held by the authorization ID of the
statement must include one of the following on the parent table:

¢ REFERENCES privilege on the table

* REFERENCES privilege on each column of the specified parent key
e CONTROL privilege on the table

* SYSADM or DBADM authority

To drop the primary key or a unique constraint on table T, the privileges held by
the authorization ID of the statement must include at least one of the following on
every table that is a dependent of this parent key of T:

e ALTER privilege on the table

* CONTROL privilege on the table

* ALTERIN privilege on the schema of the table
* SYSADM or DBADM authority

To alter a table to become a materialized query table (using a fullselect), the
privileges held by the authorization ID of the statement must include at least one
of the following:

¢ CONTROL privilege on the table

* SYSADM or DBADM authority

and at least one of the following on each table or view identified in the fullselect

(excluding group privileges):

e SELECT privilege and ALTER privilege (including group privileges) on the table
or view

¢ CONTROL privilege on the table or view

* SELECT privilege on the table or view, and ALTERIN privilege (including group
privileges) on the schema of the table or view

* SYSADM or DBADM authority

76 SQL Reference, Volume 2

ALTER TABLE

To alter a table so that it is no longer a materialized query table, the privileges held
by the authorization ID of the statement must include at least one of the following
on each table or view identified in the fullselect used to define the materialized
query table:

e ALTER privilege on the table or view

* CONTROL privilege on the table or view

* ALTERIN privilege on the schema of the table or view
¢ SYSADM or DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges held by
the authorization ID of the statement must include at least a security label from the
security policy associated with the table.

To remove the security policy from a table, the privileges held by the authorization
ID of the statement must include SECADM authority.

To alter a table to attach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following on the source
table:

¢ SELECT privilege on the table and DROPIN privilege on the schema of the table
* CONTROL privilege on the table
¢ SYSADM or DBADM authority

and at least one of the following on the target table:
¢ ALTER and INSERT privileges on the table

* CONTROL privilege on the table

¢ SYSADM or DBADM authority

To alter a table to detach a data partition, the privileges held by the authorization
ID of the statement must also include at least one of the following on the target
table of the detached partition:

¢ CREATETAB authority on the database, and USE privilege on the table spaces
used by the table, as well as one of:

— IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the new table does not exist

— CREATEIN privilege on the schema, if the schema name of the new table
refers to an existing schema

* SYSADM or DBADM authority

and at least one of the following on the source table:

e SELECT, ALTER, and DELETE privileges on the table
¢ CONTROL privilege on the table

* SYSADM or DBADM authority

Syntax

»»—ALTER TABLE—table-name >

Statements 77

ALTER TABLE

l COLUMN:
»>. ADD r —l { column-definition }

. . |
unique-constraint

referential-constraint |7

check-constraint |7
distribution-clause |7
ESTRICT ON DROP:
MATERIALIZED
[1

QUERY.

CHECK

i materialized-query-definition

—ALTER—EFOREIGl\lKil—constraint-name—' constraint-alteration '—

COLUMN
—ALTER—I_——|—| column-alteration i

—DROP——PRIMARY KEY

CHECK——
CONSTRAINT—

COLUMN CASCADE
J_——I—co l umn-nameH
RESTRICT

—RESTRICT ON DROP:
—DROP DISTRIBUTION

FOREIGN KEY——constraint-name
—EUNIQUE

l—MATERIALIZED

—DROP | QUERY

—DATA CAPTURE—[NONE
CHANGES

I—I NCLUDE LONGVAR COLUMNSJ

—ACTIVATE NOT LOGGED INITIALLY
I—WITH EMPTY TABLE—I
—PCTFREE—integer:

—LOCKSIZE ROW
EBLOCKI NSERTj
TABLE

—APPEND——ON
[gFFJ

CARDINALITY.
[1

—EVOLATI LE]
NOT VOLATILE

—COMPRESS YES
Lo

ACTIVATE VALUE COMPRESSION

DEACTIVATE.

LL0G INDEX BUILD——NULL
FF—
N

—ADD PARTITION add-partition f

—ATTACH PARTITIO — attach-partition

—DETACH PARTITION—partition-name—INTé—table—namel

—ADD SECURITY POLICY—policy-name
L-DROP SECURITY POLICY

add-partition:

f { boundary-spec
f
partition-name !

boundary-spec:

l—IN—tablespace-name—I |—LONG IN—tablespace-name—l

starting-clause r—1 ending-clause i |
ending-clause i

starting-clause:

78 SQL Reference, Volume 2

ALTER TABLE

FROI INCLUSIVE
[—STARTING [M—l (constant) [] }
INVALUE:‘ EXCLUSIVE
AXVALUE
constant
MINVALUE
MAXVALUE
ending-clause:
AT F INCLUSIVE
[—ENDING [] (—Y——constant) [] }
i:MINVALUE:I EXCLUSIVE
MAXVALUE

constant

MINVALU E}
MAXVALUE

attach-partition:

} i boundary-spec |—FROM—tabZe—name

I—parti t ion—name—I

column-definition:

f—column-name
L‘ data-type

column-options:

—

(1)

|—‘ column-options ’J

u

I
NOT NULL

(2

—| lob-options i
(3)

—SCOPE—Etyped—tab le-name2-
typed—view—nameZ—I

PRIMARY KEY.

generated-column-definition i

|—CONSTRAINT—constraint—name—l k!I—UNIQUE—I

references-clause }
HECK—(—check-condztion—)—| constraint-attributes =

—COMPRESS SYSTEM DEFAULT

I:COLUMN:I
SECURED WITH—security-1

NOT HIDDEN
[]
IMPLICITLY HIDDEN

abel-nam

lob-options:

LOGGED———
|_

NOT
|_

COMPACT—

|—NOT LOGGED—

|—COMPACT—

Statements

79

ALTER TABLE

references-clause:

REFERENCES table-name
- Dot

>—| rule-clause |—| constraint-attributes i

nickname s

(v

column-name——)

rule-clause:

|—0N DELETE NO ACTION——

ON UPDATE NO ACTION—l

@

CASCADE
SET NUL

L
|—0N DELETE—ERESTRICT{|7 |—ON UPDATE RESTRICTJ
L

constraint-attributes:

|—ENFORCED— |—ENABLE QUERY OPTIMIZATION—|

@

|—NOT ENFORCED— I—DISABLE QUERY OPTIMIZATION—|

generated-column-definition:

GENERATED

ALWAYS
GENERAT ED—I_——I—AS— (—generation-expression—)———

default-clause i
|—ALWAYS—

|—BY DEFAULT—

default-clause:

WITH
|—|_——I—DEFAULT

i as-row-change-timestamp-clause |—

—constant

—datetime-special-register

—user-special-register
—CURRENT SCHEMA

—NULL

CURRENT SCHEMA

—cast-function—(constant
datetime-special-register—
user-special-register

—EMPTY_CLOB()

—EMPTY_DBCLOB()
LEMPTY_BLOB()

unique-constraint:

—

I—CONSTRAINT—cons traint—name—l |—PRIMARY KEY

80 SQL Reference, Volume 2

UNIQUE (

Y—column-name——)—————

ALTER TABLE

referential-constraint:

} B] FOREIGN KEY— (—Y—column-name) >
CONSTRAINT—constraint-name

Pﬂ references-clause i I

check-constraint:

| CHECK—(—| check-condition |—)
|
|—CONSTRAINT—consi,‘mint-name

> constraint-attributes | }
check-condition:
search-condition }
functional-dependency

functional-dependency:

column-name DETERMINED BY column-name }

))

(—Y—column-name——) (—Y—column-name——)

distribution-clause:

—

HASH
|—DISTRIBUTE BY [(—X—column-name) |

materialized-query-definition:

|—(—fullselect—)—| refreshable-table-options | }

refreshable-table-options:

|—.—DATA INITIALLY DEFERRED—.—REFRESH—EDEFERRED—l @ >
IMMEDIATE

|—ENAB LE QUERY OPTIMIZATION

»
>

USER
FEDERATED_TOOL—

B 1O,
DISABLE QUERY OPTIMIZATION AINTAINED BY |:SYSTEM

Statements 81

ALTER TABLE

82

constraint-alteration:

|)

| v

| LENABLEJ QUERY OPTIMIZATION
DISABLE

—I_—_I_EN FORCED————-
NOT

column-alteration:

f—column-name—

—SET DATA TYPE

NOT NULL

altered-data-type |
generated-column-alteration
XPRESSION AS—(—generation-expression—)—

INLINE LENGTH—integer

generation-alteration

! |—‘ identity-alteration ’J

identity-alteration i

—DROP IDENTITY

EXPRESSION—
DEFAULT——
NOT NULL—

—ADD SCOPE—Etyped— tabl e—nameJ

typed-view-name

—COMPRESS—[SYSTEM DEFAULT
oFF— |

—SECURED WITH—security-label-name

—DROP COLUMN SECURITY

altered-data-type:

»—| built-in-type i

built-in-type:

SQL Reference, Volume 2

ALTER TABLE

| INTEGER
|

L-INT
LBIGINT

DECIMAL
|—DECJ L O——
NUMERIC (integer%_)_
NUM——| integer—

(53) ’

——FLOAT

|—(imteger')—

—REAL

PRECISTON
[1

—DOUBLE

—DECFLOAT
L (16)

CHARACTER

|_
CHARQ |—(z'nteger)— |—FOR BIT DATAJ

VARCHAR J (integer)—
—E[CHARACTER VARYING
CHAR

—LONG VARCHAR

(1M)

CLOB J |_
—E[CHARACTER LARGE OBJECT (integer)—

CHAR L

~
|

<

[<p}

(1)
GRAPHIC [

(integer)—
VARGRAPHIC— (integer)

(1m)
DBCLOB |_
l—(integer)—

—(1M)

—[BLOB J
BINARY LARGE OBJECT —(integer)—

<

[«p)

generated-column-alteration:

default-clause i
|—ALWAYS—
GENERATED

{ identity-options |7
|—BY DEFAULT— !

[ALWAYS]
GENERATED AS—(—generation-expression—)—

Statements

83

ALTER TABLE

default-clause:

WITH
|—|_—‘|—DEFAULT

identity-options:

—constant

—datetime-special-register

—user-special-register
—CURRENT SCHEMA

—NULL

|—AS IDENTITY

—cast-function—(constant)—
datetime-special-register—
user-special-register
CURRENT SCHEMA

- EMPTY_CLOB()

- EMPTY_DBCLOB()

EMPTY_BLOB()

|) 1 |

(—YX—————START WITH numeric-constant)

1
—INCREMENT BY numeric-constant
NO MINVALUE
INVALUE—numeric-constant |
NO MAXVALUE
AXVALUE—numeric-constant |
NO CYCLE
CYCLE —l

CACHE 20
~ENO CACHE
CACHE—integer-constant—

as-row-change-timestamp-clause:

(6)

|7FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

generation-alteration:

SET GENERATED
= T

identity-alteration:

84 SQL Reference, Volume 2

ALWAYS _|
BY DEFAULT

ALTER TABLE

)

|—"————SET INCREMENT BY—numeric-constant |

—SET—ENO MINVALUE _|

MINVALUE—numeric-constant

—S ET_‘:NO MAXVALUE
MAXVALUE—numeric-constant

—S ET—ENO CYCLE
CYCLEJ

—SET—[NO CACHE _|
CACHE—integer-constant

—SET NO ORDER
_[ORDERJ

—RESTART

|—\»JITH—numer‘ic-cons tan t—l

Notes:

1

If the first column option chosen is generated-column-definition, data-type can be
omitted; it will be computed by the generation expression.

2 The lob-options clause only applies to large object types (CLOB, DBCLOB, and
BLOB), and to distinct types that are based on large object types.

3 The SCOPE clause only applies to the REF type.

4 IMPLICITLY HIDDEN can only be specified if ROW CHANGE TIMESTAMP
is also specified.

5 The same clause must not be specified more than once.

6 Data type is optional for a row change timestamp column.

Description

table-name

The table-name must identify a table that exists at the current server. It cannot
be a nickname (SQLSTATE 42809) and must not be a view, a catalog table, or a
declared temporary table (SQLSTATE 42995).

If table-name identifies a materialized query table, alterations are limited to
adding or dropping the materialized query table, activating not logged initially,
adding or dropping RESTRICT ON DROP, and changing pctfree, locksize,
append, or volatile.

If table-name identifies a range-clustered table, alterations are limited to adding,
changing, or dropping constraints, activating not logged initially, adding or
dropping RESTRICT ON DROP, changing locksize, data capture, or volatile,
and setting column default values.

ADD PARTITION add-partition

Adds one or more data partitions to a partitioned table. If the specified table is
not a partitioned table, an error is returned (SQLSTATE 428FT). The number of
data partitions must not exceed 32 767.

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be 'PART” followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must

Statements 85

ALTER TABLE

86

not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table. If the first column of the
partitioning key is DESC, these assumptions are reversed.

IN tablespace-name
Specifies the table space where the data partition is to be stored. The
named table space must have the same page size, be in the same database
partition group, and manage space in the same way as the other table
spaces of the partitioned table (SQLSTATE 42838). This can be a table space
that is already being used for another data partition of the same table, or a
table space that is currently not being used by this table, but it must be a
table space on which the authorization ID of the statement holds the USE
privilege (SQLSTATE 42727). If this clause is not specified, the table space
of the first visible or attached data partition of the table is used.

LONG IN tablespace-name
Specifies the table space where the data partition containing long column
data is to be stored. The named table space must have the same page size,
be in the same database partition group, and manage space in the same
way as the other table spaces and data partitions of the partitioned table
(SQLSTATE 42838); it must be a table space on which the authorization ID
of the statement holds the USE privilege. The page size and extent size for
the named table space can be different from the page size and extent size
of the other data partitions of the partitioned table.

For rules governing the use of the LONG IN clause with partitioned tables,
see “Large object behavior in partitioned tables”.

ATTACH PARTITION attach-partition

SQL Reference, Volume 2

Attaches another table as a new data partition. The data object of the table
being attached becomes a new partition of the table being attached to. There is
no data movement involved. The table is placed in set integrity pending state,
and referential integrity checking is deferred until execution of a SET
INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow
the use of the IN or LONG IN clause. The placement of LOBs for that data
partition is determined at the time the source table is created. For rules
governing the use of the LONG IN clause with partitioned tables, see “Large
object behavior in partitioned tables”.

partition-name
Names the data partition. The name must not be the same as any other
data partition for the table (SQLSTATE 42710). If this clause is not
specified, the name will be 'PART” followed by the character form of an
integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must
not overlap that of an existing data partition (SQLSTATE 56016). For a
description of the starting-clause and the ending-clause, see “CREATE
TABLE”.

If the starting-clause is omitted, the new data partition is assumed to be at
the end of the table. If the ending-clause is omitted, the new data partition
is assumed to be at the start of the table.

ALTER TABLE

FROM table-namel
Specifies the table that is to be used as the source of data for the new
partition. The table definition of table-namel cannot have multiple data

partitions, and it must match the altered table in the following ways
(SQLSTATE 428G3):

e The number of columns must be the same.

* The data types of the columns in the same ordinal position in the table
must be the same.

* The nullability characteristic of the columns in the same ordinal position
in the table must be the same.

» If the data is also distributed, it must be distributed over the same
database partition group using the same distribution method.

* If the data in either table is organized, the organization must match.

After the data from table-namel is successfully attached, an operation
equivalent to DROP TABLE table-namel is performed to remove this table,
which no longer has data, from the database.

DETACH PARTITION partition-name INTO table-namel
Detaches the data partition partition-name from the altered table, and uses the
data partition to create a new table named fable-namel. The data partition is
logically attached to the new table without any data movement. The specified
data partition cannot be the last remaining partition of the table being altered

(SQLSTATE 428G2).

ADD SECURITY POLICY policy-name
Adds a security policy to the table. The security policy must exist at the
current server (SQLSTATE 42704). The table must not already have a security
policy (SQLSTATE 55065), and must not be a typed table (SQLSTATE 428DH),
materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY
Removes the security policy and all LBAC protection from the table. The table
specified by table-name must be protected by a security policy (SQLSTATE
428GT). If the table has a column with data type DB2SECURITYLABEL, the
data type is changed to VARCHAR (128) FOR BIT DATA. If the table has one
or more protected columns, those columns become unprotected.

ADD column-definition
Adds a column to the table. The table must not be a typed table (SQLSTATE
428DH). For all existing rows in the table, the value of the new column is set
to its default value. The new column is the last column of the table; that is, if
initially there are n columns, the added column is column n+1.

Adding the new column must not make the total byte count of all columns
exceed the maximum record size.

column-name
Is the name of the column to be added to the table. The name cannot be
qualified. Existing column names in the table cannot be used (SQLSTATE
42711).

data-type
Is one of the data types listed under “CREATE TABLE”.

NOT NULL
Prevents the column from containing null values. The default-clause must
also be specified (SQLSTATE 42601).

Statements 87

ALTER TABLE

88

SQL Reference, Volume 2

NOT HIDDEN or IMPLICITLY HIDDEN

Specifies whether or not the column is to be defined as hidden. The hidden
attribute determines whether the column is included in an implicit
reference to the table, or whether it can be explicitly referenced in SQL
statements. The default is NOT HIDDEN.

NOT HIDDEN
Specifies that the column is included in implicit references to the table,
and that the column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the
column is explicitly referenced by name. For example, assuming that a
table includes a column defined with the IMPLICITLY HIDDEN clause,
the result of a SELECT * does not include the implicitly hidden
column. However, the result of a SELECT that explicitly refers to the
name of an implicitly hidden column will include that column in the
result table.

IMPLICITLY HIDDEN must only be specified for a ROW CHANGE
TIMESTAMP column (SQLSTATE 42867). The ROW CHANGE
TIMESTAMP FOR table-designator expression will resolve to an
IMPLICITLY HIDDEN ROW CHANGE TIMESTAMP column.
Therefore, a ROW CHANGE TIMESTAMP column can be added to a
table as IMPLICITLY HIDDEN, and existing applications that do a
SELECT * from this table will not need to be modified to handle the
column. Using the expression, new applications can always access the
column without knowing the column name.

lob-options

Specifies options for LOB data types. See lob-options in “CREATE TABLE”.

SCOPE

Specify a scope for a reference type column.

typed-table-name2
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the value actually references an existing row in typed-table-name2.

typed-view-name?2
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name2 (SQLSTATE 428DM).
No checking is done of the default value for column-name to ensure
that the values actually references an existing row in typed-view-name2.

CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that
was already specified within the same ALTER TABLE statement, or as the
name of any other existing constraint on the table (SQLSTATE 42710).

If the constraint name is not specified by the user, an 18 byte long
identifier unique within the identifiers of the existing constraints defined
on the table is generated by the system. (The identifier consists of "SQL”"
followed by a sequence of 15 numeric characters that are generated by a
timestamp-based function.)

ALTER TABLE

When used with a PRIMARY KEY or UNIQUE constraint, the
constraint-name may be used as the name of an index that is created to
support the constraint. See for details on index names associated
with unique constraints.

PRIMARY KEY
This provides a shorthand method of defining a primary key
composed of a single column. Thus, if PRIMARY KEY is specified in
the definition of column C, the effect is the same as if the PRIMARY
KEY(C) clause were specified as a separate clause. The column cannot
contain null values, so the NOT NULL attribute must also be specified
(SQLSTATE 42831).

See PRIMARY KEY within the description of the unique-constraint
below.

UNIQUE
This provides a shorthand method of defining a unique key composed
of a single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause were
specified as a separate clause.

See UNIQUE within the description of the unique-constraint below.

references-clause
This provides a shorthand method of defining a foreign key composed
of a single column. Thus, if a references-clause is specified in the
definition of column C, the effect is the same as if that
references-clause were specified as part of a FOREIGN KEY clause in
which C is the only identified column.

See references-clause in “CREATE TABLE”.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that
applies to a single column. See check-condition in “CREATE TABLE”.

generated-column-definition
For details on column generation, see “CREATE TABLE”.

default-clause
Specifies a default value for the column.

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on
INSERT or is specified as DEFAULT on INSERT or UPDATE. If a
specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the
column as shown in [Table 13 on page 90| If a column is defined as
an XML or structured type, then a DEFAULT clause cannot be
specified.

If a column is defined using a distinct type, then the default value
of the column is the default value of the source data type cast to
the distinct type.

Statements 89

ALTER TABLE

Table 13. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string Blanks

Varying-length character string A string of length 0

Fixed-length graphic string Double-byte blanks

Varying-length graphic string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the current
date.

Time For existing rows, a time corresponding to 0

hours, 0 minutes, and 0 seconds. For added
rows, the current time.

Timestamp For existing rows, a date corresponding to
January 1, 0001, and a time corresponding to
0 hours, 0 minutes, 0 seconds and 0
microseconds. For added rows, the current
timestamp.

Binary string (blob) A string of length 0

Omission of DEFAULT from a column-definition results in the use of
the null value as the default for the column.

Specific types of values that can be specified with the DEFAULT
keyword are as follows.

constant
Specifies the constant as the default value for the column. The
specified constant must:

* represent a value that could be assigned to the column in
accordance with the rules of assignment as described in
Chapter 3

* not be a floating-point constant unless the column is defined
with a floating-point data type

* be a numeric constant or a decimal floating-point special
value if the data type of the column is decimal
floating-point. Floating-point constants are first interpreted
as DOUBLE and then converted to decimal floating-point.
For DECFLOAT(16) columns, decimal constants must have a
precision less than or equal to 16.

* not have non-zero digits beyond the scale of the column
data type if the constant is a decimal constant (for example,
1.234 cannot be the default for a DECIMAL(5,2) column)

* be expressed with no more than 254 bytes including the
quote characters, any introducer character such as the X for
a hexadecimal constant, and characters from the fully
qualified function name and parentheses when the constant
is the argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT

DATE, CURRENT TIME, or CURRENT TIMESTAMP) at the
time of INSERT, UPDATE, or LOAD as the default for the

90 SQL Reference, Volume 2

ALTER TABLE

column. The data type of the column must be the data type
that corresponds to the special register specified (for example,
data type must be DATE when CURRENT DATE is specified).
For existing rows, the value is the current date, current time or
current timestamp when the ALTER TABLE statement is
processed.

user-special-register
Specifies the value of the user special register (CURRENT
USER, SESSION_USER, SYSTEM_USER) at the time of INSERT,
UPDATE, or LOAD as the default for the column. The data
type of the column must be a character string with a length not
less than the length attribute of a user special register. Note
that USER can be specified in place of SESSION_USER and
CURRENT_USER can be specified in place of CURRENT
USER. For existing rows, the value is the CURRENT USER,
SESSION_USER, or SYSTEM_USER of the ALTER TABLE
statement.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register
at the time of INSERT, UPDATE, or LOAD as the default for
the column. If CURRENT SCHEMA is specified, the data type
of the column must be a character string with a length greater
than or equal to the length attribute of the CURRENT
SCHEMA special register. For existing rows, the value of the
CURRENT SCHEMA special register at the time the ALTER
TABLE statement is processed.

NULL
Specifies NULL as the default for the column. If NOT NULL
was specified, DEFAULT NULL must not be specified within
the same column definition.

cast-function
This form of a default value can only be used with columns
defined as a distinct type, BLOB or datetime (DATE, TIME or
TIMESTAMP) data type. For distinct type, with the exception
of distinct types based on BLOB or datetime types, the name of
the function must match the name of the distinct type for the
column. If qualified with a schema name, it must be the same
as the schema name for the distinct type. If not qualified, the
schema name from function resolution must be the same as the
schema name for the distinct type. For a distinct type based on
a datetime type, where the default value is a constant, a
function must be used and the name of the function must
match the name of the source type of the distinct type with an
implicit or explicit schema name of SYSIBM. For other
datetime columns, the corresponding datetime function may
also be used. For a BLOB or a distinct type based on BLOB, a
function must be used and the name of the function must be
BLOB with an implicit or explicit schema name of SYSIBM.

constant
Specifies a constant as the argument. The constant must
conform to the rules of a constant for the source type of

Statements 91

ALTER TABLE

92

SQL Reference, Volume 2

the distinct type or for the data type if not a distinct type.
If the cast-function is BLOB, the constant must be a string
constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP. The source type of the distinct
type of the column must be the data type that corresponds
to the specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or
SYSTEM_USER. The data type of the source type of the
distinct type of the column must be a string data type with
a length of at least 8 bytes. If the cast-function is BLOB, the
length attribute must be at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special
register. The data type of the source type of the distinct
type of the column must be a character string with a length
greater than or equal to the length attribute of the
CURRENT SCHEMA special register. If the cast-function is
BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The
column must have the data type that corresponds to the result
data type of the function.

If the value specified is not valid, an error (SQLSTATE 42894) is
returned.

GENERATED
Specifies that DB2 generates values for the column.

ALWAYS

Specifies that DB2 will always generate a value for the column
when a row is inserted into the table, or whenever the result value
of the generation-expression might change. The result of the
expression is stored in the table. GENERATED ALWAYS is the
recommended option unless data propagation or unload and
reload operations are being performed. GENERATED ALWAYS is
the required option for generated columns.

BY DEFAULT

Specifies that DB2 will generate a value for the column when a
row is inserted into the table, or updated, specifying DEFAULT for
the column, unless an explicit value is specified. BY DEFAULT is
the recommended option when using data propagation or
performing unload and reload operations.

AS (generation-expression)

Specifies that the definition of the column is based on an
expression. Requires that the table be put in set integrity pending
state, using the SET INTEGRITY statement with the OFF option.
After the ALTER TABLE statement, the SET INTEGRITY statement
with the IMMEDIATE CHECKED and FORCE GENERATED
options must be used to update and check all the values in that

ALTER TABLE

column against the new expression. For details on specifying a
column with a generation-expression, see “CREATE TABLE”.

COMPRESS SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for the
data types when no specific values are specified) are to be stored using
minimal space. If the VALUE COMPRESSION clause is not specified, a
warning is returned (SQLSTATE 01648) and system default values are not
stored using minimal space.

Allowing system default values to be stored in this manner causes a slight
performance penalty during insert and update operations on the column
because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or
structured data type (SQLSTATE 42842). If the base data type is a
varying-length string, this clause is ignored. String values of length 0 are
automatically compressed if a table has been set with VALUE
COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601). The table must have a security policy associated with it (SQLSTATE
55064).

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique
constraint cannot be added to a table that is a subtable (SQLSTATE 429B3). If
the table is a supertable at the top of the hierarchy, the constraint applies to the
table and all its subtables.

CONSTRAINT constraint-name
Names the primary key or unique constraint. For more information, see
constraint-name in “CREATE TABLE”.

UNIQUE (column-name...,)
Defines a unique key composed of the identified columns. The identified
columns must be defined as NOT NULL. Each column-name must identify a
column of the table and the same column must not be identified more than
once. The name cannot be qualified. The number of identified columns
must not exceed 64, and the sum of their stored lengths must not exceed
the index key length limit for the page size. For column stored lengths, see
“Byte Counts” in “CREATE TABLE”. For key length limits, see “SQL
limits”. No LOB, LONG VARCHAR, LONG VARGRAPHIC, distinct type
based on any of these types, or structured type can be used as part of a
unique key, even if the length attribute of the column is small enough to fit
within the index key length limit for the page size (SQLSTATE 54008). The
set of columns in the unique key cannot be the same as the set of columns
of the primary key or another unique key (SQLSTATE 01543). (If
LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)
Any existing values in the set of identified columns must be unique
(SQLSTATE 23515).

A check is performed to determine whether an existing index matches the
unique key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC)
specifications. If a matching index definition is found, the description of
the index is changed to indicate that it is required by the system and it is

Statements 93

ALTER TABLE

94

changed to unique (after ensuring uniqueness) if it was a non-unique
index. If the table has more than one matching index, an existing unique
index is selected (the selection is arbitrary). If no matching index is found,
a unique bidirectional index will automatically be created for the columns,
as described in CREATE TABLE. See for details on index names
associated with unique constraints.

PRIMARY KEY ...(column-name,)

Defines a primary key composed of the identified columns. Each
column-name must identify a column of the table, and the same column
must not be identified more than once. The name cannot be qualified. The
number of identified columns must not exceed 64, and the sum of their
stored lengths must not exceed the index key length limit for the page size.
For column stored lengths, see “Byte Counts” in “CREATE TABLE”. For
key length limits, see “SQL limits”. The table must not have a primary key
and the identified columns must be defined as NOT NULL. No LOB,
LONG VARCHAR, LONG VARGRAPHIC, distinct type based on any of
these types, or structured type may be used as part of a primary key, even
if the length attribute of the column is small enough to fit within the index
key length limit for the page size (SQLSTATE 54008). The set of columns in
the primary key cannot be the same as the set of columns in a unique key
(SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is
returned, SQLSTATE 42891.) Any existing values in the set of identified
columns must be unique (SQLSTATE 23515).

A check is performed to determine if an existing index matches the
primary key definition (ignoring any INCLUDE columns in the index). An
index definition matches if it identifies the same set of columns without
regard to the order of the columns or the direction (ASC/DESC)
specifications. If a matching index definition is found, the description of
the index is changed to indicate that it is the primary index, as required by
the system, and it is changed to unique (after ensuring uniqueness) if it
was a non-unique index. If the table has more than one matching index, an
existing unique index is selected (the selection is arbitrary). If no matching
index is found, a unique bidirectional index will automatically be created
for the columns, as described in CREATE TABLE. See for details on
index names associated with unique constraints.

Only one primary key can be defined on a table.

ADD referential-constraint

Defines a referential constraint. See referential-constraint in “CREATE TABLE”.

ADD check-constraint

Defines a check constraint or functional dependency. See check-constraint in
“CREATE TABLE”.

ADD distribution-clause

SQL Reference, Volume 2

Defines a distribution key. The table must be defined in a table space on a
single-partition database partition group (SQLSTATE 55037) and must not
already have a distribution key (SQLSTATE 42889). If a distribution key
already exists for the table, the existing key must be dropped before adding the
new distribution key. A distribution key cannot be added to a table that is a
subtable (SQLSTATE 428DH) or to a table with a column of data type XML
(SQLSTATE 42997).

DISTRIBUTE BY HASH (column-name...)

Defines a distribution key using the specified columns. Each column-name
must identify a column of the table, and the same column must not be

ALTER TABLE

identified more than once. The name cannot be qualified. A column cannot
be used as part of a distribution key if the data type of the column is a
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, XML,
distinct type on any of these types, or structured type.

ADD RESTRICT ON DROP
Specifies that the table cannot be dropped, and that the table space that
contains the table cannot be dropped.

ADD MATERIALIZED QUERY

materialized-query-definition
Changes a regular table to a materialized query table for use during query
optimization. The table specified by table-name must not:

Be previously defined as a materialized query table

Be a typed table

Have any constraints, unique indexes, or triggers defined
Reference a nickname that is marked with caching disabled

Be referenced in the definition of another materialized query table

Be referenced in the definition of a view that is enabled for query
optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE
428EW).

fullselect

Defines the query in which the table is based. The columns of the
existing table must:

* have the same number of columns

* have exactly the same data types

* have the same column names in the same ordinal positions

as the result columns of fullselect (SQLSTATE 428EW). For details about
specifying the fullselect for a materialized query table, see “CREATE

TABLE”. One additional restriction is that table-name cannot be directly
or indirectly referenced in the fullselect.

refreshable-table-options

Specifies the refreshable options for altering a materialized query table.

DATA INITIALLY DEFERRED
The data in the table must be validated using the REFRESH TABLE
or SET INTEGRITY statement.

REFRESH
Indicates how the data in the table is maintained.

DEFERRED
The data in the table can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects
the result of the query as a snapshot at the time the REFRESH
TABLE statement is processed. Materialized query tables
defined with this attribute do not allow INSERT, UPDATE, or
DELETE statements (SQLSTATE 42807).

IMMEDIATE
The changes made to the underlying tables as part of a
DELETE, INSERT, or UPDATE are cascaded to the materialized
query table. In this case, the content of the table, at any

Statements 95

ALTER TABLE

point-in-time, is the same as if the specified subselect is
processed. Materialized query tables defined with this attribute
do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query
optimization. The table can still be queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is
maintained by the system, user, or replication tool.

SYSTEM
Specifies that the data in the materialized query table is
maintained by the system.

USER
Specifies that the data in the materialized query table is
maintained by the user. The user is allowed to perform update,
delete, or insert operations against user-maintained
materialized query tables. The REFRESH TABLE statement,
used for system-maintained materialized query tables, cannot
be invoked against user-maintained materialized query tables.
Only a REFRESH DEFERRED materialized query table can be
defined as MAINTAINED BY USER.

FEDERATED_TOOL
Specifies that the data in the materialized query table is
maintained by the replication tool. The REFRESH TABLE
statement, used for system-maintained materialized query
tables, cannot be invoked against federated_tool-maintained
materialized query tables. Only a REFRESH DEFERRED
materialized query table can be defined as MAINTAINED BY
FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. The
constraint-name must identify an existing referential constraint (SQLSTATE
42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint or functional
dependency constraint-name. The constraint-name must identify an existing
check constraint or functional dependency (SQLSTATE 42704).

constraint-alteration
Options for changing attributes associated with referential or check constraints.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether the constraint or functional dependency can be used for
query optimization under appropriate circumstances.

ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query
optimization.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

96 SQL Reference, Volume 2

ALTER TABLE

ENFORCED or NOT ENFORCED
Specifies whether the constraint is enforced by the database manager
during normal operations such as insert, update, or delete.

ENFORCED
Change the constraint to ENFORCED. ENFORCED cannot be specified
for a functional dependency (SQLSTATE 42621).

NOT ENFORCED
Change the constraint to NOT ENFORCED. This should only be
specified if the table data is independently known to conform to the
constraint. Query results might be unpredictable if the data does not
actually conform to the constraint.

ALTER column-alteration

Alters the definition of a column. Only the specified attributes will be altered;
others will remain unchanged. Columns of a typed table cannot be altered
(SQLSTATE 428DH).

column-name
Specifies the name of the column that is to be altered. The column-name
must identify an existing column of the table (SQLSTATE 42703). The name
must not be qualified. The name must not identify a column that is
otherwise being added, altered, or dropped in the same ALTER TABLE
statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type
Specifies the new data type of the column. The new data type must be
compatible with the existing data type of the column (SQLSTATE 42837).
For more information on built-in data types, see “CREATE TABLE”.
lists the compatible data types. The "Reorg recommended” column
identifies the data type alterations that will require table reorganization
before a table can again be fully accessed (SQLSTATE 57016). In such cases,
the column being altered cannot be part of a table containing an XML data
type column (SQLSTATE 42997).

The data type of an identity column cannot be altered (SQLSTATE 42997).
The table cannot have data capture enabled (SQLSTATE 42997).

The specified length, precision, or scale can be greater than or equal to (but
not less than) the existing length, precision, or scale (SQLSTATE 42837).

Table 14. Compatible Data Types

Valid for

Valid for | MDC

table organi-

parti- zing Valid for

tioning dimen- distributionReorg

key sion key recom-
From type To type column column column mended
SMALLINT INTEGER yes yes yes yes
SMALLINT BIGINT yes yes yes yes
SMALLINT DECIMAL (p, m); yes yes no yes

p-m > 4

SMALLINT REAL yes yes no yes
SMALLINT DOUBLE yes yes no yes

Statements 97

ALTER TABLE

Table 14. Compatible Data Types (continued)

Valid for
Valid for |[MDC
table organi-
parti- zing Valid for
tioning dimen- distributionReorg
key sion key recom-
From type To type column column column mended
SMALLINT DECFLOAT(16) or yes yes no yes
DECFLOAT(34)
INTEGER BIGINT yes yes yes yes
INTEGER DECIMAL (p, m); yes yes no yes
p-m>9
INTEGER DOUBLE yes yes no yes
INTEGER DECFLOAT(16) or yes yes no yes
DECFLOAT(34)
BIGINT DECIMAL (p, m); yes yes no yes
p-m > 19
BIGINT DECFLOAT(34) yes yes no yes
REAL DOUBLE yes yes yes yes
REAL DECFLOAT(16) or yes yes no yes
DECFLOAT(34)
DOUBLE DECFLOAT(16) or yes yes no yes
DECFLOAT(34)
DECIMAL (n, m) DECIMAL (p, q); p yes yes no yes
>=11; 4 >= 1; (p-q)
>= (n-m)
DECIMAL (n, m); n | DECFLOAT(16) yes yes no yes
<=15
DECIMAL (n, m) DECFLOAT(34) yes yes no yes
DECFLOAT(16) DECFLOAT(34) yes yes yes yes
CHARACTER (n) CHARACTER (n+x) |no yes yes yes
CHARACTER (n) VARCHAR (n+x) no yes yes yes
VARCHAR (n) CHARACTER (n+x) |no yes yes yes
VARCHAR (n) VARCHAR (n+x) no yes yes no
GRAPHIC (1) GRAPHIC (n+x) no yes yes yes
GRAPHIC (n) VARGRAPHIC (n+x) [no yes yes yes
VARGRAPHIC (n) VARGRAPHIC (n+x) |no yes yes no
VARGRAPHIC (1) GRAPHIC (n+x) no yes yes yes
BLOB (n) BLOB (n+x) n/a n/a n/a yes
CLOB (n) CLOB (n+x) n/a n/a n/a yes
DBCLOB (n) DBCLOB (n+x) n/a n/a n/a yes

Altering a column must not make the total byte count of all columns

exceed the maximum record size (SQLSTATE 54010). If the column is used
in a unique constraint or an index, the new length must not cause the sum
of the stored lengths for the unique constraint or index to exceed the index
key length limit for the page size (SQLSTATE 54008). For column stored

98 SQL Reference, Volume 2

ALTER TABLE

lengths, see “Byte Counts” in “CREATE TABLE”. For key length limits, see

“SQL limits”.

Table 15. Cascaded Effects of Altering a Column

Operation

Effect

Altering a column that is referenced by a
view or check constraint

The object is regenerated during alter
processing. In the case of a view, function or
method resolution for the object might be
different after the alter operation, changing
the semantics of the object. In the case of a
check constraint, if the semantics of the
object will change as a result of the alter
operation, the operation fails.

Altering a column in a table that has a
dependent package, trigger, or SQL routine

The object is marked invalid, and is
revalidated on next use.

Altering the type of a column in a table that
is referenced by an XSROBJECT enabled for
decomposition

The XSROBJECT is marked inoperative for
decomposition. Re-enabling the XSROBJECT
might require readjustment of its mappings;
following this, issue an ALTER XSROBJECT
ENABLE DECOMPOSITION statement
against the XSROBJECT.

Altering a column that is referenced in the
default expression of a global variable

The default expression of the global variable
is validated during alter processing. If a
user-defined function used in the default
expression cannot be resolved, the operation
fails.

SET generated-column-alteration

Specifies the technique used to generate a value for the column. This can
be in the form of a specific default value, an expression, or defining the
column as an identity column. If an existing default for the column results
from a different generation technique, that default must be dropped, which
can be done in the same column-alteration using one of the DROP clauses.

default-clause

Specifies a new default value for the column that is to be altered. The
column must not already be defined as the identity column or have a
generation expression defined (SQLSTATE 42837). The specified default
value must represent a value that could be assigned to the column in
accordance with the rules for assignment as described in “Assignments
and comparisons”. Altering the default value does not change the
value that is associated with this column for existing rows.

GENERATED ALWAYS or GENERATED BY DEFAULT
Specifies when the database manager is to generate values for the
column. GENERATED BY DEFAULT specifies that a value is only to be
generated when a value is not provided, or the DEFAULT keyword is
used in an assignment to the column. GENERATED ALWAYS specifies
that the database manager is to always generate a value for the
column. GENERATED BY DEFAULT cannot be specified with a

generation-expression.

identity-options

Specifies that the column is the identity column for the table. The
column must not already be defined as the identity column, cannot
have a generation expression, or cannot have an explicit default
(SQLSTATE 42837). A table can only have a single identity column

Statements 99

ALTER TABLE

100

SQL Reference, Volume 2

(SQLSTATE 428C1). The column must be specified as not nullable
(SQLSTATE 42997), and the data type associated with the column
must be an exact numeric data type with a scale of zero
(SQLSTATE 42815). An exact numeric data type is one of:
SMALLINT, INTEGER, BIGINT, DECIMAL, or NUMERIC with a
scale of zero, or a distinct type based on one of these types. For
details on identity options, see “CREATE TABLE".

AS (generation-expression)
Specifies that the definition of the column is based on an
expression. The column must not already be defined with a
generation expression, cannot be the identity column, or cannot
have an explicit default (SQLSTATE 42837). The
generation-expression must conform to the same rules that apply
when defining a generated column. The result data type of the
generation-expression must be assignable to the data type of the
column (SQLSTATE 42821). The column must not be referenced in
the distribution key column or in the ORGANIZE BY clause
(SQLSTATE 42997).

SET EXPRESSION AS (generation-expression)

Changes the expression for the column to the specified
generation-expression. SET EXPRESSION AS requires the table to be put in
set integrity pending state, using the SET INTEGRITY statement with the
OFF option. After the ALTER TABLE statement, the SET INTEGRITY
statement with the IMMEDIATE CHECKED and FORCE GENERATED
options must be used to update and check all the values in that column
against the new expression. The column must already be defined as a
generated column based on an expression (SQLSTATE 42837), and must
not have appeared in the PARTITIONING KEY, DIMENSIONS, or KEY
SEQUENCE clauses of the table (SQLSTATE 42997). The
generation-expression must conform to the same rules that apply when
defining a generated column. The result data type of the
generation-expression must be assignable to the data type of the column
(SQLSTATE 42821).

SET INLINE LENGTH integer

Changes the inline length of an existing structured or XML type column.
The inline length indicates the maximum byte size of an instance of a
structured or XML type to store in the base table row. Instances of
structured or XML types that cannot be stored inline in the base table row
are stored separately, similar to the way that LOB values are handled.

The data type of column-name must be a structured or XML type
(SQLSTATE 42842).

The default inline length for a structured-type column is the inline length
of its type (specified explicitly or by default in the CREATE TYPE
statement). If the inline length of a structured type is less than 292, the
value 292 is used for the inline length of the column.

The explicit inline length value can only be increased (SQLSTATE -1); must
be at least 292; and cannot exceed 32672 (SQLSTATE 54010).

Altering the column must not make the total byte count of all columns
exceed the maximum record size (SQLSTATE 54010).

Data that is already stored separately from the rest of the row will not be
moved inline into the base table row by this statement. To take advantage
of the altered inline length of a structured type column, invoke the REORG

ALTER TABLE

command against the specified table after altering the inline length of its
column. To take advantage of the altered inline length of an XML type
column in an existing table, you must update all rows with an UPDATE
statement. The REORG command has no effect on the row storage of XML
documents.

SET NOT NULL
Specifies that the column cannot contain null values. No value for this
column in existing rows of the table can be the null value (SQLSTATE
23502). This clause is not allowed if the column is specified in the foreign
key of a referential constraint with a DELETE rule of SET NULL, and no
other nullable columns exist in the foreign key (SQLSTATE 42831). Altering
this attribute for a column requires table reorganization before further table
access is allowed (SQLSTATE 57016). Note that because this operation
requires validation of table data, it cannot be performed when the table is
in reorg pending state (SQLSTATE 57016). The column being altered cannot
be part of a table containing an XML data type column (SQLSTATE 42997).
The table cannot have data capture enabled (SQLSTATE 42997).

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column for the table. A value is
generated for the column in each row that is inserted, and for any row in
which any column is updated. The value that is generated for a ROW
CHANGE TIMESTAMP column is a timestamp that corresponds to the
insert or update time for that row. If multiple rows are inserted or updated
with a single statement, the value of the ROW CHANGE TIMESTAMP
column might be different for each row.

A table can only have one ROW CHANGE TIMESTAMP column
(SQLSTATE 428C1). If data-type is specified, it must be TIMESTAMP
(SQLSTATE 42842). A ROW CHANGE TIMESTAMP column cannot have a
DEFAULT clause (SQLSTATE 42623). NOT NULL must be specified for a
ROW CHANGE TIMESTAMP column (SQLSTATE 42831).

SET GENERATED ALWAYS or GENERATED BY DEFAULT
Specifies when the database manager is to generate values for the column.
GENERATED BY DEFAULT specifies that a value is only to be generated
when a value is not provided or the DEFAULT keyword is used in an
assignment to the column. GENERATED ALWAYS specifies that the
database manager is to always generate a value for the column. The
column must already be defined as a generated column based on an
identity column; that is, defined with the AS IDENTITY clause (SQLSTATE
42837).

identity-alteration
Alters the identity attributes of the column. The column must be an
identity column.

SET INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The next value to be generated for the identity column will be
determined from the last assigned value with the increment applied.
The column must already be defined with the IDENTITY attribute
(SQLSTATE 42837).

This value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), and does not exceed the value of a
large integer constant (SQLSTATE 42820), without non-zero digits
existing to the right of the decimal point (SQLSTATE 428FA).

Statements 101

ALTER TABLE

102

SQL Reference, Volume 2

If this value is negative, this is a descending sequence after the ALTER
statement. If this value is 0 or positive, this is an ascending sequence
after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant

Specifies the minimum value at which a descending identity column
either cycles or stops generating values, or the value to which an
ascending identity column cycles after reaching the maximum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MINVALUE
For an ascending sequence, the value is the original starting value.
For a descending sequence, the value is the minimum value of the
data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without non-zero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be less than or equal to the maximum value (SQLSTATE
42815).

SET NO MAXVALUE or MAXVALUE numeric-constant

Specifies the maximum value at which an ascending identity column
either cycles or stops generating values, or the value to which a
descending identity column cycles after reaching the minimum value.
The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the
data type of the column. For a descending sequence, the value is
the original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This
value can be any positive or negative value that could be assigned
to this column (SQLSTATE 42815), without non-zero digits existing
to the right of the decimal point (SQLSTATE 428FA), but the value
must be greater than or equal to the minimum value (SQLSTATE
42815).

SET NO CYCLE or CYCLE

Specifies whether this identity column should continue to generate
values after generating either its maximum or minimum value. The
column must exist in the specified table (SQLSTATE 42703), and must
already be defined with the IDENTITY attribute (SQLSTATE 42837).

NO CYCLE
Specifies that values will not be generated for the identity column
once the maximum or minimum value has been reached.

CYCLE
Specifies that values continue to be generated for this column after
the maximum or minimum value has been reached. If this option
is used, then after an ascending identity column reaches the

ALTER TABLE

maximum value, it generates its minimum value; or after a
descending sequence reaches the minimum value, it generates its
maximum value. The maximum and minimum values for the
identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for an
identity column. Although not required, if unique values are
desired, a single-column unique index defined using the identity
column will ensure uniqueness. If a unique index exists on such an
identity column and a non-unique value is generated, an error
occurs (SQLSTATE 23505).

SET NO CACHE or CACHE integer-constant
Specifies whether to keep some pre-allocated values in memory for
faster access. This is a performance and tuning option. The column
must already be defined with the IDENTITY attribute (SQLSTATE
42837).

NO CACHE
Specifies that values for the identity column are not to be
pre-allocated. In a data sharing environment, if the identity values
must be generated in order of request, the NO CACHE option must
be used.

When this option is specified, the values of the identity column are
not stored in the cache. In this case, every request for a new
identity value results in synchronous 1/O to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are
pre-allocated and kept in memory. When values are generated for
the identity column, pre-allocating and storing values in the cache
reduces synchronous I/O to the log.

If a new value is needed for the identity column and there are no
unused values available in the cache, the allocation of the value
requires waiting for I/O to the log. However, when a new value is
needed for the identity column and there is an unused value in the
cache, the allocation of that identity value can happen more
quickly by avoiding the I/O to the log.

In the event of a database deactivation, either normally or due to a
system failure, all cached sequence values that have not been used
in committed statements are lost (that is, they will never be used).
The value specified for the CACHE option is the maximum
number of values for the identity column that could be lost in case
of system failure.

The minimum value is 2 (SQLSTATE 42815).

SET NO ORDER or ORDER
Specifies whether the identity column values must be generated in
order of request. The column must exist in the specified table
(SQLSTATE 42703), and must already be defined with the IDENTITY
attribute (SQLSTATE 42837).

NO ORDER
Specifies that the identity column values do not need to be
generated in order of request.

Statements 103

ALTER TABLE

104

SQL Reference, Volume 2

ORDER
Specifies that the identity column values must be generated in
order of request.

RESTART or RESTART WITH numeric-constant
Resets the state of the sequence associated with the identity column. If
WITH numeric-constant is not specified, the sequence for the identity
column is restarted at the value that was specified, either implicitly or
explicitly, as the starting value when the identity column was
originally created.

The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE
42837). RESTART does not change the original START WITH value.

The numeric-constant is an exact numeric constant that can be any
positive or negative value that could be assigned to this column
(SQLSTATE 42815), without non-zero digits existing to the right of the
decimal point (SQLSTATE 428FA). The numeric-constant will be used as
the next value for the column.

DROP IDENTITY
Drops the identity attributes of the column, making the column a simple
numeric data type column. DROP IDENTITY is not allowed if the column
is not an identity column (SQLSTATE 42837).

DROP EXPRESSION
Drops the generated expression attributes of the column, making the
column a non-generated column. DROP EXPRESSION is not allowed if the
column is not a generated expression column (SQLSTATE 42837).

DROP DEFAULT
Drops the current default for the column. The specified column must have
a default value (SQLSTATE 42837).

DROP NOT NULL
Drops the NOT NULL attribute of the column, allowing the column to
have the null value. This clause is not allowed if the column is specified in
the primary key, or in a unique constraint of the table (SQLSTATE 42831).
Altering this attribute for a column requires table reorganization before
further table access is allowed (SQLSTATE 57016). The column being
altered cannot be part of a table containing an XML data type column
(SQLSTATE 42997). The table cannot have data capture enabled
(SQLSTATE 42997).

ADD SCOPE
Add a scope to an existing reference type column that does not already
have a scope defined (SQLSTATE 428DK). If the table being altered is a
typed table, the column must not be inherited from a supertable
(SQLSTATE 428D]).

typed-table-name
The name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No

ALTER TABLE

checking is done of any existing values in column-name to ensure that
the values actually reference existing rows in typed-view-name.

COMPRESS
Specifies whether or not default values for this column are to be stored
more efficiently.

SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for
the data types when no specific values are specified) are to be stored
using minimal space. If the table is not already set with the VALUE
COMPRESSION attribute activated, a warning is returned (SQLSTATE
01648), and system default values are not stored using minimal space.

Allowing system default values to be stored in this manner causes a
slight performance penalty during insert and update operations on the
column because of the extra checking that is done.

Existing data in the column is not changed. Consider offline table
reorganization to enable existing data to take advantage of storing
system default values using minimal space.

OFF
Specifies that system default values are to be stored in the column as
regular values. Existing data in the column is not changed. Offline
reorganization is recommended to change existing data.

The base data type must not be DATE, TIME or TIMESTAMP (SQLSTATE
42842). If the base data type is a varying-length string, this clause is
ignored. String values of length 0 are automatically compressed if a table
has been set with VALUE COMPRESSION.

If the table being altered is a typed table, the column must not be inherited
from a supertable (SQLSTATE 428D]J).

SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is
associated with the table. The name must not be qualified (SQLSTATE
42601).The table must have a security policy associated with it (SQLSTATE
55064).

DROP COLUMN SECURITY
Alters a column to make it a non-protected column.

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints
dependent on this primary key. The table must have a primary key (SQLSTATE
42888).

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint (SQLSTATE 42704). For information on
implications of dropping a referential constraint see

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential
constraints dependent on this unique constraint. The constraint-name must
identify an existing UNIQUE constraint (SQLSTATE 42704). For information on
implications of dropping a unique constraint, see

Statements 105

ALTER TABLE

DROP CHECK constraint-name

Drops the check constraint constraint-name. The constraint-name must identify an
existing check constraint defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name

Drops the constraint constraint-name. The constraint-name must identify an
existing check constraint, referential constraint, primary key, or unique
constraint defined on the table (SQLSTATE 42704). For information on
implications of dropping a constraint, see [Note

DROP COLUMN

Drops the identified column from the table. The table must not be a typed
table (SQLSTATE 428DH). The table cannot have data capture enabled
(SQLSTATE 42997). Dropping a column requires table reorganization before
further table access is allowed.

column-name

Identifies the column that is to be dropped. The column name must not be
qualified. The name must identify a column of the specified table
(SQLSTATE 42703). The name must not identify the only column of the
table (SQLSTATE 42814). The name must not identify a column that is part
of the table’s distribution key, table partitioning key, or organizing
dimensions (SQLSTATE 42997). The name must not identify a column that
is part of a table containing an XML data type column (SQLSTATE 42997).

CASCADE
Specifies that any views, indexes, triggers, SQL functions, constraints, or
global variables that are dependent on the column being dropped are also
dropped, or that any decomposition-enabled XSROBJECTs that are
dependent on the table containing the column are made inoperative for
decomposition. A trigger is dependent on the column if it is referenced in
the UPDATE OF column list, or anywhere in the triggered action. A
decomposition-enabled XSROBJECT is dependent on a table if it contains a
mapping of an XML element or attribute to the table. If an SQL function or
global variable is dependent on another database object, it might not be
possible to drop the function or global variable by means of the CASCADE
option. CASCADE is the default.

RESTRICT
Specifies that the column cannot be dropped if any views, indexes,
triggers, constraints, or global variables are dependent on the column, or if
any decomposition-enabled XSROBJECT is dependent on the table that
contains the column (SQLSTATE 42893). A trigger is dependent on the
column if it is referenced in the UPDATE OF column list, or anywhere in
the triggered action. A decomposition-enabled XSROBJECT is dependent
on a table if it contains a mapping of an XML element or attribute to the
table. The first dependent object that is detected is identified in the
administration log.

Table 16. Cascaded Effects of Dropping a Column

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is Dropping the column is not | The object and all objects that
referenced by a view or a allowed. are dependent on that object
trigger are dropped.

106 SQL Reference, Volume 2

Table 16. Cascaded Effects of Dropping a Column (continued)

ALTER TABLE

Operation

RESTRICT Effect

CASCADE Effect

Dropping a column that is
referenced in the key of an
index

If all columns that are
referenced in the index are
dropped in the same ALTER
TABLE statement, dropping
the index is allowed.
Otherwise, dropping the
column is not allowed.

The index is dropped.

Dropping a column that is
referenced in a unique
constraint

If all columns that are
referenced in the unique
constraint are dropped in the
same ALTER TABLE
statement, and the unique
constraint is not referenced
by a referential constraint, the
columns and the constraint
are dropped. (The index that
is used to satisfy the
constraint is also dropped.)
Otherwise, dropping the
column is not allowed.

The unique constraint and
any referential constraints
that reference that unique
constraint are dropped. (Any
indexes that are used by
those constraints are also
dropped).

Dropping a column that is
referenced in a referential
constraint

If all columns that are
referenced in the referential
constraint are dropped in the
same ALTER TABLE
statement, the columns and
the constraint are dropped.
Otherwise, dropping the
column is not allowed.

The referential constraint is
dropped.

Dropping a column that is
referenced by a
system-generated column
that is not being dropped.

Dropping the column is not
allowed.

Dropping the column is not
allowed.

Dropping a column that is
referenced in a check
constraint

Dropping the column is not
allowed.

The check constraint is
dropped.

Dropping a column that is
referenced in a
decomposition-enabled
XSROBJECT

Dropping the column is not
allowed.

The XSROBJECT is marked
inoperative for
decomposition. Re-enabling
the XSROBJECT might
require readjustment of its
mappings; following this,
issue an ALTER XSROBJECT
ENABLE DECOMPOSITION
statement against the
XSROBJECT.

Dropping a column that is
referenced in the default
expression of a global
variable

Dropping the column is not
allowed.

The global variable is
dropped, unless the dropping
of the global variable is
disallowed because there are
other objects, which do not
allow the cascade, that
depend on the global
variable.

107

Statements

ALTER TABLE

108

DROP RESTRICT ON DROP

Removes the restriction, if there is one, on dropping the table and the table
space that contains the table.

DROP DISTRIBUTION

Drops the distribution definition for the table. The table must have a
distribution definition (SQLSTATE 428FT). The table space for the table must
be defined on a single partition database partition group.

DROP MATERIALIZED QUERY

Changes a materialized query table so that it is no longer considered to be a
materialized query table. The table specified by table-name must be defined as a
materialized query table that is not replicated (SQLSTATE 428EW). The
definition of the columns of fable-name is not changed, but the table can no
longer be used for query optimization, and the REFRESH TABLE statement
can no longer be used.

DATA CAPTURE

Indicates whether extra information for data replication is to be written to the
log.

If the table is a typed table, then this option is not supported (SQLSTATE
428DH for root tables or 428DR for other subtables).

Data capture is incompatible with row compression (SQLSTATE 42997).

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be
written to the log. This option is required if this table will be replicated
and the Capture program is used to capture changes for this table from the
log.

If the table is defined to allow data on a database partition other than the
catalog partition (multiple partition database partition group, or database
partition group with database partitions other than the catalog partition),
then this option is not supported (SQLSTATE 42997).

If the schema name (implicit or explicit) of the table is longer than 18
bytes, this option is not supported (SQLSTATE 42997).

INCLUDE LONGVAR COLUMNS
Allows data replication utilities to capture changes made to LONG
VARCHAR or LONG VARGRAPHIC columns. The clause may be
specified for tables that do not have any LONG VARCHAR or LONG
VARGRAPHIC columns since it is possible to ALTER the table to
include such columns.

ACTIVATE NOT LOGGED INITIALLY

SQL Reference, Volume 2

Activates the NOT LOGGED INITIALLY attribute of the table for this current
unit of work.

Any changes made to the table by an INSERT, DELETE, UPDATE, CREATE
INDEX, DROP INDEX, or ALTER TABLE in the same unit of work after the
table is altered by this statement are not logged. Any changes made to the
system catalog by the ALTER statement in which the NOT LOGGED
INITIALLY attribute is activated are logged. Any subsequent changes made in
the same unit of work to the system catalog information are logged.

ALTER TABLE

At the completion of the current unit of work, the NOT LOGGED INITIALLY
attribute is deactivated and all operations that are done on the table in
subsequent units of work are logged.

If using this feature to avoid locks on the catalog tables while inserting data, it
is important that only this clause be specified on the ALTER TABLE statement.
Use of any other clause in the ALTER TABLE statement will result in catalog
locks. If no other clauses are specified for the ALTER TABLE statement, then
only a SHARE lock will be acquired on the system catalog tables. This can
greatly reduce the possibility of concurrency conflicts for the duration of time
between when this statement is executed and when the unit of work in which
it was executed is ended.

If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

For more information about the NOT LOGGED INITIALLY attribute, see the
description of this attribute in “CREATE TABLE".

Note: If non-logged activity occurs against a table that has the NOT LOGGED
INITIALLY attribute activated, and if a statement fails (causing a rollback), or a
ROLLBACK TO SAVEPOINT is executed, the entire unit of work is rolled back
(SQL1476N). Furthermore, the table for which the NOT LOGGED INITIALLY
attribute was activated is marked inaccessible after the rollback has occurred
and can only be dropped. Therefore, the opportunity for errors within the unit
of work in which the NOT LOGGED INITTALLY attribute is activated should
be minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. Once the data has been
removed, it cannot be recovered except through use of the RESTORE
facility. If the unit of work in which this alter statement was issued is
rolled back, the table data will not be returned to its original state.

When this action is requested, no DELETE triggers defined on the affected
table are fired. Any indexes that exist on the table are also deleted.

A partitioned table with attached data partitions cannot be emptied
(SQLSTATE 42928).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space during a
load or a table reorganization operation. The first row on each page is added
without restriction. When additional rows are added to a page, at least integer
percent of the page is left as free space. The PCTFREE value is considered only
by the load and table reorg utilities. The value of integer can range from 0 to
99. A PCTEREE value of -1 in the system catalog (SYSCAT.TABLES) is
interpreted as the default value. The default PCTFREE value for a table page is
0. If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed. Use of
this option in the table definition will not prevent normal lock escalation from
occurring. If the table is a typed table, this option is only supported on the root
table of the typed table hierarchy (SQLSTATE 428DR).

ROW
Indicates the use of row locks. This is the default lock size when a table is
created.

Statements 109

ALTER TABLE

110

BLOCKINSERT

Indicates the use of block locks during insert operations. This means that
the appropriate exclusive lock is acquired on the block before insertion,
and row locking is not done on the inserted row. This option is useful
when separate transactions are inserting into separate cells in the table.
Transactions inserting into the same cells can still do so concurrently, but
will insert into distinct blocks, and this can impact the size of the cell if
more blocks are needed. This option is only valid for MDC tables
(SQLSTATE 628N).

TABLE

Indicates the use of table locks. This means that the appropriate share or
exclusive lock is acquired on the table, and that intent locks (except intent
none) are not used. For partitioned tables, this lock strategy is applied to
both the table lock and the data partition locks for any data partitions that
are accessed. Use of this value can improve the performance of queries by
limiting the number of locks that need to be acquired. However,
concurrency is also reduced, because all locks are held over the complete
table.

APPEND

Indicates whether data is appended to the end of the table data or placed
where free space is available in data pages. If the table is a typed table, this
option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

Indicates that table data will be appended and information about free
space on pages will not be kept. The table must not have a clustered index
(SQLSTATE 428CA).

OFF

Indicates that table data will be placed where there is available space. This
is the default when a table is created.

The table should be reorganized after setting APPEND OFF since the
information about available free space is not accurate and may result in
poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY

SQL Reference, Volume 2

Indicates to the optimizer whether or not the cardinality of table table-name can
vary significantly at run time. Volatility applies to the number of rows in the
table, not to the table itself. CARDINALITY is an optional keyword. The
default is NOT VOLATILE.

VOLATILE

Specifies that the cardinality of table table-name can vary significantly at
run time, from empty to large. To access the table, the optimizer will use
an index scan (rather than a table scan, regardless of the statistics) if that
index is index-only (all referenced columns are in the index), or that index
is able to apply a predicate in the index scan. The list prefetch access
method will not be used to access the table. If the table is a typed table,
this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

NOT VOLATILE

Specifies that the cardinality of table-name is not volatile. Access plans to
this table will continue to be based on existing statistics and on the current
optimization level.

ALTER TABLE

COMPRESS
Specifies whether or not data compression applies to the rows of the table.

YES
Specifies that data row compression is enabled. Insert and update
operations on the table will be subject to compression. If no compression
dictionary for the table exists, a compression dictionary is automatically
created and rows are subject to compression after the table is sufficiently
populated with data. If there is an existing compression dictionary for the
table, compression is reactivated to use this dictionary, and rows are
subject to compression.

NO

Specifies that data row compression is disabled. Insert and update
operations on the table will no longer be subject to compression. Any rows
in the table that are in compressed format remain in compressed format
until they are converted to non-compressed format when they are updated.
A non-inplace reorganization of the table decompresses all rows that are
compressed. If a compression dictionary exists, it is discarded during table
reinitialization or truncation (such as, for example, a replace operation).

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a
different byte count depending on the row format that is used. For more
information, see “Byte Counts” in “CREATE TABLE”. An update operation
causes an existing row to be changed to the new row format. Offline table
reorganization is recommended to improve the performance of update
operations on existing rows. This can also result in the table taking up less
space. If the row size, calculated using the appropriate column in the table
named “Byte Counts of Columns by Data Type” (see “CREATE TABLE"),
would no longer fit within the row size limit, as indicated in the table named
“Limits for Number of Columns and Row Size In Each Table Space Page Size”,
an error is returned (SQLSTATE 54010). If the table is a typed table, this option
is only supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

ACTIVATE
The NULL value is stored using three bytes. This is the same or less space
than when VALUE COMPRESSION is not active for columns of all data
types, with the exception of CHAR(1). Whether or not a column is defined
as nullable has no affect on the row size calculation. The zero-length data
values for columns whose data type is VARCHAR, VARGRAPHIC, LONG
VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, or BLOB are to be
stored using two bytes only, which is less than the storage required when
VALUE COMPRESSION is not active. When a column is defined using the
COMPRESS SYSTEM DEFAULT option, this also allows the system default
value for the column to be stored using three bytes of total storage. The
row format that is used to support this determines the byte counts for each
data type, and tends to cause data fragmentation when updating to or
from NULL, a zero-length value, or the system default value.

DEACTIVATE
The NULL value is stored with space set aside for possible future updates.
This space is not set aside for varying-length columns. It also does not
support efficient storage of system default values for a column. If columns
already exist with the COMPRESS SYSTEM DEFAULT attribute, a warning
is returned (SQLSTATE 01648).

Statements 111

ALTER TABLE

112

LOG INDEX BUILD

Specifies the level of logging that is to be performed during create, recreate, or
reorganize index operations on this table.

NULL
Specifies that the value of the logindexbuild database configuration
parameter will be used to determine whether or not index build operations
are to be completely logged. This is the default when the table is created.

OFF
Specifies that any index build operations on this table will be logged
minimally. This value overrides the setting of the logindexbuild database
configuration parameter.

ON
Specifies that any index build operations on this table will be logged
completely. This value overrides the setting of the logindexbuild database
configuration parameter.

Rules

Any unique or primary key constraint defined on the table must be a superset of
the distribution key, if there is one (SQLSTATE 42997).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

A column can only be referenced in one ADD, ALTER, or DROP COLUMN
clause in a single ALTER TABLE statement (SQLSTATE 42711).

A column length or data type cannot be altered, nor can the column be dropped,
if the table has any materialized query tables that are dependent on the table
(SQLSTATE 42997).

VARCHAR and VARGRAPHIC columns that have been altered to be greater
than 4000 and 2000, respectively, must not be used as input parameters in
functions in the SYSFUN schema (SQLSTATE 22001).

A column length cannot be altered if the table has any views enabled for query
optimization that are dependent on the table (SQLSTATE 42997).

The table must be put in set integrity pending state, using the SET INTEGRITY
statement with the OFF option (SQLSTATE 55019), before:

— Adding a column with a generation expression
— Altering the generated expression of a column
— Changing a column to have a generated expression

A column of data type XML cannot be added to a table if there are type 1
indexes on that table (SQLSTATE 42997). The indexes can be converted to type 2
indexes using the REORG INDEXES command with the CONVERT option.

An existing column cannot be altered to become of type DB2SECURITYLABEL
(SQLSTATE 42837).

Defining a column of type DB2SECURITYLABEL fails if the table does not have
a security policy associated with it (SQLSTATE 55064).

A column of type DB2SECURITYLABEL cannot be altered or dropped
(SQLSTATE 42817).

An ALTER TABLE operation to mark a table as protected fails if there exists an
MQT that depends on that table (SQLSTATE 55067).

Attaching a partition to a protected partitioned table fails if the source table and
the target table are not protected using the same security policy, have the same
row security label column, and have the same set of protected columns
(SQLSTATE 428GE).

SQL Reference, Volume 2

ALTER TABLE

 If a generated column is referenced in a table partitioning key, the generated
column expression cannot be altered (SQLSTATE 42837).

Notes

* A REORG-recommended operation has occured when changes resulting from an
ALTER TABLE statement affect the row format of the data. When this occurs,
most subsequent operations on the table are restricted until a table
reorganization operation completes successfully. Up to three ALTER TABLE
statements of this type can execute against a table before reorganization must be
done (SQLSTATE 57016). Multiple alterations that would constitute a
REORG-recommended operation can be made as part of a single ALTER TABLE
statement (one per column); this is considered to be a single
REORG-recommended operation. For example, dropping two columns in a
single ALTER TABLE statement is not considered to be two
REORG-recommended operations. Dropping two columns in two separate
ALTER TABLE statements, however, would be regarded as two statements that
contain REORG-recommended operations.

* The following table operations are allowed after a successful

REORG-recommended operation has occurred:

— ALTER TABLE, where no row data validation is required. However, the
following operations are not allowed (SQLSTATE 57007):
- ADD CHECK CONSTRAINT
- ADD REFERENTIAL CONSTRAINT
- ADD UNIQUE CONSTRAINT
- ALTER COLUMN SET NOT NULL

- DROP TABLE

- RENAME TABLE

- REORG TABLE

— TRUNCATE TABLE

— Table scan access of table data

 Altering a table to make it a materialized query table will put the table in set
integrity pending state. If the table is defined as REFRESH IMMEDIATE, the
table must be taken out of set integrity pending state before INSERT, DELETE,
or UPDATE commands can be invoked on the table referenced by the fullselect.
The table can be taken out of set integrity pending state by using REFRESH
TABLE or SET INTEGRITY, with the IMMEDIATE CHECKED option, to
completely refresh the data in the table based on the fullselect. If the data in the
table accurately reflects the result of the fullselect, the IMMEDIATE
UNCHECKED option of SET INTEGRITY can be used to take the table out of set
integrity pending state.

* Altering a table to change it to a REFRESH IMMEDIATE materialized query
table will cause any packages with INSERT, DELETE, or UPDATE usage on the
table referenced by the fullselect to be invalidated.

* Altering a table to change from a materialized query table to a regular table will
cause any packages dependent on the table to be invalidated.

* Altering a table to change from a MAINTAINED BY FEDERATED_TOOL
materialized query table to a regular table will not cause any change in the
subscription setup of the replication tool. Because a subsequent change to a
MAINTAINED BY SYSTEM materialized query table will cause the replication
tool to fail, you must change the subscription setting when changing a
MAINTAINED BY FEDERATED_TOOL materialized query table.

Statements 113

ALTER TABLE

If a deferred materialized query table is associated with a staging table, the
staging table will be dropped if the materialized query table is altered to a
regular table.

ADD column clauses are processed prior to all other clauses. Other clauses are
processed in the order that they are specified.

Any columns added through an alter table operation will not automatically be
added to any existing view of the table.

Adding or attaching a data partition to a partitioned table, or detaching a data
partition from a partitioned table causes any packages that are dependent on
that table to be invalidated.

To drop the partitioning for a table, the table must be dropped and then
recreated.

To drop the organization for a table, the table must be dropped and then
recreated.

When an index is automatically created for a unique or primary key constraint,
the database manager will try to use the specified constraint name as the index
name with a schema name that matches the schema name of the table. If this
matches an existing index name or no name for the constraint was specified, the
index is created in the SYSIBM schema with a system-generated name formed of
"SQL" followed by a sequence of 15 numeric characters generated by a
timestamp based function.

When an index is created on a partitioned table with attached data partitions,
the index will not include the data in the attached data partitions. Use the SET
INTEGRITY statement to maintain all indexes for all attached data partitions.

Any table that may be involved in a DELETE operation on table T is said to be
delete-connected to T. Thus, a table is delete-connected to T if it is a dependent of
T or it is a dependent of a table in which deletes from T cascade.

A package has an insert (update/delete) usage on table T if records are inserted
into (updated in/deleted from) T either directly by a statement in the package,
or indirectly through constraints or triggers executed by the package on behalf
of one of its statements. Similarly, a package has an update usage on a column if
the column is modified directly by a statement in the package, or indirectly
through constraints or triggers executed by the package on behalf of one of its
statements.

In a federated system, a remote base table that was created using transparent
DDL can be altered. However, transparent DDL does impose some limitations on
the modifications that can be made:

— A remote base table can only be altered by adding new columns or specifying
a primary key.
— Specific clauses supported by transparent DDL include:
- ADD COLUMN column-definition
- NOT NULL and PRIMARY KEY in the column-options clause
- ADD unique-constraint (PRIMARY KEY only)
— You cannot specify a comment on an existing column in a remote base table.
— An existing primary key in a remote base table cannot be altered or dropped.

— Altering a remote base table invalidates any packages that are dependent on
the nickname associated with that remote base table.

— The remote data source must support the changes being requested through
the ALTER TABLE statement. Depending on how the data source responds to
requests it does not support, an error might be returned or the request might
be ignored.

114 SQL Reference, Volume 2

ALTER TABLE

— An attempt to alter a remote base table that was not created using transparent
DDL returns an error.
* Any changes, whether implicit or explicit, to primary key, unique keys, or
foreign keys might have the following effects on packages, indexes, and other
foreign keys.

— If a primary key or unique key is added:

- There is no effect on packages, foreign keys, or existing unique keys. (If the
primary or unique key uses an existing unique index that was created in a
previous version and has not been converted to support deferred
uniqueness, the index is converted, and packages with update usage on the
associated table are invalidated.)

— If a primary key or unique key is dropped:

- The index is dropped if it was automatically created for the constraint. Any
packages dependent on the index are invalidated.

- The index is set back to non-unique if it was converted to unique for the
constraint and it is no longer system-required. Any packages dependent on
the index are invalidated.

- The index is set to no longer system required if it was an existing unique
index used for the constraint. There is no effect on packages.

- All dependent foreign keys are dropped. Further action is taken for each
dependent foreign key, as specified in the next item.

— If a foreign key is added, dropped, or altered from NOT ENFORCED to
ENFORCED (or ENFORCED to NOT ENFORCED):

- All packages with an insert usage on the object table are invalidated.

- All packages with an update usage on at least one column in the foreign
key are invalidated.

- All packages with a delete usage on the parent table are invalidated.

- All packages with an update usage on at least one column in the parent
key are invalidated.

— If a foreign key or a functional dependency is altered from ENABLE QUERY
OPTIMIZATION to DISABLE QUERY OPTIMIZATION:

- All packages with dependencies on the constraint for optimization
purposes are invalidated.

¢ Adding a column to a table will result in invalidation of all packages with insert
usage on the altered table. If the added column is the first user-defined
structured type column in the table, packages with DELETE usage on the altered
table will also be invalidated.

¢ Adding a check or referential constraint to a table that already exists and that is
not in set integrity pending state, or altering the existing check or referential
constraint from NOT ENFORCED to ENFORCED on an existing table that is not
in set integrity pending state will cause the existing rows in the table to be
immediately evaluated against the constraint. If the verification fails, an error is
returned (SQLSTATE 23512). If a table is in set integrity pending state, adding a
check or referential constraint, or altering a constraint from NOT ENFORCED to
ENFORCED will not immediately lead to the enforcement of the constraint.
Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to
begin enforcing the constraint.

* Adding, altering, or dropping a check constraint will result in invalidation of all
packages with either an insert usage on the object table, an update usage on at
least one of the columns involved in the constraint, or a select usage exploiting
the constraint to improve performance.

Statements 115

ALTER TABLE

Adding a distribution key invalidates all packages with an update usage on at
least one of the columns of the distribution key.

A distribution key that was defined by default as the first column of the primary
key is not affected by dropping the primary key and adding a different primary
key.

Dropping a column or changing its data type removes all runstats information
from the table being altered. Runstats should be performed on the table after it
is again accessible. The statistical profile of the table is preserved if the table
does not contain a column that was explicitly dropped.

Altering a column (to increase its length or change its data type or nullability
attribute) or dropping a column invalidates all packages that reference (directly
or indirectly through a referential constraint or trigger) its table.

Altering a column (to increase its length or change its data type or nullability
attribute) regenerates views (except typed views) that are dependent on its table.
If a problem occurs while regenerating such a view, an error is returned
(SQLSTATE 56098). Any typed views that are dependent on the table are marked
inoperative.

Altering a column to increase its length or change its data type marks all
dependent triggers and SQL functions as invalid; they are implicitly recompiled
on next use. If a problem occurs while regenerating such an object, an error is
returned (SQLSTATE 56098).

Altering a column (to increase its length or change its data type or nullability
attribute) might cause errors (SQLSTATE 54010) while processing a trigger or an
SQL function when a statement involving the trigger or SQL function is
prepared or bound. This can occur if the row length based on the sum of the
lengths of the transition variables and transition table columns is too long. If
such a trigger or SQL function is dropped, a subsequent attempt to recreate it
returns an error (SQLSTATE 54040).

Altering a structured or XML type column to increase the inline length will
invalidate all packages that reference the table, either directly or indirectly
through a referential constraint or trigger.

Altering a structured or XML type column to increase the inline length will
regenerate views that are dependent on the table.

Changing the LOCKSIZE for a table will result in invalidation of all packages
that have a dependency on the altered table.

Changing VOLATILE or NOT VOLATILE CARDINALITY will result in
invalidation of all packages that have a dependency on the altered table.

Replication: Exercise caution when increasing the length or changing the data
type of a column. The change data table that is associated with an application
table might already be at or near the DB2 row size limit. The change data table
should be altered before the application table, or the two tables should be
altered within the same unit of work, to ensure that the alteration can be
completed for both tables. Consideration should be given to copies, which might
also be at or near the row size limit, or reside on platforms which lack the
ability to increase the length of an existing column.

If the change data table is not altered before the Capture program processes log
records with the altered attributes, the Capture program will likely fail. If a copy
containing the altered column is not altered before the subscription maintaining
the copy runs, the subscription will likely fail.

When detaching a partition from a protected table, the target table automatically
created by DB2 will be protected in exactly the same way the source table is
protected.

116 SQL Reference, Volume 2

ALTER TABLE

When a table is altered such that it becomes protected with row level
granularity, any cached dynamic SQL sections that depend on such a table are
invalidated. Similarly, any packages that depend on such a table are also
invalidated.

When a column of a table, T, is altered such that it becomes a protected column,
any cached dynamic SQL sections that depend on table T are invalidated.
Similarly, any packages that depend on table T are also invalidated.

When a column of a table, T, is altered such that it becomes a non protected
column, any cached dynamic SQL sections that depend on table T are
invalidated. Similarly, any packages that depend on table T are also invalidated.

For existing rows in the table, the value of the security label column defaults to
the security label for write access of the session authorization ID at the time the
ALTER statement that adds a row security label column is executed.

Considerations for implicitly hidden columns: A column that is defined as
implicitly hidden can be explicitly referenced in an ALTER TABLE statement. For
example, an implicitly hidden column can be altered or specified as part of a
referential constraint, check constraint, or materialized query table definition.

Compatibilities
— For compatibility with previous versions of DB2:
- The ADD keyword is optional for:
* Unnamed PRIMARY KEY constraints
¢ Unnamed referential constraints
* Referential constraints whose name follows the phrase FOREIGN KEY

- The CONSTRAINT keyword can be omitted from a column-definition
defining a references-clause

- constraint-name can be specified following FOREIGN KEY (without the
CONSTRAINT keyword)

- SET SUMMARY AS can be specified in place of SET MATERIALIZED
QUERY AS

- SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in
place of DROP MATERIALIZED QUERY

- SET MATERIALIZED QUERY AS (fullselect) can be specified in place of
ADD MATERIALIZED QUERY (fullselect)

- ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE
BY HASH; the optional USING HASHING clause can also still be specified
in this case

- DROP PARTITIONING KEY can be specified in place of DROP
DISTRIBUTION

— For compatibility with previous versions of DB2 and for consistency:

- A comma can be used to separate multiple options in the identity-alteration
clause

— For compatibility with DB2 for z/OS:
- PART can be specified in place of PARTITION
- VALUES can be specified in place of ENDING AT
— The following syntax is also supported:
- NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER

Statements 117

ALTER TABLE

Examples

Example 1: Add a new column named RATING, which is one character long, to
the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD RATING CHAR(1)

Example 2: Add a new column named SITE_NOTES to the PROJECT table. Create
SITE_NOTES as a varying-length column with a maximum length of 1000 bytes.
The values of the column do not have an associated character set and therefore
should not be converted.

ALTER TABLE PROJECT
ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3: Assume a table called EQUIPMENT exists defined with the following
columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR (50)
LOCATION VARCHAR (50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the
DEPARTMENT table. DEPTNO is the primary key of the DEPARTMENT table. If a
department is removed from the DEPARTMENT table, the owner
(EQUIP_OWNER) values for all equipment owned by that department should
become unassigned (or set to null). Give the constraint the name DEPTQUIP.
ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)

REFERENCES DEPARTMENT
ON DELETE SET NULL

Also, an additional column is needed to allow the recording of the quantity
associated with this equipment record. Unless otherwise specified, the EQUIP_QTY
column should have a value of 1 and must never be null.

ALTER TABLE EQUIPMENT

ADD COLUMN EQUIP_QTY
SMALLINT NOT NULL DEFAULT 1

Example 4: Alter table EMPLOYEE. Add the check constraint named REVENUE
defined so that each employee must make a total of salary and commission greater
than $30,000.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE
CHECK (SALARY + COMM > 30000)

Example 5: Alter table EMPLOYEE. Drop the constraint REVENUE which was
previously defined.

ALTER TABLE EMPLOYEE
DROP CONSTRAINT REVENUE

Example 6: Alter a table to log SQL changes in the default format.

ALTER TABLE SALARY1
DATA CAPTURE NONE

118 SQL Reference, Volume 2

ALTER TABLE

Example 7: Alter a table to log SQL changes in an expanded format.

ALTER TABLE SALARY2
DATA CAPTURE CHANGES

Example 8: Alter the EMPLOYEE table to add 4 new columns with default values.

ALTER TABLE EMPLOYEE
ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')
ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'O1')
ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

The default values use various function names when specifying the default. Since
MEASURE is a distinct type based on INTEGER, the MEASURE function is used.
The HEIGHT column default could have been specified without the function since
the source type of MEASURE is not BLOB or a datetime data type. Since
BIRTHDATE is a distinct type based on DATE, the DATE function is used
(BIRTHDATE cannot be used here). For the FLAGS and PHOTO columns the
default is specified using the BLOB function even though PHOTO is a distinct
type. To specify a default for BIRTHDAY, FLAGS and PHOTO columns, a function
must be used because the type is a BLOB or a distinct type sourced on a BLOB or
datetime data type.

Example 9: A table called CUSTOMERS is defined with the following columns:

Column Name Data Type
BRANCH_NO SMALLINT
CUSTOMER_NO DECIMAL(7)
CUSTOMER_NAME VARCHAR (50)

In this table, the primary key is made up of the BRANCH_NO and
CUSTOMER_NO columns. To distribute the table, you will need to create a
distribution key for the table. The table must be defined in a table space on a
single-node database partition group. The primary key must be a superset of the
distribution key columns: at least one of the columns of the primary key must be
used as the distribution key. Make BRANCH_NO the distribution key as follows:

ALTER TABLE CUSTOMERS
ADD DISTRIBUTE BY HASH (BRANCH_NO)

Example 10: A remote table EMPLOYEE was created in a federated system using
transparent DDL. Alter the remote table EMPLOYEE to add the columns
PHONE_NO and WORK_DEPT; also add a primary key on the existing column
EMP_NO and the new column WORK_DEPT.
ALTER TABLE EMPLOYEE
ADD COLUMN PHONE_NO CHAR(4) NOT NULL

ADD COLUMN WORK_DEPT CHAR(3)
ADD PRIMARY KEY (EMP_NO, WORK DEPT)

Example 11: Alter the DEPARTMENT table to add a functional dependency FD1,
then drop the functional dependency FD1 from the DEPARTMENT table.

ALTER TABLE DEPARTMENT
ADD CONSTRAINT FD1
CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

ALTER TABLE DEPARTMENT
DROP CHECK FD1

Example 12: Change the default value for the WORKDEPT column in the
EMPLOYEE table to 123.

Statements 119

ALTER TABLE

ALTER TABLE EMPLOYEE
ALTER COLUMN WORKDEPT
SET DEFAULT '123'

Example 13: Associate the security policy DATA_ACCESS with the table
EMPLOYEE.

ALTER TABLE EMPLOYEE
ADD SECURITY POLICY DATA_ACCESS

Example 14: Alter the table EMPLOYEE to protect the SALARY column.

ALTER TABLE EMPLOYEE
ALTER COLUMN SALARY
SECURED WITH EMPLOYEESECLABEL

Example 15: Assume that you have a table named SALARY_DATA that is defined
with the following columns:

Column Name Data Type

EMP_NAME VARCHAR(50) NOT NULL
EMP_ID SMALLINT NOT NULL
EMP_POSITION VARCHAR(100) NOT NULL
SALARY DECIMAL(5,2)
PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column, make
PROMOTION_DATE an optional field that can be set to the null value, and
remove the EMP_POSITION column.
ALTER TABLE SALARY_DATA
ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)

ALTER COLUMN PROMOTION_DATE DROP NOT NULL
DROP COLUMN EMP_POSITION

120 SQL Reference, Volume 2

ALTER TABLESPACE

ALTER TABLESPACE

The ALTER TABLESPACE statement is used to modify an existing table space in
the following ways:

* Add a container to, or drop a container from a DMS table space; that is, a table
space created with the MANAGED BY DATABASE option.

* Modify the size of a container in a DMS table space.

¢ Add a container to an SMS table space on a database partition that currently has
no containers.

* Modify the PREFETCHSIZE setting for a table space.

* Modify the BUFFERPOOL used for tables in the table space.
* Modify the OVERHEAD setting for a table space.

* Modify the TRANSFERRATE setting for a table space.

* Modify the file system caching policy for a table space.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SYSCTRL or SYSADM authority.

Syntax

»>—ALTER TABLESPACE—tablespace-nai

Statements 121

ALTER TABLESPACE

Y _—ADD-

i database-container-clause I
|—TO STRIPE SET—stripeset—I |—| on-db-partitions-clause '—I |
system-container-clause '—! on-db-partitions-clause i

BEGIN NEW STRIPE SET—| database-container-clause |

I |—| on-db-partitions-clause '—I
—DROP—| drop-container-clause }

I I—' on-db-partitions-clause 'J

—REDUCE:
database-container-clause |—| on-db-partitions-clause 'J
all-containers-clause
EXTEN database-container-clause |

RESIZETEI all-containers-clause |—I| |—| on-db-partitions-clause 'J

number-of-pages

integer—EK
G

—BUFFERPOOL—bufferpool

—PREFETCHSIZE—EAUTOMATIC

—OVERHEAD—number-of-millisecond

—TRANSFERRATE—number-of-millisecond:

FILE SYSTEM CACHING

NO FILE SYSTEM CACHIN
—DROPPED TABLE RECOVERY- ON

OFF:
L-SWITCH ONLINE

—AUTORESIZE NO-

YES—l

—INCREASESIZE—integer—I:FERCENT
KH_/
G

—MAXSIZE—|:integer K

NONEF—————

—CONVERT TO LARGE:

database-container-clause:

|—(Y |_FILE >container-string’ —[number—of—pages |)
DEVICE integer K:
M
G

drop-container-clause:

—(— |_FILE] ‘container-string’)
DEVICE

system-container-clause:

F—(—container-string’)

on-db-partitions-clause:

|—ON—|:DBPARTITIONN M

DBPARTITIONNUMS

122 SQL Reference, Volume 2

v

ALTER TABLESPACE

—(—Y

db-partition-numberl

|—TO—db-par‘t it z'on-numberZ—|

all-containers-clause:

CONTAINERS
[1

F—(—ALL |_number-of—pages—l—) I

integer K

<

[<p}

Description

tablespace-name
Names the table space. This is a one-part name. It is a long SQL identifier
(either ordinary or delimited).

ADD
Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset
Specifies that one or more new containers are to be added to the table space,
and that they will be placed into the given stripe set.

BEGIN NEW STRIPE SET
Specifies that a new stripe set is to be created in the table space, and that one
or more containers are to be added to this new stripe set. Containers that are
subsequently added using the ADD option will be added to this new stripe set
unless TO STRIPE SET is specified.

DROP
Specifies that one or more containers are to be dropped from the table space.

REDUCE
For non-automatic storage table spaces, specifies that existing containers are to
be reduced in size. The size specified is the size by which the existing
container is decreased. If the all-containers-clause is specified, all containers in
the table space will decrease by this size. If the reduction in size will result in a
table space size that is smaller then the current high water mark, an attempt
will be made to reduce the high water mark before attempting to reduce the
containers. For non-automatic storage table spaces, the REDUCE clause must
be followed by a database-container-clause or an all-containers-clause.

For automatic storage table spaces, specifies that the current high water mark
is to be reduced, if possible, and that the size of the table space is to be
reduced to the new high water mark. For automatic storage table spaces, the
REDUCE clause must not be followed by a database-container-clause or an
all-containers-clause.

EXTEND
Specifies that existing containers are to be increased in size. The size specified
is the size by which the existing container is increased. If the
all-containers-clause is specified, all containers in the table space will increase by
this size.

RESIZE
Specifies that the size of existing containers is to be changed. The size specified

Statements 123

ALTER TABLESPACE

124

is the new size for the container. If the all-containers-clause is specified, all
containers in the table space will be changed to this size. If the operation
affects more than one container, these containers must all either increase in
size, or decrease in size. It is not possible to increase some while decreasing
others (SQLSTATE 429BC).

database-container-clause
Adds one or more containers to a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

drop-container-clause
Drops one or more containers from a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

system-container-clause
Adds one or more containers to an SMS table space on the specified database
partitions. The table space must identify an SMS table space that already exists
at the application server. There must not be any containers on the specified
database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container
operations.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The
table space must identify a DMS table space that already exists at the
application server.

PREFETCHSIZE
Specifies to read in data needed by a query prior to it being referenced by the
query, so that the query need not wait for I/O to be performed.

AUTOMATIC
Specifies that the prefetch size of a table space is to be updated
automatically; that is, the prefetch size will be managed by DB2, using the
following formula:
Prefetch size =
(number of containers) *

(number of physical disks per container) =
(extent size)

The number of physical disks per container defaults to 1, unless a value is
specified through the DB2_PARALLEL_IO registry variable.

DB2 will update the prefetch size automatically whenever the number of
containers in a table space changes (following successful execution of an
ALTER TABLESPACE statement that adds or drops one or more
containers). The prefetch size is updated at database start-up.

Automatic updating of the prefetch size can be turned off by specifying a
numeric value in the PREFETCHSIZE clause.

number-of-pages
Specifies the number of PAGESIZE pages that will be read from the table
space when data prefetching is being performed. The prefetch size value
can also be specified as an integer value followed by K (for kilobytes), M
(for megabytes), or G (for gigabytes). If specified in this way, the floor of
the number of bytes divided by the page size is used to determine the
number of pages value for prefetch size.

SQL Reference, Volume 2

ALTER TABLESPACE

BUFFERPOOL bufferpool-name
The name of the buffer pool used for tables in this table space. The buffer pool
must currently exist in the database (SQLSTATE 42704). The database partition
group of the table space must be defined for the bufferpool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the I/0O
controller overhead and disk seek and latency time, in milliseconds. The
number should be an average for all containers that belong to the table space,
if not the same for all containers. This value is used to determine the cost of
I/0 during query optimization.

TRANSFERRATE number-of-milliseconds
Any numeric literal (integer, decimal, or floating point) that specifies the time
to read one page (4K or 8K) into memory, in milliseconds. The number should
be an average for all containers that belong to the table space, if not the same
for all containers. This value is used to determine the cost of I/O during query
optimization.

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether or not I/O operations will be cached at the file system level.
Connections to the database must be terminated before a new caching policy
takes effect. Note that I/O access to long or LOB data is buffered for both SMS
and DMS containers.

FILE SYSTEM CACHING
All I/O operations in the target table space will be cached at the file
system level.

NO FILE SYSTEM CACHING
All I/0 operations will bypass the file system level cache.

DROPPED TABLE RECOVERY
Specifies whether or not tables that have been dropped from tablespace-name
can be recovered using the RECOVER DROPPED TABLE ON option of the
ROLLFORWARD DATABASE command. For partitioned tables, dropped table
recovery is always on, even if dropped table recovery is turned off for
non-partitioned tables in one or more table spaces.

ON
Specifies that dropped tables can be recovered.

OFF
Specifies that dropped tables cannot be recovered.

SWITCH ONLINE
Specifies that table spaces in OFFLINE state are to be brought online if their

containers have become accessible. If the containers are not accessible, an error
is returned (SQLSTATE 57048).

AUTORESIZE
Specifies whether or not the auto-resize capability of a database managed
space (DMS) table space or an automatic storage table space is to be enabled.

Auto-resizable table spaces automatically increase in size when they become
full.

NO
Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be disabled. If the auto-resize capability

is disabled, any values that have been previously specified for
INCREASESIZE or MAXSIZE will not be kept.

Statements 125

ALTER TABLESPACE

YES
Specifies that the auto-resize capability of a DMS table space or an
automatic storage table space is to be enabled.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is
enabled for auto-resize will automatically be increased when the table space is
full, and a request for space has been made. The integer value must be
followed by:

* PERCENT to specify the amount as a percentage of the table space size at
the time that a request for space is made. When PERCENT is specified, the
integer value must be between 0 and 100 (SQLSTATE 42615).

* K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the
amount in bytes

Note that the actual value used might be slightly smaller or larger than what
was specified, because the database manager strives to maintain consistent
growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for
auto-resize can automatically be increased.

integer
Specifies a hard limit on the size, per database partition, to which a DMS
table space or an automatic storage table space can automatically be
increased. The integer value must be followed by K (for kilobytes), M (for
megabytes), or G (for gigabytes). Note that the actual value used might be
slightly smaller than what was specified, because the database manager
strives to maintain consistent growth across containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system
capacity, or to the maximum table space size (described in “SQL limits”).

CONVERT TO LARGE
Modifies an existing regular DMS table space to be a large DMS table space.
The table space and its contents are locked during conversion. This option can
only be used on regular DMS table spaces. If an SMS table space, a temporary
table space, or the system catalog table space is specified, an error is returned
(SQLSTATE 560CF). You cannot convert a table space that contains a data
partition of a partitioned table that has data partitions in another table space
(SQLSTATE 560CF). Conversion cannot be reversed after being committed. If
tables in the table space are defined with DATA CAPTURE CHANGES,
consider the storage and capacity limits of the target table and table space.

Rules

* The BEGIN NEW STRIPE SET clause cannot be specified in the same statement
as ADD, DROP, EXTEND, REDUCE, and RESIZE, unless those clauses are being
directed to different database partitions (SQLSTATE 429BC).

* The stripe set value specified with the TO STRIPE SET clause must be within the
valid range for the table space being altered (SQLSTATE 42615).

* When adding or removing space from the table space, the following rules must
be followed:

— EXTEND and RESIZE can be used in the same statement, provided that the
size of each container is increasing (SQLSTATE 429BC).

126 SQL Reference, Volume 2

ALTER TABLESPACE

— REDUCE and RESIZE can be used in the same statement, provided that the
size of each container is decreasing (SQLSTATE 429BC).

— EXTEND and REDUCE cannot be used in the same statement, unless they are
being directed to different database partitions (SQLSTATE 429BC).

— ADD cannot be used with REDUCE or DROP in the same statement, unless
they are being directed to different database partitions (SQLSTATE 429BC).

— DROP cannot be used with EXTEND or ADD in the same statement, unless
they are being directed to different database partitions (SQLSTATE 429BC).

The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for
system managed space (SMS) table spaces, temporary table spaces that were
created using automatic storage, or DMS table spaces that are defined to use raw
device containers (SQLSTATE 42601).

The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is
not auto-resizable (SQLSTATE 42601).

When specifying a new maximum size for a table space, the value must be
larger than the current size on each database partition (SQLSTATE 560B0).
Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE
SET) cannot be performed on automatic storage table spaces, because the
database manager is controlling the space management of such table spaces
(SQLSTATE 42858).

Raw device containers cannot be added to an auto-resizable DMS table space
(SQLSTATE 42601).

The CONVERT TO LARGE clause cannot be specified in the same statement as
any other clause (SQLSTATE 429BC).

Notes

Each container definition requires 53 bytes plus the number of bytes necessary to
store the container name. The combined length of all container names for the
table space cannot exceed 20 480 bytes (SQLSTATE 54034).

Default container operations are container operations that are specified in the
ALTER TABLESPACE statement, but that are not explicitly directed to a specific
database partition. These container operations are sent to any database partition
that is not listed in the statement. If these default container operations are not
sent to any database partition, because all database partitions are explicitly
mentioned for a container operation, a warning is returned (SQLSTATE 1758W).

Once space has been added or removed from a table space, and the transaction
is committed, the contents of the table space may be rebalanced across the
containers. Access to the table space is not restricted during rebalancing.

If the table space is in OFFLINE state and the containers have become accessible,
the user can disconnect all applications and connect to the database again to
bring the table space out of OFFLINE state. Alternatively, SWITCH ONLINE
option can bring the table space up (out of OFFLINE) while the rest of the
database is still up and being used.

If adding more than one container to a table space, it is recommended that they
be added in the same statement so that the cost of rebalancing is incurred only
once. An attempt to add containers to the same table space in separate ALTER
TABLESPACE statements within a single transaction will result in an error
(SQLSTATE 55041).

Any attempts to extend, reduce, resize, or drop containers that do not exist will
raise an error (SQLSTATE 428B2).

Statements 127

ALTER TABLESPACE

When extending, reducing, or resizing a container, the container type must
match the type that was used when the container was created (SQLSTATE
428B2).

An attempt to change container sizes in the same table space, using separate
ALTER TABLESPACE statements but within a single transaction, will raise an
error (SQLSTATE 55041).

In a partitioned database if more than one database partition resides on the
same physical node, the same device or specific path cannot be specified for
such database partitions (SQLSTATE 42730). For this environment, either specify
a unique container-string for each database partition or use a relative path name.
Although the table space definition is transactional and the changes to the table
space definition are reflected in the catalog tables on commit, the buffer pool
with the new definition cannot be used until the next time the database is
started. The buffer pool in use, when the ALTER TABLESPACE statement was
issued, will continue to be used in the interim.

The REDUCE, RESIZE, or DROP option attempts to free unused extents, if
necessary, for DMS table spaces, and the REDUCE option attempts to free
unused extents for automatic storage table spaces. The removal of unused
extents allows the table space high water mark to be reduced to a value that
accurately represents the amount of space used, which, in turn, enables larger
reductions in table space size.

Conversion to large DMS table spaces:

— After conversion, it is recommended that you issue the COMMIT statement
and then increase the storage capacity of the table space.
- If the table space is enabled for auto-resize, the MAXSIZE table space
attribute should be increased, unless it is already set to NONE.
- If the table space is not enabled for auto-resize:
* Enable auto-resize by issuing the ALTER TABLESPACE statement with
the AUTORESIZE YES option, or
* Add more storage by adding stripe sets, extending the size of existing
containers, or both
— Indexes for tables in a converted table space must be reorganized or rebuilt
before they can support large record identifiers (RIDs).

- The indexes can be reorganized using the REORG INDEXES ALL command
(without the CLEANUP ONLY clause). Specify the ALLOW NO ACCESS
option for partitioned tables.

- Alternatively, the tables can be reorganized (not INPLACE), which will
rebuild all indexes and enable the tables to support more than 255 rows per

page.
- Any rebuilt Type 1 index is automatically converted to a Type 2 index.

— To determine which tables do not yet support large RIDs, use the
ADMIN_GET_TAB_INFO table function.

Compatibilities

— For compatibility with versions earlier than Version 8, the keyword:
- NODE can be substituted for DBPARTITIONNUM
- NODES can be substituted for DBPARTITIONNUMS

Examples

Example 1: Add a device to the PAYROLL table space.

128 SQL Reference, Volume 2

ALTER TABLESPACE

ALTER TABLESPACE PAYROLL
ADD (DEVICE '/dev/rhdisk9' 10000)

Example 2: Change the prefetch size and 1/O overhead for the ACCOUNTING
table space.

ALTER TABLESPACE ACCOUNTING
PREFETCHSIZE 64
OVERHEAD 19.3

Example 3: Create a table space TSI, then resize the containers so that all of the
containers have 2000 pages. (Three different ALTER TABLESPACE statements that
will accomplish this resizing are shown.)

CREATE TABLESPACE TS1
MANAGED BY DATABASE
USING (FILE '/conts/cont0' 1000,
DEVICE '/dev/rcontl' 500,
FILE 'cont2' 700)
ALTER TABLESPACE TS1
RESIZE (FILE '/conts/cont0' 2000,
DEVICE '/dev/rcontl' 2000,
FILE 'cont2' 2000)

OR

ALTER TABLESPACE TS1
RESIZE (ALL 2000)

OR

ALTER TABLESPACE TS1
EXTEND (FILE '/conts/cont0' 1000,
DEVICE '/dev/rcontl' 1500,
FILE 'cont2' 1300)

Example 4: Extend all of the containers in the DATA_TS table space by 1000 pages.

ALTER TABLESPACE DATA TS
EXTEND (ALL 1000)

Example 5: Resize all of the containers in the INDEX_TS table space to 100
megabytes (MB).
ALTER TABLESPACE INDEX_TS
RESIZE (ALL 100 M)

Example 6: Add three new containers. Extend the first container, and resize the
second.
ALTER TABLESPACE TSO
ADD (FILE 'cont2' 2000, FILE 'cont3' 2000)
ADD (FILE 'cont4' 2000)

EXTEND (FILE 'cont0' 100)
RESIZE (FILE 'contl' 3000)

Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new
container to database partition 0. Extend all of the containers on database partition
1. Resize a container on all database partitions other than the ones that were
explicitly specified (that is, database partitions 0 and 1).
ALTER TABLESPACE TSO
ADD (FILE 'A' 200) ON DBPARTITIONNUM (0)

EXTEND (ALL 200) ON DBPARTITIONNUM (1)
RESIZE (FILE 'B' 500)

Statements 129

ALTER TABLESPACE

130

The RESIZE clause is the default container clause in this example, and will be
executed on database partition 2, because other operations are being explicitly sent
to database partitions 0 and 1. If, however, there had only been these two database
partitions, the statement would have succeeded, but returned a warning
(SQL1758W) that default containers had been specified but not used.

Example 8: Enable the auto-resize option for table space DMS_TS1, and set its
maximum size to 256 megabytes.

ALTER TABLESPACE DMS_TS1
AUTORESIZE YES MAXSIZE 256 M

Example 9: Enable the auto-resize option for table space AUTOSTORE]L, and change
its growth rate to 5%.

ALTER TABLESPACE AUTOSTORE1
AUTORESIZE YES INCREASESIZE 5 PERCENT

Example 10: Change the growth rate for an auto-resizable table space named
MY_TS to 512 kilobytes, and set its maximum size to be as large as possible.

ALTER TABLESPACE MY_TS
INCREASESIZE 512 K MAXSIZE NONE

SQL Reference, Volume 2

ALTER THRESHOLD

ALTER THRESHOLD

The ALTER THRESHOLD statement alters the definition of a threshold.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax

»>—ALTER THRESHOLD—threshold-name >

ENABLE
DISABLE—I

>—'—|:VIJ:HEN—| alter-threshold-predicate — alter-threshold-exceeded-actions |—|——><

altered-threshold-predicate:

}——TOTALDBPARTITIONCONNECTIONS—>—integer-value |

—TOTALSCPARTITIONCONNECTIONS—>—integer-value
|:AND QUEUEDCONNECTIONS—>—integer—value:|
AND QUEUEDCONNECTIONS UNBOUNDED:

—CONNECTIONIDLETIME—>—integer-value DAY:
DAYS——
HOUR—
HOURS—
MINUTE—
MINUTES-
I—CONCURRENTWORKLOADOCCURRENCES—>—integer-value
—CONCURRENTWORKLOADACTIVITIES—>—integer-value
—CONCURRENTDBCOORDACTIVITIES—>—integer-value |:

AND QUEUEDACTIVITIES—>—integer-volue:|
AND QUEUEDACTIVITIES UNBOUNDE

—ESTIMATEDSQLCOST—>—bigint-value

—SQLROWSRETURNED—>—integer-valu

HACTIVITYTOTALTIME—>—integer-value DAY:
DAYS——
HOUR—
HOURS—
MINUTE—
MINUTES-

L-SQLTEMPSPACE—>—integer-value K:

id

alter-threshold-exceeded-actions:

|—COLLECT ACTIVITY DATA alter-collect-activity-data-clause ’—H
NONE

Statements 131

ALTER THRESHOLD

STOP EXECUTION |
|
CONTINUE

alter-collect-activity-data-clause:

DATABASE PARTITION
[]

}—I:ON COORDINATOR >
DATABASE PARTITIONS
oN ALL— 1

»——WITHOUT DETAILS | |
WITH DETAILS

|—AND VALUES—|

Description

threshold-name
Identifies the threshold to be altered. This is a one-part name. It is an SQL
identifier (either ordinary or delimited). The name must uniquely identify an
existing threshold at the current server (SQLSTATE 42704).

WHEN alter-threshold-predicate
Replaces the existing upper bound value in the threshold condition with a new
upper bound value. The condition of the threshold cannot be changed to a
different one.

TOTALDBPARTITIONCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a database partition. This value
can be any positive integer, including zero (SQLSTATE 42820). A value of
zero means that any new coordinator connection will be prevented from
connecting. All currently running or queued connections will continue.

TOTALSCPARTITIONCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator
connections that can run concurrently on a database partition in a specific
service superclass. This value can be any positive integer, including zero
(SQLSTATE 42820). A value of zero means that any new connection will be
prevented from joining the service class. All currently running or queued
connections will continue.

AND QUEUEDCONNECTIONS > integer-value or AND

QUEUEDCONNECTIONS UNBOUNDED
Specifies a queue size for when the maximum number of coordinator
connections is exceeded. This value can be any positive integer,
including zero (SQLSTATE 42820). A value of zero means that no
coordinator connections are queued. Specifying UNBOUNDED will
queue every connection that exceeds the specified maximum number
of coordinator connections, and the threshold-exceeded-actions will never
be executed.

CONNECTIONIDLETIME > integer-value (DAY | DAYS | HOUR | HOURS

| MINUTE | MINUTES)
This condition defines an upper bound for the amount of time the
database manager will allow a connection to remain idle. This value can be
any non-zero positive integer (SQLSTATE 42820). Use a valid duration

132 SQL Reference, Volume 2

ALTER THRESHOLD

keyword to specify an appropriate unit of time for integer-value. This
condition is logically enforced at the coordinator database partition.

Because the minimum granularity for this threshold is five minutes,
specified values are rounded up to the closest non-zero multiple of five
minutes. In cases where the rounding generates an overflow or underflow,
the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value
specified that has a seconds equivalent larger than 2 147 483 400 seconds
will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing
less frequent checks might affect the granularity of this threshold.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent
occurrences for the workload on each database partition. This value can be
any non-zero positive integer (SQLSTATE 42820).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent
coordinator activities and nested activities for the workload on each

database partition. This value can be any non-zero positive integer
(SQLSTATE 42820).

Each nested activity must satisfy the following conditions:

* It must be a recognized coordinator activity. Any nested coordinator
activity that does not fall within the recognized types of activities will
not be counted. Similarly, nested subagent activities, such as remote
node requests, are not counted.

* It must be directly invoked from user logic, such as a user-written
procedure issuing SQL statements.

Consequently, nested coordinator activities that were automatically started
under the invocation of a DB2 utility or routines in the SYSIBM, SYSFUN,
or SYSPROC schemas are not counted towards the upper bound specified
by this threshold.

Internal SQL activities, such as those generated by the setting of a
constraint or the refreshing of a materialized query table, are also not
counted by this threshold, because they are initiated by the database
manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized
database coordinator activities that can run concurrently on all database
partitions in the specified domain. This value can be any positive integer,
including zero (SQLSTATE 42820). A value of zero means that any new
database coordinator activities will be prevented from executing. All
currently running or queued database coordinator activities will continue.

AND QUEUEDACTIVITIES > integer-value or AND
QUEUEDACTIVITIES UNBOUNDED
Specifies a queue size for when the maximum number of database
coordinator activities is exceeded. This value can be any positive
integer, including zero (SQLSTATE 42820). A value of zero means that
no database coordinator activities are queued. Specifying
UNBOUNDED will queue every database coordinator activity that

Statements 133

ALTER THRESHOLD

134

SQL Reference, Volume 2

exceeds the specified maximum number of database coordinator
activities, and the threshold-exceeded-actions will never be executed.

ESTIMATEDSQLCOST > bigint-value

This condition defines an upper bound for the optimizer-assigned cost (in
timerons) of an activity. This value can be any non-zero positive big integer
(SQLSTATE 42820). This condition is enforced at the coordinator database
partition. Activities tracked by this condition are:

* Coordinator activities of type data manipulation language (DML)

* Nested DML activities that are invoked from user logic. Consequently,
DML activities that can be initiated by the database manager (such as
utilities, procedures, or internal SQL) are not tracked by this condition
(unless their cost is included in the parent’s estimate, in which case they
are indirectly tracked).

SQLROWSRETURNED > integer-value

This condition defines an upper bound for the number of rows returned to
a client application from the application server. This value can be any
non-zero integer (SQLSTATE 42820). This condition is enforced at the
coordinator database partition. Activities tracked by this condition are:

* Coordinator activities of type DML
* Nested DML activities that are derived from user logic. Activities that

are initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as
individual activities. There is no aggregation of the rows that are returned
by the procedure itself.

ACTIVITYTOTALTIME > integer-value (DAY | DAYS | HOUR | HOURS |
MINUTE | MINUTES)

This condition defines an upper bound for the amount of time the
database manager will allow an activity to execute, including the time the
activity was queued. This value can be any non-zero positive integer
(SQLSTATE 42820). Use a valid duration keyword to specify an
appropriate unit of time for integer-value. This condition is logically
enforced at the coordinator database partition.

Because the minimum granularity for this threshold is five minutes,
specified values are rounded up to the closest non-zero multiple of five
minutes. In cases where the rounding generates an overflow or underflow,
the closest value in the integer range is selected.

The maximum value for this threshold is 2 147 483 400 seconds. Any value
specified that has a seconds equivalent larger than 2 147 483 400 seconds
will be set to this number of seconds.

Changes to the DB2CHECKCLIENTINTERVAL registry variable causing
less frequent checks might affect the granularity of this threshold.

SQLTEMPSPACE > integer-value (K | M | G)

This condition defines an upper bound for the size of a system temporary
table space on any database partition. This value can be any non-zero
positive integer (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum
size is 1024 times integer-value. If integer-value M is specified, the maximum
size is 1 048 576 times integer-value. If integer-value G is specified, the
maximum size is 1 073 741 824 times integer-value.

ALTER THRESHOLD

Activities tracked by this condition are:

* Coordinator activities of type DML and corresponding subagent work
(subsection execution)

* Nested DML activities that are derived from user logic and their
corresponding subagent work (subsection execution). Activities that are
initiated by the database manager through a utility, procedure, or
internal SQL are not affected by this condition.

alter-threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time
that a condition is exceeded, an event is recorded and made available through
the appropriate event monitor.

COLLECT ACTIVITY DATA
Specifies that data about each activity that exceeded the threshold is to be
sent to the appropriate event monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION
Specifies that the activity data is to be collected only at the
database partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS
Specifies that the activity data is to be collected at all database
partitions on which the activity is processed. However, any activity
details or values will only be collected at the database partition of
the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that exceeds the threshold
should be sent to the applicable event monitor when the activity
completes. Statement and compilation environment information are
not sent to the event monitor.

WITH DETAILS
Specifies that statement and compilation environment information
are to be sent to the applicable event monitor for those activities
that have them.

AND VALUES
Specifies that input data values are to be sent to the applicable
event monitor for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
exceeds the threshold.

STOP EXECUTION
The execution of the activity is stopped and an error is returned
(SQLSTATE 5U026).

CONTINUE
The execution of the activity is not stopped. When the condition also has a
queue, this option causes queuing to extend beyond the size of the queue.

ENABLE or DISABLE
Specifies whether or not the threshold is enabled for use by the database
manager.

ENABLE
The threshold is used by the database manager to restrict the execution of

Statements 135

ALTER THRESHOLD

136

database activities. Currently running database activities will continue to
execute without the restriction of this threshold.

DISABLE
The threshold is not used by the database manager to restrict the execution
of database activities. New database activities will not be restricted by this
threshold. Thresholds with a queue, for example
TOTALSCPARTITIONCONNECTIONS or
CONCURRENTDBCOORDACTIVITIES, must be disabled before they can
be dropped.

Notes

¢ The new value for a threshold affects only DB2 activities that start executing
after the alter operation commits.

Example

Alter the threshold MAXBIGQUERIESCONCURRENCY to a maximum of three
activities rather than two.

ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY
WHEN CONCURRENTDBCOORDACTIVITIES > 3
STOP EXECUTION

Because this is a threshold with a queue, the threshold cannot be dropped unless it
is disabled, as follows:
ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY DISABLE

SQL Reference, Volume 2

ALTER TRUSTED CONTEXT

ALTER TRUSTED CONTEXT

The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted
context at the current server.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

»»—ALTER TRUSTED CONTEXT—context-nam: >

(1) | |
> ALTER—Y——SYSTEM AUTHID—authorization-name
|)

@ |
ATTRIBUTES (Tss-c]ause i —
3) J
ENCRYPTION—encryption-value

NO DEFAULT ROLE
DEFAULT ROLE—mle-nameJ
DISABLE

ENABLE—I

(2)

—ADD ATTRIBUTES

(—'| address-clause)

@) (l_

—YADDRESS—address-valu |)

DROP ATTRIBUTES
—| user-clause i

address-clause:

|—ADDRESS—address-value B 7 }
WITH ENCRYPTION—encryption-value

user-clause:

|_ |—WITHOUT AUTHENTICATION—l |
}——ADD USE FOR———authorization-nam B TT 0 |
ROLE—role-name | WITH AUTHENTICATION
PUBLIC:
|_ l—wITHOUT AUTHENTICATIONW |
REPLACE USE FOR—Y uthorization-name:

I—ROLE—mle-nameJ | |—I.wIITH AUTHENTICATION
PUBLIC.

DROP USE FOR—l_Eauthorization-ncm
PUBLI(:4I

Statements 137

ALTER TRUSTED CONTEXT

138

Notes:

1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses
can be specified at most once (SQLSTATE 42614).

2 Each attribute name and corresponding value must be unique (SQLSTATE
4274D).

3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614);
however, WITH ENCRYPTION can be specified for each ADDRESS that is
specified.

Description

context-name

SQL Reference, Volume 2

Identifies the trusted context that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The context-name must identify
a trusted context that exists at the current server (SQLSTATE 42704).

ALTER
Alters the options and attributes of a trusted context.

SYSTEM AUTHID authorization-name

Specifies that the context is a connection established by system
authorization ID authorization-name, which must not be associated with an
existing trusted context (SQLSTATE 428GL). It cannot be the authorization
ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)

Specifies a list of one or more connection trust attributes, upon which the
trusted context is defined, that are to be modified. Existing values for the
specified attributes are replaced with the new values. If an attribute is not
currently part of the trusted context definition, an error is returned
(SQLSTATE 4274C). Attributes that are not specified retain their previous
values.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. Previous ADDRESS values for the specified trusted context are
removed. The ADDRESS attribute can be specified multiple times, but
each address-value pair must be unique for the set of attributes
(SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined
for the ADDRESS attribute of a trusted context, a candidate connection
is considered to match this attribute if the address used by the
connection matches any of the defined values for the ADDRESS
attribute of the trusted context.

address-value
Specifies a string constant that contains the value to be associated
with the ADDRESS trust attribute. The address-value must be an
IPv4 address, an IPv6 address, or a secure domain name.

* An IPv4 address must not contain leading spaces and is
represented as a dotted decimal address. An example of an IPv4
address is 9.112.46.111. The value "localhost’ or its equivalent
representation "127.0.0.1” will not result in a match; the real IPv4
address of the host must be specified instead.

ALTER TRUSTED CONTEXT

* An IPv6 address must not contain leading spaces and is
represented as a colon hexadecimal address. An example of an
IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
IPv4-mapped IPv6 addresses (for example, ::ffff:192.0.2.128) will
not result in a match. Similarly, ‘localhost” or its IPv6 short
representation "::1” will not result in a match.

* A domain name is converted to an IP address by the domain
name server where a resulting IPv4 or IPv6 address is
determined. An example of a domain name is
corona.torolab.ibm.com. When a domain name is converted to an
IP address, the result of this conversion could be a set of one or
more IP addresses. In this case, an incoming connection is said
to match the ADDRESS attribute of a trusted context object if the
IP address from which the connection originates matches any of
the IP addresses to which the domain name was converted.
When creating a trusted context object, it is advantageous to
provide domain name values for the ADDRESS attribute instead
of static IP addresses, particularly in Dynamic Host
Configuration Protocol (DHCP) environments. With DHCP, a
device can have a different IP address each time it connects to
the network. So, if a static IP address is provided for the
ADDRESS attribute of a trusted context object, some device
might acquire a trusted connection unintentionally. Providing
domain names for the ADDRESS attribute of a trusted context
object avoids this problem in DHCP environments.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream
or network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute
setting for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of
the following (SQLSTATE 42615):

* NONE, no specific level of encryption is required

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match
the encryption setting for this specific address

* HIGH, Secure Socket Layer (SSL) encryption must be
used for data communication between the DB2 client
and the DB2 server if an incoming connection is to
match the encryption setting for this specific address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption. The default is NONE.

encryption-value
Specifies a string constant that contains the value to be associated
with the ENCRYPTION trust attribute for this specific address-value.
The encryption-value must be one of the following (SQLSTATE
42615):

Statements 139

ALTER TRUSTED CONTEXT

140

NO

* NONE, no specific level of encryption is required for an
incoming connection to match the ENCRYPTION attribute of
this trusted context object

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

* HIGH, Secure Socket Layer (SSL) encryption must be used for
data communication between the DB2 client and the DB2 server
if an incoming connection is to match the ENCRYPTION
attribute of this trusted context object

For details about the ENCRYPTION trust attribute, see “CREATE
TRUSTED CONTEXT”.

DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether or not a default role is associated with a trusted connection
that is based on this trusted context. If a trusted connection for this context is
active, the change comes into effect on the next switch user request or a new
connection request.

NO DEFAULT ROLE
Specifies that the trusted context does not have a default role.

DEFAULT ROLE role-name
Specifies that role-name is the default role for the trusted context. The
role-name must identify a role that exists at the current server (SQLSTATE
42704). This role is used with the user in a trusted connection, based on
this trusted context, when the user does not have a user-specific role
defined as part of the definition of the trusted context.

ENABLE or DISABLE

Specifies whether the trusted context is enabled or disabled.

ENABLE
Specifies that the trusted context is enabled.

DISABLE
Specifies that the trusted context is disabled. A trusted context that is
disabled is not considered when a trusted connection is established.

ADD ATTRIBUTES

SQL Reference, Volume 2

Specifies a list of one or more additional trust attributes on which the trusted
context is defined.

ADDRESS address-value
Specifies the actual communication address used by the client to
communicate with the database server. The only protocol supported is
TCP/IP. The ADDRESS attribute can be specified multiple times, but each
address-value pair must be unique for the set of attributes (SQLSTATE
4274D).

When establishing a trusted connection, if multiple values are defined for
the ADDRESS attribute of a trusted context, a candidate connection is
considered to match this attribute if the address used by the connection
matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with

ALTER TRUSTED CONTEXT

the ADDRESS trust attribute. The address-value must be an IPv4
address, an IPv6 address, or a secure domain name.

* An IPv4 address must not contain leading spaces and is represented
as a dotted decimal address. An example of an IPv4 address is
9.112.46.111. The value "localhost” or its equivalent representation
’127.0.0.1” will not result in a match; the real IPv4 address of the host
must be specified instead.

* An IPv6 address must not contain leading spaces and is represented
as a colon hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6
addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, ‘localhost” or its IPv6 short representation "::1” will not
result in a match.

* A domain name is converted to an IP address by the domain name
server, where a resulting IPv4 or IPv6 address is determined. An
example of a domain name is corona.torolab.ibm.com.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or
network encryption for this specific address-value. This
encryption-value overrides the global ENCRYPTION attribute setting
for this specific address-value.

encryption-value
Specifies a string constant that contains the value to be
associated with the ENCRYPTION trust attribute for this
specific address-value. The encryption-value must be one of the
following (SQLSTATE 42615):

* NONE, no specific level of encryption is required

* LOW, a minimum of light encryption is required; the
authentication type on the database manager must be
DATA_ENCRYPT if an incoming connection is to match the
encryption setting for this specific address

* HIGH, Secure Socket Layer (SSL) encryption must be used
for data communication between the DB2 client and the DB2
server if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

DROP ATTRIBUTES
Specifies that one or more attributes are to be dropped from the definition of
the trusted context. If the attribute and attribute value pair is not currently part
of the trusted context definition, an error is returned (SQLSTATE 4274C).

ADDRESS address-value
Specifies that the identified communication address is to be removed from
the definition of the trusted context. The address-value specifies a string
constant that contains the value of an existing ADDRESS trust attribute.

ADD USE FOR
Specifies additional users who can use a trusted connection based on this
trusted context. If the definition of a trusted context allows access by PUBLIC

and a list of users, the specifications for a user override the specifications for
PUBLIC.

authorization-name
Specifies that the trusted connection can be used by the specified
authorization-name. The authorization-name must not identify an

Statements 141

ALTER TRUSTED CONTEXT

authorization ID that is already defined to use the trusted context, and
must not be specified more than once in the ADD USE FOR clause
(SQLSTATE 428GM). It must also not be the authorization ID of the
statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role to be used for the user. The role-name
must identify a role that exists at the current server (SQLSTATE 42704).
The role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can
be used by any user. PUBLIC must not already be defined to use the
trusted context, and PUBLIC must not be specified more than once in the
ADD USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

REPLACE USE FOR
Specifies that the way in which a particular user or PUBLIC uses the trusted
context is to change.

authorization-name
Specifies the authorization-name of the user whose use of the trusted
connection is to change. The trusted context must already be defined to
allow use by the authorization-name (SQLSTATE 428GN), and
authorization-name must not be specified more than once in the REPLACE
USE FOR clause (SQLSTATE 428GM). It must also not be the authorization
ID of the statement (SQLSTATE 42502).

ROLE role-name
Specifies that role-name is the role for the user. The role-name must
identify a role that exists at the current server (SQLSTATE 42704). The
role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC
are to change. The trusted context must already be defined to allow use by
PUBLIC (SQLSTATE 428GN), and PUBLIC must not be specified more than
once in the REPLACE USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection
based on this trusted context requires authentication.

WITHOUT AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user does not require authentication.

142 SQL Reference, Volume 2

ALTER TRUSTED CONTEXT

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based
on this trusted context to this user requires authentication.

DROP USE FOR
Specifies who can no longer use the trusted context. The users who are
removed from the definition of the trusted context are those users who are
currently allowed to use the trusted context. If one or more, but not all, users
can be removed from the definition of the trusted context, the specified users
are removed and a warning is returned (SQLSTATE 01682). If none of the
specified users can be removed from the definition of the trusted context, an
error is returned (SQLSTATE 428GN).

authorization-name
Removes the ability of the specified authorization ID to use this trusted
context.

PUBLIC
Removes the ability of all users (except the system authorization ID and
individual authorization IDs that have been explicitly enabled) to use this
trusted context.

Rules

* A trusted context-exclusive SQL statement must be followed by a COMMIT or a
ROLLBACK statement (SQLSTATE 5U021). Trusted context-exclusive SQL
statements are:

- CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP
(TRUSTED CONTEXT)

* A trusted context-exclusive SQL statement cannot be issued within a global
transaction; for example, an XA transaction or a global transaction that is
initiated as part of two-phase commit for federated transactions (SQLSTATE
51041).

Notes

* When providing an IP address as part of a trusted context definition, the address
must be in the format that is in effect for the network. For example, providing
an address in an IPv6 format when the network is IPv4 will not result in a
match. In a mixed environment, it is advantageous to specify both the IPv4 and
the IPv6 representations of the address, or better yet, to specify a secure domain
name (for example, corona.torolab.ibm.com), which hides the address format
details.

* Only one uncommitted trusted context-exclusive SQL statement is allowed at a
time across all database partitions. If an uncommitted trusted context-exclusive
SQL statement is executing, subsequent trusted context-exclusive SQL statements
will wait until the current trusted context-exclusive SQL statement commits or
rolls back.

* Changes are written to the system catalog but do not take effect until they are
committed, even for the connection that issues the statement.

* Order of operations: The order of operations within an ALTER TRUSTED
CONTEXT statement is:

- DROP

— ALTER

ADD ATTRIBUTES
ADD USE FOR

Statements 143

ALTER TRUSTED CONTEXT

144

— REPLACE USE FOR

* Effect of changes on existing trusted connections: If trusted connections exist for
the trusted context being altered, the connections remain trusted with the
definition in effect prior to the ALTER TRUSTED CONTEXT statement until the
next switch user request or the connection terminates. If the trusted context is
disabled while trusted connections for this context are active, the connections
remain trusted until the next switch user request or the connection terminates. If
trust attributes are changed with the ALTER TRUSTED CONTEXT statement,
trusted connections that exist at the time of the ALTER TRUSTED CONTEXT
statement that use the trusted context are allowed to continue.

* Role privileges: If there is no role associated with the user or the trusted context,
only the privileges associated with the user are applicable. This is the same as
not being in a trusted context.

Examples

Example 1: Assume that trusted context APPSERVER exists and that it is enabled.
Issue an ALTER TRUSTED CONTEXT statement to allow Bill to use the trusted
context APPSERVER, but put the trusted context in the disabled state.

ALTER TRUSTED CONTEXT APPSERVER

DISABLE
ADD USE FOR BILL

Example 2: Assume that trusted context SECUREROLE exists. Issue an ALTER
TRUSTED CONTEXT statement to modify the existing user Joe to use the trusted
context with authentication and to add everyone else to use the trusted context
without authentication.

ALTER TRUSTED CONTEXT SECUREROLE

REPLACE USE FOR JOE WITH AUTHENTICATION
ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

Example 3: Assume that trusted context SECUREROLEENCRYPT exists with
ADDRESS attribute values '9.13.55.100" and ’9.12.30.112", and ENCRYPTION
attribute value 'NONE'. Issue an ALTER statement to modify the ADDRESS
attribute values and the encryption attribute to 'TLOW’.

ALTER TRUSTED CONTEXT SECUREROLEENCRYPT

ALTER ATTRIBUTES (ADDRESS '9.12.155.200',
ENCRYPTION 'LOW')

SQL Reference, Volume 2

ALTER TYPE (Structured)

ALTER TYPE (Structured)

The ALTER TYPE statement is used to add or drop attributes or method
specifications of a user-defined structured type. Properties of existing methods can
also be altered.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTERIN privilege on the schema of the type

* Owner of the type, as recorded in the OWNER column of the
SYSCAT.DATATYPES catalog view

* SYSADM or DBADM authority

To alter a method to be not fenced, the privileges held by the authorization ID of
the statement must also include at least one of the following:

* CREATE_NOT_FENCED_ROUTINE authority on the database
* SYSADM or DBADM authority

To alter a method to be fenced, no additional authorities or privileges are required.

Syntax
»»—ALTER TYPE—type-name >
> ADD ATTRIBUTE—I attribute-definition } ><

|—REST ICT—l
—DROP ATTRIBUTE—attribute-name
—ADD METHOD—| method-specification i

—ALTER—| method-identifier —Y method-optionsi

|—R STRICT—l
—DROP—| method-identifier i

Statements 145

ALTER TYPE (Structured)

146

method-identifier:

ETHOD—method-name
L)] !

SPECIFIC METHOD—specific-name

\\(Y _data- type——)J

method-options:

it

FENCED I
NOT FENCED
THREADSAFE
NOT THREADSAFE

Description

type-name

Identifies the structured type to be changed. It must be an existing type

defined in the catalog (SQLSTATE 42704), and the type must be a structured

type (SQLSTATE 428DP). In dynamic SQL statements, the CURRENT SCHEMA

special register is used as a qualifier for an unqualified object name. In static

SQL statements, the QUALIFIER precompile/bind option implicitly specifies

the qualifier for unqualified object names.

ADD ATTRIBUTE

Adds an attribute after the last attribute of the existing structured type.

attribute-definition

SQL Reference, Volume 2

Defines the attributes of the structured type.

attribute-name

Specifies a name for the attribute. The name cannot be the same as any
other attribute of this structured type (including inherited attributes) or
any subtype of this structured type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for
system use, and may not be used as an attribute-name (SQLSTATE
42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH
and the comparison operators.

data-type 1

Specifies the data type of the attribute. It is one of the data types listed
under CREATE TABLE, other than LONG VARCHAR, LONG
VARGRAPHIC, XML, or a distinct type based on LONG VARCHAR,
LONG VARGRAPHIC, or XML (SQLSTATE 42601). The data type must
identify an existing data type (SQLSTATE 42704). If data-type is
specified without a schema name, the type is resolved by searching the
schemas on the SQL path. The description of various data types is
given in “CREATE TABLE”. If the attribute data type is a reference
type, the target type of the reference must be a structured type that
exists (SQLSTATE 42704).

To prevent type definitions that, at run time, would permit an instance
of the type to directly, or indirectly, contain another instance of the

ALTER TYPE (Structured)

same type or one of its subtypes, there is a restriction that a type may
not be defined such that one of its attribute types directly or indirectly
uses itself (SQLSTATE 428EP).

lob-options
Specifies the options associated with LOB types (or distinct types based
on LOB types). For a detailed description of lob-options, see “CREATE
TABLE”.

DROP ATTRIBUTE
Drops an attribute of the existing structured type.

attribute-name
The name of the attribute. The attribute must exist as an attribute of the
type (SQLSTATE 42703).

RESTRICT
Enforces the rule that no attribute can be dropped if type-name is used as
the type of an existing table, view, column, attribute nested inside the type
of a column, or an index extension.

ADD METHOD method-specification
Adds a method specification to the type identified by type-name. The method
cannot be used until a separate CREATE METHOD statement is used to give
the method a body. For more information about method-specification, see
“CREATE TYPE (Structured)”.

ALTER method-identifier
Uniquely identifies an instance of a method that is to be altered. The specified
method may or may not have an existing method body. Methods declared as
LANGUAGE SQL cannot be altered (SQLSTATE 42917).

method-identifier

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one
method instance with the name method-name for the type type-name.
The identified method can have any number of parameters defined for
it. If no method by this name exists for the type, an error (SQLSTATE
42704) is raised. If there is more than one instance of the method for
the type, an error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method.
The method resolution algorithm is not used.

method-name
Specifies the name of the method for the type type-name.

(data-type,...)
Values must match the data types that were specified (in the
corresponding position) on the CREATE TYPE statement. The
number of data types, and the logical concatenation of the data
types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by
searching the schemas on the SQL path. This also applies to data
type names specified for a REFERENCE type.

Statements 147

ALTER TYPE (Structured)

It is not necessary to specify the length, precision, or scale for the
parameterized data types. Instead, an empty set of parentheses can
be coded to indicate that these attributes are to be ignored when
looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter
value indicates different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match
that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for
n, because 0 < n < 25 means REAL, and 24 < n < 54 means
DOUBLE. Matching occurs on the basis of whether the type is
REAL or DOUBLE.

If no method with the specified signature exists for the type in the
named or implied schema, an error (SQLSTATE 42883) is raised.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or
defaulted to at method creation time. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for
unqualified object names. The specific-name must identify a specific
method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

method-options
Specifies the options that are to be altered for the method.

FENCED or NOT FENCED
Specifies whether the method is considered safe to run in the database
manager operating environment’s process or address space (NOT
FENCED), or not (FENCED). Most methods have the option of running as
FENCED or NOT FENCED.

If a method is altered to be FENCED, the database manager insulates its
internal resources (for example, data buffers) from access by the method. In
general, a method running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION:

Use of NOT FENCED for methods that were not adequately coded,
reviewed, and tested can compromise the integrity of DB2. DB2 takes
some precautions against many of the common types of inadvertent
failures that might occur, but cannot guarantee complete integrity when
NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be NOT
FENCED (SQLSTATE 42613).

If a method has any parameters defined AS LOCATOR, and was defined
with the NO SQL option, the method cannot be altered to be FENCED
(SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods (SQLSTATE
42849).

148 SQL Reference, Volume 2

ALTER TYPE (Structured)

THREADSAFE or NOT THREADSAFE
Specifies whether a method is considered safe to run in the same process
as other routines (THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:

¢ If the method is defined as THREADSAFE, the database manager can
invoke the method in the same process as other routines. In general, to
be threadsafe, a method should not use any global or static data areas.
Most programming references include a discussion of writing threadsafe
routines. Both FENCED and NOT FENCED methods can be
THREADSAEFE. If the method is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

¢ If the method is defined as NOT THREADSAFE, the database manager
will never invoke the method in the same process as another routine.
Only a fenced method can be NOT THREADSAFE (SQLSTATE 42613).

DROP method-identifier

Uniquely identifies an instance of a method that is to be dropped. The
specified method must not have an existing method body (SQLSTATE 428ER).
Use the DROP METHOD statement to drop the method body before using
ALTER TYPE DROP METHOD. Methods implicitly generated by the CREATE
TYPE statement (such as mutators and observers) cannot be dropped
(SQLSTATE 42917).

RESTRICT

Indicates that the specified method is restricted from having an existing
method body. Use the DROP METHOD statement to drop the method body
before using ALTER TYPE DROP METHOD.

Rules

Adding or dropping an attribute is not allowed for type type-name (SQLSTATE
55043) if either:

— The type or one of its subtypes is the type of an existing table or view.

— There exists a column of a table whose type directly or indirectly uses
type-name. The terms directly uses and indirectly uses are defined in “Structured

types”.
— The type or one of its subtypes is used in an index extension.

A type may not be altered by adding attributes so that the total number of
attributes for the type, or any of its subtypes, exceeds 4082 (SQLSTATE 54050).

ADD ATTRIBUTE option:

— ADD ATTRIBUTE generates observer and mutator methods for the new
attribute. These methods are similar to those generated when a structured
type is created (see “CREATE TYPE (Structured)”). If these methods conflict
with or override any existing methods or functions, the ALTER TYPE
statement fails (SQLSTATE 42745).

— If the INLINE LENGTH for the type (or any of its subtypes) was explicitly
specified by the user with a value less than 292, and the attributes added
cause the specified inline length to be less than the size of the result of the
constructor function for the altered type (32 bytes plus 10 bytes per attribute),
then an error results (SQLSTATE 42611).

DROP ATTRIBUTE option:

— An attribute that is inherited from an existing supertype cannot be dropped
(SQLSTATE 428DJ).

Statements 149

ALTER TYPE (Structured)

150

— DROP ATTRIBUTE drops the mutator and observer methods of the dropped
attributes, and checks dependencies on those dropped methods.

* DROP METHOD option:

— An original method that is overridden by other methods cannot be dropped
(SQLSTATE -2).

Notes

* It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

* When a type is altered by adding or dropping an attribute, all packages are
invalidated that depend on functions or methods that use this type or a subtype
of this type as a parameter or a result.

* When an attribute is added to or dropped from a structured type:

— If the INLINE LENGTH of the type was calculated by the system when the
type was created, the INLINE LENGTH values are automatically modified for
the altered type, and all of its subtypes to account for the change. The
INLINE LENGTH values are also automatically (recursively) modified for all
structured types where the INLINE LENGTH was calculated by the system
and the type includes an attribute of any type with a changed INLINE
LENGTH.

— If the INLINE LENGTH of any type affected by adding or dropping
attributes was explicitly specified by a user, then the INLINE LENGTH for
that particular type is not changed. Special care must be taken for explicitly
specified inline lengths. If it is likely that a type will have attributes added
later on, then the inline length, for any uses of that type or one of its
subtypes in a column definition, should be large enough to account for the
possible increase in length of the instantiated object.

— If new attributes are to be made visible to application programs, existing
transform functions must be modified to match the new structure of the data

type.
* In a partitioned database environment, the use of SQL in external user-defined
functions or methods is not supported (SQLSTATE 42997).

* Privileges
The EXECUTE privilege is not given for any methods explicitly specified in the
ALTER TYPE statement until a method body is defined using the CREATE

METHOD statement. The owner of the user-defined type has the ability to drop
the method specification using the ALTER TYPE statement.

Examples

Example 1: The ALTER TYPE statement can be used to permit a cycle of mutually
referencing types and tables. Consider mutually referencing tables named
EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.

CREATE TYPE DEPT ...

CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF (EMP)

CREATE TABLE DEPARTMENT OF DEPT ...

CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.

SQL Reference, Volume 2

ALTER TYPE (Structured)

DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
DROP TABLE DEPARTMENT

ALTER TYPE DEPT DROP ATTRIBUTE MANAGER

DROP TYPE EMP

DROP TYPE DEPT

Example 2: The ALTER TYPE statement can be used to create a type with an
attribute that references a subtype.
CREATE TYPE EMP ...

CREATE TYPE MGR UNDER EMP ...
ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

Example 3: The ALTER TYPE statement can be used to add an attribute. The
following statement adds the SPECIAL attribute to the EMP type. Because the
inline length was not specified on the original CREATE TYPE statement, DB2
recalculates the inline length by adding 13 (10 bytes for the new attribute +
attribute length + 2 bytes for a non-LOB attribute).

ALTER TYPE EMP ...
ADD ATTRIBUTE SPECIAL CHAR(1)

Example 4: The ALTER TYPE statement can be used to add a method associated
with a type. The following statement adds a method called BONUS.
ALTER TYPE EMP ...
ADD METHOD BONUS (RATE DOUBLE)
RETURNS INTEGER
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD statement
is issued to create the method body. If it is assumed that type EMP includes an
attribute called SALARY, then the following is an example of a method body
definition.

CREATE METHOD BONUS(RATE DOUBLE) FOR EMP
RETURN CAST(SELF.SALARY * RATE AS INTEGER)

Statements 151

ALTER USER MAPPING

ALTER USER MAPPING

152

The ALTER USER MAPPING statement is used to change the authorization ID or
password that is used at a data source for a specified federated server
authorization ID.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

If the authorization ID of the statement is different from the authorization name
that is mapped to the data source, the privileges held by the authorization ID of
the statement must include SYSADM or DBADM authority. Otherwise, if the
authorization ID and the authorization name match, no authorities or privileges
are required.

Syntax

»»—ALTER USER MAPPING FOR authorization-name—|—SERVER—server-name—>
USER:

F ADD
»—OPTIONS—(—Y user-option-name—string-constant)
SET
DROP—user-option-name

Description

v
A

authorization-name
Specifies the authorization name under which a user or application connects to
a federated database.

USER
The value in the special register USER. When USER is specified, then the
authorization ID of the ALTER USER MAPPING statement will be mapped to
the data source authorization ID that is specified in the REMOTE_AUTHID
user option.

SERVER server-name
Identifies the data source accessible under the remote authorization ID that
maps to the local authorization ID that’s denoted by authorization-name or
referenced by USER.

OPTIONS
Indicates what user options are to be enabled, reset, or dropped for the
mapping that is being altered.

ADD
Enables a user option.

SQL Reference, Volume 2

ALTER USER MAPPING

SET
Changes the setting of a user option.

user-option-name
Names a user option that is to be enabled or reset.

string-constant
Specifies the setting for user-option-name as a character string constant.

DROP user-option-name
Drops a user option.

Notes

A user option cannot be specified more than once in the same ALTER USER
MAPPING statement (SQLSTATE 42853). When a user option is enabled, reset,
or dropped, any other user options that are in use are not affected.

* An ALTER USER MAPPING statement within a given unit of work (UOW)
cannot be processed (SQLSTATE 55007) if the UOW already includes one of the
following:

— A SELECT statement that references a nickname for a table or view at the
data source that is to be included in the mapping

— An open cursor on a nickname for a table or view at the data source that is to
be included in the mapping

— Either an INSERT, DELETE, or UPDATE issued against a nickname for a table
or view at the data source that is to be included in the mapping.

Examples

Example 1: Jim uses a local database to connect to an Oracle data source called
ORACLE1. He accesses the local database under the authorization ID KLEEWEIN;
KLEEWEIN maps to CORONA, the authorization ID under which he accesses
ORACLE]L. Jim is going to start accessing ORACLE1 under a new ID, JIMK. So
KLEEWEIN now needs to map to JIMK.

ALTER USER MAPPING FOR KLEEWEIN

SERVER ORACLE1
OPTIONS (SET REMOTE_AUTHID 'JIMK')

Example 2: Mary uses a federated database to connect to a DB2 for z/OS data
source called DORADO. She uses one authorization ID to access DB2 and another
to access DORADO, and she has created a mapping between these two IDs. She
has been using the same password with both IDs, but now decides to use a
separate password, ZNYQ, with the ID for DORADO. Accordingly, she needs to
map her federated database password to ZNYQ.

ALTER USER MAPPING FOR MARY

SERVER DORADO
OPTIONS (ADD REMOTE_PASSWORD 'ZNYQ')

Statements 153

ALTER VIEW

ALTER VIEW

The ALTER VIEW statement modifies an existing view by:
* Altering a reference type column to add a scope
* Enabling or disabling a view for use in query optimization

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following:

* ALTERIN privilege on the schema of the view
¢ Owner of the view to be altered
* CONTROL privilege on the view to be altered
¢ SYSADM or DBADM authority

To enable or disable a view for use in query optimization, the privileges held by
the authorization ID of the statement must also include at least one of the
following for each of the tables or underlying tables of views that are referenced in
the FROM clause of the view fullselect:

* ALTER privilege on the table
* ALTERIN privilege on the schema of the table
* SYSADM or DBADM authority

Syntax

»»—ALTER VIEW—view-name >

| COLUMN
>—E'ALTER—I_——I—column—name—ADD SCOPE
ENABLE QUERY OPTIMIZATION
DI SABLE:|

—[typed—table—name_I »<
typed-view-name

Description

view-name
Specifies the view that is to be changed. It must be a view that is described in
the catalog.

ALTER COLUMN column-name
Specifies the name of the column that is to be altered. The column-name must
identify an existing column of the view (SQLSTATE 42703). The name cannot
be qualified.

154 SQL Reference, Volume 2

ALTER VIEW

ADD SCOPE
Adds a scope to an existing reference type column that does not already have
a scope defined (SQLSTATE 428DK). The column must not be inherited from a
superview (SQLSTATE 428D]).

typed-table-name
Specifies the name of a typed table. The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that the
values actually reference existing rows in typed-table-name.

typed-view-name
Specifies the name of a typed view. The data type of column-name must be
REF(S), where S is the type of typed-view-name (SQLSTATE 428DM). No
checking is done of any existing values in column-name to ensure that the
values actually reference existing rows in typed-view-name.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether or not the view and any associated statistics are to be used
to improve the optimization of queries. DISABLE QUERY OPTIMIZATION is
the default when a view is created.

ENABLE QUERY OPTIMIZATION
Specifies that the view includes statistics that can be used to improve the
optimization of queries that involve this view or queries that include
subqueries similar to the fullselect of this view.

DISABLE QUERY OPTIMIZATION
Specifies that the view and any associated statistics are not to be used to
improve the optimization of queries.

Rules
¢ A view cannot be enabled for query optimization if:

— The view directly or indirectly references a materialized query table (MQT).
Note that an MQT or statistical view can reference a statistical view.

— Itis a typed view

Notes

* To be considered for optimizing a query, a view:
— Cannot contain aggregation or distinct operations
— Cannot contain union, except, or intersect operations
— Cannot contain scalar aggregate (OLAP) functions

* If a view is altered to disable query optimization, cached query plans that used
the view for query optimization are invalidated. If a view is altered to enable
query optimization, cached query plans are invalidated if they reference the
same tables as the newly enabled view references, either directly or indirectly
through other views. The invalidation of these cached query plans results in
implicit revalidation that takes the view’s changed query optimization property
into account.

The query optimization property for a view has no impact on static embedded
SQL statements.

Statements 155

ALTER WORK ACTION SET

ALTER WORK ACTION SET

156

The ALTER WORK ACTION SET statement alters a work action set by adding,
altering, or dropping work actions within the work action set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax
»»>—ALTER WORK ACTION SET—work-action-set-name >
(1)
> ADD—| work-action-definition i >
ALTER work-action-alteration |7
|: _|—|WORK ACTION—l
DROP work-action-name—
(2)
ENABLE
|—DISABLEJ

work-action-definition:

WORK ACTION
[1

work-action-name—ON WORK CLASS—work-class-name >

|—ENABLE—|
’ﬂ action-types-clause |—| histogram-template-clause i LDISABLEJ I

action-types-clause:

|—WITH NESTED——

—MAP ACTIVITY

|_ TO—service-subclass-name {
WITHOUT NESTED-

—WHEN threshold-types-clause |—| threshold-exceeded-actions |—
—PREVENT EXECUTION
—COUNT ACTIVITY
—COLLECT ACTIVITY DATA—| alter-collect-activity-data-clause |—
|—BASE

—COLLECT AGGREGATE ACTIVITY DATA

|—EXTENDED—

SQL Reference, Volume 2

ALTER WORK ACTION SET

threshold-types-clause:

(3) AND QUEUEDACTIVITIES > 0

CONCURRENTDBCOORDACTIVITIES—>—integer

SQLTEMPSPACE—>—integer K
5
G

SQLROWSRETURNED—>—integer:
ESTIMATEDSQLCOST—>—bigint
ACTIVITYTOTALTIME—>—integer- DAY
DAYS——
HOUR——
HOURS—
MINUTE—
MINUTES—

AND QUEUEDACTIVITIES—>—integer—|
AND QUEUEDACTIVITIES UNBOUNDED—

I

threshold-exceeded-actions:

| >

|—COLLECT ACTIVITY DATA alter-collect-activity-data-clause ’—H
NONE

STOP EXECUTION '
|
CONTINUE

alter-collect-activity-data-clause:

DATABASE PARTITION
[]

f——{:ON COORDINATOR
DATABASE PARTITIONS
oN ALL— 1

»——WITHOUT DETAILS |
WITH DETAILS

|—AND VALUES—|

histogram-template-clause:

|—ACTIVITY LIFETIME HISTOGRAM TEMPLATE—SYSDEFAULTHISTOGRAM—
|

|—ACTIVITY LIFETIME HISTOGRAM TEMPLATE—template-name———

—ACTIVITY QUEUETIME HISTOGRAM TEMPLATE—SYSDEFAULTHISTOGRAM—

Y
4

—ACTIVITY QUEUETIME HISTOGRAM TEMPLATE—template-name———

—ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE—SYSDEFAULTHISTOGRAM—

Yy
v

—ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE—template-name——-

—ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE—SYSDEFAULTHISTOGRAM—

—ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE—template-name————

Statements 157

ALTER WORK ACTION SET

|—ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE—SYSDEFAULTHISTOGRAM—

|—ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE—template-name————

work-action-alteration:

WORK ACTION
[il

| work-action-name >
@
-7 SET WORK CLASS—work-class-name |
action-types-clause f
CTIVITY LIFETIME HIST&GRAM TEMPLATE—template-name
ACTIVITY QUEUETIME HISTOGRAM TEMPLATE—template-name
ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE—template-name
ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE—template-name
ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE—template-name—|
ENABLE
DISABLE—|
Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which
they are specified.

2 The ENABLE or DISABLE clause can only be specified once in the same
statement.

3 Only one work action of the same threshold type can be applied to a single
work class at a time.

4 The same clause must not be specified more than once.

Description

work-action-set-name
Identifies the work action set that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The work-action-set-name must
identify a work action set that exists at the current server (SQLSTATE 42704).

ADD
Adds a work action to the work action set.

WORK ACTION work-action-name
Names the work action. The work-action-name must not identify a work
action that already exists at the current server under this work action set
(SQLSTATE 42710). The work-action-name cannot begin with 'SYS’
(SQLSTATE 42939).

ON WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this
work action will apply. The work-class-name must exist in the
work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be
specified if the object for which this work action set is defined is a service
superclass (SQLSTATE 5U034).

158 SQL Reference, Volume 2

ALTER WORK ACTION SET

WITH NESTED or WITHOUT NESTED
Specifies whether or not activities that are nested under this activity
are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED
All database activities that have a nesting level of zero that are
classified under the work class, and all database activities nested
under this activity, are mapped to the service subclass; that is,
activities with a nesting level greater than zero are run under the
same service class as activities with a nesting level of zero.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are
classified under the work class are mapped to the service subclass.
Database activities that are nested under this activity are handled
according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The
service-subclass-name must already exist in the service-superclass-name at
the current server (SQLSTATE 42704). The service-subclass-name cannot
be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE
50018).

WHEN
Specifies the threshold that will be applied to the database activity that is
associated with the work class for which this work action is defined. A
threshold can only be specified if the database manager object for which
this work action set is defined is a database (SQLSTATE 5U034). None of
these thresholds apply to internal database activities initiated by the
database manager or to database activities generated by administrative
SQL routines.

threshold-types-clause
For a description of valid threshold types, see “CREATE
THRESHOLD” statement.

threshold-exceeded-actions
For a description of valid threshold-exceeded actions, see “CREATE
THRESHOLD” statement.

PREVENT EXECUTION
Specifies that none of the database activities associated with the work class
for which this work action is defined will be allowed to run (SQLSTATE
50033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class
are to be run and that each time one is run, the counter for the work class
will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for
which this work action is defined is to be sent to the applicable event
monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION
Specifies that the activity data is to be collected only at the
database partition of the coordinator of the activity.

Statements 159

ALTER WORK ACTION SET

ON ALL DATABASE PARTITIONS
Specifies that the activity data is to be collected at all database
partitions on which the activity is processed. However, any activity
details or values will only be collected at the database partition of
the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with the
work class for which this work action is defined should be sent to
the applicable event monitor when the activity completes.
Statement and compilation environment information are not sent to
the event monitor.

WITH DETAILS
Specifies that statement and compilation environment information
are to be sent to the applicable event monitor for those activities
that have them.

AND VALUES
Specifies that input data values are to be sent to the applicable
event monitor for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that
is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are
associated with the work class for which this work action is defined and
sent to the applicable event monitor. This information is collected
periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. This clause cannot be specified for a work action
defined in a work action set that is applied to a database.

BASE
Specifies that basic aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the applicable event monitor. Basic aggregate
activity data includes:

* Estimated activity cost high watermark
* Rows returned high watermark
¢ Temporary table space usage high watermark
* Activity life time histogram
 Activity queue time histogram
* Activity execution time histogram
EXTENDED
Specifies that all aggregate activity data should be captured for
activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. This includes all
basic aggregate activity data plus:

* Activity data manipulation language (DML) estimated cost
histogram

* Activity DML inter-arrival time histogram

160 SQL Reference, Volume 2

ALTER WORK ACTION SET

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database
activities are submitted. The default is ENABLE.

ENABLE
Specifies that the work action is enabled and will be considered when
database activities are submitted.

DISABLE
Specifies that the work action is disabled and will not be considered
when database activities are submitted.

histogram-template-clause
Specifies histogram templates to use when collecting aggregate activity
data for activities associated with the work class to which this work action
is assigned. Aggregate activity data is only collected for the work class
when the work action type is COLLECT AGGREGATE ACTIVITY DATA.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the duration, in microseconds, of DB2
activities—associated with the work class to which this work action is
assigned—running during a specific interval. This time includes both
time queued and time executing. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when
the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with
either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in microseconds, that DB2
activities—associated with the work class to which this work action is
assigned—are queued during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when
the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with
either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in microseconds, that DB2
activities—associated with the work class to which this work action is
assigned—are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in
this histogram at each database partition where the activity executes.
On the activity’s coordinator database partition, this is the end-to-end
execution time (that is, the life time less the time spent queued). On
non-coordinator database partitions, this is the time that these
partitions spend working on behalf of the activity. During the
execution of a given activity, DB2 might present work to a remote
database partition more than once, and each time the remote partition
will collect the execution time for that occurrence of the activity.
Therefore, the counts in the execution time histogram might not
represent the actual number of unique activities that executed on a
database partition. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option.

Statements 161

ALTER WORK ACTION SET

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect
statistical data about the estimated cost, in timerons, of DML activities
associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE

template-name
Specifies the template that describes the histogram used to collect
statistical data about the length of time, in microseconds, between the
arrival of one DML activity and the arrival of the next DML activity,
for any activity associated with the work class to which this work
action is assigned. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified with the EXTENDED option.

ALTER
Alters the definition of the work action. You can change the work class to
which this work action applies, and the action that is to be applied to the
database activity that falls within the work class.

WORK ACTION work-action-name
Identifies the work action. The work-action-name must identify a work

action that exists at the current server under this work action set
(SQLSTATE 42704).

SET WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this
work action will apply. The work-class-name must exist in the
work-class-set-name at the current server (SQLSTATE 42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be
specified if the object for which this work action set is defined is a service
superclass (SQLSTATE 5U034).

WITH NESTED or WITHOUT NESTED
Specifies whether or not activities that are nested under this activity
are mapped to the service subclass. The default is WITH NESTED.

WITH NESTED
All database activities that have a nesting level of zero that are
classified under the work class, and all database activities nested
under this activity are mapped to the service subclass.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are
classified under the work class are mapped to the service subclass.
Database activities that are nested under this activity are handled
according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The
service-subclass-name must already exist in the service-superclass-name at
the current server (SQLSTATE 42704). The service-subclass-name cannot
be the default service subclass, SYSDEFAULTSUBCLASS (SQLSTATE
50018).

162 SQL Reference, Volume 2

ALTER WORK ACTION SET

WHEN
Specifies the threshold that will be applied to the database activity that is
associated with the work class for which this work action is defined. A
threshold can only be specified if the database manager object for which
this work action set is defined is a database (SQLSTATE 5U034). None of
these thresholds apply to internal database activities initiated by the
database manager or to database activities generated by administrative
SQL routines.

threshold-types-clause
For a description of valid threshold types, see “CREATE
THRESHOLD” statement.

threshold-exceeded-actions
For a description of valid threshold-exceeded actions, see “CREATE
THRESHOLD” statement.

PREVENT EXECUTION
Specifies that none of the database activities associated with the work class
for which this work action is defined will be allowed to run (SQLSTATE
50033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class
are to be run and that each time one is run, the counter for the work class
will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for
which this work action is defined is to be sent to the applicable event
monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION
Specifies that the activity data is to be collected only at the
database partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS
Specifies that the activity data is to be collected at all database
partitions on which the activity is processed. However, any activity
details or values will only be collected at the database partition of
the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with the
work class for which this work action is defined should be sent to
the applicable event monitor when the activity completes.
Statement and compilation environment information are not sent to
the event monitor.

WITH DETAILS
Specifies that statement and compilation environment information
are to be sent to the applicable event monitor for those activities
that have them.

AND VALUES
Specifies that input data values are to be sent to the applicable
event monitor for those activities that have them.

Statements 163

ALTER WORK ACTION SET

164

SQL Reference, Volume 2

NONE
Specifies that activity data should not be collected for each activity that
is associated with the work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA

Specifies that aggregate activity data is to be captured for activities that are
associated with the work class for which this work action is defined and
sent to the applicable event monitor. This information is collected
periodically on an interval that is specified by the wlm_collect_int
database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. This clause cannot be specified for a work action
defined in a work action set that is applied to a database.

BASE
Specifies that basic aggregate activity data should be captured for
activities associated with the work class for which this work action is
defined and sent to the applicable event monitor. Basic aggregate
activity data includes:

* Estimated activity cost high watermark
* Rows returned high watermark
¢ Temporary table space usage high watermark
* Activity life time histogram
¢ Activity queue time histogram
* Activity execution time histogram
EXTENDED
Specifies that all aggregate activity data should be captured for
activities associated with the work class for which this work action is

defined and sent to the applicable event monitor. This includes all
basic aggregate activity data plus:

* Activity DML estimated cost histogram
* Activity DML inter-arrival time histogram

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical
data about the duration, in microseconds, of DB2 activities—associated
with the work class to which this work action is assigned—running during
a specific interval. This time includes both time queued and time
executing. The default is SYSDEFAULTHISTOGRAM. This information is
only collected when the COLLECT AGGREGATE ACTIVITY DATA clause
is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, that DB2
activities—associated with the work class to which this work action is
assigned—are queued during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either
the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, that DB2
activities—associated with the work class to which this work action is
assigned—are executing during a specific interval. This time does not
include the time spent queued. Activity execution time is collected in this

ALTER WORK ACTION SET

histogram at each database partition where the activity executes. On the
activity’s coordinator database partition, this is the end-to-end execution
time (that is, the life time less the time spent queued). On non-coordinator
database partitions, this is the time that these partitions spend working on
behalf of the activity. During the execution of a given activity, DB2 might
present work to a remote database partition more than once, and each time
the remote partition will collect the execution time for that occurrence of
the activity. Therefore, the counts in the execution time histogram might
not represent the actual number of unique activities that executed on a
database partition. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY
DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the estimated cost, in timerons, of data manipulation language
(DML) activities associated with the work class to which this work action
is assigned. The default is SYSDEFAULTHISTOGRAM. This information is
only collected when the COLLECT AGGREGATE ACTIVITY DATA clause
is specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical
data about the length of time, in microseconds, between the arrival of one
DML activity and the arrival of the next DML activity, for any activity
associated with the work class to which this work action is assigned. The
default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database
activities are submitted.

ENABLE
Specifies that the work action is enabled and will be considered when
database activities are submitted.

DISABLE
Specifies that the work action is disabled and will not be considered
when database activities are submitted.

DROP work-action-name
Drops the work action from the work action set. The work-action-name must
identify a work action that exists at the current server under this work action
set (SQLSTATE 42704).

ENABLE or DISABLE
Specifies whether or not the work action set is to be considered when database
activities are submitted.

ENABLE
Specifies that the work action set is enabled and will be considered when
database activities are submitted.

DISABLE
Specifies that the work action set is disabled and will not be considered
when database activities are submitted.

Statements 165

ALTER WORK ACTION SET

166

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

- CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
— GRANT (Workload Privileges) or REVOKE (Workload Privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

* Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Examples

Example 1: Alter the DATABASE_ACTIONS work action set and add two work
actions using the work class LARGE_SELECTS. For the work action
ONE_CONCURRENT_SELECT, apply a concurrency threshold of 1 to control the
number of activities that can run at one time, and allow a maximum of 3 to be
queued. For work action BIG_ROWS_RETURNED, limit the number of rows that
can be returned by database activities that fall within that class to 1 000 000.
ALTER WORK ACTION SET DATABASE_ACTIONS
ADD WORK ACTION ONE_CONCURRENT_SELECT ON WORK CLASS LARGE_SELECTS
WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 3 STOP EXECUTION

ADD WORK ACTION BIG_ROWS_RETURNED ON WORK CLASS LARGE_SELECTS
WHEN SQLROWSRETURNED > 1000000 STOP EXECUTION

Example 2: Alter the ADMIN_APPS_ACTIONS work action set to alter the
MAP_SELECTS work action to map all activities that run in super service class
ADMIN_APPS under the work class SELECT_CLASS to the service subclass
ALL_SELECTS. Also add a new work action called MAP_UPDATES that maps all
activities that would run in the work class UPDATE_CLASS to the service subclass
ALL_SELECTS.

ALTER WORK ACTION SET ADMIN_APPS_ACTIONS

ALTER WORK ACTION MAP_SELECTS MAP ACTIVITY TO ALL_SELECTS

ADD WORK ACTION MAP_UPDATES ON WORK CLASS UPDATE_CLASS
MAP ACTIVITY TO ALL_SELECTS

SQL Reference, Volume 2

ALTER WORK CLASS SET

ALTER WORK CLASS SET

The ALTER WORK CLASS SET statement adds, alters, or drops work classes
within a work class set.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SOLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax
»»>—ALTER WORK CLASS SET—work-class-set-name >
(1)
> ADD—| work-class-definition i >
ALTER—| work-class-alteration |7
|—NORK CLASS—l
DROP work-class-name—

work-class-definition:

WORK CLASS
[1

;.or‘k-class-name—' work-attributes |—| position-clause |—|

work-attributes:

—WORK TYPE——READ |

L‘ for-from-to-clause ’J
|—‘ for-from-to-clause ’J
—CALL

L‘ schema-clause ’J
—DML:

|—‘ for-from-to-clause |J

L‘ for-from-to-clause |J L‘ schema-clause ’J

—WRITE

—DDL
—LOAD
—ALL

for-from-to-clause:

TO—UNBOUNDED—l

|—FOR—|:TIMERONCOST FROM—from-value I
CARDINALITY |—TO—t‘o—valueJ

Statements 167

ALTER WORK CLASS SET

schema-clause:

[—ROUTINES IN SCHEMA—schema-name |

position-clause:

POSITION LAST
L

POSITION BEFORE—work-class-name—
POSITION AFTER—work-class-name—
POSITION AT—integer

work-class-alteration:

WORK CLASS
[1

work-class-name

|«

for-from-to-alter-clause | i
schema-alter-clause

position-clause |7

for-from-to-alter-clause:

TO—UNBOUNDED
[]

|—FOR TIMERONCOST FROM—from-value |_ J i
|:CARDINALITY T0—to-value
ALL UNITS UNBOUNDED

schema-alter-clause:

[—ROUTINES IN SCHEMA—schema-name I
ALL

Notes:

1 The ADD, ALTER, and DROP clauses are processed in the order in which
they are specified.

2 The same clause must not be specified more than once.

Description

work-class-set-name
Identifies the work class set that is to be altered. This is a one-part name. It is
an SQL identifier (either ordinary or delimited). The work-class-set-name must
identify a work class set that exists at the current server (SQLSTATE 42704).

ADD
Adds a work class to the work class set. For details, see “CREATE WORK
CLASS SET”.

168 SQL Reference, Volume 2

ALTER WORK CLASS SET

ALTER
Alters the database activity attributes and the position of a specific work class
within the work class set.

WORK CLASS work-class-name
Identifies the work class to be altered. The work-class-name must identify a

work class that exists within the work class set at the current server
(SQLSTATE 42704).

DROP
Drops the work class from the work class set.

WORK CLASS work-class-name
Identifies the work class to be dropped. The work-class-name must identify
a work class that exists within the work class set at the current server
(SQLSTATE 42704). A work class cannot be dropped if there is a work
action in any of the work action sets associated with this work class set
that is dependent on it (SQLSTATE 42893).

for-to-from-alter-clause

FOR
Indicates the type of information that is being specified in the FROM
from-value TO to-value clause. The FOR clause is only used for the following
work types:

« READ
 WRITE
- DML
« ALL

TIMERONCOST
The estimated cost of the work, in timerons. This value is used to
determine whether the work falls within the range specified in the
FROM from-value TO to-value clause.

CARDINALITY
The estimated cardinality of the work. This value is used to determine
whether the work falls within the range specified in the FROM
from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value
Specifies the range of either timeron value (for estimated cost) or
cardinality within which the database activity must fall if it is to be
part of this work class. The range is inclusive of from-value and to-value.
This range is only used for the following work types:

* READ

* WRITE

+ DML

+ ALL

FROM from-value TO UNBOUNDED

The from-value must be zero or a positive DOUBLE value
(SQLSTATE 5U019). The range has no upper bound.

FROM from-value TO to-value
The from-value must be zero or a positive DOUBLE value and the
to-value must be a positive DOUBLE value. The from-value must be
smaller than or equal to the to-value (SQLSTATE 5U019).

Statements 169

ALTER WORK CLASS SET

ALL UNITS UNBOUNDED
Indicates that no range is to be specified in the FROM from-value TO
to-value clause, and that all work that falls within the specified work
type is to be included.

schema-alter-clause

ROUTINES
This clause is only used if the work type is CALL or ALL and the
database activity is a CALL statement.

IN SCHEMA schema-name
Specifies the schema name of the procedure that the CALL
statement will be calling.

ALL
Specifies that all schemas are included.

position-clause

POSITION
Specifies where this work class is to be placed within the work class
set, which determines the order in which work classes are evaluated.
When performing work class assignment at run time, the database
manager first determines the work class set that is associated with the
object, either the database or a service superclass. The first matching
work class within that work class set is then selected. If this keyword
is not specified, the work class is placed in the last position.

LAST
Specifies that the work class is to be placed last in the ordered list
of work classes within the work class set.

BEFORE work-class-name
Specifies that the work class is to be placed before work class
work-class-name in the list. The work-class-name must identify a work
class in the work class set that exists at the current server
(SQLSTATE 42704).

AFTER work-class-name
Specifies that the work class is to be placed after work class
work-class-name in the list. The work-class-name must identify a work

class in the work class set that exists at the current server
(SQLSTATE 42704).

AT position
Specifies the absolute position at which the work class is to be
placed within the work class set in the ordered list of work classes.
This value can be any positive integer value (SQLSTATE 42615). If
position is greater than the number of existing work classes plus
one, the work class is placed at the last position within the work
class set.

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

170 SQL Reference, Volume 2

ALTER WORK CLASS SET

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

— CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
— GRANT (Workload Privileges) or REVOKE (Workload Privileges)

¢ A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

¢ Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement.

Examples

Example 1: Alter work class set LARGE_QUERIES and set the two existing work
classes to have each range starting at 100 000, keeping the range unbounded. Add
a third work class for all SELECT statements that have an estimated timeron cost
greater than or equal to 10 000, and position this work class to take priority over
the existing two work classes.
ALTER WORK CLASS SET LARGE_QUERIES
ALTER WORK CLASS LARGE_ESTIMATED_COST
FOR TIMERONCOST FROM 100000 TO UNBOUNDED
ALTER WORK CLASS LARGE_CARDINALITY
FOR CARDINALITY FROM 100000 TO UNBOUNDED

ADD WORK CLASS LARGE_SELECTS WORK TYPE READ
FOR TIMERONCOST FROM 10000 TO UNBOUNDED POSITION AT 1

Example 2: Alter a work class set named DML_STATEMENTS to add a work class
that represents all DML SELECT statements that contain a DELETE, INSERT,
MERGE, or UPDATE statement.

ALTER WORK CLASS SET DML_STATEMENTS
ADD WORK CLASS UPDATE_CLASS WORK TYPE WRITE

Statements 171

ALTER WORKLOAD

ALTER WORKLOAD

The ALTER WORKLOAD statement alters a workload.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if

DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include

SYSADM or DBADM authority.
Syntax

»»—ALTER WORKLOAD—workload-name

| @

Y ADD connection-attributes t

—DROP- connection-attributes i

—EALLOW DB ACCESS
DISALLOW DB ACCESS—I

ENABLE
—EDISABLE—l

—SERVICE CLASS—service-class-name:

I—UNDER—service-super‘cZass-name—I

AT—position

NE

—POSITION LAST.
BEFORE—workload-name—|
AFTER—workload-name—

—COLLECT ACTIVITY DATA_EI alter-collect-activity-data-clause |—|_
NO

connection-attributes:

172 SQL Reference, Volume 2

ALTER WORKLOAD

(2)
|———APPLNAME—(—"application-name’)

—SYSTEM_USER—(—authorization-name’)

—SESSION_USER—(——authorization-name’)

—SESSION_USER GROUP—(——authorization-name’)

—SESSION_USER ROLE—(—Y—authorization-name’)

—CURRENT CLIENT USERID—(——user-id’)

—CURRENT CLIENT_ WRKSTNNAME—(——'workstation-name’)

—CURRENT CLIENT APPLNAME—(—Yclient-application-name’ —

LCURRENT CLIENT_ACCTNG—(——accounting-string’)

alter-collect-activity-data-clause:

DATABASE PARTITION
[1

v

}—|:0N COORDINATOR
DATABASE PARTITIONS
oN ALL— 1

WITHOUT DETAILS |
WITH DETAILS

|—AND VALUES—|

Notes:
1 The same clause must not be specified more than once.

2 Each connection attribute clause can only be specified once.

Description

workload-name

Identifies the workload that is to be altered. This is a one-part name. It is an

SQL identifier (either ordinary or delimited). The workload-name must identify a

workload that exists at the current server (SQLSTATE 42704).

ADD connection-attributes

Adds one or more connection attribute values to the definition of the
workload. Each specified connection attribute value must not already be
defined for the workload (SQLSTATE 5U039). The ADD option cannot be

specified if workload-name is 'SYSDEFAULTUSERWORKLOAD’ or

'SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

Statements

173

ALTER WORKLOAD

174

DROP connection-attributes

Drops one or more connection attribute values from the definition of the
workload. Each specified connection attribute value must be defined for the
workload (SQLSTATE 5U040). The DROP option cannot be specified if
workload-name is 'SYSDEFAULTUSERWORKLOAD’ or
'SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832). There must be at least
one defined connection attribute value. The last connection attribute value
cannot be dropped (SQLSTATE 5U022).

connection-attributes

SQL Reference, Volume 2

Specifies connection attribute values for the workload.

APPLNAME (application-name’, ...)
Specifies one or more applications for the APPLNAME connection
attribute. An application name cannot appear more than once in the list
(SQLSTATE 42713). The application-name is case sensitive and is equivalent
to the value shown in the “Application name” field in system monitor
output and in output from the LIST APPLICATIONS command.

SYSTEM_USER (‘authorization-name’, ...)
Specifies one or more authorization IDs for the SYSTEM USER connection

attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER (‘authorization-name’, ...)
Specifies one or more authorization IDs for the SESSION USER connection

attribute. An authorization ID cannot appear more than once in the list
(SQLSTATE 42713).

SESSION_USER GROUP (authorization-name’, ...)
Specifies one or more authorization IDs for the SESSION_USER GROUP
connection attribute. An authorization ID cannot appear more than once in
the list (SQLSTATE 42713).

SESSION_USER ROLE (authorization-name’, ...)
Specifies one or more authorization IDs for the SESSION_USER ROLE
connection attribute. The roles of a session authorization ID in this context
refer to all the roles that are available to the session authorization ID,
regardless of how the roles were obtained. An authorization ID cannot
appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID (user-id’, ...)
Specifies one or more client user IDs for the CURRENT CLIENT_USERID
connection attribute. A client user ID cannot appear more than once in the
list (SQLSTATE 42713).

CURRENT CLIENT_APPLNAME (’client-application-name’, ...)
Specifies one or more applications for the CURRENT
CLIENT_APPLNAME connection attribute. An application name cannot
appear more than once in the list (SQLSTATE 42713). The
client-application-name is case sensitive and is equivalent to the value shown
in the “TP Monitor client application name” field in system monitor
output.

CURRENT CLIENT_WRKSTNNAME ("“workstation-name’, ...)
Specifies one or more client workstation names for the CURRENT
CLIENT_WRKSTNNAME connection attribute. A client workstation name
cannot appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_ACCTNG (‘accounting-string’, ...)
Specifies one or more client accounting strings for the CURRENT

ALTER WORKLOAD

CLIENT_ACCTNG connection attribute. A client accounting string cannot
appear more than once in the list (SQLSTATE 42713).

ALLOW DB ACCESS or DISALLOW DB ACCESS
Specifies whether or not a workload occurrence associated with this workload
is allowed access to the database.

ALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are
allowed access to the database.

DISALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are not
allowed access to the database. The next unit of work associated with this
workload will be rejected (SQLSTATE 5U020). Workload occurrences that
are already running are allowed to complete. This option cannot be
specified if workload-name is 'SYSDEFAULTADMWORKLOAD’ (SQLSTATE
42832).

ENABLE or DISABLE
Specifies whether or not this workload will be considered when a workload is
chosen.

ENABLE
Specifies that the workload is enabled and will be considered when a
workload is chosen.

DISABLE
Specifies that the workload is disabled and will not be considered when a
workload is chosen. This option cannot be specified if workload-name is
SYSDEFAULTUSERWORKLOAD or SYSDEFAULTADMWORKLOAD
(SQLSTATE 42832).

SERVICE CLASS service-class-name
Specifies that requests associated with this workload are to be executed in the
service class service-class-name. The service-class-name must identify a service
class that exists at the current server (SQLSTATE 42704). The service-class-name
cannot be 'SYSDEFAULTSUBCLASS’, 'SYSDEFAULTSYSTEMCLASS’, or
'SYSDEFAULTMAINTENANCECLASS” (SQLSTATE 5U032). This option cannot
be specified if workload-name is 'SYSDEFAULTADMWORKLOAD’ (SQLSTATE
42832).

UNDER service-superclass-name
This clause is used when specifying a service subclass. The
service-superclass-name identifies the service superclass of service-class-name.
The service-superclass-name must identify a service superclass that exists at
the current server (SQLSTATE 42704). The service-superclass-name cannot be
"SYSDEFAULTSYSTEMCLASS” or 'SYSDEFAULTMAINTENANCECLASS’
(SQLSTATE 5U032).

POSITION
Specifies where this workload is to be placed within the ordered list of
workloads. At run time, this list is searched in order for the first workload that
matches the required connection attributes. This option cannot be specified if
workload-name is 'SYSDEFAULTUSERWORKLOAD’ or
'SYSDEFAULTADMWORKLOAD’ (SQLSTATE 42832).

LAST
Specifies that the workload is to be last in the list, before the default
workloads SYSDEFAULTUSERWORKLOAD and
SYSDEFAULTADMWORKLOAD.

Statements 175

ALTER WORKLOAD

BEFORE relative-workload-name
Specifies that the workload is to be placed before workload
relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The BEFORE
option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD’ or ‘SYSDEFAULTADMWORKLOAD’
(SQLSTATE 42832).

AFTER relative-workload-name
Specifies that the workload is to be placed after workload
relative-workload-name in the list. The relative-workload-name must identify a
workload that exists at the current server (SQLSTATE 42704). The AFTER
option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD’ or 'SYSDEFAULTADMWORKLOAD’
(SQLSTATE 42832).

AT position
Specifies the absolute position at which the workload is to be placed in the
list. This value can be any positive integer value (SQLSTATE 42615). If
position is greater than the number of existing workloads plus one, the
workload is placed at the last position, just before
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with this workload is to be
sent to the applicable event monitor when the activity completes.

alter-collect-activity-data-clause

ON COORDINATOR DATABASE PARTITION
Specifies that the activity data is to be collected only at the database
partition of the coordinator of the activity.

ON ALL DATABASE PARTITIONS
Specifies that the activity data is to be collected at all database
partitions on which the activity is processed; however any activity
details or values will be collected only at the database partition of the
coordinator of the activity.

WITHOUT DETAILS
Specifies that data about each activity that is associated with this
workload is to be sent to the applicable event monitor when the
activity completes execution. Statement and compilation environment
are not sent to the event monitor.

WITH DETAILS
Specifies that statement and compilation environment information are
to be sent to the applicable event monitor for those activities that have
them.

AND VALUES
Specifies that input data values are to be sent to the applicable
event monitor for those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that is
associated with this workload.

176 SQL Reference, Volume 2

ALTER WORKLOAD

Rules

* A workload management (WLM)-exclusive SQL statement must be followed by
a COMMIT or a ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL
statements are:

— CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or
DROP (HISTOGRAM TEMPLATE)

— CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE
CLASS)

— CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

- CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP
(WORK ACTION SET)

— CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK
CLASS SET)

— CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
— GRANT (Workload Privileges) or REVOKE (Workload Privileges)

* A WLM-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

Notes

* Changes are written to the system catalog, but do not take effect until they are
committed, even for the connection that issues the statement. For newly
submitted workload occurrences, changes take effect after the ALTER
WORKLOAD statement commits. For active workload occurrences, changes take
effect at the beginning of the next unit of work.

* If the DISABLE option is specified, the workload is disabled after the statement
commits. The workload is not considered the next time that a workload is
chosen. If there is an active workload occurrence associated with this workload
when the ALTER WORKLOAD statement commits, it continues to run until the
end of the current unit of work. At the beginning of the next unit of work, a
workload re-evaluation takes place, and the connection becomes associated with
a different workload.

Examples

Example 1: The workload PAYROLL is currently positioned such that the workload
INVENTORY is considered first when DB2 chooses a workload at run time. Alter
the evaluation order so that PAYROLL will be considered first.

ALTER WORKLOAD PAYROLL
POSITION BEFORE INVENTORY

Example 2: Alter the evaluation order so that the workload BENCHMARK is
evaluated by DB2 before any other workload in the catalog.

ALTER WORKLOAD BENCHMARK
POSITION AT 1

Example 3: The workload REPORTS was created with APPLNAME set to appll,
appl2, and appl3, and SYSTEM_USER set to BOB and MARY. Alter the workload
to add a new application, appl4 to the application name list, and remove appl2,
because it should no longer be mapped to REPORTS.

ALTER WORKLOAD REPORTS

ADD APPLNAME ('appl4')
DROP APPLNAME ('appl2')

Statements 177

ALTER WRAPPER

ALTER WRAPPER

The ALTER WRAPPER statement is used to update the properties of a wrapper.
Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include
SYSADM or DBADM authority.

Syntax

»»>—ALTER WRAPPER—wrapper-name—OPTIONS >

F ADD

—(— wrapper-option-name—string-constant)
SET
DROP—wrapper-option-name

Description

Y
A

wrapper-name
Specifies the name of the wrapper.

OPTIONS
Indicates what wrapper options are to be enabled, reset, or dropped.

ADD
Enables a server option.

SET
Changes the setting of a wrapper option.

wrapper-option-naime
Names a wrapper option that is to be enabled or reset. Currently the only
supported wrapper option name is DB2_FENCED.

string-constant
Specifies the setting for wrapper-option-name as a character string constant.
Valid values are "Y” or 'N’. The default value for relational wrappers is 'N’,
and the default value for non-relational wrappers is "Y’.

DROP wrapper-option-name

Drops a wrapper option.

Notes

* Execution of the ALTER WRAPPER statement does not include checking the
validity of wrapper-specific options.

178 SQL Reference, Volume 2

ALTER WRAPPER

¢ An ALTER WRAPPER statement within a given unit of work (UOW) cannot be
processed (SQLSTATE 55007) if the UOW already includes one of the following;:

— A SELECT statement that references a nickname that belongs to the wrapper.
— An open cursor on a nickname that belongs to the wrapper.

— An INSERT, DELETE, or UPDATE statement issued against a nickname that
belongs to the wrapper.

Examples

Example 1: Set the DB2_FENCED option on for wrapper NETS.
ALTER WRAPPER NET8 OPTIONS (SET DB2_FENCED 'Y')

Statements 179

ALTER XSROBJECT

ALTER XSROBJECT

180

This statement is used to either enable or disable the decomposition support for a
specific XML schema. Annotated XML schemas can be used to decompose XML
documents into relational tables, if decomposition has been enabled for those XML
schemas.

Invocation

The ALTER XSROBJECT statement can be embedded in an application program or
issued through the use of dynamic SQL statements. It is an executable statement
that can be dynamically prepared only if the DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization

One of the following authorities is required:
* SYSADM or DBADM

e ALTERIN on the SQL schema

* Ownership of the XSR object to be altered

Syntax

»—ALTER—XSROBJECT—xsrobject—name—[ENABLE DECOMPOSITION] >
DISABLE DECOMPOSITION

Description

xsrobject-name
Identifies the XSR object to be altered. The xsrobject-name, including the implicit
or explicit schema qualifier, must uniquely identify an existing XSR object at
the current server. If no XSR object with this identifier exists, an error is
returned (SQLSTATE 42704).

ENABLE DECOMPOSITION or DISABLE DECOMPOSITION
Enables or disables the use of the XSR object for decomposition. The identified
XSR object must be an XML schema (SQLSTATE 42809). In order to enable
decomposition, the XML schema needs to be annotated with decomposition
rules (SQLSTATE 225DE) and the objects referenced by the decomposition rules
must exist at the current server (SQLSTATE 42704).

Notes:

* When decomposition for an XSR object is disabled, all related catalog entries are
removed.

* Decomposition support for an XSR object will be disabled if any objects the XSR
object depends on (such as tables) are dropped or altered to become
incompatible with the XSR object.

SQL Reference, Volume 2

ASSOCIATE LOCATORS

ASSOCIATE LOCATORS

The ASSOCIATE LOCATORS statement gets the result set locator value for each
result set returned by a stored procedure.

Invocation

This statement can only be embedded in an SQL procedure. It is not an executable
statement and cannot be dynamically prepared.

Authorization

None required.

Syntax
|—RESULT SET—l
»»—ASSOCIATE LLOCATOR J >
LOCATORS
»—(—Y-rs-locator-variable——)—WITH PROCEDURE—procedure-name ><

Description

rs-locator-variable
Specifies a result set locator variable that has been declared in a compound
SQL (Procedure) statement.

WITH PROCEDURE
Identifies the stored procedure that returns result set locators by the specified
procedure name.

procedure-name
A procedure name is a qualified or unqualified name.

A fully qualified procedure name is a two-part name. The first part is an
identifier that contains the schema name of the stored procedure. The last
part is an identifier that contains the name of the stored procedure. A
period must separate each of the parts. Any or all of the parts can be a
delimited identifier.

If the procedure name is unqualified, it has only one name because the
implicit schema name is not added as a qualifier to the procedure name.
Successful execution of the ASSOCIATE LOCATOR statement only requires
that the unqualified procedure name in the statement be the same as the
procedure name in the most recently executed CALL statement that was
specified with an unqualified procedure name. The implicit schema name
for the unqualified name in the CALL statement is not considered in the
match. The rules for how the procedure name must be specified are
described below.

When the ASSOCIATE LOCATORS statement is executed, the procedure name

or specification must identify a stored procedure that the requester has already
invoked using the CALL statement. The procedure name in the ASSOCIATE

Statements 181

ASSOCIATE LOCATORS

182

LOCATORS statement must be specified the same way that it was specified on
the CALL statement. For example, if a two-part name was specified on the
CALL statement, you must use a two-part name in the ASSOCIATE
LOCATORS statement.

Notes

If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is less than the number of locators returned by the stored
procedure, all variables in the statement are assigned a value, and a warning is
issued.

If the number of result set locator variables that are listed in the ASSOCIATE
LOCATORS statement is greater than the number of locators returned by the
stored procedure, the extra variables are assigned a value of 0.

If a stored procedure is called more than once from the same caller, only the
most recent result sets are accessible.

Result set locator values are available for a procedure that is called using an
EXECUTE statement executing the CALL statement that was previously
prepared by the PREPARE statement. Result set locator values, however, are not
available for a procedure that is called using an EXECUTE IMMEDIATE
statement.

Examples

The statements in the following examples are assumed to be embedded in SQL
Procedures.

Example 1: Use result set locator variables LOC1 and LOC2 to get the result set
locator values for the two result sets returned by stored procedure P1. Assume that
the stored procedure is called with a one-part name.

CALL P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)
WITH PROCEDURE P1;

Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an
explicit schema name for the stored procedure to ensure that stored procedure P1
in schema MYSCHEMA is used.

CALL MYSCHEMA.P1;
ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)
WITH PROCEDURE MYSCHEMA.P1;

SQL Reference, Volume 2

AUDIT

AUDIT

The AUDIT statement determines the audit policy that is to be used for a
particular database or database object at the current server. Whenever the object is
in use, it is audited according to that policy.

Invocation

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared only if
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).
Authorization

The privileges held by the authorization ID of the statement must include
SECADM authority.

Syntax

F (1)
»»—AUDIT—Y DATABASE
TABLE—table-name

TRUSTED CONTEXT—context-name—

—USER authorization-name—
—GROUP}
ROLE

—SYSADM
—SYSCTRL—
—SYSMAINT—
—SYSMON—
—SECADM—
—DBADM——

> USING POLICY—policy-name ><
|:REPLACE
REMOVE POLICY

v

Notes:

1 Each clause (with the same object name, if applicable) can be specified at
most once (SQLSTATE 42713).

Description

DATABASE
Specifies that an audit policy is to be associated with or removed from the
database at the current server. All auditable events that occur within the
database are audited according to the associated audit policy.

TABLE table-name
Specifies that an audit policy is to be associated with or removed from
table-name. The table-name must identify a table, materialized query table
(MQT), or nickname that exists at the current server (SQLSTATE 42704). It
cannot be a view, a catalog table, a declared temporary table (SQLSTATE
42995), or a typed table (SQLSTATE 42997). Only EXECUTE category audit

Statements 183

AUDIT

events, with or without data, will be generated when the table is accessed,
even if the policy indicates that other categories should be audited.

TRUSTED CONTEXT context-name
Specifies that an audit policy is to be associated with or removed from
context-name. The context-name must identify a trusted context that exists at the
current server (SQLSTATE 42704). All auditable events that happen within the
trusted connection defined by the trusted context context-name will be audited
according to the associated audit policy.

USER authorization-name
Specifies that an audit policy is to be associated with or removed from the user
with authorization ID authorization-name. All auditable events that are initiated
by authorization-name will be audited according to the associated audit policy.

GROUP authorization-name
Specifies that an audit policy is to be associated with or removed from the
group with authorization ID authorization-name. All auditable events that are
initiated by users who are members of authorization-name will be audited
according to the associated audit policy. If user membership in a group cannot
be determined, the policy will not apply to that user.

ROLE authorization-name
Specifies that an audit policy is to be associated with or removed from the role
with authorization ID authorization-name. The authorization-name must identify a
role that exists at the current server (SQLSTATE 42704). All auditable events
that are initiated by users who are members of authorization-name will be
audited according to the associated audit policy. Indirect role membership
through other roles or groups is valid.

SYSADM, SYSMAINT, SYSCTRL, SYSMON, DBADM or SECADM
Specifies that an audit policy is to be associated with or removed from the
specified authority. All auditable events that are initiated by a user who holds
the specified authority, even if that authority is not required for the event, will
be audited according to the associated audit policy.

USING, REMOVE, or REPLACE
Specifies whether the audit policy should be used, removed, or replaced for
the specified object.

USING
Specifies that the audit policy is to be used for the specified object. An
existing audit policy must not already be defined for the object (SQLSTATE
50041). If an audit policy already exists, it must be removed or replaced.

REMOVE
Specifies that the audit policy is to be removed from the specified object.
Use of the object will no longer be audited according to the audit policy.
The association is deleted from the catalog when the audit policy is
removed from the object.

REPLACE
Specifies that the audit policy is to replace an existing audit policy for the
specified object. This combines both REMOVE and USING options into one
step to ensure that there is no period of time in which an audit policy does
not apply to the specified object. If a policy was not in use for the specified
object, REPLACE is equivalent to USING.

184 SQL Reference, Volume 2

AUDIT

POLICY policy-name
Specifies the audit policy that is to be used to determine audit settings. The
policy-name must identify an existing audit policy at the current server
(SQLSTATE 42704).

Rules

¢ An AUDIT-exclusive SQL statement must be followed by a COMMIT or
ROLLBACK statement (SQLSTATE 5U021). AUDIT-exclusive SQL statements are:

- AUDIT

— CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT
POLICY)

— DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)

¢ An AUDIT-exclusive SQL statement cannot be issued within a global transaction
(SQLSTATE 51041) such as, for example, an XA transaction.

* An object can be associated with no more than one policy (SQLSTATE 5U042).

Notes

* Changes are written to the catalog, but do not take effect until after a COMMIT
statement executes.

* Changes do not take effect until the next unit of work that references the object
to which the audit policy applies. For example, if the audit policy is in use for
the database, no current units of work will begin auditing according to the
policy until after a COMMIT or a ROLLBACK statement completes.

* Views accessing a table that is associated with an audit policy are audited
according to the underlying table’s policy.

¢ The audit policy that applies to a table does not apply to a materialized query
table (MQT) based on that table. It is recommended that if you associate an
audit policy with a table, you also associate that policy with any MQT based on
that table. The compiler might automatically use an MQT, even though an SQL
statement references the base table; however, the audit policy in use for the base
table will still be in effect.

* When a switch user operation is performed within a trusted context, all audit
policies are re-evaluated according to the new user, and no policies from the old
user are used for the current session. This applies specifically to audit policies
associated directly with the user, the user’s group or role memberships, and the
user’s authorities. For example, if the current session was audited because the
previous user was a member of an audited role, and the switched-to user is not
a member of that role, that policy no longer applies to the session.

* When a SET SESSION USER statement is executed, the audit policies associated
with the original user (and that user’s group and role memberships and
authorities) are combined with the policies that are associated with the user
specified in the SET SESSION USER statement. The audit policies associated
with the original user are still in effect, as are the policies for the user specified
in the SET SESSION USER statement. If multiple SET SESSION USER statements
are issued within a session, only the audit policies associated with the original
user and the current user are considered.

* If the object with which an audit policy is associated is dropped, the association
to the audit policy is removed from the catalog and no longer exists. If that
object is recreated at some later time, the object will not be audited according to
the policy that was associated with it when the object was dropped.

Statements 185

AUDIT

Examples

Example 1: Use the audit policy DBAUDPREF to determine the audit settings for the
database at the current server.

AUDIT DATABASE USING POLICY DBAUDPRF

Example 2: Remove the audit policy from the EMPLOYEE table.
AUDIT TABLE EMPLOYEE REMOVE POLICY

Example 3: Use the audit policy POWERUSERS to determine the audit settings for
the authorities SYSADM, DBADM, and SECADM, as well as the group DBAS.

AUDIT SYSADM, DBADM, SECADM, GROUP DBAS USING POLICY POWERUSERS

Example 4: Replace the audit policy for the role TELLER with the new policy
TELLERPRFE.

AUDIT ROLE TELLER REPLACE POLICY TELLERPRF

186 SQL Reference, Volume 2

BEGIN DECLARE SECTION

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declare section.

Invocation

This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization
None required.
Syntax

»>—BEGIN DECLARE SECTION ><

Description

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It is used to indicate the beginning of a host variable declaration
section. A host variable section ends with an END DECLARE SECTION statement.

Rules

* The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and may not be nested.

* SQL statements cannot be included within the declare section.

e Variables referenced in SQL statements must be declared in a declare section in
all host languages other than REXX. Furthermore, the section must appear before
the first reference to the variable. Generally, host variables are not declared in
REXX with the exception of LOB locators and file reference variables. In this
case, they are not declared within a BEGIN DECLARE SECTION.

e Variables declared outside a declare section should not have the same name as
variables declared within a declare section.

* LOB data types must have their data type and length preceded with the SQL
TYPE IS keywords.

Examples

Example 1: Define the host variables hv_smint (smallint), hv_vchar24 (varchar(24)),
hv_double (double), hv_blob_50k (blob(51200)), hv_struct (of structured type
"struct_type” as blob(10240)) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
short hv_smint;
struct {
short hv_vchar24_Ten;
char hv_vchar24 value[24];
} hv_vchar24;

Statements 187

BEGIN DECLARE SECTION

188

double hv_double;

SQL TYPE IS BLOB(50K) hv_blob 50k;

SQL TYPE IS struct type AS BLOB(10k) hv_struct;
EXEC SQL END DECLARE SECTION;

Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24
(varchar(24)), HV-DEC72 (dec(7,2)), and HV-BLOB-50k (blob(51200)) in a COBOL
program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) COMP-4.
01 HV-VCHAR24.
49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.
49 HV-VCHAR24-VALUE PIC X(24).
01 HV-DEC72 PIC S9(5)V9(2) COMP-3.
01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).

EXEC SQL END DECLARE SECTION END-EXEC.

Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24
(char(24)), HVDOUBLE (double), and HVBLOB50k (blob(51200)) in a Fortran
program.

EXEC SQL BEGIN DECLARE SECTION

INTEGER*2 HVSMINT
CHARACTER*24 HVVCHAR24
REAL*8 HVDOUBLE

SQL TYPE IS BLOB(50K) HVBLOB50K
EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 bytes, then a CLOB host
variable should be used.

Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K
(blob(51200)), and HVCLOBLOC (a CLOB locator) in a REXX program.

DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR
call sqlexec '"FETCH cl INTO :HVSMINT, :HVBLOB5OK'

Note that the variables HVSMINT and HVBLOB50K were implicitly defined by
using them in the FETCH statement.

SQL Reference, Volume 2

CALL

CALL

The CALL statement calls a procedure or a foreign procedure.

Invocation

This statement can be embedded in an application program or issued through the
use of dynamic SQL statements. It is an executable statement that can be
dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following;:

¢ EXECUTE privilege on the procedure
* SYSADM or DBADM authority

If a matching procedure exists that the authorization ID of the statement is not
authorized to execute, an error is returned (SQLSTATE 42501).

Syntax

»»>—CALL—procedure-name \\ J
(—Y——expression———)

NULL

A\
A

Description

procedure-name
Specifies the procedure that is to be called. It must be a procedure that is
described in the catalog. The specific procedure to invoke is chosen using
procedure resolution. (For more details, see the “Notes” section of this
statement.)

expression or NULL
Each specification of expression or NULL is an argument of the CALL. The nth
argument of the CALL statement corresponds to the nth parameter defined in
the CREATE PROCEDURE statement for the procedure.

Each argument of the CALL must be compatible with the corresponding
parameter in the procedure definition as follows:
¢ IN parameter

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment rules.
e OUT parameter

— The argument must be a single variable or parameter marker (SQLSTATE
42886).

— The argument must be assignable to the parameter.
— The assignment of a string argument uses the retrieval assignment rules.
e INOUT parameter

Statements 189

CALL

190

— The argument must be a single variable or parameter marker (SQLSTATE
42886).

— The argument must be assignable to the parameter.

— The assignment of a string argument uses the storage assignment rules on
invocation and the retrieval assignment rules on return.

Notes

* Parameter assignments:

When the CALL statement is executed, the value of each of its arguments is
assigned (using storage assignment) to the corresponding parameter of the
procedure. Control is passed to the procedure according to the calling
conventions of the host language. When execution of the procedure is complete,
the value of each parameter of the procedure is assigned (using storage
assignment) to the corresponding argument of the CALL statement defined as
OUT or INOUT. If an error is returned by the procedure, OUT arguments are
undefined and INOUT arguments are unchanged. For details on the assignment
rules, see “Assignments and comparisons”.

When the CALL statement is in an SQL procedure and is calling another SQL
procedure, assignment of XML parameters is done by reference. When an XML
argument is passed by reference, the input node trees, if any, are used directly
from the XML argument, preserving all properties, including document order,
the original node identities, and all parent properties.

Procedure signatures:

A procedure is identified by its schema, a procedure name, and the number of
parameters. This is called a procedure signature, which must be unique within
the database. There can be more than one procedure with the same name in a
schema, provided that the number of parameters is different for each procedure.
SQL path:

A procedure can be invoked by referring to a qualified name (schema and
procedure name), followed by an optional list of arguments enclosed by
parentheses. A procedure can also be invoked without the schema name,
resulting in a choice of possible procedures in different schemas with the same
number of parameters. In this case, the SQL path is used to assist in procedure
resolution. The SQL path is a list of schemas that is searched to identify a
procedure with the same name and number of parameters. For static CALL
statements, SQL path is specified using the FUNCPATH bind option. For
dynamic CALL statements, SQL path is the value of the CURRENT PATH
special register.

Procedure resolution:

Given a procedure invocation, the database manager must decide which of the
possible procedures with the same name to call. Procedure resolution is done
using the steps that follow.

1. Find all procedures from the catalog (SYSCAT.ROUTINES), such that all of
the following are true:

- For invocations where the schema name was specified (that is, qualified
references), the schema name and the procedure name match the
invocation name.

— For invocations where the schema name was not specified (that is,
unqualified references), the procedure name matches the invocation name,
and has a schema name that matches one of the schemas in the SQL path.

— The number of defined parameters matches the invocation.

— The invoker has the EXECUTE privilege on the procedure.

SQL Reference, Volume 2

CALL

2. Choose the procedure whose schema is earliest in the SQL path.

If there are no candidate procedures remaining after step 1, an error is returned
(SQLSTATE 42884).

Retrieving the DB2_RETURN_STATUS from an SQL procedure:

If an SQL procedure successfully issues a RETURN statement with a status
value, this value is returned in the first SQLERRD field of the SQLCA. If the
CALL statement is issued in an SQL procedure, use the GET DIAGNOSTICS
statement to retrieve the DB2_RETURN_STATUS value. The value is -1 if the
SQLSTATE indicates an error. The values is 0 if no error is returned and the
RETURN statement was not specified in the procedure.

Returning result sets from procedures:

If the calling program is written using CLI, JDBC, or SQLJ, or the caller is an
SQL procedure, result sets can be returned directly to the caller. The procedure
indicates that a result set is to be returned by declaring a cursor on that result
set, opening a cursor on the result set, and leaving the cursor open when exiting
the procedure.

At the end of a procedure:

— For every cursor that has been left open, a result set is returned to the caller
or (for WITH RETURN TO CLIENT cursors) directly to the client.

— Only unread rows are passed back. For example, if the result set of a cursor
has 500 rows, and 150 of those rows have been read by the procedure at the
time the procedure is terminated, rows 151 through 500 will be returned to
the caller or application (as appropriate).

If the procedure was invoked from CLI or JDBC, and more than one cursor is
left open, the result sets can only be processed in the order in which the cursors
were opened.

Improving performance:

The values of all arguments are passed from the application to the procedure. To
improve the performance of this operation, host variables that correspond to
OUT parameters and have lengths of more than a few bytes should be set to
NULL before the CALL statement is executed.

Nesting CALL statements:

Procedures can be called from routines as well as application programs. When a

procedure is called from a routine, the call is considered to be nested.

If a procedure returns any query result sets, the result sets are returned as

follows:

— RETURN TO CALLER result sets are visible only to the program that is at the
previous nesting level.

— RETURN TO CLIENT results sets are visible only if the procedure was
invoked from a set of nested procedures. If a function or method occurs
anywhere in the call chain, the result set is not visible. If the result set is
visible, it is only visible to the client application that made the initial
procedure call.

Consider the following example:

Client program:
EXEC SQL CALL PROCA;

PROCA:
EXEC SQL CALL PROCB;

PROCB:
EXEC SQL DECLARE Bl CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE B2 CURSOR WITH RETURN TO CALLER ...;

Statements 191

CALL

EXEC SQL DECLARE B3 CURSOR FOR SELECT UDFA FROM T1;

UDFA:
EXEC SQL CALL PROCC;

PROCC:
EXEC SQL DECLARE C1 CURSOR WITH RETURN TO CLIENT ...;
EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CALLER ...;

From procedure PROCB:

— Cursor Bl is visible in the client application, but not visible in procedure
PROCA.

— Cursor B2 is visible in PROCA, but not visible to the client.

From procedure PROCC:

— Cursor C1 is visible to neither UDFA nor to the client application. (Because

UDFA appears in the call chain between the client and PROCC, the result set
is not returned to the client.)

— Cursor C2 is visible in UDFA, but not visible to any of the higher procedures.
Nesting procedures within triggers, dynamic compound statements, functions, or
methods:

When a procedure is called within a trigger, dynamic compound statement,
function, or method:

— The procedure must not issue a COMMIT or a ROLLBACK statement.
— Result sets returned from the procedure cannot be accessed.

— If the procedure is defined as READS SQL DATA or MODIFIES SQL DATA,
no statement in the procedure can access a table that is being modified by the
statement that invoked the procedure (SQLSTATE 57053). If the procedure is
defined as MODIFIES SQL DATA, no statement in the procedure can modify
a table that is being read or modified by the statement that invoked the
procedure (SQLSTATE 57053).

When a procedure is called within a function or method:

— The procedure has the same table access restrictions as the invoking function
or method.

— Savepoints defined before the function or method was invoked will not be
visible to the procedure, and savepoints defined inside the procedure will not
be visible outside the function or method.

— RETURN TO CLIENT result sets returned from the procedure cannot be
accessed from the client.

* Compatibilities:

— There is an older form of the CALL statement that can be embedded in an
application by precompiling the application with the CALL_RESOLUTION
DEFERRED option. This option is not available for SQL procedures and
federated procedures.

Examples
Example 1:

AJava" procedure is defined in the database using the following statement:

CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
OUT COST DECIMAL(7,2),
OUT QUANTITY INTEGER)
EXTERNAL NAME 'parts!onhand'
LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL;

192 SQL Reference, Volume 2

CALL

A Java application calls this procedure using the following code fragment:

CallabTeStatement stpCall;
String sql = "CALL PARTS_ON_HAND (?, 7, ?)";
stpCall = con.prepareCall(sql); /*con is the connection */

stpCall.setInt(1, hvPartnum);
stpCall.setBigDecimal(2, hvCost);
stpCall.setInt(3, hvQuantity);

stpCall.registerOutParameter(2, Types.DECIMAL, 2);
stpCall.registerOutParameter(3, Types.INTEGER);

stpCall.execute();

hvCost = stpCall.getBigDecimal(2);
hvQuantity = stpCall.getInt(3);

This application code fragment will invoke the Java method onhand in class parts,
because the procedure name specified on the CALL statement is found in the
database and has the external name parts!onhand.

Example 2:

There are six FOO procedures, in four different schemas, registered as follows
(note that not all required keywords appear):

CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC FOO_1 ...

CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC FOO_2 ...

CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC FOO_3 ...

CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIF